On isogeny classes of Edwards curves over finite fields

We count the number of isogeny classes of Edwards curves over finite fields, answering a question recently posed by Rezaeian and Shparlinski. We also show that each isogeny class contains a {\em complete} Edwards curve, and that an Edwards curve is isogenous to an {\em original} Edwards curve over $\mathbb{F}_q$ if and only if its group order is divisible by $8$ if $q \equiv -1 \pmod{4}$, and $16$ if $q \equiv 1 \pmod{4}$. Furthermore, we give formulae for the proportion of $d \in \mathbb{F}_q$ \ {0,1} for which the Edwards curve $E_d$ is complete or original, relative to the total number of $d$ in each isogeny class.


Publié dans:
Journal of Number Theory, 132, 6, 1337-1358
Année
2012
Publisher:
Elsevier
ISSN:
0022-314X
Mots-clefs:
Laboratoires:




 Notice créée le 2016-01-18, modifiée le 2019-03-17

Lien externe:
Télécharger le document
URL
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)