The behavioral dimension of optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

December 16, 2015

Outline

(1) Introduction

(2) Demand
(3) Supply
(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters

(6) Summary

(7) Appendix: dealing with capacities

- Example: two theaters ECOLE POLYTECHNIQUE fedirale de Lausanne

Transportation systems

Two dimensions

- Supply = infrastructure
- Demand $=$ behavior, choices
- Congestion $=$ mismatch

Transportation systems

Objectives

Minimize costs

Maximize satisfaction

Transportation systems

Maximize revenues
Revenues $=$ Benefits - Costs
Costs: examples

- Building infrastructure
- Operating the system
- Environmental externalities

Benefits: examples

- Income from ticket sales
- Social welfare

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Behavioral models

- Given the configuration of the system...
- predict the demand

Research objectives

Framework for demand-supply interactions

- General: not designed for a specific application or context.
- Flexible: wide variety of demand and supply models.
- Scalable: the level of complexity can be adjusted.
- Integrated: not sequential.
- Operational: can be solved efficiently.

Outline

(1) Introduction

(2) Demand

(3) Supply
(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
(7) Appendix: dealing with capacities
- Example: two theaters

Aggregate demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand function: $Q=f(P)$
- Demand curve: $P=f^{-1}(Q)$

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
- Attributes: price, travel time, reliability, frequency, etc.
- Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

Disaggregate demand

Behavioral models

- Demand = combination of individual choices.
- Modeling demand $=$ modeling choice.
- Behavioral models: choice models.

Choice models

Daniel McFadden

- UC Berkeley 1963, MIT 1977, UC Berkeley 1991
- Laureate of The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000

- Owns a farm and vineyard in Napa Valley
- "Farm work clears the mind, and the vineyard is a great place to prove theorems"

2000

Decision rules

Neoclassical economic theory
Preference-indifference operator \gtrsim
(1) reflexivity

$$
a \gtrsim a \quad \forall a \in \mathcal{C}_{n}
$$

(2) transitivity

$$
a \gtrsim b \text { and } b \gtrsim c \Rightarrow a \gtrsim c \quad \forall a, b, c \in \mathcal{C}_{n}
$$

(3) comparability

$$
a \gtrsim b \text { or } b \gtrsim a \quad \forall a, b \in \mathcal{C}_{n}
$$

Decision rules

Utility

$$
\begin{gathered}
\exists U_{n}: \mathcal{C}_{n} \longrightarrow \mathbb{R}: a \rightsquigarrow U_{n}(a) \text { such that } \\
a \gtrsim b \Leftrightarrow U_{n}(a) \geq U_{n}(b) \quad \forall a, b \in \mathcal{C}_{n}
\end{gathered}
$$

Remarks

- Utility is a latent concept
- It cannot be directly observed

Decision rules

Choice

- Individual n
- Choice set $\mathcal{C}_{n}=\left\{1, \ldots, J_{n}\right\}$
- Utilities $U_{\text {in }}, \forall i \in \mathcal{C}_{n}$
- i is chosen iff $U_{i n}=\max _{j \in \mathcal{C}_{n}} U_{j n}$
- Underlying assumption: no tie.

Example

Two transportation modes

$$
\begin{aligned}
& U_{1}=-\beta t_{1}-\gamma c_{1} \\
& U_{2}=-\beta t_{2}-\gamma c_{2}
\end{aligned}
$$

with $\beta, \gamma>0$

Mode 1 is chosen if

$$
U_{1} \geq U_{2} \text { iff }-\beta t_{1}-\gamma c_{1} \geq-\beta t_{2}-\gamma c_{2}
$$

that is

$$
-\frac{\beta}{\gamma} t_{1}-c_{1} \geq-\frac{\beta}{\gamma} t_{2}-c_{2}
$$

or

$$
c_{1}-c_{2} \leq-\frac{\beta}{\gamma}\left(t_{1}-t_{2}\right)
$$

Example

Trade-off

$$
c_{1}-c_{2} \leq-\frac{\beta}{\gamma}\left(t_{1}-t_{2}\right)
$$

- $c_{1}-c_{2}$ in currency unity (CHF)
- $t_{1}-t_{2}$ in time units (hours)
- β / γ : CHF/hours

Value of time
Willingness to pay to save travel time.

Example

Example

Assumptions

Decision-maker

- perfect discriminating capability
- full rationality
- permanent consistency

Must deal with uncertainty

- Random utility models
- For each individual n and alternative i

$$
U_{i n}=V_{i n}+\varepsilon_{i n}
$$

and

$$
P\left(i \mid \mathcal{C}_{n}\right)=P\left[U_{i n}=\max _{j \in \mathcal{C}_{n}} U_{j n}\right]=P\left(U_{i n} \geq U_{j n} \forall j \in \mathcal{C}_{n}\right)
$$

Logit model

Utility

$$
U_{i n}=V_{i n}+\varepsilon_{i n}
$$

Availability

$$
y_{i n} \in\{0,1\}
$$

- Decision-maker n
- Alternative $i \in \mathcal{C}_{n}$

Choice probability: logit model

$$
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{y_{i n} e^{V_{i n}}}{\sum_{j \in \mathcal{C}} y_{j n} e^{V_{j n}}}
$$

Michel Bierlaire (EPFL)

Variables: $x_{i n}=\left(z_{i n}, s_{n}\right)$

Attributes of alternative $i: z_{\text {in }}$

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n :
S_{n}

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.

Demand curve

Disaggregate model

$$
P_{n}\left(i \mid p_{i n}, z_{i n}, s_{n}\right)
$$

Total demand

$$
D(i)=\sum_{n} P_{n}\left(i \mid p_{i n}, z_{i n}, s_{n}\right)
$$

Difficulty

Non linear and non convex in $p_{i n}$ (and $z_{i n}$)

Outline

(1) Introduction

(2) Demand

(3) Supply

(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
(6) Summary
(7) Appendix: dealing with capacities
- Example: two theaters

Optimization problem

Given...
the demand

Find...
the best configuration of the transportation system.

Example: airline

Context

- An airline considers to propose various destinations $i=\{1, \ldots, J\}$ to its customers.
- Each potential destination i is served by an aircraft, with capacity c_{i}.
- The price of the ticket for destination i is p_{i}.
- The demand is known: W_{i} passengers want to travel to i.
- The fixed cost of operating a flight to destination i is F_{i}.
- The airline cannot invest more than a budget B.

Question

What destinations should the airline serve to maximize its revenues?

Example: airline

Decisions variables
$y_{i} \in\{0,1\}: 1$ if destination i is served, 0 otherwise.
Maximize revenues

$$
\max \sum_{i=1}^{J} \min \left(W_{i}, c_{i}\right) p_{i} y_{i}
$$

Constraints

$$
\sum_{i=1}^{J} F_{i} y_{i} \leq B
$$

Example: airline

Integer linear optimization problem

- Decision variables are integers.
- Objective function and constraints are linear.
- Here: knapsack problem.

Solving the problem

- Branch and bound
- Cutting planes

Example: airline

Pricing

- What price p_{i} should the airline propose?

$$
\max \sum_{i=1}^{J} \min \left(W_{i}, c_{i}\right) p_{i} y_{i}
$$

Issues

- Non linear objective
- Unbounded problem

Example: airline

Unbounded problem

- As demand is constant, the airline can make money with very high prices.
- We need to take into account the impact of price on demand.

Logit model

$$
\begin{aligned}
W_{i} & =\sum_{n} P_{n}\left(i \mid p_{i}, z_{i n}, s_{n}\right) \\
P_{n}\left(i \mid p_{i}, z_{i n}, s_{n}\right) & =\frac{y_{i} e^{V_{i n}\left(p_{i}, z_{i n}, s_{n}\right)}}{\sum_{j \in \mathcal{C}} y_{j} e^{V_{j n}\left(p_{j}, z_{j n}, s_{n}\right)}} .
\end{aligned}
$$

The problem becomes highly non linear.

Outline

(1) Introduction
(2) Demand
(3) Supply
(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters

(6) Summary

(7) Appendix: dealing with capacities

- Example: two theaters

The main idea

$\delta_{\text {TRANSP-OR }}$

ECOLE POLYTECHNIQUE FEDIRALE DE LAUSANNE

The main idea

```
Linearization
Hopeless to linearize the logit formula (we tried...)
```

First principles
Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$
U_{i n}=V_{i n}+\varepsilon_{i n}=\sum_{k} \beta_{k} x_{i n k}+f\left(z_{i n}\right)+\varepsilon_{i n} .
$$

Simulation

- Assume a distribution for $\varepsilon_{\text {in }}$
- E.g. logit: i.i.d. extreme value
- Draw R realizations $\xi_{i n r}$,

$$
r=1, \ldots, R
$$

- The choice problem becomes deterministic

fedirale de lausanNe fe

Scenarios

Draws

- Draw R realizations $\xi_{i n r}, r=1, \ldots, R$
- We obtain R scenarios

$$
U_{i n r}=\sum_{k} \beta_{k} x_{i n k}+f\left(z_{i n}\right)+\xi_{i n r} .
$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Comparing utilities

Variables

$$
\mu_{i j n r}= \begin{cases}1 & \text { if } U_{i n r} \geq U_{j n r} \\ 0 & \text { if } U_{i n r}<U_{j n r} .\end{cases}
$$

Constraints

$$
\left(\mu_{i j n r}-1\right) M_{n r} \leq U_{i n r}-U_{j n r} \leq \mu_{i j n r} M_{n r}, \forall i, j, n, r .
$$

where

$$
\left|U_{i n r}-U_{j n r}\right| \leq M_{n r}, \forall i, j,
$$

Comparing utilities

$$
\left(\mu_{i j n r}-1\right) M_{n r} \leq U_{i n r}-U_{j n r} \leq \mu_{i j n r} M_{n r}, \forall i, j, n, r .
$$

Constraints: $\mu_{i j n r}=1$

$$
\begin{gathered}
0 \leq U_{i n r}-U_{j n r} \leq M_{n r}, \forall i, j, n, r . \\
U_{j n r} \leq U_{i n r}, \forall i, j, n, r
\end{gathered}
$$

Constraints: $\mu_{i j n r}=0$

$$
\begin{gathered}
-M_{n r} \leq U_{i n r}-U_{j n r} \leq 0, \forall i, j, n, r \\
U_{i n r} \leq U_{j n r}, \forall i, j, n, r
\end{gathered}
$$

Comparing utilities

$$
\left(\mu_{i j n r}-1\right) M_{n r} \leq U_{i n r}-U_{j n r} \leq \mu_{i j n r} M_{n r}, \forall i, j, n, r .
$$

Equivalence if no tie

$$
\begin{aligned}
\mu_{i j n r}=1 & \Longrightarrow U_{i n r} \geq U_{j n r} \\
\mu_{i j n r}=0 & \Longrightarrow U_{i n r} \leq U_{j n r} \\
U_{i n r}>U_{j n r} & \Longrightarrow \mu_{i j n r}=1 \\
U_{i n r}<U_{j n r} & \Longrightarrow \mu_{i j n r}=0
\end{aligned}
$$

Accounting for availabilities

Motivation

- If $y_{i}=0$, alternative i is not available.
- Its utility should not be involved in any constraint.

New variables: two alternatives are both available

$$
\eta_{i j}=y_{i} y_{j}
$$

Linearization:

$$
\begin{aligned}
y_{i}+y_{j} & \leq 1+\eta_{i j}, \\
\eta_{i j} & \leq y_{i} \\
\eta_{i j} & \leq y_{j} .
\end{aligned}
$$

Comparing utilities of available alternatives

Constraints

$$
M_{n r} \eta_{i j}-2 M_{n r} \leq U_{i n r}-U_{j n r}-M_{n r} \mu_{i j n r} \leq\left(1-\eta_{i j}\right) M_{n r}, \forall i, j, n, r .
$$

$\eta_{i j}=1$ and $\mu_{i j n r}=1$

$$
0 \leq U_{i n r}-U_{j n r} \leq M_{n r}, \forall i, j, n, r
$$

$$
\eta_{i j}=1 \text { and } \mu_{i j n r}=0
$$

$$
-M_{n r} \leq U_{i n r}-U_{j n r} \leq 0, \forall i, j, n, r .
$$

Comparing utilities of available alternatives

Constraints

$$
M_{n r} \eta_{i j}-2 M_{n r} \leq U_{i n r}-U_{j n r}-M_{n r} \mu_{i j n r} \leq\left(1-\eta_{i j}\right) M_{n r}, \forall i, j, n, r .
$$

$\eta_{i j}=0$ and $\mu_{i j n r}=1$

$$
-M_{n r} \leq U_{i n r}-U_{j n r} \leq 2 M_{n r}, \forall i, j, n, r,
$$

$\eta_{i j}=0$ and $\mu_{i j n r}=0$

$$
-2 M_{n r} \leq U_{i n r}-U_{j n r} \leq M_{n r}, \forall i, j, n, r,
$$

Comparing utilities of available alternatives

Valid inequalities

$$
\begin{aligned}
\mu_{i j n r} \leq y_{i}, & \forall i, j, n, r, \\
\mu_{i j n r}+\mu_{j i n r} \leq 1, & \forall i, j, n, r .
\end{aligned}
$$

The choice

Variables

$$
w_{i n r}= \begin{cases}1 & \text { if } n \text { chooses } i \text { in scenario } r \\ 0 & \text { otherwise }\end{cases}
$$

Maximum utility

$$
w_{i n r} \leq \mu_{i j n r}, \forall i, j, n, r
$$

Availability

$$
w_{i n r} \leq y_{i}, \forall i, n, r .
$$

The choice

One choice

$$
\sum_{i \in \mathcal{C}} w_{i n r}=1, \forall n, r
$$

Demand and revenues

Demand

$$
W_{i}=\frac{1}{R} \sum_{n=1}^{n} \sum_{r=1}^{R} w_{i n r}
$$

Revenues

$$
R_{i}=\frac{1}{R} \sum_{n=1}^{N} p_{i} \sum_{r=1}^{R} w_{i n r} .
$$

Outline

(1) Introduction

(2) Demand
(3) Supply
(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters

(6) Summary

7 Appendix: dealing with capacities

- Example: two theaters

A simple example

Data

- \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

$$
U_{i n}=\beta_{i n} p_{i n}+f\left(z_{i n}\right)+\varepsilon_{i n}
$$

Decision variables

- What movies to propose? y_{i}
- What price? $p_{\text {in }}$

Demand model

Logit model
Probability that n chooses movie i :

$$
P\left(i \mid y, p_{n}, z_{n}\right)=\frac{y_{i} e^{\beta_{i n} p_{i n}+f\left(z_{i n}\right)}}{\sum_{j} y_{j} e^{\beta_{j n} p_{j n}+f\left(z_{j n}\right)}}
$$

Total revenue:

$$
\sum_{i \in C} y_{i} \sum_{n=1}^{N} p_{i n} P\left(i \mid y, p_{n}, z_{n}\right)
$$

Non linear and non convex in the decision variables

Example: programming movie theaters

Data

- Two alternatives: my theater (m) and
 the competition (c)
- We assume an homogeneous population of N individuals

$$
\begin{aligned}
U_{c} & =0+\varepsilon_{c} \\
U_{m} & =\beta_{c} p_{m}+\varepsilon_{m}
\end{aligned}
$$

- $\beta_{c}<0$
- Logit model: ε_{m} i.i.d. EV

Demand and revenues

Optimization (with GLPK)

Data

- $N=1$
- $R=100$
- $U_{m}=-10 p_{m}+3$
- Prices: $0.10,0.20,0.30,0.40$, 0.50

Results

- Optimum price: 0.3
- Demand: 56\%
- Revenues: 0.168

Heterogeneous population

Two groups in the population

$$
U_{i n}=\beta_{n} p_{i}+c_{n}
$$

Young fans: $2 / 3$	Others: $1 / 3$
$\beta_{1}=-10, c_{1}=3$	

Demand and revenues

Optimization

$$
\begin{aligned}
& \text { - } N=3 \\
& \text { - } R=100 \\
& \text { - } U_{m 1}=-10 p_{m}+3 \\
& \text { - } U_{m 2}=-0.9 p_{m} \\
& \text { Prices: } 0.3,0.7,1.1,1.5,1.9
\end{aligned}
$$

Results

- Optimum price: 0.3
- Customer 1 (fan): 60\% [theory: 50 \%]
- Customer 2 (fan): 49\% [theory: 50 \%]
- Customer 3 (other) : 45\% [theory: 43 \%]
- Demand: 1.54 (51\%)
- Revenues: 0.48

Two theaters, different types of films

Two theaters, different types of films

Theater m

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, different types of films

Theater m

- Optimum price m: 1.6
- 4 young customers: 0
- 2 old customers: 0.5
- Demand: 0.5 (8.3\%)
- Revenues: 0.8

Theater k

- Optimum price m: 0.5
- Young customers: 0.8
- Old customers: 1.5
- Demand: 2.3 (38\%)
- Revenues: 1.15

Two theaters, same type of films

Theater m

- Expensive
- Star Wars Episode VII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, same type of films

Data

- Theaters m and k
- $N=6$
- $R=10$
- $U_{m n}=-10 p_{m}+4$, $n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+4$,
$n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.8
- Young customers: 0
- Old customers: 1.9
- Demand: 1.9 (31.7\%)
- Revenues: 3.42

Theater k
Closed

Extension: dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

Outline

(1) Introduction

2. Demand
(3) Supply
(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
(6) Summary
(7) Appendix: dealing with capacities
- Example: two theaters

Summary

Demand and supply

- Supply: prices and capacity
- Demand: choice of customers
- Interaction between the two

Discrete choice models

- Rich family of behavioral models
- Strong theoretical foundations
- Great deal of concrete applications
- Capture the heterogeneity of behavior
- Probabilistic models

Optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- General: not designed for a specific application or context.
- Flexible: wide variety of demand and supply models.
- Scalable: the level of complexity can be adjusted.
- Integrated: not sequential.
- Operational: can be solved efficiently.

Ongoing research

Revenue management
Airlines, train operators, etc.

Decomposition methods

- Scenarios are (almost) independent from each other (except objective function)
- Individuals are also loosely coupled (except for capacity constraints)

Thank you!

Questions?

ECOLE POLYTECHNIQUE fedirale de Lausanne

Outline

(1) Introduction

(2) Demand
(3) Supply
(4) Integrated framework
(5) A simple example

- A linear formulation
- Example: one theater
- Example: two theaters

(6) Summary

(7) Appendix: dealing with capacities

- Example: two theaters

Dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

Priority list

Application dependent

- First in, first out
- Frequent travelers
- Subscribers
- ...

In this framework
The list of customers must be sorted

Dealing with capacities

Variables

- $y_{i n}:$ decision of the operator
- $y_{i n r}$: availability

Constraints

$$
\begin{aligned}
\sum_{n=1}^{N} w_{i n r} & \leq c_{i} \\
y_{i n r} & \leq y_{i n} \\
y_{i(n+1) r} & \leq y_{i n r}
\end{aligned}
$$

Constraints

$$
c_{i}\left(1-y_{i n r}\right) \leq \sum_{m=1}^{n-1} w_{i m r}+\left(1-y_{i n}\right) c_{\max }
$$

$$
\begin{aligned}
y_{i n}=1, y_{i n r} & =1 & y_{i n}=1, y_{i n r} & =0 \\
0 & \leq \sum_{m=1}^{n-1} w_{i m r} & c_{i} & \leq \sum_{m=1}^{n-1} w_{i m r}
\end{aligned}
$$

$y_{i n}=0, y_{i n r}=0$

$$
c_{i} \leq \sum_{m=1}^{n-1} w_{i m r}+c_{\max }
$$

Constraints

$$
\sum_{m=1}^{n-1} w_{i m r}+\left(1-y_{i n}\right) c_{\max } \leq\left(c_{i}-1\right) y_{i n r}+\max \left(n, c_{\max }\right)\left(1-y_{i n r}\right)
$$

$$
y_{i n}=1, y_{i n r}=1
$$

$$
1+\sum_{m=1}^{n-1} w_{i m r} \leq c_{i}
$$

$$
\begin{aligned}
y_{\text {in }}= & 1, y_{\text {inr }}=0 \\
& \sum_{m=1}^{n-1} w_{i m r} \leq \max \left(n, c_{\max }\right)
\end{aligned}
$$

$y_{i n}=0, y_{i n r}=0$

$$
\sum_{m=1}^{n-1} w_{i m r}+c_{\max } \leq \max \left(n, c_{\max }\right)
$$

Two theaters, different types of films

Data

- Theaters m and k
- Capacity: 2
- $N=6$
- $R=5$
- $U_{m n}=-10 p_{m}+4, n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+0, n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices m : 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k : half price

Theater m

- Optimum price m: 1.8
- Demand: 0.2 (3.3\%)
- Revenues: 0.36

Theater k

- Optimum price m: 0.5
- Demand: 2 (33.3\%)
- Revenues: 1.15

Example of two scenarios

Two theaters: all prices divided by 2

Data

- Theaters m and k
- Capacity: 2
- $N=6$
- $R=5$
- $U_{m n}=-10 p_{m}+4, n=1,2,4,5$
- $U_{m n}=-0.9 p_{m}, n=3,6$
- $U_{k n}=-10 p_{k}+0, n=1,2,4,5$
- $U_{k n}=-0.9 p_{k}, n=3,6$
- Prices $m: 0.5,0.6,0.7,0.8,0.9$
- Prices k : half price

Theater m

- Optimum price m: 0.5
- Demand: 1.4
- Revenues: 0.7

Theater k

- Optimum price m: 0.45
- Demand: 1.6
- Revenues: 0.72

Example of two scenarios

