The behavioral dimension of optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

December 16, 2015

Outline

- Introduction
- Demand
- Supply
- 4 Integrated framework
- A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
- Summary
- Appendix: dealing with capacities
 - Example: two theaters

Transportation systems

Two dimensions

- Supply = infrastructure
- Demand = behavior, choices
- Congestion = mismatch

Transportation systems

Objectives

Maximize satisfaction

Transportation systems

Maximize revenues

Revenues = Benefits - Costs

Costs: examples

- Building infrastructure
- Operating the system
- Environmental externalities

Benefits: examples

- Income from ticket sales
- Social welfare

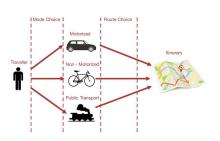
Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Behavioral models

- Given the configuration of the system...
- predict the demand



Research objectives

Framework for demand-supply interactions

- General: not designed for a specific application or context.
- Flexible: wide variety of demand and supply models.
- Scalable: the level of complexity can be adjusted.
- Integrated: not sequential.
- Operational: can be solved efficiently.

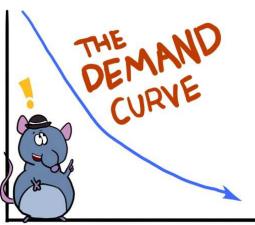
Outline

- Demand
- Integrated framework

- A linear formulation
- Example: one theater
- Example: two theaters
- - Example: two theaters

Aggregate demand

Price



Quantity

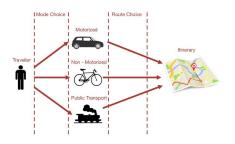
Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand function: Q = f(P)
- Demand curve: $P = f^{-1}(Q)$

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

Disaggregate demand



Behavioral models

- Demand = combination of individual choices.
- Modeling demand = modeling choice.
- Behavioral models: choice models.

Choice models

Daniel McFadden

- UC Berkeley 1963, MIT 1977, UC Berkeley 1991
- Laureate of The Bank of Sweden Prize in Economic Sciences in Memory of Alfred Nobel 2000
- Owns a farm and vineyard in Napa Valley
- "Farm work clears the mind, and the vineyard is a great place to prove theorems"

2000

Decision rules

Neoclassical economic theory

Preference-indifference operator \gtrsim

reflexivity

$$a\gtrsim a \quad \forall a\in \mathcal{C}_n$$

transitivity

$$a \gtrsim b$$
 and $b \gtrsim c \Rightarrow a \gtrsim c \quad \forall a, b, c \in \mathcal{C}_n$

comparability

$$a \gtrsim b$$
 or $b \gtrsim a \quad \forall a, b \in C_n$

Decision rules

Utility

$$\exists~U_n:\mathcal{C}_n\longrightarrow\mathbb{R}:a\leadsto U_n(a)$$
 such that

$$a\gtrsim b\Leftrightarrow U_n(a)\geq U_n(b) \ \ \forall a,b\in \mathcal{C}_n$$

Behavioral dimension of optimization

Remarks

- Utility is a latent concept
- It cannot be directly observed

Decision rules

Choice

- Individual n
- Choice set $C_n = \{1, \ldots, J_n\}$
- Utilities U_{in} , $\forall i \in C_n$
- ullet i is chosen iff $U_{in} = \max_{j \in \mathcal{C}_n} U_{jn}$
- Underlying assumption: no tie.

Two transportation modes

$$U_1 = -\beta t_1 - \gamma c_1$$

$$U_2 = -\beta t_2 - \gamma c_2$$

with β , $\gamma > 0$

Mode 1 is chosen if

$$U_1 \geq U_2$$
 iff $-\beta t_1 - \gamma c_1 \geq -\beta t_2 - \gamma c_2$

that is

$$-rac{eta}{\gamma}t_1-c_1\geq -rac{eta}{\gamma}t_2-c_2$$

or

$$c_1-c_2 \leq -\frac{\beta}{\gamma}(t_1-t_2)$$

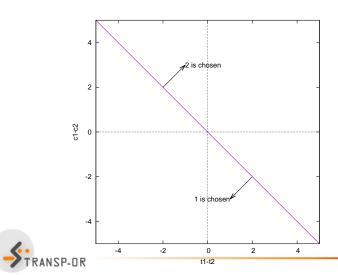
Trade-off

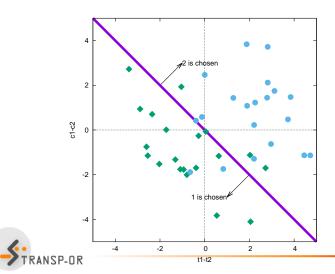
$$c_1-c_2 \leq -\frac{\beta}{\gamma}(t_1-t_2)$$

- $c_1 c_2$ in currency unity (CHF)
- $t_1 t_2$ in time units (hours)
- β/γ : CHF/hours

Value of time

Willingness to pay to save travel time.





Assumptions

Decision-maker

- perfect discriminating capability
- full rationality
- permanent consistency

Analyst

- knowledge of all attributes
- ullet perfect knowledge of \gtrsim (or $U_n(\cdot)$)
- no measurement error

Must deal with uncertainty

- Random utility models
- For each individual *n* and alternative *i*

$$U_{in} = V_{in} + \varepsilon_{in}$$

and

$$P(i|\mathcal{C}_n) = P[U_{in} = \max_{j \in \mathcal{C}_n} U_{jn}] = P(U_{in} \ge U_{jn} \ \forall j \in \mathcal{C}_n)$$

Logit model

Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$

Availability

$$y_{in} \in \{0, 1\}$$

- Decision-maker n
- Alternative $i \in C_n$

Choice probability: logit model

$$P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j\in\mathcal{C}}y_{jn}e^{V_{jn}}}.$$

Variables: $x_{in} = (z_{in}, s_n)$

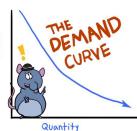
Attributes of alternative i: zin

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker *n*:

Sn

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.



Disaggregate model

$$P_n(i|p_{in},z_{in},s_n)$$

Total demand

$$D(i) = \sum_{n} P_n(i|p_{in}, z_{in}, s_n)$$

Difficulty

Non linear and non convex in p_{in} (and z_{in})

Outline

- Supply
- Integrated framework

- A linear formulation
- Example: one theater
- Example: two theaters

Behavioral dimension of optimization

- - Example: two theaters

Optimization problem

Given...

the demand

Find...

the best configuration of the transportation system.

Context

- An airline considers to propose various destinations $i = \{1, ..., J\}$ to its customers.
- Each potential destination i is served by an aircraft, with capacity c_i .
- The price of the ticket for destination i is p_i .
- The demand is known: W_i passengers want to travel to i.
- The fixed cost of operating a flight to destination i is F_i .
- The airline cannot invest more than a budget B.

Question

What destinations should the airline serve to maximize its revenues?

Decisions variables

 $y_i \in \{0,1\}$: 1 if destination *i* is served, 0 otherwise.

Maximize revenues

$$\max \sum_{i=1}^{J} \min(W_i, c_i) p_i y_i$$

Constraints

$$\sum_{i=1}^{J} F_i y_i \leq B$$

Integer linear optimization problem

- Decision variables are integers.
- Objective function and constraints are linear.
- Here: knapsack problem.

Solving the problem

- Branch and bound
- Cutting planes

Pricing

• What price p_i should the airline propose?

$$\max \sum_{i=1}^{J} \min(W_i, c_i) p_i y_i$$

Issues

- Non linear objective
- Unbounded problem

Unbounded problem

- As demand is constant, the airline can make money with very high prices.
- We need to take into account the impact of price on demand.

Logit model

$$W_i = \sum_n P_n(i|p_i, z_{in}, s_n)$$

$$P_n(i|p_i, z_{in}, s_n) = \frac{y_i e^{V_{in}(p_i, z_{in}, s_n)}}{\sum_{j \in \mathcal{C}} y_j e^{V_{jn}(p_j, z_{jn}, s_n)}}.$$

The problem becomes highly non linear.

Outline

- Introduction
- Demand
- Supply
- Integrated framework
- 6 A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
- Summary
- Appendix: dealing with capacitie
 - Example: two theaters

The main idea

WWW.PHDCOMICS.COM

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- The choice problem becomes deterministic

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \dots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_{k} x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Comparing utilities

Variables

$$\mu_{ijnr} = \begin{cases} 1 & \text{if } U_{inr} \ge U_{jnr}, \\ 0 & \text{if } U_{inr} < U_{jnr}. \end{cases}$$

Constraints

$$(\mu_{\mathit{ijnr}} - 1)M_{\mathit{nr}} \leq U_{\mathit{inr}} - U_{\mathit{jnr}} \leq \mu_{\mathit{ijnr}} M_{\mathit{nr}}, \forall i, j, n, r.$$

where

$$|U_{inr} - U_{inr}| \leq M_{nr}, \forall i, j,$$

Comparing utilities

$$(\mu_{ijnr}-1)M_{nr} \leq U_{inr}-U_{jnr} \leq \mu_{ijnr}M_{nr}, \forall i,j,n,r.$$

Constraints:
$$\mu_{ijnr}=1$$

$$0\leq U_{inr}-U_{jnr}\leq M_{nr}, \forall i,j,n,r.$$
 $U_{jnr}\leq U_{inr}, \forall i,j,n,r.$

Constraints:
$$\mu_{ijnr}=0$$

$$-M_{nr}\leq U_{inr}-U_{jnr}\leq 0, \forall i,j,n,r.$$

$$U_{inr}\leq U_{jnr}, \forall i,j,n,r.$$

FÉDÉRALE DE LAUSANN

Comparing utilities

$$(\mu_{ijnr}-1)M_{nr} \leq U_{inr}-U_{jnr} \leq \mu_{ijnr}M_{nr}, \forall i,j,n,r.$$

Equivalence if no tie

$$\mu_{ijnr} = 1 \Longrightarrow U_{inr} \ge U_{jnr}$$
 $\mu_{ijnr} = 0 \Longrightarrow U_{inr} \le U_{jnr}$
 $U_{inr} > U_{jnr} \Longrightarrow \mu_{ijnr} = 1$
 $U_{inr} < U_{inr} \Longrightarrow \mu_{iinr} = 0$

Michel Bierlaire (EPFL)

Accounting for availabilities

Motivation

- If $y_i = 0$, alternative *i* is not available.
- Its utility should not be involved in any constraint.

New variables: two alternatives are both available

$$\eta_{ij}=y_iy_j$$

Linearization:

$$y_i + y_j \le 1 + \eta_{ij},$$

$$\eta_{ij} \le y_i,$$

$$\eta_{ii} \le y_i.$$

Comparing utilities of available alternatives

$$M_{nr}\eta_{ij}-2M_{nr}\leq U_{inr}-U_{jnr}-M_{nr}\mu_{ijnr}\leq (1-\eta_{ij})M_{nr}, \forall i,j,n,r.$$

$$\eta_{ij}=1$$
 and $\mu_{ijnr}=1$

$$0 \leq U_{inr} - U_{jnr} \leq M_{nr}, \forall i, j, n, r.$$

$$\eta_{ij}=1$$
 and $\mu_{ijnr}=0$

$$-M_{nr} \leq U_{inr} - U_{jnr} \leq 0, \forall i, j, n, r.$$

Comparing utilities of available alternatives

$$M_{nr}\eta_{ij}-2M_{nr}\leq U_{inr}-U_{jnr}-M_{nr}\mu_{ijnr}\leq (1-\eta_{ij})M_{nr}, \forall i,j,n,r.$$

$$\eta_{ij}=0$$
 and $\mu_{ijnr}=1$
$$-M_{nr}\leq U_{inr}-U_{inr}\leq 2M_{nr}, \forall i,j,n,r,$$

$$\eta_{ij}=0$$
 and $\mu_{ijnr}=0$
$$-2M_{nr}\leq U_{inr}-U_{inr}\leq M_{nr}, \forall i,j,n,r,$$

Comparing utilities of available alternatives

Valid inequalities

$$\mu_{ijnr} \leq y_i,$$

$$\mu_{ijnr} + \mu_{jinr} \leq 1,$$

$$\forall i, j, n, r,$$

$$\forall i, j, n, r$$
.

The choice

Variables

$$w_{inr} = \left\{ egin{array}{ll} 1 & ext{if } n ext{ chooses } i ext{ in scenario } r, \\ 0 & ext{otherwise} \end{array}
ight.$$

Maximum utility

$$w_{inr} \leq \mu_{ijnr}, \forall i, j, n, r.$$

Availability

$$w_{inr} < y_i, \forall i, n, r.$$

The choice

One choice

$$\sum_{i \in \mathcal{C}} w_{inr} = 1, \forall n, r.$$

Demand and revenues

Demand

$$W_i = \frac{1}{R} \sum_{n=1}^{n} \sum_{r=1}^{R} w_{inr}.$$

Revenues

$$R_i = \frac{1}{R} \sum_{n=1}^{N} p_i \sum_{r=1}^{R} w_{inr}.$$

Outline

- Introduction
- 2 Demand
- Supply
- 4 Integrated framework
- A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
- Summary
- Appendix: dealing with capacities
 - Example: two theaters

A simple example

Data

- \bullet \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

$$U_{in} = \beta_{in}p_{in} + f(z_{in}) + \varepsilon_{in}$$

Decision variables

- What movies to propose? y_i
- What price? pin

Demand model

Logit model

Probability that *n* chooses movie *i*:

$$P(i|y, p_n, z_n) = \frac{y_i e^{\beta_{in} p_{in} + f(z_{in})}}{\sum_j y_j e^{\beta_{jn} p_{jn} + f(z_{jn})}}$$

Total revenue:

$$\sum_{i \in C} y_i \sum_{n=1}^{N} p_{in} P(i|y, p_n, z_n)$$

Non linear and non convex in the decision variables

Example: programming movie theaters

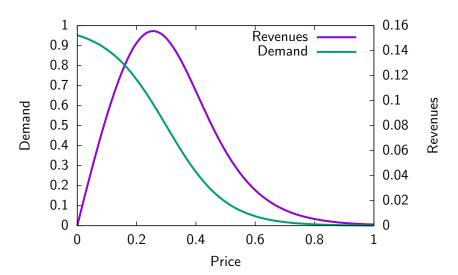
Data

- Two alternatives: my theater (m) and the competition (c)
- We assume an homogeneous population of N individuals

$$U_c = 0 + \varepsilon_c$$
$$U_m = \beta_c p_m + \varepsilon_m$$

- $\beta_c < 0$
- Logit model: ε_m i.i.d. EV

Demand and revenues



Optimization (with GLPK)

Data

- N = 1
- R = 100
- $U_m = -10p_m + 3$
- Prices: 0.10, 0.20, 0.30, 0.40, 0.50

Results

- Optimum price: 0.3
- Demand: 56%
- Revenues: 0.168

Heterogeneous population

Two groups in the population

$$U_{in} = \beta_n p_i + c_n$$

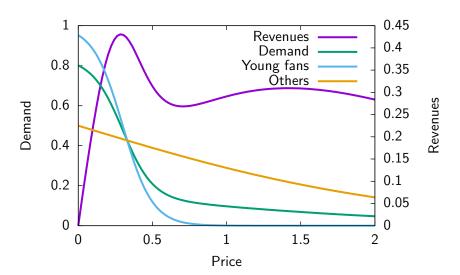
Young fans: 2/3

$$\beta_1 = -10, c_1 = 3$$

Others: 1/3

$$\beta_1 = -0.9$$
, $c_1 = 0$

Demand and revenues



Optimization

Data

- N = 3
- R = 100
- $U_{m1} = -10p_m + 3$
- $U_{m2} = -0.9p_m$
- Prices: 0.3, 0.7, 1.1, 1.5, 1.9

Results

- Optimum price: 0.3
- Customer 1 (fan): 60% [theory: 50 %]
- Customer 2 (fan): 49% [theory: 50 %]
- Customer 3 (other) : 45% [theory: 43 %]
- Demand: 1.54 (51%)
- Revenues: 0.48

December 16, 2015

Theater m

- Expensive
- Star Wars Episode VII

Theater *k*

- Cheap
- Tinker Tailor Soldier Spy

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Data

- \bullet Theaters m and k
- N = 6
- R = 10
- $U_{mn} = -10\rho_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9p_m$, n = 3, 6
- $U_{kn} = -10p_k + (0)$, n = 1, 2, 4, 5
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater m

- Optimum price m: 1.6
- 4 young customers: 0
- 2 old customers: 0.5
- Demand: 0.5 (8.3%)
- Revenues: 0.8

Theater k

- Optimum price *m*: 0.5
- Young customers: 0.8
- Old customers: 1.5
- Demand: 2.3 (38%)
- Revenues: 1.15

Two theaters, same type of films

Theater m

- Expensive
- Star Wars Episode VII

Theater *k*

- Cheap
- Star Wars Episode VIII

Heterogeneous demand

- Two third of the population is young (price sensitive)
- One third of the population is old (less price sensitive)

Two theaters, same type of films

Data

- Theaters *m* and *k*
- N = 6
- R = 10
- $U_{mn} = -10p_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9p_m$, n = 3, 6
- $U_{kn} = -10p_k + 4$, n = 1, 2, 4, 5
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater m

- Optimum price *m*: 1.8
- Young customers: 0
- Old customers: 1.9
- Demand: 1.9 (31.7%)
- Revenues: 3.42

Theater k

Closed

Extension: dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

Outline

- Introduction
- Demand
- Supply
- Integrated framework
- A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
- Summary
- Appendix: dealing with capacitie
 - Example: two theaters

Summary

Demand and supply

- Supply: prices and capacity
- Demand: choice of customers
- Interaction between the two

Discrete choice models

- Rich family of behavioral models
- Strong theoretical foundations
- Great deal of concrete applications
- Capture the heterogeneity of behavior
- Probabilistic models

Optimization

Discrete choice models

- Non linear and non convex
- Idea: use utility instead of probability
- Rely on simulation to capture stochasticity

Proposed formulation

- General: not designed for a specific application or context.
- Flexible: wide variety of demand and supply models.
- Scalable: the level of complexity can be adjusted.
- Integrated: not sequential.
- Operational: can be solved efficiently.

Ongoing research

Revenue management

Airlines, train operators, etc.

Decomposition methods

- Scenarios are (almost) independent from each other (except objective function)
- Individuals are also loosely coupled (except for capacity constraints)

Thank you!

Questions?

Outline

- Introduction
- 2 Demand
- Supply
 - 4 Integrated framework
- A simple example

- A linear formulation
- Example: one theater
- Example: two theaters
- Summary
- Appendix: dealing with capacities
 - Example: two theaters

Dealing with capacities

- Demand may exceed supply
- Not every choice can be accommodated
- Difficulty: who has access?
- Assumption: priority list is exogenous

December 16, 2015

Priority list

Application dependent

- First in, first out
- Frequent travelers
- Subscribers
- ...

In this framework

The list of customers must be sorted

Dealing with capacities

Variables

- y_{in}: decision of the operator
- y_{inr}: availability

$$\sum_{n=1}^{N} w_{inr} \le c_i$$

$$y_{inr} \le y_{in}$$

$$y_{i(n+1)r} \le y_{inr}$$

$$c_i(1-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr} + (1-y_{in})c_{\max}$$

$$y_{in} = 1, \ y_{inr} = 1$$

$$0 \le \sum_{m=1}^{n-1} w_{imr}$$

$$y_{in} = 1, y_{inr} = 0$$

$$c_i \le \sum_{m=1}^{n-1} w_{imr}$$

$$y_{in} = 0, y_{inr} = 0$$

$$c_i \leq \sum_{m=1}^{n-1} w_{imr} + c_{\max}$$

$$\sum_{m=1}^{n-1} w_{imr} + (1-y_{in})c_{\mathsf{max}} \leq (c_i-1)y_{inr} + \mathsf{max}(n,c_{\mathsf{max}})(1-y_{inr})$$

$$y_{in} = 1, \ y_{inr} = 1$$

$$1 + \sum_{m=1}^{n-1} w_{imr} \le c_i$$

$$y_{in} = 1, y_{inr} = 0$$

$$\sum_{m=1}^{n-1} w_{imr} \le \max(n, c_{\max})$$

$$y_{in}=0,\ y_{inr}=0$$

$$\sum^{n-1} w_{imr} + c_{\mathsf{max}} \leq \mathsf{max}(n, c_{\mathsf{max}})$$

Data

- \bullet Theaters m and k
- Capacity: 2
- N = 6
- R = 5
- $U_{mn} = -10p_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9p_m$, n = 3,6
- $U_{kn} = -10p_k + 0$, n = 1, 2, 4, 5
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 1.0, 1.2, 1.4, 1.6, 1.8
- Prices k: half price

Theater m

- Optimum price *m*: 1.8
- Demand: 0.2 (3.3%)
- Revenues: 0.36

Theater k

- Optimum price *m*: 0.5
- Demand: 2 (33.3%)
- Revenues: 1.15

Example of two scenarios

Custom	ier	Choice	Capacity <i>m</i>	Capacity k
	1	0	2	2
	2	0	2	2
	3	k	2	1
	4	0	2	1
	5	0	2	1
	6	k	2	0
Custom	ier	Choice	Capacity m	Capacity k
Custom	ner 1	Choice 0	Capacity <i>m</i> 2	Capacity <i>k</i> 2
Custom	ner 1 2	Choice 0 k		
Custom	1 2 3	0	2	
Custom	1 2	0	2 2	
Custom	1 2	0 k 0	2 2 2	

Two theaters: all prices divided by 2

Data

- \bullet Theaters m and k
- Capacity: 2
- N = 6
- R = 5
- $U_{mn} = -10p_m + 4$, n = 1, 2, 4, 5
- $U_{mn} = -0.9p_m$, n = 3,6
- $U_{kn} = -10p_k + 0$, n = 1, 2, 4, 5
- $U_{kn} = -0.9p_k$, n = 3, 6
- Prices m: 0.5, 0.6, 0.7, 0.8, 0.9
- Prices k: half price

Theater m

- Optimum price *m*: 0.5
- Demand: 1.4
- Revenues: 0.7

Theater k

- Optimum price *m*: 0.45
- Demand: 1.6
- Revenues: 0.72

Example of two scenarios

Custom	ıer	Choice	Capacity <i>m</i>	Capacity k
	1	0	2	2
	2	0	2	2
	3	0	2	2
	4	k	2	1
	5	k	2	0
	6	0	2	0
Custom	er	Choice	Capacity m	Capacity k
Custom	er 1	Choice k	Capacity <i>m</i> 2	Capacity <i>k</i> 1
Custom	ner 1 2			Capacity <i>k</i> 1 0
Custom	1 2 3	k	2	Capacity <i>k</i> 1 0 0
Custom	1 2	k	2 2	Capacity <i>k</i> 1 0 0 0 0
Custom	1 2	k k 0	2 2	Capacity <i>k</i> 1 0 0 0 0 0

