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Abstract. In this paper we analyze the monotonicity of the time to
peak response Tmax with respect to the drug dose D for the four differ-
ent turnover models I - IV, as introduced by Dayneka et al. [2]. We do
this for the situation when the drug is supplied through an initial bolus,
and eliminated according to a single exponential function and stimula-
tion or inhibition takes place through a Hill function. We show that in
Models I and III, in which the drug impacts the production term, the
function Tmax(D) is increasing for all values of the system- and the drug
parameters. For Model II (inhibition of the loss term) the situation is
more delicate. Here we prove monotonicity of Tmax(D) for a substantial
range of values of the rate- and drug constants, but leave the question
of monotonicity open for some values. Finally, in Model IV (stimulation
of the loss term) the function Tmax(D) is known not to be monotone for
some values of the rate constants and Imax [12].

1. Introduction

Turnover models provide an important instrument for pharmacodynami-
cists in gaining an understanding of the dynamics of the physiological effects
of drugs (cf. Ackerman et. al. [1], Dayneka et. al. [2], Ekblad et. al. [3]
and Nagashima et. al. [11]). They are based on a simple balance equation
for the response R(t) involving a zeroth-order production term (kin) and a
first-order loss term (koutR), resulting in the equation

dR

dt
= kin − koutR. (1.1)
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This equation also forms the basis for a scala of feedback models.
In these models the impact of the drug takes place through changes in the

rate constants kin or kout or in both these constants. Since these changes
may be inhibitory or stimulatory, this yields four different turnover models.
Following Dayneka, Garg and Jusko [2], we number these models I, II, III and
IV, as explained in the schematic picture shown in Figure 1. In this paper

Rkin kout·R

I(C)

S(C)

I(C)

S(C)

I. II.

III. IV.

Figure 1. Schematic illustration of the four turnover mod-
els. Model I and Model III represent inhibition I(C) or stim-
ulation S(C) of the turnover rate kin (production), respec-
tively. Model II and Model IV represent inhibition I(C) or
stimulation S(C) of the fractional turnover rate kout (loss),
respectively.

we shall always assume that the drug mechanism functions for inhibition
I(C) and stimulation S(C) are given by the standard functions

I(C) = 1− Imax
C

IC50 + C
and S(C) = 1 + Smax

C

SC50 + C
(1.2)

in which Imax, IC50, Smax and SC50 denote the maximum inhibition, the
potency of the inhibitory effect, the maximum stimulation and the corre-
sponding potency.

Turnover models, also referred to as indirect response models, have been
successful in modeling a diversity of pharmacological responses (cf. Gabriels-
son et al. [4] and the review paper by Mager et al. [9]). They have been
the subject of detailed mathematical studies. In particular, we mention the
papers by Sharma and Jusko, [13], Krzyzanski and Jusko [5], [6] and [7],
Krzyzanski [8], Majumdar [10] and Peletier et al. [12].

An important feature of turnover models is that they incorporate a delay
of the response; i.e., after the administration of the drug, some time elapses
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before the response R builds up to its maximum value Rmax. It is generally
perceived that this delay, the “time to peak response” Tmax, increases with
the drug dose. This delay of the response plays a role in model selection (cf.
Wakelkamp [14]).

In an earlier study [12], analytical and numerical arguments were used to
obtain insight into the behavior of Tmax with respect to the drug dose when
the kinetics is that of an instantaneous infusion into a single compartment.
The plasma concentration C(t) is then given by

C(t) = C0De−kelt, (1.3)

where C0 is a positive constant which depends on the model, D the drug
dose and kel the elimination rate. In Figures 2 and 3 we give typical sample
curves for the four models.
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Figure 2. Peak time Tmax versus drug dose D for Models I
and III. Here κ = kout/kel takes the values 0.5 (top), 1, 2 and
3 (bottom). The graphs are the same in both models and
independent of α.

In [12] it is shown that in Models I - III, regardless of the parameter
values, the graph of the function Tmax(D) is increasing when D is small and
when D is large. Numerical studies warrant the conjecture that this is so
for all values of the parameters. In contrast, it is proved that in Model IV
there exist rate constants for which Tmax(D) is decreasing for small D and
increasing for large D. In this paper we prove some of these conjectures.

We shall show that in general the peak time Tmax depends on three pa-
rameters: the drug dose D, the pharmacokinetic parameter Imax or Smax,
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Figure 3. Peak time Tmax versus drug dose D for Models
II and IV. In Model II we have taken κ = kout/kel = 2, 4,
6 and 8 (going down) and α = 0.5. In Model IV we took
κ = kout/kel = 1 and α = 2, 3, 6 and 8 (going down).

depending on the model, and the ratio κ of the loss rate kout and the elimi-
nation rate of the drug kel:

κ =
kout

kel
.

We here recall the well-known facts (e.g. see [12]) that

Tmax(D)
∣∣∣
Model I

= Tmax(D)
∣∣∣
Model III

for all D > 0 (1.4)

and that in these models Tmax does not depend on Imax (Model I) or Smax

(Model III).
In this paper we establish the following monotonicity theorems.

Theorem 1.1. In Models I and III the peak time Tmax(D) is an increasing
function of the drug dose D for any kin > 0, kout > 0 and kel > 0, and any
0 < Imax ≤ 1 (Model I) or Smax > 0 (Model III).

Theorem 1.2. In Model II the peak time Tmax(D) is an increasing function
of the drug dose D for any kin > 0 and for any kout > 0, kel > 0 and
0 < Imax ≤ 1, if

Imaxkout ≤ kel. (1.5)

Theorem 1.3. In Model II the peak time Tmax(D) is an increasing function
of the drug dose D for any kin > 0 and for any kout > 0, kel > 0 and
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0 < Imax ≤ 1, if

Imaxkout > kel and Imax ≤ 1
2 . (1.6)

If (1.5) and (1.6) are violated, we can still prove the following asymptotic
result for large drug doses which is valid for all reaction rates and any Imax ∈
(0, 1).

Theorem 1.4. In Model II the peak time Tmax(D) is an increasing function
of the drug dose D for any kin > 0 and for any kout > 0, kel > 0 and
0 < Imax < 1, provided D is large enough.

Apart from being interesting in its own right, Theorem 1.4 supplies an
important ingredient in the proof of Theorem 1.3.

In order to prove Theorem 1.4 we need to refine the asymptotic estimate
for the peak time Tmax(D) as the drug dose D tends to infinity, which was
established in [12]. This improved estimate is given in the next theorem.

Theorem 1.5. For any Imax ∈ (0, 1), kin > 0 and κ = kout/kel > 0 we have
for Model II, as D →∞,

Tmax(D) =
1

1 + κ(1− Imax)
ln(D) +

ln[(1− Imax){1 + κ(1− Imax)}]
1 + κ(1− Imax)

+ o(1).

(1.7)

Thus, for Models I and III the peak time Tmax is always increasing with
drug dose. For Model II, the situation is more complex and we still need
to impose certain restrictions on the parameters involved. They are shown
graphically in Figure 4, where we depict the (κ, Imax)-plane for this model.
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Figure 4. The (κ, Imax)-plane for Model II: Strict mono-
tonicity of T (D) is proved in regions A and B and conjectured
in Region C.
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We conjecture that Tmax(D) is an increasing function for all D > 0 for any
pair of values of κ and Imax in the entire half-strip {(κ, Imax) : κ > 0, 0 <
Imax < 1}.

For notational convenience, we shall often write

α =

{
Imax in Models I and II,
Smax in Models III and IV.

2. Dimensionless variables

The scheme shown in Figure 1 translates into the following modification
of the differential equation (1.1):

dR

dt
= kinH1(C)− koutH2(C)R, (2.1)

where H1(C) and H2(C) are referred to as drug mechanism functions: H1 =
I, H2 = 1 for Model I, H1 = 1, H2 = I for Model II, H1 = S, H2 = 1 for
Model III, H1 = 1, H2 = S for Model IV. Since I(0) = 1 and S(0) = 1, it
follows that for all four models the baseline of (2.1) is given by

R0 =
kin

kout
. (2.2)

Throughout we shall assume that, prior to the administration of the drug,
the system is in the baseline state; i.e.,

R(0) = R0. (2.3)

In order to identify the parameters which determine the dynamics of the
systems, and also make the equation more transparent, we introduce dimen-
sionless variables. We scale time with the elimination rate kel, the response
with the baseline response R0 and the plasma concentration with the poten-
cies IC50 and SC50. Thus, we introduce the variables

t∗ = kelt, R∗ =
R

R0
and κ =

kout

kel
, (2.4)

and the scaled drug mechanism functions become

I∗(C∗) = 1− α
C∗

1 + C∗ , C∗(t∗) =
C(t)
IC50

, α = Imax,

S∗(C∗) = 1 + α
C∗

1 + C∗ , C∗(t∗) =
C(t)
SC50

, α = Smax.

(2.5)

Henceforth we shall omit the asterisk again.
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Substituting these scaled variables into equation (2.1) we obtain

dR

dt
= κ{H(C(t))−R} for Models I and III

dR

dt
= κ{1−H(C(t))R} for Models II and IV

, (2.6)

where H(C) stands for I(C) or S(C), C(t) = De−t and the constant C0

has been chosen appropriately. These equations are non-autonomous in that
they depend explicitly on the time t, and they contain three parameters: D,
α and κ. The initial value of the response in these scaled variables becomes:

R(0) = 1. (2.7)

In [12] it has been shown that the graph of the solution R(t) of Problem
(2.6), (2.7) has precisely one critical point Tmax, where the system reaches
its maximal response Rmax. Thus, for each of these four models the time to
peak response Tmax is well defined.

In the next section we present some known results about the function
Tmax and in the subsequent sections we prove the monotonocity properties
formulated in Theorems 1.1 - 1.4.

3. Preliminary results about Tmax

In this section we cite results about Tmax for small and for large values of
the drug dose D which were established in [12].

Proposition 3.1. For Models I-IV we have for any admissible value of α
and κ that

lim
D→0

Tmax(D) = T0 :=






ln(κ)
κ− 1

if κ &= 1,

1 if κ = 1,
(3.1)

and for the derivative T ′max = dTmax/dD in Models I and III,

lim
D→0

T ′max(D) =






1
κ− 2

(2e−T0 − 1) if κ &= 2,

ln 2− 1
2

if κ = 2.
(3.2)

For the large dose behavior it was shown that

Tmax(D) ∼ K(α,κ) log(D) as D →∞, (3.3)
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where

K(α,κ) =






1
1 + κ

Models I and III,

1
1 + κ(1− α)

Model II (0 < α ≤ 1),

1
1 + κ(1 + α)

Model IV.

(3.4)

4. Models I and III: Proof of Theorem 1.1

Since Tmax is the same for Models I and III, we focus on one of them,
Model III, and consider the problem

dR

dt
= κ{S(C)−R}, R(0) = 1 (4.1)

in which
S(C) = 1 + α

C

1 + C
and C(t, D) = De−t. (4.2)

We write
R(t) = 1 + αr(t).

Then
dr

dt
= κ{ϕ(t, D)− r}, r(0) = 0, (4.3)

where

ϕ(t, D) =
De−t

1 + De−t
. (4.4)

This problem can readily be solved explicitly, and we find that the solution
is given by

r(t) = κ

∫ t

0
ϕ(s, D)eκ(s−t) ds.

Since T = Tmax is the unique zero of dR/dt and hence of dr/dt, we conclude
from (4.3) that

ϕ(T, D)eκT = κ

∫ T

0
ϕ(s, D)eκs ds, (4.5)

where, for notational ease, we have written T in place of T (D).
The identity (4.5) defines the function T (D) implicitly. In Appendix A

we shall show that this function is continuously differentiable.
In the following lemma we establish an identity which involves T ′(D) =

dT/dD.
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Lemma 4.1. We have

ϕt(T, D)eκT T ′(D) = κ

∫ T

0
ϕD(s, D)eκs ds− ϕD(T, D)eκT , (4.6)

where ϕt = ∂ϕ/∂t and ϕD = ∂ϕ/∂D.

Proof. Differentiation of (4.5) yields

ϕ(T, D)eκT T ′ +
∫ T

0
ϕD(s,D)eκs ds

=
1
κ
{ϕt(T, D) + κϕ(T, D)}eκT T ′ +

1
κ

ϕD(T, D)eκT

or ∫ T

0
ϕD(s, D)eκs ds =

1
κ

ϕt(T, D)eκT T ′ +
1
κ

ϕD(T, D)eκT .

Rearranging the terms we obtain (4.6). !

Next, we give a technical lemma in which we collect a few useful properties
of the function ϕ(t, D) defined in (4.4):

ϕ(t, D) =
De−t

1 + De−t
.

Lemma 4.2. We have

ϕt(t, D) = − ϕ(t, D)
1 + De−t

and ϕD(t, D) =
ϕ(t, D)

D(1 + De−t)
.

Therefore,

ϕD(t, D) = − 1
D

ϕt(t, D).

Plainly, we have

ϕt(t, D) < 0 and ϕD(t, D) > 0 for all t > 0, D > 0.

Proof. The proof follows from a simple computation. The details are left
to the reader. !

We denote the right-hand side of (4.6) by X:

X = κ

∫ T

0
ϕD(s,D)eκs ds− ϕD(T, D)eκT , (4.7)

and we prove the following.
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Lemma 4.3. We have

X =
κ

D

∫ T

0
ϕ(s, D)eκsL(s, T, D) ds,

where

L(s, t,D) =
1

1 + De−s
− 1

1 + De−t
for all s, t,D > 0.

Proof. We write
X = X1 −X2, (4.8)

where

X1 = κ

∫ T1

0
ϕD(s, D)eκs ds and X2 = ϕD(T, D)eκT .

Using Lemma 4.2 we can write X1 as

X1 = κ

∫ T

0
ϕ(s,D)eκs 1

D(1 + De−s)
ds (4.9)

and X2 as
X2 =

1
D(1 + De−T )

ϕ(T, D)eκT .

When we use (4.5) we can write X2 as

X2 =
κ

D(1 + De−T )

∫ T

0
ϕ(s, D)eκs ds. (4.10)

Putting the expressions (4.9) and (4.10) for, respectively, X1 and X2 into
(4.8), we end up with

X =
κ

D

∫ T

0
ϕ(s, D)eκs

(
1

1 + De−s
− 1

1 + De−T

)
ds,

which is the expression we set out to prove. !
We are ready to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Plainly
1

1 + De−s
<

1
1 + De−T

for 0 < s < T.

Therefore,
L(s, T, D) < 0 for 0 < s < T.

Thus, since ϕ(s, D) > 0, it follows from Lemma 4.3 that X < 0 and hence,
by Lemma 4.1, that

ϕt(T, D)eκT T ′(D) < 0.
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Remembering from Lemma 4.2 that ϕt < 0 we conclude that T ′(D) > 0 for
any D > 0. !

5. Model II: Proof of Theorem 1.2

We consider the problem
dR

dt
= κ{1− I(C)R}, R(0) = 1 (5.1)

in which

I(C) = 1− α
C

1 + C
and C(t, D) = De−t. (5.2)

We write
R(t) = 1 + r(t).

Then
dr

dt
= κ[{1− i(t, D)}− i(t, D)r], r(0) = 0, (5.3)

where

ϕ(t, D) =
De−t

1 + De−t
and i(t, D) = 1− αϕ(t, D). (5.4)

This problem can be solved explicitly, and the solution is found to be

r(t) = κ

∫ t

0
{1− i(t, D)}e−κ

R t
s i(ξ,D) dξ ds. (5.5)

Therefore, when the response is maximal, i.e., when t = Tmax and dR/dt = 0
and hence dr/dt = 0, then we deduce from equation (5.3) that

∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ ds =

1− i(T, D)
κi(T, D)

, T = Tmax(D). (5.6)

Since 0 < α ≤ 1 and ϕ(T, D) < 1 for any T > 0 and D > 0, the right-hand
side of (5.6) is well defined.

This identity defines the function T (D) implicitly. We shall show in Ap-
pendix A that it is continuously differentiable.

We proceed as in the previous section and first derive an intermediate
identity which is comparable to the one in Lemma 4.1.

Lemma 5.1. Let 0 < α ≤ 1 and κ > 0. Then
it(T, D)

κi2(T, D)
T ′(D) = − iD(T, D)

κi2(T, D)
+ Y1 + Y2, (5.7)
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where

Y1 =
∫ T

0
iD(s, D)e−κ

R T
s i(ξ,D) dξ ds,

Y2 =
∫ T

0
{1− i(s,D)}e−κ

R T
s i(ξ,D) dξ

(
κ

∫ T

s
iD(ξ, D) dξ

)
ds.

Proof. When we differentiate (5.6) with respect to D we obtain

{1− i(T, D)}T ′ −
∫ T

0
iD(s, D)e−κ

R T
s i(ξ,D) dξ ds

−
∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ

(
κi(T, D)T ′ + κ

∫ T

s
iD(ξ, D) dξ

)
ds

= − 1
κi2(T, D)

{
it(T, D)T ′ + iD(T, D)

}
.

Thanks to the identity (5.6), two terms cancel and we are left with
∫ T

0
iD(s, D)e−κ

R T
s i(ξ,D) dξ ds

+
∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ

(
κ

∫ T

s
iD(ξ, D) dξ

)
ds

=
1

κi2(T, D)
{
it(T, D)T ′ + iD(T, D)

}
.

Rearranging the terms we obtain (5.7).
Before stating the final expression for T ′(D), we list a few properties of

the function i(t, D).

Lemma 5.2. For any D > 0 and any t > 0,

iD(t, D) = − αe−t

(1 + De−t)2
= − 1− i(t, D)

D(1 + De−t)
and

it(t, D) = −D iD(t, D) =
1− i(t, D)
1 + De−t

.

In particular,

it(t, D) > 0 and iD(t, D) < 0 for all t > 0, D > 0.

We use these properties of the function i(t, D) to rewrite the integrand in
Y1 and Y2 in terms of i(t, D) only. This results in the following lemma.
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Lemma 5.3. Let 0 < α ≤ 1 and κ > 0. Then

it(T, D)
i2(T, D)

T ′(D) =
κ

D

∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξM(s, T, D) ds, (5.8)

where

M(s, t,D) =
1

(De−t + 1)i(t, D)
− 1

De−s + 1
− κi(t, D) + κi(s, D)

for any s, T, D > 0.

Proof. Using the expression for iD(t, D) from Lemma 5.2 we can write Y1

as

Y1 = − 1
D

∫ T

0

1− i(s, D)
1 + De−s

e−
R T

s κi(ξ,D) dξ ds. (5.9)

In order to eliminate iD(t, D) from Y2, we use the identity

iD(t, D) = − 1
D

it(t, D)

from Lemma 5.2 and write
∫ T

s
iD(ξ, D) dξ = − 1

D

∫ T

s
it(ξ, D) dξ = − 1

D
{i(T, D)− i(s, D)}.

Putting this into the expression for Y2 we obtain

Y2 =
1
D

∫ T

0
{1− i(s, D)}e−

R T
s κi(ξ,D) dξ{−κi(T, D) + κi(s, D)} ds. (5.10)

Finally, by Lemma 5.2 we can write the first term on the right-hand side
of (5.7) as

iD(T, D)
κi2(T, D)

= − 1
D

1− i(T, D)
κi2(T, D)(1 + De−T )

.

Using the identity (5.6) this yields

iD(T, D)
κi2(T, D)

= − 1
D

1
i(T, D)(1 + De−T )

∫ T

0
{1− i(s, D)}e−

R T
s κi(ξ,D) dξ ds.

(5.11)
Putting (5.9), (5.10) and (5.11) into (5.7), we obtain the desired expression
(5.8). !
Proof of Theorem 1.2. The proof of Theorem 1.2 is a consequence of
Lemma 5.3. Indeed, observe that since i(T, D) < 1,

M(s, T, D) >
1

1 + C(T )
−κI(C(T ))− 1

1 + C(s)
+κI(C(s)), C(t) = De−t.
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Write
F (C) =

1
1 + C

− κI(C).

Then
F ′(C) =

ακ− 1
(1 + C)2

.

Hence, if ακ ≤ 1, then F ′(C) ≤ 0 for C ≥ 0 and it follows that, since
C(T ) ≤ C(s) if 0 ≤ s ≤ T ,

M(s, T, D) > F (C(T ))− F (C(s)) ≥ 0 for 0 ≤ s ≤ T. (5.12)

Thus, if ακ ≤ 1, then (5.12) holds, and the integral in (5.8) is positive.
Remembering that it(t, D) > 0 for all t > 0 and D > 0 we conclude that, if
ακ ≤ 1, then T ′(D) > 0 for all D > 0.

This concludes the proof of Theorem 1.2. !

6. Two technical lemmas

In this section we derive a convenient expression for T ′(D) and a necessary
and sufficient condition for T ′′(D) to be positive when T ′(D) = 0.

Lemma 6.1. Let 0 < α ≤ 1 and κ > 0 in Model II. Then

T ′(D) =
κi2(T, D)
Dit(T, D)

(
it(T, D)

κi2(T, D)
− {1− i(0, D)}e−

R T
0 κi(ξ,D) dξ

)
.

Proof. We start from the expression (5.7) in Lemma 5.1. Using Lemma 5.2
we write

Y1 = − 1
D

∫ T

0
it(s, D)e−κ

R T
s i(ξ,D) dξ ds

and integrate by parts. This yields

Y1 = − 1
D

{
i(T, D)− i(0, D)e−κ

R T
0 i(ξ,D) dξ − κ

∫ T

0
i2(s, D)e−κ

R T
s i(ξ,D) dξ ds

}
.

(6.1)
For Y2 we obtain, invoking the identity (5.6) along the way,

Y2 = − 1
D

∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ

(
κ

∫ T

s
it(ξ, D) dξ

)
ds

= − κ

D

∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ{i(T, D)− i(s, D)} ds.

= − κ

D
i(T, D)

1− i(T, D)
κi(T, D)

+
κ

D

∫ T

0
i(s, D){1− i(s,D)}e−κ

R T
s i(ξ,D) dξ ds.
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Thus, we obtain the expression

Y2 = − 1
D

+
1
D

i(T, D) +
κ

D

∫ T

0
i(s, D){1− i(s, D)}e−κ

R T
s i(ξ,D) dξ ds. (6.2)

Putting the new expressions (6.1) and (6.2) for respectively Y1 and Y2 into
(5.7) we obtain

Dit(T, D)
κi2(T, D)

T ′(D) =
it(T, D)

κi2(T, D)
− i(T, D) + i(0, D)e−

R T
0 κi(ξ,D) dξ

+
∫ T

0
κi2(s, D)e−

R T
s κi(ξ,D) dξ ds

− 1 + i(T, D) +
∫ T

0
κi(s, D){1− i(s, D)}e−

R T
s κi(ξ,D) dξ ds

=
it(T, D)

κi2(T, D)
+ i(0, D)e−

R T
0 κi(ξ,D) dξ − 1 +

∫ T

0
κi(s,D)e−

R T
s κi(ξ,D) dξ ds.

On the other hand,
∫ T

0
κi(s, D)e−

R T
s ki(ξ,D) dξ ds =

∫ T

0
d

(
e−

R T
s κi(ξ,D) dξ

)
= 1− e−

R T
0 κi(ξ,D) dξ.

Hence,

Dit(T, D)
κi2(T, D)

T ′(D) =
it(T, D)
ki2(T, D)

+ {i(0, D)− 1}e−
R T
0 κi(ξ,D) dξ.

This implies that

T ′(D) =
κi2(T, D)
Dit(T, D)

(
it(T, D)

κi2(T, D)
+ {i(0, D)− 1}e−

R T
0 κi(ξ,D) dξ

)
,

as required. !

Lemma 6.2. Let 0 < α ≤ 1 and let κ > 0. Assume that T ′(D) = 0. Then

T ′′(D) > 0 ⇐⇒ 1
D + 1

− 2(1− α)e−T

1 + (1− α)De−T
− κα(1− e−T )

(D + 1)(1 + De−T )
> 0.

(6.3)

Proof. Using the expression for T ′(D) derived in Lemma 6.1 we write

T ′(D) = g(T, D)f(T, D),
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where

g(t, D) =
κi2(t, D)
it(t, D)

[1 + (1− α)De−t]−2 αD

D + 1

f(t, D) =
e−t

κ
(D + 1)− [1 + (1− α)De−t]2e−

R t
0 κi(ξ) dξ.

This factorization has been chosen so that g(t, D) > 0 for all t > 0 and
D > 0. Thus, T ′(D) = 0 if and only if f(T, D) = 0. It follows that, if
T ′(D) = 0, then

T ′′ = (gf)tT
′ + (gf)D = (gf)D = gDf + gfD = gfD (6.4)

so that it suffices to determine the sign of fD(T, D).
Plainly,

fD(t, D) =
e−t

κ
− 2(1− α)e−t[1 + (1− α)De−t]e−

R t
0 κi(ξ) dξ

+ κ[1 + (1− α)De−t]2e−
R t
0 κi(ξ) dξ

( ∫ t

0
iD(ξ, D) dξ

)
.

Since T ′(D) = 0, it follows from Lemma 6.1 that

e−
R T
0 κi(ξ,D) dξ =

(D + 1)e−T

κ[1 + (1− α)De−T ]2
,

and since, by Lemma 5.2, iD = −it/D we have
∫ t

0
iD(ξ, D) dξ = − 1

D
{i(t, D)− i(0, D)}.

Using these expressions we can write fD(T, D) as

fD(T, D) =
e−T

κ
− 2(1− α)e−T [1 + (1− α)De−T ]

(D + 1)e−T

κ[1 + (1− α)De−T ]2

− κ

D
[1 + (1− α)De−T ]2

(D + 1)e−T

κ[1 + (1− α)De−T ]2
{i(T, D)− i(0, D)},

which can be simplified to

1
D + 1

κeT fD(T, D) =
1

D + 1
− 2(1− α)e−T

1 + (1− α)De−T
− κ

D
{i(T, D)− i(0, D)}.
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Using the formula for i(t, D) this results in

1
D + 1

κeT fD(T, D) =
1

D + 1
− 2(1− α)e−T

1 + (1− α)De−T
− κα(1− e−T )

(D + 1)(1 + De−T )
.

(6.5)

By (6.4) and the positivity of g(T, D), we have sign (T ′′) = sign (fD), so that
we may conclude from (6.5) that

T ′′(D) > 0 ⇐⇒ 1
D + 1

− 2(1− α)e−T

1 + (1− α)De−T
− κα(1− e−T )

(D + 1)(1 + De−T )
> 0,

which is what we set out to prove. !

7. The case ακ > 1 - proof of Theorem 1.3

The proof of Theorem 1.3 proceeds in steps. We first prove that T ′(D) > 0
for D > 2/(1 − α) and κ large enough. Then we expand this result to all
D > 0, but still for κ large enough. Finally, by a continuation argument we
extend the values of α and κ to the region ακ > 1 and 0 < α ≤ 1

2 .

Lemma 7.1. For any α ∈ (0, 1) there exists a constant κα > 0 such that, if
κ > κα, then

T ′(D) > 0 for all D >
2

1− α
.

Proof. Fix α ∈ (0, 1). Suppose to the contrary that there exists a sequence
{κj} tending to infinity as j → ∞ such that for each j ≥ 1 there exists a
drug dose Dj > 2/(1− α) such that T ′(Dj , κj) ≤ 0. Because we know from
Theorem 1.4 that, for each κj , T ′(D) > 0 for D large enough, we may choose
the sequence {Dj} such that

T ′(Dj , κj) = 0 and T ′′(Dj , κj) ≥ 0 for every j ≥ 1.

From Lemma 6.2 we deduce that
1

D + 1
− 2(1− α)e−T

1 + (1− α)De−T
≥ 0 and

1
D + 1

− κα(1− e−T )
(D + 1)(De−T + 1)

≥ 0,

(7.1)
where we have dropped the subscript j and T = T (D). These inequalities
can be simplified to, respectively,

eT ≥ D(1− α) + 2(1− α) (7.2)

and
D + eT ≥ κα(eT − 1). (7.3)
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Eliminating D between them, we obtain
(
1 +

1
1− α

)
eT ≥ κα(eT − 1) + 2. (7.4)

Since D > 2/(1−α) it follows from (7.2) that eT > D(1−α) > 2. Therefore,
for j, and hence κj , large enough we obtain a contradiction. !
Lemma 7.2. Fix α ∈ (0, 1). Then, for every D > 0, we have

(a) T (D,κ)→ 0 as κ→∞ and
(b) κT (D,κ)→∞ as κ→∞.

Both limits are uniform with respect to D ≥ 0 on compact intervals.

Proof. The starting point of the proof is (5.6):
∫ T

0
{1− i(s,D)}e−κ

R T
s i(ξ,D) dξ ds =

1− i(T, D)
κi(T, D)

, T = Tmax(D,κ). (7.5)

Part (a): T (D,κ) → 0 as κ → ∞. Let D0 > 0. Then we have, for
0 ≤ D ≤ D0 and 0 < s < T ,

1− i(s, D)
1− i(T, D)

=
D + eT

D + es
(7.6)

and it follows that
1

1− i(T, D)

∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ ds (7.7)

= (D + eT )
∫ T

0

1
D + es

e−κ
R T

s i(ξ,D) dξ ds.

Moreover, because it(t, D) > 0, by Lemma 5.2,

i(t, D) < i(T, D) for 0 < t < T,

so that
∫ T

0

1
D + es

e−κ
R T

s i(ξ,D) dξ ds >

∫ T

0

1
D + es

e−κi(T,D)(T−s) ds.

Integrating by parts, one has
∫ T

0

1
D + es

e−κi(T,D)(T−s) ds

=
e−κi(T,D)T

κi(T, D)

(
eκi(T,D)T

D + eT
− 1

D + 1
+

∫ T

0

eκi(T,D)ses

(D + es)2
ds

)
.
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This implies
∫ T

0

1
D + es

e−κi(T,D)(T−s) ds (7.8)

=
1

κi(T, D)(D + eT )
+

e−κi(T,D)T

κi(T, D)

(∫ T

0

eκi(T,D)ses

(D + es)2
ds− 1

D + 1

)
.

Combining (7.5), (7.7) and (7.8), we obtain the inequality
∫ T

0

eκi(T,D)ses

(D + es)2
ds <

1
D + 1

,

from which we conclude that

lim
κ→∞

T (D) = 0.

Moreover, the limit is uniform with respect to D < D0.
Part (b): κ T (D,κ)→∞ as κ→∞. Since

i(t, D) > i(0, D) =
1 + (1− α)D

1 + D
and 1− i(t, D) < α

D

1 + D

for t > 0, we have
∫ T

0
{1− i(s, D)}e−κ

R T
s i(ξ,D) dξ ds (7.9)

<
αD

1 + D

∫ T

0
e−κ 1+(1−α)D

1+D (T−s) ds =
α

κ

D

1 + (1− α)D

(
1− e−κ 1+(1−α)D

1+D T
)

.

Also
1− i(T, D)
κi(T, D)

=
α

κ

D

eT + (1− α)D
. (7.10)

Substituting (7.9) and (7.10) into (7.5), we obtain the inequality
α

κ

D

eT + (1− α)D
<

α

κ

D

1 + (1− α)D

(
1− e−κ 1+(1−α)D

1+D T
)

or
1 + (1− α)D
eT + (1− α)D

< 1− e−κ 1+(1−α)D
1+D T

or

e−κT < e−κ 1+(1−α)D
1+D T <

eT − 1
eT + (1− α)D

< 1− e−T . (7.11)

Since T (D,κ)→ 0 as κ→∞ uniformly with respect to D on compact sets,
it follows that the right-hand side of (7.11) tends to zero as κ → ∞, and
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hence we conclude that κ T (D,κ) → ∞ as κ → ∞ uniformly with respect
to D in compact intervals. !

Using Lemmas 7.1 and 7.2, one can prove the following.

Proposition 7.1. For any α ∈ (0, 1), there exists a constant κα > 0 such
that, for any κ > κα,

T ′(D) > 0 for all D > 0.

Proof. First, by Lemma 7.1, it suffices to prove that there exists a constant
κα such that

T ′(D) > 0 for all D ∈ (0, 2/(1− α)), (7.12)
for any κ > κα. In fact, by Lemma 7.2 there is a constant κ1 such that

(
1 +

1
1− α

)
eT < κα(eT − 1) + 2 for all D ∈ (0, 2/(1− α)) (7.13)

whenever κ > κ1. We prove that (7.12) holds when we choose for κα the
maximum of κ1 and the constant κα of Lemma 7.1.

Suppose to the contrary that (7.12) is not true. Then, since T ′(D) > 0
for D ≥ 2/(1−α) and κ > κα (by Lemma 7.1), there exist values for κ > κα

and D ∈ (0, 2/(1− α)) such that

T ′(D) = 0 and T ′′(D) ≥ 0.

Hence we obtain as in the proof of Lemma 7.1 that
(
1 +

1
1− α

)
eT ≥ κα(eT − 1) + 2.

This contradicts (7.13) which holds for the value of κ which we have chosen.
!

We are now ready to prove Theorem 1.3, which we reformulate in the
following proposition.

Proposition 7.2. Let 0 < α ≤ 1
2 and κα > 1. Then

T ′(D) > 0 for all D > 0.

Proof. We prove the proposition by contradiction. Since T ′(D) > 0 for
large D (by Theorem 1.4), there exist κ > 0 and D > 0 such that

T ′(D) = 0 and T ′′(D) ≥ 0.

Using Lemma 6.2, one has

[1 + (1− α)De−T ](1 + De−T )− 2(1− α)e−T (1 + D)(1 + De−T )
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− κα(1− e−T )[1 + (1− α)De−T ] ≥ 0,

or equivalently,

1 + De−T + (1− α)De−T + (1− α)D2e−2T

− 2(1− α)e−T [1 + D + De−T + D2e−T ]

− κα[1− e−T + (1− α)De−T − (1− α)De−2T ] ≥ 0.

This implies that

1− κα+e−T [κα− 2(1− α)]−De−T [κα(1− α)− α]

+ De−2T (κα− 2)(1− α)−D2e−2T (1− α) ≥ 0.

We write this as
X1 + X2 > 0, (7.14)

where

X1 = 1− κα + e−T [κα− 2(1− α)]

X2 = −De−T [κα(1− α)− α] + De−2T (κα− 2)(1− α)−D2e−2T (1− α).

Since α ≤ 1
2 and κα > 1, it follows that

X1 = 1− κα + e−T [κα− 2(1− α)] = (1− κα)(1− e−T ) + e−T (2α− 1) < 0.

In order to estimate X2, we handle the cases κα ≥ 2 and 1 < κα < 2
separately. If κα ≥ 2, we have

X2 < −De−T [κα(1− α)− α] + De−2T (κα− 2)(1− α)

≤ −De−T [κα(1− α)− α] + De−T (κα− 2)(1− α)

= De−T (3α− 2) < 0.

On the other hand, if 1 < κα < 2, then

X2 < −De−T [κα(1− α)− α] + De−2T (κα− 2)(1− α) < 0,

since κα(1− α)− α > 1− 2α ≥ 0. Thus,

X1 + X2 < 0.

This contradicts (7.14) and completes the proof of Theorem 1.3. !

Remark 1. Combining Proposition 7.2 and Theorem 1.2, we have shown
that T ′(D) > 0 for any κ > 0 and any α ≤ 1/2.
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8. Large dose asymptotics of T (D) in Model II
Proof of Theorems 1.4 and 1.5

In order to prove the asymptotic results for large drug doses, we first need
to refine the estimate for the asymptotic behavior of T (D) for Model II as
D tends to infinity, which was established in [12] and formulated in (3.4).
There it was stated that, for Model II, T (D) ≈ 1

1+k(1−α) lnD as D →∞.
We prove the following lemma.

Lemma 8.1. Let α ∈ (0, 1) and κ > 0. Then

1
D

e{1+κ(1−α)}T (D) = (1−α){1 + κ(1−α)}[1 + o(1)] as D →∞. (8.1)

Proof. We take as starting point the identity (5.6):
∫ T

0
{1− i(s, D)}e−

R T
s κi(ξ,D) dξ ds =

1− i(T, D)
κi(T, D)

, (5.6)

and we expand the left- and the right-hand side in powers of the small
quantity ε = 1

D . Thus, we write

1− i(s, D) =
αDe−s

1 + De−s
=

α

εes + 1
= α {1− [1 + o(1)]εes} ,

and hence
i(s, D) = 1− α + [1 + o(1)]αεes

for values of s restricted to the interval (0, T ). Here o(1) denotes a term
which tends to zero as ε→ 0. Because of (3.4) we have

εes ≤ εeT = O(εγ) as ε→ 0; γ = 1− 1
1 + κ(1− α)

.

Using the expansion for i(s, D) in the integral in the exponent we obtain

e−
R T

s κi(ξ,D) dξ = e−
R T

s κ(1−α) dξ

{
1− [1 + o(1)]

∫ T

s
εκαeξ dξ

}

= e−κ(1−α)(T−s)
{
1− [1 + o(1)]ακε(eT − es)

}
.

This implies that

{1− i(s, D)}e−
R T

s κi(ξ,D) dξ (8.2)

= αe−κ(1−α)(T−s)
{
1− ε[es + ακ(eT − es)][1 + o(1)]

}
.
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We now integrate the expression we computed in (8.2) over the interval
(0, T ). Since

∫ T

0
e−κ(1−α)(T−s) ds =

1− e−κ(1−α)T

κ(1− α)
∫ T

0
e−κ(1−α)(T−s)es ds =

eT − e−κ(1−α)T

κ(1− α) + 1
∫ T

0
e−κ(1−α)(T−s)(eT − es) ds =

eT (1− e−κ(1−α)T )
κ(1− α)

− eT − e−κ(1−α)T

κ(1− α) + 1
,

we obtain for the left-hand side (LHS) of (5.6)

LHS =
α

κ(1− α)
(1− e−κ(1−α)T )− εαeT

(1− α){κ(1− α) + 1} [1 + o(1)].

For the right-hand side (RHS) of (5.6) we obtain

RHS =
1− i(T, D)
κi(T, D)

=
α

κ(1− α + εeT )
=

α

κ(1− α)

(
1− εeT

1− α
[1 + o(1)]

)
.

Equating the left- and the right-hand side of (5.6), i.e., putting LHS =
RHS, we obtain

− α

κ(1− α)
e−κ(1−α)T − αεeT

(1− α){1 + κ(1− α)} [1 + o(1)]

= − αεeT

κ(1− α)2
[1 + o(1)],

which yields

1
D

e{1+κ(1−α)}T (D) = (1− α){1 + κ(1− α)}[1 + o(1)] as D →∞. (8.3)

This completes the proof of Lemma 8.1. !

Taking the logarithm of the expression in (8.3) we obtain, after some
rearrangement,

T (D) =
1

1 + κ(1− α)
ln(D)+

ln[(1− α){1 + κ(1− α)}]
1 + κ(1− α)

+ o(1) as D →∞.

(8.4)
This completes the proof of Theorem 1.5. !
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We are now ready to prove Theorem 1.4.
Proof of Theorem 1.4. Since it(T, D) > 0 we conclude from Lemma 6.1
that T ′(D) > 0 if and only if

it(T, D)
κi2(T, D)

> {1− i(0, D)}e−
R T
0 κi(ξ,D) dξ. (8.5)

Using the explicit expressions for i(t, D) and it(t, D) of Lemma 5.2, and
replacing D by 1/ε, we can write this inequality as

εeT e
R T
0 κi(ξ,D) dξ

{(1− α) + εeT }2 >
κ

1 + ε
. (8.6)

We readily see that

e
R T
0 κi(ξ,D) dξ = eκ(1−α)T

[
1 + o(1)

]
as D →∞.

Hence, using (8.3) we can compute the left-hand side of (8.6):

εeT e
R T
0 κi(ξ,D) dξ

{(1− α) + εeT }2 →
1 + κ(1− α)

1− α
as D →∞. (8.7)

For the limit of the right-hand side of (8.6) we obviously obtain
κ

1 + ε
→ κ as D →∞. (8.8)

Because
1 + κ(1− α)

1− α
> κ,

it follows that (8.3) holds for D large enough.
This completes the proof of Theorem 1.4. !

Appendix A. Differentiability of T (D) in Models I, II and III

For Model III we start from the implicit definition (4.5) of the function
Tmax(D):

ϕ(T, D)eκT = κ

∫ T

0
ϕ(s, D)eκs ds, (4.5)

and use the implicit function theorem. Define

G(t, D) def= κ

∫ t

0
ϕ(s, D)eκs ds− ϕ(t, D)eκt.

Then
Gt(t, D) = κϕ(t, D)eκt − κϕ(t, D)eκt − ϕt(t, D)eκt. (A.1)
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Hence,
Gt(T, D) = −ϕt(T, D)eκT > 0

because, by Lemma 4.2, ϕt(t, D) < 0 for all t > 0 and D > 0. By the implicit
function theorem this means that T is differentiable with respect to D. Since
T (D) is the same for Models I and III, this also proves the differentiability
of T (D) in Model I.

For Model II we start from the definition (5.6) of Tmax(D) and proceed
likewise. We omit the details.
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