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Abstract

This paper is devoted to the study of a cloaking device that is composed of a

standard near cloak based on a regularization of the transformation optics, i.e., a

change of variables that blows up a small ball to the cloaked region, and a fixed

lossy layer for the Helmholtz equation in the whole space of dimension 2 or 3

with the outgoing condition at infinity. We establish a degree of near invisibility,

which is independent of the content inside the cloaked region, for this device.

We also show that the lossy layer is necessary to ensure the validity of the degree

of near invisibility when no constraint on physical properties inside the cloaked

region is imposed. © 2010 Wiley Periodicals, Inc.

1 Introduction

This paper concerns an approach to cloaking introduced by Greenleaf, Lassas,

and Uhlmann [5], Pendry, Schurig, and Smith [15], and Leonhardt [11]. Their

“transformation optics” scheme uses a singular change of coordinates that blows

up a point to a cloaked region. Although this approach is excellent in many aspects,

it has the defect that one needs to work with the singular structure. This implies

difficulties in practice as well as theory; see, e.g., [3, 19].

Recently, to avoid working with this singular structure, Ruan et al. [16] and

Kohn et al. [8] suggested studying a regularization of this approach by considering

a near cloaking based on a change of coordinates that blows up a small ball to the

cloaked region. In [16] Ruan et al. studied this problem for scattered waves of

the Helmholtz equation in two dimensions where the cloaked region is a ball and

the material inside the cloaked region is homogeneous. They argued that in the

limiting case, the standard near cloak should become a perfect one. In [8] Kohn et

al. studied a near invisibility for the Neumann-to-Dirichlet map in the context of

electric impedance tomography using a standard near cloak. They showed that the

near cloaking is achieved for an arbitrary material inside the cloaked region.

In [12] Liu studied this issue for the Helmholtz equation in the whole space of di-

mension 2 or 3 with the outgoing condition at infinity. Using a standard near cloak,

imposing the Dirichlet boundary condition at the boundary of the cloaked region,

and considering scattered waves generated by plane waves, he established a near
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invisibility for the far-field pattern. In [7] Kohn et al. investigated a near cloaking

of the Dirichlet-to-Neumann map for the Helmholtz equation in a bounded domain

of dimension 2 or 3. Because of the bounded domain, they have to assume some

condition on the frequency so that their problem is well-posed. Their near cloak

contains a lossy layer between a standard one and the cloaked region. They proved

that their near cloaking is achieved regardless of the content inside the cloaked

region.

This paper is devoted to the study of a near cloaking for the Helmholtz equa-

tion in the whole space of dimension 2 or 3 for an arbitrary geometry object, with

the transmission conditions at interfaces of different materials and with a general

source outside the cloaked region. Our near cloak contains a standard one based on

the change-of-variable scheme mentioned above and a (fixed) lossy layer between

the standard one and the cloaked region that is independent of the parameter of reg-

ularization ". Here the parameter of regularization " is defined as the rate between

the diameter of a region that blows up to the cloaked region and the diameter of

the cloaked region. We show that the degree of near invisibility for the near field is

" in three dimensions and 1=jlog "j in two (Theorem 1.2). This is compatible with

the results in [7, 12].

Our estimate is uniform with respect to the material inside the cloaked region

(see Theorem 1.2). Moreover, we also prove that to achieve such uniformity, the

existence of the lossy layer is necessary (see Theorem 1.7) although our problem is

well-posed despite the existence of a lossy layer. Our method of proof of degree of

near invisibility is completely different from the ones used in the works mentioned

above. It is based on an idea in [14] and standard techniques presented in [10, 21].

To prove the necessity of the lossy layer, we make use of special functions in the

Helmholtz setting. Our work is strongly motivated by that of Kohn et al. [7].

Let us describe our problem mathematically. To illustrate the idea, instead of

defining cloaks for arbitrary geometry objects, let us explain what it means for a

specific structure ac ; �c defined in the annular 1
2

< jxj < 2 to cloak the ball B1=2

of R
d (d D 2; 3). Hereafter B denotes the unit open ball of R

d and Dr denotes

the set frx W x 2 Dg for any convex set D containing the origin and for any r > 0.

Let uc 2 H 1
loc.R

d / be the unique solution of the Helmholtz equation

(1.1) div.Ac.x/ruc/ C k2†c.x/uc D f in R
d ;

where

Ac ; †c D

8̂<
:̂

I; 1 in R
d n B2;

ac.x/; �c.x/ in B2 n B1=2;

a.x/; �.x/ in B1=2;

such that uc satisfies the well-known outgoing condition, i.e.,(
@uc

@r
� ikuc D O.1=r

3
2 / as r D jxj ! 1 if d D 2;

@uc

@r
� ikuc D O.1=r2/ as r D jxj ! 1 if d D 3:
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Here ac and a are matrix functions that are uniformly elliptic, �c and � are complex

functions such that 0 � =�; =�c � c1, 0 < c2 < <�c; <� < c3 < C1, for

some c1, c2, and c3 on their domain of definition, and f 2 L2.Rd / such that

supp f � .B4 n B3/. Physically ac and �c describe the material properties in the

cloaking device B2 n B1=2; a and � describe the material properties in the cloaked

region B1=2; and f is a given source outside the cloaking device and the cloaked

region. Let u 2 H 1
loc.R

d / be the unique solution of

(1.2) �u C k2u D f in R
d

such that u satisfies the outgoing condition.

To cloak perfectly, we need to construct ac and �c such that uc D u outside B2.

To have a near cloaking, we need to construct ac and �c such that uc � u outside

B2. Before giving the formulas for ac and �c in these situations, let us recall the

following basic fact on which the change-of-variable-based cloaking scheme relies.

PROPOSITION 1.1 Let d � 2, A be a matrix function, and † be a complex function

defined on R
d , F W R

d ! R
d be Lipschitz, surjective, and invertible, and f 2

L2.Rd / such that kAkL1 < C1, k†kL1 < C1, F.x/ D x on R
d nB2, F �1 is

Lipschitz, det DF > c a.e., x 2 R
d , det DF �1 > c a.e., x 2 R

d for some positive

constant c > 0, and supp f � B4 n B3. Then u 2 H 1
loc.R

d / is a solution of

div.Aru/ C k2†u D f in R
d

if and only if v WD u ı F �1 2 H 1
loc.R

d / is a solution of

div.F�Arv/ C k2F�†v D f in R
d :

Here

F�A.y/ D DF.x/A.x/DF T.x/

det DF.x/
; F�†.y/ D †.x/

det DF.x/
; x D F �1.y/:

Moreover, u D v outside B2.

We are ready to give the construction of ac and �c . For the perfect cloaking

case, a standard construction is

Ac ; †c D

8̂<
:̂

I; 1 in R
d n B2;

G�I; G�1 in B2 n B1=2;

a; � in B1=2;

where G D lim"!0 G" and G" is defined by

G" D

8̂<
:̂

x if x 2 R
d n B2;�

1�2"
2�"

C 3jxj
2.2�"/

�
x

jxj
if x 2 B2 n B";

x
2"

if x 2 B":

We note that G" maps @B2 and @B" into @B2 and @B1=2, respectively. It is clear to

see that the construction is singular at 0.
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To obtain a near cloaking, we use the following construction:

(1.3) Ac ; †c D

8̂̂̂
<
ˆ̂̂:

I; 1 in R
d n B2;

F"�I; F"�1 in B2 n B1;

I; 1 C i
k

in B1 n B1=2;

a; � in B1=2;

where

(1.4) F" D

8̂<
:̂

x if x 2 R
d n B2;�

2�2"
2�"

C jxj
2�"

�
x

jxj
if x 2 B2 n B";

x
"

if x 2 B":

We note that F" maps @B2 and @B" into @B2 and @B1, respectively.

The effectiveness of this near cloak is confirmed in Section 2.2. The main result

proved there is the following:

THEOREM 1.2 Let d D 2; 3, k > 0, 0 < " < 1
4

, f 2 L2.Rd /, a be a measurable

matrix function, and � be a measurable complex function defined on the ball B1=2

of R
d . Assume that supp f � B4 n B3, a is uniformly elliptic, and 0 � =.�/ � c1

and 0 < c2 < <.�/ < c3 < C1 for some constants c1, c2, and c3 on B1=2.

Let uc and u in H 1
loc.R

d / be the solutions of (1.1) and (1.2), respectively, where

.Ac ; †c/ is defined by (1.3) such that uc and u satisfy the outgoing condition. Then

(1.5)

(
kuc � ukH 1.B3nB2/ � C

jln "j
kf kL2 if d D 2;

kuc � ukH 1.B3nB2/ � C "kf kL2 if d D 3;

for some positive constant C depending on k but independent of ", f , a, � , c1, c2,

and c3.

Remark 1.3. Our construction could be used to hide an arbitrary physical object in

the cloaked region, since our estimate is independent of a and � . In other words,

our near cloaking is achieved regardless of the content of the cloaked region.

Remark 1.4. Theorem 1.2 is a consequence of Proposition 1.1 and Theorem 2.1

where we deal with an arbitrary geometry object. Hence our method can be applied

to cloak a region of arbitrary shape.

Remark 1.5. In [7], Kohn et al. studied a similar problem for the Helmholtz equa-

tion in a bounded domain. All of us use a lossy layer in our construction. Our

method of proof is different from theirs and is also simpler, particularly for the

three-dimensional case.

Remark 1.6. Estimate (1.5) also holds for some constant C independent of ˛ (see

the proof of Theorem 1.2) if we take

Ac ; †c D I; 1 C i˛

k
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(for any ˛ > 1) in B1 n B1=2. This yields the result for the Dirichlet condition

at the inner edge of a standard cloaking device. Thus we rediscover and improve

the result of Liu [12] since we only use here a fixed material, and moreover our

estimate is established for the near field.

In Section 2.3 we show that it is necessary to have a lossy layer besides a stan-

dard near cloak based on the change-of-variable scheme if we want to obtain a near

cloaking regardless of the material inside the cloaked region. The main result of

Section 2.3 is the following:

THEOREM 1.7 Let d D 2; 3. Then for any 0 < " < 1
4

, r > 4, and � > 0, there

exist two positive constants a and � such that

kuskL2.Br nB2/ � �:

Here us 2 H 1
loc.R

d / is such that us satisfies the outgoing condition and u WD
us C eikxd is a solution of the Helmholtz equation

div.Acru/ C k2†cu D 0;

where .Ac ; †c/ is defined as follows:

(1.6) Ac ; †c D

8̂<
:̂

I; 1 in R
d n B2;

G"�I; G"�1 in B2 n B1=2;

a; � in B1=2:

Remark 1.8. Kohn et al. considered a near cloaking via a change of variables of the

Dirichlet-to-Neumann map for the Helmholtz equation in a bounded domain. They

showed that in their setting a lossy layer is necessary to obtain an estimate of degree

of near invisibility regardless of the content inside the cloaked region. In fact, they

showed that for any small ", the parameter of regularization, and for any frequency

k, there exists a material inside the cloaked region such that the associated problem

is not well-posed. Our situation is different from theirs. Our problem is well-posed

for any " and k and for any material inside the cloaked region. Nevertheless, the

uniformity of the degree of near invisibility does not hold without a lossy layer.

Finally, we want to mention the works of Greenleaf et al. in [3] (see also the

work of Hetmaniuk, Liu, and Uhlmann in [6]) and Weder in [18]. They worked

directly with the (singular) scheme and introduced weak notions of solutions for

this scheme. It would be nice to verify that these notions are consistent. The reader

interested in cloaking can find a recent survey on this subject in [4].
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2 Proof of the Main Results

2.1 Change of Variables for Helmholtz Equations; Proof of Proposition 1.1

The proof of Proposition 1.1 is elementary. It is based on the variational formula

of the solutions. Indeed, u is characterized by the fact that u 2 H 1
loc.R

d / andZ
Rd

.Arur� � k2†u�/dx D �
Z

Rd

f � dx

for all Lipschitz � with compact support. Replacing x by F �1.y/, we haveZ
Rd

.F�Arvr' � k2F�†v'/dy D �
Z

Rd

f ' dy;

with ' D � ı F �1, since supp f � B4 n B3 and F.x/ D x for x 2 R
d n B2. This

implies, since � is arbitrary,Z
Rd

.F�Arvr' � k2F�†v'/dy D �
Z

Rd

f ' dy

for all Lipschitz ' with compact support. This implies all conditions on v.

To prove the inverse, it suffices to note that

F �1
� .F�A/ D A and F �1

� .F�†/ D †:

2.2 Study of a Small Inclusion; Proof of Theorem 1.2

It is important to note that if .Ac ; †c/ is defined by (1.3), then Ac D F"�A" and

†c D F"�†" where

A"; †" D

8̂<
:̂

I; 1 if x 2 R
d n B";

1
"d�2 I; 1

"d Œ1 C i
k

� if x 2 B" n B"=2;
1

"d�2 a.x
"
/; 1

"d �.x
"
/ if x 2 B"=2:

Using this observation and applying Proposition 1.1, Theorem 1.2 is a conse-

quence of the following:

THEOREM 2.1 Let d D 2; 3, k > 0, 0 < " < 1
4

, D � B1 be a smooth, open,

convex subset of R
d , f 2 L2.Rd /, a be a measurable matrix function, and � be a

measurable complex function defined on D1=2. Assume that supp f � B4 n B3, a

is uniformly elliptic, and 0 � =.�/ � c1 < 1 and 0 < c2 < <.�/ < c3 < C1
for some c1, c2, and c3 on D1=2. Define

A"; †" D

8̂<
:̂

I; 1 if x 2 R
d n D";

1
"d�2 I; 1

"d Œ1 C i
k

� if x 2 D" n D"=2;
1

"d�2 a.x
"
/; 1

"d �.x
"
/ if x 2 D"=2:
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Let u" 2 H 1
loc.R

d / be the unique solution of

(2.1)

(
r � .A"ru"/ C k2†"u" D f in R

d ;

u" satisfies the outgoing condition:

Then there exists a constant C D C.k; D/, independent of ", f , a, � , c1, c2, and

c3, such that (
ku" � ukH 1.B3nB2/ � C

jln "j
kf kL2 if d D 2;

ku" � ukH 1.B3nB2/ � C "kf kL2 if d D 3:

Here u is the unique solution of (1.2).

In this section, we deal with some estimates for Helmholtz equations. Our

method of proof is based on and inspired from the standard variational one pre-

sented in [10, 21]. The integral equation method (see, e.g., [1, 13]) may not be

appropriate for our setting where its parameters (A", �") are not piecewise con-

stant.

The following lemma concerns the phenomena of low frequency, which natu-

rally appears in the study of Theorem 2.1.

LEMMA 2.2 Let d D 2; 3, k > 0, 0 < " < k, D � B1 be a smooth open subset of

R
d , and g 2 H 1=2.@D/. Assume that R

d n D is connected and v" 2 H 1
loc.R

d / is

the unique solution of

(2.2)

8̂<
:̂

�v" C "2v" D 0 in R
d n D;

v" D g on @D;

v" satisfies the outgoing condition:

Then

(2.3) kv"kH 1.Br nD/ � CrkgkH 1=2.@D/ 8r > 5

and

(2.4)

(
kv"kL2.B4="nB1="/ � C

"1=2jlog "j
kgkH 1=2.@D/ if d D 2;

kv"kL2.B4="nB1="/ � C kgkH 1=2.@D/ if d D 3;

for some positive constants Cr D C.r; k; D/ and C D C.k; D/.

Remark 2.3. Lemma 2.2 is standard in the case d D 3 (see, e.g., [10]). In the case

d D 2, some difficulties in the investigation of the stability of the solutions appear

as mentioned in [2, p. 66] since the fundamental solution of the Helmholtz equa-

tion, which satisfies the outgoing condition, does not converge as the frequency

goes to 0. In this case, (2.3) was proved by Werner in [20] and Kress in [9] by the

integral equation method; (2.4) should be known but we cannot find any reference

for it. In this paper, we use an approach, based on the method presented in [10, 21]
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to obtain the whole conclusion of Lemma 2.2. In the case d D 2, our key ingre-

dients are the following properties of Hl , the Hankel function of the first kind of

order l ; see, e.g., [2, (3.61), p. 66] and [17, p. 446],

(2.5) lim
r!0

1

jln r j H0.r/ D 2

i�
; jH0j & on RC; lim

r!0

rdH0.r/

dr
D � 2

i�

and

(2.6)

Z
@Bt

jHl j2 �
Z

@Bs

jHl j2 8 0 < s < t; 8l 6D 0:

PROOF: Here we give the proof only in the case d D 2. We first prove that

(2.7) kv"kL2.B5nD/ � C kgkH 1=2.@D/

for some positive constant C depending only on k and D by contradiction. Sup-

pose that this is not true. Then there exist a sequence "n ! 0C and a sequence

gn 2 H 1=2.@D/ such that

(2.8) lim
n!1

kgnkH 1=2.@D/ D 0 and kvnkL2.B5nD/ D 1;

where vn 2 H 1
loc.R

2 n D/ is the unique solution of

(2.9)

8̂<
:̂

�vn C "2
nvn D 0 in R

2 n D;

vn D gn on @D;

vn satisfies the outgoing condition:

Since kvnkL2.B5nD/ D 1, �vnC"2
nvn D 0 in R

2nB1, and vn satisfies the outgoing

condition, it follows that vn can be represented by

vn.x/ D
1X

lD�1

al;nHl."njxj/eil� 8x W jxj > 1:

Then

(2.10) vn D v0;n C v1;n;

where

(2.11) v0;n D a0;nH0."njxj/ and v1;n D
X
l 6D0

al;nHl."njxj/eil� :

Since .eil� /1
lD�1

is orthogonal in L2.@B1/ and kvnkL2.B5nD/ D 1, it follows

from (2.5), (2.6), and (2.11) that

(2.12) ja0;nj � C

jln "nj
and

(2.13)

Z
@Br

jv1;nj2 � C 8r > 2:
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From (2.9), we haveZ
B5nD

jrvnj2 � "2
n

Z
B5nD

jvnj2 D
Z

@B5

@vn

@r
vn �

Z
@D

@vn

@�
gn

Thus since rvn C "2
n D 0 in R

2 n D and limn!1 kgnkH 1=2.@D/ D 0, it follows

from (2.5), (2.6), (2.12), and (2.13) thatZ
B5nD

jrvnj2 � C:

Hence since �vn C "2
nvn D 0, without loss of generality, we may assume that

vn ! v weakly in H 1
loc.R

2 n D/ and vn ! v in L2.B5 n D/.

We next prove that
R

R2nD jrvj2 < C1. We have

(2.14)

Z
BmnD

jrvj2 � lim inf
n!1

Z
BmnD

jrvnj2 8m > 2:

On the other hand, by (2.9),Z
BmnD

jrvnj2 � "2
n

Z
BmnD

jvnj2 C
Z

@Bm

ˇ̌̌
ˇ@vn

@r

ˇ̌̌
ˇjvnj C

ˇ̌̌
ˇ
Z

@D

@vn

@�
vn

ˇ̌̌
ˇ 8m > 2;

We claim that

(2.15) lim
n!1

Z
BmnD

jrvnj2 � C 8m > 2:

Indeed, it suffices to prove that

(2.16) lim
n!1

Z
@Bm

ˇ̌̌
ˇ@vn

@r

ˇ̌̌
ˇjvnj � C 8m > 2:

We have

(2.17)

Z
@Bm

ˇ̌̌
ˇ@vn

@r

ˇ̌̌
ˇjvnj �

Z
@Bm

ˇ̌̌
ˇ@v0;n

@r

ˇ̌̌
ˇjvnj C

Z
@Bm

ˇ̌̌
ˇ@v1;n

@r

ˇ̌̌
ˇjvnj:

Since �v1;nC"2
nv1;n D 0, it follows from (2.13) and the standard theory of elliptic

equations that

(2.18) lim
n!1

sup
B2mnBm

.jv1;nj C mjrv1;nj/ � Cp
m

8m > 2:

On the other hand, from (2.5) and (2.12), one has

(2.19) lim
n!1

sup
B2mnBm

m

ˇ̌̌
ˇ@v0;n

@r

ˇ̌̌
ˇ D 0; lim

n!1
sup

B2mnBm

jv0;nj � C:
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Combining (2.17), (2.18), and (2.19) yields (2.16). Thus Claim (2.15) is proved.

From (2.14) and (2.15), we have

(2.20)

Z
R2nD

jrvj2 < C1:

Moreover, it follows from (2.8), (2.9), (2.12), and (2.18) that

(2.21)

(
�v D 0 in R

2 n D;

v D 0 on @D;

and

(2.22) sup
R2nB1

jvj � C:

Claim. We claim that

(2.23) v D 0:

PROOF OF CLAIM: Fix � 2 C 1.R/ such that 0 � � � 1, � D 1 if jxj � 1,

and � D 0 if jxj > 2. Define

�m.x/ D �.x=m/ 8m > 1:

Multiplying the first equation of (2.21) by Nv�m and integrating the expression ob-

tained on R
2 n D, we have

(2.24) 0 D
Z

R2nD

rvr. Nv�m/ D
Z

R2nD

jrvj2�m C
Z

R2nD

Nvrvr�m:

However, since jr�mj � C=m and supp �m � B2m n Bm, it follows from (2.22)

that

(2.25)

ˇ̌̌
ˇ

Z
R2nD

Nvrvr�m

ˇ̌̌
ˇ � C

� Z
B2mnBm

jrvj2
� 1

2

:

Hence combining (2.20) and (2.25) yields

(2.26) lim
m!1

Z
R2nD

Nvrvr�m D 0:

On the other hand, from the definition of �m, we have

(2.27)

Z
R2nD

jrvj2 � lim inf
m!1

Z
R2nB

jrvj2�m:

Combining (2.24), (2.26), and (2.27), and letting m go to infinity yields

(2.28)

Z
R2nD

jrvj2 D 0:
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Hence v D 0 since v D 0 on @D and R
2 n D is connected. Claim (2.23) is

proved. �

Claim (2.23) contradicts the fact that kvkL2.B5nD/ D 1. Thus we obtain (2.7).

We next use (2.7) to prove (2.3). From (2.7) and decomposition (2.10), we have

kv"kL2.BrC1nD/ � CrkgkH 1=2.@D/:

This implies, since �v" C "2v" D 0 in BrC1 n Br�1,

kv"kH 1=2.@Br / � CrkgkH 1=2.@D/:

Hence it follows from the standard theory of elliptic equations that

kv"kH 1.Br nD/ � CrkgkH 1=2.@D/:

It remains to prove (2.4). In fact, (2.4) is a consequence of (2.3) and decompo-

sition (2.10). �

The following lemma plays an important role in the proof of Theorem 2.1.

LEMMA 2.4 Let d D 2; 3, 0 2 D � B1 be a smooth, open, convex subset of R
d ,

0 < " < 1, a be a measurable matrix function, and � be a measurable complex

function defined on D1=2. Assume that a is uniformly elliptic, and 0 � =.�/ <

c1 < 1 and 0 < c2 < <.�/ < c3 < 1 for some constants c1, c2, and c3 on

D1=2. Let g 2 H �1=2.@D/ and v" 2 H 1
loc.R

d / be the unique solution of8̂̂̂
<
ˆ̂̂:

�v" C "2k2v" D 0 in R
d n D;

r � .Arv"/ C k2†v" D 0 in D;
@v"

@�

ˇ̌
ext

� 1
"d�2

@v"

@�

ˇ̌
int

D g on @D;

v" satisfies the outgoing condition:

Here

A D
(

I if x 2 R
d n D1=2;

a if x 2 D1=2;
† D

8̂<
:̂

1 if x 2 R
d n D;

Œ1 C i
k

� if x 2 D n D1=2;

� if x 2 D1=2;

and � is the unit normal vector on @D directed into the exterior of D. Then

kv"kH 1.B5nD/ � C "d�2kgkH �1=2.@D/

for some positive constant C independent of ", g, a, � , c1, c2, and c3.

PROOF:

Step 1. d D 3. We first prove by contradiction that

(2.29) kv"kH 1=2.@D/ � C "kgkH �1=2.@D/:
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Suppose that this is not true. Then there exists .gn/ � H �1=2.@D/ and ."n/ such

that "n converges to 0,

kvnkH 1=2.@D/ D 1 and lim
n!1

"nkgnkH �1=2.@D/ D 0;

where vn 2 H 1
loc.R

3/ is the unique solution of

(2.30)

8̂̂̂
<
ˆ̂̂:

�vn C "2
nk2vn D 0 in R

3 n D;

r � .Anrvn/ C k2†nvn D 0 in D;
@vn

@�

ˇ̌
ext

� 1
"n

@vn

@�

ˇ̌
int

D gn on @D;

vn satisfies the outgoing condition:

Here An and †n are defined similarly as A and †. However, a and � are replaced

by an and �n for some .an/ and .�n/ satisfying the standard conditions.

Since kvnkH 1=2.@D/ D 1, by Lemma 2.2, we have

(2.31) kvnkH 1.B5nD/ � C:

This implies

(2.32) lim
n!1

����@vn

@�

ˇ̌̌
ˇ
int

����
H �1=2.@D/

D 0:

Multiplying system (2.30) by Nvn (the conjugate of vn) and integrating the ex-

pression obtained over B4, one hasZ
B4nD

jrvnj2 � "2
nk2

Z
B4nD

jvnj2 C 1

"n

Z
D

hAnrvn; rvni � 1

"n

Z
D

k2†njvnj2 D

Z
@B4

@vn

@r
Nvn �

Z
@D

gn Nvn:

Considering the imaginary part, from (2.31), one has

(2.33) lim
n!1

Z
DnD1=2

jvnj2 D 0:

Multiplying system (2.30) with Nvn, integrating the expression obtained over D n
Dı with respect to x and then integrating the expression obtained with respect to ı

on Œ3
5
; 2

3
�, we have

Z 2=3

3=5

Z
DnDı

jrvnj2 �
Z 2=3

3=5

Z
DnDı

k2†njvnj2 D

1

15

Z
@D

@vn

@�

ˇ̌̌
ˇ
int

Nvn

ˇ̌
int

�
Z 2=3

3=5

Z
@Dı

@vn

@�
Nvn:
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Hence, since �vn C k2†vn D 0 in D n D1=2, it follows from (2.32) and (2.33)

that

lim
n!1

Z
DnD3=4

jrvnj2 D 0I

this implies

lim
n!1

kvnkH 1=2.@D/ D 0:

We have a contradiction. Thus (2.29) holds. The conclusion now follows from

Lemma 2.2.

Step 2. d D 2. We first prove by contradiction that

(2.34) kv"kL2.B5nD/ � C kgkH �1=2.@D/

Suppose that this is not true. Then there exists .gn/ � H �1=2.@D/ and ."n/ such

that "n converges to 0,

(2.35) kvnkL2.B5nD/ D 1 and lim
n!1

kgnkH �1=2.@D/ D 0;

where vn 2 H 1
loc.R

2/ is the unique solution of

(2.36)

8̂̂̂
<
ˆ̂̂:

�vn C "2
nk2vn D 0 in R

2 n D;

r � .Anrvn/ C k2†nvn D 0 in D;
@vn

@�

ˇ̌
ext

� @vn

@�

ˇ̌
int

D gn on @D;

vn satisfies the outgoing condition:

Here An and †n are defined similarly to A and †. However, a and � are replaced

by an and �n for some .an/ and .�n/ satisfying the standard conditions.

Multiplying system (2.36) by Nvn and integrating the expression obtained over

BR (R large), one hasZ
BRnD

jrvnj2 � "2
nk2

Z
BRnD

jvnj2 C
Z
D

hAnrvn; rvni �
Z
D

k2†njvnj2 D

Z
@BR

@vn

@r
Nvn �

Z
@D

gn Nvn:

Letting R go to infinity, using the outgoing condition, and considering the imagi-

nary part, one obtains

(2.37)

Z
DnD1=2

jvnj2 � C kgnkH �1=2.@D/ kvnkH 1=2.@D/:
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Multiplying system (2.36) by Nvn and integrating the expression obtained over B4 n
D2=3, one hasZ

B4nD

jrvnj2 �"2
nk2

Z
B4nD

jvnj2 C
Z

DnD2=3

hAnrvn; rvni�
Z

DnD2=3

k2†njvnj2 D

Z
@B4

@vn

@r
Nvn �

Z
@D

gn Nvn �
Z

@D2=3

@vn

@�
Nvn:

Hence, by Lemma 2.2 it follows from (2.35) and (2.37) that

(2.38) krvnkL2.B4nD2=3/ � C:

Combining (2.35), (2.37), and (2.38) and applying Lemma 2.2 yields

(2.39) kvnkH 1.B5nD2=3/ � C

and

lim
n!1

Z
DnD2=3

jvnj2 D 0:

Applying Lemma 2.2, without loss of generality, one may assume that vn ! v

weakly in H 1
loc.R

2 nD2=3/ and vn ! v in L2.B5 nD/. Here v 2 H 1
loc.R

2 nD2=3/

satisfies (
�v C .k2 C ik/1DnD2=3

v D 0 in R
2 n D2=3;

v D 0 in D n D2=3:

Here 1A denotes the characteristic function of any set A of R
2. This implies v D 0.

We have a contradiction since kvnkL2.B5nD/ D 1. Thus (2.35) is proved. The

conclusion now follows by applying the argument used to obtain (2.39). �

We are ready to give the following proof:

PROOF OF THEOREM 2.1: Let u1;" 2 H 1
loc.R

d / be the unique solution of

(2.40)

8̂<
:̂

�u1;" C k2u1;" D f in R
d n D";

u1;" D 0 in D";

u1;" satisfies the outgoing condition:

Define

w1;" D u1;" � u and w2;" D u" � u1;":

We claim that

(2.41)

(
kw1;"kH 1.B3nB2/ � C

jln "j
kf kL2 if d D 2;

kw1;"kH 1.B3nB2/ � C "kf kL2 if d D 3;
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and

(2.42)

(
kw2;"kH 1.B3nB2/ � C

jln "j
kf kL2 if d D 2;

kw2;"kH 1.B3nB2/ � C "2kf kL2 if d D 3:

PROOF OF (2.41): From the definition of w1;", it follows that w1;" 2 H 1
loc.R

d /

and w1;" satisfies

(2.43)

8̂<
:̂

�w1;" C k2w1;" D 0 in R
d n D";

w1;" D �u in @D";

w1;" satisfies the outgoing condition:

Define W1;".x/ D w1;"."x/. Then W1;" 2 H 1
loc.R

d / and W1;" satisfies

(2.44)

8̂<
:̂

�W1;" C "2k2W1;" D 0 in R
d n D;

W1;" D �u."�/ in @D;

W1;" satisfies the outgoing condition:

Since ku." � /kH 1=2.@D/ � kf kL2 , (2.41) follows from Lemma 2.2. �

PROOF OF (2.42): It is clear that w2;" 2 H 1
loc.R

d / is the unique solution of8̂̂̂
<
ˆ̂̂:

�w2;" C k2w2;" D 0 in R
d n D";

r � .A"rw2;"/ C k2†"w2;" D 0 in D";
@w2;"

@�

ˇ̌
ext

� 1
"d�2

@w2;"

@�

ˇ̌
int

D �@u1;"

@�
on @D";

w2;" satisfies the outgoing condition.

Define W2;".x/ D w2;"."x/. Then W2;" 2 H 1
loc.R

d / and W2;" is the unique

solution of 8̂̂
<̂
ˆ̂̂:

�W2;" C "2k2W2;" D 0 in R
d n D;

r � .ArW2;"/ C k2†W2;" D 0 in D;
@W2;"

@�

ˇ̌
ext

� 1
"d�2

@W2;"

@�

ˇ̌
int

D �"
@u1;"

@�
."x/ on @D;

W2;" satisfies the outgoing condition:

Here

A D
(

I if x 2 R
d n D1=2;

a.x/ if x 2 D1=2;
� D

8̂<
:̂

1 if x 2 R
d n D;

Œ1 C i
k

� if x 2 D n D1=2;

�.x/ if x 2 D1=2:

Applying Lemma 2.4, since u1;" D w1;" Cu and W1;" D w1;"." � /, by Lemma 2.2,

we have

kW2;"kH 1.B5nD/ � C "d�2kf kL2 :

Thus since w2;".x/ D W2;".x="/, claim (2.42) follows from Lemma 2.2. �
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Thus our claims (2.41) and (2.42) are proved. Therefore, since u" �u D w1;" C
w2;", the conclusion follows. �

Remark 2.5. The idea of splitting u" � u into w1;" and w2;" originally appeared

in the work of Nguyen and Vogelius [14], where the authors establish the uniform

expansions of the Neumann-to-Dirichlet map in the context of electric impedance

tomography under the perturbation of small inclusions.

2.3 Necessity of a Lossy Layer; Proof of Theorem 1.7

We recall that near-cloaking achieved without a lossy layer was discussed in

some cases (see, e.g., [16]) when the material inside the cloaked region is fixed. In

this section we will show that, by a direct calculation, this statement is false if no

requirement on the properties of the material inside the cloaked region is imposed.

In fact, we will show that we can choose the material inside the cloaked region

such that the scattered wave is large no matter how small " is.

Define

A D
(

I in R
d n B";

cI in B";

and

† D
(

1 in R
d n B";

cq in B":

Let us 2 H 1
loc.R

d / be such that us satisfies the radiation condition and u WD
us C eikxd is the solution of

div.Aru/ C k2†u D 0 in R
d :

The necessity of having a lossy layer stated in Theorem 1.7 is a consequence of

Proposition 1.1 and the following result:

THEOREM 2.6 Let d D 2; 3. Then for any 0 < " < 2, r > 4, and � > 0, there

exist q > 0 and c > 0 such that

kuskL2.Br nB2/ � �:

PROOF: We only prove the proposition for the case " D 1 and k D 1. The

general case follows by the same argument.

Case 1. d D 3. We have (see, e.g., [2, (2.45), p. 32]),

ui WD eix3 D
1X

nD0

cnjn.jxj/Y 0
n . Ox/;
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where jcnj D
p

4�.2n C 1/, Y 0
n .�; '/ D

p
.2n C 1/=4� Pn.cos �/ (Pn is the

Legendre polynomial of order n),

us D
1X

nD0

˛nhn.jxj/Y 0
n . Ox/ for jxj > 1;

ut D
1X

nD0

ˇnjn.
p

qjxj/Y 0
n . Ox/ for jxj < 1;

where ut WD us C ui in B1. Here hn is the spherical Hankel function of the first

kind of order n and jn D <.hn/.

Using the transmission conditions, namely,(
us C ui D ut on @B1;
@us

@r
C @ui

@r
D c @ut

@r
on @B1;

we have (
˛nhn.1/ C cnjn.1/ D ˇnjn.

p
q/ on @B1;

˛nh0
n.1/ C cnj 0

n.1/ D c
p

qˇnj 0
n.

p
q/ on @B1:

Thus it follows that

˛n D Bncn;

where

Bn D � j 0
n.1/jn.

p
q/ � c

p
qjn.1/j 0

n.
p

q/

h0
n.1/jn.

p
q/ � c

p
qhn.1/j 0

n.
p

q/
:

Let n be large. Then by [2, (2.38), p. 29],

yn.t/ D �1 � � � .2n � 1/

tnC1
.1 C O.1=n//

and

y0
n.t/ D n C 1

t
� 1 � � � .2n � 1/

tnC1
.1 C O.1=n//:

Here yn D =.hn/, i.e., hn D jn C iyn. Thus

y0
n.1/

yn.1/
D �.n C 1/.1 C O.1=n//:

Fix such an n. Take
p

q � n. Then, by [2, (2.41), p. 30], we have

jn.
p

q/ D 1p
q

cos

�p
q � n�

2
� �

2

�
.1 C O.1=

p
q//

and

j 0
n.

p
q/ D � 1p

q
sin

�p
q � n�

2
� �

2

�
.1 C O.1=

p
q//:

Hence it follows that

c
p

q
j 0

n.
p

q/

jn.
p

q/
D �c

p
q

sin.
p

q � n�
2

� �
2

/

cos.
p

q � n�
2

� �
2

/
.1 C O.1=

p
q//:
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Thus there exist q and c such that

y0
n.1/

jn.1/
D c

p
q

y0
n.

p
q/

jn.
p

q/
:

Take such q and c. Then

Bn D �1;

which implies

˛n D �cn:

On the other hand,

hn.t/ D 1 � � � .2n � 1/

i tnC1
.1 C O.1=n// as n ! 1:

Thus the conclusion follows.

Case 2. d D 2. The proof in this case is similar to the case d D 3. We have

(see, e.g., [2, (3.66), p. 67]),

ui WD eix2 D
1X

nD�1

cnJn.jxj/ein� ;

us D
1X

nD�1

˛nHn.jxj/ein� for jxj > 1;

and

ut D
1X

nD�1

ˇnJn.
p

qjxj/ein� for jxj < 1;

where jcnj D 1, ut WD us C ui in B1. Here Hn is the Hankel function of the first

kind of order n and Jn D <.Hn/.

Using the transmission conditions, as in the case d D 3, we also have

˛n D Bncn;

where

Bn D � J 0
n.1/Jn.

p
q/ � c

p
qJn.1/J 0

n.
p

q/

H 0
n.1/Jn.

p
q/ � c

p
qHn.1/J 0

n.
p

q/
:

Let n be large. Then by [2, (3.58), p. 66],

Yn.t/ D �2n.n � 1/Š

�tn
.1 C O.1=n//

and

Y 0
n.t/ D 2nnŠ

�tnC1
.1 C O.1=n//:

Here Yn D =.Hn/, i.e., Hn D Jn C iYn. Thus

Y 0
n.1/

Yn.1/
D �n.1 C O.1=n//:
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Fix such an n. Take
p

q � n. Then, from [2, (3.59), p. 66],

Jn.
p

q/ D
s

2

�
p

q
cos

�p
q � n�

2
� �

4

�
.1 C O.1=

p
q//

and

J 0
n.

p
q/ D

s
2

�
p

q
cos

�p
q � n�

2
C �

4

�
.1 C O.1=

p
q//:

Hence it follows that

c
p

q
J 0

n.
p

q/

Jn.
p

q/
D c

p
q

cos.
p

q � n�
2

� �
4

/

cos.
p

q � n�
2

C �
4

/
.1 C O.1=

p
q//:

Thus there exist q and c such that

Y 0
n.1/

Jn.1/
D c

p
q

Y 0
n.

p
q/

Jn.
p

q/
:

Take such q and c. Then

Bn D �1;

which implies

˛n D �cn:

On the other hand,

Hn.t/ D 2n.n � 1/Š

�itn
.1 C O.1=n// as n ! 1:

Thus the conclusion follows. �
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