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Abstract

In this paper, we study some properties related to the new characterizations of Sobolev
spaces introduced in [16], 4] [18]. More precisely, we establish variants of the Poincaré inequality,
the Sobolev inequality, and the Rellich-Kondrachov compactness theorem, where fR ~ |Vg|? dz
is replaced by some quantity of the type

619
Is(g) = /JRN/]RN 7|x_y|N+pda:dy.

lg(z)—g(y)|>6

1 Introduction

We first introduce the quantity I5(g), which plays an important role in this paper,

P 1 N
Ig(g): /]RN /RN mdxdy VgGLZOC(R ).
lg(z)—g(y)|>d

We next recall some new characterizations of Sobolev spaces in [16], @ [I8]. The first one is as
follows

Proposition 1 Let 1 < p < +oo. Then

a) There exists a constant Cn, depending only on N and p such that

Is5(g) < C’N,p/ [Vg|Pdx, Vé>0,Vge Wl’p(RN).
RN

b) If g € LP(RY) satisfies

liminf I5(g) < +o0,
§—>0+

then g € WHP(RN),
¢) Moreover, for any g € WHP(RYN),

1
lim L;(g) = *KNJ,/ ‘Vg|p dl‘,
p RN

6—>0+
where K is defined by
Kyp= [ le-oPdo, (L1)
SN-1

for any e € SN7L.
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Remark 1 Assertions a) and ¢) are proved in [16] (Theorem 2). Assertion b) is proved by
Bourgain-Nguyen in [f)l. The proof of Assertion b) is delicate. Under the following stronger as-
sumption

limsup I5(g) < 400,
§—>0+

a simple proof is given in [16] (see the proof of Theorem 2).
In [I8], we improve statement b) in Proposition [1| by proving
Proposition 2 Let N > 1, p > 1, and g € LP(RN). Assume that Is(g) < +oo for all 6 > 0, and
5P
lgrg(i)r:f /RN /RN m dx dy < +00.
0<|g(z)—g(y)|<105
Then g € WHP(RYN).

Remark 2 To prove Proposition@ we developed the method introduced in [§)]. The observation
used in the proof Proposition@ will play an important role in the proof of statement b) in Theorem
which is crucial to establish Theorem[3 and Proposition [0

The second characterization is a generalization of Proposition

Proposition 3 [18, Theorem 1] Let 1 < p < 400 and (Fp,)nen be a sequence of functions from
[0, +00) into [0, +00) such that

i) F,(t) is a non-decreasing function with respect to t on [0,+00), for all n € N.
1
) / F,(t)t= PtV dt =1, for alln € N.
0

iit) F,(t) converges uniformly to 0 on every compact subset of (0,+00) as n goes to infinity.
Then
a) If g € WHP(RYN), then for every n € N,

—9)) / —(p+1) /
drdy < F,(t)t='PT dt Vg|? dx,
/RN /RN |x - |N+p Ty = O 0 ) RN Vol dx

where Cn p, is a positive constant depending only on N and p.

b) If g € LP(RY) and g satisfies

- — 9
hnrgloréf /]RN /RN ‘x - |N+p dz dy < +00,

then g € WHP(RY) and

lim it Fu(lg(z) — g(y)])

nvoo Jpn Jpn |z —y[NTP

dx dy > KNp/ [Vg|P dx.
N

¢) Moreover, if

limsup/ F, ()t~ dt < 400,

n— oo

then, for any g € WHP(RYN),

. Fn g( )l) p
nh—>Holo/N/RN |$7 e dxdy—KN,p/N |Vg|? dx.




Here K, is defined by (L.1)).

Remark 3 Proposition[]] follows from Proposition[3 by choosing

0 if0<t<é,,

F.(t) = poP (1.2)
1 7%1, otherwise.

Remark 4 Assumption i)-iii) of the sequence (Fy,) are necessary to obtain a), b), and ¢) (see [18,
Remark 4] for detailed discussion).

In this paper, we establish variants of the Poincaré inequality, the Sobolev inequality, and
the Rellich-Kondrachov theorem which are inspired by these characterizations. Our first result
motivated by Proposition |1 and the Poincaré inequality is the following theorem, which is proved
in Section 2

Theorem 1 Let N > 1, p > 1, and g be a real measurable function defined on a ball B C RY.

Assume that
// ==y ‘N+pdxdy<+oo.

g(x)—g(y)|>6
Then

a) If p> 1, we have

/[ 1ota) -

for all 6 > 0 and for some positive constant Cn,, depending only on N and p.

// |N+pda:dy+5p\B|2), (1.3)

lg(z)—g(y) \>5

b) If p > 1, we have

[ [ 1at@) = g dedy < o
BJB

517
—  dxdy+ 6P|BJ?
/B/B EEV R v+ |)’

3<|g(z)—g(y)|<108
(1.4)

for all 6 > 0. Here Cy is a positive constant depending only on N and p.
Remark 5 We do not know whether (L.4) is valid with p = 1.
Remark 6 Inequality (1.4) plays an important role in the proof of Theorem@ below.

Remark 7 A wvariant of estimate (1.3) was established by Bourgain-Brezis-Mironescu [3] as fol-
lows. Let g € C(I =[0,1],R). Then

1
g(x y)|dzdy < C(|1)? // ——dxdy +|I*),
//l (H IJI |z —y|? ||>

leig(@) —eig(w)|>§

for some universal positive constant C, when § is small. The continuity of g is necessary for such a
result. Recently in a joint work with Brezis [6], using a completely different argument, we establish
the above inequality for any § < \/3 and for any g € VMO(I,R) (V3 is optimal). The proofs in
[3] and [6] are involved. The approach in [0] can also be used to obtain a similar inequality for



p > 1. These results can be extended to higher dimensions for a smooth function g using the idea
in Step 2 of the proof of Theorem in this paper (see [1]). Nevertheless we do not know how to
obtain under the general condition as in statement a) using this approach since the standard
density arguments do not work in this context. This is due to the fact that quantity in the RHS of
is “unstable” under the convolution.

Our next result is a variant of Rellich-Kondrachov theorem, whose proof is presented in Sec-
tion Bl

Theorem 2 Let N >1,p>1, (g,) : RY — R be a bounded sequence of functions in LP(RY) and
(0n) be a sequence of positive numbers converging to 0 such that

n—0o0 n—oo

. o or
liminf Iy, (g,) = lim inf /RN /]RN Ty dx dy < +00. (1.5)

[gn (z)—gn (y)|>6n

Then there exist a subsequence (gn,) of (gn) and g € LP(RN) such that (gn,) converges to g in
LY (RN). Moreover, g € WIP(RN) for p > 1 resp. g € BV(RYN) for p = 1 and there exists a

loc

positive constant C, depending only on N and p, such that
/ [Vg|? dz < Climinf Iy, (gn)- (1.6)
RN n—oo

Remark 8 The optimal constant in (1.6]), which was discussed in the context of Gamma-convergence
in [T7], [19], is strictly less than Ky ,/p.

Remark 9 The conclusion of Theorem@ still holds in the case p > 1 if (1.5 is replaced by the
conditions that Is, (gn) < +o0o for alln € N, and

517
lim inf — " ____dxdy < +oo.
n—00 /]RN ~/]RN |z — y|N+p y <+
8n<|gn(x)—gn(y)| <108,

Remark 10 When p > 1, Theorem[3 implies the well-known Rellich-Kondrachov theorem, since
I5(9) < Cnyp Jpn [Vg[P dz.

A variant of the Sobolev inequality, which is proved in Section [4] is as follows

Theorem 3 Let 1 < p < N, § >0, and g be a real measurable function defined on RYN such that

dx dy < .
/RN/RN |N+pxy +00

lg(z)—g(y) \>5

Then there exist two positive constants C and X\, depending only on N and p, such that

([ i)’ <cuo, (17)

lg|>Aé

with q = N—pp.

Remark 11 Letting § go to 0 in , we rediscover and extend the Sobolev inequality since
lims_o I5(g) = %KN)p Jen Vgl dz, I5(g9) < Cnyp [on V9P da (see Proposition , and

lims 0 f\g\>>\5 lg|dz = [on g|?dz for g € WEP(RN). Since I5(g) < %L;r(g) for 6 > 6', Theo-
rem [ is more interesting when it is applied for large 6.



When N > 1 and p = N, estimates (1.3 and (T.4) clearly imply that ¢ € BMO(RY), the
space of all functions of bounded mean oscillation defined on RY if g € L*(R") and I5(g) < +oo
for some 0 > 0. Moreover, there exists a positive constant C, depending only on N, such that

lg|Bro = Sgp]éjég(x) 9(y )\dxdy<0< %( )—&-5),

where the supremum is taken over all cubes of RY. In a joint work with Brezis [7] we also show
that if g € LY(RY) and I5(g) < +o0o (p = N) for all § > 0, then g € VMO(RY), the spaces of all
functions of vanishing mean oscillation. More properties in the case p = N can be found in [7].
When p > N and I;(g) < +oo for some 4, one cannot hope that g € L> (RY). This follows from
the fact that the function g(x) := Inln|ln |z|| in By (A is small), the ball centered at the origin
with radius A, does not belong to L*°(B)) and

/B /B |N+rdxdy<+oo Vr>1.
A A

lg(z)—9g(v) \>5

Applying Theorem |1, we can prove that the sharp function of g belongs to L% (R™) with
q= Np/(N —p)if ge LP(RY) (p > 1) and I;(g) < +oo for some & > 0 (see Section H)). In fact we
can prove that g € LY(RY) if p > 1 and I5(g) < +oo for some § > 0 (see Theorem [3)). However,
we have the following

Open question 1 Let p = 1 and N > 2. Is it true that g € LV 1 (RY) if g € LY(RY) and
I5(g) < +oo for some § > 07

Motivated by Proposition [3] we establish the following results, whose proofs are presented in
Section Bl

Proposition 4 Let g be a real measurable function defined on a ball B C RY and F : [0, +00) —
[0, +00) be a non-decreasing function. Then there exists a constant C > 0, depending only on N
and p, such that

(F(1)+/01F(t)t<p+1>dt //|g Y|P dz dy

<C(|B| // |x7 |N+p)|)dxdy+F( )|B|2).

Proposition 5 Let 1 < p < N, (F,) : [0,400) — [0,+00) be a sequence of non-decreasing
functions such that lim,_,~ F,(1) =0,

1
Fo(1) +/ E,(t)t= D gt =1,
0
and (g,) : RN — R be a bounded sequence of real functions in LP(RN). Assume that

o n(lgn (@) — gn(y)])
lgglcgf /RN /RN |z — |N+p dx dy < +o0.

Then there exist a subsequence (gn,) of (gn) and g € LP(RY) such that (gn,) converges to g in
LY (RN).

loc




Proposition 6 Let 1 <p < N, F : [0,400) — [0,+00) be a non-decreasing function and g be a
real measurable function defined on RY. Assume that

F(lg(e) ~ )
VR = I g d
foo o TR ey < o

Then there exist two positive constants C and X\, depending only on N and p, such that

v F(lg(x) = 9(y)) v
q <
( / lg] da:) _C 2on /RN A P dmdy) VneZ,

lg|>AF(277)

— Np
with q = -

Applications of Propositions and [6] will be given in Section It would be nice to obtain
similar results to Theorems and [3] and Propositions and [§] in a more general setting e.g.

in Carnot-Carathéodory spaces or in metric spaces with appropriate properties.

Recently many authors have suggested various definitions of Sobolev spaces and studied the
well-known properties of Sobolev spaces in their contexts e.g. Ambrosio [I], Korevaar-Schoen [14],
Reshetnyak [21], Hajlaz-Koskela [12], Bourgain-Brezis-Mironescu [2] and references therein. The
characterizations mentioned in this paper are quite close to the work of Bourgain-Brezis-Mironescu [2].
However the connection is not transparent.

Theorem [T} whose proof is presented in Section 2] is the starting point of this paper. In the proof
of Theorem |1} we use of ideas in [4] and [I8], and the John-Nirenberg inequality [I3]. Theorem
is derived from Theorem [1| by the standard technique used in Bourgain-Brezis-Mironescu [2] (see
also [20]). The main ingredient of the proof of Theorem [3|is part b) of Theorem The proof
also makes use of the theory of sharp functions due to Fefferman and Stein [9] and the method of
truncation due to Mazya [I5]. Obtaining Sobolev’s inequality from Poincaré’s inequality previously
appeared in the literature see e.g. [22], [I0], [I1], [12]. However, our approach is different from the
works mentioned here, which were inspired by the Riesz potential theory. Moreover, we could not
apply their methods in our setting because of the presence of the two terms in the RHS of and
(1.4). Proposition [4]is derived from Theorem [1| using ideas in [I8]. The proofs of Propositions
and [6] follow from Proposition [f] by applying the same methods used in the proofs of Theorems
and

The paper is organized as follows. In Section [2| we prove Theorem [I| Section [3|is devoted to
the proof of Theorem [2 Theorem [3]is proved in Section @ Section [5]is devoted to the proofs of
Propositions and @, and their applications.

2 A variant of Poincaré’s inequality. Proof of Theorem

2.1 Preliminaries

In this section, we present some technical lemmas which will be used in the proof of Theorem I}
We first recall some useful results in [18].

Lemma 1 [i8, Lemma 3] Let g be a real measurable function defined on the interval [a,b] (—oo <
a<b<+o0),z€R, and 6 > 0. Set

B ={z € [a,b]; g(z) < z}.



Assume that

blNnB
0< Ha‘7 ] | < 1’
b—a
and
b b
l9(2)—g(3)] >0
Then

[la,D] N A | >0, V7>,
where A, = {x € [a,b]; z < g(x) < z+ T}

Hereafter |A| denotes the Lebesgue measure of A for any measurable set A C RY.

Lemma 2 [I8, Lemma 4] Let g be a real measurable function defined on the interval [a,b] (—oo <
a<b<+00),z€R, r>0,s>0, and 7T >3 >0. Set

B={zxeR;g(x)<z}, A={zeR;z<g(x)<z+7}

Assume that

.00 B] _  la,b]N0 A
b—a b—a

IV

lg(x)—g(y) |>5

Then there exists a subinterval [c,d] C [a,b] (a < ¢ < d <b), such that

<s, rT+s<I1,

and

5 dedy < +o0.

[c,d] N B [c, d] N A
T o r and s/4< T

Lemma 3 [I8, Lemma 5] Let g be a real measurable function defined on the interval [a,b] (—oo <
a<b<+00),z€R, 7>0>0,and 0 < XA <1/2. Set

{ B, ={zeR;g(x)<z+j7},

VjeZ.
A ={zeRz+j7<gx)<z+(+ 1)1},

Assume that
[a.t] N Bol _,  [la,b] 0 Ao|

b—a b—a

/ / dxdy<+oo

lg(z)—g(v) |>5

Then for each r > 4/\, there exist m € Zy, l,, € Z, and [c,d] C [a,b] (c < d)such that

< \/4,

and

L] < 2m,
e, dl N Av, | [l d] 0 Ay, go] (1 1
m m > 4 m+
d—c d—c _4[)\/( "
m(m—1)

(d—c) <4™[4/(Ar)] (b—a).



Lemma 4 [18, Corollary 6] Let 1 < p < 400 and 0 < A\g < A < 1/2. Under the assumptions of
Lemmal[3 there exist m € Z and 1, € Z such that

|lm| < 2m

and

1 _
x€[a,blNAy,,
y€la,b]NAs,, 42

or some positive constant C, , depending only on p and Ag.
P;Ao g Y

Remark 12 Lemmas@ (md which will be used in the proof of part b) of Lemma@ are presented
in [18] (see [I8, Lemma 5] and [I8, Corollary 6]) only for the case A = 1/2. However their proofs
are almost the same as the ones of [18, Lemma 5] and [18, Corollary 6]. The details are left to the
reader.

The following lemma is one of the main ingredients in the proof of Theorem [I]

Lemma 5 Letp > 1, 0 < 19 < ;, and g be a real measurable function defined on a bounded
interval I. Suppose that there exist 0 < 79 < 7 < 35 , c1 < c2, and two non-empty sub-intervals I
and Iy of I such that

{z € iy g(z) <a}| >7Ih| and |{z € Iy; g(z) > c2}| > 7L (2.1)

Then there exists some positive constant C' depending only on p and 19 such that:

a) If p> 1, we have

// |p+1 drdy > Cp ry(ca — c1)PIII*P, V5 € (0,60). (2.2)

lg(z)—g(y) \>5

b) If p>1, € (0,0), and

5P
/1/1 7|33 T drdy < +oo,

lg(z)—g(y)|>d

we have

617
// o — g+t dxdy > Cp ry(ca — c1)P|I|'P. (2.3)

d<|g(z)—g(y)|<106

_ rlea=cy) o [ L] |kl
Here 0 = =555~ min {ﬁ, ﬁ}
Remark 13 Lemma 19 is a variant of [{, Lemma 2] and [I8, Lemma 6] stating that the limit of
the LHS of [2.2) and (2.3) as § goes to 0 gives upper bounds of |I|*~ p(ess supg —ess] inf g) up to a

constant. Lemma@ gives the range of § (independent of g) for which ( and . hold if .
18 satisfied. The proof of Lemma @ completely borrows arguments used in the ones of [Jl, Lemma

2] and [18, Lemma 6].



In what follows, the notation a < b means that there exists a positive constant ¢ depending
only on N and p, such that a < c¢b. The notation a 2 b means that b < a and the notation a =~ b
means that ¢ < b and b < a.

Proof. By scaling and translating, one can assume as well that I = [0,1], ¢; = 0, and ¢ = 1.

Take 0 € (0, 555) min{|I1|, |2} and K € Z, such that
§ <278 <24 (2.4)
Denote
J—{ ezt < '2‘K<§}
=3J +> 4 J 4
Then 1
card(J) > 2K~ — 2~ 5 (2.5)

For each j, define the following sets
Aj={zec[0,1); j - 1)27" <g(z) <277},
Bj = U Aj/, and Cj = U Aj/,
J'<j J'>j

;0 that B; x C; C [|g(z) — g(y)| = 27%] C [lg(z) — g(y)| > 4]
et
G={jeJ;|A; <275 (2.6)

Since the collection (A;) is disjoint, it follows from (2.5]) that

1
card(G) > 2572 — 3 ~ 5 (2.7)

For each j € G, set A1 ; = |Aj| > 0 by Lemma [I] We claim that there exist s; ; and so ; in
[4X1,j,1 —4Xq ;] such that

HSLj — 4)\1)]‘781)]‘ +4)\17j] n le > 7'/2 and |[527j — 4)\1}]‘, 82,5 t+ 4)\17]‘] n (AJ @] Cj)| > T/Q.

We first prove that there exists sq ; € [4A1;,1 — 4A1 ;] such that 29
I[s1; —4X1 5,81, + 4\ ;] N B;| > 7/2 (2.9)

by contradiction. Suppose that
[t =4\, t+ 4N ] N By < 7/2 Vi€ [4A,,1— 4\ ;). (2.10)

Set tog = 4A1; + in}C x and ¢j41 = t; + 8y for ¢ > 0. Let n be such that ¢, +4X;; € I and
xely

tn+1 + 4)\1’]' ¢ Il. We have

n
|Il n Bj‘ < Z | [ti — 4/\1,j,ti + 4/\1,j] N Bj| + 8)\173'.
1=0

We deduce from (2.10]) that
|Il ﬂBj| §T|Il|/2+8)\1,j- (2.11)

However since j € G, 275 < § < 7|I;|/200, it follows from (2.6] that

8\, <827 K+2=3227K <645 < 7|I1]/2. (2.12)



Combining (2.11)) and (2.12) yields that
|Il ﬂBj| < 7'|11‘.

This contradicts the fact that |I; N B;| > |I; N By| > 7|11].
Thus there exists 81,5 € [4)\17]', 1-— 4>‘1,j] such that |[51,j - 4>‘1,j7 S1,5 + 4A17j] N Bj| > T/Q

Similarly, since |IQ n (AJ U C])| > T|Ig|, there exists S2.5 € [4)\17]', 1-— 4)\173‘] such that
[[s2,; —4A1j, 82,5 +4A1,;] N (A; UC;)| > 7/2. Therefore (2.8)) is proved.

From it is clear that there exists t1 ; € [4\1;,1 — 4A; ;] such that
T/2 <|[t1,; —4X1j,t1; +4 ;)N Bj| <1 —71/2. (2.13)
On the other hand, since |4;| < 2~ K+2 <85 < 7/8, it follows that
[[t1,; — 4X1 .t +4X ;] N A < |4, < 7/8. (2.14)
Combining and and using Lemma [2) we have, for some t;, A; > 0,

|[t; —4N;,t; + 4] N By
8\,

7/2 < <1-1/2, (2.15)

and
[t — 4N, t5 +4N] N A4y

8,

7/32 < <7/8. (2.16)

Proof of a): p > 1. Set A =inf;cq A; (A > 0 since G is finite). Define P, as follows

Pn={j€G;2m 'A< )\; <2™)\}, Vm>1. (2.17)

Then G = |J;_, P, for some n. From (2.7), we have
S 1
> card(Pp) 2 5 (2.18)
m=1

For each m (1 < m < n), since A; N Ay = 0 for j # k, it follows from (2.16) that there exists
Jm C P, such that

a) card(J,,) 2 card(Py,) and  b)|t; —t;| > 273N, Vi, € T, i # J. (2.19)
Combining , , and yields
[ti — AN, ti + AN N[t — ANt + 4N =0, Yi,j € Jm,i # 7, (2.20)
and .
Z card(Jp,) 2 % (2.21)
m=1
Set Uy := 0 and, for m =1,2,...,n,
Ly = {j € Jm; [[tj = 405, + 4]\ Um—1| = (8 = 7/16)A; },
Un = (| [ty =40t +4N]) WUy, (2.22)

JE€ELm
apy = card(J,,) and b, = card(L,,).

10



From (12.20)), we have
1
Dol =4t 4N S ~|Unnl.
JE€Im\Lm

Hence since L,, C Jp, C Py, it follows from (2.17)) that

1 m—
2™ (q,, <= EZ: 2'b;,
which shows that
S b+ mz_jl 2(=mp
=
Consequently,
iamgibm+§ S g ™, = Zb + = Zb i 2(i=m),
m=1 m=1 T =1 i=1 i=1  m=i+l
Since Y oo, 27" =1, it follows from from (2.18) and (2.21) that
;bsz;ang. (2.23)

Combining ([2.15), [2.16), (2-22), and (2.23) yields

517
// o= |zv+1dxdy>ZZ // ot W

1j€Lm
lg(=)—g(y)|>6 m=J ([t =475t 440\ U 1)
xEBj,yECj

n
20PN bt /o7 2
m=1
This implies the conclusion of Lemma [5|in this case.

Proof of b): p > 1. Take j € G. By Lemma l we deduce from ) and (2.16]) that there exist
m; € Z4 and l; € Z such that

and
// ‘erl dx dy Z CTomJ)\Jl g > cTomj(Sl_p‘ (225)
IGIﬁAl
yGIﬂAlj+2

Hereafter c,, denotes a positive constant depending only on 7. The last inequality follows from
the fact that A\; < 0.

Set ig = —1 and
Ci:{jEG;lj:i}, Vi€ Z.

For each n > 1, if
{iEZ;izin_l—FlandC’i#@};é@,

11



then set
in =inf{i€Zii>i, 1 +1and G £ 0},
ky :max{mj;jEGand lj:in}.

From (2.24)), we have
ky 2 card{j € G; l; =in}.

Hence we deduce from (2.7) that

1
Z kp 2 card(G) ~ 5 (2.26)
n>1,k, exists
On the other hand, from (2.25)),
oP
// |z —yp—1 pdedy 2 Z // |z —y|ptt dz dy
9-K < 71 _K n>1,k, exists
<lg(z)—g(y)|<3.2 z€INA;,
YyEINA;, 2
e >kl (2.27)

n>1,k, exists

Therefore the conclusion of Lemma [d] in the case p > 1 follows from (2.26)), (2.27), and (2.4). O

2.2 Proof of Theorem [1]
Step 1: N = 1. Let I be a bounded interval of R. We first assume that g € L>°(I) and

o dx d
N < .
// o — gL O W = TS

lg(z)—g(y)|>6

and prove, if p > 1,

//\g \Pdmdy<c |I|P+1 // |p+1 dxdy+5p|I|2), (2.28)

lg(=)— g(y)\>5
and, if p > 1,
// lg(z y)|P dedy < C (|1r|P+1 // 571)“ dx dy + 5P|I|2), (2.29)
5<|9(x)£9(§/)|<105 e
where C), is a positive constant depending only on p.
By scaling, one may assume that I = [0, 1] and
l9lBrmor) = 2. (2.30)

We recall the following fact due to John and Nirenberg [13]: There exist two universal constants
¢1 and ¢p such that if —co < a < b < 400 and u € BMO([a, b]) then

b .
|{x€(a,b);\u—][ u(s)ds\>t}|§cl(bfa)exp(f ! ) Vit > 0. (2.31)

|U|BMO([a,b])
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Let 0 < a < b <1 be such that

g(z) — ibg(s) ds‘ dx > 1. (2.32)

/

The existence of a and b follows from (2.30). Without loss of generality, one may assume that

b
7[ gdx =0. (2.33)

By ([2.31)), it follows from (2.30), (2.32) and (2.33) that there exist two universal constants 7, < 0
and 7o > 0 such that

ﬁ|{xe(a,b);g(3&)<ﬁ}121 and ﬁ|{$€(a,b);g($)>ﬁ}\21-

Applying Lemma [5] we have, if p > 1,

// e dudy + 07 21 V> 0.

lg(z)—g y)|>5
and, if p > 1,
oP P>
5<|q(w Q(U |<106
This completes the proof in the case g € L>°(I).

The proof in the general case (without assuming that g € L>°(I)) goes as follows. Let A > 0
and define

g4 = min{max{g, —A}, A}. (2.34)
Then g4 € L°°(I). Hence it follows from (2.28)) and (2.29)) that if p > 1
[ [laa0) - aswr sy <, |I|P+l / / e dody + IIP) V1,
\>5
and if p > 1
5P
//|gA (y)PPdxdy < C, (\I\pH // 7dxdy+6p|l|2) Vp>1.
1J1 |z — ylpt?
d<|ga(z)—ga(y)|<108
By letting A go to infinity and using Fatou’s lemma, the conclusion follows. O

Step 2: N > 2. Let us sketch the proof in the case N = 2. The proof in the general case follows
similarly. We present here only the proof of (L.4). The proof of is almost the same as the
one of . Without loss of generality, one may assume that B = B; the unit ball centered at
the origin. Let f be an extension of g on Bg, the ball centered at 0 with radius 8, such that

drdy ~ / / dx dy 2.35
/B1 /Bl |& —y[N+P \N+p 5o Jp, v —ylVFP |N+p (235)

d<|g(z)—g(y)|<105 0<| f(z)—f(y)|<108
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and

~ 2.36
/B/B = |N+pd”3dy /B/B - |N+pdxdy (2.36)
(v)

[>6 |f (@)= f(y)|>6
We first note that, with e; = (1,0) and ey = (0, 1).

|f(sR(61) + tR(eg)) - f(éR(el) + fR(eg)) |

< \f(sR(el) + tR(ez)) — f(éR(el) + tR(ez)) [P+ |f(§R(61) + tR(@g)) — f(éR(el) + fR(e2)22|pé7)

for all s,t € R and R € SO(2) i.e. R is a rotation.
On the other hand, applying Theorem [I|in the case N = 1, we have

/ / / f(sR(e1) + tR(e2)) = f(§R(61)+tR(e2))|Pdsd§dt

< ' 6P § p

6<\f(sR(el)+tR(e2 sR(el)+tR(ez))|<106

This implies

/ / / f(sR(e1) +tR(e2)) — f(5R(e1) + tR(ez))|" ds ds dt

2
5
< v
NL // [ drdh (29

s<|f (hR(er)+a) — £ (2) <10

Hereafter © = (x1,x2) = x1€1 + x2e5. Similarly, we have

/// f(8R(e1) + tR(ea)) — f(5R(er) + tR(e))|P dt di ds

2
or
< Poo(2.
S N e

5<|f (hR(es)+a) —f(x)<105

Combining ([2.35)), (2.37)), (2.38)), and (2.39)) yields

/ / y)IP dedy < 2 " dwdh
dedy < / / / T
B, /B, —2 [hfpFE

s<|f (hR(er)+a )~ (2) <10
2 oP
P
+/_2 / / |h|p+1dxdh+6
5<|f (hR(es)+a) —f(x)<105

Therefore the conclusion follows after integrating two sides of the above inequality with respect to
R. O
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3 A variant of Rellich-Kondrachov’s theorem. Proof of The-
orem
In this section, we prove Theorem [2] The following lemma is the key of this section.

Lemma 6 Let g: RY — R be a real measurable function and Q be a cube of RN. Then

)P <eP P
/|g x)Pde Se /RN/RN |N+pdxdy+5 QI

lg(x)— 9(y)|>5

where
1

e = 77779 * Xe-
€ |EQ1| €
Here Q1 is the unit cube centered at the origin and x. is the characteristic function of €Qy.

Henceforth a@) denotes the cube with the same center as (Q and a times its length for any cube
Q of RY.

Proof. Let (Q;)icr be a collection of open cubes such that
‘Q1| = st QZ N Qj = @, Vi # jv and Q C Uiel@' (31)

Then

[ ) - a@pas <3 [ lote) = ol i

el

/()%”“AA WP dedy.

k3

/w %|%<ZAAQ Y|P da dy. (3.2)

Applying Theorem |1, we deduce from (3.1)) that

p < p . .
ENZ/@/QI WP drdy < Oy = /RN/RN ‘Nﬂ) drdy+57Q|).  (3.3)

lg(z)— g(y)|>tS

Hence since

it follows that

Combining (3.2 and . 3.3)) yields

/|g(z)fg€(x)\pdxsch Lo L o dedu+ Q).
Q RN JRN |

lg(z)— g(y)\>5
O
We are ready to prove Theorem [2| We follow the standard approach used in [2] (see also [20]).
Proof of Theorem [2{ Applying Lemma @ we have, for each cube Q of RY,

/|9n — gnelT )|pd$<C'Np /RN/RN |N+pdxdy+6p|Q|)

|gn ()= gn (¥)|>dn
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where

1
Ine = @gn * Xe-

Here @ is the unit cube centered at the origin and x. is the characteristic function of eQ);. Hence

hm <hm sup/ |gn(2) — gn.e(z)|P dx) =0.
n— o0

Thus, since (g,,) is bounded in LP(RY), by the theorem of Riesz-Frechet-Kolmogorov (see e.g. [5,
Theorem IV.25]) and [5, Corollary IV.27], there exists a sub-sequence (gy, ) of (g,) and g € LP(RY)
such that g,, converges to g in LI (RY). The second assertion of Theorem I 2| follows from [I8],
Theorem 3]. O

4 A variant of Sobolev’s inequality. Proof of Theorem

This section will be devoted to the proof of Theorem One of the main ingredients of the
proof is the estimate in part b) of Theorem The proof also makes use of the theory of sharp
functions and the truncation method.

We first recall the definition of the dyadic maximal function Mg and the dyadic sharp function

g% associated with g (see e.g. [24]).

Definition 1 Let g € LlloC (RN). Then M*?g and g** are defined as follows

(M*=g)(z) = sup][ lg| dy,

and

g2 (x) = Supf l9 = g0l dy, (4.1)
Q JQ
where the supremum is taken over all dyadic cubes @ containing x and gq ::][ gdy.
Q

The following result which is a consequence of Vitali’s covering theorem will be used in the
proof of Theorem

Lemma 7 Let § > 0,0 < 6; <, h € LY(RY), and g be a real measurable function such that
02
g(x) < sup |B|* < |h] dx) +6, VreRY, (4.2)
B B

where the supremum is taken over all balls B containing x. Then

g > 1}l < CIRIE ™ i, i 25,
for some positive constant C, depending only on 61 and 05.

Proof. Let t > 20. For each y € {g > t}, from (4.2), there exists a ball B, containing y such that

02
t <2|B,|" ][ |h|dz | .
By
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It follows that

Bt < ([ )

Y

which implies

C 2 ey
Bl < ——( [ Iblan)™ " <4
2 B

t02-01 y

since h € L*(RY). Hereafter in the proof, C' denotes a positive constant depending only on #; and

2. Applying Vitali’s covering theorem (see e.g. []]), there exists a denumerable collection of balls
(B;) such that B\ B; = O for i # j, {g >t} C |J, 5B; and

C Ty
Bl < ——( [ Wlan)™ "
to2—01 B;

Here ¢B denotes the ball with the same center as B but ¢ times its radius. Thus

C 7o
o> 0= X ([ an)™ "

t02—01

Since B; N B; = O for i # j and 920_291 > 1, it follows that

6

C e
o>t < ([ Iblag)™ "
$02-9 RN

2—Y%1

To introduce the truncation method, we need the following definition.

Definition 2 Letl < m, and g be a real measurable function defined on RY. Consider hy ., : R —
R given by
m—1 ifm <t,

him(t) = t—1 ifl<t<m,
0 otherwise.

and define the operator T(l,m,-) as follows
The following lemma plays an important role in the proof of Theorem [3]

Lemma 8 Let p,r > 1,6 > 0, and g € L}OC(RN). Define g = T(10%,105+2 |g|) for k € Z.
Assume that there exist a sequence of functions (vy) C L*(RY) and a function v € L*(RY) such
that

Hg,’i’A > t}‘ < ””’;‘J“, Vt>0, ke (4.3)
and
> vkl <v. (4.4)
kEZ
Then

/ 9P dz < Clloll5,
lg|>Xd

for positive constants C' and A, depending only on N and p.
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Proof. We first recall the following estimate [24, Estimate (22), page 153]): Let 0 <b < 1, ¢ > 0,
and f € L' (RY). Then

2N

(M3 f > a, 2 < ea)] < 1

H{MAf >bal|, Ya>0. (4.5)

Applying (4.5) with f = gx, b= 1—10, a=10% and 0 < ¢ < %7 which depends only on N and p, and
is defined later, we have

{MAgy, > 107} < @V (Mg, > 10571} 4 {gi 2 > c10%},
which implies
10°P | { M2 gi > 10F}] < 2N 1107 [{ M2 gy > 10F71Y| + 10F7|{gh® > c10%}|. (4.6)

Take ko € Z such that c10*0=2 < § < ¢10%0~1. Then (4.6)) implies, for m > ko + 1,

m m m

D 10" {MA gy > 108} < 2NN 107 {M A g > 1057+ Y 108 {ghd > 1M} (4.7)

ko ko ko

We first establish a lower bound for the left hand side of (4.7)). Since

{MB gy, > 107} > [{gr > 10*}],

it follows from the definition of M*g; and g that

10m+2

m
> 10 {MA g > 107} > ON,p/ P {|g| >t} dt Ym > ko4 1. (4.8)
k‘o 10k0+1

We next show an upper bound for the right hand side of (4.7)). Using the theory of maximal
functions (see e.g. [23, Theorem 1 in page 5]), we have

1O7n+2

D 1R {MAg > 107 < Cnp > / lgx|? dz < Cn / P {|gl > t}ldt,  (4.9)
ko ko RN 10%0

for all m > ko + 1. The last inequality in (4.9 follows from the definition of gi. On the other
hand, since r > 1, it follows from (4.3) and the definition of v; that

JA r r
Z 10kp|{g£ > 107} < > Z okl < 07|\v||L1. (4.10)
ko ko
Combining (4.9) and (4.10)), we obtain

m m
2NN 10M [{ M A gy, > 10571 + Y T 1057 {gh 2 > 107}
ko ko

107n+2

N+1
<o (70 [
0

_ 1, .,
= {|g| > t}| dt + vallu> , (4.11)
which is an upper bound for the right hand side of (4.7).
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From 7 , and , we have

10m+2 10m+2
/ P~ {|g| > t}|dt < Cn, <62N+1/
1oFo+? 10k0

Take c such that Cy ,c2VT1 = 1/2. Tt follows from (4.12) that

_ 1,
= {lgl > t}] dt + cp||v||L1> :

107n+2 10k0+1 1
[ el <O ([ gl > et Sl ).
10ko+1 10ko0 cP

By (4.3) and (4.4), this implies
107n+2

/1O’c +1 tp_1|{|g| > t}‘ dt < CN,p”/UHEL
0

Letting m go to infinity, the conclusion follows.
We are ready to give

Proof of Theorem |3\ Let k € Z be such that 10 > §. Define
gk = T(10%, 102, |g])
(see Definition [2). From (T.4), we have

N+p opP
Cro [ [ lo) i anay < B [ [ T dedy o,
Bos BJB @ — y|NHP
6<|gr(x)—gr(y)| <105

for any ball B of RY. Define

h o d
(z) = /RN W Y,

lg(y)—g(z)|>6

and
hi(z) = h(x)X10k<|g|§1ok+2 (z).

Here y 4 denotes the characteristic function of a set A C R. Since

5P 5P
———drdy < 2/ X 10k <10k+2 / ———dx dy,
/B/B [ — [N p O shls 5 vy
8<|gr(x)—gr(y)|<108 lg(x)—g(y)|>d

it follows from (4.13]) that

1/p
Covytf (@) < sup Q)1 (72 N dx) s

where the supremum is taken over all cubes @ containing z. Applying Lemma [7] we obtain

N

8,4 "o [
{gi™ >t} < Onpllhall [77 /t¥=7, Vi > Cnypo,

According to Lemma [§] the conclusion follows.
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5 A general setting

In this section we prove Propositions [d] [5] and [f] and present their applications.

5.1 Proof of Proposition

We follows the approach used in the proof of Assertion (b) of [I8, Theorem 1]. Since F is a

non-decreasing function, we have

// Iw—yIN“’ dxdy>z

n>0

F(2 ™)
——————dz dy.
/B/B o — Ve T

27n<|g(x)—g(y)|<2-n+!

On the other hand,

Z // F( |N+pd dy—z // ‘N+Pd @ dy

>0
"= o-ng|g(a)—gly)| <27t 20| g(@)—g(y)|>2-"

(5.1)

2 n— 1
,Z // |x— |N+pdxdy— // |N+pdacdy.

= Ig z)—g(y)[>2~" lg(z)— g(y)|>2
This implies

S L e

1205 lg(z)—g(y)|<2-n+1

[F(2™") - F2 1)
=2 I, FEReT I A
= Ig(w) g(y)|>2—n lg(z)—

Combining (5.1 and . 5.2)) yields

// |x— |N+ Doy + // ‘m_ ‘N+

lg(z)—g(y)|>2

y)|>2

[F(2) —F@e ")
>Z // |z — y|N+P e dy

= Ig(ﬂc —g(y)|>2—n

Applying Theorem [} we have

// |N+p d“”dy+|3|2ZQ””/JB/Blg(JJ)—g(y)I”dxdy.

lg(z)—g(y)|>2—m

It follows that

N+p —n\ __ —n— 1

> >
n20 o) g o2 " 0

2 2P[FR ) - F@ " //|g y)|P da dy.

n>0

20
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N drdy.
/B o — Ve Y
)

(5.3)
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On the other hand, we have

> oemP@eT) -F@ER T (1)+> (2P —2m"P)F(27") 5F(1)+/1F(t)t@+1> dt, (5.5)
0

n>0 n>1

since F is non-decreasing, and

Y IFE™) - F ] = F(1). (5.6)

n>0

Combining (5.4), (5.5), and (5.6)) yields
Nip F(2™) — F(2—n !
B " Z / / [Fe™") = F( ) da dy + F(1)|BJ?

|z —y|N+P

> (F(l)—l—/OlF(t)t (p+1) dt>//|g y)Pdrdy. (5.7)

We deduce from and . that
1
(F(l) —I—/ F(t)t—P+D dt / / lg(z y)|P dx dy
9@l .
e

Since F' is non-decreasing, this implies

(F(1)+/01 F(t)t~ P+ dt>/ / lg(z y)|P da dy

<|B|"¥" // ‘x_ |N+ Fllg) = 9w)l) dz dy + F(1)|B)?.
O

= Ig(r —g(y)|>2—n

// |N+p dx dy + F(1)|B)?.

lg(z)— g(y)\>2

5.2 Proofs of Propositions [5] and [6]

Proof of Proposition Applying the same method as in Lemma [6] but, using Proposition
instead of Theorem [I] we have

F n n
/Ign gna|pdx<sp/ (gn () Ity WD 40 ay + Fu (D).
RN JRN |z —y|[N+P

for any cube @Q of RY. Here gn,e is defined as in the proof of Lemma @ It follows that

hm (hmsup/ lgn(2) — gn.e(z)|P dw) =0.

n—oo

Therefore, there exist a sub-sequence (g,, ) of (¢,) and g € LP(RY) such that g,, converges to
gin LY (RY) (see the proof of Theorem . O

loc

Proof of Proposition [6l The conclusion of Proposition [6 follows from Proposition [4] by applying
the same method used in the proof of Theorem [3| (see (5.3))). The details of the proof are left for
the reader. 0
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5.3 Applications
In this section, we give some applications of Propositions [d] [5 and [f]
Set

etPte f0<t <1,
Fa(t) =

€ otherwise.

Then F. is non-decreasing, fol F ()t~ at + F.(1) = 1, and lim. 0 F.(t) = 0 for all > 0. As
a consequences of Propositions [4] [ and [6] we have

Corollary 1 Let p > 1, B be a ball of RN, and g € LP(B). Then there exists a constant C > 0,
depending only on N and p, such that

C//\g y)IP dz dy
elg(z) —g(y)[P™e 2
// \x— RE ‘N+pd:cdy+5|B|.

lg(z)—g(y)|<1 lg(2)— g(y)\>1

Corollary 2 Let (g,) be a sequence of functions in LP(RY) (1 < p < N) and (g,,) be a positive
sequence converging to 0. Assume that

lim inf / / enlg(@) =g L / / —E dedy | < oo
n—0o0 RN JRN \x - y|N+p Y gy Jry |z —y| NP Y .
lg(z)—g(y)|<1 lg(z)—g(y)|>1

Then there exist a subsequence (gn,) of (gn) and g € LP(RYN) such that (gn,) converges to g in
LY (RM).

loc

Corollary 3 Let0<e<1,1<p< N and g € LP(RY). Assume that

elg(x) — g(y) [P / / £
dzr d ———dzdy < .
/RN /RN \CU —y|NtP v gy Jry |z —y|VFP vy < e

lg(z)—g(y)|<1 lg(z)—g(y)[>1

Then g € LY(RN) with q = NN—% and there exist two positive constants C' and A depending only on

N and p, such that

(/\g\qclx <c // lo@) =g ;0 s // édwdy)%.
RN JRN |$* y| N+ gy Jry |z —y|NEP

lg]>Xe lg(z)—g(y)|<1 lg(z)—g(y)[>1
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