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Abstract

In this paper, we study some properties related to the new characterizations of Sobolev
spaces introduced in [16, 4, 18]. More precisely, we establish variants of the Poincaré inequality,
the Sobolev inequality, and the Rellich-Kondrachov compactness theorem, where

∫
RN |∇g|

p dx
is replaced by some quantity of the type

Iδ(g) =

∫
RN

∫
RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy.

1 Introduction

We first introduce the quantity Iδ(g), which plays an important role in this paper,

Iδ(g) =

∫
RN

∫
RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy ∀ g ∈ L1

loc
(RN ).

We next recall some new characterizations of Sobolev spaces in [16, 4, 18]. The first one is as
follows

Proposition 1 Let 1 < p < +∞. Then

a) There exists a constant CN,p depending only on N and p such that

Iδ(g) ≤ CN,p
∫
RN
|∇g|p dx, ∀ δ > 0, ∀ g ∈W 1,p(RN ).

b) If g ∈ Lp(RN ) satisfies
lim inf
δ→0+

Iδ(g) < +∞,

then g ∈W 1,p(RN ).

c) Moreover, for any g ∈W 1,p(RN ),

lim
δ→0+

Iδ(g) =
1

p
KN,p

∫
RN
|∇g|p dx,

where KN,p is defined by

KN,p =

∫
SN−1

|e · σ|p dσ, (1.1)

for any e ∈ SN−1.
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Remark 1 Assertions a) and c) are proved in [16] (Theorem 2). Assertion b) is proved by
Bourgain-Nguyen in [4]. The proof of Assertion b) is delicate. Under the following stronger as-
sumption

lim sup
δ→0+

Iδ(g) < +∞,

a simple proof is given in [16] (see the proof of Theorem 2).

In [18], we improve statement b) in Proposition 1 by proving

Proposition 2 Let N ≥ 1, p > 1, and g ∈ Lp(RN ). Assume that Iδ(g) < +∞ for all δ > 0, and

lim inf
δ→0+

∫
RN

∫
RN

δ<|g(x)−g(y)|<10δ

δp

|x− y|N+p
dx dy < +∞.

Then g ∈W 1,p(RN ).

Remark 2 To prove Proposition 2, we developed the method introduced in [4]. The observation
used in the proof Proposition 2 will play an important role in the proof of statement b) in Theorem 1
which is crucial to establish Theorem 3 and Proposition 6.

The second characterization is a generalization of Proposition 1.

Proposition 3 [18, Theorem 1] Let 1 < p < +∞ and (Fn)n∈N be a sequence of functions from
[0,+∞) into [0,+∞) such that

i) Fn(t) is a non-decreasing function with respect to t on [0,+∞), for all n ∈ N.

ii)

∫ 1

0

Fn(t)t−(p+1) dt = 1, for all n ∈ N.

iii) Fn(t) converges uniformly to 0 on every compact subset of (0,+∞) as n goes to infinity.

Then

a) If g ∈W 1,p(RN ), then for every n ∈ N,∫
RN

∫
RN

Fn(|g(x)− g(y)|)
|x− y|N+p

dx dy ≤ CN,p
∫ ∞

0

Fn(t)t−(p+1) dt

∫
RN
|∇g|p dx,

where CN,p is a positive constant depending only on N and p.

b) If g ∈ Lp(RN ) and g satisfies

lim inf
n→∞

∫
RN

∫
RN

Fn(|g(x)− g(y)|)
|x− y|N+p

dx dy < +∞,

then g ∈W 1,p(RN ) and

lim inf
n→∞

∫
RN

∫
RN

Fn(|g(x)− g(y)|)
|x− y|N+p

dx dy ≥ KN,p

∫
RN
|∇g|p dx.

c) Moreover, if

lim sup
n→∞

∫ ∞
0

Fn(t)t−(p+1) dt < +∞,

then, for any g ∈W 1,p(RN ),

lim
n→∞

∫
RN

∫
RN

Fn(|g(x)− g(y)|)
|x− y|N+p

dx dy = KN,p

∫
RN
|∇g|p dx.
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Here KN,p is defined by (1.1).

Remark 3 Proposition 1 follows from Proposition 3 by choosing

Fn(t) =


0 if 0 ≤ t ≤ δn,
pδpn

1− δpn
otherwise.

(1.2)

Remark 4 Assumption i)-iii) of the sequence (Fn) are necessary to obtain a), b), and c) (see [18,
Remark 4] for detailed discussion).

In this paper, we establish variants of the Poincaré inequality, the Sobolev inequality, and
the Rellich-Kondrachov theorem which are inspired by these characterizations. Our first result
motivated by Proposition 1 and the Poincaré inequality is the following theorem, which is proved
in Section 2.

Theorem 1 Let N ≥ 1, p ≥ 1, and g be a real measurable function defined on a ball B ⊂ RN .
Assume that ∫

B

∫
B

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy < +∞.

Then

a) If p ≥ 1, we have∫
B

∫
B

|g(x)− g(y)|p dx dy ≤ CN,p
(
|B|

N+p
N

∫
B

∫
B

|g(x)−g(y)|>δ

δ

|x− y|N+p
dx dy + δp|B|2

)
, (1.3)

for all δ > 0 and for some positive constant CN,p depending only on N and p.

b) If p > 1, we have∫
B

∫
B

|g(x) − g(y)|p dx dy ≤ CN,p

(
|B|

N+p
N

∫
B

∫
B

δ<|g(x)−g(y)|<10δ

δp

|x− y|N+p
dx dy + δp|B|2

)
,

(1.4)

for all δ > 0. Here CN,p is a positive constant depending only on N and p.

Remark 5 We do not know whether (1.4) is valid with p = 1.

Remark 6 Inequality (1.4) plays an important role in the proof of Theorem 3 below.

Remark 7 A variant of estimate (1.3) was established by Bourgain-Brezis-Mironescu [3] as fol-
lows. Let g ∈ C(I = [0, 1],R). Then∫

I

∫
I

|g(x)− g(y)| dx dy ≤ C
(
|I|2

∫
I

∫
I

|eig(x)−eig(y)|>δ

1

|x− y|2
dx dy + |I|2

)
,

for some universal positive constant C, when δ is small. The continuity of g is necessary for such a
result. Recently in a joint work with Brezis [6], using a completely different argument, we establish
the above inequality for any δ <

√
3 and for any g ∈ VMO(I,R) (

√
3 is optimal). The proofs in

[3] and [6] are involved. The approach in [6] can also be used to obtain a similar inequality for
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p > 1. These results can be extended to higher dimensions for a smooth function g using the idea
in Step 2 of the proof of Theorem 1 in this paper (see [7]). Nevertheless we do not know how to
obtain (1.3) under the general condition as in statement a) using this approach since the standard
density arguments do not work in this context. This is due to the fact that quantity in the RHS of
(1.3) is “unstable” under the convolution.

Our next result is a variant of Rellich-Kondrachov theorem, whose proof is presented in Sec-
tion 3.

Theorem 2 Let N ≥ 1, p ≥ 1, (gn) : RN → R be a bounded sequence of functions in Lp(RN ) and
(δn) be a sequence of positive numbers converging to 0 such that

lim inf
n→∞

Iδn(gn) = lim inf
n→∞

∫
RN

∫
RN

|gn(x)−gn(y)|>δn

δpn
|x− y|N+p

dx dy < +∞. (1.5)

Then there exist a subsequence (gnk) of (gn) and g ∈ Lp(RN ) such that
(
gnk
)

converges to g in
Lploc(RN ). Moreover, g ∈ W 1,p(RN ) for p > 1 resp. g ∈ BV (RN ) for p = 1 and there exists a
positive constant C, depending only on N and p, such that∫

RN
|∇g|p dx ≤ C lim inf

n→∞
Iδn(gn). (1.6)

Remark 8 The optimal constant in (1.6), which was discussed in the context of Gamma-convergence
in [17], [19], is strictly less than KN,p/p.

Remark 9 The conclusion of Theorem 2 still holds in the case p > 1 if (1.5) is replaced by the
conditions that Iδn(gn) < +∞ for all n ∈ N, and

lim inf
n→∞

∫
RN

∫
RN

δn<|gn(x)−gn(y)|<10δn

δpn
|x− y|N+p

dx dy < +∞.

Remark 10 When p > 1, Theorem 2 implies the well-known Rellich-Kondrachov theorem, since
Iδ(g) ≤ CN,p

∫
RN |∇g|

p dx.

A variant of the Sobolev inequality, which is proved in Section 4, is as follows

Theorem 3 Let 1 < p < N , δ > 0, and g be a real measurable function defined on RN such that

Iδ(g) =

∫
RN

∫
RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy < +∞.

Then there exist two positive constants C and λ, depending only on N and p, such that( ∫
|g|>λδ

|g|q dx
) 1
q ≤ C [Iδ(g)]

1
p , (1.7)

with q = Np
N−p .

Remark 11 Letting δ go to 0 in (1.7), we rediscover and extend the Sobolev inequality since
limδ→0 Iδ(g) = 1

pKN,p

∫
RN |∇g|

p dx, Iδ(g) ≤ CN,p
∫
RN |∇g|

p dx (see Proposition 1), and

limδ→0

∫
|g|>λδ |g|

q dx =
∫
RN |g|

q dx for g ∈ W 1,p(RN ). Since Iδ(g) ≤ δp

δ′p Iδ′(g) for δ ≥ δ′, Theo-

rem 3 is more interesting when it is applied for large δ.
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When N ≥ 1 and p = N , estimates (1.3) and (1.4) clearly imply that g ∈ BMO(RN ), the
space of all functions of bounded mean oscillation defined on RN if g ∈ L1(RN ) and Iδ(g) < +∞
for some δ > 0. Moreover, there exists a positive constant C, depending only on N , such that

|g|BMO := sup
Q

∫
Q

∫
Q

|g(x)− g(y)| dx dy ≤ C
(
I

1
N

δ (g) + δ
)
,

where the supremum is taken over all cubes of RN . In a joint work with Brezis [7] we also show
that if g ∈ L1(RN ) and Iδ(g) < +∞ (p = N) for all δ > 0, then g ∈ VMO(RN ), the spaces of all
functions of vanishing mean oscillation. More properties in the case p = N can be found in [7].
When p > N and Iδ(g) < +∞ for some δ, one cannot hope that g ∈ L∞

loc
(RN ). This follows from

the fact that the function g(x) := ln ln | ln |x|| in Bλ (λ is small), the ball centered at the origin
with radius λ, does not belong to L∞(Bλ) and∫

Bλ

∫
Bλ

|g(x)−g(y)|>δ

δr

|x− y|N+r
dx dy < +∞ ∀ r > 1.

Applying Theorem 1, we can prove that the sharp function of g belongs to Lqw(RN ) with
q = Np/(N − p) if g ∈ Lp(RN ) (p ≥ 1) and Iδ(g) < +∞ for some δ > 0 (see Section 4). In fact we
can prove that g ∈ Lq(RN ) if p > 1 and Iδ(g) < +∞ for some δ > 0 (see Theorem 3). However,
we have the following

Open question 1 Let p = 1 and N ≥ 2. Is it true that g ∈ L
N
N−1 (RN ) if g ∈ L1(RN ) and

Iδ(g) < +∞ for some δ > 0?

Motivated by Proposition 3, we establish the following results, whose proofs are presented in
Section 5.

Proposition 4 Let g be a real measurable function defined on a ball B ⊂ RN and F : [0,+∞)→
[0,+∞) be a non-decreasing function. Then there exists a constant C > 0, depending only on N
and p, such that

(
F (1) +

∫ 1

0

F (t)t−(p+1) dt
)∫

B

∫
B

|g(x)− g(y)|p dx dy

≤ C
(
|B|

N+p
N

∫
B

∫
B

F (|g(x)− g(y)|)
|x− y|N+p

dx dy + F (1)|B|2
)
.

Proposition 5 Let 1 ≤ p < N , (Fn) : [0,+∞) → [0,+∞) be a sequence of non-decreasing
functions such that limn→∞ Fn(1) = 0,

Fn(1) +

∫ 1

0

Fn(t)t−(p+1) dt = 1,

and (gn) : RN → R be a bounded sequence of real functions in Lp(RN ). Assume that

lim inf
n→∞

∫
RN

∫
RN

Fn(|gn(x)− gn(y)|)
|x− y|N+p

dx dy < +∞.

Then there exist a subsequence
(
gnk
)

of (gn) and g ∈ Lp(RN ) such that (gnk) converges to g in
Lploc(RN ).
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Proposition 6 Let 1 < p < N , F : [0,+∞) → [0,+∞) be a non-decreasing function and g be a
real measurable function defined on RN . Assume that∫

RN

∫
RN

F (|g(x)− g(y)|)
|x− y|N+p

dx dy < +∞.

Then there exist two positive constants C and λ, depending only on N and p, such that( ∫
|g|>λF (2−n)

|g|q dx
) 1
q ≤ C

( 1

2npF (2−n)

∫
RN

∫
RN

F (|g(x)− g(y)|)
|x− y|N+p

dx dy
) 1
p ∀n ∈ Z,

with q = Np
N−p .

Applications of Propositions 4, 5, and 6 will be given in Section 5.3. It would be nice to obtain
similar results to Theorems 1, 2, and 3, and Propositions 4, 5, and 6 in a more general setting e.g.
in Carnot-Carathéodory spaces or in metric spaces with appropriate properties.

Recently many authors have suggested various definitions of Sobolev spaces and studied the
well-known properties of Sobolev spaces in their contexts e.g. Ambrosio [1], Korevaar-Schoen [14],
Reshetnyak [21], Hajlaz-Koskela [12], Bourgain-Brezis-Mironescu [2] and references therein. The
characterizations mentioned in this paper are quite close to the work of Bourgain-Brezis-Mironescu [2].
However the connection is not transparent.

Theorem 1, whose proof is presented in Section 2, is the starting point of this paper. In the proof
of Theorem 1, we use of ideas in [4] and [18], and the John-Nirenberg inequality [13]. Theorem 2
is derived from Theorem 1 by the standard technique used in Bourgain-Brezis-Mironescu [2] (see
also [20]). The main ingredient of the proof of Theorem 3 is part b) of Theorem 1. The proof
also makes use of the theory of sharp functions due to Fefferman and Stein [9] and the method of
truncation due to Mazya [15]. Obtaining Sobolev’s inequality from Poincaré’s inequality previously
appeared in the literature see e.g. [22], [10], [11], [12]. However, our approach is different from the
works mentioned here, which were inspired by the Riesz potential theory. Moreover, we could not
apply their methods in our setting because of the presence of the two terms in the RHS of (1.3) and
(1.4). Proposition 4 is derived from Theorem 1 using ideas in [18]. The proofs of Propositions 5
and 6 follow from Proposition 4 by applying the same methods used in the proofs of Theorems 2
and 3.

The paper is organized as follows. In Section 2, we prove Theorem 1. Section 3 is devoted to
the proof of Theorem 2. Theorem 3 is proved in Section 4. Section 5 is devoted to the proofs of
Propositions 4, 5, and (6), and their applications.

2 A variant of Poincaré’s inequality. Proof of Theorem 1

2.1 Preliminaries

In this section, we present some technical lemmas which will be used in the proof of Theorem 1.
We first recall some useful results in [18].

Lemma 1 [18, Lemma 3] Let g be a real measurable function defined on the interval [a, b] (−∞ <
a < b < +∞), z ∈ R, and δ > 0. Set

B = {x ∈ [a, b]; g(x) < z}.
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Assume that

0 <
|[a, b] ∩B|
b− a

< 1,

and ∫ b

a

∫ b

a
|g(x)−g(y)|>δ

1

|x− y|2
dx dy < +∞.

Then
|[a, b] ∩Aτ | > 0, ∀ τ > δ,

where Aτ := {x ∈ [a, b]; z ≤ g(x) < z + τ}.

Hereafter |A| denotes the Lebesgue measure of A for any measurable set A ⊂ RN .

Lemma 2 [18, Lemma 4] Let g be a real measurable function defined on the interval [a, b] (−∞ <
a < b < +∞), z ∈ R, r > 0, s > 0, and τ > δ > 0. Set

B = {x ∈ R; g(x) < z}, A = {x ∈ R; z ≤ g(x) < z + τ}.

Assume that
|[a, b] ∩B|
b− a

= r,
|[a, b] ∩A|
b− a

≤ s, r + s < 1,

and ∫ b

a

∫ b

a
|g(x)−g(y)|>δ

1

|x− y|2
dx dy < +∞.

Then there exists a subinterval [c, d] ⊂ [a, b] (a ≤ c < d ≤ b), such that

|[c, d] ∩B|
d− c

= r and s/4 ≤ |[c, d] ∩A|
d− c

≤ s.

Lemma 3 [18, Lemma 5] Let g be a real measurable function defined on the interval [a, b] (−∞ <
a < b < +∞) , z ∈ R, τ > δ > 0, and 0 < λ ≤ 1/2. Set{

Bj = {x ∈ R; g(x) < z + jτ},

Aj = {x ∈ R; z + jτ ≤ g(x) < z + (j + 1)τ},
∀ j ∈ Z.

Assume that
|[a, b] ∩B0|

b− a
= λ,

|[a, b] ∩A0|
b− a

≤ λ/4,

and ∫ b

a

∫ b

a
|g(x)−g(y)|>δ

1

|x− y|2
dx dy < +∞.

Then for each r > 4/λ, there exist m ∈ Z+, lm ∈ Z, and [c, d] ⊂ [a, b] (c < d)such that

|lm| ≤ 2m,

|[c, d] ∩Alm |
d− c

|[c, d] ∩Alm+2|
d− c

≥ 1

4
[λ/(4r)]m+1,

(d− c) ≤ 4m[4/(λr)]
m(m−1)

2 (b− a).

7



Lemma 4 [18, Corollary 6] Let 1 < p < +∞ and 0 < λ0 ≤ λ ≤ 1/2. Under the assumptions of
Lemma 3, there exist m ∈ Z+ and lm ∈ Z such that

|lm| ≤ 2m

and ∫∫
x∈[a,b]∩Alm
y∈[a,b]∩Alm+2

1

|x− y|p+1
dx dy ≥ Cp,λ0m(b− a)1−p,

for some positive constant Cp,λ0
depending only on p and λ0.

Remark 12 Lemmas 3 and 4, which will be used in the proof of part b) of Lemma 5, are presented
in [18] (see [18, Lemma 5] and [18, Corollary 6]) only for the case λ = 1/2. However their proofs
are almost the same as the ones of [18, Lemma 5] and [18, Corollary 6]. The details are left to the
reader.

The following lemma is one of the main ingredients in the proof of Theorem 1.

Lemma 5 Let p ≥ 1, 0 < τ0 < 1
2 , and g be a real measurable function defined on a bounded

interval I. Suppose that there exist 0 < τ0 < τ < 1
2 , c1 < c2, and two non-empty sub-intervals I1

and I2 of I such that∣∣{x ∈ I1; g(x) < c1}
∣∣ ≥ τ |I1| and

∣∣{x ∈ I2; g(x) > c2}
∣∣ ≥ τ |I2|. (2.1)

Then there exists some positive constant C depending only on p and τ0 such that:

a) If p ≥ 1, we have∫
I

∫
I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy ≥ Cp,τ0(c2 − c1)p|I|1−p, ∀ δ ∈ (0, δ0). (2.2)

b) If p > 1, δ ∈ (0, δ0), and ∫
I

∫
I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy < +∞,

we have ∫
I

∫
I

δ<|g(x)−g(y)|<10δ

δp

|x− y|p+1
dx dy ≥ Cp,τ0(c2 − c1)p|I|1−p. (2.3)

Here δ0 = τ(c2−c1)
200 min

{
|I1|
|I| ,

|I2|
|I|

}
.

Remark 13 Lemma 5 is a variant of [4, Lemma 2] and [18, Lemma 6] stating that the limit of
the LHS of (2.2) and (2.3) as δ goes to 0 gives upper bounds of |I|1−p(ess sup

I
g− ess inf

I
g) up to a

constant. Lemma 5 gives the range of δ (independent of g) for which (2.2) and (2.3) hold if (2.1)
is satisfied. The proof of Lemma 5 completely borrows arguments used in the ones of [4, Lemma
2] and [18, Lemma 6].
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In what follows, the notation a . b means that there exists a positive constant c depending
only on N and p, such that a ≤ cb. The notation a & b means that b . a and the notation a ≈ b
means that a . b and b . a.

Proof. By scaling and translating, one can assume as well that I = [0, 1], c1 = 0, and c2 = 1.
Take δ ∈ (0, τ

200 ) min{|I1|, |I2|} and K ∈ Z+ such that

δ < 2−K ≤ 2δ. (2.4)

Denote

J =
{
j ∈ Z+;

1

4
< j2−K <

3

4

}
.

Then

card(J) ≥ 2K−1 − 2 ≈ 1

δ
. (2.5)

For each j, define the following sets

Aj =
{
x ∈ [0, 1]; (j − 1)2−K ≤ g(x) < j2−K

}
,

Bj =
⋃
j′<j

Aj′ , and Cj =
⋃
j′>j

Aj′ ,

so that Bj × Cj ⊂
[
|g(x)− g(y)| ≥ 2−K

]
⊂ [|g(x)− g(y)| > δ].

Set
G = {j ∈ J ; |Aj | < 2−K+2}. (2.6)

Since the collection (Aj) is disjoint, it follows from (2.5) that

card(G) ≥ 2K−2 − 3 ≈ 1

δ
, (2.7)

For each j ∈ G, set λ1,j = |Aj | > 0 by Lemma 1. We claim that there exist s1,j and s2,j in
[4λ1,j , 1− 4λ1,j ] such that

|[s1,j − 4λ1,j , s1,j + 4λ1,j ] ∩Bj | > τ/2 and |[s2,j − 4λ1,j , s2,j + 4λ1,j ] ∩ (Aj ∪ Cj)| > τ/2.
(2.8)

We first prove that there exists s1,j ∈ [4λ1,j , 1− 4λ1,j ] such that

|[s1,j − 4λ1,j , s1,j + 4λ1,j ] ∩Bj | > τ/2 (2.9)

by contradiction. Suppose that

|[t− 4λ1,j , t+ 4λ1,j ] ∩Bj | < τ/2 ∀ t ∈ [4λ1,j , 1− 4λ1,j ]. (2.10)

Set t0 = 4λ1,j + inf
x∈I1

x and ti+1 = ti + 8λ1,j for i ≥ 0. Let n be such that tn + 4λ1,j ∈ I1 and

tn+1 + 4λ1,j 6∈ I1. We have

|I1 ∩Bj | ≤
n∑
i=0

|
[
ti − 4λ1,j , ti + 4λ1,j

]
∩Bj |+ 8λ1,j .

We deduce from (2.10) that
|I1 ∩Bj | ≤ τ |I1|/2 + 8λ1,j . (2.11)

However since j ∈ G, 2−K ≤ δ ≤ τ |I1|/200, it follows from (2.6) that

8λ1,j ≤ 8.2−K+2 = 32.2−K ≤ 64δ < τ |I1|/2. (2.12)
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Combining (2.11) and (2.12) yields that

|I1 ∩Bj | < τ |I1|.

This contradicts the fact that |I1 ∩Bj | ≥ |I1 ∩B1| > τ |I1|.

Thus there exists s1,j ∈ [4λ1,j , 1− 4λ1,j ] such that |[s1,j − 4λ1,j , s1,j + 4λ1,j ] ∩Bj | > τ/2.

Similarly, since |I2 ∩ (Aj ∪ Cj)| > τ |I2|, there exists s2,j ∈ [4λ1,j , 1− 4λ1,j ] such that
|[s2,j − 4λ1,j , s2,j + 4λ1,j ] ∩ (Aj ∪ Cj)| > τ/2. Therefore (2.8) is proved.

From (2.8) it is clear that there exists t1,j ∈ [4λ1,j , 1− 4λ1,j ] such that

τ/2 ≤ |[t1,j − 4λ1,j , t1,j + 4λ1,j ] ∩Bj | ≤ 1− τ/2. (2.13)

On the other hand, since |Aj | ≤ 2−K+2 ≤ 8δ ≤ τ/8, it follows that

|[t1,j − 4λ1,j , t1,j + 4λ1,j ] ∩Aj | ≤ |Aj | ≤ τ/8. (2.14)

Combining (2.13) and (2.14) and using Lemma 2, we have, for some tj , λj > 0,

τ/2 ≤ |[tj − 4λj , tj + 4λj ] ∩Bj |
8λj

≤ 1− τ/2, (2.15)

and

τ/32 ≤ |[tj − 4λj , tj + 4λj ] ∩Aj |
8λj

≤ τ/8. (2.16)

Proof of a): p ≥ 1. Set λ = infj∈G λj (λ > 0 since G is finite). Define Pm as follows

Pm = {j ∈ G; 2m−1λ ≤ λj < 2mλ}, ∀m ≥ 1. (2.17)

Then G =
⋃n
i=1 Pm for some n. From (2.7), we have

n∑
m=1

card(Pm) &
1

δ
. (2.18)

For each m (1 ≤ m ≤ n), since Aj ∩ Ak = ∅ for j 6= k, it follows from (2.16) that there exists
Jm ⊂ Pm such that

a) card(Jm) & card(Pm) and b) |ti − tj | > 2m+3λ, ∀ i, j ∈ Jm, i 6= j. (2.19)

Combining (2.17), (2.18), and (2.19) yields

[ti − 4λi, ti + 4λi] ∩ [tj − 4λj , tj + 4λj ] = ∅, ∀ i, j ∈ Jm, i 6= j, (2.20)

and
n∑

m=1

card(Jm) &
1

δ
. (2.21)

Set U0 := ∅ and, for m = 1, 2, . . . , n,
Lm =

{
j ∈ Jm;

∣∣[tj − 4λj , tj + 4λj ] \ Um−1

∣∣ ≥ (8− τ/16)λj
}
,

Um =
( ⋃
j∈Lm

[tj − 4λj , tj + 4λj ]
)
∪ Um−1,

am = card(Jm) and bm = card(Lm).

(2.22)
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From (2.20), we have ∑
j∈Jm\Lm

|[tj − 4λj , tj + 4λj ]| .
1

τ
|Um−1|.

Hence since Lm ⊂ Jm ⊂ Pm, it follows from (2.17) that

2m−1(am − bm) .
1

τ

m−1∑
i=1

2ibi,

which shows that

am . bm +
8

τ

m−1∑
i=1

2(i−m)bi.

Consequently,

n∑
m=1

am .
n∑

m=1

bm +
8

τ

n∑
m=1

m−1∑
i=1

2(i−m)bi =

n∑
m=1

bm +
8

τ

n∑
i=1

bi

n∑
m=i+1

2(i−m).

Since
∑∞
i=1 2−i = 1, it follows from from (2.18) and (2.21) that

n∑
m=1

bm & τ
n∑

m=1

am &
τ

δ
. (2.23)

Combining (2.15), (2.16), (2.22), and (2.23) yields∫
I

∫
I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy ≥

n∑
m=1

∑
j∈Lm

∫∫
([tj−4λj ,tj+4λj ]\Um−1)2

x∈Bj , y∈Cj

δp

|x− y|p+1
dx dy

& δp
n∑

m=1

bmτ/δ
p−1 & τ2.

This implies the conclusion of Lemma 5 in this case.

Proof of b): p > 1. Take j ∈ G. By Lemma 4, we deduce from (2.15) and (2.16) that there exist
mj ∈ Z+ and lj ∈ Z such that

|lj − j| ≤ 2mj (2.24)

and ∫∫
x∈I∩Alj
y∈I∩Alj+2

1

|x− y|p+1
dx dy & cτ0mjλ

1−p
j & cτ0mjδ

1−p. (2.25)

Hereafter cτ0 denotes a positive constant depending only on τ0. The last inequality follows from
the fact that λj . δ.

Set i0 = −1 and
Ci = {j ∈ G; lj = i}, ∀ i ∈ Z.

For each n ≥ 1, if {
i ∈ Z; i ≥ in−1 + 1 and Ci 6= Ø

}
6= Ø,
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then set  in = inf
{
i ∈ Z; i ≥ in−1 + 1 and Ci 6= Ø

}
,

kn = max
{
mj ; j ∈ G and lj = in

}
.

From (2.24), we have
kn & card{j ∈ G; lj = in}.

Hence we deduce from (2.7) that ∑
n≥1,kn exists

kn & card(G) ≈ 1

δ
. (2.26)

On the other hand, from (2.25),∫
I

∫
I

2−K≤|g(x)−g(y)|≤3.2−K

δp

|x− y|p−1
dx dy ≥

∑
n≥1,kn exists

∫∫
x∈I∩Ain
y∈I∩Ain+2

δp

|x− y|p+1
dx dy

& cτ0
∑

n≥1,kn exists

knδ. (2.27)

Therefore the conclusion of Lemma 4 in the case p > 1 follows from (2.26), (2.27), and (2.4). �

2.2 Proof of Theorem 1

Step 1: N = 1. Let I be a bounded interval of R. We first assume that g ∈ L∞(I) and∫
I

∫
I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy < +∞;

and prove, if p ≥ 1,∫
I

∫
I

|g(x)− g(y)|p dx dy ≤ Cp
(
|I|p+1

∫
I

∫
I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy + δp|I|2

)
, (2.28)

and, if p > 1,∫
I

∫
I

|g(x)− g(y)|p dx dy ≤ Cp
(
|I|p+1

∫
I

∫
I

δ<|g(x)−g(y)|<10δ

δp

|x− y|p+1
dx dy + δp|I|2

)
, (2.29)

where Cp is a positive constant depending only on p.

By scaling, one may assume that I = [0, 1] and

|g|BMO(I) = 2. (2.30)

We recall the following fact due to John and Nirenberg [13]: There exist two universal constants
c1 and c2 such that if −∞ < a < b < +∞ and u ∈ BMO([a, b]) then

∣∣{x ∈ (a, b); |u−
∫ b

a

u(s) ds| > t}
∣∣ ≤ c1(b− a) exp

(
− c2t

|u|BMO([a,b])

)
∀ t > 0. (2.31)
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Let 0 < a < b < 1 be such that ∫ b

a

∣∣∣g(x)−
∫ b

a

g(s) ds
∣∣∣ dx ≥ 1. (2.32)

The existence of a and b follows from (2.30). Without loss of generality, one may assume that∫ b

a

g dx = 0. (2.33)

By (2.31), it follows from (2.30), (2.32) and (2.33) that there exist two universal constants τ1 < 0
and τ2 > 0 such that

1

b− a
∣∣{x ∈ (a, b); g(x) < τ1}

∣∣ & 1 and
1

b− a
∣∣{x ∈ (a, b); g(x) > τ2}

∣∣ & 1.

Applying Lemma 5, we have, if p ≥ 1,∫ b

a

∫ b

a
|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy + δp & 1 ∀ δ > 0.

and, if p > 1, ∫ b

a

∫ b

a
δ<|g(x)−g(y)|<10δ

δp

|x− y|p+1
dx dy + δp & 1 ∀ δ > 0.

This completes the proof in the case g ∈ L∞(I).

The proof in the general case (without assuming that g ∈ L∞(I)) goes as follows. Let A > 0
and define

gA = min{max{g,−A}, A}. (2.34)

Then gA ∈ L∞(I). Hence it follows from (2.28) and (2.29) that if p ≥ 1∫
I

∫
I

|gA(x)− gA(y)|p dx dy ≤ Cp
(
|I|p+1

∫
I

∫
I

|g(x)−g(y)|>δ

δp

|x− y|p+1
dx dy + δp|I|2

)
∀ p ≥ 1,

and if p > 1∫
I

∫
I

|gA(x)− gA(y)|p dx dy ≤ Cp
(
|I|p+1

∫
I

∫
I

δ<|gA(x)−gA(y)|<10δ

δp

|x− y|p+1
dx dy + δp|I|2

)
∀ p > 1.

By letting A go to infinity and using Fatou’s lemma, the conclusion follows. �

Step 2: N ≥ 2. Let us sketch the proof in the case N = 2. The proof in the general case follows
similarly. We present here only the proof of (1.4). The proof of (1.3) is almost the same as the
one of (1.4). Without loss of generality, one may assume that B = B1 the unit ball centered at
the origin. Let f be an extension of g on B8, the ball centered at 0 with radius 8, such that∫

B1

∫
B1

δ<|g(x)−g(y)|<10δ

1

|x− y|N+p
dx dy ≈

∫
B8

∫
B8

δ<|f(x)−f(y)|<10δ

1

|x− y|N+p
dx dy (2.35)
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and ∫
B1

∫
B1

|g(x)−g(y)|>δ

1

|x− y|N+p
dx dy ≈

∫
B8

∫
B8

|f(x)−f(y)|>δ

1

|x− y|N+p
dx dy. (2.36)

We first note that, with e1 = (1, 0) and e2 = (0, 1).

|f
(
sR(e1) + tR(e2)

)
− f

(
ŝR(e1) + t̂R(e2)

)
|p

. |f
(
sR(e1) + tR(e2)

)
− f

(
ŝR(e1) + tR(e2)

)
|p + |f

(
ŝR(e1) + tR(e2)

)
− f

(
ŝR(e1) + t̂R(e2)

)
|p,

(2.37)

for all s, t ∈ R and R ∈ SO(2) i.e. R is a rotation.
On the other hand, applying Theorem 1 in the case N = 1, we have∫ 1

−1

∫ 1

−1

∫ 1

−1

|f
(
sR(e1) + tR(e2)

)
− f

(
ŝR(e1) + tR(e2)

)
|p ds dŝ dt

.
∫ 1

−1

∫ 1

−1

∫ 1

−1

δ<|f
(
sR(e1)+tR(e2)

)
−f
(
ŝR(e1)+tR(e2)

)
|<10δ

δp

|s− ŝ|p+1
ds dŝ dt+ δp.

This implies∫ 1

−1

∫ 1

−1

∫ 1

−1

|f
(
sR(e1) + tR(e2)

)
− f

(
ŝR(e1) + tR(e2)

)
|p ds dŝ dt

.
∫ 2

−2

∫ 2

−2

∫ 2

−2

δ<|f
(
hR(e1)+x

)
−f
(
x
)
|<10δ

δp

|h|p+1
dx dh+ δp. (2.38)

Hereafter x = (x1, x2) = x1e1 + x2e2. Similarly, we have∫ 1

−1

∫ 1

−1

∫ 1

−1

|f
(
ŝR(e1) + tR(e2)

)
− f

(
ŝR(e1) + tR(e2)

)
|p dt dt̂ dŝ

.
∫ 2

−2

∫ 2

−2

∫ 2

−2

δ<|f
(
hR(e2)+x

)
−f
(
x
)
|<10δ

δp

|h|p+1
dx dh+ δp. (2.39)

Combining (2.35), (2.37), (2.38), and (2.39) yields∫
B1

∫
B1

|g(x)− g(y)|p dx dy .
∫ 2

−2

∫ 2

−2

∫ 2

−2

δ<|f
(
hR(e1)+x

)
−f
(
x
)
|<10δ

δp

|h|p+1
dx dh

+

∫ 2

−2

∫ 2

−2

∫ 2

−2

δ<|f
(
hR(e2)+x

)
−f
(
x
)
|<10δ

δp

|h|p+1
dx dh+ δp.

Therefore the conclusion follows after integrating two sides of the above inequality with respect to
R. �
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3 A variant of Rellich-Kondrachov’s theorem. Proof of The-
orem 2

In this section, we prove Theorem 2. The following lemma is the key of this section.

Lemma 6 Let g : RN → R be a real measurable function and Q be a cube of RN . Then∫
Q

|g(x)− gε(x)|p dx . εp
∫
RN

∫
RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy + δp|Q|,

where

gε =
1

|εQ1|
g ∗ χε.

Here Q1 is the unit cube centered at the origin and χε is the characteristic function of εQ1.

Henceforth aQ denotes the cube with the same center as Q and a times its length for any cube
Q of RN .

Proof. Let (Qi)i∈I be a collection of open cubes such that

|Qi| = εN , Qi ∩Qj = ∅, ∀ i 6= j, and Q ⊂ ∪i∈IQi. (3.1)

Then ∫
Q

|g(x)− gε(x)|p dx ≤
∑
i∈I

∫
Qi

|g(x)− gε(x)|p dx.

Hence since ∫
Qi

|g(x)− gε(x)|p dx ≤ 1

εN

∫
3Qi

∫
3Qi

|g(x)− g(y)|p dx dy,

it follows that ∫
Q

|g(x)− gε(x)|p dx ≤ 1

εN

∑
i

∫
3Qi

∫
3Qi

|g(x)− g(y)|p dx dy. (3.2)

Applying Theorem 1, we deduce from (3.1) that

1

εN

∑
i

∫
3Qi

∫
3Qi

|g(x)− g(y)|p dx dy ≤ CN,p
(
εp

∫
RN

∫
RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy + δp|Q|

)
. (3.3)

Combining (3.2) and (3.3) yields∫
Q

|g(x)− gε(x)|p dx ≤ CN,p
(
εp

∫
RN

∫
RN

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy + δp|Q|

)
.

�

We are ready to prove Theorem 2. We follow the standard approach used in [2] (see also [20]).

Proof of Theorem 2. Applying Lemma 6, we have, for each cube Q of RN ,∫
Q

|gn(x)− gn,ε(x)|p dx ≤ CN,p
(
εp

∫
RN

∫
RN

|gn(x)−gn(y)|>δn

δpn
|x− y|N+p

dx dy + δpn|Q|
)
,
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where

gn,ε =
1

|εQ|
gn ∗ χε.

Here Q1 is the unit cube centered at the origin and χε is the characteristic function of εQ1. Hence

lim
ε→0

(
lim sup
n→∞

∫
Q

|gn(x)− gn,ε(x)|p dx
)

= 0.

Thus, since (gn) is bounded in Lp(RN ), by the theorem of Riesz-Frechet-Kolmogorov (see e.g. [5,
Theorem IV.25]) and [5, Corollary IV.27], there exists a sub-sequence (gnk) of (gn) and g ∈ Lp(RN )
such that gnk converges to g in Lploc(RN ). The second assertion of Theorem 2 follows from [18,
Theorem 3]. �

4 A variant of Sobolev’s inequality. Proof of Theorem 3

This section will be devoted to the proof of Theorem 3. One of the main ingredients of the
proof is the estimate in part b) of Theorem 1. The proof also makes use of the theory of sharp
functions and the truncation method.

We first recall the definition of the dyadic maximal function M∆g and the dyadic sharp function
g],∆ associated with g (see e.g. [24]).

Definition 1 Let g ∈ L1
loc

(RN ). Then M∆g and g],∆ are defined as follows

(M∆g)(x) = sup
Q

∫
Q

|g| dy,

and

g],∆(x) = sup
Q

∫
Q

|g − gQ| dy, (4.1)

where the supremum is taken over all dyadic cubes Q containing x and gQ :=

∫
Q

g dy.

The following result which is a consequence of Vitali’s covering theorem will be used in the
proof of Theorem 3.

Lemma 7 Let δ > 0, 0 < θ1 < θ2, h ∈ L1(RN ), and g be a real measurable function such that

g(x) ≤ sup
B
|B|θ1

(∫
B

|h| dx
)θ2

+ δ, ∀x ∈ RN , (4.2)

where the supremum is taken over all balls B containing x. Then

|{g > t}| ≤ C‖h‖
θ2

θ2−θ1
L1

/
t

1
θ2−θ1 , ∀ t > 2δ,

for some positive constant C, depending only on θ1 and θ2.

Proof. Let t > 2δ. For each y ∈ {g > t}, from (4.2), there exists a ball By containing y such that

t ≤ 2|By|θ1
(∫

By

|h| dx

)θ2
.
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It follows that

|By|θ2−θ1 ≤
2

t

(∫
By

|h| dy
)θ2

,

which implies

|By| ≤
C

t
1

θ2−θ1

(∫
By

|h| dy
) θ2
θ2−θ1

< +∞,

since h ∈ L1(RN ). Hereafter in the proof, C denotes a positive constant depending only on θ1 and
θ2. Applying Vitali’s covering theorem (see e.g. [8]), there exists a denumerable collection of balls
(Bi) such that Bi ∩Bj = Ø for i 6= j, {g > t} ⊂

⋃
i 5Bi and

|Bi| ≤
C

t
1

θ2−θ1

(∫
Bi

|h| dy
) θ2
θ2−θ1

.

Here cB denotes the ball with the same center as B but c times its radius. Thus

|{g > t}| ≤
∑
i

C

t
1

θ2−θ1

(∫
Bi

|h| dy
) θ2
θ2−θ1

.

Since Bi ∩Bj = Ø for i 6= j and θ2
θ2−θ1 ≥ 1, it follows that

|{g > t}| ≤ C

t
1

θ2−θ1

(∫
RN
|h| dy

) θ2
θ2−θ1

.

�

To introduce the truncation method, we need the following definition.

Definition 2 Let l < m, and g be a real measurable function defined on RN . Consider hl,m : R→
R given by

hl,m(t) =


m− l if m < t,

t− l if l < t ≤ m,

0 otherwise.

and define the operator T (l,m, ·) as follows

T (l,m, g)(x) = hl,m
(
g(x)

)
.

The following lemma plays an important role in the proof of Theorem 3.

Lemma 8 Let p, r ≥ 1, δ > 0, and g ∈ L1
loc

(RN ). Define gk = T (10k, 10k+2, |g|) for k ∈ Z.
Assume that there exist a sequence of functions (vk) ⊂ L1(RN ) and a function v ∈ L1(RN ) such
that ∣∣∣{g],∆k > t

}∣∣∣ ≤ ‖vk‖rL1

tp
, ∀ t > δ, k ∈ Z (4.3)

and ∑
k∈Z
|vk| ≤ v. (4.4)

Then ∫
|g|>λδ

|g|p dx ≤ C‖v‖rL1 ,

for positive constants C and λ, depending only on N and p.
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Proof. We first recall the following estimate [24, Estimate (22), page 153]): Let 0 < b < 1, c > 0,
and f ∈ L1

loc
(RN ). Then

|{M∆f > α, f ],∆ ≤ cα}| ≤ 2Nc

1− b
|{M∆f > bα}|, ∀α > 0. (4.5)

Applying (4.5) with f = gk, b = 1
10 , α = 10k, and 0 < c < 1

2 , which depends only on N and p, and
is defined later, we have

|{M∆gk > 10k}| ≤ c2N+1|{M∆gk > 10k−1}|+ |{g],∆k > c10k}|,

which implies

10kp|{M∆gk > 10k}| ≤ c2N+110kp|{M∆gk > 10k−1}|+ 10kp|{g],∆k > c10k}|. (4.6)

Take k0 ∈ Z such that c10k0−2 ≤ δ < c10k0−1. Then (4.6) implies, for m ≥ k0 + 1,

m∑
k0

10kp|{M∆gk > 10k}| ≤ c2N+1
m∑
k0

10kp|{M∆gk > 10k−1}|+
m∑
k0

10kp|{g],∆k > c10k}|. (4.7)

We first establish a lower bound for the left hand side of (4.7). Since

|{M∆gk > 10k}| ≥ |{gk > 10k}|,

it follows from the definition of M∆gk and gk that

m∑
k0

10kp|{M∆gk > 10k}| ≥ CN,p
∫ 10m+2

10k0+1

tp−1|{|g| > t}| dt ∀m ≥ k0 + 1. (4.8)

We next show an upper bound for the right hand side of (4.7). Using the theory of maximal
functions (see e.g. [23, Theorem 1 in page 5]), we have

m∑
k0

10kp|{M∆gk > 10k−1}| ≤ CN,p
m∑
k0

∫
RN
|gk|p dx ≤ CN,p

∫ 10m+2

10k0
tp−1|{|g| > t}| dt, (4.9)

for all m ≥ k0 + 1. The last inequality in (4.9) follows from the definition of gk. On the other
hand, since r ≥ 1, it follows from (4.3) and the definition of vk that

m∑
k0

10kp
∣∣{g],∆k > c10k}

∣∣ ≤ 1

cp

m∑
k0

‖vk‖rL1 ≤
1

cp
‖v‖rL1 . (4.10)

Combining (4.9) and (4.10), we obtain

c2N+1
m∑
k0

10kp|{M∆gk > 10k−1}|+
m∑
k0

10kp|{g],∆k > c10k}|

≤ CN,p

(
c2N+1

∫ 10m+2

10k0
tp−1|{|g| > t}| dt+

1

cp
‖v‖rL1

)
, (4.11)

which is an upper bound for the right hand side of (4.7).
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From (4.7), (4.8), and (4.11), we have∫ 10m+2

10k0+1

tp−1|{|g| > t}| dt ≤ CN,p

(
c2N+1

∫ 10m+2

10k0
tp−1|{|g| > t}| dt+

1

cp
‖v‖rL1

)
. (4.12)

Take c such that CN,pc2
N+1 = 1/2. It follows from (4.12) that∫ 10m+2

10k0+1

tp−1|{|g| > t}| dt ≤ CN,p
(∫ 10k0+1

10k0
tp−1|{|g| > t}| dt+

1

cp
‖v‖rL1

)
.

By (4.3) and (4.4), this implies∫ 10m+2

10k0+1

tp−1|{|g| > t}| dt ≤ CN,p‖v‖rL1 .

Letting m go to infinity, the conclusion follows. �

We are ready to give

Proof of Theorem 3. Let k ∈ Z be such that 10k ≥ δ. Define

gk = T (10k, 10k+2, |g|)

(see Definition 2). From (1.4), we have

CN,p

∫
B

∫
B

|gk(x)− gk(y)|p dx dy ≤ |B|
N+p
N

∫
B

∫
B

δ<|gk(x)−gk(y)|<10δ

δp

|x− y|N+p
dx dy + δp|B|2, (4.13)

for any ball B of RN . Define

h(x) =

∫
RN

|g(y)−g(x)|>δ

δp

|y − x|N+p
dy,

and
hk(x) = h(x)χ10k<|g|≤10k+2(x).

Here χA denotes the characteristic function of a set A ⊂ RN . Since∫
B

∫
B

δ<|gk(x)−gk(y)|<10δ

δp

|x− y|N+p
dx dy ≤ 2

∫
B

χ10k<|g|≤10k+2

∫
B

|g(x)−g(y)|>δ

δp

|x− y|N+p
dx dy,

it follows from (4.13) that

CN,pg
],∆
k (x) ≤ sup

Q
|Q|1/N

(∫
Q

|hk| dx
)1/p

+ δ,

where the supremum is taken over all cubes Q containing x. Applying Lemma 7, we obtain∣∣{g],∆k > t}
∣∣ ≤ CN,p‖hk‖ N

N−p
L1

/
t
Np
N−p , ∀ t > CN,pδ,

According to Lemma 8, the conclusion follows. �
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5 A general setting

In this section we prove Propositions 4, 5, and 6 and present their applications.

5.1 Proof of Proposition 4

We follows the approach used in the proof of Assertion (b) of [18, Theorem 1]. Since F is a
non-decreasing function, we have∫

B

∫
B

F (|g(x)− g(y)|)
|x− y|N+p

dx dy ≥
∑
n≥0

∫
B

∫
B

2−n<|g(x)−g(y)|≤2−n+1

F (2−n)

|x− y|N+p
dx dy. (5.1)

On the other hand,∑
n≥0

∫
B

∫
B

2−n<|g(x)−g(y)|≤2−n+1

F (2−n)

|x− y|N+p
dx dy =

∑
n≥0

∫
B

∫
B

|g(x)−g(y)|>2−n

F (2−n)

|x− y|N+p
dx dy

−
∑
n≥0

∫
B

∫
B

|g(x)−g(y)|>2−n

F (2−n−1)

|x− y|N+p
dx dy −

∫
B

∫
B

|g(x)−g(y)|>2

F (1)

|x− y|N+p
dx dy.

This implies∑
n≥0

∫
B

∫
B

2−n<|g(x)−g(y)|≤2−n+1

F (2−n)

|x− y|N+p
dx dy

=
∑
n≥0

∫
B

∫
B

|g(x)−g(y)|>2−n

[F (2−n)− F (2−n−1)]

|x− y|N+p
dx dy −

∫
B

∫
B

|g(x)−g(y)|>2

F (1)

|x− y|N+p
dx dy. (5.2)

Combining (5.1) and (5.2) yields∫
B

∫
B

F (|g(x)− g(y)|)
|x− y|N+p

dx dy +

∫
B

∫
B

|g(x)−g(y)|>2

F (1)

|x− y|N+p
dx dy

≥
∑
n≥0

∫
B

∫
B

|g(x)−g(y)|>2−n

[F (2−n)− F (2−n−1)]

|x− y|N+p
dx dy. (5.3)

Applying Theorem 1, we have

|B|
N+p
N

∫
B

∫
B

|g(x)−g(y)|>2−n

1

|x− y|N+p
dx dy + |B|2 & 2np

∫
B

∫
B

|g(x)− g(y)|p dx dy.

It follows that

|B|
N+p
N

∑
n≥0

∫
B

∫
B

|g(x)−g(y)|>2−n

[F (2−n)− F (2−n−1)]

|x− y|N+p
dx dy +

∑
n≥0

[F (2−n)− F (2−n−1)]|B|2

&
∑
n≥0

2np[F (2−n)− F (2−n−1)]

∫
B

∫
B

|g(x)− g(y)|p dx dy. (5.4)
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On the other hand, we have∑
n≥0

2np[F (2−n)−F (2−n−1)] = F (1)+
∑
n≥1

(2np−2np−p)F (2−n) & F (1)+

∫ 1

0

F (t)t−(p+1) dt, (5.5)

since F is non-decreasing, and ∑
n≥0

[F (2−n)− F (2−n−1)] = F (1). (5.6)

Combining (5.4), (5.5), and (5.6) yields

|B|
N+p
p

∑
n≥0

∫
B

∫
B

|g(x)−g(y)|>2−n

[F (2−n)− F (2−n−1)]

|x− y|N+p
dx dy + F (1)|B|2

&

(
F (1) +

∫ 1

0

F (t)t−(p+1) dt

)∫
B

∫
B

|g(x)− g(y)|p dx dy. (5.7)

We deduce from (5.3) and (5.7) that(
F (1) +

∫ 1

0

F (t)t−(p+1) dt
)∫

B

∫
B

|g(x)− g(y)|p dx dy

. |B|
N+p
N

∫
B

∫
B

F (|g(x)− g(y)|)
|x− y|N+p

dx dy + |B|
N+p
N

∫
B

∫
B

|g(x)−g(y)|>2

F (1)

|x− y|N+p
dx dy + F (1)|B|2.

Since F is non-decreasing, this implies(
F (1) +

∫ 1

0

F (t)t−(p+1) dt

)∫
B

∫
B

|g(x)− g(y)|p dx dy

. |B|
N+p
N

∫
B

∫
B

F (|g(x)− g(y)|)
|x− y|N+p

dx dy + F (1)|B|2.

�

5.2 Proofs of Propositions 5 and 6

Proof of Proposition 5. Applying the same method as in Lemma 6, but, using Proposition 4
instead of Theorem 1, we have∫

Q

|gn − gn,ε|p dx . εp
∫
RN

∫
RN

Fn(|gn(x)− gn(y)|)
|x− y|N+p

dx dy + Fn(1)|Q|.

for any cube Q of RN . Here gn,ε is defined as in the proof of Lemma 6. It follows that

lim
ε→0

(
lim sup
n→∞

∫
Q

|gn(x)− gn,ε(x)|p dx
)

= 0.

Therefore, there exist a sub-sequence (gnk) of (gn) and g ∈ Lp(RN ) such that gnk converges to
g in Lploc(RN ) (see the proof of Theorem 2). �

Proof of Proposition 6. The conclusion of Proposition 6 follows from Proposition 4 by applying
the same method used in the proof of Theorem 3 (see (5.3)). The details of the proof are left for
the reader. �
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5.3 Applications

In this section, we give some applications of Propositions 4, 5, and 6.

Set

Fε(t) =

{
εtp+ε if 0 ≤ t ≤ 1,

ε otherwise.

Then Fε is non-decreasing,
∫ 1

0
Fε(t)t

−(p+1) dt + Fε(1) = 1, and limε→0 Fε(t) = 0 for all t > 0. As
a consequences of Propositions 4, 5, and 6, we have

Corollary 1 Let p ≥ 1, B be a ball of RN , and g ∈ Lp(B). Then there exists a constant C > 0,
depending only on N and p, such that

C

∫
B

∫
B

|g(x)− g(y)|p dx dy

≤ |B|
N+p
N

∫
B

∫
B

|g(x)−g(y)|≤1

ε|g(x)− g(y)|p+ε

|x− y|N+p
dx dy + |B|

N+p
N

∫
B

∫
B

|g(x)−g(y)|>1

ε

|x− y|N+p
dx dy + ε|B|2.

Corollary 2 Let (gn) be a sequence of functions in Lp(RN ) (1 ≤ p < N) and (εn) be a positive
sequence converging to 0. Assume that

lim inf
n→∞

 ∫
RN

∫
RN

|g(x)−g(y)|≤1

εn|g(x)− g(y)|p+εn
|x− y|N+p

dx dy +

∫
RN

∫
RN

|g(x)−g(y)|>1

εn
|x− y|N+p

dx dy

 < +∞.

Then there exist a subsequence (gnk) of (gn) and g ∈ Lp(RN ) such that (gnk) converges to g in
Lploc(RN ).

Corollary 3 Let 0 < ε < 1, 1 < p < N and g ∈ Lp(RN ). Assume that∫
RN

∫
RN

|g(x)−g(y)|≤1

ε|g(x)− g(y)|p+ε

|x− y|N+p
dx dy +

∫
RN

∫
RN

|g(x)−g(y)|>1

ε

|x− y|N+p
dx dy < +∞.

Then g ∈ Lq(RN ) with q = Np
N−p and there exist two positive constants C and λ depending only on

N and p, such that( ∫
|g|>λε

|g|q dx
) 1
q ≤ C

( ∫
RN

∫
RN

|g(x)−g(y)|≤1

|g(x)− g(y)|p+ε

|x− y|N+p
dx dy +

∫
RN

∫
RN

|g(x)−g(y)|>1

1

|x− y|N+p
dx dy

) 1
p

.
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