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Abstract: In this paper, we present the proof of superlensing an arbitrary object using complementary media

and we study reflecting complementary media for electromagnetic waves. The analysis is based on the

reflecting technique and new results on the compactness, existence, and stability for the Maxwell equations

with low regularity data.
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1 Introduction
Negative index materials (NIMs) were first investigated theoretically by Veselago in [36]. The existence of

NIMs was confirmed experimentally by Shelby, Smith and Schultz in [35]. The study of NIMs has attracted

a lot of attention in the scientific community thanks to their interesting properties and many possible appli-

cations, such as superlensing using complementary media, see [13, 19, 28, 30, 31, 33, 34], cloaking using

complementary media, see [10, 21, 23, 25], cloaking a source via anomalous localized resonance, see [2,

4, 9, 12, 16–18, 26] and references therein, and cloaking an object via anomalous localized resonance, see

[20]. A survey for recent mathematics progress on these applications can be found in [24]. In this paper, we

present the proof of superlensing using complementary media for electromagnetic waves.

Superlensing using complementary media was suggested by Veselago in [36] for a slab lens (a slab

of index −1) using the ray theory. Later, cylindrical lenses in the two-dimensional quasistatic regime, the

Veselago slab and cylindrical lenses in the finite frequency regime, and spherical lenses in the finite fre-

quency regime were studied by Nicorovici, McPhedran and Milton in [28], Pendry in [30, 31], and Pendry

and Ramakrishna in [34] respectively for constant isotropic objects. Superlensing arbitrary inhomogeneous

objects using complementarymedia in the acoustic setting was established in [19] for schemes inspired from

[28, 31, 34] and guided by the concept of reflecting complementary media in [15]. The proof of superlensing

arbitrary inhomogeneous objects using complementary media for electromagnetic waves presented in this

paper therefore represents the natural completion of this line of work.

Let us describe how to magnify m times (m is a given real number greater than 1) the region Br
0

for

some r
0
> 0 in which the medium is characterized by a pair of two uniformly elliptic matrix-valued func-

tions (εO , μO) using complementary media. The idea suggested by Pendry and Ramakrishna in [34] is to put

a lens in Br
2

\ Br
0

whose medium is characterized by (−(r2
2

/|x|2)I, −(r2
2

/|x|2)I); the loss is ignored. Our lens
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construction is as follows. Let α, β > 1 be such that

αβ − α − β = 0. (1.1)

Set

r
1
= m1− 1α r

0
, r

2
= mr

0
, and r

3
= m2− 1α r

0
, (1.2)

and define F : Br
2

\ {0}→ ℝ3 \ B̄r
2

and G : ℝ3 \ B̄r
3

→ Br
3

\ {0} by

F(x) =
rα
2

x
|x|α

and G(x) =
rβ
3

x
|x|β

.

Our lens contains two parts (see Figure 1). The first one of NIMs is given by

(F−1∗ I, F−1∗ I) in Br
2

\ Br
1

(1.3)

(see (1.6) below for the explicit formula) and the second one is

(mI,mI) in Br
1

\ Br
0

. (1.4)

Given a diffeomorphism T from D onto D, the following standard notations are used:

T∗a(x) =
∇T(x)a(x)∇TT(x)

det∇T(x)
and T∗j(x) =

∇T(x)j(x)
det∇T(x)

, (1.5)

with x = T(x), for a matrix-valued function a and a vector-valued function j defined in D.
As showed later in Section 3, we have

F−1∗ I = −
rα
2

rα [
1

α − 1
er ⊗ er + (α − 1)(eθ ⊗ eθ + eθ ⊗ eφ)] in Br

2

\ Br
1

. (1.6)

Letting α = β = 2, one rediscovers the construction suggested by Pendry and Ramakrishna in Br
2

\ Br
1

. Note

that even in this case, our lens construction contains two layers and is different from theirs where one layer

is used. We emphasize here that the lens-construction is independent of the object. Taking into account the

loss, the medium is characterized by (εδ , μδ), where

(εδ , μδ) =

{{{{{{
{{{{{{
{

(F−1∗ I + iδI, F−1∗ I + iδI) in Br
2

\ Br
1

,

(mI,mI) in Br
1

\ Br
0

,

(εO , μO) in Br
0

,

(I, I) otherwise.

Some comments on the construction are necessary. The media (ε
0
, μ

0
) in Br

2

\ Br
1

and (I, I) in Br
3

\ Br
2

are complementary or more precisely reflecting complementary (see Section 2). For a given r
2
, we choose r

1

and r
3
such that

r
3

r
1

= m and F(∂Br
1

) = ∂Br
3

, since a superlens of m times magnification is considered. The

choice of (εδ , μδ) = (ε0, μ0) = (mI,mI) in Br
1

\ Br
0

and r
2
= mr

0
is to ensure, by (1.1), that

(G∗F∗ε0, G∗F∗μ0) = (I, I) in Br
3

\ Br
2

. (1.7)

Fix k > 0. Given j ∈ L2
c
(ℝ3) with supp j ⊂⊂ ℝ3 \ Br

3

, let (Eδ , Hδ), (Ê, Ĥ) ∈ [Hloc
(curl,ℝ3)]2 (δ > 0) be respec-

tively the unique outgoing solution to

{
∇ × Eδ = ikμδHδ inℝ3,

∇ × Hδ = −ikεδEδ + j inℝ3,
(1.8)

and

{
∇ × Ê = ikμ̂Ĥ inℝ3,

∇ × Ĥ = −ikε̂Ê + j inℝ3,
(1.9)

where

(ε̂, μ̂) =
{
{
{

(I, I) inℝ3 \ Bmr
0

,

(m−1εO( ⋅ /m),m−1μO( ⋅ /m)) otherwise.
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(F∗I , F∗I)

(I, I) (m I, mI)

r3
r2

r1

r0

two layers of superlens object magnified

Figure 1: Lens contains two layers: the outer layer using NIMs is given by (1.3), the inner layer is given by (1.4).

Recall that a solution (E, H) ∈ [H
loc
(curl,ℝ3 \ BR)]2 (for some R > 0) to the system

{
∇ × E = ikH inℝ3 \ BR ,

∇ × H = −ikE inℝ3 \ BR ,

is said to satisfy the outgoing condition (or the Silver-Müller radiation condition) if

E × x + rH = O(1r )
as r = |x|→ +∞.

Our result on superlensing is the following theorem.

Theorem 1. Let j ∈ [L2(ℝ3)]3 with supp j ⊂ BR
0

\ Br
3

for some R
0
> 0. Let (Eδ , Hδ), (Ê, Ĥ) ∈ [Hloc

(curl,ℝ3)]2

be the unique outgoing solutions to (1.8) and (1.9), respectively. We have, for R > 0,

‖(Eδ , Hδ) − (Ê, Ĥ)‖H(curl,BR\Br
3

) ≤ CRδ
1

2 ‖j‖L2

for some positive constant CR independent of δ and j. In particular,

(Eδ , Hδ)→ (Ê, Ĥ) in [H
loc
(curl,ℝ3 \ Br

3

)]2 as δ → 0. (1.10)

For an observer outside Br
3

, the object (εO , μO) in Br
0

would act like

(m−1εO( ⋅ /m),m−1μO( ⋅ /m)) in Bmr
0

by (1.10): one has a superlens whose magnification is m.
The proof of Theorem 1 given in Section 3 is derived from Theorem 2 in Section 2. Section 2 is devoted to

the concept of reflecting complementary media (Definition 1) and their properties (Theorem 2). This concept

appears naturally in the study of superlensing mentioned above and is inspired from [15]. The analysis of

Theorem 2 is based on the reflecting technique which has root from [15] and a number of new results on the

compactness, existence, and stability for the Maxwell equations with low regularity data.

The paper is organized as follows. In Section 2, we discuss reflecting complementary media. Proof of

Theorem 1 is given in Section 3.

2 Reflecting complementary media
Let Ω

1
⊂⊂ Ω

2
be smooth simply connected bounded open subsets of ℝ3. Let ε and μ be two real measur-

able matrix-valued functions defined in ℝ3. We assume that ε, μ are bounded in ℝ3 and uniformly elliptic
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inℝ3 \ (Ω
2
\ Ω

1
), i.e., for some 1 ≤ Λ < +∞,

1

Λ

|ξ|2 ≤ ⟨ε(x)ξ, ξ⟩ ≤ Λ|ξ|2, 1

Λ

|ξ|2 ≤ ⟨μ(x)ξ, ξ⟩ ≤ Λ|ξ|2 for all ξ ∈ ℝ3, a.e. x ∈ ℝ3 \ (Ω
2
\ Ω

1
), (2.1)

and

ε = μ = I inℝ3 \ BR
0

, (2.2)

for some R
0
> 0 with Ω

2
⊂⊂ BR

0

. Here and in what follows, ⟨ ⋅ , ⋅ ⟩ denotes the Euclidean scalar product. We

also assume that ¹

(ε, μ) is piecewise C1. (2.3)

Set, for δ ≥ 0,

(εδ , μδ) =
{
{
{

(ε + iδI, μ + iδI) if x ∈ Ω
2
\ Ω

1
,

(ε, μ) otherwise.

(2.4)

It is clear that (ε
0
, μ

0
) = (ε, μ) inℝ3. Note thatwe do not impose the ellipticity of ε and μ inℝ3. In fact, as seen

later, in the setting of reflecting complementarymedia, they are negative inΩ
2
\ Ω

1
(see Remark 2). Fix k > 0.

Given j ∈ L2
c
(ℝ3), we are interested in the behavior of the unique outgoing solution (Eδ , Hδ) ∈ [Hloc

(curl,ℝ3)]2

(δ > 0) to the Maxwell system

{
∇ × Eδ = ikμδHδ inℝ3,

∇ × Hδ = −ikεδEδ + j inℝ3,
(2.5)

as δ → 0 in the case (ε, μ) satisfies the reflecting complementary property, a concept introduced in Defini-

tion 1 below.

For an open subset Ω ofℝ3, the following standard notations are used:

H(curl, Ω) := {u ∈ [L2(Ω)]3 : ∇ × u ∈ [L2(Ω)]3},
‖u‖H(curl,Ω) := ‖u‖L2(Ω) + ‖∇ × u‖L2(Ω),

H
loc
(curl, Ω) := {u ∈ [L2

loc

(Ω)]3 : ∇ × u ∈ [L2
loc

(Ω)]3}.

We are ready to introduce:

Definition 1 (Reflecting complementary media). Let Ω
1
⊂⊂ Ω

2
⊂⊂ Ω

3
be smooth simply connected bounded

open subsets of ℝ3. The media (ε, μ) in Ω
2
\ Ω

1
and (ε, μ) in Ω

3
\ Ω

2
are reflecting complementary if there

exists a diffeomorphism F : Ω
2
\ Ω̄

1
→ Ω

3
\ Ω̄

2
such that

(ε, μ) = (F∗ε, F∗μ) in Ω
3
\ Ω

2
, (2.6)

F(x) = x on ∂Ω
2
, (2.7)

and the following two conditions hold:

(1) There exists a diffeomorphism extension of F, which is still denoted by F, from Ω
2
\ {x

1
} ontoℝ3 \ Ω̄

2
for

some x
1
∈ Ω

1
.

(2) There exists a diffeomorphism G : ℝ3 \ Ω̄
3
→ Ω

3
\ {x

1
} such that G ∈ C1(ℝ3 \ Ω

3
), G(x) = x on ∂Ω

3
, and

G ∘ F : Ω
1
→ Ω

3
is a diffeomorphism if one sets G ∘ F(x

1
) = x

1
.

Here and in what follows, whenwemention a diffeomorphism F : Ω → Ω


for two open smooth subsets Ω, Ω

ofℝd, we mean that F is a diffeomorphism, F ∈ C1(Ω̄), and F−1 ∈ C1(Ω̄).
The illustration of reflecting complementary media is given in Figure 2. Note that the superlensing set-

ting in Theorem 1 has this property. Theorem 1 will be derived from Theorem 2-below, on properties of the

reflecting complementary media.

Remark 1. We emphasize here that in (1.5), detDT(x) is used and not |detDT(x)|, and in (2.6), one requires
that (ε, μ) = (F∗ε, F∗μ) not (ε, μ) = (−F∗ε, −F∗μ). These conventions are different from the ones in the acous-

tic setting, see, e.g., [15], and are more convenient in the study of Maxwell equations.

1 This condition is used for various uniqueness statements obtained by the unique continuation principle.
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F

Ω2 \ Ω1

Ω3 \ Ω2

F

Ω2 \ Ω1

Ω3 \ Ω2

F

Ω2 \ Ω1

Ω3 \ Ω2

Figure 2: The media (ε, μ) in Ω2 \ Ω1 and (ε, μ) in Ω3 \ Ω2 are reflecting complementary media if roughly speaking
(F∗ε, F∗μ) = (ε, μ) in Ω3 \ Ω2 for some diffeomorphism F from Ω2 \ Ω̄1 to Ω3 \ Ω̄2 such that F(x) = x on ∂Ω2

Remark 2. Assume that (ε, μ) in Ω
2
\ Ω

1
and (ε, μ) in Ω

3
\ Ω

2
are reflecting complementary and (ε, μ) is

positive in Ω
3
\ Ω

2
. Since F(x) = x on ∂Ω

2
and F : Ω

2
\ Ω

1
→ Ω

3
\ Ω

2
is a diffeomorphism, it follows that

det∇F(x) < 0 in Ω
2
\ Ω

1
. Therefore, (ε, μ) is negative in Ω

2
\ Ω

1
.

We next make some comments on the definition. Condition (2.6) implies that (ε, μ) in Ω
2
\ Ω

1
and (ε, μ) in

Ω
3
\ Ω

2
are complementary in the “usual” sense.²The term“reflecting” in the definition comes from (2.7) and

the assumption Ω
1
⊂ Ω

2
⊂ Ω

3
. Conditions (2.6) and (2.7) are the main assumptions in the definition. They

are motivated by the following observation. Assume that (ε, μ) in Ω
2
\ Ω

1
and (ε, μ) in Ω

3
\ Ω

2
are reflecting

complementary and suppose that there exists a solution (E
0
, H

0
) ∈ [H(curl, Ω

3
\ Ω

1
)]2 of

{
∇ × E

0
= ikμH

0
in Ω

3
\ Ω

1
,

∇ × H
0
= −ikεE

0
in Ω

3
\ Ω

1
.

For x ∈ Ω
3
\ Ω

2
, define (E(1)

0

(x), H(1)
0

(x)) = (∇F−T(x)E
0
(x), ∇F−T(x)H

0
(x)), where x = F−1(x). Conditions

(2.6) and (2.7) imply that, by the rule of change of variables (see, e.g., Lemma 7 in Section 2.1),

{{{{
{{{{
{

∇ × (E
0
− E(1)

0

) = ikμ(H
0
− H(1)

0

) in Ω
3
\ Ω

2
,

∇ × (H
0
− H(1)

0

) = −ikε(E
0
− E(1)

0

) in Ω
3
\ Ω

2
,

(E
0
− E(1)

0

) × ν = (E
0
− E(1)

0

) × ν = 0 on ∂Ω
2
.

Hence, (E
0
, H

0
) = (E(1)

0

, H(1)
0

) in Ω
3
\ Ω

2
if (ε, μ) is uniformly elliptic in Ω

3
\ Ω

2
by the unique continua-

tion principle; this is the main motivation for conditions (2.6) and (2.7). Conditions (1) and (2) are mild

assumptions. Introducing G in the definition makes the analysis more accessible; see Sections 2.2.

Here and in what follows, we denote

(ε̂, μ̂) :=
{
{
{

(ε, μ) if x ∈ ℝ3 \ Ω
3
,

(G∗F∗ε, G∗F∗μ) if x ∈ Ω
3
.

(2.8)

The following definition is used in the statement of Theorem 2 below.

Definition 2 (Compatibility condition). Assume that (ε, μ) in Ω
2
\ Ω

1
and (ε, μ) in Ω

3
\ Ω

2
are reflecting com-

plementary for some Ω
2
⊂⊂ Ω

3
⊂⊂ ℝ3. Then j ∈ [L2

c
(ℝ3)]3 with supp j ∩ Ω

3
= 0 is said to be compatible if and

only if there exists (E,H) ∈ [H(curl, Ω
3
\ Ω

2
)]2 such that

{{{
{{{
{

∇ × E = ikμH in Ω
3
\ Ω

2
,

∇ ×H = −ikεE in Ω
3
\ Ω

2
,

E × ν = Ê × ν, H × ν = Ĥ × ν on ∂Ω
3
,

(2.9)

2 In fact, the concept of complementary media have not be defined in a precise manner. Property (2.6) mentioned here is the

common point in some examples discussed in the literature.
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where (Ê, Ĥ) ∈ [H
loc
(curl,ℝ3)]2 is the unique outgoing solution to the system

{
∇ × Ê = ikμ̂Ĥ inℝ3,

∇ × Ĥ = −ikε̂Ê + j inℝ3.

Remark 3. It is important to note that ε̂ and μ̂ are uniformly elliptic in ℝ3 by (2.8) since det∇F and det∇G
are both negative. The existence and uniqueness of (Ê, Ĥ) then follow from Lemma 4 in Section 2.1. The

uniqueness of (E,H) is a consequence of the unique continuation principle (see [3, 27]).

Remark 4. Note that (2.9) is a Cauchy problem: the uniqueness is ensured by the unique continuation prin-

ciple but the existence is not; hence the resonance might appear.

Our main result on the reflecting complementary media for electromagnetic waves is:

Theorem 2. Let k > 0, 0 < δ < 1, j ∈ [L2(ℝ3)]3 with compact support, and let (Eδ , Hδ) ∈ [Hloc
(curl,ℝ3)]2 be

the unique outgoing solution of (2.5). Assume that (ε, μ) in Ω
2
\ Ω

1
and (ε, μ) in Ω

3
\ Ω

2
are reflecting comple-

mentary for some Ω
2
⊂⊂ Ω

3
⊂⊂ ℝ3 and supp j ∩ Ω

3
= 0. We have:

(a) Case 1: j is compatible. There exists a unique outgoing solution (E
0
, H

0
) ∈ [H

loc
(curl,ℝ3)]2 to

{
∇ × E

0
= ikμH

0
inℝ3,

∇ × H
0
= −ikεE

0
+ j inℝ3.

(2.10)

Moreover,
(E

0
, H

0
) = (Ê, Ĥ) inℝ3 \ Ω

3
,

and, for all R > 0,

‖(Eδ , Hδ) − (E0, H0
)‖H(curl,BR) ≤ CRδ

1

2 ‖(E
0
, H

0
)‖L2((Ω

2
\Ω

1
)∪BR)

for some positive constant CR independent of j and δ.
(b) Case 2: j is not compatible. We have

lim

δ→0
‖(Eδ , Hδ)‖H(curl,BR) = +∞

for R > 0 such that Ω̄
2
⊂ BR.

The implication of Theorem 1 from Theorem 2 is given in Section 3.

The rest of this section containing two subsections is devoted to the proof of Theorem 2. In the first one,

we presents some lemmas used in the proof of Theorem 2. The proof of Theorem 2 is given in the second

subsection.

2.1 Some useful lemmas

In this subsection, we present some technical lemmas which are used in the proof of Theorem 2.

The following compactness result plays an important role in our analysis.

Lemma 1. LetD be abounded smooth open subset ofℝ3, (u(n)) ⊂ H(curl, D), and let ε be a symmetric uniformly
elliptic matrix-valued function defined in D. Assume that

sup

n∈ℕ
‖u(n)‖H(curl,D) < +∞,

and³
(∇ ⋅ (εu(n))) converges in H−1(D) and (u(n) × ν) converges in [H−

1

2 (∂D)]3. (2.11)

There exists a subsequence of (u(n)) which converges in [L2(D)]3.

3 H−1(D) denotes the duality of H1

0

(D).
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Proof. Wefirst assume that D is simply connected. Let B be an open ball such that D̄ ⊂ B. Let φ(n) ∈ H1(B \ D)
be the unique solution with zero mean, i.e., ∫B\D φn = 0, to

{{{
{{{
{

−∆φ(n) = 0 in B \ D,
∂νφ(n) = (∇ × u(n)) ⋅ ν on ∂D,
∂νφ(n) = 0 on ∂B.

The existence of φ(n) is a consequence of the fact

∫
∂D

(∇ × u(n)) ⋅ ν = 0,

since ∇ ⋅ (∇ × u(n)) = 0 in D. Set

χ(n) =
{{{
{{{
{

∇ × u(n) in D,
∇φ(n) in B \ D,
0 inℝ3 \ B.

It is clear that ∇ ⋅ χ(n) = 0 inℝ3. Set⁴
Ψ

(n) = G ∗ χ(n) inℝ3,

where G is the fundamental solution to the Laplace equation inℝ3; this implies −∆Ψ(n) = χ(n) inℝ3 and

‖Ψn‖H2(B) ≤ C‖χn‖L2 . (2.12)

Here and in what follows, C denotes a positive constant depending only on B and D. Since ∇ ⋅ χ(n) = 0 inℝ3,
it follows that

∇ ⋅ Ψ(n) = 0 inℝ3. (2.13)

Set

w(n) = ∇ × Ψ(n) in D.

We derive from (2.12) that (w(n)) is bounded in [H1(D)]3. Without loss of generality, one may assume that

(w(n)) converges in [L2(D)]3. (2.14)

Using the fact that

∇ × (∇ × Ψ(n)) = ∇(∇ ⋅ Ψ(n)) − ∆Ψ(n) in D,

we derive from (2.13) that

∇ × w(n) = ∇ × u(n) in D.

Since D is simply connected, one has

u(n) = w(n) + ∇p(n) in D

for some p(n) ∈ H1(D) such that ∫∂D p
(n) = 0 (see, e.g., [14, Theorem 3.37]); hence

∇ ⋅ (ε∇p(n)) = ∇ ⋅ (εu(n)) − ∇ ⋅ (εw(n)) in D.

A combination of (2.11) and (2.14) yields

(∇ ⋅ (ε∇p(n))) converges in H−1(D). (2.15)

On the other hand,

‖p(n) − p(m)‖
H

1

2 (∂D)
≤ C‖∇p(n) × ν − ∇p(m) × ν‖

H− 1

2 (∂D)

4 The notation ∗ here means the convolution.
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since ∫∂D p
(n) = 0; which implies

‖p(n) − p(m)‖
H

1

2 (∂D)
≤ C‖u(n) × ν − u(m) × ν‖

H− 1

2 (∂D)
+ C‖w(n) × ν − w(m) × ν‖

H− 1

2 (∂D)
.

Since (w(n)) is bounded in [H1(D)]3 and converges in [L2(D)]3, it follows from (2.11) that (p(n)) con-
verges in H 1

2 (∂D). Combining this, (2.11), and (2.15), we derive that (p(n)) converges in H1(D). Since
u(n) = w(n) + ∇p(n) and (wn) converges in [L2(D)]3, we derive that (u(n)) converges in [L2(D)]3. The proof

is complete in the case D is simply connected. The proof in the general case follows by using local charts.

Remark 5. Lemma 1 is known if instead of (2.11) one assumes that

(∇ ⋅ (εu(n))) is bounded in L2(D) and (u(n) × ν) is bounded in [L2(∂D)]3

(see [37]). It is clear that Lemma 1 implies the known compactness result. The case ε = I was established
in [8, Lemma A5] under the additional assumption (∇ ⋅ (εu(n))) is bounded in L2. The proof presented here is
in the same spirit of the one given in [8], which has roots from [7]. Condition (2.11) appears naturally when

one studies the existence and the stability for Maxwell equations (see Lemmas 3, 4, and 5).

The second lemma is a known result on the trace of H(curl, D) (see [1, 5, 29]).

Lemma 2. Let D be a smooth open bounded subset ofℝ3 and set Γ = ∂D. The tangential trace operator

γ
0
: H(curl, D)→ H−

1

2 (div
Γ
, Γ), u → u × ν

is continuous. Moreover, for all ϕ ∈ H− 12 (div
Γ
, Γ), there exists u ∈ H(curl, D) such that γ

0
(u) = ϕ and

‖u‖H(curl,D) ≤ C‖ϕ‖H− 1

2 (div
Γ
,Γ)

for some positive constant C independent of ϕ.

Here

H−
1

2 (div
Γ
, Γ) := {ϕ ∈ [H−

1

2 (Γ)]3 : ϕ ⋅ ν = 0 and div
Γ
ϕ ∈ H−

1

2 (Γ)}

and

‖ϕ‖
H− 1

2 (div
Γ
,Γ)

:= ‖ϕ‖
H− 1

2 (Γ)
+ ‖div

Γ
ϕ‖

H− 1

2 (Γ)
.

Using Lemmas 1 and 2, we can easily reach the following result, which is used in the proof of Lemma 6

to establish the stability of (2.5).

Lemma 3. Let k > 0, D a smooth open bounded subset ofℝ3, f, g ∈ [L2(D)]3, and h
1
, h

2
∈ H− 12 (div

Γ
, ∂D), and

let ε and μ be two symmetric uniformly elliptic matrix-valued functions defined in D such that (2.3) holds.
Assume that (E,H) ∈ [H(curl, D)]2 is a solution to

{{{
{{{
{

∇ × E = ikμH + f in D,
∇ ×H = −ikεE + g in D,
H × ν = h

1
, E × ν = h

2
on ∂D.

Then
‖(E,H)‖H(curl,D) ≤ C(‖(f, g)‖L2(D) + ‖(h1, h2)‖H− 1

2 (div
Γ
,∂D)
) (2.16)

for some positive constant C depending on D, ε, μ, and k but independent of f , g, h
1
, and h

2
.

Proof. Using Lemma 2, without loss of generality, one may assume that h
1
= h

2
= 0. We prove (2.16) by

contradiction. Assume that there exist fn , gn ∈ L2(D) such that

‖(E(n),H(n))‖H(curl,D) = 1 and lim

n→+∞
‖(fn , gn)‖L2(D) = 0. (2.17)

Here (E(n),H(n)) is the unique solution to

{{{
{{{
{

∇ × E(n) = ikμH(n) + fn in D,
∇ ×H(n) = −ikεE(n) + gn in D,
H(n) × ν = E(n) × ν = 0 on ∂D.

(2.18)
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Applying Lemma 1, one may assume that (E(n),H(n))→ (E,H) in [L2(D)]6 and hence in [H(curl, D)]2

by (2.18). Moreover,

{{{
{{{
{

∇ × E = ikμH in D,
∇ ×H = −ikεE in D,
H × ν = E × ν = 0 on ∂D.

This implies E = H = 0 by the unique continuation principle [27, Theorem 1]. This contradicts the fact

‖(E,H)‖H(curl,D) = 1,

by (2.17). The conclusion follows.

We next deal with the existence, uniqueness, and stability of outgoing solutions defined in the whole space.

Lemma 4. Let k > 0, let D be a smooth open bounded subset of ℝ3, f, g ∈ [L2(ℝ3)]3, h
1
, h

2
∈ H− 12 (div

Γ
, ∂D).

Assume that D̄, supp f, supp g ⊂ BR
0

for some R
0
> 0. Let ε, μ be two symmetric uniformly ellipticmatrix-valued

functions defined inℝ3 such that (2.2)and (2.3)hold. There exists (E,H) ∈ [⋂R>0 H(curl, BR \ ∂D)]2 the unique
outgoing solution to ⁵

{{{
{{{
{

∇ × E = ikμH + f inℝ3 \ ∂D,
∇ ×H = −ikεE + g inℝ3 \ ∂D,
[H × ν] = h

1
, [E × ν] = h

2
on ∂D.

(2.19)

Moreover,
‖(E,H)‖H(curl,BR\∂D) ≤ CR(‖(f, g)‖L2 + ‖(h1, h2)‖H− 1

2 (div
Γ
,∂D)
) (2.20)

for some positive constant CR depending on R, R0, D, ε, μ, and k, but independent of f, g, h1, and h2.

Thewell-posedness of (2.19) is known for h
1
= h

2
= 0 and f, g ∈ H(div,ℝ3) (in this case, ‖(f, g)‖L2 is replaced

by ‖(f, g)‖H(div) in (2.20) since the standard compactness criterion was used).⁶ To our knowledge, Lemma 4 is

new and the proof requires the new compactness criterion in Lemma 1.

Proof. Using Lemma2,without loss of generality, onemay assume that h
1
= h

2
= 0. The uniqueness is a con-

sequence of Rellich’s lemma (see, e.g., [6, Theoren 6.1]) and the unique continuation principle [27, Theo-

rem 1.1]. The details are left to the reader. The existence and the stability can be derived from the uniqueness

using the limiting absorption principle in the spirit of [11] and the compactness result in Lemma 1 as follows.

For 0 < τ < 1, let (Eτ ,Hτ) ∈ [H(curl,ℝ3)]2 be the unique solution to

{
∇ × Eτ = ik(1 + iτ)μHτ + f inℝ3,

∇ ×Hτ = −ik(1 + iτ)εEτ + g inℝ3.
(2.21)

This implies

∇ × (
1

1 + iτ
μ−1∇ × Eτ) − k2(1 + iτ)Eτ = ikg + ∇ × ( 1

1 + iτ
μ−1f) inℝ3.

Multiplying the equation by Ēτ (the conjugate of Eτ), integrating onℝ3, and considering the imaginary part,

we have

‖(Eτ ,Hτ)‖H(curl,ℝ3) ≤
C
τ
‖(f, g)‖L2 .

Here and in what follows in this proof, C denotes a positive constant independent of f , g, and τ. We claim

that

‖(Eτ ,Hτ)‖H(curl,BR
0
+2) ≤ C‖(f, g)‖L2 . (2.22)

5 Here [ ⋅ ] denotes the jump across the boundary.

6 Note that H(div,ℝ3) := {u ∈ [L2(ℝ3)]3 : div u ∈ L2(ℝ3)} and ‖u‖H(div) := ‖u‖L2 + ‖div u‖L2 .
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We prove this by contradiction. To this end, assume that there exist τn → 0+ and fn , gn ∈ L2(ℝ3) with
supp fn , supp gn ⊂ BR

0

such that

‖(E(n),H(n))‖H(curl,BR
0
+2) = 1 and lim

n→+∞
‖(fn , gn)‖L2 = 0.

Here (E(n),H(n)) ∈ [H(curl,ℝ3)]2 is the unique outgoing solution to (2.21) with f = fn, g = gn, and τ = τn.
The Stratton–Chu formula (see, e.g., [6, Theorem 6.6]), gives, for |x| > R

0
+ 1,

E(n)(x) = − curl ∫
∂BR

0
+1

(E(n) × ν)Gn(x, y) dy +
1

ikn
curl curl ∫

∂BR
0
+1

(H(n) × ν)Gn(x, y) dy (2.23)

and

H(n)(x) = − curl ∫
∂BR

0
+1

(H(n) × ν)Gn(x, y) dy −
1

ikn
curl curl ∫

∂BR
0
+1

(E(n) × ν)Gn(x, y) dy. (2.24)

Here kn = k(1 + iτn) andGn(x, y) = eikn |x−y|
4π|x−y| . Since ‖(En ,Hn)‖L2(BR

0
+2) = 1, it follows from (2.23) and (2.24) that

‖(E(n),H(n))‖H(curl,BR) ≤ CR for all R > 0.

Applying Lemma 1, without loss of generality, one may assume that (E(n),H(n))→ (E,H) in [L2
loc

(ℝ3)]6, and
hence in [H

loc
(curl,ℝ3)]2 by (2.21). Moreover, (E,H) ∈ [H

loc
(curl,ℝ3)]2 satisfies

{
∇ × E = ikμH inℝ3,

∇ ×H = −ikεE inℝ3.

Letting n →∞ in (2.23) and (2.24), we derive that (E,H) satisfies the Stratton–Chu formula

E(x) = − curl ∫
∂BR

0
+1

(E × ν)G(x, y) dy + 1
ik

curl curl ∫
∂BR

0
+1

(H × ν)G(x, y) dy (2.25)

and

H(x) = − curl ∫
∂BR

0
+1

(H × ν)G(x, y) dy − 1
ik

curl curl ∫
∂BR

0
+1

(E × ν)G(x, y) dy, (2.26)

where G(x, y) = eik|x−y|
4π|x−y| . Hence (E,H) satisfies the outgoing condition. The uniqueness of the outgoing solu-

tions yields

E = H = 0 inℝ3.

This contradicts the fact ‖(E,H)‖H(curl,BR
0
+2) = limn→∞ ‖(E(n),H(n))‖H(curl,BR

0
+2) = 1. Hence (2.22) is proved.

From (2.22), (2.23) and (2.24), we obtain

‖(Eτ ,Hτ)‖H(curl,BR) ≤ CR‖(f, g)‖L2 .

Applying Lemma 1, without loss of generality, one may assume that (Eτ ,Hτ)→ (E,H) in [H
loc
(curl,ℝ3)]2

as τ → 0; moreover, (E,H) is a solution to

{
∇ × E = ikμH + f inℝ3,

∇ ×H = −ikεE + g inℝ3.

We also have (2.25) and (2.26) for (E,H). Therefore, (E,H) satisfies the outgoing condition. The estimate of

(E,H) follows from the estimate of (Eτ ,Hτ). The proof is complete.

Remark 6. The unique continuation of the Maxwell equations has a long story, see, e.g., [3, 11, 27, 32] and
the references therein. It has been known from [11] that the principle holds for ε, μ in C2. However, under the
assumption ε, μ in C1, it was proved recently in [27] (see also [3] for amore general setting) using the fact the

Maxwell equations can be reduced to a weakly coupled second order elliptic equations see, e.g., [11, p. 168].

Similarly, we obtain the following result on the exterior Dirichlet boundary problem.
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Lemma 5. Let k > 0, letD bea smooth openbounded subset ofℝ3, f, g ∈ [L2(ℝ3 \ D)]3, and h ∈ H− 12 (div
Γ
, ∂D).

Let ε, μ be two symmetric uniformly elliptic matrix-valued functions defined in ℝ3 \ D such that conditions
(2.2) and (2.3) hold. Assume that ℝ3 \ D is connected and supp f, supp g ⊂ BR

0

\ D for some R
0
> 0. Let

(E,H) ∈ [H
loc
(curl,ℝ3 \ D)]2 be the unique outgoing solution to

{{{
{{{
{

∇ × E = ikμH + f inℝ3 \ D,
∇ ×H = −ikεE + g inℝ3 \ D,
E × ν = h on ∂D.

Then
‖(E,H)‖H(curl,BR\D) ≤ CR(‖(f, g)‖L2 + ‖h‖H− 1

2 (div
Γ
,∂D)
)

for some positive constant CR depends on R, R0, D, ε, μ, and k, but independent of f , g, and h.

Remark 7. The same result holds if the condition E × ν = h on ∂D is replaced by the condition H × ν = h
on ∂D.

Proof. The proof of Lemma 5 is similar to the one of Lemma 4. The details are left to the reader.

We are ready to state and prove the stability result for (2.5).

Lemma 6. Let 0 < δ < 1, f, g ∈ [L2(ℝ3)]3, and let (εδ , μδ) be defined in (2.4). Assume that ε and μ are bounded
in ℝd and satisfy (2.1), (2.2) and (2.3), and supp f, supp g, Ω̄

2
⊂ BR

0

. There exists a unique outgoing solution
(Eδ ,Hδ) ∈ [Hloc

(curl,ℝ3)]2 to

{
∇ × Eδ = ikμδHδ + f inℝ3,
∇ ×Hδ = −ikεδEδ + g inℝ3.

Moreover,
‖(Eδ ,Hδ)‖H(curl,BR) ≤

CR
δ
‖(f, g)‖L2 . (2.27)

Assume in addition that supp f ⊂ D̄, supp g ⊂ D̄, and D̄ ∩ Ω
2
= 0 for some smooth open subset D ofℝ3. Then

‖(Eδ ,Hδ)‖2H(curl,BR) ≤
CR
δ
‖(f, g)‖L2‖(Eδ ,Hδ)‖H(curl,D) + CR‖(f, g)‖2L2 , (2.28)

Here CR denotes a positive constant depending on R, R0, ε, μ, and D but independent of f , g, and δ.

Remark 8. Lemma6doesnot require any assumptions on the reflecting complementary property. In theproof

of Theorem 2, we apply Lemma 6 with D = BR \ Ω2
for some R > 0.

Proof. For δ > 0 fixed, the existence and uniqueness of (Eδ ,Hδ) can be obtained as in the proof of Lemma 4.

The details are omitted. We only give the proof of (2.27) and (2.28). We have, inℝ3,

∇ × (μ−1δ ∇ × Eδ) − k
2εδEδ = ∇ × (μ−1δ f) + ikg.

Set

Mδ =
1

δ
‖(f, g)‖L2‖(Eδ ,Hδ)‖L2(BR

0

) + ‖(f, g)‖2L2 .

Multiplying the equation by Ēδ, integrating in BR, and using the fact supp f ⊂ BR
0

, we have, for R > R
0
,

∫
BR

⟨μ−1δ ∇ × Eδ , ∇ × Eδ⟩ − ∫
∂BR

⟨(μ−1δ ∇ × Eδ) × ν, Eδ⟩ − k
2 ∫
BR

⟨εδEδ , Eδ⟩ = ∫
BR

⟨μ−1δ f, ∇ × Eδ⟩ + ∫
BR

⟨ikg, Eδ⟩.

Since μδ = I, f = 0, and ∇ × Eδ = ikHδ inℝ3 \ BR
0

, we derive that, for R > R
0
,

∫
BR

⟨μ−1δ ∇ × Eδ , ∇ × Eδ⟩ + ∫
∂BR

⟨ikHδ , Eδ × ν⟩ − k2 ∫
BR

⟨εδEδ , Eδ⟩ = ∫
BR

⟨μ−1δ f, ∇ × Eδ⟩ + ∫
BR

⟨ikg, Eδ⟩.

Letting R → +∞, using the outgoing condition, and considering the imaginary part, we obtain

‖Eδ‖2H(curl,Ω
2
\Ω

1
) ≤ CMδ . (2.29)
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This implies, by Lemma 2,

‖Eδ × ν‖2
H− 1

2 (div
Γ
,∂Ω

2
)
+ ‖Eδ × ν‖2

H− 1

2 (div
Γ
,∂Ω

1
)
≤ CMδ .

Similarly, we have

‖Hδ‖2H(curl,Ω
2
\Ω

1
) ≤ CMδ , (2.30)

which yields, by Lemma 2 again,

‖Hδ × ν‖2
H− 1

2 (div
Γ
,∂Ω

2
)
+ ‖Hδ × ν‖2

H− 1

2 (div
Γ
,∂Ω

1
)
≤ CMδ .

Applying Lemma 5, we have

‖(Eδ ,Hδ)‖2H(curl,BR\Ω2
) ≤ CRMδ , (2.31)

and applying Lemma 3, we obtain

‖(Eδ ,Hδ)‖2H(curl,Ω
1
) ≤ CMδ . (2.32)

A combination of (2.29), (2.30), (2.31), and (2.32) yields

‖(Eδ ,Hδ)‖H(curl,BR) ≤ CRMδ . (2.33)

This implies (2.27). Inequality (2.28) follows from (2.33) by noting that in the definition of Mδ, one can

replace ‖(Eδ , Hδ)‖L2 by ‖(Eδ , Hδ)‖L2(D) if supp f ⊂ D̄, supp g ⊂ D̄, and D̄ ∩ Ω2
= 0.

The following change of variables for the Maxwell equations motivates the definition of reflecting comple-

mentary media.

Lemma 7. Let D, D be two open bounded connected subsets of ℝ3 and let T : D → D be bijective such that
T ∈ C1(D̄) and T−1 ∈ C1(D̄). Assume that ε, μ ∈ [L∞(D)]3×3, j ∈ [L2(D)]3 and (E, H) ∈ [H(curl, D)]2 is a solu-
tion to

{
∇ × E = ikμH in D,
∇ × H = −ikεE + j in D.

Define (E, H) in D as follows:

E(x) = T ∗ E(x) := ∇T−T(x)E(x) and H(x) = T ∗ H(x) := ∇T−T(x)H(x), (2.34)

with x = T(x) and set ε = T∗ε, μ = T∗μ, and j = T∗j by (1.5). Then (E, H) is a solution to

{
∇ × E = ikμH in D,
∇ × H = −ikεE + j in D.

(2.35)

Assume in addition that D is of class C1 and T = T|∂D : ∂D → ∂D is a diffeomorphism. Let ν and ν denote the
outward unit normal vector on ∂D and ∂D. We have

if E × ν = g and H × ν = h on ∂D, then E × ν = T∗g and H × ν = T∗h on ∂D, (2.36)

where T∗ is defined by, for a tangential vector field φ defined in ∂D,

T∗φ(x) = sign ⋅
∇∂DT(x)φ(x)
|det∇∂DT(x)|

with x = T(x),

where sign := det∇T(x)/|det∇T(x)| for some x ∈ D. In particular, if D ∩ D = 0 and T(x) = x on ∂D ∩ ∂D, then

H × ν = H × ν and E × ν = E × ν on ∂D ∩ ∂D. (2.37)

Assertion (2.37) immediately follows from (2.36) by noting that sign = −1, ν = −ν, and T = I on ∂D ∩ ∂D in
this case. This assertion is used several times in the proof of Theorem 2.

Remark 9. Note that the definition of T∗ is different from T∗ for a field in ℝ3. It is helpful to remember that

for electromagnetic fields (2.34) is used whereas for sources (1.5) is involved.

Remark 10. System (2.35) is known for a smooth pair (E, H). Statement (2.36)might be known; however, we

cannot find a reference for it. For the convenience of the reader, we give the details of the proof in Appendix A

for the form stated here.
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2.2 Proof of Theorem 2

The proof is divided into three steps.

∙ Step 1: Assume that there exists an outgoing solution (E
0
, H

0
) ∈ [H

loc
(curl,ℝ3)]2 of (2.10). Then j is

compatible and (E
0
, H

0
) = (E

0
,H

0
), where

(E
0
,H

0
) :=

{{{{{{
{{{{{{
{

(Ê, Ĥ) inℝ3 \ Ω
3
,

(E,H) in Ω
3
\ Ω

2
,

(F−1 ∗ E, F−1 ∗H) in Ω
2
\ Ω

1
,

(F−1 ∗ G−1 ∗ Ê, F−1 ∗ G−1 ∗ Ĥ) in Ω
1
.

(2.38)

∙ Step 2: Assume that j is compatible. Then (E
0
,H

0
) given in (2.38) is the unique outgoing solution

of (2.10). Moreover,

‖(Eδ , Hδ) − (E0,H0
)‖H(curl,BR) ≤ CRδ

1

2 ‖(E
0
,H

0
)‖L2((Ω

2
\Ω

1
)∪BR).

∙ Step 3: Assume that j is not compatible. Then

lim

δ→0+
‖(Eδ , Hδ)‖H(curl,BR) = +∞

for R > 0 such that Ω̄
2
⊂ BR.

It is clear that the conclusion follows after Step 3. We now proceed these steps.

Step 1. Let (E(1)
0

, H(1)
0

) be the reflection of (E
0
, H

0
) in Ω

2
through ∂Ω

2
by F, i.e.,⁷

(E(1)
0

, H(1)
0

) = (F ∗ E
0
, F ∗ H

0
) inℝ3 \ Ω

2
,

which implies

(E
0
, H

0
) = (F−1 ∗ E(1)

0

, F−1 ∗ H(1)
0

) in Ω
2
\ {x

1
}. (2.39)

Recall that (ε
0
, μ

0
) = (ε, μ) inℝ3. It follows from Lemma 7 that

{
{
{

∇ × E(1)
0

= ikF∗μH(1)
0

inℝ3 \ Ω
2
,

∇ × H(1)
0

= −ikF∗εE(1)
0

inℝ3 \ Ω
2
,

(2.40)

and

E(1)
0

× ν = E
0
× ν and H(1)

0

× ν = H
0
× ν on ∂Ω

2
.

Since (F∗ε, F∗μ) = (ε, μ) in Ω
3
\ Ω

2
, it follows from the unique continuation principle that

(E(1)
0

, H(1)
0

) = (E
0
, H

0
) in Ω

3
\ Ω

2
. (2.41)

Let (E(2)
0

, H(2)
0

) be the reflection of (E(1)
0

, H(1)
0

) inℝ3 \ Ω
3
through ∂Ω

3
by G, i.e.,

(E(2)
0

, H(2)
0

) = (G ∗ E(1)
0

, G ∗ H(1)
0

) in Ω
3
\ {x

1
},

which implies

(E(1)
0

, H(1)
0

) = (G−1 ∗ E(2)
0

, G−1 ∗ H(2)
0

) inℝ3 \ Ω̄
3
. (2.42)

Set

(E,H) =
{
{
{

(E
0
, H

0
) inℝ3 \ Ω

3
,

(E(2)
0

, H(2)
0

) in Ω
3
.

We have, by applying Lemma 7 and using (2.40),

{
{
{

∇ × E(2)
0

= ikμ̂H(2)
0

in Ω
3
,

∇ × H(2)
0

= −ikε̂E(2)
0

in Ω
3
,

7 The definition of F ∗ E and F ∗ H are given in (2.34).
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and, by applying Lemma 7 and using (2.41),

E(2)
0

× ν = E(1)
0

× ν = E
0
× ν and H(2)

0

× ν = H(1)
0

× ν = H
0
× ν on ∂Ω

3
.

It follows that (E,H) ∈ [H
loc
(curl,ℝ3)]2, (E,H) satisfies the outgoing condition, and

{
∇ × E = ikμ̂H inℝ3,

∇ ×H = −ikε̂E + j inℝ3.

We derive that

(E,H) = (Ê, Ĥ) inℝ3 and (E,H) = (E
0
, H

0
) in Ω

3
\ Ω

2
.

From the definitions of (E
0
,H

0
) and (E,H), (2.39), and (2.42), we obtain

(E
0
, H

0
) = (E

0
,H

0
) inℝ3.

Step 2. It is clear that

(E
0
,H

0
) ∈ [H(curl, BR \ (∂Ω1

∪ ∂Ω
2
∪ ∂Ω

3
)) for all R > 0. (2.43)

Using the fact F(x) = x on ∂Ω
2
and G(x) = x on ∂Ω

3
and applying Lemma 7, we have

[E
0
× ν] = [H

0
× ν] = 0 on ∂Ω

1
∩ ∂Ω

2
. (2.44)

From the definition of (E,H) and (E ,H ), we obtain

[E
0
× ν] = [H

0
× ν] = 0 on ∂Ω

3
. (2.45)

Applying Lemma 7 again, we get

{
∇ × E

0
= ikμ

0
H

0
inℝ3 \ (∂Ω

1
∪ ∂Ω

2
∪ ∂Ω

3
),

∇ ×H
0
= −ikε

0
E
0
+ j inℝ3 \ (∂Ω

1
∪ ∂Ω

2
∪ ∂Ω

3
).

(2.46)

We derive from (2.43), (2.44), (2.45), and (2.46) that (E
0
,H

0
) ∈ [H

loc
(curl,ℝ3)]2 is an outgoing solution of

(2.10) and hence the unique outgoing solution by Step 1. We have

{
∇ × (Eδ − E0) = ikμδ(Hδ −H0

) + ik(μ
0
− μδ)H0

inℝ3,

∇ × (Hδ −H0
) = −ikεδ(Eδ − E0) + ik(εδ − ε0)E0 inℝ3.

Moreover, (Eδ−E0, Hδ−H0
) satisfies the outgoing condition. Applying (2.27) in Lemma6,we have, for R > 0,

‖(Eδ − E0, Hδ −H0
)‖H(curl,BR) ≤ CR‖(E0,H0

)‖L2(Ω
2
\Ω

1
),

which implies

‖(Eδ , Hδ)‖H(curl,BR) ≤ CR‖(E0,H0
)‖L2((Ω

2
\Ω

1
)∪BR). (2.47)

Applying (2.28) in Lemma 6 for (Eδ − E0, Hδ −H0
) and using (2.47), we obtain this time, for R > 0,

‖(Eδ − E0, Hδ −H0
)‖H(curl,BR) ≤ CRδ

1

2 ‖(E
0
, H

0
)‖L2((Ω

2
\Ω

1
)∪BR).

Step 3. We prove Step 3 by contradiction. Assume that there exists R > 0 such that Ω̄
2
⊂ BR, and, for some

(δn)→ 0,

sup

n
‖(Eδn , Hδn )‖H(curl,BR) < +∞.

Applying Lemma 5, we have

sup

n
‖(Eδn , Hδn )‖H(curl,Br) < +∞ for all r > 0.

Without loss of generality, one may assume that (Eδn , Hδn )⇀ (E0, H0
) weakly in [H

loc
(curl,ℝ3)]2. Then

(E
0
, H

0
) is an outgoing solution to (2.10). Therefore, j is compatible by Step 1. We have a contradiction. The

proof of Step 3 is complete.
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Remark 11. It is clear from the proof that in the case j is compatible, (E
0
, H

0
) can be determined by

(E
0
, H

0
) =

{{{{{{
{{{{{{
{

(Ê, Ĥ) inℝ3 \ Ω
3
,

(E,H) in Ω
3
\ Ω

2
,

(F−1 ∗ E, F−1 ∗H) in Ω
2
\ Ω

1
,

(F−1 ∗ G−1 ∗ Ê, F−1 ∗ G−1 ∗ Ĥ) in Ω
1
.

(2.48)

This is the key observation for the setting of Theorem 2.

Remark 12. In this paper, we confine ourself to the case supp j ∩ Ω
3
= 0 for simple presentation. In fact, the

proof of Theorem 2 can be extended to cover the case where no condition on supp j is required. The details
are left to the reader (see [15] for a complete account in the acoustic setting).

Remark 13. In [22, Theorems 2 and 3 and Proposition 2] we showed that in the acoustic setting the comple-

mentary property is “necessary” to the appearance of resonance in the sense that the field can blow up in

L2-norm even in the region away from the interface of sign changing coefficients. This property would hold

in the electromagnetic setting and will be considered elsewhere.

3 Proof of Theorem 1
Theorem 1 is a consequence of Theorem 2. In fact, we can derive from Theorem 2 the following more general

result:

Proposition 1. Let 0 < δ < 1, j ∈ L2
c
(ℝ3) and let (Eδ , Hδ) ∈ [Hloc

(curl,ℝ3)]2 be the unique outgoing solu-
tion of (2.5). Assume that (ε, μ) in Ω

2
\ Ω

1
and (ε, μ) in Ω

3
\ Ω

2
are reflecting complementary for some

Ω
2
⊂⊂ Ω

3
⊂⊂ ℝ3, and (ε̂, μ̂) = (ε, μ) in Ω

3
\ Ω

2
. Then j with supp j ∩ Ω

3
= 0 is compatible and there exists

a unique outgoing solution (E
0
, H

0
) ∈ [H

loc
(curl,ℝ3)]2 to

{
∇ × E

0
= ikμH

0
inℝ3,

∇ × H
0
= −ikεE

0
+ j inℝ3.

Moreover,
(E

0
, H

0
) = (Ê, Ĥ) inℝ3 \ Ω

3
,

and, for all R > 0,
‖(Eδ , Hδ) − (E0, H0

)‖H(curl,BR) ≤ CRδ
1

2 ‖j‖L2

for some positive constant CR independent of j and δ.

Proof. Since (ε̂, μ̂) = (ε, μ) in Ω
3
\ Ω

2
, we have

{
∇ × Ê = ikμĤ in Ω

3
\ Ω

2
,

∇ × Ĥ = −ikεÊ in Ω
3
\ Ω

2
.

Hence (E,H) exists in Ω
3
\ Ω

2
and (E,H) = (Ê, Ĥ) in Ω

3
\ Ω

2
. We derive from (2.48) that

(E
0
, H

0
) =
{{{
{{{
{

(Ê, Ĥ) inℝ3 \ Ω
2
,

(F−1 ∗ Ê, F−1 ∗ Ĥ) in Ω
2
\ Ω

1
,

(F−1 ∗ G−1 ∗ Ê, F−1 ∗ G−1 ∗ Ĥ) in Ω
1
.

(3.1)

On the other hand, from the definition of (Ê, Ĥ) and Lemma 4, we have

‖(Ê, Ĥ)‖H(curl,BR) ≤ CR‖j‖L2 .

It follows from (3.1) that

‖(E
0
, H

0
)‖H(curl,BR) ≤ CR‖j‖L2 .

The conclusion now follows from Theorem 2.
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We are now ready to give the

Proof of Theorem 1. Applying Proposition 1 with Ωj = Brj and noting that (ε̂, μ̂) = (ε, μ) in Br
3

\ Br
2

by (1.7),

one obtains the conclusion of Theorem 1.

Remark 14. It follows from (1.2) that r
3
→ mr

0
as α → 1+. Therefore, for any ε > 0, there exists a lens-

construction such thatm times magnification for an object in Br
0

takes place for any f with supp f ∩ Bmr
0
+ε =

0.

Remark 15. The constructionof lenses is not restricted to the symmetric geometry consideredhere: the geom-

etry of lenses can be quite arbitrary (see Proposition 1). This is one of the motivations of the study reflecting

complementary media in a general form given in Section 2.

Remark 16. In comparison with the lens construction in [19] for the acoustic setting, we assume here that

mr
0
= r

2
instead of the condition mr

0
< √r

2
r
3
. A rate of the convergence which is δ 1

2 is obtained in this case

and the proof does not involve the removing localized singularity technique.

In the rest of this section, we give the

Proof of (1.6). We have

F−1(x) =
rβ
3

m
K(x), where K(x) = x

|x|β
.

We claim that

∇K(x)∇K(x)T

det(∇K(x))
= −|x|β[ 1

α − 1
er ⊗ er + (α − 1)(eθ ⊗ eθ + eφ ⊗ eφ)]. (3.2)

By using rotations, it suffices to prove (3.2) for x = (x
1
, 0, 0). We have

∂
∂xj
(
xi
|x|β
) =

δij
|x|β
− β

xixj
|x|β+2

.

It follows that, for x = (x
1
, 0, 0),

∇K(x)∇K(x)T

det(∇K(x))
=
|x
1
|β

(1 − β) (
(1 − β)2 0 0

0 1 0

0 0 1

) ;

hence (3.2) is proved since (α − 1)(β − 1) = 1. Thus, for x = F−1(x), we have

F−1∗ I(x) = −
m
rβ
3

rαβ
2

|x|β(α−1)
[

1

α − 1
er ⊗ er + (α − 1)(eθ ⊗ eθ + eφ ⊗ eφ )],

since (er , eθ , eφ ) = (er , eθ , eφ). Using the fact that β(α − 1) = α and

mrαβ
2

rβ
3

= rα
2

mrα(β−1)
2

rβ
3

= rα
2

mrβ
2

rβ
3

= rα
2

m( 1

m α−1
α
)
β
= rα

2

,

we obtain

F−1∗ I(x) = −
rα
2

|x|α [
1

α − 1
er ⊗ er + (α − 1)(eθ ⊗ eθ + eφ ⊗ eφ )],

which is (1.6).

A Appendix: Proof of Lemma 7
Set

J(x) = ∇T(x) for x ∈ D.

We first prove ∇ × H = −ikεE + j for smooth (E, H). We have, for indices in {1, 2, 3},

(∇ × H)c = ϵabc∂aHb , ∂a = Jda∂d ,
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and

Hb = (JTH)b = JdbHd , Ec = (JTE)c = JdcEd .

Here ϵabc denotes the usual Levi-Civita permutation, i.e.,

ϵabc =
{
{
{

sign(abc) if abc is a permutation,

0 otherwise.

Then

(∇ × H)c = ϵabc∂aHb = ϵabcJda∂d(JebH

e) = ϵabcJdaJeb∂dH


e (A.1)

and

− ik(εE)c = −ikεcdEd = −ikεcdJedEe . (A.2)

Here in the last identity of (A.1), we used the fact that

ϵabcJda∂d(Jeb) = 0.

From (A.1), we derive that

Jfc(∇ × H)c = ϵabcJfcJdaJeb∂dH

e = det J ϵdef ∂dH


e = det J(∇ × H)f ,

which yields

J(∇ × H) = det J(∇ × H). (A.3)

From (A.2), we obtain

−ikJfc(εE)c = −ikJfcεcdJedEe = −ik det J(εE)f ,

which implies

− ikJεE = −ik det JεE. (A.4)

It is clear that

Jfc jc = det Jjf . (A.5)

Identity ∇ × H = −ikεE + j for smooth (E, H, j) now follows from (A.3), (A.4), and (A.5). The proof of

∇ × H = −ikεE + j in the general case (E, H) ∈ [H(curl, D)]2 can be proceeded as follows. We have, for

φ ∈ [C1
c
(D)]3,

∫
D

(∇ × H)JTφ = ∫
D

(−ikεE + j)JTφ. (A.6)

It is clear that

∫
D

(−ikεE + j)JTφ = ∫
D

(−ikJεJT J−TE + Jj)φ = sign ⋅ ∫
D

(−ikεE + j)φ
1
, (A.7)

where φ
1
(x) = φ(x). In the last inequality, we made a change of variable x = T(x). On the other hand,

∫
D

(∇ × H)JTφ = −∫
D

H∇ × (JTφ).

We have, as in (A.3),

∇ × (JTφ) = det JJ−1(∇ × φ
1
).

It follows that, after a change of variables,

∫
D

(∇ × H)JTφ = −∫
D

det JJ−TH(∇ × φ
1
) = −sign ⋅ ∫

D

H(∇ × φ
1
),

which implies

∫
D

(∇ × H)JTφ = sign ⋅ ∫
D

(∇ × H)φ
1
. (A.8)
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A combination of (A.6), (A.7), and (A.8) yields

∫
D

(∇ × H)φ
1
= ∫
D

(−ikεE + j)φ
1
.

Since φ is arbitrary, so is φ
1
, we derive that ∇ × H = −ikεE + j. Identity ∇ × E = ikμH can be obtained

form ∇ × H = −ikεE + j by interchanging the role of E and H, ε and μ, replacing k by −k, and taking j = 0.
We next prove (2.36). Fix φ ∈ [C1(D̄)]3. We have

∫
D

(∇ × H)JTφ = ∫
D

(−ikεE + j)JTφ.

This implies, by an integration by parts,

∫
D

H∇ × (JTφ) − ∫
∂D

h(JTφ) = ∫
D

(−ikεE + j)JTφ.

Since (A.7) also holds for φ ∈ C1(D̄), we derive that

sign ⋅ ∫
D

H(∇ × φ
1
) − ∫

∂D

h(JTφ) = sign ⋅ ∫
D

(−ikεE + j)φ
1
,

where φ
1
(x) = φ(x). Integration by parts gives

sign ⋅ ∫
D

(∇ × H)φ
1
+ sign ⋅ ∫

∂D

φ
1
(H × ν) − ∫

∂D

h(JTφ) = sign ⋅ ∫
D

(−ikεE + j)φ
1
.

We obtain

∫
∂D

(H × ν)φ
1
= sign ⋅ ∫

∂D

Jhφ,

where J = ∇∂DT since h ⋅ ν = 0 on ∂D. A change of variable yields

H × ν = T∗h on ∂D.

Similarly, we obtain E × ν = T∗g on ∂D. The proof is complete.
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