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Abstract—Driving requires the constant coordination of many body systems and full attention of the person. Cognitive distraction
(subsidiary mental load) of the driver is an important factor that decreases attention and responsiveness, which may result in human
error and accidents. In this paper, we present a study of facial expressions of such mental diversion of attention. First, we introduce a
multi-camera database of 46 people recorded while driving a simulator in two conditions, baseline and induced cognitive load using a
secondary task. Then, we present an automatic system to differentiate between the two conditions, where we use features extracted
from Facial Action Unit (AU) values and their cross-correlations in order to exploit recurring synchronization and causality patterns. Both
the recording and detection system are suitable for integration in a vehicle and a real-world application, e.g. an early warning system.
We show that when the system is trained individually on each subject we achieve a mean accuracy and F-score of ~ 95%, and for the
subject independent tests ~ 68% accuracy and ~ 66% F-score, with person-specific normalization to handle subject dependency.
Based on the results, we discuss the universality of the facial expressions of such states and possible real-world uses of the system.

Index Terms—Affect sensing and analysis, Facial expression, Affective computing applications, Vehicle operation, Emotional corpora,

Driver cognitive distraction.

1 INTRODUCTION

River monitoring in real-time is an emerging topic
D thanks to the availability of faster software and smaller
hardware that can easily be integrated in consumer vehicles.
In addition to systems that record and analyze driving data,
e.g. wheel movement, speed and acceleration, or driver’s
physiological signals, research on visual monitoring systems
are also on the rise and such systems will soon be more and
more frequently integrated in automobiles on the market.
In this work, we propose a visual driver monitoring system
that aims to detect if the driver is under a secondary cog-
nitive load using the facial behavior, and that is trained and
tested on a driving simulator, but is suitable to be integrated
in a vehicle to provide real-time information.

There has been a long discussion on how to define driver
distraction. Pettitt et al. [1], Lee et al. [2] and more recently
Regan et al. [3] have published works on how to define the
term and compile the existing definitions. Lee et al. sum-
marize it as the diversion of attention away from activities
critical for safe driving toward a competing activity [2]. In
[1] there is a more extensive definition and driver distraction
is stated as a delay by the driver in the recognition of
information necessary to safely maintain the driving task,
due to some event, activity, object or person, within or
outside the vehicle that compels or tends to induce the
driver’s shifting attention away from fundamental driving
tasks by compromising the driver’s auditory, biomechanical,
cognitive or visual faculties, or combinations thereof ( [3],
[4]). Driver distraction can be in three types depending on
its source and demand: visual, manual and cognitive [5].
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Auditory distractions are sometimes considered as a fourth
type of distraction, yet in this work we consider them also as
cognitive distraction. Even though we introduce a database
that includes all three types of distraction, our automatic
system focuses on detecting the cognitive type, which can
be defined as a diversion of the driver’s attention from the
driving task, not necessarily requiring any sharing of vi-
sual processing or involving or demanding a biomechanical
action. It includes internally induced distraction, such as
mind wandering or daydreaming but excludes cases such
as boredom, sleepiness, or driving under the influence of
alcohol or drugs and substances that alter the mental state.
Throughout the rest of the article we use both the terms
cognitive distraction and cognitive load, the latter referring
to the state whose presence we aim to detect. It can be
considered as a sub-group of what we have aimed to induce
in the driving experiments, that is cognitive distraction.

Many studies show that driver distraction is one of the
most important causes of traffic accidents, along with alco-
hol use and speeding. A study conducted in France showed
that 17% of 453 accidents that resulted in admittance to the
emergency room was caused by a high mental distraction
of the responsible driver [6]. More recent studies from the
same group has shown that induced distractive thoughts led
to less micro-regulation of both speed and lateral position
and narrowed visual scanning of the driving scene [7],
that mind wandering is the cause of 8% of close to 1000
accidents according to emergency room interviews with the
drivers [8] and that it affects 85.2% of the drivers especially
in situations requiring less attention from the driver such as
an everyday commute or a monotonous motorway [9].

In [10], the authors have collected and analyzed almost
43000 hours of driving data and shown that 78% of the
crashes and 65% percent of near-crash incidents involve
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driver inattention due to various secondary tasks. A similar
study sponsored by the United States department of trans-
portation showed that drivers investigated were engaged
in non-driving related tasks in 71% of crashes [11]. Again
in the U.S,, it is estimated that around 20% of all police
reported road crashes involve driver distraction as a con-
tributing factor [12]. In [13] the authors provide a large scale
examination of the relationship between driver distraction
and driver errors, along with a list of existing studies.

Even though the numbers differ depending on the type
and amount of data analyzed in each study, they all show
that internally or externally caused driver distraction is a
very critical risk factor. However, there is no clear distinction
on which kind of distraction is more dangerous or happens
more frequently. Indeed, usually the three types happen
in combinations of two or three making this comparison
even more difficult. We focus on the detection of cogni-
tive distraction for two main reasons. Firstly, it provides
a big challenge in terms of computer vision and machine
learning as it does not have such clear indicators as visual
or manual distraction. Secondly, cognitive distraction is a
state with direct links to affective science and with complex
repercussions in terms of facial expressions, which makes
it even more so intriguing to investigate. We, therefore,
address the problem of automatic detection of cognitive
driver distraction using visual monitoring of the driver’s
face and propose a system that is tested on simulation data
and that can easily be integrated in real cars for applications
like an early alert system or activation of countermeasures
in order to help the driver regain his attention on the driving
task.

In this article, we present two main contributions. First,
we introduce the EPV-DIST database, which is a multi-
camera visual database of 46 people driving a simulator
with different distraction conditions induced. The recording
setup for our database has been planned to represent a con-
figuration that is feasible to place in a car and work robustly
in different light conditions. Second, we propose a method
based on Facial Action Units (AU) to detect the conditions
where the drivers were induced cognitive distraction. AUs
model every unitary muscle movement on the face and
were proposed as a means of defining and quantifying
facial actions in an objective way [14]. The proposed system
first generates a virtual frontal view from the three frames
captured by the multi-camera system, then applies the AU
detection we have previously proposed in [15]. Then, we
extract features from the dynamic continuous value outputs
of the AU detection system, independently for each 14 AU
detected, and also from their cross-correlations at different
delay points. This second type of features allows for ex-
ploiting the inter-relations of AUs and their synchronization
behavior in different conditions, with the hypothesis that
it will improve detection of facial expressions that cannot
easily be defined as in the six basic expressions. All features
are then fed-into Support Vector Machine (SVM) or Random
Forest (RF) classifiers to obtain a decision on each sequence
that has been labeled as being recorded under cognitive load
or not.

The following sections of the paper are organized as
follows: In Sec. 2 we give a review of existing algorithms and
applications for visual driver monitoring. In Sec. 3 we intro-
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duce the EPV-DIST database and detail the recording setup
and the experiment protocol. Sec. 4 describes all components
of the cognitive load detection system, with the results and
findings presented in Sec. 5. Finally, we conclude the paper
in Sec. 6 with a discussion on the system capabilities and
possible future improvements and applications.

2 RELATED WORK

In this section we present a brief review of existing work
on visual driver monitoring for various applications as well
as different modalities used for detecting various types of
driver distraction. This review is not focused on automatic
distraction detection during driving because of the rather
low number of such work in the literature and in order to
provide the reader a general insight on similar automatic
systems. An extensive review is also given in [16] and [17],
the interested reader is referred to these publications for
more approaches and applications not listed here.

Over the years most of the research on visual driver
monitoring systems have focused on fatigue detection,
which is another critical factor for human error in driving
and can be considered related to cognitive distraction, yet
excluded from the definition that we adopt for cognitive
distraction and load (see Sec. 1). In [18] an automatic mouth
movement analysis was performed to detect fatigue related
actions, and also speaking, while in [19] AUs were used
within a Dynamic Bayesian Network (DBN) to detect driver
vigilance. The head pose dynamics have also been success-
fully exploited in a real-time driver awareness detection
system [20]. Another commonly used visual cue for fatigue
detection is the Percent Eye Closure Measure (PERCLOS),
as used for instance in [21]. An approach on fatigue detec-
tion, rather close to ours is the work by Vural et al. [22],
where the authors used many AUs, including head-pose,
and analyzed their relation to fatigue during a three-hour
simulator driving experiment after midnight. As expected,
the most relevant features were related to eye-blink (AU45)
and also outer brow raise (AU2), as the subjects tried to
remain awake. This work is particularly interesting as we
are able to compare the outcome of the relevant features
analysis.

As for automatic detection of distraction, a non-vision
based system is presented in [23] where the driving in-
formation, such as the speed, position of the pedal and
steering wheel have been used to detect visual distraction
tested with various machine learning methods. Wollmer
et al. also used the driving information and non-vision
based head tracking data to detect cases of visual distraction
while performing various tasks [24]. In [25] the authors
used eye movements and driving performance data within
a Bayesian Network framework. The system can detect
~ 80% of distraction cases that are due to interacting with
an in-vehicle information system (IVIS). A similar study is
presented in [26] where the gaze angle and fixation data
was used to recognize distraction induced by the IVIS.
In [27] the eye movements are analyzed to predict visual
inattention using Neural Networks. The gaze information
was used along with head movements and lane position of
the vehicle in [28] to detect induced visual and cognitive
distraction using a stereo-vision system integrated in trucks
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(a) The three-camera acquisition setup

Fig. 1. The recording setup of the experiment

and passenger cars. For cognitive distraction, the authors
achieve 68% on the truck experiments and 86% for the
passenger car experiments. However, the low number of
drivers tested (3 for the passenger car, 12 for the truck) is
insufficient to discuss the generalization capability of the
system. In [29] several features related to the coordinates of
22 facial landmarks and driving data were used to predict
accidents. In [30] the arm position, eye closure, eye gaze,
facial expressions, and orientation provided by Kinect to
detect visual and manual distraction on 6 subjects. All of
these methods are different from our proposed approach
either since they are not completely non-invasive or they
have not been evaluated on such a large database.

The closest approach to the one that is presented in
this article is the one by Li et al. [31], where the authors
use AUs, gaze and head pose information to detect visual
and cognitive distraction. Apart from the difference in the
methodology to induce the cognitive distraction (that in-
volves the drivers speaking), a very important difference
in their approach is that they ask human evaluators to
extract sequences of distraction based on the behavior of the
drivers. This fact makes their work and ours incomparable,
as the problem they try to tackle becomes how to detect
human perception of expressions of distraction. However, it
provides us a list of AUs related to this problem, which can
be used for comparison. With the experiments performed on
20 subjects, the F-score for cognitive distraction detection is
79.4%.

To the best of our knowledge, ours is the first work
that presents a completely automatic system that can be
integrated in a vehicle, to detect the presence of cognitive
load with an objective ground-truth, using non-intrusive
visual monitoring of the driver’s face and tested on such
a large variety of subjects.

3 THE EPV-DIST DATABASE

One of the main contributions of this work is the intro-
duction of a new video database with induced distraction
during driving. In this section we describe the details of
the database, which we name EPV-DIST, which is short for

(b) Driver’s position during the recording

the EPFL-PSA-Valeo NIR Multi-Camera Database of Visual
and Cognitive Distraction during Driving. The aim of the
database is to provide videos of natural behavior of drivers
while performing additional visual and cognitive tasks. This
article focuses on facial expressions of cognitive distraction,
therefore the visual distraction part is only briefly discussed.
Another point worth mentioning is that the recording setup
is built in a way that can be integrated directly in an actual
consumer vehicle (in terms of camera positions), and pro-
vides robustness against real-life driving conditions, such
as ambient light and head pose variations.

We have recorded 48 subjects, two of whom had to be ex-
cluded from the database due to technical problems during
the recording. The subjects were recruited from students and
research and administrative staff of EPFL and EPFL Innova-
tion Park. As the mental tasks were prepared in French, they
were asked to possess a sufficient level of understanding
and speaking in French and also have a sight enough to
drive without glasses, in order to avoid reflections of the
NIR lighting. The subjects” ages are between 19 and 52 with
an average of 30. The number of female and male subjects
are equal and all subjects have given their consent for the
use of their data in research on automatic visual behavior
analysis. The length of the recordings is approximately 25
minutes per subject, making a total of more than 19 hours
of recording.

The database will soon be publicly available solely for
research purposes in the future, to help advance the research
on facial behavior analysis during driving under various,
predefined conditions. In the rest of this section we give
details on the data acquisition setup and the experimental
protocol, including the induction of the visual and cognitive
distraction conditions.

3.1 Data Acquisition System

The EPV-DIST dataset consists of multi-view videos that are
recorded using three NIR cameras and a special lighting
equipment per camera with adequate filters, in order to filter
out ambient light. Figure 1 shows the recording setup and
the position of the recorded subject during the experiments.
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(a) Left Camera

(b) Frontal Camera

Frontal

(c) Right Camera

(d) Generated Virtual
View

Fig. 2. Images acquired by the three cameras and the corresponding generated virtual frontal view.

Both the choice of the recording material and the place-
ment of the cameras (see Fig. 1a) are based on a realistic
application in a real consumer vehicle. Since the light condi-
tions change very often during driving we have performed
the recordings with cameras with a wide wavelength cap-
ture range (PointGrey Flea3) and adequate band-pass fil-
tering. We have also built three integrated NIR-LED (850
nm) circular lighting circuits that can be placed around the
cameras and illuminated in synchronization with the frame-
grab of the cameras using a microcontroller. These lighting
systems make sure there is constant illumination around the
face and the bandwidth filter, at the same wavelength as
the LEDs, filters out a substantial amount of the ambient
light. This allows for a continuous visibility of the driver’s
face with close to constant illumination and is suitable for a
real application in a car in any light condition, e.g. when
there is too much sunlight or while passing through a
tunnel. The camera-light pair has already been used in our
previous experiment on posed expressions of stress [32],
where we have shown the feasibility of facial expression
recognition with such a system in the single camera case.
In addition to the circular LEDs, we have placed similar
lighting at the four corners of the simulator screen which are
illuminated in turns with the lighting around the cameras,
to create the glint and dark/bright pupil effect for use in
future research for gaze analysis. The gaze related features
have not been included in this paper in order to restrict
the focus on facial actions and to avoid possible bias and
noise in the experimental results due to unoptimized gaze
measurements.

As for the choice of the number and positions of the
cameras, there exist two constraints for a realistic setup.
The first one is the amount of head-pose coverage using
a virtual frontal view generation from all cameras. The
second one is the feasibility of placement of the cameras
in an actual car, without blocking the driver’s sight and
where there is already support to place the camera. We
have chosen to use a three-camera system and placed the
cameras as can be seen in Fig. 1a. The first camera, the semi-
frontal one (referred to as the frontal camera through the
rest of the paper) is placed in the representative position
inside the console behind the wheel. The left camera (with
respect to the driver) is where would be the highest point
of the left pillar in a car. Finally, the right camera is on the
representative position of the bottom-left corner of the rear-
view mirror.

The three cameras record frames synchronously at a rate

of 20 fps as seen in Fig. 2a, 2b and 2c for the left, right
and frontal cameras, respectively. We only use one out of
two consecutively recorded frames (i.e. 10 fps), since the
other one corresponds to the dark pupil frame, as explained
previously. The three images from the three cameras are
then used to reconstruct a virtual frontal view of the driver’s
face as seen in Fig. 2d. The details of this reconstruction are
given in Subsection 4.1. This three camera system allows
invariability against head pose changes, which occur quite
frequently while driving, and also against occlusions that
occur in one or more views. All these properties of the setup
provide a realistic sense into our database, as it would be a
suitable setup to integrate in an actual vehicle.

3.2 Experiment Protocol

The driving task we used for our experiments is the Lane
Change Test (LCT) [33]. LCT is a simple, easy to manipulate
driving simulator that has become the standard simulator
for testing secondary tasks while driving [34]. It has been
commonly used in the past for experiments involving such
secondary tasks ( [35], [36]). We have used a Logitech G27
wheel and pedals set for the control. The LCT allows con-
tinuous recording of the wheel and pedal motions, which
are useful in providing a metric for the driving performance
(explained later in detail).

The LCT consists of a series of lane change tasks which
are presented as road signs on the simulator screen (see
Fig. 1la) and the drivers are asked to change their lane
according to the sign presented, as soon as they see the
sign and as quickly as possible before passing by the sign.
We have fixed the maximum speed at 60 km/h and the
distance between two signs at 150 meters, which results in
lane change sequences (LCS) of approximately 9 seconds,
since the drivers were asked to maintain the maximum
speed. The road signs appears ~ 1 sec after the introduction
of the distraction (if it applies), and disappear 40 meters
later, giving the drivers around 2.4 seconds to perform the
appropriate lane change. We use the whole LCS in our
analysis as it simulates conditions that occur frequently
during driving, such as changing the lane or keeping the
right one with or without induced distraction.

3.2.1 Driving Conditions

All subjects were asked to perform the driving task in three
conditions: The baseline, solely the driving task without
any extractors; visual distraction, a visual secondary task



IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 00, NO. 0, 2015

which requires the driver to take the eyes off the road; and
cognitive distraction, where the attention is directed to a
non-driving related task without the need to take the eyes
off the road. All factors other than the distractive agents
were kept the same for the three conditions. Each subject
has completed a total of five driving tasks, three baselines,
one visual distraction and cognitive distraction. The order of
the distraction related tasks have been randomized among
subjects, such that there is an equal number of subjects
who have performed the visual task before the cognitive
one and vice versa. This randomization is for decreasing
the secondary effects of uncontrollable confounding factors,
such as fatigue or disengagement.

The baseline condition is to obtain a ground measure
for the driving performance and facial behavior without
workload of the subject. It is performed three times in total,
the beginning (after the familiarization part, which is not
recorded), between two distractive conditions and the end.
Each one consists of 18 lane changes, equally distributed for
the 6 possible types of lane change between the left, right
and middle lanes, in order to avoid effects of learning. In
the end, we obtain 54 LCS, 9 for each lane change type, per
subject.

The visual task used to induce visual distraction is the
Surrogate Reference Task (SURT), which required subjects to
look at a secondary screen on their right and therefore divert
their visual attention from the road (Fig. 1a). The visual
distraction part of the experiment has not been included
in this article to keep the focus on cognitive distraction.
Therefore, we only briefly introduce it and leave the analysis
of the recorded data as future work. Yet, this part has been
included in the database to provide the research commu-
nity videos of varying head poses during driving, with a
measure of the driving performance.

The final driving condition is the induced cognitive
distraction, which forms the main focus of this article. This
was performed using an auditory version of the Operation
SPAN (OSPAN), developed by Turner and Engle [37] and
has been used by the National Highway Transports Safety
Administration in US (NHTSA) as a standard task simu-
lating driver cognitive distraction. The OSPAN task makes
use of the working memory and attention of the driver and
does not require the visual attention as the task is presented
in audio and the response is either manual or by speech.

The OSPAN task is composed of two components, the
first one is making simple calculations and the other mem-
orizing words. At each LCS the driver is told a simple
mathematical calculation statement, e.g. Two times four plus
one is ten. The driver needs then to press the corresponding
hand pedal behind the wheel if they think the statement
is true or false. The choice of pedal for the right and
wrong answers have been randomized to reduce the effects
of the natural tendency to unintentionally think that one
side represents the correct one. Right after the statement
the subjects also hear a simple word in French, e.g. maison
(house), rouge (red) or chemise (shirt), which they were asked
to memorize and repeat at the end. The LCS that we analyze
do not include the part where the drivers repeat the words
they had to memorize. In the easy condition the participants
hear two mathematical calculations only including addition
and subtraction along with two words to memorize, while
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in the hard condition they hear three calculations that also
include multiplication and three accompanying words. All
participants receive an equal number of easy and hard
tasks following each other and the order of which has been
randomized equally among participants. The calculations
and words have been recorded prior to the experiment
and was repeated from a speaker in the experiment room,
synchronized to appear at the same instant for every subject.
The OSPAN task creates an additional load to the working
memory of the subject and aims to pull the attention of the
driver off the road and the driving task. Note that we have
not aimed at any positive or negative valence effect of the
cognitive distraction, for example as performed in [38] by
selecting words related to positive and negative emotions.
It is also worth mentioning once again that, since we do not
have any ground truth for whether the driver is actually
distracted or not, our automatic system aims at predicting
the cognitive load, which we know that exists during the
corresponding driving condition.

In order to put the driver in a multitasking condition
each distraction task started a couple of seconds before the
appearance of the lane change sign. The participants had not
been given any instruction prior to or during the experiment
regarding the priority of the driving vs. secondary task.
Each participant, therefore, chooses such a priority depend-
ing on his/her own workload and sometimes in a varying
manner for each task, as observed from their recorded data.

x >
Road sign first visibilit «
Y oad sign Tirst visibility ><

Observed lane change

Road sign position «

x

X R X

Fig. 3. Mdev calculation as the area between the expected lane change
and the observed driver behavior

3.2.2 Measuring Driving Performance

The LCT simulation system allows recording the wheel and
pedal motion at all times, which we then use in order
to calculate a performance measure for each of the LCS.
The measure that we calculate is the Mean Deviation from
the normative lane change behavior, or Mdev. The Mdev
is measured by calculating the area between the expected
driving behavior for a specific lane change and the actual
one (Fig 3). It is a standard way of quantifying the driving
performance on a simulator over short distances [34]. The
area between the two trajectories is sensitive to perception
(missing the sign), reaction time, quality of the maneuver
and lane keeping [33]. Note that the Mdev could also have
been used as an indirect measure of the level of cognitive
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(a) Distribution of the baseline M_dev values
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Fig. 4. Comparison of the M_dev values for the two driving conditions, with a polynomial fit plotted on top of each distribution. The smaller plots
show the deviation from a normal distribution, indicating that the distributions cannot be assumed normal.

distraction, and a ground-truth for the classification prob-
lem in this article. However, due to the distribution of the
Mdev values, this would have caused an imbalanced classi-
fication or regression task. Also, the problem we address in
this work is to detect when a driver is imposed an additional
mental load. Thus, we are interested in the facial behavior
during situations that might cause unsuccessful driving, and
not necessarily during unsuccessful driving. Therefore, we
only use the Mdev values to show whether the induced
cognitive distraction had an overall effect on the driving
performance.

In order to show the effectiveness of the cognitive dis-
traction induction that we used, we have performed a sta-
tistical analysis of the Mdev performance values, comparing
the baseline and the cognitive task. We have calculated the
Mdev for each 8.5 seconds sequence (the first 0.5 seconds
were removed to remove noise) and Fig. 4 shows the
distribution of the Mdev values among all sequences for
every subject in the two conditions. The initial observations
are the difference between the baseline (BL) and cognitive
distraction (COG) in variance (0.098 for BL vs. 0.295 for
COQG) and the shift in the mean value (0.809 for BL vs. 1.048
for COG), median (0.772 for BL vs. 0.944 for COG) and the
maximum values (2.481 for BL vs. 5.769 for COG). In addi-
tion, we have performed a Wilcoxon signed rank test on the
average Mdev values of the subjects in the two conditions.
The Wilcoxon test is a non-parametric paired difference test
used to compare two related samples [39]. It is used to
compare ordinal random variables that are non-Gaussian
distributed, which fits perfectly our case (Fig. 4a and 4b).
The signed-rank test gave a p — value < 0.01, showing that
the two distributions are significantly different from each
other, proving the effectiveness of the manipulation for the
cognitive distraction. We also note that we observe a higher
mean Mdev value for all 48 subjects, thus showing a worse
performance under cognitive distraction.

4 DETECTION OF COGNITIVE DISTRACTION SEG-
MENTS - METHODOLOGY

This section describes the methods built and adopted in
order to detect the presence of cognitive load via the driver’s
facial actions. In our context, this means classifying each
recorded LCS as belonging to the baseline or cognitive task,
as explained in Section 3.2. The outline of the pipeline is
as following: First we generate a virtual frontal view of the
driver’s face in each frame using a Bilinear 3D face model
and texture mapping from a 2D image. Then we detect 14
AUs on the generated virtual frontal view of the face by
extracting Scale Invariant Feature Transform (SIFT) features
and applying SVM classification for each AU separately.
Next, we extract features from the dynamic continuous
valued output of the SVMs, also investigating the correlated
behavior between the AUs and finally feed these features
in an SVM or Random Forest classifier to obtain a binary
response for each sequence as distracted or not. The details
of each method, as well as their implementation are given
in the rest of the section.

4.1 Virtual View Generation from Three Cameras

The model based face pose normalization / frontalization
has been applied widely in face recognition [40], [41], [42].
It is also known as virtual face frontal view generation. One
can fit a 2D deformable mesh model to a non-frontal face
and apply non-linear warping to generate a virtual frontal
face [40]. However, it has been shown that warping with a
sparse 2D mesh model is sub-optimal due to artifacts and
discontinuity. Instead, we fit a 3D dense mesh model and
map the texture directly to the mesh vertices. The frontal
view face is rendered by applying inversed rigid motion of
the 3D face model. Fig. 5 shows the concept of our face pose
frontalization method on an example non-frontal face image
and the resulting transformation.

Fitting a 3D dense face mesh model with texture in-
formation is far from efficient for real time application.
We adopt a feature based 3D mesh model fitting whose
fitting efficiency and accuracy are good enough for real
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Fig. 5. Virtual face generation pipeline and the resulting image.

time virtual frontal view generation. In order to recover the
expression variations and identity variations of human faces
for emotion detection applications, we employ a bilinear 3D
morphable model [43]. The model has two sets of param-
eters to control expression changes and identity changes
separately.

The objective of the 3D model fitting is to minimize the
projection error of the facial landmark features, with respect
to a set of corresponding 2D features detected on a 2D facial
image. In total 68 salient facial features are selected and
the 2D salient facial features are detected and tracked using
Supervised Descent Method (SDM) [44], which is reused in
the AU detection step as explained in Sec. 4.2.

The feature based 3D face mesh model fitting can be
easily extended to multiple camera setup. The coefficients of
the bilinear face model are not dependent on the viewpoint
because they are characterizing a 3D object’s shape and not
its projection on the image plane. It has been shown in [45]
and [46] that fitting a 3D morphable model in a multi-view
setup provides more accurate and robust results. Therefore,
we reconstruct the mesh based on the tracking from the
three cameras positioned as shown in Fig. 1a.

To generate a virtual frontal view image, we extract the
texture information from a 2D image and map the values
on the corresponding vertices of the reconstructed 3D face
mesh. The texture information can be extracted from a
specified camera view, or the optimal camera view, or an
adaptive fusion of multiple camera views. In this work, we
obtain the pixel values from the view with the smallest
absolute yaw angle, which is mostly the frontal view due
to the nature of the driving and secondary tasks. Given a
reconstructed 3D face mesh f and its estimated projection
operator L with respect to an input face image I, the visible
vertices in f are determined by using the normals and the
viewing angle. Those vertices are projected on the 2D image
plane with the projection operator and the underlying pixel
values T are assigned to their corresponding visible vertices.
An example of a rendered frontal face image is show in
Fig. 5. Fig. 2 shows the three views and the reconstructed
virtual face on an highly expressive real-case frame from
our database.

4.2 AU detection from Virtual Frontal View

Once we generate the virtual frontal view from the three
cameras, we detect 14 AUs from the generated frame. For
this purpose we adopt the system that we have recently
proposed [15] and that has won the AU occurrence detec-

tion sub-challenge of the FERA2015 [47]. The FERA2015
challenge was organized to promote advances in research
on AU and AU intensity detection. It is composed of two
challenging datasets (BP4D [48] and SEMAINE [49]) with
spontaneous and natural behavior each annotated frame-
wise for the presence and intensities of AUs. The partici-
pants were provided with two sets of training and develop-
ment partitions and asked to send a working program that
would be applied on two unseen test partitions, in order
to assess the efficiency of the systems in a blind manner,
i.e. without the advantage of parameter tuning or usage of
prior knowledge on the data. Our framework presented in
the scope of FERA2015 allows us to obtain a continuous AU
occurrence signal for 14 AUs, which are listed in Table 1
along with their definitions. An overview of the system is
presented here and for more details the reader is referred to
the related proceedings article [15].

TABLE 1
Detected AUs and their definitions

Action Unit H Definition
AU1 Inner Brow Raiser
AU2 Outer Brow Raiser
AU4 Brow Lowerer
AU6 Cheek Raiser
AU7 Lid Tightener
AU10 Lip Raiser

AU12 Lip Corner Puller
AU14 Dimpler

AU15 Lip Corner Depressor
AU17 Chin Raiser
AU23 Lip Tightener
AU25 Lips Part
AU28 Lip Pucker
AU45 Blink

The initial step in the AU detection system is to locate
the facial landmarks, around which we will then acquire
the relevant appearance based features. For this purpose,
we use the state-of-the-art face tracker based on SDM [44].
The SDM starts with an initial guess and estimates the shape
using a cascade of regression models that are learned at each
step using local texture features (e.g. SIFT) extracted from
the landmarks estimated in the previous step. Note that,
since the virtual view generation and AU detection systems
are currently implemented as two separate pipelines, we
reapply the SDM tracker on the generated virtual view. In
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the future, these systems will be combined for efficiency
reasons. The SDM outputs the locations of 49 landmarks
and using this mask we calculate the locations of 8 ad-
ditional non-salient landmarks. The details for the calcula-
tion are present in [15]. These additional points (AP) are
generally excluded from face trackers or facial landmark
detectors as they mark transient features of the face and
their annotation and detection are not as trivial as the non-
transient landmarks. However, they contain very important
local appearance information related to facial actions as
many appearance changes occur around these points during
certain muscle contractions. These points can be seen on an
example virtual face image from the EPV-DIST database in
Fig. 6 along with original SDM landmarks. Their locations
and some of the AUs they are related to are listed as follows:

e APl - The center of the eyebrows, relevant to AU4
and AU1

e AP2 and AP3 - Around the crow-feet wrinkles, rele-
vant to AU6 and AU7

e AP4 and AP5 - Sides of the nose, relevant to AU10
and AU9 (nose wrinkler)

e AP6 and AP7 - Nasolabial furrows, relevant to AU6
and AU10

e APS8 - On the chin, relevant to AU17

Fig. 6. The facial mask used to obtain appearance features. The red
points show the original SDM landmarks and the green ones are the
additionally calculated points.

After obtaining the landmarks from the face tracker, the
face is aligned using the eye locations to correct for any
possible in-plane rotation still remaining from the virtual
view generation. This is performed before the APs are ex-
tracted, so that the calculation of their locations is invariant
to the head-pose. Correcting only for the in-plane rotation
is sufficient since the training data we have used consists
of mostly frontal faces and the system is applied on virtual
frontal faces. Later, the face is scaled to a fixed size of 200
by 200 pixels and the SIFT features [50] are extracted around
the 57 landmarks in total. SIFT features have been effectively
used in mainly object recognition and tracking ( [51], [52])
and successfully applied on the AU detection problem as
well [53], [54]. The SIFT descriptors extracted in a 32 by
32 local neighborhood around each landmarks result in a

TABLE 2
F1-Scores on the FERA Challenge

Database BP4D
AU Prop. System [15] [[ Best Baseline [47]
1 0.261 0.188
2 0.167 0.185
4 0.283 0.197
6 0.729 0.645
7 0.785 0.799
10 0.802 0.801
12 0.779 0.801
14 0.625 0.72
15 0.348 0.238
17 0.380 0.311
23 0.441 0.320
Average 0.508 0.473
Database SEMAINE
AU Prop. System [15] [[ Best Baseline [47]
2 0.655 0.569
12 0.769 0.595
17 0.215 0.091
25 0.623 0.445
28 0.251 0.250
45 0.325 0.396
Average 0.481 0.391

feature vector of size 7296, which is then reduced using
Principal Component Analysis (PCA), retaining a certain
number of final features learned for each AU separately.

These features are used to train a L1-regularized linear-
SVM classifier for each AU separately on a custom made
training set that includes images from the CK+ [55],
GEMEP-FERA [56] databases in addition to the challenge
datasets SEMAINE [49] and BP4D [48]. The training set
consists of 6713 images in total and, in addition to the well-
established standard database CK+ of posed expressions,
includes many non-posed, or spontaneous, examples of
expressions from the other three databases. This fact is
particularly useful when the system is applied on real data,
as in the case of our application.

The results we obtained on the unseen test-set of the
two challenge datasets are shown in Table 2 in comparison
with the best challenge baseline results. The presented F1
scores on this challenging AU detection problem shows
the efficiency of the system and proves suitable for use in
a real application. Note that, although the original article
[15] proposes a multi-label manifold embedding scheme to
improve AU detection and achieves a better result on one of
the two unseen partitions, we have chosen not to adopt this
part of the system in order to obtain a better generalization
on unseen data. Table 2 shows the results obtained using the
system applied for this article, that is without the multi-label
manifold embedding.

The SVM classifiers each give a continuous value output,
which is the distance to the hyper-plane. It has been long
debated in the community whether the output of classifiers
trained in a binary manner should be used to quantify the
intensity of AUs. For example, recently Girard et al. have
shown that the intensity of smiles are better recognized
using classifiers directly trained with annotated intensities
[57]. Nonetheless, we use the decision to the hyper-plane
of the SVM as a relative intensity measure since it provides
enough comparative information when the purpose is not a
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direct AU intensity detection defined by the FACS [14].

4.3 Feature Construction

For the classification between the sequences belonging to the
baseline and cognitive distraction we extract features from
the AU signals obtained using the system described in 4.2.
The signals contain the SVM distances to hyperplane at each
time instance, which are representing the AU intensities.
The sequences that contain too few frames due to errors
during recording or face detection failure because of heavy
occlusion (e.g. by the hands on top of the steering wheel)
have been removed from the analysis resulting in a total of
4520 LCS. In total we have removed 172 segments from the
analysis, but the removed segments were distributed almost
equally among subjects and driving conditions, since most
of them corresponded to the last sequence of each driving
condition. These sequences had to be removed due to a
synchronization problem in order not to bias the results and
have the same length of LCS for all data points.

The first set of features, which we will refer to as
Feature Set 1 from this point on, come directly from the
continuous AU signals. For each of the 14 AU signals (see
Table 1 for the list) we obtain the mean, variance, maximum
and minimum values along the 8.5 second sequences. This
process is performed by dividing the sequence in four in
time. The reason for splitting the signals in time is to make
use of the differences in AU behavior that may occur on
different portions (or quarters) of the LCS. For instance, a
person might display a facial reaction while listening to the
calculation sentence he/she needs to respond to, or during
the lane change task which follows the auditory input.
Splitting the feature extraction into smaller segments makes
it feasible to extract this sort of dynamic information and
splitting them in four is suitable in terms of the ordering of
the driving task and cognitive distraction induction.

The second type of features (Feature Set 2) are derived
from the cross-correlations of AUs on different time delay
levels. While constructing these features we were inspired
by the Appraisal Model of Emotion, as proposed by Scherer
[58], which states that the activation of certain physiolog-
ical components are coupled, or synchronized, when we
are faced with an emotional stimulus. Also following this
theory, Kroupi et al. have shown coupling between the
phase and amplitude of the EEG and EDA signals while the
subjects are watching emotionally stimulating music videos
[59]. Another example of a similar analysis is the multiple
works by Williamson et al., who have shown the existence
of a difference in coordination, movement, and timing of
vocal and facial components between patients suffering
from major depressive disorder (MDD) vs. control subjects
[60], [61], winning the AVEC 2013 [62] and AVEC 2014 [63]
challenges on automatic detection of MDD severity.

Using a similar idea, we calculate the cross-correlation
between each of the 14 AUs, within a delay of —80 to
+80 frames with 2 frames interval. This corresponds to a
signal of length 81 for each AU pair and allows modeling
the sequential behavior between AUs on a scale of —4 to
+4 seconds. From those signals we extract, once again, the
mean, variation, maximum and minimum values, in addi-
tion to the location in time of these maximum and minimum

AU1 AU2 AU4 AU6

AU7 AUIL0 AUI12 AU14 AUL5 AUL7 AU23 AU25 AU28 AU45

Fig. 7. Correlation table for the 14 AUs, a higher correlation indicates
a high number of co-occurrences between AUs in the training set. The
matrix was truncated for values < 0.25 to indicate the cross-correlations
that were excluded

values, and the correlation values at delays corresponding to
—40, —30, —20,—10, 0, 10, 20, 30 and 40 frames, i.e. at each
second in a bi-directional manner. This enables us to obtain
an extensive set of features that represent factors like the
total amount of co-activation and its variation, moments of
maximum and minimum synchronization and the level of
co-activation at certain levels of delay between AUs located
in similar or different parts of the face. Finally, we truncate
the feature set according to the correlation priors between
AUs. This truncation serves for keeping AU combinations
that frequently occur and removing those with little or
no correlation. In case such an unusually high correlation
is observed, for instance caused by a distortion from the
virtual view reconstruction due to heavy head-pose, this
process will make sure this noisy observation has no effect
on the overall feature set. As correlation priors we use the
co-occurrence table of AUs obtained from the AU detection
training set, as used in [15], and use a threshold of 0.25
as shown in Fig. 7. This ratio was chosen empirically and
allows for discarding the AU pairs that are not naturally and
commonly related to each other.

Our hypothesis is that this dynamic co-activation infor-
mation will help better differentiate the facial behavior of
the complex mental state that is cognitive distraction. In
Section 5, we show that, indeed the cross-correlation based
features improve the accuracy on a subject based analysis,
yet they are not so helpful for the subject independent
classification task.

4.4 Person Specific Normalization for Classification
using SVM and Random Forests

The final component of the distraction detection system is
the classification part. For this, we use linear SVM for the
subject based tests, where the training and test examples
are relatively on similar manifolds compared to between
subject tests. For the subject independent tests, we therefore
compare the performance of the SVM with Random Forests
(RF) classifiers. RF are known to be less effected by over-
fitting thanks to their bagging mechanism [64]. They learn
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Fig. 8. The data distribution on the two first principal axes, with an
example subject chosen as the test case. Label = 0 for baseline and
1 for cognitive distraction condition. (better visualized when printed in
color)

the best splitting by multiple features each time randomly
choosing a random subset of samples and features. They are
also more suitable for cases with a large number of features.

For the SVM training and testing we make use of the
LibSVM library [65] and for the RF we use the Scikit-
learn machine learning library for python [66]. The hyper-
parameter C' for the SVM and the number of trees, maxi-
mum number of features and minimum number of samples
per split hyper-parameters of the RF were optimized using
a 5-fold cross-validation on the training data in a subject
independent manner.

While analyzing the data we have discovered that al-
though both type of features are very effective in discrimi-
nating the distraction and baseline sequences of individual
subjects (see Subsection 5.1) the performance on the subject
independent tests are very low. We assume that the reason
is that the types of features that we use are discriminative
enough to model individual behavior, yet they remain too
person-specific. Indeed, visualizing the data, we have seen
that most of the subjects are clustered among their own
samples. Fig. 8 shows an illustration of this phenomenon
using the first two principal components of Feature Set 1
after PCA applied on all training data. We can see that even
using two dimensions the data points belonging to the test
subjects can be easily separated into the labels, yet the same
is not true for the training data, for which samples from the
two labels do not demonstrate any noticeable pattern and
are scattered across the feature space instead. Of course,
the projection on 2D is not very meaningful when using
complex classification methods; Fig. 8 is only for illustrative
purposes.

To overcome this problem, instead of the common con-
vention of normalizing the whole training data to zero-mean
and unit standard deviation, we propose to perform this
operation subject wise, as:

VmEF::U:I £ (1)

S
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where z is any point in the features set F' belonging to the
subject s, T, is the mean of all data points belonging to
subject s and o the standard deviation. Even though, this
may seem as a factor preventing a real-time application on
an unseen subject, the only implication it brings is actually
the need for some seconds of frames from the considered
subject. In other terms, the person based normalization is
completely unsupervised, does not require any re-training
of the classifier (as we only need to change the placement
of the test subject) and as seen in Section 5.2 increases
substantially the subject independent detection rates with
~ 100 data points per subject.

5 RESULTS

This section presents our classification result for the baseline
vs. cognitive distraction cases. Out of the 4520 LCS in total
(~ 100 per subject), the number of the sequences for the cog-
nitive distraction case is 2156. We present our experimental
results for the classifiers trained per-subject and in a subject
independent manner using different feature configurations
and classifiers. Table 3 presents the accuracies for the best
performing systems for the two types of experiments, serv-
ing as a summary of the results and the details are presented
in the rest of the section.

TABLE 3
Results (in percentage) of Best Performing Systems for Subject
Independent and Dependent Cases - OA: Overall Accuracy, F1:
F-score, Prec.: Precision, Rec.: Recall

] | OA | F1 | Prec. | Rec. |
Sub. Dependent || 95.51 | 95.16 | 96.38 | 93.97
Sub. Independent || 68.10 | 65.57 | 67.22 | 64.00

5.1 Subject Dependent Cognitive Load Detection

We first train classifiers independently for each of the 46
subjects in a leave-one-out manner. That is, we learn the
classifier hyper-parameters using a 5-fold cross-validation
and train the classifier with the best parameters on all
sequences for a certain subject points except for one, and
test it on the left-out sequence, or data point. The classifier
we use for the subject dependent tests is the linear SVM.
In Table 4 we show the results obtained using Feature Set
1 alone, Feature Set 2 alone and the two in combination,
and compare the accuracies obtained with and without the
truncation of correlation features as explained in Sec. 4.3.
We have also performed a Wilcoxon signed rank test on the
per-subject accuracy distributions of each pair of methods.
The tests resulted in a p — value < 0.01 each time, showing
the statistical significance of the comparison of the type of
features.

As shown in Table 4, the best results are obtained by
combining the features extracted directly from AU signals
(Feature Set 1) and those from the cross-correlations (Feature
Set 2), supporting our hypothesis that the dynamic inter-
relations of AUs are useful in determining individuals’
expressions of cognitive load. Using Feature Set 2 alone also
proves as efficient as using Feature Set 1. The best accuracies
obtained are 95.51% with a standard deviation (std.) across
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TABLE 4
Subject Dependent Detection Results - OA: Overall Accuracy, F1:
F-score, FT: Feature Truncation on Set 2

] Feature type | OA (%) || F1 (%) |

Feature Set 1 93.74 93.39
Feature Set 2 93.85 93.47
Feature Set 2 + FT 93.89 93.49
Features Sets 1 + 2 94.88 94 .57
Feature Sets 1 + 2 + FT 95.51 95.16

subjects of 3.44 for the overall accuracy and 95.16% for the
F-score with std. 3.67. These values are calculated over all
data points, which corresponds to an average weighted by
the number of sequences per subject. The very high accuracy
measures, and low variation among subjects, demonstrate
the efficiency of the proposed system, when it is trained
on labeled data of a specific subject. A side-observation is
that, the feature truncation improves accuracy in both of the
relevant cases (Feature Set 2 alone and Feature Set 1 and
2 combined), validating the usefulness of exploiting prior
AU co-occurrence information. The per-subject accuracies
for the best performing system are shown in Fig. 9, which
will be referred to again in the following subsections.

5.2 Subject Independent Cognitive Load Detection

The second set of experiments we have performed is the
subject independent tests, that is carried out in a leave-one-
subject-out manner. This time, we also use RF in comparison
with SVM, since RF are known to be less affected by over-
fitting on training data, or subjects in our case. We have not
included the results using RF in the driver dependent exper-
iments as SVM gave better results by making the best use of
the relatively low variance subject based datapoints. Table 5
presents the results obtained using both classifiers, Feature
Set 1 and 2 alone and in combination, additional PCA
(retaining 98% of the total variance, performed for SVM
only since RF internally handle the problem of irrelevant
features) and the subject based normalization as explained
in Sec. 4.4. Similarly to Sec. 5.1, we have also performed a
Wilcoxon signed rank test to statistically compare each pair
of experiments and obtained a p — value < 0.05 for each
one.

The best results are obtained using RF classifier with
Feature Set 1 alone when the person-specific normalization
is applied with overall accuracy 68.10% (std. = 12.71) and F-
score 65.79% (std = 14.02). The person-specific normalization
is indeed very effective with all features types, especially
with RF. This confirms our rationale explained in Sec. 4.4,
claiming that the data points of each subject are clustered
separately in the feature space. However, it is not effective
enough to obtain an accuracy close to the classifiers trained
in a subject based manner (Sec. 5.1). As it can be seen in Fig.
9 this effect is more critical in certain subjects (e.g. Subjects 4,
7,13) and less in others (e.g. Subjects 5, 6). Also, we observe
that the correlation related features (Feature Set 2) do not
increase the detection efficiency when used in combination
with Feature Set 1, and also result in lower results when
used alone. These results suggests the individuality of such
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TABLE 5
Subject Independent Detection Results - OA: Overall Accuracy, F1:
F-score, FS: Feature Set, SN: Subject wise data normalization

| CL type | Feature type | OA (%) || F1 (%) |
FS1 63.36 59.69
FS1+ PCA 63.74 58.42
FS 1+ SN 65.5 62.32
FS1+ PCA + SN 65.35 61.77
ES2 57.85 54.95
FS2 + PCA 59.38 55.31
SVM FS2 + SN 61.39 58.95
FS 2 + PCA + SN 62.72 62.14
FS1+2 61.82 59.19
FS1+2+PCA 59.58 54.65
FS1+2+SN 62.99 60.92
FS1+2+PCA +SN 63.96 61.49
FS1 63.98 61.93
FS1 + SN 68.10 65.79
RE FS2 57.19 59.31
FS2 + SN 63.98 61.49
FS1+2 58.83 60.61
FS1+2+SN 65.29 64.17

dynamic multi-AU patterns, i.e. that this kind of informa-
tion is more meaningful when it is learned on each subject
independently. This problem of individuality is discussed
further in the rest of the paper.

5.3 A look into the relevant features

In order to see which AUs or AU pairs are the most relevant
to our proposed classification task we inspect the correla-
tions of each feature in Feature Set 1 and 2 with the ground-
truth labels for baseline and cognitive distraction segments.
Since the subject dependent classification is significantly
more efficient compared to the subject independent one, we
find it more rational to perform this analysis on a subject
level as well.

Most Correlated AUs in FS1 for Per-Subject Analysis (in %)
T T T

AU1  AU2 AU4 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU23 AU25 AU28 AU45
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Fig. 10. Percentage of each AU within the 50 most correlated features
for each subject in Feature Set 1

First, we calculate the correlation of all 224 features from
Feature Set 1 with the labels for each 46 subjects. Then, for
the 50 most correlated features for each subject we look at
which AU signal and which temporal segment they belong
to. Fig. 10 shows the total percentage of each AU among
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Fig. 9. Overall Classification Accuracies for each subject, for the best performing methods in subject independent and subject based training

conditions
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Fig. 11. Average (and std.) number of features selected from each time
segment of the sequences within the 50 most correlated for each subject
in Feature Set 1

those features, and Fig. 11 shows the mean and standard
deviation for each of the four segments (std. removed from
Fig. 10 for clarity of presentation). We observe that the AU
that appears most in the analysis is AU7 (eye-lid tightener),
which indeed appears frequently in expressions related to
concentration, thinking or focusing. It is followed by the
outer and inner eye-brow raise motions AU2 and AU, lips
part AU25 and chin raise AU17, without any clear difference
in amount of occurrence. The fact that many AUs occur
frequently in the list of correlated features once again shows
the large variety of expressions related to cognitive load,
and helps explaining the difficulty in obtaining a highly
accurate subject independent system. Two of the five most
correlated AUs (AU1 and AU17) are also in line with the
features found relevant to human perception of cognitive
distraction, reported in [31]. For the temporal segments,
none of the segments seem to dominate the others; yet, the

first quarter is observed to appear less. This is expected,
since it corresponds to the first two seconds of the LCS
where the secondary task is presented (mental calculation)
and the lane change task appears only in the second quarter,
forcing the driver to divide his attention and workload
between tasks.

AU1 AU2 AU4 AU6 AU7 AUT0AU12AU14AUT5AU17 AU23AU25AU28 AU45

Fig. 12. Percentage of the most correlated AU pairs within the 100 most
correlated for each subject in Feature Set 2

We perform the same procedure for Feature Set 2 and
plot the percentage occurrence of features belonging to AU
pairs as seen in Fig. 12. This time we investigate the 100 most
correlated features, as the whole set is larger (of size 750).
Some relevant AU pairs worth mentioning are AU7 — AU1,
AU45 - AU2, AU1—-AU2, AU1—- AU4, AU17— AU23 and
AU2— AU17 . Although it is harder to interpret the features
this time, we observe that most of them are related to eye /
eye-brow actions, as in the single AU case. Interestingly, the
most correlated upper AU pair includes the AUs identified
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as related to fatigue in [22], which possibly implies an
effort to regain attention, commonly in the two conditions.
The lower face combination AU17 — AU23, on the other
hand, can appear in expressions related to pensiveness or
assessment of coping potential depending on the simultane-
ous upper face actions. Therefore, it makes sense that this
combination is relatively meaningful for the differentiation
between cognitive distraction and baseline.

5.4 Discussion

The presented results demonstrate that, although a subject
based training or adaptation is necessary in order to obtain
a highly precise detection, the subject independent system
still achieves an acceptable accuracy in detecting the se-
quences with cognitive load. It is a known fact that the
cognitive distraction is not one of the basic emotions (or
states) that are conveyed similarly by everyone in terms of
facial expressions. The subject dependency issue is therefore
expected in systems aiming at recognizing such complex
expressions. As for the unsupervised subject based normal-
ization proposed, with an unseen driver the system requires
only some couples of seconds of images of the driver’s face
to increase the detection rate ~ 4%.

As stated earlier, the system is designed so that it can be
completely integrated into a passenger vehicle. All compo-
nents work in real-time (> 15fps) and integrating the two
separately implemented pipelines of virtual view generation
and AU detection will also increase speed.

A possible real-world application could be to integrate
the system within the human-machine interface of the vehi-
cle, and to activate a visual or audio alert to warn the driver
in case a critical level of distraction is detected, as a part
of Advanced Driver Assistance Systems (ADAS). With the
semi-automatic driven cars slowly entering our lives, such
systems gain even more importance, for instance to assess
the driver’s state when the driver needs to retake the car’s
control or to decide when it is safe (or suitable) to switch
to fully autonomous driving. The current system outputs
a decision based on 8.5 seconds of recording due to the
definition of the lane change task, but is fully adaptable to
shorter or longer durations and to the fusion of multiple
sequences. For instance, a moving window that collects
distraction information in time can be utilized and the
relevant alert system could be activated when the number of
segments involving cognitive load reaches a certain thresh-
old. According to the detected level of cognitive load the
severity of the countermeasure can also be adjusted, ranging
from a small alerting beep or a message on the console to
automatically slowing down or even stopping the car when
conditions are suitable.

There are still many issues to handle for the real-world
use of the system. Firstly, even though we propose a system
with a NIR light and infrared system, images recorded
outdoors may still differ in terms of color, texture and
quality. We will perform outdoor recordings in order to
assess the robustness of the system. A general convention
in driver feed-back systems is to alert the driver timely, only
when really needed and in a way that does not annoy the
driver. This requires a good balance between the precision
and recall, i.e. false positives and false negatives. Further
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user studies need to be performed in real driving conditions
to assess the robustness of the detection, e.g. considering
the head movements in real conditions, but the presented
results already show the applicability of the proposed sys-
tem. The system is also suitable to be adjusted for the
precision/recall ratio (e.g. by tuning the decision level of
the classifiers). The length of the temporal window, the four
seconds delay introduced in feature construction and the
previously mentioned threshold should also be tuned to
obtain the best compromise between the driver comfort and
safety.

Distraction does not affect our lives only in the driving
context. Knowing that abnormalities in maintaining atten-
tion are symptoms of disorders such as Attention deficit
hyperactivity disorder (ADHD), Asperger’s syndrome or
other Autism spectrum disorders, and considering the high
accuracy of our subject dependent system, another possi-
ble use of the proposed system could be a personalized
monitoring system to provide feed-back during treatments,
that involve interaction with a human or a machine, of
individuals suffering these disorders. A review of works on
such interactive technologies can be found in [67].

6 CONCLUSION

We have presented a database, called EPV-DIST, of 46 people
recorded using three cameras while driving a simulator in
baseline, visual distraction and cognitive distraction condi-
tions. The recordings have been configured to represent a
configuration that could be integrated and work robustly
inside an actual car during real driving conditions. Then,
we have demonstrated a complete pipeline to discriminate
the cognitive distraction segments from the baseline based
on AUs. The proposed system first reconstructs a virtual
frontal face image using the input from the three cameras,
applies AU detection on the virtual image, then uses fea-
tures extracted from the dynamic AU signals and cross-
correlations of AU pairs to classify segments in the two
driving conditions.

Using different configurations and methods we obtain
an accuracy of ~ 95% when the system is trained separately
on each subject, and ~ 68% in the subject independent case.
Based on these results and further analyses, we identify
that facial expressions of cognitive load vary hugely among
subjects and also report the AUs and AU pairs that show
relevance most commonly among the subjects. The com-
pletely automatic non-intrusive detection system is ready
to be accommodated in consumer vehicles for use within
applications aiming to prevent, or decrease, human error in
accidents. Our further research will include the gaze and
head-pose related features and their benefits for detecting
the various types of distraction along with AUs. Compared
to existing related work, this study is the one performed
with the highest number participants using solely automatic
analysis of facial actions and we hope the introduction of the
database will stimulate further research in the field.
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