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Goal

Given partially observed information at the nodes of a graph

Can we robustly and efficiently infer missing information 7

What signal model ?
How many observations 7

Influence of the structure of the graph 7



Notations

G =1{V,E,W} weighted, undirected

) is the set of n nodes
£ 1is the set of edges
W € R™*" is the weighted adjacency matrix

I_ c Ran
combinatorial graph Laplacian L :=D — W

normalised Laplacian L := 1 — D~1/2WD~1/2

diagonal degree matrix D has entries d; := Z#j Wy
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Notations

L is real, symmetric PSD

orthonormal eigenvectors U € R™*"™ Graph Fourier Matrix

non-negative eigenvalues Ay < Ay < ..., A\,

L = UAUT

k-bandlimited signals x € R"

Fourier coefficients x=UTx

r=U.z" " ecR”

. nXxk
Uk S (u17 I ,’U,k) c R first k eigenvectors only



p € R"

Sampling Model

pi>0 pl,=) pi=1
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Sampling Model

UTdill,  [lUFail,
UTo; 2 H‘SzHQ

= [[Udill,

How much a perfect impulse can be concentrated on first k eigenvectors

Carries interesting information about the graph

Ideally:  p; large wherever ||U}§;]|, is large

Graph Coherence



Stable Embedding

Theorem 1 (Restricted isometry property). Let M be a random subsampling
matriz with the sampling distribution p. For any 6,e € (0,1), with probability
at least 1 — ¢,

—ailzl2 < ZlImp12 2l < 1+ 8) 122 1
(1-8) 2l < = ol < (140 al? )
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Stable Embedding

Theorem 1 (Restricted isometry property). Let M be a random subsampling
matriz with the sampling distribution p. For any 6,e € (0,1), with probability
at least 1 — ¢,

1—6 2 o Llimp-172 2<1 ) 2 1
( )lelz\m w2\(+)Hw||2 (1)

for all x € span(Uy) provided that

3 2k
m> g w7 1o (2 2)
MP~1/2 & = Pél/Ql\/Iw Only need M, re-weighting offline
(Vl;)z > k Need to sample at least k£ nodes

Proof similar to CS in bounded ONB but simpler since model is a subspace (not a union)
8
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T
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Variable Density Sampling 1=1,...,n
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Stable Embedding

(%’2)2 >k Need to sample at least k nodes

Can we reduce to optimal amount ?

|UT6,]l,
Variable Density Sampling  p; := kk 2, 1 =1,..

)

is such that: (y£)2 — Lk and depends on structure of graph

Corollary 1. Let M be a random subsampling matriz constructed with the sam-
pling distribution p*. For any d0,e € (0,1), with probability at least 1 — €,
2

1
(1= lel3 < — [MP~2a|| < (1+9) =l

for all x € span(Uy) provided that

3 2k
m>§klog(—). 9

€
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Recovery Procedures

y=Mzx+n y € R™

x € span(Uy) stable embedding

Standard Decoder

min |P51/2 (I\/Iz—y)“
2

z€span(Uy) \

re-weighting for RIP

need projector
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Recovery Procedures

y=Mx+n y € R™

x € span(Uy) stable embedding
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Recovery Procedures

y=Mx+n y € R™

x € span(Uy) stable embedding

Efficient Decoder:

min

P, (Mz — y)H2 + v 2Tg(L)z
zER™ 2 2
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Recovery Procedures

y=Mx+n y € R™

x € span(Uy) stable embedding

Efficient Decoder:

: —1/2 2 \
min (P52 (Mz - y)| +{zTg(L)2)
FAS) V.

2

soft constrain on frequencies

efficient implementation

11



Analysis of Standard Decoder
Standard Decoder:

min
zespan(Uyg)

P2 (M2 —y)||2
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Analysis of Standard Decoder
Standard Decoder:

min
zespan(Uy)

Py!? Mz — )|

Theorem 1. Let ) be a set of m indices selected independently from {1,...,n}
with sampling distribution p € R™, and M the associated sampling matriz. Let

e,0 € (0,1) and m > & (v))? log (28). With probability at least 1 — €, the

following holds for all € span(Ug) and all n € R™.

i) Let x* be the solution of Standard Decoder with y = Mx + n. Then,

/m (21 =) [Pa'*nl, L)

e _33H2 < )

it) There exist particular vectors ng € R™ such that the solution x* of Stan-
dard Decoder with y = Mx 4+ ng satisfies

*

—1/2
2 — @], > |Pa! "m0 2)

1
vm (14 9)
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min
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(1)

Exact recovery when noiseless gy . e =

it) There exist particular vectors ng € R™ such that the solution x* of Stan-
dard Decoder with y = Mx 4+ ng satisfies

*

—1/2
2" - @], > |Pat?nol| - 2)

1
vm (14 9)

12



Analysis of Standard Decoder
Standard Decoder:

min
z€span(Uy)

Py!? Mz — )|

Theorem 1. Let ) be a set of m indices selected independently from {1,...,n}
with sampling distribution p € R™, and M the associated sampling matriz. Let
6,0 € (0,1) and m > & (v)? log (28). With probability at least 1 — €, the
following holds for all € span(Ug) and all n € R™.

i) Let x* be the solution of Standard Decoder with y = Mx +n. Then,

(1)

Exact recovery when noiseless gy . e o

it) There exist particular vectors ng € R™ such that the solution x* of Stan-

12



Analysis of Efficient Decoder

Efficient Decoder:

2
P (Mz — y)H2 + v 2Tg(L)z

non-negative

min
zER™

13



Analysis of Efficient Decoder
Efficient Decoder:

min

Po/? (Mz — y)H2 + “g(L
z€R" {2 2 )

Ynon-negatives

Filter reshapes Fourier coefficients

A

h:R—R xp, := Udiag(h) UTx € R"
i:" — (h(A1)7 R h(An))T SN
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Analysis of Efficient Decoder

Efficient Decoder:

2
1mMin
zcR"

P51/2 (Mz — y)H

+ A 2T g(L)z y

Filter reshapes Fourier coefficients

A

h:R—R xp, := Udiag(h) UTx € R"
i:" — (h(A1)7 R h(An))T SN

d d
p(t) = Z oy t! x, = Udiag(p)UTx = Z o; L'a
1=0 i=0

Pick special polynomials and use e.g. recurrence relations for fast

filtering (with sparse matrix-vector multiply only) .



Analysis of Efficient Decoder
Efficient Decoder:

min

PoL/? (Mz — y)H2 i
ZER” Q 2

Ynon-negatives

non-decreasing = /

penalizes high-frequencies
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Analysis of Efficient Decoder

Efficient Decoder:

P2 Mz —y)| +2Tg(L)z )

min

zcR" 2

non-decreasing — /

penalizes high-frequencies

Favours reconstruction of approximately band-limited signals

Ideal filter yields Standard Decoder

: (t) o 0 if t € [O,Ak],
RN RIS otherwise,

14



Analysis of Efficient Decoder

Theorem 1. Let 2, M, P, m as before and My.x > 0 be a constant such
that ||MP~Y/2|| ) < Muax. Let €,6 € (0,1). With probability at least 1 — ¢, the
following holds for all € span(Uy), all n € R™, all v > 0, and all nonnegative
and nondecreasing polynomial functions g such that g(Agy1) > 0.

Let x* be the solution of Efficient Decoder with y = Mx 4+ n. Then,

]. max -
lo* — 2], < 2+ |Po*n|
vm(l—9) VY9 Akt1) 2

+ (Mmax g?;:f_)l) + w(&)) iv2] :
(1)

and

HP—1/2

1871, < H Iz (2)

VY( >\k:+1

where o := UipU] x* and B* := (1 — UxU]) x

15



Analysis of Efficient Decoder

Noiseless case:

. 1 9(Ax) . 9Xe)
H',L‘ ||2 < \/m(l — 5) <Mmax\/g(Ak+1) + 79()‘16)> || H2 + \/Q(Ak+1) || H2

g(Ax) =0 + non-decreasing implies perfect reconstruction

16



Analysis of Efficient Decoder

Noiseless case:

. 1 g(Ax) g(Ax)
H"E — CD||2 < \/m(l — 5) (Mmax\/g(Ak—}—l) + 79(>\k)> ||CUH2 + \/.g(>\l<:—|—1) ||CBH2

g(Ax) =0 + non-decreasing implies perfect reconstruction

Otherwise:
choose v as close as possible to 0 and seek to minimise the ratio g(Ax)/g(Ag+1)

Choose filter to increase spectral gap 7

Clusters are of course good

. —1/2
Noise: 1P 2nlla/ |||,

16



Estimating the Optimal Distribution



Estimating the Optimal Distribution

Need to estimate HUL&H%
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Estimating the Optimal Distribution

Need to estimate HU;TC57,||§

Filter random signals with ideal low-pass filter:

= Udiag(A1,..., A%, 0,...,0) UTr = UU] r

’I“bAk

E(re,, )7 = 8JUxU] E(rrT) UULS; = |ULS:];
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Estimating the Optimal Distribution

Need to estimate HUIE&,H%

Filter random signals with ideal low-pass filter:

= Udiag(A1,..., A%, 0,...,0) UTr = UU] r

’I"bAk

E(rey, )i = 67UUL E(rrT) ULUT4; = |UT&;

In practice, one may use a polynomial approximation of the ideal filter and:

S ()2
Zz 1Zl 1( cAk)

C 2n
L > 1
52 Og(€> 17

152'1



Estimating the Eigengap



Estimating the Eigengap

Again, low-pass filtering random signals:

S
I~

(1=08) > JuLaif, < D> (rh)? <
1=1

=1 [=1

(1+06) Y |ULail;
1=1

18



Estimating the Eigengap

Again, low-pass filtering random signals:

S
I~

—o S UnER < SN ()2 < (140) UL
i=1 =1

=1 [=1

mn
Since: Z HUJT*(ssz = ||U;~ ||§rob =7
—1

S
I~

We have: (1 -9 ZZ "“bA (1+9)J"

1=1 l:l

Dichotomy using the filter bandwidth

18



Experiments

Community graph

’ [
Uniform distribution o Optimal distribution p°* Estimated distribution p
1
Li ;
08- 08- |
3 08
v |2 .
oarf! 04- §
02 : 02 :
Jlé 100 lSOMZéOW:ﬁOW J‘SO 100 150 200 250 300 350 400
m m

19



Experiments

Minnesota - k = 100 Bunny - k = 100
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!
o8

0z

'
o8f

1500

o

20



Vg
)
-
()
&
o
()
O
x
LL]

=10

k

Community graph Cs -




Experiments

(b)

Original Roconstructed (sampling with )

7%
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions
Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

by Johnson-Lindenstrauss 17 =

e | 2 ® o |
"i | | o @ £ l
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Compressive Spectral Clustering

Clustering equivalent to recovery of cluster assignment functions

Well-defined clusters -> band-limited assignment functions!

Generate features by filtering random signals

4423

by Joh -Lindenst =
y Johnson-Lindenstrauss 7 279 ¢33

logn

Each feature map is smooth, therefore keep

6 5 k
m>5—2uk log | -

€

Use k-means on compressed data and feed into Efficient Decoder*



Compressive Spectral Clustering

recovery pexformance for k=20; e=¢ c18; and Lrec

288 498

171 245 350 500
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Conclusion

Stable, robust and universal random sampling of smoothly varying
information on graphs.

Tractable decoder with guarantees
Optimal sampling distribution depends on graph structure

Can be used for inference, (SVD less) compressive clustering



Thank you |



