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1. Introduction

It has long been known that the Hochschild homology of a (differential graded) com-
mutative algebra admits natural power operations [6,19], which are closely related to 
the power operations on free loop spaces [4,25]. These power operations in Hochschild 
homology can be constructed as follows.

If H is a Hopf algebra over a ring R, then the R-module End(H) of endomorphisms 
of H admits a multiplication ∗, called the convolution product. For all f, g ∈ End(H), 
the convolution product of f and g is the composite

H δ−→ H ⊗H
f⊗g−−−→ H ⊗H

μ−→ H,

where δ and μ are the comultiplication and multiplication on H, respectively. The 
rth-power map on H is then just

λr = Id∗r
H = μ(r)δ(r), (1.1)

where δ(r) : H → H⊗r and μ(r) : H⊗r → H denote the iterated comultiplication and 
multiplication.

Recall that the Hochschild complex of an augmented algebra A, which we denote 
H (A), can be seen as a twisted extension of A by B(A), the bar construction, i.e., there 
is a twisted tensor extension

A H (A) B(A) . (1.2)

If A is commutative, then B(A) is naturally a commutative Hopf algebra, where the 
multiplication is the shuffle product. The multiplication on B(A) lifts to H (A), so that 
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(1.2) becomes a sequence of algebra maps. Moreover, the rth-power map on B(A) also 
lifts to a linear map λ̃r : H (A) → H (A) such that

A H (A)

λ̃r

B(A)

λr

A H (A) B(A)

(1.3)

commutes. The map induced by λ̃r in Hochschild homology is the rth-power map of 
[6,19].

In this paper we define and study a significant generalization of the power map on 
Hochschild homology. In [15] it is shown that a special case of this construction provides 
an integral algebraic model for the topological power map on the free loop space of a 
double suspension.

For any twisting cochain t : C → A, we define a chain complex H (t) that is a 
twisted tensor extension of A by C. The complex H (t) generalizes both the well-known 
Hochschild complex H (A) of a chain algebra A and the coHochschild complex Ĥ (C)
of a chain coalgebra C [13].

• If tB : BA → A is the couniversal twisting cochain associated to A, where BA

denotes the (reduced) bar construction on A, then H (tB) = H (A).
• If tΩ : C → ΩC is the universal twisting cochain associated to C, where ΩC denotes 

the (reduced) cobar construction on C, then H (tΩ) = Ĥ (C).

We first show that the construction H (t) is natural with respect to the most obvious 
notion of morphisms of twisting cochains: pairs (f, g), where f is a map of coalgebras 
and g is a map of algebras, commuting with the twisting cochains. In particular, any 
twisting cochain t : C → A induces a chain map Ĥ (C) → H (A).

We then prove that the Hochschild complex construction admits an extended natu-
rality, with respect to pairs of maps (f, g), where either f is a map of coalgebras up to 
strong homotopy (Theorem 2.36) or g is a map of algebras up to strong homotopy (The-
orem 2.46). We point out that the natural section A → ΩBA of the counit ΩBA → A of 
the bar/cobar adjunction is a map of algebras up to strong homotopy, while the natural 
retraction BΩC → C of the unit map C → BΩC is a map of coalgebras up to strong 
homotopy. Consequently, the natural chain map Ĥ (C) → H (ΩC) admits a retraction, 
while Ĥ (BA) → H (A) admits a section (Corollaries 2.39 and 2.48).

We are interested in determining conditions that guarantee the existence of operations 
and cooperations on the Hochschild complex, which motivates us to study certain types 
of (co)algebras with additional structure, known as Alexander–Whitney (co)algebras. 
A chain coalgebra C is an Alexander–Whitney coalgebra if its comultiplication map is a 
map of coalgebras up to strong homotopy, and the higher homotopies induce a coassocia-
tive comultiplication on ΩC. Every Alexander–Whitney coalgebra C is therefore a Hirsch 
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coalgebra [18], but, as we show (Example 3.19), not all Hirsch coalgebras are Alexander–
Whitney coalgebras. Dually, a chain algebra A is an Alexander–Whitney algebra if its 
multiplication map is a map of algebras up to strong homotopy, and the higher homo-
topies induce an associative multiplication on BA. Every Alexander–Whitney algebra 
A is therefore a Hirsch algebra. Alexander–Whitney (co)algebras are special types of 
B∞-(co)algebras [7,1].

We prove that if H is a chain Hopf algebra, then BH is an Alexander–Whitney 
coalgebra and ΩH is an Alexander–Whitney algebra (Theorem 3.12), strengthening a 
result of Kadeishvili [18]. In the course of the proof, we establish a result that is interesting 
in and of itself (Theorem A.11): for every pair of chain algebras A and A′, the natural 
“Alexander–Whitney” map B(A ⊗A′) → BA ⊗ BA′ is map of coalgebras up to strong 
homotopy.

As a consequence of the extended naturality of the Hochschild complex construction, 
we obtain that if t : C → H is a twisting cochain such that C is an Alexander–Whitney 
coalgebra and H is a chain Hopf algebra, then H (t) admits a comultiplication extend-
ing that on H and lifting that on C (Theorem 3.23). Dually, if t : H → A is a twisting 
cochain such that A is an Alexander–Whitney algebra and H is a chain Hopf algebra, 
then H (t) admits a multiplication extending that on A and lifting that on H (Theo-
rem 3.26). In particular, if C is an Alexander–Whitney coalgebra, then Ĥ (C) admits 
a comultiplication, while if A is an Alexander–Whitney algebra, then H (A) admits a 
multiplication.

The heart of this article concerns the existence of power maps on the Hochschild 
complex of a twisting cochain. We show that, under certain cocommutativity conditions, 
if t : C → H is a twisting cochain, where C is a Hirsch coalgebra and H is a chain Hopf 
algebra, then H (t) admits an rth-power map λ̃r extending the usual rth-power map on 
H and lifting the identity on C (Theorem 4.1). In particular, if H is a cocommutative 
Hopf algebra, then H (H) admits an rth-power map extending the usual rth-power 
map on H and lifting the identity map on BH (Corollary 4.3). Dually, if C is a Hirsch 
coalgebra such that associated comultiplication on ΩC is cocommutative, then Ĥ (C)
admits an rth-power map extending the usual rth-power map on ΩC and lifting the 
identity on C (Corollary 4.2). We also show that the natural map Ĥ (C) → H (H)
induced by the twisting cochain t commutes with the rth-power maps.

Throughout the article we provide numerous concrete examples of our constructions, 
primarily topological in nature.

Remark 1.1. The rth-power maps on the Hochschild complex of a cocommutative Hopf 
algebra should induce a Hodge-type decomposition of its Hochschild homology, at least 
in characteristic zero. It would be interesting to study this decomposition.

Remark 1.2. It is probably possible to generalize the constructions here to higher-order 
Hochschild complexes, in the sense of Pirashvili and Ginot [23,8].
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1.1. Notation and conventions

• Throughout this paper we are working over a commutative ring R, so that all un-
decorated tensor products are implicitly taken over R. We denote the category of 
(non-negative) chain complexes over R by ChR, the category of augmented, asso-
ciative chain algebras over R by AlgR, the category of coaugmented, coassociative, 
connected chain coalgebras by CoalgR and the category of connected chain Hopf al-
gebras by HopfR. The underlying graded modules of all chain complexes are assumed 
to be R-free. For any object A in AlgR (respectively, C in CoalgR), we denote by 1
the image of the unit element in R under the unit map (respectively, the coaugmen-
tation).
The degree of an element v of a chain complex V is denoted |v|.
Given chain complexes (V, d) and (W, d), the notation f : (V, d) �−−→ (W, d) indi-
cates that f induces an isomorphism in homology. In this case we refer to f as a 
quasi-isomorphism.
Let f, g : A → A′ be morphisms of chain algebras. A derivation homotopy from f
to g consists of a chain homotopy H : A → A′ from f to g such that H(ab) =
H(a)f(b) + (−1)|a|g(a)H(b) for all a, b ∈ A.

• The suspension endofunctor s on the category of graded modules is defined on objects 
V =

⊕
i∈Z

Vi by (sV )i ∼= Vi−1. Given a homogeneous element v in V , we write sv
for the corresponding element of sV . The suspension s admits an obvious inverse, 
which we denote s−1.

• Let T denote the endofunctor on the category of free graded R-modules given by

TV = ⊕n≥0V
⊗n,

where V ⊗0 = R. An element of the summand V ⊗n of TV is a sum of terms denoted 
v1| · · · |vn, where vi ∈ V for all i.

• The bar construction functor B : AlgR → CoalgR is defined by

BA =
(
T (sA), dB

)
where A denotes the augmentation ideal of A, and if d is the differential on A, then

π ◦ dB(sa) = −s(da)

and

π ◦ dB(sa|sb) = (−1)|a|s(ab),

where π : T (sA) → sA is the projection. The entire differential is determined by its 
projection onto sA, since the graded R-module underlying BA is naturally a cofree 
coassociative coalgebra, with comultiplication given by splitting of words.
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• Throughout this article we apply the Koszul rule, a sign convention for commuting 
elements of a graded module or for commuting a morphism of graded modules past 
an element of the source module. For example, if V and W are graded algebras and 
v ⊗ w, v′ ⊗ w′ ∈ V ⊗W , then

(v ⊗ w) · (v′ ⊗ w′) = (−1)|w|·|v′|vv′ ⊗ ww′.

Furthermore, if f : V → V ′ and g : W → W ′ are morphisms of graded modules, 
then for all v ⊗ w ∈ V ⊗W ,

(f ⊗ g)(v ⊗ w) = (−1)|g|·|v|f(v) ⊗ g(w).

Moreover, starting from an element v1| · · · |vn, with sign +1, of TV for some free 
graded R-module V , the Koszul rule implies that for a permutation σ of {1, . . . , n}, 
the induced sign on the permuted word vσ(1)| · · · |vσ(n) is (−1)εσ , where

εσ =
∑

{j<k|σ(k)<σ(j)}
|vj | · |vk|.

• The cobar construction functor Ω : CoalgR → AlgR is defined by

ΩC =
(
T (s−1C), dΩ

)
where C denotes the coaugmentation coideal of C, and if d denotes the differential 
on C and c is a homogeneous element of C, then

dΩ(s−1c) = −s(dc) + (−1)|ci|s−1ci|s−1ci,

where the reduced comultiplication applied to c is ci ⊗ ci (using Einstein implicit 
summation notation). The entire differential is determined by its restriction to s−1C, 
since the graded R-module underlying ΩC is naturally a free associative algebra, with 
multiplication given by concatenation.

• The category of simplicial sets is denoted sSet in this article. Its full subcategory of 
reduced simplicial sets (i.e., simplicial sets with a unique 0-simplex) is denoted sSet0, 
while the category of pointed simplicial sets and basepoint-preserving simplicial maps 
is denoted sSet∗. Observe that sSet0 can naturally be viewed as a full subcategory of 
sSet∗. Objects in sSet, sSet∗, and sSet0 are usually denoted M , L and K, respectively, 
in this paper. The normalized chains functor from simplicial sets to chain complexes 
is denoted C∗.

• The reduced simplicial suspension functor E : sSet∗ → sSet0 ([20, Definition 27.6]) is 
defined by (EL)0 = {a0}, and for n > 0,

(EL)n = {sn0a0} 	
∐

{k} × Ln−k/ ∼,

1≤k≤n
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where (k, sn−k
0 x0) ∼ sn0a0 for all 1 ≤ k ≤ n, for every pointed simplicial set (L, x0).

The unreduced simplicial suspension functor Eu : sSet → sSet∗ ([26, Example 2.16]) 
is defined for any simplicial set M by (EuM)0 = {b0, c0}, where b0 is the basepoint, 
and c0 is the cone point, and for n > 0,

(EuM)n = {sn0 b0, sn0 c0} 	
∐

1≤k≤n

{k} ×Mn−k.

The double suspension functor for unpointed simplicial sets is then defined to be 
S2 = EEu : sSet → sSet0.

2. The Hochschild complex of a twisting cochain

We begin this section by recalling the definition and certain well-known examples of 
twisting cochains. We observe that twisting cochains are the objects of a category Tw, 
which admits an interesting monoidal structure. We then define the Hochschild complex 
functor H : Tw → ChR, which turns out to be strongly monoidal, and consider certain 
important special cases.

Weakening the definition of morphisms in Tw somewhat, we then consider two faithful, 
wide embeddings (i.e., injective on morphisms and bijective on objects) Tw ↪→ Twsh and 
Tw ↪→ Twsh and show that the Hochschild complex functor extends over both Twsh and 
Twsh. The extended naturality of the Hochschild construction that we obtain in this 
manner plays an essential role in the later sections of the paper.

2.1. Twisting cochains: definition and examples

Seen as functors from coalgebras to algebras and vice versa, the cobar and bar con-
structions form an adjoint pair Ω � B. Let η : Id → BΩ denote the unit of this 
adjunction. It is well known that for all connected, coaugmented chain coalgebras C, the 
counit map

ηC : C �−−→ BΩC (2.1)

is a quasi-isomorphism of chain coalgebras [22, Corollary 10.5.4].
Dually, let ε : ΩB → Id denote the counit of this adjunction. For all augmented chain 

algebras A, the counit map

εA : ΩBA �−−→ A (2.2)

is a quasi-isomorphism of chain algebras [22, Corollary 10.5.4].

Definition 2.1. A twisting cochain from a connected, coaugmented chain coalgebra (C, d)
with comultiplication Δ to an augmented chain algebra (A, d) with multiplication m
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consists of a linear map t : C → A of degree −1 such that

dt + td = m(t⊗ t)Δ.

Remark 2.2. A twisting cochain t : C → A induces both a chain algebra map

αt : ΩC → A

specified by αt(s−1c) = t(c) and a chain coalgebra map

βt : C → BA,

satisfying

αt = εA ◦ Ωβt and βt = Bαt ◦ ηC .

It follows that αt is a quasi-isomorphism if and only if βt is a quasi-isomorphism.

Example 2.3. Let C be a connected, coaugmented chain coalgebra. The universal twisting 
cochain

tΩ : C → ΩC

is defined by tΩ(c) = s−1c for all c ∈ C, where s−1c is defined to be 0 if |c| = 0. Note that 
αtΩ = IdΩC , so that βtΩ = ηC . Moreover, tΩ truly is universal, as all twisting cochains 
t : C → A factor through tΩ, since the diagram

C
tΩ

t

ΩC

αt

A

always commutes.

Example 2.4. Let A be an augmented chain algebra. The couniversal twisting cochain

tB : BA → A

is defined by tB(sa) = a for all a ∈ A and tB(sa1| · · · |san) = 0 for all n �= 1. Note 
that βtB = IdBA, so that αtB = εA. Moreover, tB truly is couniversal, as all twisting 
cochains t : C → A factor through tB, since the diagram
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BA

tB

C

βt

t
A

always commutes.

Example 2.5. Let K be a reduced simplicial set, and let GK denote its Kan loop group. 
In 1961 [24], Szczarba gave an explicit formula for a twisting cochain

tK : C∗K → C∗GK,

natural in K that induces a chain algebra map

αK := αtK : ΩC∗K → C∗GK. (2.3)

As shown in [16], αK factors naturally through an “extended cobar construction,” Ω̂C∗K, 
of which the usual cobar construction is a chain subalgebra, i.e., there is a commuting 
diagram of chain algebra maps

ΩC∗K
αK

C∗GK.

Ω̂C∗K

α̂K

Moreover, α̂K admits a natural retraction ρK such that α̂KρK is chain homotopic to the 
identity on C∗GK. In particular, α̂K is a quasi-isomorphism for all reduced simplicial 
sets K. Since Ω̂C∗K = ΩC∗K if K is actually 1-reduced, it follows that αK itself is a 
quasi-isomorphism if K is 1-reduced.

Remark 2.6. If t : C → A is a twisting cochain, f : C ′ → C is a chain coalgebra map 
and g : A → A′ is a chain algebra map, then gtf : C ′ → A′ is also a twisting cochain.

Notation 2.7. Let Tw denote the category such that

• Ob Tw = {t : C → A | t twisting cochain}, and
• if t : C → A and t′ : C ′ → A′ are twisting cochains, then

Tw(t, t′) = {(f, g) ∈ CoalgR(C,C ′) × AlgR(A,A′) | g ◦ t = t′ ◦ f}.

Composition of morphisms in Tw is defined componentwise.
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Remark 2.8. Note that (f, g) ∈ Tw(t, t′) if and only if Bg ◦ βt = βt′ ◦ f , which is true if 
and only if g ◦ αt = αt′ ◦ Ωf .

Later in this paper we are led to consider the following variant of Tw. Below, and 
elsewhere in this paper, if (H, δ) denotes a chain Hopf algebra, then H is the underlying 
chain algebra, and δ is the comultiplication.

Notation 2.9. Let TwHopf denote the category with

• ObTwHopf =
{(

C t−→ H, (H, δ)
)
| t ∈ Ob Tw, (H, δ) ∈ ObHopfR}, and

• if 
(
t, (H, δ)

)
and 

(
t′, (H ′, δ′)

)
are objects in TwHopf , then

TwHopf(t, t′) = {(f, g) ∈ Tw(t, t′) | (g ⊗ g)δ = δ′g}.

The proposition below gives a categorical formulation of the universality of tΩ and of 
the couniversality of tB.

Proposition 2.10. If S : Tw → CoalgR is the functor that projects onto the source of 
a twisting cochain and U : CoalgR → Tw is the “universal twisting cochain functor,” 
specified by U(C) = tΩ : C → ΩC and U(f) = (f, Ωf), then U is left adjoint to S.

Similarly, if T : Tw → AlgR is the functor that projects onto the target of a twisting 
cochain and V : AlgR → Tw is the “couniversal twisting cochain functor,” specified by 
V (A) = tB : BA → A and V (g) = (Bg, g), then V is right adjoint to T .

Proof. Note that (f, g) ∈ Tw
(
U(C ′), t

)
implies that

C ′

tΩ

f
C

t

ΩC ′ g
A

commutes. It follows that g = αt ◦ Ωf , since the graded algebra underlying ΩC ′ is free, 
and g is therefore determined by its values on the generators s−1C ′.

The natural isomorphism

ζ : CoalgR
(
C ′, S(t)

) ∼=−−→ Tw
(
U(C ′), t

)
for C ′ ∈ ObCoalgR and a twisting cochain t : C → A is thus defined by ζ(f) =
(f, αt ◦ Ωf), with inverse ζ−1 defined by ζ−1(f, g) = f .

The proof that V is right adjoint to T is similar. �
There is an important binary operation on the set of twisting cochains, defined as 

follows.
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Definition 2.11. Let t : C → A and t′ : C ′ → A′ be twisting cochains. Let ε : C → R and 
ε′ : C ′ → R be the counits (augmentations), and let η : R → A and η′ : R → A′ be the 
units (coaugmentations). Set

t ∗ t′ = t⊗ η′ε′ + ηε⊗ t′ : C ⊗ C ′ → A⊗A′

Then t ∗ t′ is a twisting cochain, called the cartesian product of t and t′.

Example 2.12. An important special case of the cartesian product of twisting cochains is

tΩ ∗ tΩ : C ⊗ C ′ → ΩC ⊗ ΩC ′,

for C, C ′ ∈ CoalgR. To simplify notation, we write

q = αtΩ∗tΩ : Ω(C ⊗ C ′) → ΩC ⊗ ΩC ′. (2.4)

Milgram proved in [21] that the chain algebra map q was a quasi-isomorphism if C and 
C ′ were simply connected, i.e., connected and C1 = C ′

1 = 0. In [12] it was shown that q
is in fact a chain homotopy equivalence, for all C, C ′ ∈ CoalgR.

Dually, for all A, A′ ∈ AlgR, there is a map of chain coalgebras that is a chain homotopy 
equivalence

∇ = βtB∗tB : BA⊗ BA′ → B(A⊗A′). (2.5)

The equivalence ∇ is often called the “Eilenberg–Zilber” equivalence, by analogy with the 
Eilenberg–Zilber equivalence of algebraic topology. We refer the reader to Appendix A
for further details of this equivalence.

Remark 2.13. Let t : C → A and t′ : C ′ → A′ be twisting cochains. Note that

αt∗t′ = (αt ⊗ αt′) ◦ q : Ω(C ⊗ C ′) → A⊗A′

and that

βt∗t′ = ∇ ◦ (βt ⊗ βt′) : C ⊗ C ′ → B(A⊗A′).

Remark 2.14. Endowed with the cartesian product of twisting cochains, the category Tw
is clearly monoidal, where the unit object is the zero map 0 : R → R.

2.2. Definition of the Hochschild complex

We can now define the Hochschild construction functor H : Tw → ChR, which we 
study and apply throughout the remainder of this paper. We begin by introducing a 
somewhat more general construction, which also englobes the other familiar constructions 
of chain complexes built from twisting cochains.
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Definition 2.15. Let t : C → A be a twisting cochain. Let N be a C-bicomodule with 
left C-coaction λN and right C-coaction ρN , and let M be an A-bimodule with left 
A-action λM and right A-action ρM . Let dM and dN denote the differentials on M and 
N , respectively. The Hochschild complex of t with coefficients in N and M , denoted 
Ht(N, M), is the chain complex with underlying graded R-module N ⊗ M and with 
differential dt, defined by

dt = dN ⊗M + N ⊗ dM

− (N ⊗ λM )(N ⊗ t⊗M)(ρN ⊗M)

− (N ⊗ ρM )(213)(t⊗N ⊗M)(λN ⊗M),

where (213) denotes the cyclic permutation of the three tensor factors.

It is a matter of straightforward, but somewhat tedious, computation, using the def-
inition of twisting cochains, to show that d2

t = 0, i.e., that Ht(N, M) really is a chain 
complex. Furthermore, if M is augmented over R and N is coaugmented over R, there 
is a twisted extension of chain complexes

M Ht(N,M) N .

Remark 2.16. If we apply dt to y ⊗ x ∈ N ⊗M , we obtain

dt(y ⊗ x) = dNy ⊗ x + (−1)|y|y ⊗ dMx

− (−1)|yj |yj ⊗ t(cj) · x− (−1)(|ci|−1)(|yi|+|x|)yi ⊗ x · t(ci),

where · denotes the left and right actions of A on M , λN (y) = ci⊗yi and ρN (y) = yj⊗cj

(using Einstein summation notation).

Notation 2.17. When N = C, seen as a bicomodule over itself via its comultiplication, 
and M = A, seen as a bimodule over itself via its multiplication, then we write

H (t) := Ht(C,A) = (C ⊗A, dt).

Note that in this case

dt = dC ⊗A + C ⊗ dA

− (C ⊗ μ)
(
(C ⊗ t⊗A) + (213)(t⊗ C ⊗A)

)
(Δ ⊗A).

Example 2.18. If A ∈ AlgR and M is an A-bimodule, then HtB(BA, M) is exactly the 
usual Hochschild complex on A with coefficients in M . In particular,
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H (tB) = H (A)

is the usual Hochschild complex on A.

Example 2.19. If C ∈ CoalgR and N is a C-bicomodule, then HtΩ(N, ΩC) is exactly the 
coHochschild complex on C with coefficients in N , as defined in [13]. In particular,

H (tΩ) = Ĥ (C)

is the coHochschild complex on C.

Example 2.20. The usual twisted extension over a twisting cochain t : C → A of a 
right C-module N by a left A-module M is a special case of the Hochschild complex 
construction defined above. It suffices to consider N as a C-bicomodule with trivial left 
C-coaction and M as an A-bimodule with trivial right A-action.

Proposition 2.21. The Hochschild complex construction extends to a functor

H : Tw → ChR.

Proof. Let (f, g) : t → t′ be a morphism in Tw from t : C → A to t′ : C ′ → A′. Define

H (f, g) : H (t) → H (t′)

by H (f, g)(c ⊗ a) = f(c) ⊗ g(a). An easy calculation shows that H (f, g) is then a 
chain map. Moreover, it is obvious that H (IdC , IdA) = IdH (t) and that H respects 
composition. �

Thanks to this proposition, we obtain a new proof of Theorem 4.1 in [13].

Corollary 2.22. A twisting cochain t : C → A induces a chain map

βt ⊗ αt : Ĥ (C) → H (A),

which is a quasi-isomorphism if αt and βt are quasi-isomorphisms.

Proof. Applying Proposition 2.21 to the morphism of twisting cochains

C

tΩ

βt

BA

tB

ΩC
αt

A,
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we obtain a morphism of chain complexes

H (βt, αt) = βt ⊗ αt : H (tΩ) → H (tB).

Since (cf. Examples 2.18 and 2.19) Ĥ (C) = H (tΩ) and H (A) = H (tB), we can 
conclude.

The quasi-isomorphism result follows from an easy argument based on the Zeeman 
comparison theorem. �
Remark 2.23. Applied to the universal twisting cochain tΩ : C → ΩC, Corollary 2.22
implies the existence of a quasi-isomorphism

ηC ⊗ IdΩC : Ĥ (C) �−−→ H (ΩC). (2.6)

Dually, for the couniversal twisting cochain tB : BA → A, we obtain a quasi-
isomorphism

IdBA ⊗εA : Ĥ (BA) �−−→ H (A). (2.7)

The following alternative description of the Hochschild construction of a twisting 
cochain turns out to be quite useful, as we see in sections 2.3 and 4.2. First we define 
yet another complex that can be constructed from a twisting cochain.

Definition 2.24. Let t : C → A be a twisting cochain. The twisted double extension of C
by A is the differential graded A-bimodule

D(t) = (A⊗ C ⊗A,Dt),

where Dt is the derivation of A-bimodules specified by

Dt(c) = 1 ⊗ dc⊗ 1 − t(ci) ⊗ ci ⊗ 1 − (−1)ci1 ⊗ ci ⊗ t(ci),

for all c ∈ C, where the reduced comultiplication applied to c is ci ⊗ ci.

It is a straightforward exercise, using the definition of twisting cochains, to show that 
D2

t = 0.

Remark 2.25. Note that for any twisting cochain t : C → A,

D(t) ∼= A⊗ΩC D(tΩ) ⊗ΩC A.

The relationship between the twisted double extension and the Hochschild complex 
can be expressed as follows.
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Lemma 2.26. If t : C → A is a twisting cochain, then there is an isomorphism of chain 
complexes

H (t) ∼= D(t) ⊗A⊗Aop A,

where the left A ⊗Aop-action on A arises, as usual, from the left and right actions of A
on itself, while the right A ⊗Aop-action on H (t) is that given by

(a⊗ c⊗ a′) · (b′ ⊗ b) = (−1)|b|(|a|+|c|+|a′|+|b′|)(ba) ⊗ c⊗ (a′b′).

The proof of this lemma is an easy computation, once one observes that there is an 
isomorphism of right A ⊗Aop-modules

A⊗ C ⊗A
∼=−−→ C ⊗A⊗Aop : a⊗ c⊗ a′ �→ (−1)|a|(|c|+|a′|)c⊗ a′ ⊗ a.

The derivation defined below plays a particularly important role in our discussion in 
the next section of the extended naturality of the Hochschild complex functor. Note that 
for any twisting cochain t : C → A, the twisted double extension D(t) is an ΩC-bimodule, 
since it is an A-bimodule.

Definition 2.27. Let t : C → A be a twisting cochain. Let

σt : (ΩC)>0 → D(t)

denote the derivation of ΩC-bimodules determined by

σt(s−1c) = 1 ⊗ c⊗ 1.

That σt is a derivation of ΩC-bimodules implies, for example, that

σt(s−1c1|s−1c2) = 1 ⊗ c1 ⊗ t(c2) − (−1)|c1|t(c1) ⊗ c2 ⊗ 1.

Direct application of the definitions implies the following useful identity.

Lemma 2.28. For any twisting cochain t : C → A,

Dtσt = −σtdΩ : (ΩC)>0 → D(t).

2.3. Extended naturality of the Hochschild construction

We show in this section that the Hochschild construction on a twisting cochain is 
actually natural with respect to a weaker notion of morphism than that adopted in the 
definition of Tw.
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Definition 2.29. (See [9].) Given C, C ′ ∈ Ob CoalgR, a chain map f : C → C ′ is called 
a DCSH (Differential Coalgebra with Strong Homotopy) map or a strongly homotopy-
comultiplicative map if there is a chain algebra map ϕ : ΩC → ΩC ′ such that

C

tΩ

f
C ′

s−1

ΩC
ϕ

ΩC ′ proj
s−1C ′

commutes. The chain algebra map ϕ is said to realize the strong homotopy structure of 
the DCSH map f .

Notation 2.30. For any chain algebra map ϕ : ΩC → ΩC ′, let fϕ : C → C ′ denote the 
R-linear map of degree zero given by the composite

C
tΩ−−→ ΩC

ϕ−→ ΩC ′ proj−−−→ s−1C ′ s−→ C ′

and by fϕ(1). Note that since ϕ is a chain map, fϕ is as well. Indeed, it is a DCSH map, 
with ϕ realizing its strong homotopy structure.

Example 2.31. If K and L are 1-reduced simplicial sets, then the natural Alexander–
Whitney map

C∗(K × L) �−−→ C∗K ⊗ C∗L

is a DCSH map [9].

Example 2.32. As we prove in Appendix A (Theorem A.11), if A and A′ are augmented 
chain algebras, then the natural Alexander–Whitney map

B(A⊗A′) �−−→ BA⊗ BA′

defined by Eilenberg and Mac Lane in [5] is a DCSH map.

Example 2.33. Let C be a connected, coaugmented chain coalgebra. Let ρC : BΩC → C

denote the composite

BΩC
tB−−→ ΩC

proj−−−→ s−1C s−→ C,

i.e., ρC
(
s(s−1c)

)
= c for all c ∈ C and ρC(sa1| · · · |san) = 0 otherwise. It is obvious that 

ρC is a retraction of ηC , i.e.,
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C
ηC

IdC

BΩC

ρC

C

commutes, which implies that ρC is a quasi-isomorphism. Moreover, ρC is a DCSH map, 
since

B+ΩC

tΩ

ρC

C

s−1

ΩBΩC
εΩC ΩC

proj
s−1C

commutes, where B+ΩC denotes the R-submodule of positively graded elements. In 
particular, εΩC realizes the strong homotopy structure of ρC .

Notation 2.34. Let Twsh denote the category such that

• Ob Twsh = {t : C → A | t twisting cochain}, and
• if t : C → A and t′ : C ′ → A′ are twisting cochains, then

Twsh(t, t′) = {(ϕ, g) ∈ AlgR(ΩC,ΩC ′) × AlgR(A,A′) | g ◦ αt = αt′ ◦ ϕ}.

Composition of morphisms in Twsh is defined componentwise.

Remark 2.35. There is an obvious faithful functor Tw to Twsh, which is the identity on 
objects and which sends a morphism (f, g) : t → t′ to the morphism (Ωf, g) : t → t′.

Theorem 2.36. The Hochschild construction functor extends to a functor

H sh : Twsh → ChR.

In particular, given twisting cochains t : C → A and t′ : C ′ → A′ and a commutative 
diagram in AlgR

ΩC

ϕ

αt

A

g

ΩC ′ αt′
A′,

there is a chain map H sh(ϕ, g) : H (t) → H (t′) such that
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ΩC

ϕ

αt

A

g

H (t)

H sh(ϕ,g)

C

fϕ

ΩC ′ αt′
A′ H (t′) C ′

(2.8)

commutes (cf. Notation 2.30). Furthermore, if ϕ and g are quasi-isomorphisms, then so 
is H sh(ϕ, g).

Proof. We begin by proving extended naturality for twisted double extensions (Defini-
tion 2.24), from which that of Hochschild complexes then follows easily. Let (ϕ, g) : t → t′

be a morphism in Twsh from t : C → A to t′ : C ′ → A′. The pair (ϕ, g) induces a mor-
phism of A-bimodules

D(ϕ, g) : D(t) → D(t′)

between the twisted double extensions associated to the t and t′, which is specified by

D(ϕ, g)(1 ⊗ c⊗ 1) = σt′ϕ(s−1c) ∀c ∈ C>0 and D(ϕ, g)(1 ⊗ 1 ⊗ 1) = 1,

where σt′ : (ΩC ′)>0 → D(t′) is the derivation from Definition 2.27. Thus,

D(ϕ, g)(a⊗ c⊗ b) = g(a)D(ϕ, g)(1 ⊗ c⊗ 1)g(b)

for all a, b ∈ A and c ∈ C, whence in particular

D(ϕ, g)(1 ⊗ 1 ⊗ a) = g(a) (2.9)

for all a ∈ A. Moreover, for all c ∈ C>0,

D(ϕ, g)(1 ⊗ c⊗ 1) = 1 ⊗ fϕ(c) ⊗ 1 + terms in (A+ ⊗ C ⊗A + A⊗ C ⊗A+). (2.10)

Straightforward computations using Lemma 2.28 show that

Dt′D(ϕ, g) = D(ϕ, g)Dt,

i.e., D(ϕ, g) is a morphism of differential graded A-bimodules or, equivalently, right 
A ⊗Aop-modules. Applying Lemma 2.26, we then obtain a morphism of chain complexes

H sh(ϕ, g) = D(ϕ, g) ⊗A⊗Aop A : H (t) → H (t′)

that makes diagram (2.8) commute, thanks to (2.9) and (2.10).
An easy spectral sequence argument shows that H sh(ϕ, g) is a quasi-isomorphism if 

ϕ and g are quasi-isomorphisms. �
For use later in this paper, we single out the following consequence of the proof above.
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Scholium 2.37. For every morphism (ϕ, g) : t → t′ in Twsh from t : C → A to t′ : C ′ → A′, 
there is a morphism of differential graded A-bimodules

D(ϕ, g) : D(t) → D(t′)

such that

(ΩC)>0
σt

ϕ

D(t)

D(ϕ,g)

(ΩC ′)>0
σt′

D(t′)

commutes.

Proof. It suffices to check commutativity of the diagram on elements of the form s−1c, 
which follows immediately from the definition of D(ϕ, g). �

As a consequence of Theorem 2.36, we obtain a new proof of Theorem 3.3 in [13].

Corollary 2.38. A DCSH map f : C → C ′ with a fixed choice of chain algebra map 
ϕ : ΩC → ΩC ′ realizing its strong homotopy structure naturally induces a chain map

ϕ̂ : Ĥ (C) → Ĥ (C ′)

such that

ΩC

ϕ

Ĥ (C)

ϕ̂

C

f

ΩC ′ Ĥ (C ′) C ′

commutes.

Proof. Recall that Ĥ (C) = H (tΩ) (Example 2.19). Let ϕ̂ = H sh(ϕ, ϕ). �
Theorem 2.36 also provides us with a new, more conceptual proof of Theorem B from 

[17], which was reformulated as Theorem 4.3 in [13] essentially as follows. Recall the 
DCSH retraction ρC : BΩC → C from Example 2.33 and the chain map ηC ⊗ IdΩC :
Ĥ (C) �−−→ H (ΩC) (2.6).

Corollary 2.39. Let C be a connected, coaugmented chain coalgebra. There is a quasi-
isomorphism ρ̂C : H (ΩC) �−−→ Ĥ (C), natural in C, such that
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ΩC

IdΩC

H (ΩC)

ρ̂C

BΩC

ρC

ΩC Ĥ (C) C

commutes and such that ρ̂C ◦ (ηC ⊗ IdΩC) = Id
Ĥ (C).

Proof. Let ρ̂C = H sh(εΩC , IdΩC). The naturality of H sh then implies that

ρ̂C ◦ (ηΩC ⊗ IdΩC) = Id
Ĥ (C) . �

The definitions and results above can be dualized as follows.

Definition 2.40. (See [9].) Given A, A′ ∈ Ob AlgR, a chain map g : A → A′ is called 
a DASH (Differential Algebra with Strong Homotopy) map or a strongly homotopy-
multiplicative map if there is a chain coalgebra map γ : BA → BA′ such that

sA

s−1

incl
BA

γ
BA′

tB

A
g

A′

commutes. The chain coalgebra map γ is said to realize the strong homotopy structure
of the DASH map g.

Example 2.41. Dualizing Example 2.31, we see that if K and L are 1-reduced simplicial 
sets of finite type, then the dual of the Alexander–Whitney map (i.e., the cross product)

C∗K ⊗ C∗L �−−→ C∗(K × L)

is a DASH map.

Example 2.42. Dualizing Example 2.32, we obtain that if C and C ′ are connected, coaug-
mented chain coalgebras of finite type, then the dual

ΩC ⊗ ΩC ′ �−−→ Ω(C ⊗ C ′)

of the Alexander–Whitney map for the bar construction is a DASH map.

Example 2.43. Let A be an augmented chain algebra. Let σA : A → ΩBA denote the 
chain map defined by σA(a) = s−1(sa). It is obvious that σA is a section of εA, i.e.,
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A
σA

IdA

ΩBA

εA

A

commutes, which implies that σA is a quasi-isomorphism. Moreover, σA is a DASH map, 
since

sA

s−1

incl
BA

ηBA

BΩBA

tB

A
σA ΩBA

commutes, where ΩBA denotes the augmentation ideal of ΩBA. In particular, ηBA

realizes the strong homotopy structure of σA.

Notation 2.44. Let Twsh denote the category such that

• Ob Twsh = {t : C → A | t twisting cochain}, and
• if t : C → A and t′ : C ′ → A′ are twisting cochains, then

Twsh(t, t′) = {(f, γ) ∈ CoalgR(C,C ′) × CoalgR(BA,BA′) | γ ◦ βt = βt′ ◦ f}.

Composition of morphisms in Twsh is defined componentwise.

Remark 2.45. There is an obvious faithful functor Tw to Twsh, which is the identity on 
objects and which sends a morphism (f, g) : t → t′ to the morphism (f, Bg) : t → t′.

To avoid truly nasty explicit formulas, we permit ourselves a slight restriction in 
dualizing Theorem 2.36. Let Twistsh,f denote the full subcategory of twisting cochains 
t : C → A such that both C and A are connected and of finite type, i.e., are finitely 
generated free R-modules in each degree.

Theorem 2.46. The Hochschild construction functor extends to a functor

Hsh : Twistsh,f → ChR.

In particular, given twisting cochains t : C → A and t′ : C ′ → A′, where C, A, C ′ and 
A′ are connected and of finite type, and a commutative diagram in CoalgR
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C

f

βt

BA

γ

C ′ βt′
BA′,

there is a chain map Hsh(f, γ) : H (t) → H (t′) such that

A

g

H (t)

Hsh(f,γ)

C

f

βt

BA

γ

A′ H (t′) C ′ βt′
BA′

commutes, where g(a) = tBγ(sa) for all a ∈ A.

Proof. Recall that the R-dual of any R-coalgebra is an R-algebra, while the R-dual of 
any finite-type R-algebra is an R-coalgebra. It follows that in order to prove this theorem, 
we can dualize, then apply Theorem 2.36 and finally dualize again to obtain the desired 
map. �

We can also dualize Corollary 2.38, obtaining a result not explicitly stated in [13].

Corollary 2.47. A DASH map g : A → A′ between finite-type, connected chain algebras, 
with a fixed choice of chain coalgebra map γ : BA → BA′ realizing its strong homotopy 
structure, naturally induces a chain map

γ̂ : H (A) → H (A′)

such that

A

g

H (A)

γ̂

BA

γ

A′ H (A′) BA′

commutes.

Proof. Recall that H (A) = H (tB) (Example 2.18). Let γ̂ = Hsh(γ, γ). �
There is also a result dual to Corollary 2.39 that holds. Recall the DASH map

σA : A → ΩBA from Example 2.43 and the chain map IdBA ⊗εA : Ĥ (BA) �−−→ H (A)
(2.7).
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Corollary 2.48. Let A be a connected, augmented chain algebra of finite type. There is a 
quasi-isomorphism σ̂A : H (A) �−−→ Ĥ (BA), natural in A, such that

A

σA

H (A)

σ̂A

BA

IdBA

ΩBA Ĥ (BA) BA

commutes and such that (IdBA ⊗εA) ◦ σ̂A = IdH (A).

Proof. Let σ̂A = Hsh(IdBA, ηBA). The naturality of Hsh implies then that

(IdBA ⊗εA) ◦ σ̂A = IdH (A) . �
3. Operations and cooperations on the Hochschild complex

As mentioned in the Introduction, it is well known that the Hochschild complex of 
a commutative chain algebra is naturally a commutative chain algebra. Indeed, if A is 
commutative, then BA admits a commutative multiplication

BA⊗ BA ∇−−→ B(A⊗A) Bμ−−−→ BA,

where ∇ is the Eilenberg–Zilber equivalence (2.5), and μ is the multiplication map of A, 
which is an algebra map since A is commutative. It is easy to check that

H A⊗ H A → H A : (w ⊗ a) ⊗ (w′ ⊗ a′) �→ w · w′ ⊗ aa′,

where · denotes the multiplication on BA defined above, is a chain map, as well as 
commutative, associative and unital. Along similar lines, in [13], the authors specified 
conditions on a coalgebra C under which Ĥ (C) admits a comultiplication, a special case 
of the following result.

Proposition 3.1. Let H be a Hopf algebra, and let C be a connected, coaugmented chain 
coalgebra. Let δ : H → H ⊗H and Δ : C → C ⊗ C denote the comultiplications on H
and C. If t : C → H is a twisting cochain such that (Δ, δ) is a morphism in Tw from t
to t ∗ t, then H (t) admits a natural coassociative comultiplication.

Proposition 3.1 is a consequence of the following, almost obvious result.

Lemma 3.2. The Hochschild construction functor H is strongly monoidal, i.e., for all 
t, t′ ∈ Ob Tw, there are natural isomorphisms

υt,t′ : H (t) ⊗ H (t′) ∼=−−→ H (t ∗ t′)
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satisfying the usual coherency diagrams [3], where the necessary unit map is the isomor-
phism R → R⊗R = H (0).

The proof of Lemma 3.2 consists a simple calculation, based on the natural symmetry 
of the tensor product of chain complexes. Recall (Remark 2.14) that Tw is a monoidal 
category with respect to ∗, and that all undecorated tensor products are implicitly taken 
over R.

Note that (Δ, δ) is a morphism in Tw only if Δ is a morphism of coalgebras, which is 
true if and only if C is cocommutative.

Proof of Proposition 3.1. The desired comultiplication is given by the composite

H (t) H (Δ,δ)−−−−−−→ H (t ∗ t) υt,t−−−→ H (t) ⊗ H (t).

The coassociativity of Δ and of δ implies that of the composite above, since H is strongly 
monoidal. �
Example 3.3. Let C be a connected, coaugmented chain coalgebra with cocommutative 
comultiplication Δ. Since Δ is cocommutative, it induces a chain algebra map ΩΔ :
ΩC → Ω(C ⊗ C) and therefore a coassociative comultiplication ψ : ΩC → ΩC ⊗ ΩC, 
defined to be the composite

ΩC ΩΔ−−−→ Ω(C ⊗ C) q−→ ΩC ⊗ ΩC,

where q is Milgram’s equivalence (Example 2.12). (In fact, we have simply endowed ΩC

with the comultiplication such that all generators are primitive, but we emphasize this 
construction in terms of q, since we generalize it in section 3.) Moreover, the diagram

C

tΩ

Δ
C ⊗ C

tΩ∗tΩ

ΩC
ψ

ΩC ⊗ ΩC

commutes, i.e., (Δ, ψ) is a morphism of twisting cochains. Applying Proposition 3.1, we 
obtain a coassociative comultiplication on H (tΩ).

Motivated by these special cases, we provide below conditions on a twisting cochain 
t : C → A, in the spirit of those in [13], under which H (t) admits a (co)multiplicative 
structure.

3.1. Alexander–Whitney (co)algebras

In this section we define Alexander–Whitney coalgebras and algebras, which are the 
type of highly structured coalgebras and algebras for which the Hochschild complex 
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admits a natural comultiplication or a natural multiplication. We recall well-known exam-
ples of Alexander–Whitney coalgebras and algebras coming from topology and introduce 
new classes of examples, including the bar construction on any chain Hopf algebra.

Definition 3.4. (See [14].) A weak Alexander–Whitney coalgebra consists of a connected, 
coaugmented chain coalgebra C such that the comultiplication Δ : C → C ⊗ C is a 
DCSH map, together with a choice of chain algebra map ω : ΩC → Ω(C ⊗ C) that 
realizes the DCSH structure of Δ. If the composite

ΩC ω−→ Ω(C ⊗ C) q−→ ΩC ⊗ ΩC

is a coassociative comultiplication on ΩC, where q denotes the Milgram equivalence 
(Example 2.12), then (C, ω) is an Alexander–Whitney coalgebra. We call qω the associated 
loop comultiplication. Note that (ΩC, qω) is a chain Hopf algebra.

An Alexander–Whitney coalgebra (C, ω) is balanced if the associated loop comultipli-
cation is cocommutative.

Alexander–Whitney algebras, which we usually denote (A, ν)—and their weak or bal-
anced variants—are defined dually. If (A, ν) is an Alexander–Whitney algebra, then the 
composite

BA⊗ BA ∇−−→ B(A⊗A) ν−→ BA

is an associative multiplication on BA, where ∇ denotes the Eilenberg–Zilber map (Ex-
ample 2.12). We call ν∇ the associated bar multiplication. Note that (BA, ν∇) is a chain 
Hopf algebra.

Remark 3.5. An Alexander–Whitney (co)algebra is a special type of B∞-(co)algebra 
[1,7].

If Δ : C → C ⊗ C is a DCSH map and ω : ΩC → Ω(C ⊗ C) realizes its DCSH 
structure, then IdC ⊗Δ and Δ ⊗ IdC are both DCSH maps as well. In particular, there 
are chain algebra maps

IdC ∧ω, ω ∧ IdC : Ω(C ⊗ C) → Ω(C ⊗ C ⊗ C)

realizing their DCSH structure. For further details of this construction, we refer the 
reader to section 1 in [10] and section 2 in [11].

Definition 3.6. A strict Alexander–Whitney coalgebra is a weak Alexander–Whitney coal-
gebra (C, ω) such that

(IdC ∧ω)ω = (ω ∧ IdC)ω.
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A quasistrict Alexander–Whitney coalgebra is a weak Alexander–Whitney coalgebra 
(C, ω) such that there is a derivation homotopy from (IdC ∧ω)ω to (ω ∧ IdC)ω.

Strict Alexander–Whitney algebras and quasistrict Alexander–Whitney algebras are 
defined dually.

Remark 3.7. The naturality of the Milgram equivalence q implies that any strict 
Alexander–Whitney coalgebra is an Alexander–Whitney coalgebra. A similar statement 
holds for strict Alexander–Whitney algebras, due to the naturality of the Eilenberg–
Zilber equivalence ∇.

Example 3.8. If C is a connected, coaugmented, cocommutative coalgebra with comul-
tiplication Δ, then (C, ΩΔ) is a strict, balanced Alexander–Whitney coalgebra. Dually, 
if A is an augmented, commutative algebra with multiplication m, then (A, Bm) is a 
strict, balanced Alexander–Whitney algebra.

Example 3.9. (See [14].) For any reduced simplicial set K, there is a natural choice of 
chain algebra map ωK : ΩC∗K → Ω(C∗K⊗C∗K) such that (C∗K, ωK) is an Alexander–
Whitney coalgebra.

In general C∗K is not a strict Alexander–Whitney coalgebra. On the other hand, 
as explained in Example 3.8 of [13], C∗K is always a quasistrict Alexander–Whitney 
coalgebra.

Along the same lines, Theorem 4.9 in [12] implies that if L is a pointed simplicial 
set such that C∗L is a cocommutative coalgebra, then there is a natural choice of chain 
algebra map ωEL : ΩC∗EL → Ω(C∗EL ⊗ C∗EL) such that (C∗EL, ωEL) is a balanced 
Alexander–Whitney coalgebra, where E denotes the simplicial suspension functor [20]. 
More precisely, ΩC∗EL ∼= T (C∗L), the tensor algebra generated by coaugmentation 
coideal of C∗L, endowed with the strictly linear differential induced by the differential 
on C∗L. Moreover, the comultiplication ψEL = qωEL satisfies

ψEL(x) = xi ⊗ xi ∈ T (C∗L) ⊗ T (C∗L),

for all x ∈ C∗L, where Δ(x) = xi ⊗ xi, and Δ is the usual comultiplication on C∗L. 
In particular, if S2 is the simplicial double suspension functor, then (C∗S2M, ωS2K) is a 
balanced Alexander–Whitney coalgebra for all simplicial sets M , since all positive-degree 
elements of C∗EuM are primitive.

Inspired by Example 3.9, we formulate the following definition.

Definition 3.10. A reduced simplicial set K is symmetric if C∗K⊗F2 is a strictly cocom-
mutative coalgebra, where F2 denotes the field of 2 elements.

In these terms, the result from [12] cited above in Example 3.9 says that if K is a 
symmetric simplicial set, then C∗EK ⊗ F2 is a balanced Alexander–Whitney coalgebra.
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Remark 3.11. The class of symmetric simplicial sets includes all simplicial suspensions, 
both reduced and unreduced, since the natural comultiplication on the normalized chain 
complex of a simplicial suspension is trivial in positive degrees. Moreover an easy calcula-
tion shows that the nerve of Z/2Z, which is a simplicial model of RP∞, is also symmetric 
(cf. Example 4.11).

From these examples of symmetric simplicial sets, one can construct many others, 
including all wedges of truncated real projective spaces of arbitrary dimension. It is clear 
that all subsimplicial sets and all quotients of symmetric simplicial sets are also sym-
metric, as is any wedge sum of symmetric simplicial sets. We intend to study symmetric 
simplicial sets in greater detail in future work.

The next theorem provides us with another important class of Alexander–Whitney 
(co)algebras.

Theorem 3.12. If H is a chain Hopf algebra, then BH is naturally an Alexander–Whitney 
coalgebra. If H is connected and of finite type, then ΩH is naturally an Alexander–
Whitney algebra. Moreover, the associated loop comultiplication on ΩBH and associ-
ated bar multiplication on BΩH are such that both of the natural quasi-isomorphisms 
εH : ΩBH → H and ηH : H → BΩH are maps of Hopf algebras.

We refer the reader to Appendix A for the proof of this theorem.
When we define power maps on Hochschild complexes in section 4, we can actually 

relax slightly the conditions on the (co)algebras we consider and study the Hirsch (co)al-
gebras of Kadeishvili [18].

Definition 3.13. A Hirsch coalgebra consists of a connected, coaugmented chain coalgebra 
C, together with a coassociative comultiplication ψ : ΩC → ΩC ⊗ ΩC, called its loop 
comultiplication, that is a morphism of chain algebras. A Hirsch coalgebra (C, ψ) is 
balanced if ψ is cocommutative.

Hirsch algebras are defined dually.

Notation 3.14. Let HirschR denote the category of which the objects are Hirsch coalgebras 
(C, ψ) and where

HirschR
(
(C,ψ), (C ′, ψ′)

)
= {f ∈ CoalgR(C,C ′) | (Ωf ⊗ Ωf)ψ = ψ′Ωf}.

Remark 3.15. If (C, ω) is an Alexander–Whitney coalgebra, then (C, qω) is a Hirsch 
coalgebra.

Remark 3.16. As explained in [18], the homology of a Hirsch algebra is naturally a 
Gerstenhaber algebra, i.e., a commutative graded algebra endowed with a Lie bracket of 
degree −1 that is a biderivation with respect to the multiplication. In particular, the 
homology of any Alexander–Whitney algebra is a Gerstenhaber algebra.
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Example 3.17. (See [18].) The Hochschild cochain complex of a chain algebra A with 
coefficients in A, usually denoted C∗(A, A), is a Hirsch algebra.

Remark 3.18. In [2] Baues provided combinatorial formulas for a natural Hirsch coalgebra 
structure on C∗K, for all reduced simplicial sets K. The Alexander–Whitney structure 
defined in [14] lifts Baues’ Hirsch structure.

Example 3.19. Not all Hirsch coalgebras are induced from Alexander–Whitney coalge-
bras, as in Remark 3.15. Let C denote the free graded abelian group with five generators: 
u in degree 0 (which plays the role of 1), x in degree 3, y and y′ in degree 4 and z in 
degree 7. Endow C with a differential d specified by

dy = 2x and dy′ = 3x,

while u, x, and z are cycles for degree reasons. Define a comultiplication Δ on C by 
setting x, y and y′ to be primitive, while

Δ(z) = u⊗ z + 3x⊗ y − 2x⊗ y′ + z ⊗ u.

It is easy to check that Δ is a chain map. Moreover, Δ is cocommutative up to chain 
homotopy, where the chain homotopy F is given by F (x) = F (y) = F (y′) = 0 and

F (z) = y′ ⊗ y − y ⊗ y′.

There is a cocommutative, coassociative comultiplication ψ : ΩC → ΩC⊗ΩC, defined 
to be primitive on all generators, except s−1z, where

ψ(s−1z) = s−1z ⊗ 1 + s−1y′ ⊗ s−1y − s−1y ⊗ s−1y′ + 1 ⊗ s−1z.

Thus, (C, ψ) is a balanced Hirsch coalgebra. Easy computations show that there is no 
algebra map ω : ΩC → Ω(C⊗C) such that qω = ψ. It follows that (C, ψ) is not realizable 
as the Hirsch coalgebra of a simplicial set.

Remark 3.20. Any Hirsch coalgebra (C, ψ) is weakly equivalent to an Alexander–Whitney 
coalgebra, since B(ΩC, ψ) is an Alexander–Whitney coalgebra, by Theorem 3.12, and 
ηC : C → BΩC is a quasi-isomorphism of chain coalgebras.

When we construct power maps on the Hochschild complex of a twisting cochain later 
in this paper, we are led to consider variants of the category Tw (cf. Notation 2.7) that 
involve Hirsch coalgebra structure.
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Notation 3.21. Let TwHirsch denote the category with

• Ob TwHirsch =
{(

(C, ψ), C t−→ A
)
| (C, ψ) ∈ ObHirschR, t ∈ ObTw

}
, and

• if 
(
(C, ψ), t

)
and 

(
(C ′, ψ′), t′

)
are objects in TwHirsch, then

TwHirsch

((
(C,ψ), t

)
,
(
(C ′, ψ′), t′

))
=

{
(f, g) ∈ Tw(t, t′) | (Ωf ⊗ Ωf)ψ = ψ′Ωf

}
.

We sometimes need an even more highly structured category. Recall Notation 2.9.

Notation 3.22. Let TwHH denote the category the objects of which are triples

(
(C,ψ), C t−→ H, (H, δ)

)
,

where (C, ψ) ∈ ObHirschR, t ∈ ObTw, and (H, δ) ∈ ObHopfR. If 
(
(C, ψ), t, (H, δ)

)
and (

(C ′, ψ′), t′, (H ′, δ′)
)

are objects in TwHH, then

TwHH

((
(C,ψ), t, (H, δ)

)
,
(
(C ′, ψ′), t′, (H ′, δ′)

))
= TwHirsch

((
(C,ψ), t

)
,
(
(C ′, ψ′), t′

))
∩ TwHopf

((
t, (H, δ)

)
,
(
t′, (H ′, δ′)

))

3.2. Existence of (co)multiplication on the Hochschild complex

We are now ready to generalize Proposition 3.1, as well as Theorem 3.9 in [13], which 
says that the coHochschild complex of an Alexander–Whitney coalgebra admits a natural 
comultiplication.

Theorem 3.23. Let (C, ω) be an Alexander–Whitney coalgebra with underlying comul-
tiplication Δ : C → C ⊗ C. Let H be a chain Hopf algebra, with comultiplication 
δ : H → H ⊗H. Let t : C → H be a twisting cochain.

If (ω, δ) is a morphism in Twsh from t to t ∗ t, then the Hochschild complex of t admits 
a comultiplication δ̂ : H (t) → H (t) ⊗ H (t) such that

H

δ

H (t)

δ̂

C

Δ

H ⊗H H (t) ⊗ H (t) C ⊗ C

commutes. Moreover, δ̂ is coassociative (respectively, coassociative up to chain homotopy) 
if (C, ω) is a strict (respectively, quasistrict) Alexander–Whitney coalgebra.

Note that, according to Remark 2.13, asking for (ω, δ) to be a morphism in Twsh from 
t to t ∗ t is equivalent to requiring the diagram
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ΩC

αt

ω Ω(C ⊗ C)

q

ΩC ⊗ ΩC

αt⊗αt

H
δ

H ⊗H

to commute, i.e., to requiring αt to be a map of chain coalgebras with respect to the 
associated loop comultiplication

ΩC ω−→ Ω(C ⊗ C) q−→ ΩC ⊗ ΩC.

Proof. Apply Theorem 2.36 to (ω, δ) : t → t ∗ t, obtaining a chain map

H sh(ω, δ) : H (t) → H (t ∗ t).

The desired comultiplication δ̂ is then given by the composite

H (t) H sh(ω,δ)−−−−−−−→ H (t ∗ t) υt,t−−−→ H (t) ⊗ H (t)

(cf. Lemma 3.2). Together with the formulas in the proof of Theorem 2.36, naturality 
of υ implies that δ̂ is coassociative (respectively, coassociative up to chain homotopy) if 
and only if

H (t)
H sh(ω,δ)

H sh(ω,δ)

H (t ∗ t)

H sh(ω∧IdC ,δ⊗IdC)

H (t ∗ t)
H sh(IdC ∧ω,IdC ⊗δ)

H (t ∗ t ∗ t)

commutes (respectively, commutes up to chain homotopy), which is true if

D(t)
D(ω,δ)

D(ω,δ)

D(t ∗ t)

D(ω∧IdC ,δ⊗IdC)

D(t ∗ t)
D(IdC ∧ω,IdC ⊗δ)

D(t ∗ t ∗ t)

commutes (respectively, commutes up to chain homotopy), where D(−) denotes the 
twisted double extension of Definition 2.24. Finally, the naturality of the derivation σ(−)
(Scholium 2.37) implies that the last diagram commutes (respectively, commutes up 
to chain homotopy) if (IdC ∧ω)ω = (ω ∧ IdC)ω (respectively, if there is a derivation 
homotopy from (IdC ∧ω)ω to (ω ∧ IdC)ω). �
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Example 3.24. Let C be a quasistrict Alexander–Whitney coalgebra. Applying The-
orem 3.23 to the universal twisting cochain tΩ : C → ΩC, we obtain a homotopy 
coassociative comultiplication on Ĥ (C) = H (tΩ). Theorem 3.9 in [13] is therefore a 
special case of our Theorem 3.23.

Example 3.25. Since the bar construction on a chain Hopf algebra is an Alexander–
Whitney coalgebra, the Hochschild complex of H, which is equal to H (tB), admits a 
comultiplication. We conjecture that if H is cocommutative, then BH is quasistrict and 
therefore the comultiplication on H (tB) is coassociative up to chain homotopy.

Dualizing both the statement and the proof of the theorem above, we obtain the 
following result.

Theorem 3.26. Let (A, ν) be an Alexander–Whitney algebra of finite type, with underlying 
multiplication m : A ⊗ A → A. Let H be a chain Hopf algebra of finite type, with 
multiplication μ : H ⊗H → H. Let t : H → A be a twisting cochain.

If (μ, ν) is a morphism in Twsh from t ∗ t to t, then the Hochschild complex of t admits 
a multiplication μ̂ : H (t) ⊗ H (t) → H (t) such that

A⊗A

m

H (t) ⊗ H (t)

μ̂

H ⊗H

μ

A H (t) H

commutes. Moreover, μ̂ is associative (respectively, associative up to chain homotopy) if 
(A, ν) is a strict (respectively, quasistrict) Alexander–Whitney algebra.

Note that, according to Remark 2.13, asking for (μ, ν) to be a morphism in Twsh from 
t ∗ t to t is equivalent to requiring the diagram

H ⊗H

βt⊗βt

μ
H

βtBA⊗ BA

∇

B(A⊗A) ν
BA

to commute, i.e., to requiring βt to be a map of chain algebras with respect to the 
multiplication

BA⊗ BA ∇−−→ B(A⊗A) ν−→ BA.
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Example 3.27. Since the cobar construction on a finite-type, connected chain Hopf algebra 
is an Alexander–Whitney algebra, the coHochschild complex of H, which is equal to 
H (tΩ), admits a multiplication.

4. Power maps on the Hochschild complex of a twisting cochain

Let t : C → H be a twisting cochain, where H is a chain Hopf algebra. The goal 
of this section is to prove the existence, under certain cocommutativity conditions, of 
an rth-power map λ̃r on the Hochschild complex of t, extending the usual rth-power 
map λr on H (cf. equation (1.1)). In [15] we show that if C is the chain complex on a 
simplicial double suspension K, and H = ΩC, then the algebraic rth-power map λ̃r is 
topologically meaningful, in the sense that it models the topological rth-power map on 
L|K|.

4.1. The existence theorem for power maps

Theorem 4.1. Let C be a Hirsch coalgebra, with loop comultiplication ψ : ΩC → ΩC⊗ΩC. 
Let H be a chain Hopf algebra, with comultiplication δ : H → H ⊗H. Let t : C → H be 
a twisting cochain.

If

(1) the induced chain algebra map αt : ΩC → H is also a map of coalgebras, and
(2) τδt = δt, where τ : H ⊗H

∼=−−→ H ⊗H is the symmetry isomorphism,

then for any positive integer r, there is an endomorphism of chain complexes

λ̃r : H (t) → H (t),

natural with respect to morphisms in TwHH (cf. Notation 3.22), such that

H

λr

H (t)

λ̃r

C

H H (t) C

commutes, where λr denotes the rth-power map on H. In particular, if s−1c is a primitive 
of (ΩC, ψ) for all c ∈ C, then λ̃r = IdC ⊗λr.

There are two special cases of Theorem 4.1 that are particularly worthy of note.

Corollary 4.2. If (C, ψ) is a balanced Hirsch coalgebra, then the coHochschild complex 
Ĥ (C) of C admits an rth-power map λ̃r, for all positive integers r, that is natural with 
respect to morphisms in HirschR (cf. Notation 3.14). In particular,
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ΩC

λr

Ĥ (C)

λ̃r

C

ΩC Ĥ (C) C

commutes, where λr denotes the rth-power map on ΩC.

Proof. Apply Theorem 4.1 to the twisting cochain tΩ : C → ΩC. Hypotheses (1) and 
(2) are satisfied because αtΩ = IdΩC and because (C, ψ) is balanced.

With respect to the naturality of λ̃r, note that if f ∈ Hirsch
(
(C, ψ), (C ′, ψ′)

)
, then 

(f, Ωf) ∈ TwHH(tΩ, tΩ). �
Corollary 4.3. If H is a cocommutative chain Hopf algebra, then the Hochschild complex 
H (H) of H admits an rth-power map λ̃r, for all positive integers r, that is natural with 
respect to chain Hopf algebra maps. In particular,

H

λr

H (H)

λ̃r

BH

H H (H) BH

commutes, where λr denotes the rth-power map on H.

Proof. Apply Theorem 4.1 to the twisting cochain tB : BH → H. Since εH : ΩBH → H

is a map of coalgebras (Theorem 3.12), hypothesis (1) holds, while hypothesis (2) follows 
from the cocommutativity of H.

With respect to the naturality of λ̃r, note that Theorem 3.12 implies that the 
Alexander–Whitney coalgebra structure on BH is natural in H. Any chain Hopf al-
gebra map g : H → H ′ therefore induces a morphism (Bg, g) : tB → tB in TwHH. �

The naturality of the power map enables us to compare the constructions of the two 
corollaries above, via a twisting cochain.

Corollary 4.4. Let (C, ψ) be a balanced Hirsch coalgebra, and let H be a cocommutative 
chain Hopf algebra with comultiplication δ. Let ψH denote the natural comultiplication 
on ΩBH with respect to which εH : (ΩBH, ψH) → (H, δ) is a morphism of chain Hopf 
algebras (cf. Theorem 3.12).

If t : C → H is a twisting cochain such that Ωβt : (ΩC, ψ) → (ΩBH, ψH) is a 
morphism of chain Hopf algebras, then



K. Hess / Journal of Algebra 451 (2016) 302–356 335
Ĥ (C)

λ̃r

H (βt,αt)
H (H)

λ̃r

Ĥ (C)
H (βt,αt)

H (H)

commutes.

Proof. Observe that

C

tΩ

βt

BH

tB

ΩC
αt

H

always commutes, i.e., that (βt, αt) : tΩ → tB is always a morphism in Tw. Since
Ωβt : (ΩC, ψ) → (ΩBH, ψH) is a morphisms of chain Hopf algebras by hypothesis, 
and αt = εH ◦Ωβt (Remark 2.2), αt : (ΩC, ψ) → (H, δ) is also a morphism of chain Hopf 
algebras, whence (βt, αt) is actually a morphism in TwHH. �
Example 4.5. Recall from Example 3.9 that if L is a pointed simplicial set such that 
C∗L is cocommutative, e.g., if L is a simplicial suspension (reduced or unreduced), then 
C∗EL admits a natural, balanced Alexander–Whitney coalgebra structure. Corollary 4.2
therefore implies that if C∗L is cocommutative, then Ĥ (C∗EL) admits an rth-power 
map, for all positive integers r. If L is itself a simplicial suspension, then s−1c is a 
primitive of (ΩC∗EL, ψEL) for all c ∈ C∗EL, and thus λ̃r = IdC∗EL ⊗λr.

Moreover, if C∗L is cocommutative, then C∗GEL is a cocommutative chain Hopf alge-
bra, as easily follows from an examination of the formulas for the simplicial suspension 
functor E and for the Kan loop group functor G (cf., e.g., sections 2.1 (a) and (b) in 
[12]), which imply the existence of a simplicial map

L → GEL : x �→ (1, x).

It therefore follows from Corollary 4.3 that if C∗L is cocommutative, then H (C∗GEL)
also admits an rth-power map, for all positive integers r.

Let tEL : C∗EL → C∗GEL denote the Szczarba twisting cochain for EL (Example 2.5), 
with associated chain coalgebra map βEL : C∗EL → BC∗GEL and chain algebra map 
αEL : ΩC∗EL → C∗GEL, which together induce a chain map

H (βEL, αEL) : Ĥ (C∗EL) → H (C∗GEL).

It is natural to wonder under what conditions this map commutes with the rth-power 
maps. Recall from Example 2.5 that αEL, and thus βEL and H (βEL, αEL), are quasi-
isomorphisms if L is actually reduced, since EL is then 1-reduced.
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It follows from the proof of Theorem 4.11 in [12] that for any pointed simplicial set L,

αEL : (ΩC∗EL,ψEL) → (C∗GEL,Δ)

is a chain Hopf algebra map, where Δ is the usual comultiplication on C∗GEL. On the 
other hand, since C∗EL is a trivial coalgebra,

βEL
(
(1, x)

)
= s

(
tEL(1, x)

)
,

which implies that

ΩβEL
(
s−1(1, x)

)
= s−1

(
s
(
tEL(1, x)

))
.

The formulas in the proof of Theorem A.11 for the DCSH structure of the Alexander–
Whitney map f : B(H ⊗H) → BH ⊗ BH imply that

ψH

(
s−1(sa)

)
= s−1(sa) ⊗ 1 + 1 ⊗ s−1(sa)

for all a ∈ H and for all connected chain Hopf algebras H. In particular, therefore,

ψC∗GEL ◦ ΩβEL
(
s−1(1, x)

)
= s−1

(
s
(
tEL(1, x)

))
⊗ 1 + 1 ⊗ s−1

(
s
(
tEL(1, x)

))
for all x ∈ C∗L.

On the other hand, for all x ∈ C∗L

(ΩβEL ⊗ ΩβEL) ◦ ψEL
(
s−1(1, x)

)
= ΩβEL

(
s−1(1, xi)

)
⊗ ΩβEL

(
s−1(1, xi)

)
= s−1

(
s
(
tEL(1, xi)

))
⊗ s−1

(
s
(
tEL(1, xi)

))
,

where Δ(x) = xi ⊗ xi. Since tEL(1, y) �= 0 for all y ∈ C∗L � {0} (cf. the explicit formula 
for tEL given in [12] just before Theorem 4.11), we conclude that ΩβEL is a chain Hopf 
algebra map if and only if C∗L is a trivial coalgebra. In particular, if L itself is a 
simplicial suspension (reduced or unreduced), then ΩβEL is a chain Hopf algebra map, 
and Corollary 4.4 therefore implies that

Ĥ (C∗EL)

λ̃r

H (βEL,αEL)
H (C∗GEL)

λ̃r

Ĥ (C∗EL)
H (βEL,αEL)

H (C∗GEL)

commutes.
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4.2. Proof of the existence of power maps via “loop concatenation”

The key to the proof of Theorem 4.1 is the following result, which is analogous to the 
existence of topological loop concatenation. In the statement below, for a Hopf algebra H
with multiplication μ and comultiplication δ, we let μ(r) : H⊗r → H and δ(r) : H → H⊗r

denote the iterated multiplication and comultiplication maps.

Theorem 4.6. Let C be a Hirsch coalgebra, with loop comultiplication ψ : ΩC → ΩC⊗ΩC. 
Let H be a chain Hopf algebra, with multiplication μ and comultiplication δ : H → H⊗H. 
Let t : C → H be a twisting cochain.

If

(1) the induced chain algebra map αt : ΩC → H is also a map of coalgebras, and
(2) τδt = δt, where τ : H ⊗H

∼=−−→ H ⊗H is the symmetry isomorphism,

then there is a chain map μ̃r : H (δ(r)t) → H (t), natural with respect to morphisms in 
TwHirsch (cf. Notation 3.21), such that

H⊗r

μ(r)

H (δ(r)t)

μ̃r

C

H H (t) C

commutes. In particular, if s−1c is a primitive of (ΩC, ψ) for all c ∈ C, then μ̃r =
IdC ⊗μ(r).

Remark 4.7. Existence of the map μ̃r does not follow immediately from the naturality—
even extended—of the Hochschild construction, since μ(r) is in general not a map of 
algebras.

Proof. We define μ̃r : H (δ(r)t) → H (t) by

μ̃r

(
1 ⊗ (w1 ⊗ · · · ⊗ wr)

)
= 1 ⊗ w1 · · · · · wr

and on elements of the form c ⊗ (w1 ⊗ · · · ⊗ wr) for c ∈ C>0 to be the composite
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C ⊗H⊗r
tΩ⊗H⊗r

ΩC ⊗H⊗r
ψ(r)⊗H⊗r

(ΩC)⊗r ⊗H⊗r
shr (ΩC ⊗H)⊗r

σt⊗H⊗(αt⊗H)⊗r−1

H ⊗ C ⊗H ⊗H⊗2r−1

ξr

C ⊗H⊗2r+1

C⊗μ(2r+1)

C ⊗H,

where σt : (ΩC)>0 → H ⊗ C ⊗H is the derivation from Definition 2.27, while

shr(u1 ⊗ · · · ⊗ ur ⊗ w1 ⊗ · · · ⊗ wr) = (−1)εshu1 ⊗ w1 ⊗ · · · ⊗ ur ⊗ wr,

with εsh =
∑r

i=1 |wi|
(
|ui+1| + · · · + |ur|

)
, and ξr is the cyclic permutation, i.e.,

ξr(w0 ⊗ c⊗ w1 ⊗ · · · ⊗ w2r) = (−1)εξc⊗ w1 ⊗ · · · ⊗ w2r ⊗ w0,

with εξ = |w0|
(
|c| +

∑2r
i=1 |wi|

)
. Note that naturality of μ̃r with respect to morphisms in 

TwHirsch follows immediately from its definition.
In the composite above the differentials on ΩC ⊗H⊗r, (ΩC)⊗r ⊗H⊗r and (ΩC)⊗r ⊗

H⊗r are the usual, unperturbed differentials on tensor products of chain complexes. The 
differential on H ⊗ C ⊗H ⊗H⊗2r−1 is that of D(t) ⊗H⊗2r−1, while the differential on 
C ⊗ H⊗2r+1 is that of Ht(C, H⊗2r+1), where we consider H⊗2r+1 as an H-bimodule 
simply via multiplication by H on the first and last factors. Finally, the differentials on 
C ⊗H⊗r and C ⊗H are, of course, those of H (δ(r)t) and H (t), respectively.

To see that μ̃r is a chain map, observe first that ψ(r) ⊗H⊗r, shr, ξr and C ⊗ μ(2r+1)

are all clearly chain maps, while σt ⊗H ⊗ (αt ⊗H)⊗r−1 commutes with the differentials 
up to a sign (Lemma 2.28). The crucial factor in the composite to consider is therefore 
tΩ ⊗H⊗r.

Observe that

(tΩ ⊗H⊗r)dδ(r)t

= (tΩ ⊗H⊗r)
(
dC ⊗H⊗r + C ⊗ dH⊗r − (C ⊗ μH⊗r)(C ⊗ δ(r)t⊗H⊗r)(Δ ⊗H⊗r)

− (C ⊗ μH⊗r)ξ′r(δ(r)t⊗ C ⊗H⊗r)(Δ ⊗H⊗r)
)

= tΩdC ⊗H⊗r + tΩ ⊗ dH⊗r − (C ⊗ μH⊗r)(tΩ ⊗ δ(r)t⊗H⊗r)(Δ ⊗H⊗r)

− (C ⊗ μH⊗r)ξ′r(δ(r)t⊗ tΩ ⊗H⊗r)(Δ ⊗H⊗r),

where
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ξ′(w1 ⊗ · · · ⊗ wr ⊗ c⊗ w′
1 ⊗ · · · ⊗ w′

r) = (−1)εξ′ c⊗ w′
1 ⊗ · · · ⊗ w′

r ⊗ w1 ⊗ · · · ⊗ wr,

with

εξ′ =
( r∑

i=1
|wi|

)(
|c| +

r∑
i=1

|w′
i|
)
,

while

(dΩ ⊗H⊗r + ΩC ⊗ dH⊗r )(tΩ ⊗H⊗r) = dΩtΩ ⊗H⊗r − tΩ ⊗ dH⊗r .

It follows that if Γ denotes the composite of the last five factors in μ̃r, then

μ̃rdδ(r)t = Γ(tΩ ⊗H⊗r)dδ(r)t

= Γ
(
tΩdC ⊗H⊗r + tΩ ⊗ dH⊗r − (C ⊗ μH⊗r)(tΩ ⊗ δ(r)t⊗H⊗r)(Δ ⊗H⊗r)

− (C ⊗ μH⊗r)ξ′r(δ(r)t⊗ tΩ ⊗H⊗r)(Δ ⊗H⊗r)
)
,

and

dtμ̃r = −Γ(dΩ ⊗H⊗r + ΩC ⊗ dH⊗r)(tΩ ⊗H⊗r)

= Γ(−dΩtΩ ⊗H⊗r + tΩ ⊗ dH⊗r).

Thus, since tΩ is a twisting cochain,

μ̃rdδ(r)t − dtμ̃r

= Γ
((

μΩC(tΩ ⊗ tΩ)Δ
)
⊗H⊗r − (C ⊗ μH⊗r)(tΩ ⊗ δ(r)t⊗H⊗r)(Δ ⊗H⊗r)

− (C ⊗ μH⊗r)ξ′r(δ(r)t⊗ tΩ ⊗H⊗r)(Δ ⊗H⊗r)
)
.

It remains therefore to show that

Γ
((

μΩC(tΩ ⊗ tΩ)Δ
)
⊗H⊗r

)
= Γ

(
(C ⊗ μH⊗r)(tΩ ⊗ δ(r)t⊗H⊗r)(Δ ⊗H⊗r)

+ (C ⊗ μH⊗r)ξ′r(δ(r)t⊗ tΩ ⊗H⊗r)(Δ ⊗H⊗r)
)
,

for which it suffices to establish that

Γ
(
μΩC ⊗H⊗r

)
= Γ

(
(C ⊗ μH⊗r)(ΩC ⊗ α⊗r

t ψ(r) ⊗H⊗r)

+ (C ⊗ μH⊗r)ξ′r(α⊗r
t ψ(r) ⊗ ΩC ⊗H⊗r)

)
, (4.1)

as morphisms from (ΩC)⊗2 ⊗H⊗r to C ⊗H, since δ(r)t = α⊗r
t ψ(r)tΩ, by hypothesis.
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As we show below, equation (4.1) is a consequence of the fact that σt is a derivation 
and of the hypothesis that τδt = δt. In the computations below, if u ∈ ΩC, we use 
Sweedler-type notation and write

ψ(r)(u) = u(1) ⊗ · · · ⊗ u(r).

Moreover, to ease the notation, we suppress one summation and write

u = s−1c1(u)| · · · |s−1cm(u)

and

uk,l = s−1ck(u)| · · · |s−1cl(u), ∀ 1 ≤ k ≤ l ≤ m.

Finally, also in the interest of simplifying notation, we do not give the signs explicitly, 
as they are complicated to write down but very easy to derive: all of the signs arise 
in a straightforward manner from the Koszul rule (cf. section 1.1), as we explain more 
precisely below.

For all u, v ∈ ΩC and w1 ⊗ · · · ⊗ wr ∈ H⊗r,

Γ
(
μΩC ⊗H⊗r

)
(u⊗ v ⊗ w1 ⊗ · · · ⊗ wr)

= ±(C ⊗ μ(2r+1))ξr
(
σt(u(1)v(1)) ⊗ w1 ⊗ αt(u(2)v(2)) ⊗ · · · ⊗ αt(u(r)v(r)) ⊗ wr

)
= ±(C ⊗ μ(2r+1))ξr

(
σt

(
u(1))αt(v(1)) ⊗ w1 ⊗ αt(u(2)v(2)) ⊗ · · · ⊗ αt(u(r)v(r)) ⊗ wr

)
± (C ⊗ μ(2r+1))ξr

(
αt(u(1))σt(v(1)) ⊗ w1 ⊗ αt(u(2)v(2)) ⊗ · · · ⊗ αt(u(r)v(r)) ⊗ wr

)
=

∑
i

±ci(u(1)) ⊗ αt(ui+1,m
(1) v(1))w1αt(u(2)v(2)) · · ·αt(u(r)v(r))wrαt(u1,i−1

(1) )

+
∑
i

±ci(v(1)) ⊗ αt(vi+1,m
1 )w1αt(u(2)v(2)) · · ·αt(u(r)v(r))wrαt(u(1)v

1,i−1
1 ), (4.2)

where we used the fact that σt is a derivation. Moreover,

Γ
(
(C ⊗ μH⊗r)(ΩC ⊗ α⊗r

t ψ(r) ⊗H⊗r)
)
(u⊗ v ⊗ w1 ⊗ · · · ⊗ wr)

= ±(C ⊗ μ(2r+1))ξr
(
σt(u(1)) ⊗ αt(v(1))w1 ⊗ αt(u(2)) ⊗ · · · ⊗ αt(u(r)) ⊗ αt(v(r))wr

)
=

∑
i

±ci(u(1)) ⊗ αt(ui+1,m
(1) v(1))w1αt(u(2)v(2)) · · ·αt(u(r)v(r))wrαt(u1,i−1

(1) ) (4.3)

and

Γ
(
(C ⊗ μH⊗r)ξ′r(α⊗r

t ψ(r) ⊗ ΩC ⊗H⊗r)
)
(u⊗ v ⊗ w1 ⊗ · · · ⊗ wr)

= ±(C ⊗ μ(2r+1))ξr
(
σt(v(1)) ⊗ w1αt(u(1)) ⊗ αt(v(2)) ⊗ · · · ⊗ αt(v(r)) ⊗ wrαt(ur)

)
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=
∑
i

±ci(v(1)) ⊗ αt(vi+1,m
1 )w1αt(u(1)v(2)) · · ·αt(u(r−1)v(r))wrαt(u(r)v

1,i−1
1 ). (4.4)

Since τδt = δt, and therefore τ(αt ⊗ αt)ψ = (αt ⊗ αt)ψ,

αt(u(1)) ⊗ · · · ⊗ αt(ur) = (−1)|u(1)|·
∑

i>1 |u(i)|αt(u(2)) ⊗ · · · ⊗ αt(ur) ⊗ αt(u(1)).

The computations above therefore establish that equation (4.1) holds as desired, since 
all signs are determined uniquely by the Koszul rule, i.e., depend only what permutation 
has been applied to

u1,i−1
(1) ⊗ ci(u1) ⊗ ui+1,m

(1) ⊗ u(2) ⊗ · · · ⊗ u(r) ⊗ v(1) ⊗ · · · ⊗ v(r) ⊗ w(1) ⊗ · · · ⊗ w(r),

where the original sign is +1, in the case of (4.3) and of the first summand of (4.2), and 
applied to

u(1) ⊗ · · · ⊗ u(r) ⊗ v1,i−1
(1) ⊗ ci(v1) ⊗ vi+1,m

(1) ⊗ v(2) · · · ⊗ v(r) ⊗ w(1) ⊗ · · · ⊗ w(r),

where the original sign is +1, in the case of (4.4) and of the second summand of (4.2). �
Remark 4.8. An explicit formula for μ̃r can be given as follows. For all c ∈ C, we suppress 
one summation and write

ψ(r)(s−1c) = u1(c) ⊗ u2(c) ⊗ · · · ⊗ ur(c)

and

u1(c) = s−1c1| · · · |s−1ck.

Using this notation,

μ̃r

(
c⊗ (w1 ⊗ · · · ⊗ wr)

)
=

∑
1≤j≤k

±cj ⊗ t(cj+1) · . . . · t(ck) · w1 · αt

(
u2(c)

)
· . . .

· αt

(
ur(c)

)
· wr · t(c1) · . . . · t(cj−1),

where the signs are determined by the Koszul rule, i.e., depend only on the permutation 
applied to

s−1c1| · · · |s−1ck ⊗ u2(c) ⊗ · · · ⊗ ur(c) ⊗ w(1) ⊗ · · · ⊗ w(r),

where the original sign is +1 (cf. section 1.1). Note that if s−1c is a primitive element of 
(ΩC, ψ) for all c ∈ C, then this formula reduces to μ̃r = IdC ⊗μ(r).
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Motivated by the definition of topological rth-power map on a free loop space as the 
composite of iterated loop concatenation and of the diagonal map, we now complete the 
proof of the existence of the algebraic rth-power map.

Proof of Theorem 4.1. Since the diagram

C

t

C

δ(r)t

H
δ(r)

H⊗r

commutes, the pair (IdC , δ(r)) is a morphism in Tw from t to δ(r)t and therefore induces 
a chain map δ̃r := H (IdC , δ(r)) : H (t) → H (δ(r)t) such that

H

δ(r)

H (t)

δ̃r

C

H⊗r H (δ(r)t) C

commutes. Note that δ̃r is natural with respect to morphisms in TwHopf , as chain Hopf 
algebra maps commute with iterated comultiplications.

Let λ̃r = μ̃r ◦ δ̃r, which is natural with respect to morphisms in TwHH, since δ̃r and 
μ̃r are natural with respect to morphisms in TwHopf and TwHirsch, respectively. �
Remark 4.9. Combining the formula developed in the proof of Theorem 4.6 for μ̃r with 
the identity δ̃r = IdC ⊗δ(r), we obtain the following formula for λ̃r. If c ∈ C and w ∈ H, 
then

λ̃r(c⊗ w) =
∑

1≤j≤k

±cj ⊗ t(cj+1) · . . . · t(ck) · w1 · αt

(
u2(c)

)
· . . .

· αt

(
ur(c)

)
· wr · t(c1) · . . . · t(cj−1),

where signs are determined by the Koszul rule precisely as in Remark 4.8 and (suppress-
ing obvious summations)

δ(r)(w) = w1 ⊗ · · · ⊗ wr,

ψ(r)(s−1c) = u1(c) ⊗ u2(c) ⊗ · · · ⊗ ur(c),

and

u1(c) = s−1c1| · · · |s−1ck.
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Example 4.10. Recall Example 3.9. Let K be a simplicial double suspension, either E2L

for some pointed simplicial set L or S2M for some simplicial set M . If C = C∗K, then 
every element of C is primitive, as is every element s−1c of ΩC, which implies that

Ĥ (C) =
(
C ⊗ T (s−1C), d

Ĥ

)
,

where, if [−, −] denotes the graded commutator, then

d
Ĥ

(c⊗ w) = dc⊗ w + (−1)|c|c⊗ dΩw − 1 ⊗ [s−1c, w],

and

λ̃r(x⊗ w) = x⊗ λr(w)

for all x ∈ C and for all w ∈ ΩC.

Example 4.11. Let K be the nerve of the cyclic group of order two, which is a reduced 
simplicial model of RP∞ (cf. Remark 3.11). An easy calculation shows that CkK is free 
abelian on one generator zk for each k. Moreover,

Δ(zk) =
k∑

i=0
zi ⊗ zk−i

for all k, which implies that C∗K ⊗ F2 is cocommutative, i.e., that K is a symmetric 
simplicial set. Note that the differential in C∗K ⊗ F2 is exactly 0.

Let C = C∗EK ⊗ F2, and let yk denote the suspension of zk. Consider Ĥ (C) =
(C ⊗ T (C+K), d

Ĥ
), where

d
Ĥ

(yl ⊗ zk1 | · · · |zkm
) = −1 ⊗ zl|zk1 | · · · |zkm

+ (−1)lk1 ⊗ zk1 | · · · |zkm
|zl,

where k = k1 + · · · + km. Moreover, for all k,

ψEK(zk) =
k∑

i=0
zi ⊗ zk−i ∈ TC+K ⊗ TC+K

and so

ψ
(r)
EK(zk) =

∑
k1+···+kr=k

zk1 ⊗ · · · ⊗ zkr
∈ (TC+K)⊗r

for all r. The formula in Remark 4.9 therefore implies that

λ̃r(yl ⊗ zk1 | · · · |zkm
) =

∑
yl1 ⊗ zk1,1 | · · · |zkm,1 |zl2 | · · · |zlr |zk1,r | · · · |zkm,r

,

where the sum is taken over
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• all (l1, . . . , lr) such that 
∑

j lj = l, and
• all (ki,1, . . . , ki,r) such that 

∑
j ki,j = ki, for all 1 ≤ i ≤ m.

Remark 4.12. All of the results in this section can be dualized, at least in the finite-type 
case. We leave the straightforward task of dualizing the statements to the interested 
reader.
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Appendix A. The proof of Theorem 3.12

We begin by recalling those elements of homological perturbation theory that we need 
in order to prove that applying the bar construction to a chain Hopf algebra gives rise 
to an Alexander–Whitney coalgebra.

Definition A.1. Suppose that ∇ : (X, ∂) → (Y, d) and f : (Y, d) → (X, ∂) are morphisms 
in ChR. If f∇ = IdX and there exists a chain homotopy h : (Y, d) → (Y, d) such that

(1) dh + hd = ∇f − IdY ,
(2) h∇ = 0,
(3) fh = 0, and
(4) h2 = 0,

then (X, d) 
∇�
f

(Y, d) � h is a strong deformation retract (SDR) of chain complexes.

If, moreover, (Y, d, ΔY ) and (X, d, ΔX) are chain coalgebras and ∇ is a morphism of 
coalgebras, then the SDR (X, d) 

∇�
f

(Y, d) � h is called Eilenberg–Zilber data [9].

Remark A.2. If (X, d) 
∇�
f

(Y, d) � h is Eilenberg–Zilber data, then

(d⊗ IdX + IdX ⊗d)
(
(f ⊗ f)ΔY h

)
+
(
(f ⊗ f)ΔY h

)
d = ΔXf − (f ⊗ f)ΔY ,

i.e., f is a map of coalgebras up to chain homotopy. In fact, as stated precisely in the 
next theorem (due to Gugenheim and Munkholm and slightly strengthened in section 2.3 
of [12]), f is a DCSH map, under reasonable local finiteness conditions.
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Recall that if V is a non-negatively graded R-module with V0 = R, then V denotes 
V>0.

Theorem A.3. (See [9,12].) Let (X, d) 
∇�
f

(Y, d) � h be Eilenberg–Zilber data such that X

and Y are connected. Let ΔY : Y → Y ⊗2 denote the reduced comultiplication on Y . Let 
F0 = 0, and let F1 be the composite

Y
f−→ X s−1−−−→ s−1X.

For k ≥ 2, let

Fk = −
∑

i+j=k

(Fi ⊗ Fj)ΔY h : Y → T k(s−1X).

If for all y ∈ Y , there exists N(y) ∈ N such that Fk(y) = 0 for all k > N(y), then

F =
∏
k≥1

Fk =
⊕
k≥1

Fk : Y → ΩX

is a twisting cochain. In particular, f : Y → X is a DCSH map, and αF : ΩY → ΩX

realizes its strong homotopy structure.

Remark A.4. Given Eilenberg–Zilber data (X, d) 
∇�
f

(Y, d) � h, there is a closed formula 

for each of the Fk’s above. For any k ≥ 2, let

hk =
∑

0≤i≤k−2

Id⊗i
Y

⊗ΔY h⊗ Id⊗k−i−2
Y

: Y ⊗k−1 → Y ⊗k

and let

Hk = hk ◦ hk−1 ◦ · · · ◦ h2 : Y → Y ⊗k. (A.1)

Then

Fk = (−1)k+1(s−1f)⊗k ◦Hk.

We prove Theorem 3.12 in this section by applying Theorem A.3 to appropriately 
chosen Eilenberg–Zilber data. We now set up the desired SDR.

In the development below, we use the following helpful notation for simplicial expres-
sions.
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Notation A.5. If J is any set of non-negative integers j1 < j2 < · · · < jr, let

sJ = sjr · · · sj1 ,

and let |J | = r.
For non-negative integers m ≤ n, let [m, n] = {j ∈ Z | m ≤ j ≤ n}. Let Δ denote the 

category with objects

ObΔ = {[0, n] | n ≥ 0}

and

Δ
(
[0,m], [0, n]

)
= {f : [0,m] → [0, n] | f order-preserving set map}.

Viewing a simplicial R-module M• as a contravariant functor from Δ to the category of 
R-modules, given x ∈ Mn := M([0, n]) and 0 ≤ a1 < a2 < · · · < am ≤ n, let

xa1...am
:= M(a)(x) ∈ Mm

where a : [0, m] → [0, n] : j �→ aj . Note that in particular

x0...r = dr+1 · · · dnx,

while for all m < r,

x0...mr...n = dm+1 · · · dr−1x.

Example A.6. Let A denote the usual functor from simplicial R-modules to ChR, i.e., for 
any simplicial R-module M•, the graded R-module underlying A(M•) is {Mn}n≥0, and 
the differential in degree n is given by the alternating sum of the face maps from Mn to 
Mn−1. Let AN denote its normalized variant.

In Theorem 2.1a) of [5] Eilenberg and Mac Lane gave explicit formulas for a natural 
SDR of chain complexes

AN (M•) ⊗AN (M ′
•)

∇�
f
AN (M• �M ′

•) � h, (A.2)

where � denotes the levelwise tensor product of simplicial R-modules. In particular, if 
x ∈ Mm and x′ ∈ M ′

n, then

f(x� x′) =
∑

0≤�≤n

x0...� ⊗ x′
�...n (A.3)

and
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∇(x⊗ x′) =
∑

0≤�≤n

∑
A∪B=[0,n−1]
|A|=n−�,|B|=�

±sAx� sBx
′, (A.4)

where the sign of a summand is the sign of the shuffle permutation corresponding to the 
pair (A, B).

If R[K] denotes the free simplicial R-module generated by a simplicial set K, then 
C∗K⊗R ∼= AN

(
R[K]

)
. It follows that, when applied to M• = R[K] and M ′

• = R[K ′], for 
simplicial sets K and K ′, Eilenberg and Mac Lane’s strong deformation retract becomes 
the usual Eilenberg–Zilber/Alexander–Whitney equivalence

C∗K ⊗ C∗K
′ ∇�

f
C∗(K ×K ′) � h,

which is in fact Eilenberg–Zilber data. In the case K = K ′, these Eilenberg–Zilber data 
give rise to the Alexander–Whitney coalgebra structure on C∗K [14].

In order to prove Theorem 3.12, we consider another special case of the Eilenberg–
Mac Lane SDR. Recall that if A is an augmented chain algebra, then BA is the normal-
ized chain complex associated to the simplicial chain algebra B•A, where BnA = A⊗n. 
The degeneracy maps are given in terms of the unit map R → A by

si : A⊗n → A⊗n+1 : a1 ⊗ · · · ⊗ an �→ a1 ⊗ · · · ⊗ ai ⊗ 1 ⊗ ai+1 ⊗ · · · ⊗ an,

while the face maps are given in terms of the multiplication or the augmentation ε by

di : A⊗n → A⊗n−1 : a1 ⊗ · · · ⊗ an �→

⎧⎨
⎩

ε(a1) · (a2 ⊗ a3 ⊗ · · · ⊗ an) : i = 0
a1 ⊗ · · · ⊗ ai · ai+1 ⊗ · · · ⊗ an : 0 < i < n

(a1 ⊗ · · · ⊗ an−1) · ε(an) : i = n.

If M• = B•A and M ′
• = B•A′, then Eilenberg and Mac Lane’s strong deformation 

retract becomes

BA⊗ BA′ ∇�
f

B(A⊗A′) � h, (A.5)

after identifying B(A ⊗A′) with AN (M• �M ′
•) via a levelwise isomorphism

(A⊗A′)⊗n ∼= A⊗n ⊗A′ ⊗n. (A.6)

The map ∇ is exactly the equivalence defined in Example 2.12 via the twisting cochain 
tB ∗ tB. In particular, ∇ is a map of coalgebras, which implies that (A.5) is Eilenberg–
Zilber data.

Note that equation (A.4) implies that ∇(sa1| · · · |sam ⊗ sa′1| · · · |sa′n) is equal to the 
signed sum of all possible (m, n)-shuffles of
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s(a1 ⊗ 1)| · · · |s(am ⊗ 1)|s(1 ⊗ a′1)| · · · |s(1 ⊗ a′n). (A.7)

Moreover, equation (A.3) implies that

f
(
s(a1 ⊗ a′1)| · · · |s(an ⊗ a′n)

)
=

∑
0≤�≤n

ε(a�+1) · · · ε(an)ε(a′1) · · · ε(a′�) · sa1| · · · |sa� ⊗ sa′�+1| · · · |sa′n (A.8)

Equation (A.8) implies that

f
(
Bn(A⊗A′)

)
⊂

⊕
n′+n′′=n

Bn′A⊗ Bn′′A′.

To prove Theorem 3.12, we apply Theorem A.3 to the bar construction SDR of Eilen-
berg and Mac Lane (A.5). We must therefore prove local finiteness of the associated 
Fk’s, which follows from a technical result proved in [14] (Lemma 5.3), expressed below 
in terms of simplicial R-modules instead of simplicial sets.

Lemma A.7. (See [14].) Let M• and M ′
• be simplicial R-modules. Let m < r ≤ n be 

non-negative integers, and let A and B be disjoint sets of non-negative integers such that 
A ∪B = [m + 1, n] and |B| = r −m.

Let hA,B : (M �M ′)n → (M �M ′)n+1 be the R-linear map given by

hA,B(x� x′) = sA∪{m} x0...r � sB x′
0...mr...n

for all x ∈ Mn and x′ ∈ M ′
n. Then the Eilenberg–Mac Lane homotopy in level n

h : An(M• �M ′
•) = Mn ⊗M ′

n → Mn+1 ⊗M ′
n+1 = An+1(M• �M ′

•)

is given by

h(x� x′) =
∑

m<r, A∪B=[m+1,n]
|A|=n−r, |B|=r−m

±hA,B(x� x′),

where the sign is that of the shuffle permutation associated to the couple (A, B).

Example A.8. We are particularly interested in the case where M• = B•A and 
M ′

• = B•A
′, and we apply the identification (A.6) above. We compute here one term of

h
(
s(a1⊗a′1)|s(a2⊗a′2)|s(a3⊗a′3)

)
, to give some indication of the form of this homotopy, 

before providing general formulas below.
Observe that if x = a1 ⊗ · · · ⊗ an ∈ BnA, then

x0...r = ε(ar+1 · . . . · an) · (a1 ⊗ · · · ⊗ ar) ∈ BrA,



K. Hess / Journal of Algebra 451 (2016) 302–356 349
while if x′ = a′1 ⊗ · · · ⊗ a′n ∈ BnA
′, then

x′
0...mr...n = a′1 ⊗ · · · ⊗ a′m ⊗ a′m+1 · . . . · a′r ⊗ a′r+1 ⊗ · · · ⊗ a′n.

When n = 3, r = 2, m = 1, A = {3} and B = {2},

hA,B
(
s(a1 ⊗ a′1)|s(a2 ⊗ a′2)|s(a3 ⊗ a′3)

)
= ε(a3) ·

(
s(a1 ⊗ a′1)|s(1 ⊗ a′2)|s(a2 ⊗ 1)|s(1 ⊗ a′3)

)
,

because

sA∪{1}(a1 ⊗ a2 ⊗ a3)012 = ε(a3) · s3s1(a1 ⊗ a2) = ε(a3) · (a1 ⊗ 1 ⊗ a2 ⊗ 1)

and

sB(a′1 ⊗ a′2 ⊗ a′3)0123 = s2(a′1 ⊗ a′2 ⊗ a′3) = a′1 ⊗ a′2 ⊗ 1 ⊗ a′3.

In the case of the bar construction SDR, we obtain the following general, explicit 
formulas, where we use the notational shortcut

v = v1| · · · |vm and w = w1| · · · |wn =⇒ v|w := v1| · · · |vm|w1| · · · |wn.

Corollary A.9. Let A, A′ ∈ Ob AlgR. If M• = B•A and M ′
• = B•A

′, then the Eilenberg–
Mac Lane homotopy h : B∗(A ⊗A′) → B∗+1(A ⊗A′) satisfies the following equations.

(1) h
(
s(1 ⊗ a′1)| · · · |s(1 ⊗ a′n)

)
= 0 for all a′1, . . . , a′n ∈ A.

(2) If |ar| �= 0, then

h
(
s(a1 ⊗ a′1)| · · · |s(ar ⊗ a′r)|s(1 ⊗ a′r+1)| · · · |s(1 ⊗ a′n)

)
=

∑
0≤m<r

±s(a1 ⊗ a′1)| · · · |s(am ⊗ a′m)|s(1 ⊗ a′m+1 · · · a′r)|

× ∇(sam+1| · · · |sar ⊗ sa′r+1| · · · |sa′n)

for all a1, . . . , ar−1 ∈ A and a′1, . . . , a
′
n ∈ A′.

Remark A.10. Note that the formulas above imply that

h
(
s(a1 ⊗ 1)| · · · |s(ar ⊗ 1)|s(1 ⊗ a′r+1)| · · · |s(1 ⊗ a′n)

)
= 0,

for all a1, . . . , ar ∈ A and a′r+1, . . . , a
′
n ∈ A′ and for all r ≥ 0, since in this case a′m+1 =

· · · = a′r = 1 for all m < r.
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Proof. Let

w = s(a1 ⊗ a′1)| · · · |s(aM ⊗ a′M )|s(1 ⊗ a′M+1)| · · · |s(1 ⊗ a′n) ∈ Bn(A⊗A′),

where |aM | > 0. Note that Lemma A.7 implies that h(w) ∈ Bn+1(A ⊗A′).
It is clear that

r < M =⇒ hA,B(w) = 0

for all 0 ≤ m < r and A and B disjoint sets of non-negative integers such that A ∪B =
[m + 1, n] and |B| = r −m, since ε(aM ) = 0.

We can also show that

r > M =⇒ hA,B(w) = 0

for all 0 ≤ m < r and A and B disjoint sets of non-negative integers such that A ∪B =
[m + 1, n] and |B| = r −m. To establish this implication, we consider the following two 
cases. Suppressing summation, write

hA,B(w) = s(b1 ⊗ b′1)| · · · |s(bn+1 ⊗ b′n+1).

(1) If r > m ≥ M , then |bm+1| = · · · = |bn| = 0, while the list b′m+1, . . . , b
′
n includes at 

least r−m elements of degree 0. There exists therefore k ∈ [m +1, n] such that both 
bk and b′k are of degree zero and therefore s(bk ⊗ b′k) is degenerate in B•(A ⊗ A′), 
i.e., s(bk ⊗ b′k) = 0 in the normalized complex.

(2) If r > M > m, then the list bm+1, . . . , bn includes at most M − m elements of 
positive degree, i.e., at least n −M elements of degree 0. On the other hand, the list 
b′m+1, . . . , b

′
n includes at least r −m elements of degree 0. Since

(r −m) + (n−M) = n− (m + M − r) > n− (m + 1),

there exists k ∈ [m + 1, n] such that both bk and b′k are of degree zero and therefore 
s(bk⊗b′k) is degenerate in B•(A ⊗A′), i.e., s(bk⊗b′k) = 0 in the normalized complex.

We conclude that the only nonzero summands of h(w) are those for which r = M , in 
which case the formula given in the corollary follows by straightforward application of 
the formula in Lemma A.7. �
Theorem A.11. For all A, A′ ∈ ObAlgR, the Alexander–Whitney map

f : B(A⊗A′) → BA⊗ BA′

is a DCSH map.



K. Hess / Journal of Algebra 451 (2016) 302–356 351
Proof. We prove this proposition by applying Theorem A.3 to the Eilenberg–Zilber data 
(A.5). Note first that BA ⊗ BA′ and B(A ⊗ A′) are both connected, by definition of 
the bar construction.

Given a nonzero element w = s(a1 ⊗ a1)| · · · |s(an ⊗ a′n) ∈ Bn(A ⊗A′), let

ζ(w) = #{i | |ai| = 0} + #{j | |a′j | = 0}.

Let ζ(0) = +∞.
Let w = s(a1 ⊗ a1)| · · · |s(an ⊗ a′n) ∈ Bn(A ⊗ A′). If ζ(w) > n, then there exists 

j ∈ [1, n] such that |aj | = 0 = |a′j | and therefore w corresponds to a degenerate element 
in B•(A ⊗A′). Since B(A ⊗A′) is the normalized complex associated to B•(A ⊗A′), it 
follows that w = 0. We therefore conclude that

0 �= w ∈ Bn(A⊗A′) =⇒ ζ(w) ≤ n. (A.9)

Define a bifiltration of B(A ⊗A′) by

Fp,n
(
B(A⊗A′)

)
= {w ∈ B≤n(A⊗A′) | ζ(w) ≥ p},

and consider the induced bifiltration

Fp,n
(
B(A⊗A′)⊗k

)
=

⊕
p1+···+pk=p
n1+···+nk=n

Fp1,n1
(
B(A⊗A′)

)
⊗ · · · ⊗ Fpk,nk

(
B(A⊗A′)

)
.

It is easy to check that the comultiplication Δ : B(A ⊗ A′) → B(A ⊗ A′) ⊗ B(A ⊗ A′)
is a bifiltered map. Moreover, it follows from implication (A.9) that

Fp,n
(
B(A⊗A′)⊗k

)
= 0 for all p > n and k ≥ 1. (A.10)

To prove local finiteness of the Fk’s associated to the SDR (A.5), we show that

ζ
(
h(w)

)
≥ ζ(w) + 2 (A.11)

for all w ∈ B(A ⊗A′). It follows that

h
(
Fp,n

(
B(A⊗A′)

))
⊂ Fp+2,n+1(B(A⊗A′)

)
for all p and n, since the formulas in Corollary A.9 imply that

h
(
Bn(A⊗A)

)
⊂ Bn+1(A⊗A′).

Consequently, if Δ denotes the reduced comultiplication on B(A ⊗A′), then

Δh
(
Fp,n

(
B(A⊗A′)

))
⊂ Fp+2,n+1(B(A⊗A′) ⊗ B(A⊗A′)

)
,
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which is the base step in an easy recursive argument showing that

Hk+1

(
Fp,n

(
B(A⊗A′)

))
⊂ Fp+2k,n+k

(
B(A⊗A′)⊗k

)
,

for all k ≥ 1, where the map Hk+1 is defined as in (A.1).
Equation (A.10) therefore implies that for all w ∈ Fp,n

(
B(A ⊗ A′)

)
and for all k >

n − p + 1,

Fk(w) = (s−1f)⊗k ◦Hk(w) = 0.

Local finiteness of the Fk’s, which allows us to apply Theorem A.3 and therefore conclude 
that f : B(A ⊗A′) → B(A) ⊗B(A′) is a DCSH map, is thus a consequence of inequality 
(A.11).

To complete the proof, we must prove that inequality (A.11) holds. It follows im-
mediately from inspection of the formulas in Corollary A.9 and for ∇ (A.4) that, in 
comparison with w = s(a1 ⊗ a1)| · · · |s(an ⊗ a′n), each summand in the expression

s(a1 ⊗ a′1)| · · · |s(am ⊗ a′m)|s(1 ⊗ a′m+1 · · · a′r)|∇(sam+1| · · · |sar ⊗ sa′r+1| · · · |sa′n),

if nonzero,

• contains (n − r) + (r −m) + 1 new 1’s, inserted in the last n −m terms, and
• has lost at most (r −m − 1) 1’s, in the process of multiplying a′m+1 · · · a′r.

We see thus that

ζ
(
s(a1 ⊗ a′1)| · · · |s(am ⊗ a′m)|s(1 ⊗ a′m+1 · · · a′r)|∇(sam+1| · · · |sar ⊗ sa′r+1| · · · |sa′n)

)
≥ ζ(w) + (n−m + 1) − (r −m− 1)

= ζ(w) + n− r + 2

≥ ζ(w) + 2. �

Before proving Theorem 3.12, we establish a technical lemma that plays an important 
role in showing that εH : ΩBH → H is a coalgebra map. Recall the cartesian product 
of twisting cochains from Definition 2.11.
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Lemma A.12. Let A and A′ be augmented chain algebras. For all n > 1, the composite

Bn(A⊗A′) h
Bn+1(A⊗A′) Δ ⊕

�+m=n+1 B�(A⊗A′) ⊗ Bm(A⊗A′)

f⊗f

⊕
�+m=n+1
�′+�′′=�

m′+m′′=m

(
B�′A⊗ B�′′A

′
)
⊗
(
Bm′A⊗ Bm′′A′

)
(tB∗tB)⊗(tB∗tB)

(A⊗A′) ⊗ (A⊗A′)

is equal to zero. Moreover,

(tB ∗ tB)⊗2 ◦ f⊗2 ◦ Δ ◦ h
(
s(a⊗ a′)

)
=

{
(−1)|a|·|a′|(1 ⊗ a′) ⊗ (a⊗ 1) : |a| · |a′| > 0
0 : else.

Proof. Let δ = (tB ∗ tB)⊗2 ◦ f⊗2 ◦ Δ ◦ h. Recall that tB(sa) = a for all a in A or A′, 
while tB(sa1| · · · |san) = 0 for all n > 1.

If n > 1 and thus �′ + �′′ + m′ + m′′ = n + 1 > 2, then

• at least one of �′, �′′, m′ and m′′ is greater than 1, or
• �′ + �′′ = 2 and m′ + m′′ ≤ 2, or
• �′ + �′′ ≤ 2 and m′ + m′′ = 2.

In the first case, the corresponding summand of δ is zero, since B≥2A ⊂ ker tB and 
similarly for A′. In the second and third cases, the corresponding summand of δ is also 
zero, since

B1A⊗ B1A
′ = sA⊗ sA′ ⊂ ker(tB ∗ tB).

The case n = 1 is established by a straightforward calculation. �
Corollary A.13. Let A and A′ be augmented chain algebras. Consider the composite

ΩB(A⊗A′) αF−−−→ Ω(BA⊗ BA′) q−→ ΩBA⊗ ΩBA′ εA⊗εA′−−−−−−→ A⊗A′,

where F : B(A ⊗A′) → Ω(BA ⊗BA′) is the twisting cochain of Theorem A.11. For all 
n > 1,

s−1Bn(A⊗A′) ⊂ ker
(
(εA ⊗ εA′)qαF

)
.

Proof. Remark 2.13 implies that
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αtB∗tB = (εA ⊗ εA′)q : Ω(BA⊗ BA′) → A⊗A′.

Furthermore, for all w1, . . . , wn ∈ BA and w′
1, . . . , w

′
n ∈ BA′,

αtB∗tB

(
s−1(w1 ⊗ w′

1)| · · · |s−1(wn ⊗ w′
n)
)

= ±a1 · · · an ⊗ a′1 · · · a′n,

where (suppressing summation) αtB∗tB(s−1(wj ⊗ w′
j)) = aj ⊗ a′j for all 1 ≤ j ≤ n, and 

the sign is determined by the Koszul rule, i.e., determined entirely by the permutation 
applied to

(a1 ⊗ a′1) ⊗ · · · ⊗ (an ⊗ a′n),

where the original sign is +1 (cf. section 1.1).
Recall equation (A.1), the definition of the operators Hk associated to Eilenberg–

Zilber data. A straightforward inductive argument, of which Lemma A.12 is the base 
step, shows that for all n > 1

f⊗k ◦Hk

(
Bn(A⊗A′)

)
⊂ ker(tB ∗ tB)⊗k.

It then follows from the second half of Remark A.4 that

αF

(
Bn(A⊗A′)

)
⊂ kerαtB∗tB ,

and we can conclude. �
Proof of Theorem 3.12. Let H be a chain Hopf algebra. From Theorem A.11 it follows 
that BH is a weak Alexander–Whitney coalgebra, where the chain algebra map realizing 
the DCSH structure of δ : H → H ⊗H is the composite

ΩBH ΩBδ−−−−→ ΩB(H ⊗H) αF−−→ Ω(BH ⊗ BH).

It remains to show that (BH, αF ◦ΩBδ) is actually an Alexander–Whitney coalgebra, 
i.e., that the comultiplication

ΩBH
αF ◦ΩBδ−−−−−−→ Ω(BH ⊗ BH) q−→ ΩBH ⊗ ΩBH

is coassociative. Essentially the same argument as in the proof of coassociativity of the 
canonical diagonal on ΩC∗K (Theorem 4.2 in [14]) works here, since the comultiplication 
on the cobar constructions comes in both cases from the Alexander–Whitney map in the 
original Eilenberg–Mac Lane SDR (A.2).

Let ψ = q ◦ αF ◦ ΩBδ : ΩBH → ΩBH ⊗ ΩBH. To prove that εH : ΩBH → H is a 
coalgebra map, we must verify the following two claims.
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(1) (εH ⊗ εH) ◦ ψ
(
s−1(sa)

)
= δ(a) for all a ∈ H.

(2) (εH ⊗ εH) ◦ ψ
(
s−1(sa1| · · · |san)

)
= 0 for all n > 1.

Claim (2) is an immediate consequence of Corollary A.13.
On the other hand, Lemma A.12 implies that if δ(a) = a ⊗ 1 + 1 ⊗ a + ai ⊗ ai, then

(εH ⊗ εH)ψ
(
s−1(sa)

)
= αtB∗tBαF

(
s−1(s(a⊗ 1) + s(1 ⊗ a) + s(ai ⊗ ai))

)
= αtB∗tB

(
s−1(sa⊗ 1) + s−1(1 ⊗ sa) + s−1(1 ⊗ sai)|s−1(sai ⊗ 1)

)
= δ(a),

and so Claim (1) holds as well.
To prove the dual result, concerning the cobar construction on H, note that if H is 

connected and of finite type, then homR(ΩH, R) is isomorphic to B homR(H, R), which 
is an Alexander–Whitney coalgebra by the argument above. It follows that ΩH is an 
Alexander–Whitney algebra and that ηH : H → BΩH is an algebra map. �
Remark A.14. In [18], Kadeishvili showed that if H is a chain Hopf algebra, then ΩH

is a Hirsch algebra. In proving above that ΩH is an Alexander–Whitney algebra, we 
have established a stronger result, one that is necessary to proving the existence of 
multiplicative structure on Ĥ (H).
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