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Résumé
La part d’énergie solaire effectivement utilisable dans le cas d’une intégration de masse du

photovoltaïque (PV) dans le réseau électrique dépend de deux facteurs : le rendement éner-

gétique du système ainsi que des pertes due à la gestion de cette energie. Ce second facteur

résulte du caractère volatile de l’énergie solaire et du besoin d’éviter les pics de production à

midi qui peuvent déstabiliser le réseau electrique. L’objectif global de cette thèse est d’établir

des lignes directrices pour maximiser l’énergie utilisable en quantifiant les différentes pertes

en fonction des conditions d’exploitation au niveau de la cellule solaire et du système PV. Les

cellules solaires sont habituellement optimisées pour des conditions standards de test (STC).

Cependant, pendant leur fonctionnement, elles sont soumises à des conditions différentes.

Notre but est donc d’étudier comment les matériaux et la conception d’une cellule solaire

peuvent-être optimisés pour des conditions de fonctionnement spécifiques. Nous avons parti-

culièrement mis l’accent sur les cellules en couches minces de silicium car leur comportement

n’est pas encore bien compris.

Pour cela, nous avons mesuré la dépendance en température des performances des cellules en

couche mince en silicium amorphe (a-Si:H) et en silicium microcristallin (μc-Si:H) en fonction

de leurs conditions de dépôt et de leur conception. Nous avons notamment observé qu’en

variant l’épaisseur de la couche intrinsèque d’une cellule (a-Si:H), la cellule la plus efficace

dans des conditions standard n’a pas forcément le meilleur rendement énergétique. Nous

avons aussi trouvé une explication à la présence d’un maximum au facteur de remplissage

(fill-factor, FF) en fonction de la température. Puis, nous avons étendu notre analyse à des

cellules en couches minces à multi-jonctions, en silicium cristallin à hétérojonction et en

silicium cristallin standard.

Pour les cellules en couches minces de silicium, le rendement énergétique est significative-

ment influencé par les effets spectraux et les effets de dégradation/récupération des perfor-

mances (dus à l’effet Staebler-Wronski). En se basant sur des mesures de dégradations/récupé-

ration à l’intérieur (en laboratoire) et à l’extérieur (en conditions réelles), nous avons démontré

qu’il est difficile de décrire cet effet avec un modèle de diode pour cellule solaire. Cependant,

un tel modèle avec un courant de recombinaison et avec une dépendance supplémentaire

en température du courant de saturation et du facteur d’idéalité permet de reproduire les ca-

ractéristiques courant-tension d’une cellules solaires a-Si:H sur plusieurs ordres de grandeur

d’illumination et pour des températures de 0 ◦C à 80 ◦C.

Au niveau du system, nous avons modélisé un système PV avec stockage local pour éva-

luer différentes stratégies visant à diminuer les pics d’injection (injection=production PV-
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consommation électrique locale) néfastes pour le réseau et évaluer l’impact de ces mesures

sur l’énergie utilisable. Dans ce cadre, nous avons développé un algorithme de contrôle simple

pour la gestion d’une batterie qui permet de minimiser les pertes dues à une limite d’injec-

tion dans le réseau et de maximiser la consommation propre. Cet algorithme donne de bons

résultats sans avoir besoin de prévision de production PV. Nous avons établi que le stockage

thermique avec une pompe à chaleur ou un boiler est comparables, quant à son efficacité

à diminuer les pics d’injection, au stockage électrique dans une batterie. En général, l’im-

position d’une limite d’injection permet de significativement réduire les pics de production

tout en induisant des pertes relativement petites. De plus, ces pertes peuvent être réduites

massivement avec une batterie relativement petite. En variant l’orientation et l’inclinaison des

modules solaires (par exemple orientation est-ouest au lieu de plein sud), les pertes dues à une

limite d’injection peuvent aussi être réduites, tout comme la différence entre la production

en été et en hiver qui peut diminuer d’un facteur de deux. Nous avons aussi développé une

méthode statistique qui permet d’extraire l’utilisation des différents appareils électriques d’un

ménage en se basant sur des mesures de la courbe de charge au quart d’heure et de quelques

informations à propos de ce ménage. Grâce à ce modèle, nous avons déterminé qu’environ 8 %

de la consommation électrique peut-être déplacée autour de midi, réduisant de ce fait les pics

d’injections durant cette période. Finalement, en combinant les résultats de la partie cellule

avec la méthodologie de la partie système, nous avons mis en évidence que la variation du type

de technologie de cellule solaire (avec, entre autre, différentes dépendances en température)

influent peu sur la réduction des pics d’injection, la consommation propre et les variations

saisonnières de production en comparaison avec les autres influences (par exemple la limite

d’injections ou la capacité de stockage de la batterie). Néanmoins ces variations ne sont pas

négligeables.

Mots clefs : Photovoltaïque, couche mince en silicium amorphe, rendement énergétique, effet

Staebler-Wronski, effets de température, intégration résau électrique, stockage de l’électricité,

flexibilisation de la consommation.
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Abstract
In the case of high photovoltaic (PV) penetration into the electricity grid, the energy produced

by a PV system that is effectively used (useful energy) depends on the energy yield and on

how this energy is managed to avoid detrimental effects occurring at high PV injection, e.g.

during the midday peak. The overall goal of this thesis is to provide guidelines for maximizing

the useful energy of a PV system by quantifying losses incurred during operation at both the

solar cell device and the system levels. Solar cells are usually optimized for the standard test

conditions (STC). However, the conditions are generally different during operation. This work

assesses how solar cell materials and designs can be optimized to maximize the energy yield

for specific operating condition. We mainly focus on thin-film silicon solar cells because of

their challenging metastable behavior.

The temperature dependence of the performance of thin-film amorphous silicon (a-Si:H)

and microcrystalline silicon (μc-Si:H) solar cells is thus measured for different deposition

parameters and cell designs. We observe that, by tuning the intrinsic layer thickness of a-Si:H

cells, the cells with the best (STC) efficiency do not necessarily provide the highest energy

output. We also explain the presence of a maximum in the value of the fill factor as a function

of temperature. The temperature dependence study is then extended to thin-film silicon

multi-junction, crystalline silicon heterojunction (SHJ) and other crystalline silicon solar cells.

For thin-film silicon solar cells, spectral effects and degradation or recovery effects due to the

metastable character of a-Si:H (due to the Staebler-Wronski effect) significantly impact the

energy yield. Based on indoor and outdoor degradation/recovery experiments, we show that it

is challenging to describe this metastability with a diode model. However, such a model with a

current loss term and an additional temperature dependence for the saturation current and

ideality factors accurately reproduces the current-voltage characteristics of a-Si:H solar cells

over a wide range of irradiance levels and operating temperatures.

On the system level, we model a PV system with local storage to evaluate several strategies

to reduce the detrimental midday injection peaks. The impact of such measures on the

useful energy is also investigated. We develop a simple control algorithm that minimizes

the losses due to a feed-in limit and maximizes self-consumption without the need of a

production forecast. We show that heat storage using a boiler or a heat pump performs

as well as battery storage. In general, a feed-in limit reduces significantly peak injection

but only a relatively small storage capacity is needed to reduce losses (due to this limit).

Changes in tilt and orientation of modules also reduce losses resulting from feed-in limits and

shrink the winter/summer production ratio by more than a factor of two. We also develop a
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statistical method that estimates – from loads measured every 15 min–when different electrical

appliances in a household are commonly used. This model indicates that about 8 % of the

total load could be shifted easily to the midday period, thereby reducing the midday injection

peak. Finally, we combine device and system aspects to show that varying cell technology

(e.g. with different temperature response) has a limited but not negligible impact on system

output.

Key words: Photovoltaic, amorphous silicon, thin-film silicon solar cell, energy yield, Staebler-

Wronski effect, temperature behavior, grid integration, electricity storage, demand side man-

agement.
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1 Introduction

1.1 Motivation

Since the 20th century, world energy consumption has been increasing continuously. In

Switzerland, the raw (primary) energy consumption increased by a factor of 10 from 1940 to

2013 (see Fig. 1.1 left) [OFEN 15]. Today, the highest energy vectors are based on fossil fuels. In

Switzerland 2014, 36 % of the total raw energy was used for motor fuel, 25 % for electricity and

15 % for heating oil. Note that in Fig. 1.1 left, the "gray energy" caused by the manufacturing of

imported goods is not taken into account. This significant energy demand causes high carbon

dioxide (CO2) emissions which are a main cause for climate change. Figure 1.1 right shows

the global temperature increase from the mid-19th century to 2014 [Clim 15, Broh 06]. This

change is summarized by the Intergovernmental Panel on Climate Change (IPCC) as "Climate

change will amplify existing risks and create new risks for natural and human systems. Risks

are unevenly distributed and are generally greater for disadvantaged people and communities

in countries at all levels of development" [Pach 14].
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Figure 1.1 – (Left) Swiss primary (raw) energy consumption from 1910 to 2013 [OFEN 15]
(Right) Global temperature increase [Clim 15, Broh 06]

1



Chapter 1. Introduction

Hence we need to move to energy sources with low carbon emissions. Moreover, in Switzerland,

the Energy Strategy 2050 decided by the Federal Council [Mess 13] envisions the withdrawal

of all Swiss nuclear power plants at the end of their lifetime. Therefore about 40 % of Swiss

electricity generation must be replaced, preferably with renewable energy sources.

In one and a half hours the Earth receives more solar energy than the worldwide energy

consumption of 2001 [Tsao 06]. Part of this energy can be converted directly into electricity

with photovoltaic (PV) installations. Due to its decreased price and relatively low CO2 emission

(15-50 grams CO2 equivalent per kilowatt hour (kWh), produced mostly during manufacturing

[Wild 13, Nuge 14]), PV power is a promising technology that is beginning to play a major role

in supplying energy. Regarding the total Swiss energy consumption, PV energy could in the

future replace a part of the energy that is used to produce electricity (replace nuclear power

generation), a part of the oil used for heating through heat pumps, and even a part of the

combustible energy used for motor fuel through rechargeable electric or hydrogen-powered

vehicles.

Research institutes and industry are working hard to improve the solar cells efficiency, and

thus reduce the cost, of PV modules. Thanks to those efforts, module prices have decreased

considerably during the last decade. Since the fabrication of the first PV module, the cost

followed an exponential learning curve shown at the right in Fig. 1.2, which shows module cost

as a function of cumulative module shipments. Nowadays, in sunny area the cost of utility-

scale solar dropped to prices around 0.05 $/kWh in the U.S or in Dubai [Boli 15]. In Dubai

this energy cost is even lower than the current local gas price [Park 15] reaching wholesale

grid parity. Those prices makes only sense if the electricity can be used when it is produced.

Moreover, in much more countries retail grid parity1 has already been reached [Brey 13].

Hence, PV will certainly play an important role in worldwide electricity generation. Every year

more and more PV power is installed throughout the world, which has led to a global capacity of

more than 150 GW (status 2014) [Phil 14]. The International Energy Agency regularly updates

its PV capacity roadmap: e.g. in 2010 900 GW were predicted for 2030, and four years later, in

2014, this forecast was increased to 1720 GW [Fran 10, Phil 14]. To illustrate this PV capacity

expansion, the left of Fig. 1.2 shows the evolution of the yearly Swiss PV energy production,

which reached a value of over 1.2 % of the total Swiss electricity production in 2014.

1.2 Photovoltaics

1.2.1 Basic principles of a silicon-based solar cell

A semiconductor such as silicon is a material whose electrical conductivity is lower than that of

a conductor (e.g. copper) but higher than that of an insulator (e.g. glass). This low conductivity

is explained by a band of energy levels called the band gap that are forbidden for electrons

1Retail grid parity is reached when the LCOE (levelized cost of electricity) of PV power is equal or lower to the
electricity price payed by the end customer.
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Figure 1.2 – (Left) Evolution of the Swiss PV electricity production in GWh relative to the total
Swiss electricity production [OFEN 15]. (Right) Global module cost evolution as a function of
cumulative module shipments for c-Si cells [Metz 15].

and holes and the fact that the Fermi-level is within this forbidden energy region. The band

below this gap is called the valence band (VB) and the band above is called the conduction

band (CB). At 0 °K in equilibrium the electrons are immobilized in the VB and therefore no

conduction is possible. If the electrons are excited across the band gap to the CB they are able

to move in the corresponding conduction states. The same is true for positive-charged holes

left behind which can move in the VB (allowing conduction). The electrons can e.g. be excited

from the VB to CB by photons with higher energy than the band gap.

A working solar cell relies on an absorber such as e.g. a semiconductor. There the incoming

light (photon) excites electrons into the CB and a hole is generated in the VB. These so-

called electron-hole pairs have to be separated and the carriers extracted from the cells. This

process is induced with carrier-selective contacts that attract or repel the other carrier type.

For example, for standard silicon-based solar cells, the pn junction generates these selective

contacts2. Note that this junction is not necessary for a functioning solar cell [Wurf 15, Geis 15].

If there are defects in the material, the electron can recombine with a hole and hence both

carriers are lost. They do not contribute to the power generation and the cell conversion

efficiency is reduced. If the electron- and hole-collecting sides of a solar cell are connected

forming an electrical circuit, this charge separation induces a potential that drives a current

(the electrons leave the circuit on one side and at the same time on the other side an electron

enters the device recombining with a hole). This current and potential can then be used to

power electrical devices.

Several types of PV technologies exist on the global market. In 2014, 55 % of the total produced

solar modules were multi-crystalline silicon, 36 % mono-c-Si, 4 % cadmium-telluride (CdTe),

3.6 % CIGS and 1.7 % were thin-film silicon-based [Burg 15].

Thin-film silicon solar cells are based on amorphous silicon (a-Si:H) or microcrystalline silicon

(μc-Si:H). Their name reflects the fact that their absorber layer are thinner (0.2μm to 2μm)

2A pn junction is created if we stack a p-doped semiconductor with an n-doped semiconductor.
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Chapter 1. Introduction

than c-Si solar cells (100μm to 300μm). a-Si:H and μc-Si:H exhibit a larger number of defects

(higher defect density) leading to enhanced recombination and hence to a reduction of the

cell efficiency. Moreover, it they are p- or n- doped, the defect density increases considerably

which makes these materials not usable as an absorber in a PV cell due to too low carrier

lifetime. Therefore an intrinsic layer (i -layer) with a lower defect density than doped layers

is used as the absorber, surrounded by thin p- and n-layers. This structure is called a p-i -n

configuration (or superstrate configuration) when the p-layer is the first to be deposited and

n-i -p configuration (or substrate configuration) when the n-layer is deposited first. Note

that light is usually entering the device from the p-side to improve hole collection and as a

consequence cell efficiency. Such cells can be stacked to form multi-junction cells, as for

example micromorph cells constituted by an a-Si:H top cell and a μc-Si:H bottom cell. Multi-

junction cells have higher efficiencies as they can use the solar spectrum more efficiently.

Compared to other technologies, thin-film silicon photovoltaic (TF-Si) technologies deposited

by plasma-enhanced chemical vapor deposition (PECVD) show certain advantages: (1) poten-

tial for cost reduction, (2) short energy pay-back time3 [Wild 13], (3) large availability of the

main materials (silicon, zinc oxide) and (4) suited for building integrated photovoltaic due

to a favorable temperature behavior and visually pleasing integration. Moreover, concerning

their energy yield (see Sec. 1.3), depending on location thin-film silicon modules have a better

performance ratio than crystalline cells4. However conversion efficiencies are rather low

compared to other technologies. Presently, the best silicon thin-film cells surpassed 13.6 %

stable efficiency [Sai 15]. This technology is also one of the most challenging in terms of energy

yield modeling due the presence of spectral effects and metastable effects that change the

efficiency of the cell during operation. In this thesis special attention will therefore be given to

this technology.

Recently, due to the significant decline of the price for c-Si solar cells and reduced fraction of

the cell cost in the total system cost, thin-film silicon cells are losing market share. We hence

also considered other technologies in part of chapter 4.

1.2.2 PV-systems

In order to warrant lifetimes of over 25 years, solar cells have to be protected against humidity,

mechanical impacts and dirt. Generally this is achieved by encapsulating the cells with glass

on the front side and a back-sheet or also glass at the back side. Between the glass and the cell,

an encapsulant is added to allow adhesion of the two components. If more than one module

is installed, they can be connected in series or in parallel to reach the desired voltage and

current. The output of PV modules is a direct current (DC). The PV modules are connected

to a DC/AC (alternating current) inverter or a DC/DC converter depending on the needed

output and system configuration. Those converters generally include a maximum power point

3Payback time is the time that is needed by a system to produce the energy that was used for its manufacturing
4The performance ratio is the ratio of how a module/system is performing in a given time interval under real

operating conditions compared to how it would perform if the efficiency would always have the same constant
value as at STC.
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tracker, keeping the module at its ideal working point, to maximize the generated power. PV

systems are divided into two categories:

• Grid-connected installations, in which the inverter is connected to the electricity grid

and the power that is not directly used locally is injected into the grid. Today this

represents the majority of installed systems.

• Stand-alone installations are not connected to the grid and the power that cannot be

directly used is either stored in a battery or lost. This type of installation is generally

found where no electricity grid is available as e.g. in rural regions in developing countries,

huts in the mountains or solar-powered airplanes.

1.2.3 PV integration into the electricity grid

PV is an intermittent power source. The only control we have is the possibility to limit its output.

With high penetration of PV into the grid, the midday peak production occurring during sunny

days that cannot be consumed locally can have detrimental effects on the stability of the grid.

For example, over-voltages in the electricity lines or overheating transformers could occur

due to high injection of PV power [Denh 07, Umla 12, Buch 13b]. There are several ways to

mitigate this midday peak (peak-shaving). For example:

• Local storage with battery. A part of the midday production is stored in a battery to

reduce the injection peak. This energy is then used to supply electricity in the evening

and at night when there is no PV production [Riff 11, Schm 10].

• Module orientation variations. Usually, PV modules are, if possible, south oriented

to maximize yearly PV production. However, if modules are east-west oriented, more

modules need to be installed to reach the same energy yield but the midday production

peak will be reduced. Varying the tilt and orientation of modules also reduces the

discrepancy between the high summer and low winter PV production.

• Demand-side management. A part of the electricity consumption could be shifted to

the high PV production period. As the power is consumed locally, the injection peaks

diminish.

Moreover these solutions increase local consumption of the PV power thereby reducing grid-

related losses and mitigate instability. There are several ways to encourage PV system owners

to use these solutions, for example by introducing a maximum feed-in limit. This means that

if the excess power (produced PV power minus the local electricity consumption – including

battery charging) is higher than the feed-in limit (injection is higher than the feed-in limit)

this power has to be curtailed and is lost. PV system owners are then pushed to implement

schemes to minimize energy losses.
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1.3 Useful energy
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Figure 1.3 – Schematic of losses during conversion of solar energy into useful electricity energy.

The conversion of solar energy into electricity implies several losses at cell, module and system

level which depend on operating conditions (see Fig. 1.3). We define the useful energy as the

solar energy that can be effectively used. It is the energy yield minus the losses induced by the

electricity management which is needed at high PV penetration (e.g. due to feed-in limit or

storage). The energy yield5 is defined as the total amount of energy generated by a PV module

divided by the installed power capacity (in kWh/Wp) during a period (generally one year) at a

specific location for given installation conditions (e.g. inclination, orientation and thermal

properties of the setup). It can also be defined as the total incoming solar energy minus the

cell, module and for instance DC/AC inverter losses divided by the installed power capacity.

1.3.1 Cell level

PV modules are rated by their efficiency in standard test conditions (STC: 1000 Wm−2, AM1.5g

spectrum, 25 ◦C). However, it is not the PV installation efficiency but its generated energy

output or energy yield6 that matters for end users. The energy yield is always bound to the

local operating conditions: the local climate and the installation characteristics of the modules.

To calculate a financial yield, users need to ”buy” energy (kWh) and not power (W). Modules

with the same efficiency will not produce the same amount of energy in the Sahara desert and

in continental Europe.

As PV modules are rated by their efficiency at STC, cells have so far been optimized for this

condition. However, real operating conditions are almost never at STC. For example module

temperatures easily reach 60 ◦C and hotter under full sun illumination, even in temperate

climate zones like Switzerland. PV modules should be optimized for a specific climate and

operating conditions. Such optimized designs can increase electricity production and hence

5Generally defined as the energy production measured after the DC/AC inverter divided by the installed capacity.
However in this thesis we also sometimes use the energy yield for a cell or module.

6Energy yield = energy output
installed capacity
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contribute to the development of renewable electricity generation. Moreover, high PV pene-

tration in electricity grids will require smart energy management because of the intermittency

of this type of power. Thus electricity storage solutions and precise power and energy yield

predictions will be essential for grid managers.

Several parameters related to operating conditions (as location and orientation) influence the

output power and hence the energy yield. For silicon-based PV systems these are (on the cell

level):

• The operating temperature of a cell. During outdoor operation, cells undergo large

temperature variations (e.g. from −10 ◦C to 80 ◦C ). Since solar modules lose generally

0.2 % (for amorphous silicon cells) to 0.5 % (for multi-crystalline silicon cells) relative

efficiency per ◦C, temperature considerably affects cells performance.

• The intensity of the incoming irradiance.

• The spectrum of the incoming light. The sun’s irradiation spectrum varies as a function

of the sun’s position, the meteorological conditions and the albedo. The spectral effects

on cell’s performance are dependent on its spectral response. a-Si:H and multi-junction

cells are significantly affected by spectral variations.

• Degradation and recovery effects. During solar cell operation, the electronic properties

of thin-film silicon and especially a-Si:H-layers degrade due to illumination. This light-

induced degradation of the material is known as the Staebler-Wronski effect (SWE)

[Stae 77]. This degradation depends mainly on illumination intensity and temperature.

However, it can be partially recovered with increased temperature (annealing effect).

Degradation and recovery of a cell or module will thus depend on its operating history.

In this work on cell level, the recombination losses dependence on operating conditions plays

the most important role (see Fig. 1.3).

1.3.2 Module level

Different parameters influence the energy yield of a module. These include:

• Soiling and shadowing losses.

• Optical losses from the front glass.

• Current or operating condition mismatch between the cells of a module (the total

module current is always limited by the weakest cell).

• Physiologic and degradation mechanisms such as adhesion failure, junction box sepa-

ration, encapsulant browning, corrosion of the metal lines and cell cracking [DeGr 10,

Jord 13, Dunl 06].
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1.3.3 System level

To calculate the energy that will effectively be available to the end-user (useful energy), the

system losses, e.g. inverter and cable losses, also have to be taken into account. Moreover, feed-

in limit regulations, storage solutions or different module orientations and tilt configurations

(see Sec. 1.2.3) significantly affect the useful energy of systems by inducing additional losses.

1.4 Objectives

The main objective of this thesis is to provide guidelines for maximizing the useful energy of a

PV system by quantifying losses incurred during operation at both the solar cell device and the

system levels. Publications discussing energy yield from a materials perspective are relatively

rare. Most models that describe energy yield contain parameters without any link to actual

material properties. On the other hand, many papers link material parameters to solar cell

efficiency, but not to energy yield. The aim of this work is to fill this gap. We will first focus on

the cell level, taking into account the three main operating parameters affecting energy yield.

Our objectives are to:

• Evaluate spectral effects on micromorph modules using a diode-based model.

• Understand the temperature dependence of a-Si:H and μc-Si:H as a function of their

material properties and its impact on energy yield. Building on this knowledge, to

understand the temperature dependence on the performance of thin-film silicon multi-

junction solar cells. And then compare the temperature behavior of thin-film silicon

solar cells to silicon heterojunction and other silicon-based solar cells.

• Provide a better understanding of the way the SWE influences cell performance and

develop and test a model for the SWE linked to material properties.

On the system level, our main objective is to quantify how storage and corresponding control

management, module orientation configurations and demand-side management can support

the grid in the case of high PV penetration and to identify the additional losses that affect

the useful energy. We limit the scope mainly to households. Finally, we combine cell level

and system level results to quantify the impact of different solar cells technology on those

additional losses.

Note that the effects of module parameters on energy yield were not considered in this thesis.

1.4.1 Structure of this thesis

This thesis is organized as follows.

In chapter 2, we describe the different solar cells and measurement tools, as well as the
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simulation program, used in this thesis. A description of the cell simulation program used is

also included.

In chapter 3, the diode equations that are used for represent current as a function of voltage

I(V) behavior of solar cells are reviewed with focus on a-Si:H solar cells. A fitting methodology

is then described and the models are evaluated in function of their ability to fit the I(V) curves.

The temperature dependence of the diode fitting parameter is investigated resulting in the

proposal of an extension of an existing diode model which takes into account the temperature

dependence of a-Si:H solar cells.

In chapter 5, the spectral effects of a micromorph multi-junction cell are quantified by model-

ing for the case of Bern in Switzerland.

In chapter 4, the temperature dependence of the performance of silicon-based solar cells

is investigated. First, the mechanism behind the temperature effects on a-Si:H solar cells is

investigated by experiment and simulation. The influence of material parameters and cell

designs on the temperature behavior is determined as well. A similar approach is followed for

μc-Si:H solar cells. Next, the temperature dependence of micromorph and triple-junction cells

(a-Si:H/μc-Si:H/μc-Si:H) is also analyzed. Then, we extend the discussion to the temperature

behavior of silicon heterojunction cells which shows some similarity with thin-film silicon

devices. Last, we compare our results with the temperature dependence of the performance

of other silicon-based solar cells.

Chapter 6 is dedicated to the SWE effect in a-Si:H-based thin-film silicon solar cells. The results

of indoor light-soaking experiments performed at different irradiances and temperatures are

presented. Then the results of outdoor monitoring of a-Si:H cells, micromorph and a-Si:H/a-

Si:H tandem modules are reported. Finally, a diode-based model for the SWE is discussed.

We move then from a device perspective to a system perspective in chapter 7. We investigate

several measures that could support the grid in the case of high PV penetration and evaluate

the corresponding expected losses for the useful energy of the whole system. This chapter is

divided into three parts:

1. Local storage: we programmed a MATLAB simulation to model a grid-connected PV-

system with local storage. With this tool we quantify how such systems can support the

grid and the losses depending on different control algorithms for the battery. Moreover

we compare heat storage and battery storage, the effect of aggregating loads and the

influence of PV production forecast errors on the performance of such systems.

2. Module orientation: we investigate the losses and peak shaving ability on a local and

national level (in Switzerland) as a function of module orientation.

3. Demand-side management: we describe a method that allows us to statistically extract

the time use for electrical appliances from a 15-minute-time-step load curve. With this

9
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method we estimate the potential of load shifting for a sample of hundred households

with individually measured load curves.

4. Device and system: we combine the device and system parts to quantify the effects of

different solar cells dependence on temperature and irradiance on self-consumption,

losses due to feed-in limit and seasonal production ratio.

1.4.2 Contribution of this thesis to the research field

The main contributions of this thesis to the PV field are:

• We improve the one-diode model with a recombination term [Mert 98b] to be able to

describe the temperature behavior of a-Si:H solar cells.

• By modeling and measurement results we provide a better and comprehensive un-

derstanding of the different mechanisms influencing the temperature dependence of

thin-film silicon solar cells.

• By studying how different material properties (controlled by different PECVD conditions

during cell fabrication) and cell designs influence the a-Si:H cell temperature response,

we provide guidelines to optimize cell performance for specific operating temperatures.

This should benefit cell design with the best energy yield for specific climate conditions.

• We demonstrate the more favorable temperature coefficient of silicon heterojunction

cells compared to other silicon-based technologies.

• We show that the SWE cannot be easily modeled with the one-diode model with a

recombination term.

• We examine how the SWE influences a-Si:H solar cell performance as a function of

temperature and irradiance conditions during light-soaking. This opens the way for

developing a more precise model for a-Si:H cell performance.

• We show that our simple control algorithm for battery management in the presence of

a feed-in limit using no PV production forecast performs as well as an algorithm with

forecasts.

• We develop a method for estimating the part of electrical consumption that can be

shifted to midday. This tool can help to estimate how PV penetration can be enhanced

by demand-side management for households.

• We quantified the influence of different solar cell technologies on the system ability to

reduce PV injection peaks.
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Finally, this work led to one peer-reviewed publication [Ries 15], one conference proceed-

ings as first author [Ries 13] with and oral presentation and various contribution as co-

author [Stuc 12, Stuc 14b, Stuc 14a, Fran 12a, Fran 12b, Wyrs 11, Wyrs 13b, Wyrs 13a, Wyrs 15a,

Wyrs 15b]. Moreover three more publications based on this work are in preparation [Ries 16c,

Ries 16a, Ries 16b].
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2 Materials and measurements tech-
niques

In this chapter we introduce the main solar cell types and measurement techniques used in

this thesis.

2.1 Solar cells

2.1.1 Amorphous silicon cells

This paragraph relies mainly on those two references [Shah 09, Stuc 14c] which contain exten-

sive information on amorphous silicon cells. Hydrogenated amorphous silicon (a-Si:H) is a

class of thin-film silicon materials. In contrast to highly ordered crystalline silicon material

where each silicon atom is bonded to four other silicon atoms forming a diamond cubic struc-

ture amorphous silicon a-Si:H is a disordered semiconductor. It still possess a short-range

order (the nearest atomic neighbors are almost placed as in c-Si) this is why many physical

properties (e.g. the presence of a band gap) are similar to those of c-Si. However over longer

distances the deviation in bond angles and bond lengths becomes very large inducing defects

in the structure in the form of missing bonds called dangling bonds. These dangling bonds

result in electronic state that lies near the mid-gap and act as recombination center. Adding

hydrogen during deposition passivates these dangling bonds, reducing recombination and

enabling the use of hydrogenated amorphous silicon for solar cells. For simplification will call

this material amorphous silicon.

a-Si:H is a metastable material as the defect density increases with illumination and can be

recovered by thermal annealing (Staebler-Wronski effect [Stae 77] see Sec. 6). Compared to

c-Si (1.12 eV), a-Si:H has a higher bandgap (1.7 eV) and band tails caused by the disorder in the

lattice induced by different bonding angles, incorporated hydrogen and vacancies [Smet 12].

Moreover a-Si:H material has a higher absorption at photon energies higher than the band gap

than c-Si due to the relaxation of the selection rules for optical transition (due to the disorder).

This allows for much thinner a-Si:H layers than c-Si in solar cells.
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The cell design of the a-Si:H solar cells used in this thesis is showed in Fig. 2.1. They were

deposited in the p-i -n (superstrate) configuration. We enumerate the process steps of such a

cell:

Glass: 0.5 mm

LPCVD ZnO: 2μm
p1 p-(μc-SiO:H): 4 nm
p2 p-(a-SiC:H): 10 nm
i1 a-SiO:H 10 nm

ibulk a-Si:H: 220 nm

n2 p-(μc-SiO:H): 24 nm
n1 n-a-Si:H: 4 nm

LPCVD ZnO: 2μm

Glass

n

ZnO

Reflector

p
ZnO

i

Figure 2.1 – Schematic of an amorphous silicon solar cell stack used as top cell for an micro-
morph solar cell.

1. The cells are deposited on a 0.5-mm-thick Schott AF 32 glass substrates.

2. The first layer is a transparent conductive oxide (TCO) is a 2.3-μm-thick boron doped

Zinc oxide (ZnO:B) deposited by low pressure chemical vapor deposition (LP-CVD).

3. The doped and active layers are all deposited by plasma-enhanced chemical vapor

deposition (PE-CVD). They comprise:

(a) A p-type microcrystalline silicon-oxide layer (p-(μc-SiO:H)) for a good electrical

contact with ZnO.

(b) A wide-bandgap p-type a-SiC:H layer for a strong electric field with generally a

thickness of about 10 nm.

(c) An undoped wide-bandgap a-SiO:H buffer layer is deposited (PE-CVD) at the

interface between the p- and the intrinsic (i -) a-Si:H layer.

(d) An i -a-Si:H layer as absorber layer.

(e) A n-type a-Si:H layer for the electrical field

(f) A n-type μc-SiO:H layer for a good contact with the next layer.

4. An another 2.3-μm-thick boron doped Zinc oxide TCO

The cell are then structured by a lift-off technique to an nominal cell area of 25 mm2. Further

details about the PE-CVD system, the deposition parameters, and substrates can be found

elsewhere [Stuc 13, Stuc 14b, Stuc 14c].
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2.1.2 Microcrystalline silicon cells

Microcrystalline silicon (μc-Si:H) also referred as nanocrystalline silicon is made of small

crystalline grains embedded in an amorphous matrix [Vall 00]. The Raman crystallinity factor

which quantifies the crystalline fraction of μc-Si:H is an important parameter of characteriza-

tion. This fraction yields a value of about 50 % to 70 % for best efficiency cells [Droz 04]. A high

crystallinity allows for a higher current of the solar cell however it decreases its Voc [Hann 14].

The band-gap of this material is equivalent to the band-gap of c-Si (1.12 eV).

Figure 2.2 – Scanning electron microscope image of a rough ZnO TCO with pyramids

As for a-Si:H cells LP-CVD ZnO is used as TCO for the front electrode. This TCO layer is

deposited such as to have a pyramidal surface morphology increasing light trapping into the

device (Fig. 2.2). The more light is trapped in the device the higher will be the photogenerated

current and hence the conversion efficiency of the cell. Usually we use a 5-μm-thick ZnO

layer (called internally in the PVLAB as Z5). Its roughness can be tuned by varying the argon

(Ar) plasma treatment time after deposition [Ding 13]. Due to the indirect bandgap of μc-Si:H

the surface roughness of the front electrode ZnO plays a even more important role than for

a-Si:H solar cells. The rougher the electrode, the more porous zones in the μc-Si:H layers (also

known as cracks) are appearing at the bottom of the valley of the pyramids [Pyth 08]. This

porous zone reduces diode properties affecting mainly the Voc value of a solar cell. Usually, a

20 minutes Ar treatment time of the TCO still results in a rough substrate, while a 45 minutes

treatment time leads to a smoother substrate.

Figure 2.3 shows a scanning electron microscope image (SEM) with a superposed electron-

beam induced current (EBIC) image and the schematic of the standard μc-Si:H solar cell

used in this thesis. The fabrication of such a cell is very similar to a-Si:H. It is basically the

deposition condition during PE-CVD that are changed in order to obtain μc-Si:H material. We

first deposit the ZnO front electrode, followed by the different doped and intrinsic active layers

deposited by PE-CVD: a p-(μc-SiO:H) layer (about 10 nm) is sometimes followed by a very

thin SiOx layer to reduce the effect of porous zones. Then the i -μc-Si:H layer is deposited. This

layer is generally thicker than the i -layer of a standard a-Si:H cell because of lower absorption.

Finally a n-type μc-SiO:H layer is deposited. To passivate the interface, this layer can be

replaced by i -a-Si:H/n-a-Si:H/n-μc-Si:H layers (see Sec. 4.3). More information on these cells

can be found in [Hann 14, Ding 13, Bugn 13].
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ibulk μc-Si:H: 650 nm

Glass 0.5 mm

LPCVD ZnO: 5μmZnO

ZnO

1μm

Porous zone
μc-Si:H

n

p

LPCVD ZnO: 5μm
Rough or smooth

Figure 2.3 – (Left) SEM image superposed with an electron-beam induced current (EBIC)
image (yellow) of an μc-Si:H solar cell. The stronger the yellow the higher the induced current.
We can observe the increased collection at the p side (top of the cell). (Right) schematic of a
μc-Si:H solar cell stack.

2.1.3 Multijunction silicon thin film solar cells

The efficiency of thin-film silicon technologies can be increased by stacking two or more cells

together. Those device are known as tandem or triple junction cells. A widely use structure is

the micromorph (or hybrid) thin-film silicon cell [Meie 94]. This cell is composed of an a-Si:H

top cell and an μc-Si:H bottom cell. Due to its high band-gap, the top cell absorbs the blue part

of the sun spectrum with relatively small thermal relaxation losses. The μc-Si:H bottom cell

with lower band-gap absorbs the infrared light for which the top cell is transparent. Because

of this better use of the solar spectrum than with a single junction cell, the efficiency can be

increased. As both cells are connected in series the current of the two sub-cells should be

matched in order to maximize the efficiency of the whole cell (otherwise the current of the

total cell is limited by the sub-cell with less generated current). Triple (a-Si:H/μc-Si:H/μc-Si:H)

junction cells will also be studied in this thesis; they could allow for an even higher efficiency

than for micromorph cells.

2.1.4 Hetero-junction solar cells

Generally in homojunction c-Si solar cells a part of the efficiency losses are due to carrier

recombination at the absorber/metal contact. Those recombination losses can be reduced by

passivating the surface of the absorber with a few nanometer intrinsic a-Si:H-layer deposited

on a c-Si wafer [Tana 93]. This heterojunction passivation is due to the hydrogenation of the

c-Si surface state from the a-Si:H material. In addition, the carrier type selective contacts are

generated with p- and n-a-Si:H on both sides of the wafer sandwiching the two i -layers. These

type of cells are called silicon heterojunction solar cells (SHJ). Moreover, with e.g. a n-type
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c-Si wafer a back surface field is generated at the c-Si/i -a-Si:H/n-a-Si:H junction repelling the

minority carriers and hence reducing further the recombination rate. This reduced surface

recombination due to passivation allows essentially to have a high Voc (e.g. 750 mV [Masu 14])

which is near the theoretical limit of c-Si (769 mV for a 100μm thick wafer [Tied 84]). A review

on this topic can be read in De Wolf et al. [De W 12].

Ag

Ag

TCO

TCO

a-Si:H(n)

a-Si:H(p)

a-Si:H(i)

a-Si:H(i)

c-Si (n) TCO

a-Si:H

TCO

(i)(p)

ΔEc

ΔEc

ΔEv

ΔEv

(i) (n)EF

a-Si:H

Figure 2.4 – (Left) Schematic of a front emitter silicon heterojunction cell layer stack. (Right)
Schematic of the band-diagram. Note that both schematics are not to scale.

Schematics of the layer stack and the band-diagram of a standard SHJ used in this thesis are

showed in Fig. 2.4. The SHJ cells studied in this thesis were deposited in our laboratory with a

front emitter and a cell size of 2 x 2 cm2. The thickness of the n-type wafer is 240μmm and we

uses indium thin oxide (ITO) as TCO.

2.2 Measurements tools

2.2.1 Current-voltage characterisation

One of the standard characterization technique for solar cells is to measure its current-voltage

(I(V)) characteristics. The cells are connected with four probes (to suppress contact and line

resistances) to a sourcemeter. Figure 2.5 shows the I(V) and power-voltage (P(V)) curve of a

back-contacted c-Si solar cell measured at −40 ◦C. Three points indicated by the circles in the

plot are particularly important:

• Short circuit condition: At this point (V = 0) we evaluate the short-circuit current density

Jsc and the short-circuit resistance (Rsc) which is defined as the inverse slope at this

point.

• Open circuit condition: At this point (J = 0) we evaluate the open-circuit voltage (Voc)

and the open-circuit resistance Roc which is defined as the inverse slope at this point.
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• Maximum power point: The Pmpp is defined as the point where the cell produces the

maximum power (maximum current x voltage product, see Fig. 2.5 right).

With those points we can define the fill factor as F F = Vmpp·Jmpp

Voc·Jsc
= Pmpp

Voc·Jsc
which corresponds to

the ratio of the areas of the two rectangles (formed by the red lines and x-/y- axis) showed at

the left in Fig. 2.5.

The conversion efficiency (η) is defined as the ratio between the Pmpp and the power intensity

of incoming irradiance.
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Figure 2.5 – I(V) and P(V) curve schematic of a back contacted crystalline silicon solar cells
measured at −70 ◦C with Voc = 0.868V, Jsc = 40mAcm−2, F F = 85% and Pmpp = 29.4Wm−2

2.2.2 Solar simulators

In this work, we used five different (quasi-) steady state solar simulators that can be grouped

in two different categories:

LED and halogen lamp source Those simulator have several light emitting diodes (LED) with

different colors to cover the blue-green part and halogen lamps to cover the red/infrared

part of the solar spectrum. The intensities of the different lamps can be easily tuned in-

dividually allowing variable spectrum and illumination. For low illumination (generally

lower than 60 Wm−2, only LED light sources can be used. Moreover, the incoming light

is not collimated, inducing an angular distribution of the light that depends on light

sources. We used three different simulators (R&D systems) depending on sample size:

• Large-area solar simulator with a test area of 1.5 x 2 m2 for measuring full-size mod-

ules [Desp 14]. During the measurement period the irradiance non-uniformity

was below ±3%.

• Medium-area solar simulator denoted ”sunsim” with a test area of 0.85 x 0.85 m2

for minimodules [Lo 10]. The irradiance non-uniformity was measured below

±2%. It can be classified as AAA according to the IEC norm [IEC 08b].
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2.3. Light-soaking

• Cell tester with a test area of 30 x 30 cm2 for measuring cells. The irradiance

non-uniformity was measured below ±1.5%.

Xenon and halogen lamp source We also performed measurements using a Wacom com-

mercial simulator model WXS-220S-L2 (denoted here Wacom2 with four lamps - three

halogen and one Xenon- and a 220 mm x 220 mm illuminated area) and a Wacom

commercial simulator WXS-90S-L2 model (denoted here Wacom with two lamps - one

halogen and one Xenon -with a 90 mm x 90 mm illuminated area). Both are class AAA

simulators.
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Figure 2.6 – Spectra of the Wacom (green), sunsim (blue) and cell tester (red) in comparison
with the AM1.5g spectrum (black). Note that the spectral values above a wavelength of 1000 nm
are not reliable.

Figure 2.6 shows the spectra of the Wacom, Sunsim and cell tester in comparison with the

AM1.5g spectrum.

2.2.3 External quantum efficiency (EQE) measurements

The EQE is the ratio between collected electron-hole pairs to incident photons at a given

wavelength and it describes the spectral response of a solar cell. Our setup has a spot size

of about 1 mm x 2 mm at the focal point. Measurements were performed with white back-

reflector placed at the back of the cell. For measuring the spectral response of each sub-cells of

a multi-juntion cell, bias-lights are used such that only the wanted sub-cell limits the current.

The setup is described in [Domi 09].

2.3 Light-soaking

For light-soaking of a-Si:H cells, we mostly used an in house built fully LED-based solar simula-

tor allowing to vary the spectra and the irradiance (up to three-sun-equivalent) [Stuc 14a]. The

temperature of the cells could be varied from 5 ◦C until 90 ◦C using a temperature controlled

plate. During light-soaking, in-situ I(V) curves of the solar cells could be recorded by placing
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them on a measurement block that is in thermal contact with the plate (see Fig. 2.7 for a

sketch).

Temperature controlled plate

RTD sensor Cell’s front glass

Thermoconductive
and white reflector
foam

a-Si:H cell

Copper piece
Contact pin

Figure 2.7 – Measurement block for in-situ I(V) measurements of a-Si:H during light-soaking
with resistance temperature device (RTD) sensor

For some light-soaking experiments at 50 ◦C and 1000 Wm−2, we also used a solar simulator

from Solaronix. This simulator uses two microwave-excited Na lamps and the cell temperature

is controlled using a cooling plate [Sola].

2.4 Monitoring station

Some results of this thesis are based on results of the PV monitoring station located on the

roof of our institute in Neuchâtel, Switzerland. The weather station comprise the following

sensors:

• A CM21 pyranometer from Kipp and Zonen [Kipp] used for global horizontal irradiance

measurements (GHI).

• A CM11 pyranometer from Kipp and Zonen with a shadow ring to measure diffuse

horizontal irradiance (DHI).

• A SP Lite2 pyranometer with the same tilt and orientation (plan-of-array, POA) as the

full size module.

• A supplementary pyranometer measuring the global POA irradiance of the small cells.

• A reference encapsulated c-Si solar cells whose Jsc is used for the measurement of the

sun irradiance at the same tilt as the full size modules.

• Air temperature and humidity sensor.

• Wind speed and direction sensor.

• All-sky camera from Vivotek; a picture is showed in Fig. 2.8 b).
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The PV monitoring system measures each 3 minutes the I(V) curve of each (full size) modules.

In between each module is kept at its maximum power point (MPP tracker) and every minutes

the Pmpp is recorded. The back of module temperature is recorded too1 at its back. The

modules have a 15° tilt and an azimuth of 175°. The measured Pmpp and irradiances during

the day of the eclipse in 2015 are shown in Fig. 2.8 a).

A second monitoring system for measuring minimodules and lab-size cells was also set up. The

I(V) curve of the cells or modules are measured every minutes together with their temperature.

When not measured the devices are left in open-circuit. The devices have a 30° tilt and an

azimuth of 175°.

(a) Module Power and irradiance (b) All-sky camera

Figure 2.8 – (a) Pmpp of a Micromorph full size PV module and irradiance during the eclipse
on March 20, 2015. (b) All sky-camera picture with a curious gull.

1The temperature is measured by an RTD sensor fixed and insulated from air cooling with foam.
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3 Diode equation for solar cells

Summary

I(V) characteristics of solar cells can be described using diode equation based models. For thin-

film silicon solar cells, an additional current loss term which takes in account the electrical voltage

dependent recombination in the intrinsic layer can be added according to literature. A good fit can be

obtained with this current loss term for our thin amorphous silicon cells with relatively high fill factor

(F F ) over several range of intensities. We could show that the temperature dependence can also be

reproduced well with this model by introducing a temperature dependence for some parameters. Even

the non-linear F F as a function of temperature curve can be reproduced. However, for thicker cells

with a high defect density and hence a lower F F , the modeled F F value is too high compared to the

measurement. This discrepancy arises because the model does not take into account electrical field

deformation. Adding a second diode does not allow reducing this discrepancy significantly.

3.1 Introduction

Solar cells I(V) characteristics can be described using diode equation based models. As those

equations have a physical background, a fit with those models of real measured curve allows

gaining insight into cells characteristics. Moreover, such a model should be able to simulate

solar cells performances at different conditions (varying temperature and irradiation) which

will be useful for the next chapters. In this chapter several existing diode based models are

analyzed. We here focus on the fitting of thin-film silicon solar cells and verify the ability of

the model to fit the I(V) curves at different irradiation and temperatures.

In section 3.2, we discuss the diode based models in general. In section 3.3, the recombination

term developed by Merten et al. for amorphous silicon cells (a-Si:H) modeling and an explicit

formulation of the reverse saturation currents for a two diode model are reviewed. Moreover

different expression for shunt currents found in literature are discussed.

In section 3.5, in a first part, a procedure developed for a-Si:H cell fitting with the one-diode
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model is explained. This procedure is partially based on existing procedures from literature.

Fitting results are showed and analyzed. In a second part, the temperature dependence of the

diode based model is discussed. A fitting procedure taking into account temperature behavior

is presented and the discussion is extended to a 2 diode model. The limitation of the two

models are discussed as well.

Section 3.6 presents briefly the method to model multi-junction cells with diode based models.

3.2 Basic equations

We consider an ideal p-n junction in the dark [Sah 57] and the following hypothesis:

• Outside the space charge region the semi-conductor is neutral.

• The space charge region is abrupt.

• The electron (n) and holes (p) concentration are linked to the potential through the

junction in the space charge region.

• The injection is kept low.

• Recombination and generation are neglected in the space charge region.

• An infinitely thick device is assumed.

Using the continuity equations and the Poisson equation and taking into account the drift

and diffusion of the carrier we get the J (V ) characteristic of a diode in the dark:

J (V ) = J0(e
qV
kT −1) (3.1)

J0 =
qDp

Lp
pn + qDn

Ln
np (3.2)

Where q is the elementary charge, Dn,p are the diffusion constant of electrons and holes, pn/

np the minority carrier concentration for holes and electrons and Lp /Ln the diffusion length,

k the Boltzmann constant, V the applied voltage and T the temperature. For non-ideal solar

cells the dark I(V) characteristic is often given by three recombination currents [Ghos 80]:

J = J0(eqV /nd kT −1)+ J0t (eqV /nt kT −1)+ Jor (eqV /nt kT −1) (3.3)

with J0 for the reverse saturation current due to diffusion (same as in Equ. 3.3), nd is the

ideality factor for the diffusion current with generally a value of 1 as for an ideal diode. Jot is

the reverse saturation current due to the thermionic emission for MIS or SNO2/Si or ITO/Si

cells and is generally negligible. Jor = qni W /2τ1 is the reverse saturation current due to

1ni is the saturation current and W the width of the absorber layer

24
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Figure 3.1 – Equivalent electrical circuit of a solar cell with 2 diode (D1 and D2), the Merten
recombination current (Jrec), the light generated current (Iph), series resistance (Rs) and shunt
resistance (Rp).

recombination in the space charge region, generally nr = 2. [Sah 57, Wolf 77]. Neglecting the

second term we get the often used 2 diode model. The recombination components dominates

at low currents and the diffusion component at high currents. In practice the ideality factor

and the reverse saturation current can depend on illumination level and voltage [Stut 99].

Coming back to the ideal diode, under illumination, a generation term can be added to the

equations and we get the superposition principle. It means the I(V) curve under illumination

is given by the sum (superposition) of the dark I(V) curve and the photogenerated current Jph .

Especially for a-Si:H, it is far from being true mainly because of voltage dependent charge

collection. For hetero-junction solar cells this principle is also not precisely applicable mainly

due to irradiation dependent recombination path or charge accumulation. To complete

further the model, a parasitic series resistance (due e.g. to the TCO or contact resistances) and

shunt currents represented by a parallel resistance can be added to the equation (Fig. 3.1 and

Equ. 3.4 without the recombination current).

3.3 Diode models for amorphous silicon cells

Merten et al. [Mert 98b] added a current loss term (Jr ec ) to the diode equation in order to

take into account enhanced recombination in the i -layer and the drift characteristic of the

carrier transport. They assumed a constant electrical field (E-field) within the i -layer. Hence

this assumption is only valid for small external voltages, cells with thin i -layer and low defect

densities. Using the recombination function from [Hubi 92] they proposed the following

equation:

J = Jph − Jph
d 2

i

(μτ)e f f [Vbi − (V + JRs)]
− J0

[
e

(
q V +J ·Rs

nkT

)
−1

]
− V + J ·Rs

Rp
(3.4)
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Chapter 3. Diode equation for solar cells

with di the thickness of the i -layer, Vbi the built-in voltage. The effective lifetime mobility

product is given by:

(μτ)e f f = 2
μ0

nτ
0
n ·μ0

pτ
0
p

μ0
nτ

0
n +μ0

pτ
0
p

. (3.5)

Here τ0
n,p are the capture times (lifetimes) of the electrons and holes by the neutral dangling

bonds and μ0
n,p are the band mobilities of the free carrier.

Later, Voswinckel et al. [Vosw 13] added a second diode to the Merten model to enable a

physical interpretation of the irradiation independent recombination path (the equivalent

circuit is shown in Fig. 3.1). The first diode with saturation current J0,i nt describes the so called

interface recombination current which models the recombination of the charge carriers at the

p/i - and i /n-interfaces of the p-i -n solar cell [Rech 97]. The n1 ideality factor value was set

to a value of 1.2 because the recombination does not exactly occur at interfaces. The second

diode with saturation current J0,bulk is the bulk recombination current and represents the

recombination in the i -layer which is very similar to Jor in Equ. 3.3. The saturation currents

and the resulting equation are thus described as:

J0,i nt =
qpp ·e−qVbi /kt

√
μp kT /q

√
τ/q sinh(di /

√
μp kTτ/q)

+ qpe ·e−qVbi /kt
√
μe kT /q√

τ/q sinh(di /
√

μe kTτ/q)
(3.6)

J0,bulk = qdi n

τ
(3.7)

J = Jph − Jph
d 2

i

(μτ)e f f [Vbi − (V + JRs)]

− J0,i nt

[
e

(
q V +JRs

n1kT

)
−1

]
− J0,bulk

[
e

(
q V +JRs

n2kT

)
−1

]
− V + J ·Rs

Rp
(3.8)

3.4 Shunts

As presented before, an equivalent parallel resistance (Fig. 3.1) is used to simulate the shunt

currents in a solar cells. Several studies conclude that the shunt resistance varies with light

intensity. For example Mermoud et al. [Merm 10] proposed the following equation Equ. 3.9

for the shunt resistance as a function of irradiance:

Rp(G) = Rp (Gr e f )+ (Rp(0)−Rp (Gr e f )) ·e
−Rexp

p ·
(

G
Gr e f

)
(3.9)

Where Gr e f is the reference irradiance (generally 1000 Wm−2) and G the actual irradiance.

They applied this equation especially for thin film solar cells ( CIGS, CIS, a-Si:H). Another

reference [Boyd 11] proposes:

Rp = Gr e f

G
Rp,r e f (3.10)
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3.5. Amorphous silicon solar cell fitting with diode models

Sometimes in addition to the parallel shunt resistance Rp, especially for thin-film cells, an

additional non-linear shunt current that is symmetric around V = 0 is added in the form

of Ish ∝ |V |β [Dong 10] with β = 1.5− 3. This term allows modeling the non-linear shunt

behavior at low illumination sometimes encountered (as in our laboratory) for shunted a-Si:H

cells. However, later Voswinckel et al. [Vosw 13] estimated that for good a-Si:H cells under

outdoor conditions the non-linear Ish term and irradiance dependent Rp are not needed. Our

fitting experience goes in the same direction. The ohmic interpretation of a constant Rp is

sufficient.

3.5 Amorphous silicon solar cell fitting with diode models

3.5.1 One-diode with current loss term

Fitting procedure

Fitting a single measured I(V) curve with the one-diode model including the current loss

term (Equ. 3.4) requires an optimization of seven parameters. Moreover, many sets of those

parameters could give a good fit, hence the outcome of the fit is not universal. To reduce the

order of freedom of the parameters, the I(V) curves are measured under different irradiation

intensities (variable intensity measurement: VIM, see Fig. 3.2). Those measurements allow us

to determine several parameters independently without using an optimization algorithm (as

least square minimization). In this section, we present a developed procedure to fit in a robust

way I(V) curves of a-Si:H solar cells.

1. For the built-in voltage we can start by using a value from literature such as Vbi = 1.1V.

For the thickness of the i -layer di we can use the effective thickness of the cell. Note

that for fitting we can then fix di and only vary (μτ)e f f as the two variables are not

independent.

2. The shunt resistance Rp may be obtained from the asymptotic value of Rsc at low irradi-

ation [Mert 98b] (see part d) of Fig. 3.2).

3. The series resistance Rs, can be fitted at high irradiation intensities using the Roc in

function of Voc and the F F in function of Jsc (Fig. 3.2, a) and c) very left part).

4. The (μτ)e f f product can be fitted from the Rsc(Jsc) curve at high irradiation regime

(linear part in log scale in Fig. 3.2, d)). For small forward current values and neglecting

Rp and Rs, the short circuit resistance is given by Rsc = 1
Iph

(μτ)e f f V 2
bi

d 2
i

[Mert 98b]. Once

(μτ)e f f is set, the value of Jph can directly be calculated using Equ. 3.4 at zero bias

voltage.

5. The ideality factor n and J0 can be determined using the Voc(ln(Jsc)) plot (Fig. 3.2, b)),

in a range where for a good cell, the effect of Rp is negligible which means medium to
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Figure 3.2 – Measured and modeled I(V) curve values. The one-diode model with current
loss term is used. a) F F (Jsc), b) Voc(Jsc), c) Roc(Voc) and d) Rsc(Jsc). Blue points are measured
points under different illumination and the black line the modeled values.

high irradiation. We can get an approximation of the (dVoc/d(ln(Jph)) slope2. Using

Equ. 3.1 we get an expression for the Voc:

Voc = nkT

q
ln

(
Jph∗

J0
+1

)
(3.11)

Where Jph∗= Jph

(
1− d 2

i
(μτ)e f f (Vbi−Voc)

)
. We can now differentiate Equ. 3.11 by Jph∗ mak-

ing the assumption that Jph∗ is not depending on Voc near Voc:

dVoc

d(ln(Jph∗))
= nkT

q
· Jph∗

Jph ∗+J0
(3.12)

As Jph >> J0 at an irradiance intensity range where Rp is negligible, we can directly

extract an approximation of the ideality factor n and the reverse saturation current J0

(for a defined (μτ)e f f and Vbi ):

n = q ·dVoc/d(ln(Jph∗))

kT
(3.13)

J0 =
Jph∗

eqVoc/nkT
(3.14)

This approximation worked quite well in practice.

2As we already know (μτ)e f f , we can calculate Jph from Jsc.
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3.5. Amorphous silicon solar cell fitting with diode models

6. Finally, the value of Vbi is adapted such to fit to the F F (Jsc) on Fig. 3.2 a) curve and to

the low forward bias part of the I(V) curve (from 0 V to 0.5 V). Changing Vbi implies that

we need to adapt slightly (μτ)e f f and hence sometimes J0 and n. This means repeat

steps 4 to 6.

Validation of the model

Despite the fact that most assumptions (section 3.2) for the ideal one-diode model are not

valid for a-Si:H adding the current loss term Jrec allows having a remarkable good fit in a large

range of irradiation (from below 1 Wm−2 to more than 1000 Wm−2). The IV parameters at

STC of the a-Si:H cell used in Fig. 3.2 are Voc = 0.890V, F F = 69%, Jsc = 17.4mAcm−2. In this

particular example the Jsc value is overestimated due to the absence of a mask during I(V)

measurements which therefore enhanced light trapping through the glass and hence also lead

to an overestimated Pmpp = 107Wm−2 value. The fitted diode parameters are listed in Tab. 3.1.

Diode parameter TopC Thin HBG
Jph 18.2 mAcm−2 11.4 mAcm−2

J0 at 25 ◦C 7.46×10−9 mAcm−2 1.9×10−10 mAcm−2

n 1.6 1.79
(μτ)e f f 5.11×10−8 m2/Vs 1.67×10−8 m2/Vs
Vbi 1.05 V 1.03 V
Rs 2.4×10−3 Ωcm2 1.3×10−6 Ωcm2

Rp 2922Ωcm2 475Ωcm2

di 305 nm 180 nm
Eact 1.04 eV

Table 3.1 – Diode parameters for the one-diode model with current loss term Jrec. TopC: low
band gap top cell of micromorph cells. Thin HBG: thin, high bandgap cells as top cell for triple
junction cell after 168 h of degradation under 1 Sun and 50 ◦C.

3.5.2 Temperature fitting of the one-diode model with current loss term

In this section we discuss the temperature dependence of the one-diode model with current

loss term (Equ. 3.4). We evaluate two different approaches for implementing temperature

dependence in the one-diode model with Jrec. The first simple one, assumes that only the J0

(and T ) parameter value depends on temperature. In the second approach, the temperature

dependence of each parameter is examined by fitting and then the temperature dependence

of the parameter varying significantly with temperature are taken into account.

We begin with the first approach where only the temperature dependence of J0 is taken into
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Chapter 3. Diode equation for solar cells

account. From the ideal one-diode equation, the J0 equation Equ. 3.2 can be expressed as:

J0 = q

(
Dn

Ln NA
+ Dp

Lp ND

)
n2

i (3.15)

where ni is the intrinsic carrier density, NA,D are densities of acceptor and donor atoms. Hence

the temperature behavior of J0 is strongly determined by ni . By inserting an explicit formula

for ni in Equ. 3.15 we can write (for detailed derivation [Sing 12]).

J0 =C T 3 exp

(
− Eg

kT

)
, (3.16)

with Eg the band gap. Green proposed to replace C T 3 by a constant J00 [Gree 92]. We will do

so to keep the model as simple as possible (even though the following calculation could also

be done with C T 3). We therefore assume:

J0 = J00 exp

(
− Eg

kT

)
(3.17)

Using a band gap Eg of 1.8 eV (a-Si:H cells) the Voc drop with temperature is strongly underes-

timated by the model. This fact is not surprising as for a-Si:H, the temperature dependence

of the recombination is significantly driven by many parameters and not only by the ni (T )

temperature dependence. Hence we consider Eg as a fitting parameter and rename it to Eact .

This parameter can be directly calculated as following if the temperature coefficient of the Voc

and the Jsc are known. By differentiating equation Equ. 3.11, inserting Equ. 3.17 and again

making the assumption that Jph∗ do not depend on Voc, we get:

dV oc

dT
=

(
Voc

T

)
−n

Eact

T
+n

dEact

dT
− nkT

q

(
1

Jph∗
d Jph∗

dT

)
. (3.18)

If we neglect the temperature dependence of Eact , by using 0.3 %/◦C for the TCVoc and

0.08 %/◦C for the TCJsc (∼= 1
Jph∗

d Jph∗
dT ), we obtain Eact =1.04 eV. With a temperature depen-

dence of dEact /dT = −0.63meV/◦C we obtain 0.85 eV. Those values are significantly lower

than the bandgap of a-Si:H cells (1.8 eV). Because of assumption of independent Jp h∗, Eact

has to be adapted slightly to fit correctly the I(V) curves.

The fitted parameters for a thin (i -layer of about 180 nm), high bandgap a-Si:H cell (used

as top cells in triple junction cells) after one week degradation under 1 Sun and 50 ◦C are

showed in Tab. 3.1 (Thin HBG). Figure 3.3 shows the simulated and the measured temperature

behavior of the F F and the Voc. The measured and simulated I(V) curves are also showed. As

for the previous example a good fit is obtained with this thin high band-gap cell at several

irradiances. The temperature behavior of the Voc can also be well reproduced. However, we see

that the simulation shows some slight curvature at low temperature for the Voc(T ) curve due

to Jrec term. The nearer the Vbi to the Voc value, the higher is this bending. This bending is not

measured and hence the model is no more valid for low temperatures. Interestingly, by tuning
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Figure 3.3 – Simulated and simulated (one-diode model Jrec) values of a thin, high bandgap
a-Si:H cells. Left: The temperature behavior of F F and Voc. Right: I(V) curve at STC.

Vbi and (μτ)e f f the temperature behavior of F F (T ) can also be simulated quite precisely,

even the position of the F F maximum. The shift of this maximum to lower temperature with

decreasing irradiance intensity can also be well reproduced. This F F (T ) curvature is due to the

Vbi parameter that is constant with temperature. When the temperature decreases, the Voc and

Vmpp increase. Therefore, the Vbi −(V + JRs) term (from Equ. 3.4) which represents the internal

electric field diminishes relatively. As a result the current loss (Jph∗↘) increases relatively

and hence the F F decreases. With this diode equation same F F lowering due to electric field

lowering with decreasing temperature as described in section 4.2.2 can be simulated.

However, by fitting the same one-diode model with Jrec to the same cell (thin HBG) in initial

state, the temperature behavior of the F F can no more be approached satisfactorily. The

curvature is similar but the maximum value of the F F is 30 ◦C lower for the modeled curve

than for the measured curve. For example at 1000 Wm−2 and 60 ◦C the model underestimates

the F F by 1 % absolute percent. By fitting the curve at STC conditions, the relative difference

between the modeled and measured Pmpp is under 1 % until 50 ◦C and 0.1 suns. Going away

from this range of temperature and irradiance values, the error increases up to 4.5 % at 70 ◦C

and below 0.02 suns.

In order to reduce these errors, one can investigate the temperature dependence of the addi-

tional fitting parameters as n, (μτ)e f f , Vbi , Rs and Rp. This leads us to the second approach

where for several temperatures the one-diode model with Jrec is fitted using VIM measure-

ments. We apply the fitting procedures described before to measured I(V) curves at different

temperatures. The fit showed that the temperature dependence of the J0 has an exponential

behavior. Therefore Equ. 3.17 can also be used in this approach to describe its temperature be-

havior and we got a value of the activation energy of Eact = 0.76eV for our cell in the degraded

and initial state.

Figure 3.4 shows the fitted ideality factor n and the effective mobility lifetime product (μτ)e f f

as a function of temperature for the a-Si:H cell in initial and degraded state. On the figure

we see that the fitted value of n seems to decreases linearly with temperature. Hence we can
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Figure 3.4 – The fitted ideality factor n (left) and the effective mobility lifetime product (μτ)e f f

(right) as a function of temperature for the one-diode model with Jrec. A thin high bandgap
a-Si:H cell is fitted in the initial and degraded (168 h and 1 sun at 50 ◦C) state.

describe its temperature dependence as following:

n(T ) = n(25◦C)− (T −25◦C) ·TCn ·n(25◦C), (3.19)

where TCn is the temperature coefficient of n. In this case we got TCn = 0.20%/◦C and

TCn = 0.28%/◦C for the initial and degraded states respectively. The value of (μτ)e f f decreases

slightly with temperature in the initial and degraded state which is in agreements with the

reduced recombination observed at higher temperature (see Ch. 4.2). As the variation is

relatively small and to keep the model simple we can assume this factor constant. The last

fitting factor that varies significantly with temperature is the series resistance Rs that decreases

from 2.2×10−2 Ωcm2 at 25 ◦C to 1.8×10−2 Ωcm2 at 75 ◦C. By taking into account temperature

dependency of n, the cell diode temperature behavior can be fitted satisfactorily. The relative

errors between the measured and modeled Pmpp are under 1 % for irradiation intensities

ranging from 1 Wm−2 to more than 1000 Wm−2 and temperatures ranging at least from 20 ◦C

to 75 ◦C in both the initial and the degraded state.

As shown before, a good fit is obtained for thin cells. However, as expected by the constant

electric field assumption made for the current loss term, for thicker cells with high defect

density, the region around the Pmpp cannot be fitted accurately because the field deformation

is not taken into account. Therefore the simulated F F is overestimated, as seen in Fig. 3.5,

where the fitted I(V) curve of an a-Si:H cell with an i -layer thickness of 300 nm in a degraded

state is showed. The circle indicates where the fit diverges. When dividing the term Vbi −
(V + JRs) representing the internal electric field by a field deformation factor in the form of

φ= 1+ A ·exp(−B(Vbi −V )) with A and B as fitting constant, as we propose, the fit improves

considerably.

3.5.3 Temperature fitting of the 2 diode model with current loss term

As the one-diode model with Jrec without a field deformation factor could not reproduce the

I(V) characteristics of cells with low F F , the a-Si:H cell with a 300 nm thick i -layer presented
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Figure 3.5 – Experimental and simulated (one-diode model with current loss) of a thicker
(300 nm i -layer) a-Si:H cell. Left: The temperature behavior of F F and Voc. Right: Absolute
value of I(V) curve minus Jsc at STC. The contribution of the current loss term and of the diode
term are shown as non-continuous lines. The circle shows the region around the Pmpp.

before is fitted using the two diode model with current loss term presented in Equ. 3.8. A

good agreement between simulation and measured I(V) curve can be obtained by fitting for a

specific intensity. However, this fit is only valid for the given intensity. The author could not

find a fit which remains good for several intensities. If Ji nt , Jbulk , n1 and n2 are fitted from

the Voc as a function of Jsc curve, as for the one-diode model, we overestimate the F F . Hence

we also need the φ term. However, the second diode is then unnecessary for modeling a-Si:H

cells, as the one-diode model becomes sufficient.

3.6 Simulating multi-junction solar cells using diode equation based

models

The modeling of the I(V) characteristics of multi-junction cells using diode based models can

be done with two different approaches:

• The cell is considered as a mono-junction and the fitting can be done as in the previous

chapter with a diode based model. The advantage of this approach is that we limit the

number of fitting parameters. However, cell performances variations due to current

mismatch (from cell design or by changing spectrum) between the sub-cells are not

modeled directly. Moreover the physical meaning is even less meaningful. Therefore we

will not use it in our work.

• The cell I(V) curve is simulated by connecting the solar cell diode model of each cell

in series (see Fig. 3.6 for a representation of an equivalent circuit). If the spectral

response of each sub-cell is known, we can accurately simulate spectral dependent

cell performances. However, finding the many fitting parameter of each sub-cell is not
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Figure 3.6 – Equivalent circuit of a micromorph cell.

directly possible. We have to extract the parameters from single cell measurements.

Spectral dependent I(V) measurement as shown in chapter 4.3 could also help in fitting.

3.7 Conclusion

We presented an overview of different diode based models for simulating solar cells I(V)

curves. For simulating thin-film solar cells, adding a irradiation and voltage dependent

current recombination term to the standard one-diode model allows having a good fit over

several decades of irradiation intensity values and a large temperature range. Even F F as a

function of temperature maximum can be reproduced adding temperature dependence to the

J0 and the n fitting parameters. However, for cells with low F F values this model systematically

overestimate the F F because electric field deformation are not taken into account. Adding a

second diode does not allow reducing significantly this overestimation. However, adding a field

deformation factor to the one-diode model allows reducing significantly this overestimation.

The diode model with recombination term will be used in chapter 5 to estimate spectral effects

on micromorph cells and in chapter 6 to develop a model describing degradation and recovery

effect of a-Si:H cells.
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4 Temperature dependence of thin-film
and crystalline silicon-based solar
cells
Summary

To investigate whether a-Si:H cells that are optimized for standard conditions (STC) also have the

highest energy output, we measured the temperature and irradiance dependence of the different solar

cell performance parameters as a function of the temperature for four different deposition parameter

series (power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during the

deposition of the intrinsic absorber layer (i -layer), and the thicknesses of the i -layer and p-type doped

hydrogenated amorphous silicon carbide layer) in the degraded and annealed state. The results show

that the temperature coefficient of the Voc generally varies linearly with the Voc value. The linear Jsc

increase with temperature is mainly due to temperature-induced bandgap reduction and reduced

recombination. The F F temperature dependence is not linear and reaches a maximum at temperatures

between 15 ◦C and 80 ◦C. Numerical simulations show that this behavior is due to a more positive

space-charge density induced by the photogenerated holes in the p-layer and to a recombination

decrease with temperature. Due to the F F (T ) behavior, the Pmpp(T ) curves also have a maximum,

but at a lower temperatures. Moreover, for most series the cells with the highest power output at

STC also have the best energy output. However the Pmpp(T ) curves of two cells with different i -layer

thicknesses cross each other in the operating cell temperature range indicating that the cell with highest

power output could for instance have a lower energy output than the other cell. A simple energy-yield

simulation for the degraded and annealed states shows that for Neuchâtel (Switzerland) the best cell at

STC also has the best energy output. However for a different climate or cell configuration, this may not

be true.

We also compare the temperature behavior of standard μc-Si:H cells with and without a-Si:H buffer

layer at the i -n interface, optimized for high Voc values, and of μc-Si:H solar cells with highly crystallized

i -layer deposited with silicon tetrafluoride. The temperature behavior is similar to a-Si:H cells, there is

F F (T ) maximum and hence a Pmpp(T ) maximum but both occurs at lower temperatures. Compared

to a-Si:H the TC s are slightly lower for μc-Si:H. Hence we suppose that the F F (T ) maximum is a

consequence of the p-i -n nature of those devices. The TCPmpp is mainly driven by the TCVoc which

itself is almost linearly dependent on the Voc itself.

To understand the temperature behavior of multi-junction thin-film solar cells we measured those

cells at different temperatures and spectra. The temperature dependence of micromorph thin film

silicon tandem cells is mainly determined by the T C of its subcells . It is mainly the higher T CJsc of
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the top cell compared to the bottom cells that implies that the TCPmpp of micromorph cells increase

when going from bottom to top cell limited case (more bluer to reddish spectrum). However, the better

TC at top limited conditions do not counterbalance the Pmpp loss due to current mismatch. Hence, if

micromorph cells are measured at 25 ◦C, to reach highest energy outputs, it is still advantageous to be

current matched or even slightly bottom limited. The same principle can be applied to triple junction

cells.

As for thin film silicon solar cells, silicon heterojunction cells (SHJ) also show a F F as function of

temperature maximum. However, this maximum is due to the valence band offset between the a-Si:H

i -layer and the c-Si wafer causing a hole accumulation at lower temperature due to less thermionic

energy of the carriers. We measured a F F maxima around 20 ◦C for SHJ cells with a-Si:H p-layers and

around −40 ◦C for cells with a μc-Si:H p-layer. Moreover due to this barrier the I(V) curves become

s-shaped at lower temperatures. We propose a new method to calculate an activation energy, using an

Arrhenius plot of the I(V) curve slope at the s-shape saddle point. With this method we got activation

energies between 0.21 eV and 0.31 eV for the a-Si:H p-layer cells depending on the a-Si:H i -layer

characteristics and 0.14 for the μc-Si:H p-layer cells.

Finally, we compare the T C of the previous cell technologies with mono- and multi-c-Si solar cells.

In our study, the best T CPmpp (i.e. highest) are reached for a-Si:H solar cells principally because of

their favorable (high) TCFF. The SHJ cells exhibit the second best TCPmpp also due to their high T CFF.

Interestingly, compared to back-contacted mono-c-Si cells with roughly equivalent Voc, their T CVoc is

slightly lower. Moreover, due to their particular F F (T ) behavior, the TCPmpp of a-Si:H and SHJ solar

cells have a relatively higher irradiance dependence than for other cells. However, for estimating the

energy output in Switzerland, we calculated that the temperature power losses can be calculated using

a constant T CPmpp (measured at STC) without a significant loss in accuracy.

4.1 Introduction

The factor influencing most the efficiency of silicon-based solar cells is the operating tempera-

ture. Solar cells are generally optimized for standard test condition (STC: 1000 W/m2, AM1.5g,

25 ◦C) [IEC 08a], and their efficiencies are reported for these conditions. However, in real

outdoor operation, solar cells in modules often encounter different operating temperatures

which are generally much higher than 25 ◦C [Kond 97, Jank 13, King 97b, Bogd 10] and this

higher operating temperature can lead to a significant reduction of the performance. The

yearly energy losses due to temperatures higher than 25 ◦C can reach over 7 % in Crete for free-

standing modules [Kyma 09] or even more than 11% for fully roof-integrated solar modules in

central Europe [Nord 03]. Therefore understanding temperature behavior of the solar cell per-

formances allows predicting energy yield (or the yearly energy output) correctly. Furthermore

it can help optimize material parameters of cells for a given location with the corresponding

operating conditions including temperature variations. The temperature behavior of the

different solar cell performance parameters such as the maximum power output (Pmpp), the

fill factor (F F ), the open-circuit voltage (Voc) and the short circuit current density (Jsc) can be

described using temperature coefficients (TC). For this work, when not stated differently, we

determine the TC as the slope of the linear fit over all points within the operating temperature

36



4.1. Introduction

range of a parameter (Par ) divided by the parameter value at 25 ◦C:

TCPar = 1

Par (25◦C)

dPar (T )

dT

∣∣∣∣
T=25◦C

(4.1)

For example a standard crystalline silicon solar cells (c-Si), the TC of Pmpp (T CPmpp)1 is nega-

tive with values of −0.3 %/◦C to −0.45 %/◦C[Skop 09, Smit 12]. In this work, a TC increase or

decrease means that the value goes towards +∞ (generally a favorable T C ) or −∞ respectively.

As well, a low T C is nearer to −∞, whereas a high TC in nearer to +∞.

For silicon-based solar cells the temperature behavior is mainly influenced by the temperature

dependance of the Voc (T CVoc). At Voc the recombination balances the light and thermally

generated currents. By enhancing temperature, the reverse saturation current (J0) increases

because it depends on the np product which itself has an inverse exponential relationship

with temperature (see Equ. 3.16 chapter 3.5.1). Hence, the Voc decreases with increasing

temperature. The Jsc generally increases with temperature because of increased band-to-band

absorption due to temperature-induced bandgap reduction. For a standard c-Si solar cell,

the temperature behavior of the F F depends mainly on the Voc and TCVoc as showed by an

approximate formula presented by Green et al. [Gree 82]. However, especially for drift-driven

devices as thin-film silicon cells, more parameters influences the temperature behavior of the

F F [Gree 03]. The temperature dependence of thin film silicon-based solar cells is not very

well understood and only barely treated in literature. Moreover only few studies link material

parameter with temperature dependence. The main part of this chapter aims to improve

our understanding of the temperature behavior of thin-film silicon solar cells and to relate

material properties to temperature behavior.

In section 4.2 we present results of temperature dependent measurement of a-Si:H solar cells.

We propose a new explanation of the temperature behavior of the F F , based on measurements

and simulations. In addition, we show the influence of different material parameters on the

temperature behavior of the solar cells, providing some interpretations. Finally, we quantify the

effect of the TC dependence of material parameters on the energy output without considering

annealing and degradation effects.

In section 4.3, the temperature behavior of the performances of different type of μc-Si:H solar

cells is showed. We also provide some hypothesis allowing to understand the mechanism

behind their temperature behavior.

With the help of the two previous sections, the temperature dependence of micromorph

tandem cells and triple cells is studied in section 4.4.

In section 4.5, we move to silicon heterojunction cells (SHJ) that are known to have a favorable

temperature coefficient principally due to their high Voc [Mish 11, Batz 11]. Investigating

the temperature behavior of those cells over a relatively large temperature range (−100 ◦C

1For PV modules the TC terminology used is generally: TCPmpp= γ, TCVoc=β, TCJsc=α and TCFF= κ
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to 80 ◦C) allows gaining some insight into materials characteristics. Lowering the operating

temperature, the F F deviates from standard c-Si solar cells behavior by having a maximum

and decreasing. Moreover an s-shape is appearing on the I(V) curve [Sark 12, Clee 98]. We

discuss in detail the temperature and irradiance dependence of each I(V) parameters. We also

propose a new method to probe an activation energy that is probably linked to the hole barrier

at the p side of the cells. We compare SHJ cells with p-a-Si:H and p-μc-Si:H layer by applying

this method.

Finally, in the last section (4.6) we extend the discussion by comparing the TC of thin-film sili-

con cells and SHJ cells to other silicon-based solar cells as mono and poly-c-Si cells. Moreover,

we quantify how the irradiance dependent TC (e.g. as it is the case for SHJ cells) affects the

energy yield prediction.

4.2 Amorphous Si cells temperature behavior

Most of the results of this section are published in [Ries 15]. Hydrogenated amorphous silicon

(a-Si:H) solar cells are known to have more favorable T CPmpp compared to crystalline silicon

(c-Si) cells, reaching values around −0.2 %/◦C which reduces the energy losses in operation

due to temperature compared to c-Si [Virt 13, Akhm 97, Shim 05, Kame 96]. Even positive

TCPmpp were measured for cells with high defect densities [Carl 00]. A high TCPmpp can be

explained by a high Voc implying a high TC of the Voc (TCVoc) [Gree 03], and a high TC of the

F F (TCFF). It was proposed that a high TCFF can be explained by a reduction in the contact

resistance and an increase in the collection length with temperature [Gree 03, Carl 00]. Stiebig

et al.[Stie 96] gave some insight into temperature behavior of single-junction a-Si:H cells using

simulation and measurements, stating that the decrease of the Pmpp value is dominated by the

decrease of Jsc below room temperature and by the decrease in Voc above room temperature.

They measured the maximum efficiency at a temperature of 3 ◦C.

Some studies have correlated material properties of a-Si:H with the temperature behavior of

the corresponding solar cells. For example, Carlson et al. [Carl 00] found that a-Si:H solar cells

with a thicker absorber layer have a higher T CPmpp than those with a thinner absorber layer.

Therefore, thicker absorber layers should be used for warmer climates and thinner for colder

climates for maximum energy yield. Sriprapha et al. [Srip 08] studied the temperature behavior

of silicon thin-film cells on the transition phase from a-Si:H to microcrystalline silicon (μc-

Si:H) in the absorber layer by varying the hydrogen-to-silane ratio during deposition. They

found that the cells whose absorber was deposited at the transition between a-Si:H and μc-

Si:H (called protocrystalline silicon cells) had the best TCPmpp. However, a comprehensive

study correlating TC with material and solar cell properties is missing to date.

In this section, we2 present T C measurements taken at different irradiation levels for several

state-of-the-art a-Si:H solar cells series. The investigated parameters are the power, frequency

2Y. Riesen, M. Stuckelberger, F.-J. Haug, C. Ballif and N. Wyrsch
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and hydrogen-to-silane dilution during the deposition of the absorber layer (i -layer), the

thickness of this layer, and the thickness of the p-type doped hydrogenated amorphous silicon

carbide layer (p-(a-SiC:H)). We also present numerical simulations and provide physical

explanations for the observed trends. Understanding the short-term temperature behavior of

an a-Si:H cell is a first step for simulating its energy output. The second step would be to take

into account degradation and annealing effects (which also depend on temperature but on a

longer timescale). This study allows us to assess in a first step whether solar cells optimized

for STC also perform best under real conditions, or whether other deposition parameters are

better suited for optimum energy output regarding temperature behavior. To have an idea of

the resulting energy output range, the simulations are performed for both the annealed and

the degraded state.

4.2.1 Experimental details

For this study, we used state-of-the-art a-Si:H solar cells (see Sec. 2.1.1) that were optimized

for use as the top cell in a-Si:H/μc-Si:H tandem solar cells and the top cell in a a-Si:H/μc-

Si:H/μc-Si:H triple-junction cells. The solar cells were deposited in the p-i -n (superstrate)

configuration on 0.5-mm-thick Schott AF 32 glass substrates. A 2.3-μm-thick boron-doped

ZnO (ZnO:B) layer deposited by low-pressure chemical vapor deposition (LP-CVD) was used

as the front electrode. The following active layers were all deposited by plasma-enhanced

chemical vapor deposition (PE-CVD). A p-type microcrystalline silicon-oxide layer (p-(μc-

SiO:H)) was deposited after the ZnO for a good electrical contact with the front, followed by

a wide-bandgap p-type a-SiC:H layer for a strong electric field. An undoped wide-bandgap

a-SiO:H buffer layer was deposited at the interface between the p- and the i -layer. The a-Si:H

i -layer was followed by a n-type a-Si:H layer and an n-type μc-SiO:H layer at the interface with

another 2.3-μm thick LP-CVD ZnO:B back electrode. These cells were co-deposited with those

presented in [Stuc 14d]; further details about the PE-CVD system (Octopus I), the deposition

parameters, and substrates can be found elsewhere [Stuc 13, Stuc 14b, Stuc 14c]. Each cell has

a nominal area of 0.25 cm2..

Based on this high-efficiency solar cell recipe, the following deposition parameters were varied:

1. i -layer-thickness (i -thick.). series: The i -(a-Si:H)-layer thickness was varied between

120 nm and 1000 nm.

2. p-layer-thickness (p-thick.) series: The deposition time of the p-(a-SiC:H) layer was var-

ied between 0 s and 60 s, corresponding to p-layer thickness between 0 and 18 nm[Stuc 14b].

3. Dilution (dil.) series: The hydrogen-to-silane flow ratio ([H2]/[SiH4]) was varied between

0.5 and 64. The bandgaps in terms of E04 of the i -layers were measured with spectromet-

ric ellipsometry measurements as detailed in[Stuc 14c]. The resulting bandgap values

ranged from 1.88 eV to 2.18 eV from lowest to highest dilution and increases almost

linearly with the measured Voc values.
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4. Deposition (dep. rate) series: The power of the RF generator was varied from 4 W to

80 W at radio frequency (RF, 13.56 MHz) and at very high frequency (VHF, 40.68 MHz),

corresponding to deposition rates between 1.5 Å/s and 22 Å/s [Stuc 14c, Stuc 14d].

In addition, for measurements at temperatures as low as −60 ◦C (presented in section 4.2.2),

reference a-Si:H cells with a thin i -layer (140 nm) and wide bandgap, optimized for use as the

top cell in triple-and quadruple-junction cells [Schu 14, Schu 15], were also used.

Measurements

We measured the current-voltage (I(V)) characteristic under a two-lamp solar simulator from

Wacom (class AAA). The i -thick. series and reference cells were also measured with a new

hybrid LED-halogen solar simulator (which was not yet available at the beginning of the

experiment) built in house, varying the irradiation from about 10 W/m2 to 1300 W/m2. If not

stated differently, the temperature was varied between 15 ◦C and 80 ◦C; the temperature of the

cells was controlled with one of the two different setups:

(A) Chuck setup: For good thermal contact between the cells and the chuck, a thermo-

conductive sheet was used, which compensated for topological differences from the soldering

of the electrical contacts to the solar-cell electrodes. A 5-mm-thick glass was placed over the

cell to hold it. A resistance temperature detector (RTD) in contact with the cell was used to

measure the cell temperature as it gave more reliable results than using an infrared tempera-

ture sensor (measuring through the glass superstrate). The measurement error with the RTD

was evaluated at ±2 ◦C.

(B) Oven setup: The cells were mounted on a measurement metal block using spring contact

pins. The whole block was inserted in a furnace with a hole allowing the light to enter. Com-

pared to (A), this setup required a longer temperature-stabilization time. The measurements

were taken when the difference between the two RTD temperature measurements of the air

and of the measurement block was less than 1 ◦C.

A crosscheck confirmed that the temperature control methods of (A) and (B) led to the same

results. The i -thick. series and the reference cell were measured with setup (A) and the

hybrid LED-halogen simulator, whereas the other series were measured with setup (B) and the

Wacom simulator. The effective irradiance arriving on the cell depends on the setup employed.

For instance, the presence of an additional 5-mm-thick glass or the type of back reflector

used reduced or enhanced Jsc and hence the Pmpp values. Therefore, the Pmpp values are the

measured values if not otherwise indicated. The effective irradiance was calculated according

to the ratio between the Jsc extracted from I(V) measurements and Jsc values extracted from

spectral response measurements (considered to correspond to the Jsc values at 1000 Wm−2).

Moreover to allow the comparison of the Jsc values between the different series, they were,

when indicated, adjusted to the Jsc values extracted from the spectral response measurement.

Same normalization was used for the Pmpp.
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4.2. Amorphous Si cells temperature behavior

For each experiment, we measured one to four cells per substrate. All cells were measured

both in the annealed and light-soaked (ls, degraded) states. light-soaking was performed

under three-sun-equivalent irradiation (3000 W/m2, similar to the AM1.5g spectrum) for 24 h

at 50 ◦C using a fully LED-based solar simulator [Stuc 14a].

Simulations

Numerical simulations were performed using the one-dimensional (1-D) simulation package

Advanced Semiconductor Analysis (ASA 6.0) developed at Delft University [Zema 97]. The

temperature was varied from −70 ◦C to 80 ◦C, taking into account experimentally determined

temperature dependencies of the bandgap, refractive index, and extinction coefficient. These

temperature dependencies were measured on intrinsic a-Si:H layers and are reported in

Refs. [Stuc 13, Stuc 14c]. For the bandgap (Eg), the value of −0.63 meV/K was applied to all

layers, similar to the values of Overhof et al.[Over 89]. Electron and hole mobility and their

capture cross sections were assumed constant as no precise literature data was found for

those parameters. The simulation input parameters are listed in the appendix. Most of the

parameters are the same as used in [Stuc 14b]. However, some parameters were adapted to

better fit the data over a large temperature range. This is particularly true for the electron

affinities that are now closer to values reported in [Mats 84, Tasa 88]. Bandgaps and activation

energies of the p-(a-SiC:H) layers were also slightly adapted.

4.2.2 Results and discussion
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Figure 4.1 – I(V) parameters and their temperature coefficients for a-Si:H solar cells varying: a)
and e): i -layer thickness (i -thick. series), b) and f) p-layer thickness (p-thick. series), c) and g)
hydrogen/silane flow ratio (dil. Series), d) and h) RF and VHF power during i -layer deposition
(dep. rate series). For a), b), c), e), f) and g) the annealed (solid diamond) and light-soaked
(open diamond) states (24 h @ 50 ◦C, 3 suns) are plotted. For d) and h) only the annealed state
is plotted. Each data point represents the mean values between one and four cells. The Jsc

values are extracted from spectral response measurements and the Pmpp values are slightly
adjusted to a value corresponding to an irradiance condition of 1000 Wm−2.
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4.2. Amorphous Si cells temperature behavior

Figure 4.1 shows the I(V) characteristics and their TC s for cells of the four deposition-

parameter series (introduced in section 4.2.1) in both the annealed and light soaked states.

General trends of the I(V) characteristics and their TC s are summarized in Table 4.1. A T C in-

crease or decrease means that the value goes towards +∞ or −∞ respectively. Each parameter

is discussed separately in the next subsections.

Table 4.1 – Summary of the temperature coefficients and I(V) parameters for the analyzed
series. "↗", "↘" and "=" mean increases, decreases and is stable with parameter increase
respectively..

With Voc TCVoc F F TCFF Pmpp TCPmpp

Thicker i -layer ↘ ↘ ↘ ↗ ↘ ↗
Thicker p-layer ↗ ↘ ↗ = ↗ ↘
Higher dil. ↗ ↗ ↘ ↗ ↘ ↗
Higher dep. rate = = ↘ ↗ ↘ ↗

Temperature coefficient of the open circuit voltage

For all series shown in Fig. 4.1, the Voc decreases linearly with increasing temperature over

the full temperature measurement range (15 ◦C to 80 ◦C). Therefore, a linear fit leading to

the TCVoc adequately describes the temperature behavior of the Voc. TCVoc is on the order

of −0.25 %/◦C for all series, whereas TCJsc and TCFF are closer to 0. Hence, TCVoc governs

TCPmpp in most cases and turns it negative. At open circuit the recombination balances the

photo- and thermally generated currents. In a first approximation, for pn junction type solar

cells, the intrinsic-carrier density increases with temperature resulting in a Voc reduction

[Aror 82]. The temperature-induced bandgap reduction also contributes to a non-negligible

Voc decrease, however, to a less extent than the intrinsic-carrier increase [Fan 86, Gree 03].

In addition to those effects, especially for a-Si:H cells, other temperature dependencies of

recombination processes influences the Voc(T ) behavior (e.g. effects of traps, quasi-Fermi

level shift influencing recombination).

Figure 4.2 shows TCVoc in absolute values as a function of the Voc for the i -thick. series in the

annealed and light-soaked states for different irradiance levels. It shows a linear correlation

that seems to follow the Voc dependence described by Green [Gree 03] in Eq. 4.2:

dVoc

dT
=−

Eg0

q −Voc +γkT
q

T
(4.2)

with

Eg = Eg0 +T
dEg

dT
(4.3)
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Chapter 4. Temperature dependence of thin-film and crystalline silicon-based solar cells

and γ a coefficient describing the temperature sensitivity of the mechanism determining the

Voc [Dupr 15]. In Fig. 4.2, we can group the TCVoc values around two different lines with an

offset in their linear relation: For the annealed state, we observe a generally higher T CVoc

than for the light-soaked state and a slightly higher slope of the T CVoc dependence on the Voc.

According to Eq. 4.2, the different positions of those lines could for instance be explained by

a different γ coefficient between the annealed and light soaked states. Moreover the slightly

different slopes indicate that γ also slightly depends on irradiation.

Figure 4.2 (right) shows, similarly to (left), TCVoc in absolute values as a function of Voc for all

series at ca. 1-sun intensity. We note that the linear relation also holds for the dilution series.

But not the p-thick. and dep. rate series:

• In the p-thick. series, TCVoc(Voc) does not follow the general trend for cells, especially

for thin p-layers. Instead we observe the opposite behavior: T CVoc decreases with

increasing Voc (compare also Fig. 4.1c)). For all other series, the Voc is predominantly

controlled by the narrow-bandgap i -layer, hence, TCVoc is governed by this layer. This

is not true for thin p-layers, where the Voc and T CVoc are governed by the p-layer (p-

(a-SiC:H)) thickness with a different temperature dependence than the one observed

when Voc is controlled by the i -layer. Thinner p-layers lead to a weaker quasi-Fermi-

level splitting, hence, the electric field and Voc are reduced [Stuc 10]. We propose two

possible explanations for the observation of a decreasing TCVoc with increasing Voc in

the p-thick. series: (1) Increasing temperature reduces trapped charges in the band

tails that shield the electric field [Tayl 72, Stuc 10]. As result the standard decrease in

Voc (with the same mechanism as for the other series) is partially counterbalanced by

less electric field shielding. (2) Increasing temperature increases the negative space

charge in the p-layer due to more negatively charged acceptors. This effect increases the

quasi-Fermi-level splitting, and hence, the Voc. Those two effects are only significant for

cells with thin p-layers as for thicker layers the space charge in the p-layer is higher and

do no more limit the Voc.

• For the dep. rate series, cells deposited at VHF follow roughly the linear trend except

the cells deposited at high power (80 W). For RF the trend is even less clear. Different

material qualities of the i -layer (raising deposition rate increases the defect concentra-

tion) that change the γ factor (the same effect at the origin of the difference between

annealed and light soaked state as seen in Fig. 4.2) could explain this scattering of data

points.

The correlation between Voc and TC indicates that TCVoc decreases with the i -layer thickness,

following the Voc decrease (Fig. 4.1a)). Similarly, TCVoc increases with hydrogen dilution

(Fig. 4.1b) due to the wider bandgap, hence higher Voc. Furthermore, TCVoc also decreases

with light soaking for the i -thick., p-thick. and dil. series because of the corresponding Voc

drop. Overall, we conclude that for the three series affecting the i -layer (i -thick., dil., dep.
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Figure 4.2 – (left) Temperature coefficient in absolute values of the Voc (TCVoc) as a function of
Voc for the i -thick. series at different irradiation levels (1300 W/m2, 800 W/m2, 600 W/m2 and
300 W/m2, marker size is proportional to the irradiation level) in the annealed (solid squares)
and light-soaked (open squares) states. Lines are guides for the eyes. (Right) Mean of the
temperature coefficient of the Voc (TCVoc) values for each deposition parameter at irradiances
between 1100 Wm−2 and 1300 Wm−2 in the annealed (solid markers) and light-soaked (open
markers) states as function of the mean of the Voc values. The solid lines are the same as in left
and the dashed line is a guide for the eyes showing the p-thick. series trend.

rate), a higher Voc at STC goes along with a higher TCVoc, and leads to a greater Voc at higher

temperatures. However, this is not the case for cells with thin p-layer.

Temperature coefficient of the fill factor: Experimental results

Figure 4.3 (left) shows the temperature dependence of the F F for the i -thick. series. In

contrast to the Voc(T ) curve, the F F (T ) curve is generally not linear and seems always to have

a maximum (F Fmax). This maximum depends on the substrate and degradation state and can

vary over a large range of temperatures. A quadratic fit could account for the non-linearity,

but is appropriate only if the maximum is in the temperature measurement range and the

temperature range for fitting is narrow. Therefore, we used a linear fit to calculate TCFF to

allow for systematic comparison of the TCs of different cells3. In our case a shift of F Fmax

towards higher temperature enhances the value of TCFF which is calculated using a linear fit

in the operating temperature range.

Figure 4.3 (right) compares the linear T CFF values of all cells from different series with the

F F values at STC. As a general trend, the TCFF decreases with an F F increase. This trend is

significant for the i -thick., dep. rate and dil. series (cf. Fig. 4.1a, 4.1c and 4.1d): increasing

the i -layer thickness, the deposition rate, and the hydrogen dilution results in an increase

of TCFF (decrease of F F ). For the p-thick. series, the TCFF does not depend significantly on

3The I(V) curves were measured by first increasing and then decreasing temperature. For cells with low F F ,
as the cells already degrades during measurements, the F F (T ) curve is slightly lower when going down with
temperature. For the TCFF fit all points (temperature increase and decrease cruve) are taken into account.
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Figure 4.3 – (left) F F dependence on temperature for the i -thick. series measured at an
irradiance of 1300 W/m2 (left) and 100 W/m2 (right) in annealed (solid markers) and light
soaked (open markers) state. (right) TCFF vs F F at 25 ◦C for all series at irradiances between
1100 Wm−2 and 1300 Wm−2 in the annealed (solid markers) and light-soaked (open markers)
states.

the p-layer thickness but the F F does. As for the Voc the fact that the p-layer limits the F F

induces a different temperature response than for i -layer-limited cells.

An interesting effect to note is the linear dependence of the F F (T ) curve maximum (F Fmax)

as a function of Jsc at 25 ◦C, plotted in Fig. 4.4 for the reference cells. Lowering the irradiance

pushes F Fmax to lower temperatures. Here a quadratic fit is used to determine the maximum

of the F F (T ). Below 2 mAcm−2, the F Fmax saturates due to the influence of shunts. The

highest F F of the reference cell is obtained at Jsc of 2 mAcm−2 corresponding to about 0.15

suns (Fig. 4.4 right). Likewise, for the i -thick. series F Fmax shifts to lower temperature for

thinner i -layers as seen in Fig. 4.3. Figure 4.5 shows the I(V) curve of the standard cell at about

1 and 0.1 sun at temperatures from −60 ◦C to 80 ◦C. We see clearly that at very low temperature

the curve begin to become S-shape under different illumination. However this is not the case

at 0.1.

For the curves whose F Fmax values are in the temperature measurement range (and can thus be

experimentally observed), we see that light soaking shifts F Fmax towards higher temperatures:

For the i -thick. series, F Fmax shifts by 17 ◦C for the thinnest layers and by 5 ◦C for the thickest

layers (Fig. 4.3, left). The F Fmax temperature increase with light soaking is most probably

a global trend. Hence for the i -thick. and dil. series, in most cases, light soaking slightly

enhances TCFF. For the thickest cell (1000-nm-i -layer) the F Fmax temperature also increases

with light soaking, however the TCFF decreases because the F F dependence becomes weaker

at high temperature.
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Figure 4.4 – (Left) Temperature of the F F maximum (F Fmax) as a function of Jsc at 25 ◦C for
the reference cell (Jsc controlled by the illumination intensity). (Right) F F as a function of Jsc

and temperature of the same cell.
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Figure 4.5 – I(V) curve of a reference cell at 1 and 0.1 sun from −60 ◦C to 80 ◦C, the darker the
colder.

Temperature coefficient of the fill factor: Modeling

In order to understand the existence of a F Fmax, we simulated the I(V) characteristic with

ASA. Figure 4.6 shows the F F dependence on temperature, comparing the simulations with

measurements of the reference solar cell. The experimental trends are fairly well reproduced by

our model, e.g. the existence of F F and Pmpp maxima around 40 ◦C and 0 ◦C respectively, with

lower F F and Pmpp both at lower and at higher temperatures. As observed in the experiment,

lower irradiance implies a shift of the F F (T ) curve maximum to a lower temperature. The

assumption of constant hole and electron mobility with temperature as well as interface effects

(such as inhomogeneities, not sharp interface, boron diffusion) and 2-D effects that are not

taken into account could explain the discrepancies.

According to our model the F Fmax value at 40 ◦C corresponds to the internal electric field
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Figure 4.6 – ASA simulated and measured F F a) and Pmpp b) as a function of the temperature
for the reference cell.

maximum in the central part of the i -layer (highest carrier extraction efficiency). Moving

to a higher temperature will decrease the electric field and hence the F F value. The F F

decrease is probably due to the Voc decrease with temperature as for c-Si solar cells [Gree 03].

However, in contrast to c-Si cells the decrease is significantly lower. This could be explained

by less recombination at higher temperatures due to both, the higher effective mobilities of

the carriers[Stre 91] and annealing of dangling bonds. Those two effects are more intense

for lower material quality (more defects) and hence explain the higher TCFF for lower F F

(Fig. 4.4). In contrast to c-Si cells, there is a certain temperature below which the F F starts

decreasing. Considering the simulated band diagram for a forward-bias voltage close to the

Vmpp (0.4 V) shown in Fig. 4.7, we see that at the p-(a-SiC:H) layer, from 80 ◦C until the F Fmax

temperature (40 ◦C), the quasi-Fermi level of holes (E p
F ) (green ellipse in Fig. 4.7) pins to an

energy level defined by the activation energy (given by doping concentration). By further

reducing the temperature, the E p
F energy band is no longer pinned but moves towards the

valence band edge and hence to a lower energy than the one defined by the activation energy.

At the same bias voltage in the dark, E p
F remains on the activation energy level. This means

that the photogenerated hole concentration is no longer negligible compared to the thermally

activated hole concentration as is the case at higher temperatures. Therefore, the space-

charge in the p-(a-SiC:H) layer becomes more positive and hence lowers the electric field in

the i -layer, which deteriorates the extraction of carriers and hence the F F .

The temperature of F Fmax is sensitive to different parameters that influence the electrical

properties of the interfaces and have an effect on hole accumulations in the p-(a-SiC:H)

and p-type μc-Si:H layers. Of particular importance are band offsets (driven by different

bandgaps and electron affinities), band-tail properties (through the space charge due to

trapped carriers), and the activation energy. For example, an activation-energy increase of

the p-(a-SiC:H) layer shifts the maximum to a higher temperature, which is in agreement

with the preceding explanations. Accordingly, F Fmax shifts to lower temperatures when the

current density is lowered. This behavior was confirmed both experimentally (cf. Fig. 4.4) and

by our simulations (not showed). To verify that this effect is not caused by our specific solar

cell design, we simulated the dependence of F F as a function of temperature F F (T ) for solar
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Figure 4.7 – Band diagram of the p-side of the cell from the ASA modeling at a forward-bias
voltage of 0.4 V for different temperatures. Thick lines represent the conduction bands (top)
and the valence bands (bottom). In between the thin lines represent the quasi-Fermi levels of
the electrons and holes. The green ellipse shows the quasi-Fermi levels of holes responsible
for the F F (T ) curvature.

cells without a-SiO:H layers and found the same trends. Hence, the effect of positive charging

of the p-layer causing a drop of the electric field seems to be valid for most state-of-the-art

a-Si:H solar cells.

Temperature coefficient of the short circuit current density

For all solar cells series with exception of the p-thick. series, we observe a positive linear

relation between the Jsc and the temperature with TCJsc values that are typically between

0.05 %/◦C and 0.13 %/◦C. However, the cells with the thickest i -layer had a high TCJsc of

0.2 %/◦C in the light-soaked state. Figure 4.8 shows the temperature-dependent external quan-

tum efficiency measurements of cells with an i -layer thickness of 120 nm or 1000 nm in the

annealed state. We measured Jsc (TCJsc) values of 13.7 mA/cm2 (0.06 %/◦C) and 17.6 mA/cm2

(0.11 %/◦C) respectively. For the thinner cell, more than 88% of the current increase with

temperature originates at wavelengths over 600 nm. Moreover the largest current increase

is located at 710 nm (1.75 eV) which is in the range of the bandgap of a-Si:H cells. For the

thicker cell, 71% of the current increase originates at wavelengths over 600 nm. Therefore the

largest contribution to enhancement of the Jsc with temperature seems to come, as explained

from the temperature-induced bandgap reduction leading to more absorption in the infrared

region. In addition, especially for cells with high defect density and hence low F F , decrease

of carrier recombination with temperature (due to higher effective mobility [Stre 91]) also

contributes to the TCJsc increase. This can be seen by representing the TCJsc as a function

of F F (Fig. 4.9), where the better F F (qualitatively indicating defect density in the i -layer)
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Figure 4.8 – a) External quantum efficiency (EQE) measurement results of annealed solar
cells with a 120-nm-thick or 1000-nm-thick i -layer as a function of temperature. Black lines
correspond to 15 ◦C and the lightest grey to 75 ◦C. b) EQE variation with temperature for the
two cells. The darker the colder.
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Figure 4.9 – Temperature coefficient of the short-circuit current as a function of F F for the
i -thick. the dil. (left and right), p-thick. and dep. rate (right) series in the annealed (closed
markers) and light-soaked (open markers) states.

corresponds to worse (lower) T CJsc.This behavior can also be seen in Fig. 4.8 where for the

thickest cell (with high recombination and low F F ) a current increase between 400 nm and

550 nm was measured. For high-F F (in our case thin) cells with low recombination this effect

is smaller.

Temperature coefficient of the maximum power point

By combining the definitions of the F F and the TC , the TCPmpp can be approximated by

summing the TCVoc, TCFF and T CJsc. In this work all T CPmpp values were directly extracted

from the Pmpp(T ) curves. The difference between the TCPmpp and the sum of the other TC

values was found to be less than 0.01 %/◦C which is negligible. Because of the non-linearity of

the F F (T ) curve, the Pmpp(T ) curve is also non-linear. The following trends are observed (cf.
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Figure 4.10 – F F and Pmpp of the reference a-Si:H cell in the initial state.

Fig. 4.1 and Table 4.1):

• For the i -thick., dil. and dep. rate series, TCPmpp increases with thickness, dilution and

power due to the increase of TCFF which is the TC that varies the most. Pmpp decreases.

• For the p-thick. series, T CPmpp is governed by T CVoc, hence it decreases with increasing

p-layer thickness.

The existence of a maximum of F F as a function of temperature and the dominance of the

TCFF at low temperature for TCPmpp leads to a Pmpp(T ) curve maximum which is always at

a lower temperature than the temperature of F Fmax because of the negative TCVoc (see Fig.

4.10). For state-of-the-art cells, the Pmpp maximum is typically around 0 ◦C in agreement with

the work of Stiebig et al. [Stie 96].

Figure 4.11 (left) shows the interpolated in temperature and irradiance Pmpp values (based

on measurements) of the i -thick. series for three different irradiation intensities (700 W/m2,

1000 W/m2 and 1300 W/m2). The interpolated efficiency as a function of irradiance for 25 ◦C

and 60 ◦C is showed in Fig. 4.11 (right). The i -layer thickness changes the low light behavior as

well as the temperature. These interpolations are used to calculate the energy output in section

4.2.2). For the thickest cell, the Pmpp(T ) curve reaches a maximum at 35 ◦C at 1000 Wm−2.

Energy output

If the Pmpp(T ) curves for the different material parameters never cross each other at any

irradiance intensity in the operating temperature range, the cell with the best power rating

at STC will also have the best energy output (per m2). For most series there are no such

crossings, which means that the best cell at STC also has the best energy output. Only the

i -thick. series presents such crossings for the 120 nm/1000 nm and the 200 nm/300 nm curves

(Fig. 4.11). Moreover, the crossing temperature depends on irradiance. For the i -thick.

series, to estimate the energy output in Neuchâtel for 2014, we used a very simple model

neglecting spectral and angular effects, taking in account only the irradiance and the module
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Figure 4.11 – (Left) Interpolated Pmpp for the i -thick. series at 1300 W/m2, 1000 W/m2 and
700 W/m2 in annealed state. The blue circles indicate the crossing points between two different
Pmpp(T ) curves. (Right) Interpolated efficiency as a function of irradiance at 25 ◦C (black) and
60 ◦C (grey).

temperature. Module temperature (using the Sandia module and cell temperature model

[King 04]) and in-plane irradiation were derived from global horizontal irradiance (GHI) and

the air temperature measurement (with 10 minutes granularity) of the local weather station

(MeteoSwiss). The Pmpp for each time step was determined by interpolating the Pmpp(T,G) (I

is the global irradiance) matrix generated from indoor measurements.

By applying this procedure to the i -thick. series, in the annealed state, the best cell at STC

(Wp) is the 300-nm-i -layer cell, which is also the cell with highest energy output (Fig. 4.12)

and Table 4.2). The 200-nm-i -layer cell has almost the same performance at STC, but the

energy output is significantly lower. In the light-soaked state the cell with highest power is
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Figure 4.12 – Simulated energy output as a function of Pmpp at STC for the i -thick. series in
the annealed (solid markers) and light soaked (open markers) states.
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again the one producing the most energy but it is now the 2 00-nm-i -layer cell because it

degrades less during light soaking. Therefore at this location (Neuchâtel, Switzerland) cells

optimized for STC will also have best energy output. However, as there is a crossing near 25 ◦C

between different Pmpp(T ) curves, it could be that for slightly different cells the crossing could

be significantly above 25 ◦C for frequent irradiance conditions implying that the cell should be

optimized for energy output rather than STC.

Table 4.2 – Power at STC (Wp) and estimation of yearly energy output for the i -thick. series.

Annealed Light soaked
i -layer Wp energy output Wp energy output
(nm) (W /m2) (kW h/year ) (W /m2) (kW h/year )
120 91.7 115.4 79.4 99.6
200 97.2 122.7 83.5 105
300 98.0 126.5 76.7 98.2
1000 87.2 115.3 64.0 84.0

4.3 Microcrystalline Si cells temperature behavior

There are only few reports on the temperature behavior of microcrystalline silicon (μc-Si:H)

solar cells [Meie 98, Yama 99, Srip 07]. To understand their temperature behavior as a function

of their material properties, we4 measured temperature dependent I(V) characteristics of

various solar cells types such as: cells implementing specific buffer layers, high Voc cells, highly

crystalline cells based on the use of silicon tetrafluoride and we compared them to standard

cells, in p-i -n configuration.

4.3.1 Experimental details

For more information on standard μc-Si:H cells refer to chapter 2.1.2.

Cell types and main characteristics

The temperature behavior or the following cell series were analyzed:

Buffer layer series: Amorphous silicon is known to passivate well the surface of c-Si and is

used in Si heterojunction cells, allowing for Voc values as high as 750 mV [Tagu 14]. Here , i -a-

Si:H/n-a-Si:H (5 nm to 20 nm/5 nm) layers are introduced at the intrinsic μc-Si:H and n-μc-

Si:H interface, to enhance the Voc of these cells by passivating the interface [Yue 08, Hann 15].

The TC of cells with (Buffer) and without (No Buffer) these buffer layers, deposited on smooth

(Z5 45’) and rough (Z5 20’) ZnO front electrodes were measured to test the effect of this buffer

layer on the temperature behavior. These cells have an i -layer thickness of 1.2μm.

4Y. Riesen, S. Hänni, C. Ballif and N. Wyrsch
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High Voc series: The T C of solar cells with high Voc values (above 600 mV) fabricated in our

laboratory (Hänni et al. [Hann 15]) were measured. These cells have a buffer layer similar

to the cells described in the previous paragraph (Buffer) but their i -layer is thinner (600 nm)

to push the Voc to higher values. Again, cells with rough and smooth front electrodes are

compared.

High crystallinity series: This series comprises cell with highly crystallized microcrystalline

silicon (μc-Si:H) i -layers obtained by PECVD using silicon tetrafluoride (SiF4) as silicon pre-

cursor. They are used to assess the potential of μc-Si:H cells with potentially high current

due to highly crystalline layers [Hann 14]. Cells deposited on rough and smooth substrate are

labeled HC Z5 20’ and ’ HC Z5 45’ respectively. The effect of highly crystallized cells on the

temperature behavior is studied.

Standard cell: The temperature dependence of a standard μc-Si:H cells on smooth substrate

was measured (Std Z5 45’). These cells were deposited after the move of our laboratory and

are, therefore, based on an adjusted recipe. Moreover, the cells were deposited with another

reactor at a lower frequency than the previous cells.

Measurements

Except for the Std Z5 45’ cells measured with the cell tester from −50 ◦C to 80 ◦C (Fig. 4.13), all

μc-Si:H cells were measured with the two lamp solar simulator and the temperature control

was done with the oven setup (see section 4.2.1 for more details) from 20 ◦C to 80 ◦C. For each

cell type 2-4 cells were measured and we will here plot the mean value with standard deviation.

4.3.2 Results and discussion

Figure 4.13 shows the different IV parameters of the standard μc-Si:H cell at different irradiaces

(1320 Wm−2 to 7 Wm−2) from −50 ◦C to 80 ◦C. We note that:

• The Voc and Jsc values follow a linear behavior with respect to temperature on the whole

measurement range (as for a-Si:H cells see section 4.2.2).

• The F F values as a function of temperature, reach a maximum (F Fmax) that shifts to

lower temperatures when the irradiance is reduced. Despite the fact that μc-Si:H and

a-Si:H materials are different, we suggest that the same hole accumulation effect as

described in section 4.2.2 is responsible for this maximum. This hypothesis is based on

the fact that as for a-Si:H, μc-Si:H cells exhibit doped layers (p and n) that are very thin

compared to the i -layer. However, this maximum occurs at a lower temperature than for

most a-Si:H cells, i.e. for an irradiance of 1300 Wm−2: the F Fmax value of the standard

μc-Si:H cells is located at a temperature of 0 ◦C, while for a-Si:H it is located at 50 ◦C.

Moreover the F Fmax shift with irradiance is more than 2 times higher for μc-Si:H than

for a-Si:H. A probable cause for this lower F Fmax temperature could be the different
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Figure 4.13 – IV parameters of a standard μc-Si:H cell (Std Z5 45’) at different irradiation levels
(from 1320 Wm−2 corresponding the black dots to 7 Wm−2 corresponding to the lightest grey)
as a function of temperature.

band mismatch at the p-i interface between a-Si:H and μc-Si:H cells modifying the

accumulation of holes mechanism.

• The Pmpp values as a function of the temperature reach also a maximum induced by

the F F (T ) curve. However it occurs at lower temperature (−30 ◦C) than for a-Si:H cells

(0 ◦C) because of the lower F Fmax temperature.

• From 80 ◦C until −20 ◦C the Roc is constant, lowering the temperature further it increases.

A higher series resistance in the cell due to charge accumulation at the p-i interface

could explain this behavior.

• For all temperatures and irradiance no s-shape is found in the I(V) curves.

Figure 4.14 shows the T C of the I(V) parameters of μc-Si:H cells with different material

properties. The TCFF and T CJsc variation among the different cell type are relatively small

(with exception of the TCJsc of the MBF Z5 20’ cells that is two times higher than the others).
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Figure 4.14 – IV parameter’s temperature coefficients of the different μc-Si:H cells at an irradi-
ance of about 1000 Wm−2 except for the standard cell (1300 Wm−2). The error bars represents
the standard deviation.

However the TCVoc show some variations. For example the difference between the lowest and

the highest T CVoc reaches 0.14 %/◦C. Furthermore the relationship between Voc and TCVoc is

linear, as already observed in section 4.2.2 and shown in Fig. 4.15.

The influence of material properties on the T C can be summarized as follows:

• Adding a buffer layer (Buffer) do not change significantly the T C compared to the μc-

Si:H solar cell without buffer. The fact that the buffer layer is introduced at the i -n

interface could explain that no significant effect is seen for the TCFF (as the TCFF is

probably more sensitive to the p-i - interface as suggested by the modeling in Sec. 4.2.2).

However the front electrode roughness influences the T CVoc value through its influence

on Voc. All TCVoc as a function of the Voc data points are on the same line.

• High Voc Z5 45’ cells have the highest TCVoc values of our experiment (−0.29 %/◦C and

hence TCPmpp values (−0.32 %/◦C). A rough electrode (High Voc Z5 20’) reduces Voc and
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Figure 4.15 – T CVoc as a function of the Voc for the different μc-Si:H cells. The solid and
open markers are cells deposited on smooth (Z5 45’) and on rough (Z5 20’) front electrodes,
respectively. The size of the markers corresponds to the irradiation level, where the biggest
markers correspond to the highest irradiation (between 1000 Wm−2 and 1300 Wm−2). The
lines are guide to the eyes.

as a result the TCVoc decreases.

• Highly crystallized μc-Si:H i -layers (HC) affects the TC values of the solar cells through

its Voc variation. However compared to their Voc, the T CVoc values are slightly higher

than for no buffer, buffer and high Voc cells.

• The TCVoc of the standard cell as a function of the Voc line is located between the HC

series and the others series.

In general, it is mainly the Voc value of μc-Si:H cells that determines the temperature behavior

of Pmpp in the operating temperature range. It is due to the almost linear dependence of the

TCVoc with Voc. As rough electrodes are often leading to the growth of more defective μc-Si:H

material [Pyth 09a] and resulting in lower Voc, the TCPmpp values of cells with rough electrodes

(Z5 20’) are lower than the one of cells deposited on smooth electrodes.

In Fig. 4.15 we can separate the data points in three different correlation lines. We draw lines

as guide to the eyes:

• The Buffer, no buffer, high Voc cells line at different irradiances and substrate roughness.

• The Std Z5 45’ line, which is slightly shifted to the left because the material quality is

better due to a lower deposition rate than for the other cells mentioned above. Hence
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Chapter 4. Temperature dependence of thin-film and crystalline silicon-based solar cells

the i -layer is more dense and should contain less porous volume.

• The highly crystallized solar cells (HC) with SiF4 i -layer line is even more shifted to the

left, probably because of different material properties.

The different lines reflect the different γ parameter of Equ. 4.2 due to slightly different material

properties and hence different related recombination functions. Note that the roughness

of the front electrode do not changes significantly the γ despite the fact that it changes the

recombination function.

Comparing to a-Si:H solar cells the F Fmax and hence the Pmpp maximum of μc-Si:H cells

is located at temperatures about 30 ◦C lower than for a-Si:H. The TCPmpp for μc-Si:H has a

value between −0.32 %/◦C and −0.45 %/◦C which is lower than the values for a-Si:H (between

−0.1 %/◦C and −0.2 %/◦C). These lower values seem to be mainly due to the lower TCFF values

of μc-Si:H cells induced by their lower F Fmax temperature. The T CVoc values seems also to

be slightly higher for a-Si:H (between −0.25 %/◦C and −0.35 %/◦C) than for μc-Si:H (between

−0.32 %/◦C and −0.44 %/◦C), because of the higher Voc values of a-Si:H cells (see equation

Equ. 4.2).

4.4 Multi-junction thin-film silicon cell temperature behavior

In this section we present the results of temperature dependent I(V) and spectral response

measurements (EQE) for micromorph (a-Si:H/μc-Si:H) and triple junction (a-Si:H/ ucsih/μc-

Si:H) thin-film silicon solar cells. Only few papers on this subject are found in literature and

they generally only report the TC values [Srip 08, Srip 11, Virt 10]. Yunaz et al. made some nu-

merical simulation of micromorph solar cells [Yuna 07]. We measured the I(V) characteristics

of those cells at different spectra and temperatures to evaluate the temperature dependence

of each sub-cells.

4.4.1 Experimental details

The current mismatch is here defined as the difference between the Jsc values of the top cell

and the Jsc value of the bottom cell (Jsc,top − Jsc,bot). In our case, it is calculated from the

current determined by EQE measurements of the component cells and a simulated spectrum

of the solar simulator (inducing some small inaccuracies). The current mismatch is varied by

changing the spectrum of the irradiance (using the same principle as the current matching

machine, CMM [Bonn 13]). The spectrum was choose such that the sum of the current densi-

ties of the two subcells is always equal (25 mAcm−2 for this sample). The I(V) measurements

were performed by the cell tester setup. The temperature dependence of micromorph tandem

solar cells (see section 2.1.2) is investigated by measuring its I(V) characteristic at different

temperatures (18 ◦C to 70 ◦C) and current mismatch between the top and the bottom cell (from

−7 mAcm−2 to 5.5 mAcm−2). At the end of this section, we also show the temperature depen-
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Figure 4.16 – I(V) characteristics as a function of temperature and current mismatch between
the top cell (a-Si:H) and the bottom cell (μc-Si:H) of a micromorph thin-film silicon cell. The
more negative the mismatch the more reddish is the spectrum of the incoming light. The
dashed vertical line represents the x-position where the currents are actually matched at 25 ◦C.

dence of the performance of thin-film silicon triple-junction cells composed of an a-Si:H top

cell and μc-Si:H middle and bottom cells . More details on these devices can be found in

[Schu 14, Schu 15]. These cells were measured with the Wacom simulator at 1000 Wm−2 and

with mesh filters for varying irradiance intensities at temperatures from −60 ◦C to 70 ◦C.

4.4.2 Results and discussion for micromorph cells

The current densities of the subcells as determined from the EQE for AM1.5G spectrum are

Jsc,top = 12.46mAcm−2 and Jsc,bot = 13.44mAcm−2, hence the micromorph device is top cell

limited. Figure 4.16 shows the F F , Pmpp and Jsc values as function of the simulated current

mismatch and temperature. We notice that the maximum of Jsc which should corresponds to a

current-matched condition do not lay at the 0 mAcm−2 calculated mismatch point as it should

be. This shift of 1 mAcm−2 can be explained by simulated spectrum errors. The slope of Jsc

as a function of mismatch is 0.54 in the top limited and −0.45 in the bottom limited case. As

expected the F F value increases and the Jsc value decreases with increasing mismatch. Figure

4.16 b) I) and II) shows that the Jsc maximum and hence the location of the Pmpp maximum
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Chapter 4. Temperature dependence of thin-film and crystalline silicon-based solar cells

as a function of mismatch, shifts to more reddish spectrum with temperature. This means

that the current matched point shifts to a more reddish spectrum. This implies that for an

AM1.5g spectrum, the cell becomes more bottom limited or less top limited with increasing

temperature. This change of the current distribution between the top and bottom cells with

temperature is due to a higher light absorption increase with temperature of the top cell than

for the bottom cell (see section 4.4.3 and Fig. 4.18 right). Indeed the gain in current of the

bottom cell in the infrared part (due to band-gap narrowing) is partially counterbalanced by

the decrease in absorption in the red part of the bottom cell due to increased absorption with

temperature of the top cell in this region (due to band-gap narrowing).

Figure 4.17 shows the temperature behavior of the Pmpp, F F and Jsc in matched, strongly

bottom cell limited and strongly top cell limited state and the corresponding T C as a function

of the current mismatch. Looking at the F F behavior, we see that in the top cell limited case
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Figure 4.17 – Left: Pmpp, F F and Jsc as a function of temperature in the current matched,
bottom limited and top limited state (simulated mismatch of −0.8 mAcm−2, 5.7 mAcm−2 and
−5.5 mAcm−2. Right: TCPmpp, TCFF and TCJsc as a function of simulated mismatch.

(red triangle), the temperature behavior of F F seems to be governed by the a-Si:H subcell.

The F Fmax value is around 45 ◦C and the TCFF value is high (−0.01 %/◦C). In the vicinity of the

current-matched point we see a discontinuity that is due to the shift of the current matching

with temperature as explained previously. Moving further to the bottom (μc-Si:H) limited case,

TCFF decreases and F Fmax moves to lower temperature (blue squares). The TCFF value of the

micromorph cells ( −0.05 %/◦C) decreases towards the value of the T CFF of an μc-Si:H cells,

60



4.4. Multi-junction thin-film silicon cell temperature behavior

but still remains higher. The value of the TCFF of the micromorph cell is determined by a

combination of the F F (T ) behavior of each subcells and the F F variation due varying current

mismatch with temperature.

In top limited cases, the TCJsc with values around 0.10 %/◦C is slightly higher than for a good

single a-Si:H cells. As for a single cell, there is a current enhancement (in the top cell) with

temperature due to enhanced absorption due to temperature-induced bandgap reduction.

In addition, as the mismatch diminishes with higher temperature the voltage of the top cell

at the Jsc point shifts from negative values towards 0 V and hence the current of the top cell

enhances more (as the slope of the I(V) curve at reverse bias is positive). On the other hand, in

the bottom limited case the TCJsc of the micromorph cell is lower than for a single μc-Si:H

cells. The current enhancement with temperature in the infrared part due to the temperature-

induced bandgap reduction, is partially counterbalanced by less current at higher wavelength

due to enhanced absorption in the top cell (as already discussed before, see also Fig. 4.18).

The difference between the TCJsc of a single a-Si:H cell and the T CJsc of a micromorph cell in

the top limited state is linked to the slope of the a-Si:H I(V) curve at reverse bias voltages.

The TCVoc (not shown) exhibit approximately constant value of −0.32 %/◦C for all spectra. By

combining the TCVoc, TCJsc and the TCFF values, it is evident why T CPmpp decreases from

−0.22 %/◦C to −0.33 %/◦C moving from top limited to bottom limited conditions. It is mainly

the TCJsc that drives this TCPmpp variation with spectrum (mismatch). At matched conditions

the TCPmpp is equal to −0.28 %/◦C.

Regarding temperature, the current matching of the micromorph cell has to be optimized

such that the Pmpp is highest at the production condition leading to the highest energy share.

It follows that compared to the optimum at 25 ◦C the cell should be slightly more top limited

as the current matched point shifts to a more redder spectrum with increasing temperature.

The matching should then be further optimized to take in account varying spectra (as in our

latitude most productive spectra are slightly bluer, the cell should also be slightly more top

limited see Chap. 5) and degradation effects (more bottom limited as only the top cell degrades

see Chap. 6).

4.4.3 Results and discussion for the triple cells.

The measured triple junction cell has Jsc values of 9.9 mAcm−2, 8.9 mAcm−2 and 8.3 mAcm−2

for the top, middle and bottom cell respectively as calculated from EQE measurements (Fig.

4.18). Hence the cell is bottom limited. As for the micromorph cells presented in the previous

section, this triple cell exhibits a F Fmax situated near 20 ◦C and the maximum of Pmpp(T ) is

situated around −20 ◦C (Fig. 4.18 left). The EQE measurements as a function of temperature

shows that the top cell loses current with temperature at wavelength around 380 nm due

to enhanced absorption of the ZnO front electrode. At a wavelength value of about 600 nm

current is gained in the top cell due to bandgap broadening. For the middle and the bottom

cell same mechanism occurs. At low wavelength values, the current is loss due to enhanced
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Figure 4.18 – Left: Pmpp and F F as a function of temperature at different intensities (black:
1000 Wm−2 and lightest gray 100 Wm−2 irradiance). Right: EQE as a function of temperature,
black= 10◦C and lightest gray = 75◦C.

absorption of the layer on top, and at larger wavelength there is a current gain. This leads to the

highest TCJsc value for the top cell (0.068 %/◦C), a lower value for the middle cell (0.054 %/◦C)

and the lowest value of 0.027 %/◦C for the bottom cell. The TCJsc value of the complete triple

cell in the bottom limited state is 0.021 %/◦C. Similarly to micromorph tandem cells, the F F (T )

curve has a maximum dictated by the F Fmax of the subcells. We observed a T CPmpp value of

−0.28 %/◦C similarly to micromorph cells.

4.5 Temperature behavior of silicon heterojunction solar cells

Silicon heterojunction cells (SHJ) are known to have a favorable temperature coefficient

(compared to other c-Si homojunction solar cells). Their high TC values are principally

due to their high Voc [Mish 11, Batz 11]. Investigating the temperature behavior of those

cells allows gaining some insight in the materials characteristics. In this section we5 study

their performance when varying the temperature from −100 ◦C to 70 ◦C as well varying the

irradiance intensity.

4.5.1 Experimental details

The 2x2 cm2 SHJ solar cells made in our laboratory were measured with the cell tester setup

(see Sec. 2.2.2). Three different cells were studied. The first one (SHJCu) has copper plated

fingers [Geis 14] on the front and standard p and i -a-Si:H layers (for more information see

section 2.1.4). The second one (SHJAg) is very similar to the previous one but was deposited

5Y. Riesen, G. Nogay J. Geissbuhler, J. Seif, C. Ballif and N. Wyrsch

62



4.5. Temperature behavior of silicon heterojunction solar cells

in another deposition system and has screen printed silver fingers. The third one (SHJAg-μc)

was deposited in the same reactor as SHJAg and is similar to SHJCu but with a p-μc-Si:H layer

instead of the p-a-Si:H, it has also silver fingers (results concerning SHJAg-μc are from Nogay

et al., to be published). A summary is shown in Tab. 4.3. During I(V) measurements, the

cells temperature were controlled using a chuck (the temperature was measured in the chuck

and is assumed to be the cell temperature). The cells were contacted using two kelvin probes

at the front contacts and the chuck surface plus a voltage probe for the back contact. For

measurements series with temperatures below 10 ◦C, the whole chuck is placed in a thermal

insulated box with a 5-mm glass on top allowing the use of liquid nitrogen to cool the cells.

As the gain in Jsc with temperature is mainly due to the temperature-induced bandgap reduc-

tion leading to an increase in absorption at wavelength above 1000 nm, the TCJsc depends

strongly on the illumination spectrum. Therefore the TCJsc amd TCPmpp of c-Si solar cells

are underestimated if measured with the cell tester. The cell tester’s spectrum at wavelength

longer than 600 nm is mainly determined by the halogen lamps. At high light intensities the

halogen lamps spectrum exhibit a high peak around 680 nm which decreases rapidly when

going towards longer wavelengths and only partially reflects the solar spectrum in the infrared

region (from 700 nm to 1300 nm). Hence, even if the total current of the cell corresponds to

the nominal current at STC, the intensity is in our case more than two times lower around

wavelength of 1200 nm than for an AM1.5g spectrum. Going to lower light intensity the peak of

the halogen spectrum is reduced compared to the intensity in the infrared part and hence the

TCJsc will increase. For example, the TCJsc value measured with the cell tester at 1000 Wm−2 is

0.02 %/◦C, however when measured with the Wacom simulator we get 0.06 %/◦C. The Wacom

simulator has a relatively closer to AM1.5g intensity around the wavelength of 1200 nm and

gives more accurate results.

4.5.2 Results and discussion

Figure 4.19 shows the I(V) parameters of the SHJCu cell from −100 ◦C to 75 ◦C at different

irradiation levels. The Voc increases linearly with decreasing temperature as for standard

homojunction cells until −20 ◦C where the I(V) curve exhibit a s-shape behavior (see Fig.

4.20 left). However, below this temperature, the Voc(T ) curve begins to saturate until −60 ◦C

from where the Voc begins to decrease. In literature this s-shape is explained by the hole

barrier due to the valence band offset at the i-a-Si:H/c-Si/ interface at the p-side of the

wafer [Sark 12, Clee 98]. At low temperatures, holes ceases to have enough thermionic energy

to cross this barrier and accumulate. This hole accumulation increases the recombination

at forwards bias around the Voc value. As a result, the slope of the I(V) curve taken at Voc

decreases and the curve becomes s-shaped. Moreover this enhanced recombination leads

also to a drop in Voc.

As for a-Si:H cells (see Sec. 4.2.2), the F F (T ) curve presents a maximum. For example, for

1260 Wm−2 the temperature of this maximum (TFFmax) is found at 25 ◦C. This TFFmax decreases
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Figure 4.19 – I(V) parameters (Voc, F F , Jsc and Pmpp) as a function of the SHJCu cell (copper
plated cell with p-a-Si:H layer) measured at different irradiation [from 1260 Wm−2 (black
dots) to 10 Wm−2 (lightest gray)].

with decreasing irradiance, e.g. at 10 Wm−2 TFFmax =−75◦C. Most probably the valence band

offset and the resulting enhanced recombination due to hole accumulation is also the reason

for the reduction of F F (see Sec. 2.1.4 for an illustration of the band-diagram). When lowering

the irradiance, the critical hole accumulation will only be reached at lower temperature

(note that the Voc(T ) maximum also decreases with temperature but at a 4 times lower rate).

Moreover, the F F maximum is reached at a temperature that is more than 40 ◦C higher than

the temperature where the curve becomes s-shaped and the Voc begins to drop. We believe

that the valence band offset affects first the F F , as at Vmpp, due to hole currents that cross the

barrier, the band bending and hence the hole accumulation could occurs already at higher

temperatures. As at Voc all carriers recombine in the device, this accumulation occurs only

at lower temperatures. It is also interesting to note that for most measured standard SHJ

cells made in our laboratory, the TFFmax is around STC temperature (25 ◦C) at an irradiation

intensity value of 1000 Wm−2. It is not clear if this observation is a consequence of the fact that

we optimize our cells for STC conditions, the TFFmax is then just at this point which represents
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4.5. Temperature behavior of silicon heterojunction solar cells

the best trade-off between good Voc values and F F values or if it has a more fundamental

origin. Due to this F F (T ) curve shape (Fig. 4.19) the Pmpp also has a maximum which is
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Figure 4.20 – (left) I(V) curve for the SHJCu cell at 1000 Wm−2 and different temperatures.
Darkest/brightest lines corresponds to −100 ◦C and 80 ◦C. (right) Efficiency as a function of
the irradiance (log scale) and temperature.

located at 0 ◦C at 1000 Wm−2. In Fig. 4.20 (right), the efficiency is shown as a function of

irradiation intensity (calculated according to the Jsc values of the cell, knowing its nominal

value) and temperature. We can directly extract that the maximum efficiencies values of over

23 % are situated, for irradiation in log scale, on a line going from −40 ◦C and 200 Wm−2 to

at least 0 ◦C and 1260 Wm−2. Thus we can directly deduce that the temperature of the Pmpp

maximum and hence the TFFmax depends logarithmically on irradiance.

The Jsc increases linearly with temperature in the measured range. Yet, it is to be noted that

the TCJsc is underestimated as discussed before.

Due to a low lamp stability of the simulator the Rsc values are noisy and not completely

reliable (sometimes negative values are obtained). However, it is not the case for the Roc. Its

values are relatively constant from high temperature until −20 ◦C where they begin to increase

accordingly to the increasing s-shape of the I(V) curve (see Fig. 4.20).

If we assume that this s-shape behavior near Voc is due to a barrier, its effect on the I(V)

characteristics is thermally activated and we can extract an activation energy related to the

barrier height. Figure 4.21 shows the F F as a function of temperature of the SHJCu and

SHJAg-μc cells and the natural logarithm of the I(V) curve slope at the saddle point (lnd j =
ln(∂I (V )/∂V )|V =V s as a function of the inverse temperature (1/T ) at different irradiance values.

Lowering the temperature, the F F value of the SHJAg-μc solar cell begins to decrease at lower

temperature (−30 ◦C) than for the SHJCu and SHJAg cells (25 ◦C and 40 ◦C respectively). The

F F (T ) curve of the SHJCu cells is higher than the SHJAg cells mainly because of a lower

series resistance. For the SHJCu and SHJAg cells the lnd j values have a linear trend from

−10 ◦C to about −40 ◦C. This linear behavior and the fact that the slopes are similar for
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Figure 4.21 – (left) ght: F F as a function of temperature for the three cells. (right)
ln(∂I (V )/∂V )|V =V s at the saddle point (Vs), which is located near the Voc, as a function of the
inverse temperature for SHJCu,SHJAg and SHJAg-μc solar cells. The red lines are the linear fits
of the slopes.

different irradiance intensities could for instance validate the existence of a thermally activated

process. Decreasing the temperature further, the slope decreases and seems to saturates,

this may be explained by a too high barrier compared to the thermionic energy and hence

the transport could be mainly driven by another mechanism (e.g. trap assisted tunneling

because the temperature dependence diminishes). The lnd j of the SHJAg-μc cell is linear

with temperature until the minimum measured temperature for the different irradiances.

From Eact = slope(lnd j (1/T )) ·kB /q , we get the activation energies (Eact listed in Tab. 4.3)

Cell fingers type p-layer Dep. system Eact [eV ] TFFmax [◦C]
SHJCu Copper plated p-a-Si:H A 0.31 20
SHJAg Screen printed p-a-Si:H B 0.21 42
SHJAg-μc Screen printed p-μc-Si:H A 0.14 -25

Table 4.3 – Activation energies of the s-shape and the corresponding F F maximum tempera-
ture.

The activation energies of the SHJCu and SHJAg cells are comparable with the valance band

offset (ΔEV B ) values given in literature ( 0.2 eV from a theoretical study [Wall 95] or 0.4 eV

found in an experimental study [Schu 11]). The discrepancy between the Eact values found

between SHJCu and SHJAg probably originates from different p-and i layers characteristics (it

is known that the bandgaps differs and hence the ΔEV B [Desc 11, Geis 13]) due to the different

deposition conditions between the two reactors6. The p-μc-Si:H layer (SHJAg-μc) influences

the TFFmax and also the Eact which is the lowest measured value of this study. Notably, there is

not a direct correlation between the TFFmax and Eact . Hence, we can think that the Eact as we

defined it, is not the only parameter governing the temperature behavior of the F F . Perhaps

as for the SHJAg-μc cells higher doping induce a higher band bending reducing the hole

6A standard cell deposited with same reactor as SHJCu but with silver screen printing gave an activation energy
of 0.28 eV.
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4.6. Temperature dependence of silicon-based solar cells

accumulation. The valence band barrier at the TCO/p-layer interface could also influence

this behavior. After these first experimental findings, numerical simulations of such devices

are needed to have a better understanding of those effects and to validate the meaning of this

activation energy.

4.6 Temperature dependence of silicon-based solar cells

4.6.1 Temperature coefficient comparison

In this part we compare the temperature behavior of different silicon-based solar cells:

Experimental details

The following cells are compared:

• A thin high band gap (170-nm-i -layer) (a-Si) and a thicker (300-nm-i -layer) a-Si:H solar

cells (a-Si2) in initial and degraded state, both are measured with the cell tester.

• A μc-Si:H standard cell (μc-Si), corresponding to Std Z5 45’ in section 4.3, measured

with the cell tester.

• A poly -c-Si solar cell (Poly) measured with the Wacom2 sun simulator.

• A mono-c-Si (Mono) solar cell7 measured with the Wacom2 sun simulator.

• A back-contacted high efficiency mono-c-Si cells8 measured with the celltester (BC).

• A silicon heterojunction cells (SHJ) made in our laboratory corresponding to the one of

the previous section (Sec. 4.5). The cells were measured with the cell tester, however

the T CJsc and hence the TCPmpp were corrected according to the TCJsc values measured

with the Wacom simulator at STC.

The different I(V) parameters at STC are showed in table 4.4:

The T C are fitted from 30 ◦C to 80 ◦C to minimize the effects of non-linear F F (T ) curves. More-

over in most cases, the operating temperatures during the period when the cell is producing

most energy are in this temperature range.

Results and discussion

We first individually go through the T CVoc, TCFF and TCJsc in order to have a better under-

standing of the different influences on the TCPmpp. Figure 4.22 represents the relative TCVoc

7Commercial cell from Sunways
8Commercial cell from Sunpower
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Label Cell Type Voc [mV] Jsc [m A/cm2] F F [%] Pmpp[W /m2]
a-Si(d) thin high bg a-Si:H 953 (934) 13.1 (12.7) 73.4 (67.1) 91 (80)
a-Si2(d) 300-nm-i -thick 871 (842) 16.3 (15.2) 69.1 (60.2) 98 (77)
μc-Si μc-Si:H 530 256 69.6 93.9
Poly Poly-c-Si 619 32.4 77.1 155
Mono Mono-c-Si 617 36.8 79.1 179
BC Back cont. mono-c-Si 712 43.0 78.6 240
SHJCu SHJ copper plated 725 37.7 81.0 220
SHJAg SHJ standard 714 36.1 77.6 200

Table 4.4 – I(V) parameters of the different silicon-based solar cells. The Jsc and Pmpp of the
BC cells are calculated according to data-sheet.

values as a function of the Voc.
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Figure 4.22 – (left) Relative and (right) absolute TCVoc values as a function of their Voc measured
on different silicon-based solar cells. The bigger markers indicates the values at STC.

As for thin-film silicon cells (see Sec. 4.2.2, p. 43) the TCVoc of all measured cells at different

irradiances behaves linearly as a function of their Voc varied by changing the irradiance. The

TCVoc(Voc) lines for the Poly, Mono and BC cells are in a first approximation on the same line.

Because the Voc of the BC cell is higher, its TCVoc (−0.24 %/◦C at STC) for a same irradiance

is higher than for the Poly and Mono cells (about −0.32 %/◦C for both). Interestingly, the

TCVoc(Voc) line of the SHJAg cell is slightly shifted downwards. Its TCVoc at STC (−0.26 %/◦C)

is slightly lower than for BC with almost same Voc at STC but still higher than for the Poly and

Mono because of higher Voc. It can be more clearly seen in Fig. 4.23 (top, left) where the T CVoc

is plotted as a function of the Jsc in log scale. As already presented in Sec. 4.2, the TCVoc of the

a-Si:H cells depends considerably on the material properties (mainly the defect density). The

a-Si cells in initial state with high F F (less recombination) has a TCVoc in the range of the c-Si

cells (−0.25 %/◦C at STC), note that in absolute values the TCVoc is significantly lower than for

the c-Si cells (Fig. 4.22 (right)). The TCVoc of the thicker and in degraded state (a-Si2d) cell has

a relatively low TCVoc value of −0.36 %/◦C. The T CVoc values of the μc-Si cells are lower than

those of c-Si cells and similar to the ones of a-Si2d in relative values and to the ones of the
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4.6. Temperature dependence of silicon-based solar cells

Poly and Mono cells in absolute values.
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Figure 4.23 – T CVoc,TCFF,TCPmpp and TCJsc of silicon-based solar cells as a function of their
Jsc at different irradiances. The bigger marker indicates the T C at STC. The T CJsc values of the
SHJAg cell is corrected according to the TCJsc measured with the Wacom sun simulator.

The highest T CFF values (in the range of −0.05 %/◦C to 0.05 %/◦C) are obtained with a-Si:H

cells due to the F F (T ) behavior explained before (Sec. 4.2.2, p. 47). It was shown that the TCFF

of those cells increases with irradiance because the TFFmax moves then to higher temperatures.

The next highest TCFF values are achieved by the SHJAg cells (−0.06 %/◦C at STC) due to this

s-shape behavior. Therefore the T CFF increases also with irradiance (gaining 0.002 %/◦C per

mA/cm2). The TCFF of the Poly, Mono and BC cells are in a first approximation constant

with irradiance for Jsc that are higher than 5 mAcm−2 ranging from −0.13 %/◦C for Poly to

−0.10 %/◦C for the BC cells. The μc-Si exhibit the lowest value of about 0.16 %/◦C.

The TCJsc are as expected constant with irradiance. Most values are around 0.04 %/◦C to

0.06 %/◦C with exception of the a-Si2d cell with higher values due to its low F F and hence

significant reduced recombination with increasing temperature.

The T CPmpp is the sum of the TCVoc, TCFF and TCJsc. Hence for all cells the TCPmpp increases

with irradiance mainly due to the logarithmically TCVoc increase. For the a-Si:H and the SHJ

cells this increase is higher due to the TCFF increase. On the whole the highest TCPmpp is

obtained by the a-Si cell followed by the a-Si2d cell. The higher TCPmpp values of the SHJAg

cells compared to the BC cells with about same Voc is principally due to the higher TCFF

of the SHJ cells. The TCPmpp at STC are summarized in Tab. 4.5: We note that the TCPmpp

of Mono and Poly (here measured on cells) are slightly better than those indicated by the
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Chapter 4. Temperature dependence of thin-film and crystalline silicon-based solar cells

Label T CPmpp [%/◦C]
a-Si -0.19
a-Si2d -0.25
SHJAg -0.25
BC -0.30
Poly -0.39
Mono -0.39
μc-Si -0.47

Table 4.5 – T CPmpp at STC from highest to lowest

supplier for modules (−0.42 %/◦C). Moreover, the T CPmpp for the SHJAg cells are valid for our

laboratory SHJ cells. The TCPmpp can differ for other SHJ cells with different cell design and

hence especially a different TCFF behavior.

4.6.2 Impact on the energy yield of irradiance-dependence of the temperature
coefficient

Most energy yield models use constant T C to model temperature dependence. In the previous

section we observed that the TCPmpp of SHJ cells is not constant with irradiance and we will

here analyze the effect on the energy yield and if this has to be taken into account.

We simulate the yearly energy output of a module having the same characteristics than the

SHJAg cells showed in the previous sections.

Experimental details

We compare the yearly energy output of a module having the same characteristics (in irradi-

ance and temperature)as the SHJAg cells showed in the previous sections using four different

simulation methods for temperature corrections, for each time step t , the Pmpp(G(t ),T (t )) is

calculated as follows :

• 20 % cst. η, the Pmpp(t ) is calculated from the given irradiance assuming a constant effi-

ciency (η) of 20 % without taking in account a temperature and irradiance dependence.

• No T. dep., the Pmpp(25◦C,G(t )) is calculated by interpolating the indoor measured Pmpp

at 25 ◦C for the given irradiance without taking into account a temperature dependence.

• Cst. TC , the Pmpp(T (t ),G(t )) calculated with the No T. dep. method is corrected to the

given temperature (T (t)) with the constant T CPmpp (corresponding to the T CPmpp at

STC).

• Var. TC , the irradiance (or Jsc) dependent T CPmpp(Jsc) showed in Fig. 4.23 is used to

linearly correct the Pmpp(T (t ),G(t )) calculated with the No T. dep. method.
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4.6. Temperature dependence of silicon-based solar cells

• Interp., the Pmpp(T (t ),G(t )) is calculated by interpolating the indoor measured Pmpp(G ,T )

at the given irradiance and temperature. This methods should be nearest to the real

energy output (or energy yield if we divide the energy yield by the power rating).

The Pmpp(T (t),G(t)) of each time step are then integrated in order to calculates the yearly

energy output.

The input temperatures (T (t )) are taken from measured temperatures of a mono-c-Si module

monitored on our roof from September 2014 to September 2015 (see Sec. 2.4). The in plane

irradiance (G(t )) is determined by using the temperature corrected and normalized Jsc value

of this same module. This methodology, allows obtaining directly the irradiance arriving in

the cell from the measured Jsc of the module (most angular and glass reflection effects are

already taken into account). However, spectral effects resulting from the difference in spectral

response between SHJ and mono-c-Si are not taken in account. This method is known as

self-reference method.

Results and discussion

Figure 4.24 (left) shows the comparison between the measured Pmpp and the two simulated

(Cst. T C and Var. TC ) Pmpp at 500 Wm−2 irradiance value. Above 25 ◦C the two simulated

curves are relatively close to the measured one. By having a closer look, Cst. TC curve

underestimates the temperature loss and the Var. TC curve overestimates the temperature

loss because of the non-linearity of the Pmpp(T ) curve. Below 25 ◦C, because of a stronger

Pmpp(T ) curvature both simulated curves overestimates the Pmpp. The temperature range

used for the TC fitting also influences the previous results (in our case we fitted from 30 ◦C to

70 ◦C).
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Figure 4.24 – (Left) Measured power, simulated power with constant temperature coefficient
and simulated power with a Jsc dependent temperature coefficient of the SHJAg heterojunction
solar cells at an irradiance G of 500 Wm−2. (Right) Relative contribution to the yearly in-plane
irradiance as a function of different temperature and irradiance conditions in Neuchâtel (CH).
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Chapter 4. Temperature dependence of thin-film and crystalline silicon-based solar cells

Figure 4.24 (right) shows the relative contribution to the yearly in-plane irradiation energy

of the different temperature and irradiance conditions for one year in Neuchâtel. More than

45 % of the total energy yield is generated at temperatures above 40 ◦C or more than 35 % are

generated during irradiances (G) > 700 Wm−2. The results of the different simulation are

summarized in Tab. 4.6.

20 % cst. η No T. dep. Interp. Cst. T C Var. TC
247.2 kWh/m2 242.7 kWh/m2 233.1 kWh/m2 233.2 kWh/m2 232.8 kWh/m2

106.05 % 104.12 % 100 % 99.87 % 100.04 %

Table 4.6 – Modeled yearly energy output using different methods to correct (or not) tempera-
ture and irradiance dependence in absolute and relative to the Interp. simulation (which is
nearest to the real value).

We lose 1.8 % of the total energy output compared to a constant η cells, if we only take into

account efficiency losses due to varying η with irradiances (No T. dep.). Adding the temperature

losses the total energy output diminish further by 4.1 %. The results of the energy output

simulation using the three different temperature corrections (Cst. T C , Var. TC and Interp.)

results in almost the same values (0.2 % scattering). Hence for our latitude, it is not necessary

to use an irradiance dependent TCPmpp for those cells.

4.6.3 Temperature dependence over a large temperature range

In this subsection, we compare the temperature dependent performances of silicon-based

solar cells over a large temperature range including very low temperatures. Figure 4.25 shows

the Voc and the F F as a function of temperature. For the BC cell, the F F (T ) curves is slightly
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Figure 4.25 – Voc and F F temperature dependence for a-Si:H, μc-Si:H, mono-c-Si and SHJ
cells.

convex, but is far having a maximum in our measurement range. Hence, the F F reaches a value

of 85 % at −60 ◦C (see Fig. 2.5). Temperature dependent measurements of other homojunction

c-Si solar cells (not shown here) at these temperatures also shown no F F maximum.
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4.7. Conclusion

Even though thin-film silicon cells structure is very different from SHJ cells, both have a F F

maximum in the same range of temperature (at least for the cells deposited in our laboratory)

due to hole accumulation at the p-side. For the first type this accumulation is due to the p-i -n

structure and drift driven carrier transport nature of the device and hence the relatively thin p-

layer compared to the thicker i -layer were most of the photogeneration occurs (see subsection

4.2.2, p. 47). Whereas for the second type, the hole barrier at the valence band between the

a-Si:H i -layer and the c-Si wafer at the p-side is responsible for this accumulation.

4.7 Conclusion

For amorphous silicon cells, we analyzed the impact of the intrinsic layer thickness, p-type

a-SiC:H layer thickness, the hydrogen-to-silane flow ratio, and deposition rate on the temper-

ature behavior of the performance of hydrogenated amorphous silicon solar cells. In most

cases the TC of the open-circuit voltage (Voc) has a linear dependence with the Voc value.

The linear short-circuit current density (Jsc) enhancement with temperature is mainly due

to temperature-induced bandgap reduction. However a small part is also due to a reduction

of the recombination with temperature, which is more important for cells with high defect

densities. The fill factor as function of temperature (F F (T )) curves are non-linear and have a

maximum that could be explained by numerical modeling. This maximum of the F F shifts

to lower temperature under reduced irradiation and to higher temperature with degradation.

The maximum power point (Pmpp(T )) curve is hence also not linear and has a maximum that

is often below the operating temperature range. For the p-type a-SiC:H layer thickness, the

dilution and the deposition rate series, the cells with highest Pmpp at 25 ◦C also perform best at

all temperatures in the operating temperature range. This means that despite the fact that the

TCPmpp increases with decreasing Pmpp (for dilution and deposition rate series), their better

TC cannot compensate their worse Pmpp (in this temperature range). On the other hand,

some of the Pmpp(T ) curves of the i -layer series cross each other as function of temperature

and irradiation levels. According to a simple energy output simulation (that does not take into

account degradation and annealing effects) for one year in Neuchâtel (Switzerland) we showed

by modeling that the best cell at STC is also best in terms of energy production regarding

temperature behavior for both the annealed and light soaked states. However, for cells with

slightly different material properties the situation could be different. In this work, we have

considered only the temperature behavior of solar cells on a short time scale. For a more

complete energy yield model, long-term temperature dependence caused by annealing and

degradation effects should be taken into account as well [Vosw 13, Mert 98b, Virt 13]. We will

address these aspects in chapter 6.

The temperature behavior of μc-Si:H cells depends mainly on the Voc. The higher the Voc,

the higher the T CVoc is and hence the TCPmpp. As the roughness has an important influence

on the Voc, it determines most the temperature behavior of μc-Si:H cells. Adding a buffer

layer does not change significantly the temperature behavior of these cells. However highly

crystalline cells have a relatively higher TCVoc compared to their (relatively lower) Voc. The
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Chapter 4. Temperature dependence of thin-film and crystalline silicon-based solar cells

temperature behavior of μc-Si:H cells shows similarities with the a-Si:H cells. We assume that

same basic mechanism are driving the temperature behavior because of the p-i -n structure.

The evolution of the electrical parameters of tandem and triple junction thin-film silicon

cells upon temperature are driven by the temperature behavior of the subcells. The F F as a

function of temperature is mainly determined by the limiting cell. Hence there is an F F (T )

maximum for those cells. However the TCJsc value is the highest when the cell is top limited,

in that case the TCJsc of the second or third cell is limited by temperature-induced bandgap

reduction of the top cells. Hence the T CPmpp value decreases continuously when going from

top to bottom limited conditions mainly due to the variation with mismatch of the TCJsc.

We measured the temperature dependence of SHJ solar cells from −100 ◦C to 80 ◦C. Similarly

to thin-film silicon-based solar cells, the F F has a maximum and begins to decrease after this

point going to lower temperature. The I(V) curve also become s-shape at lower temperature.

The s-shaped I(V) curve and the F F (T ) behavior seems to be caused by the hole barrier due

to the valence band offset at the a-Si:H/c-Si interface and the band bending in this region.

From an Arrhenius plot of the I(V) slope at the saddle point of the s-shape we could extract

activation energies that could for instance correspond to the valence band offset. The next

step will be to do numerical simulations of such devices at different temperatures to have a

better understanding of the experimental results and verify the relationship between band

offset and activation energy. Note that the results for SHJ cells are based on our laboratory cells,

hence SHJ cells from other laboratory or supplier should be measured in order to generalize

those results.

In the last part of this chapter we compared the temperature dependence of the performance

of thin-film silicon, SHJ and mono-/poly-c-Si solar cells. We measured best TCPmpp for the

a-Si:H cells mainly due to their high TCFF. The second best TCPmpp values were obtained for

the SHJ cells. Their high Voc only partially explains its high TCPmpp, because back-contacted

mono-c-Si cells with about the same Voc exhibit even slightly higher TCVoc values. However,

the TCFF of the SHJ cells are higher (at higher irradiation) than for the back-contacted cells

due the F F (T ) behavior. Especially for SHJ and thin-film silicon cells, the TCPmpp increases

(improves) significantly with irradiation. However we calculated that for annual energy yield

determination in the typical meteorological conditions of Switzerland a constant T CPmpp with

irradiation (i.e. TCPmpp measured at STC) still gives acceptable results and that it is therefore

not necessary to take into account the dependence of TC on irradiance.
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5 Spectral dependence of micromorph
solar cells

Summary

In this chapter, we evaluate the spectral effects on the performance of two micromoph solar cells with

different current matching conditions (top and bottom cell limited) using a two diode model with

current recombination term. We used the SEDES2 tool [Nann 91] for simulating the sun spectrum

depending on measured meteorological inputs and sun position. We observed for both cells that over

88 % of the total yearly energy yield was produced with a solar spectrum that is slightly bluer than the

AM1.5g spectrum. Hence, for the top limited cell (under AM1.5g spectrum), the yearly energy yield was

1.6 % higher with the varying (SEDES2) spectra than with constant AM1.5g spectra normalized to give

the same global irradiances (integrated values). However, the bottom limited cell gave about the same

energy yield under normalized AM1.5g spectrum than with SEDES2 spectrum. This was essentially

due to the fact that our bottom cell’s efficiency decreases with lower irradiance due to shunt currents

(which was not the case for the top limited cell). Hence, when the irradiance is increasing, the higher

current mismatch due to the bluer spectrum is counterbalanced by an increase in efficiency due to less

importance of the shunt currents.

5.1 Introduction

The irradiation spectrum impacts the output power of solar cells depending on their spec-

tral response (or EQE). Instantaneous solar spectra mainly depend on the air mass of air,

meteorological conditions and albedo. For identification of the solar spectrum in clear sky

conditions, the air mass (AMx) coefficient is defined as the portion of atmosphere traveled

through by the light beam with x = 1 being the vertical atmosphere thickness. Hence an AM0

spectrum corresponds to the solar spectrum outside the atmosphere and AM1 spectrum to the

solar spectrum on the earth surface when the sun has a zenith angle of 0° (is perpendicular)

[Shah 09]. On the earth surface we can write, AM= 1/cosα where α is the angle between a

solar ray and a vertical line. The AM1.5g spectrum corresponding to α≈ 45° is the standard

value for testing and specification of solar cells [IEC 08a]. The "g" stays for global irradiation

(direct beam plus the diffuse irradiation). Under clear sky conditions, the majority of the

solar spectral influence can be taken into account by considering only the air mass (AM)
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Chapter 5. Spectral dependence of micromorph solar cells

[King 97a, Fann 06]. Hence due to higher air mass in winter or after sunrise of before sunset,

the spectrum is then more reddish than at midday (U-shape AM(t)). This is a consequence

of the Rayleigh scattering [Stru 71]. The water vapor content in the lower atmosphere that

varies during the day (in our latitude the spectrum shifts towards blue in the course of the day

because of higher vapor content in the afternoon) and the albedo also affects the shape of the

spectrum [Gott 03, Pere 07].

The spectrum is often characterized by the APE value [Will 03] which is defined as

APE =
∫λ

0 G(λ)dλ

q
∫λ

0 φ(λ)dλ
,

where λ is the wavelength, G is the spectral irradiance, q the electronic charge and φ the

spectral photon flux density. Ishii et al. [Ishi 11] showed that APE in cloudy weather is

higher (bluer) than in fine weather, because at shorter wavelength below 700 nm the spec-

tral irradiance is much higher than AM1.5g and at longer wavelength above 1200 nm it is

lower. Under overcast conditions the spectrum dependence is more difficult to determine

[Nann 90, Gott 04, Gott 05, Huld 10] while still important.

Grunow et al. showed that during overcast conditions a-Si:H cells could have up to 30% of

”spectral” gain in Jsc compared to a standard AM1.5g spectrum. When AM is growing the APE

is diminishing, which means that the spectrum is more reddish. Even if the APE does not

characterize precisely and uniquely a spectrum, Ishii et al. state that it is a valid indicator

concerning spectral effects on solar cells.

Module and cell technologies shows various spectral sensitivity. Spectral effects influence

mainly the Jsc of solar cells. They can induce a variation of about 2 %-4 % and 10 %-15 % of the

Jsc for c-Si, respectively a-Si:H solar cells [Mont 10, Ishi 11, Virt 12]. a-Si:H cells are more sen-

sitive to spectral variations because they use a narrower band in the spectrum than c-Si based

solar cells ( for example silicon heterojunction cells). Figure 5.1 shows the EQE, the AM1.5g

and two different measured sun spectra. Multijunction devices as micromorph cells are also

significantly affected by spectrum variations. As both subcells are connected in series, the

one with lowest generated current limits the current of the whole cell. Highest performances

are reached when the subcells have same currents (are current matched). Hence spectral

variations influence the power output of those cells by changing the matching conditions. To

illustrate this behavior, Fig. 5.2 shows the efficiency of a 30 x 20 cm2 micromorph minimodule

monitored on our roof (B01 see Sec. 6.3.2) as a function of in plane global irradiance and the

ratio between the diffuse (DHI) and global horizontal irradiance (GHI) in gray-scale (black

represents mostly clear sky conditions). We observe that below an irradiance of 400 Wm−2

the efficiency under clear sky conditions drops because of high zenith angle in the mornings

or evenings resulting in high AM values. This induce a higher current mismatch between

the subcells diminishing its efficiency. However in overcast conditions (brighter points) the

spectrum is similar to AM1.5g or even slightly bluer.
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Figure 5.1 – Continuous lines: normalized AM1.5g spectrum and two spectrum measured in
Neuchâtel (Switzerland) under different meteorological conditions. Note that the spectrometer
used gives reliable spectra until a wavelength of 1000 nm only. Dashed lines: EQE of an a-Si:H
and a silicon heterojunction cells.

The spectral effects on the energy yield is of the same magnitude as temperature losses and

performance reduction in weak light for well oriented thin-film Si modules; it is about 1.3 % for

micromorph modules and 3.2 % for a-Si:H [Grun 09, Hass 07]. All the results showed before

are related to optimally oriented modules, Gueymard et al. [Guey 07] showed that for vertically

oriented modules spectral effects increases massively (above 30 %). The impact of spectral

effects is smaller in southern Europe than in northern Europe [Virt 12].
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Figure 5.2 – Efficency of a micromorph minimodule (B01) as a function of in plane irradiance
(x-axis) and DHI/GHI ratio (grayscale). The data points were acquired from June 19, 2015 to
September 9, 2015.

Spectral effects for multi-junction solar cells like micromoph and their effect on the current

mismatch were e.g. discussed in Sutterlueti et al. [Sutt 10]. The authors developed a method to

evaluate the current mismatch status of micromorph cells under outdoor conditions, in order

to separate this effect from degradation, showing that the same cell can switch from a top to a

bottom limited regime during seasonal variations. Similar results, but based on simulation

were shown by Krishnan et al. [Kris 09]. A more precise simulation of spectral effects on
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Chapter 5. Spectral dependence of micromorph solar cells

micromorph cells with different thickness was presented by Repmann et al. [Repm 03], using a

simplified model of the one-diode model with Jrec ([Mert 98b], see Sec. 3.5.1) for each subcell.

We will here use a similar approach to investigate spectral effects on cell performance.

In this chapter, we1 quantify the theoretical effects of varying solar spectrum on the energy

yield of a micromorph thin-film silicon solar modules in a specific location in Switzerland

using a 2 diodes model. We here concentrate on spectral aspects only, temperature and

degradation/annealing effects are not considered. We compare the energy yield of a top and

a bottom limited micromorph solar cells using simulated varying spectra representing real

irradiation conditions and a normalized AM1.5g spectrum representing the case of constant

spectral shape of different intensities. The normalization is done in a way to ensure that the

energy is kept identical as for the simulated spectrum for the spectral range of the cell (from

350 nm to 1100 nm).

5.2 Model

Firstly we simulated hourly spectrum for one year using the SEDES2 program [Nann 91].

SEDES22 is a semi-empirical model written in Fortran that simulates the irradiation spectrum

according to meteorological and geographical inputs. It is based on the SPCTRAL2 model

for clear-sky conditions [Bird 86] and with a supplementary cloud modifiers for overcast

conditions. The model was calibrated for the location of Stuttgart that we assume to be similar

to our location (Bern) in Switzerland. The global horizontal irradiance (GHI), the diffuse

horizontal irradiance (DHI), the dew point temperature and the mean of surface pressure

for one year used as input are taken from a Meteoswiss3 station located near Bern (CH). To

quantify the spectral effects, we generate a second set of hourly spectra generated by scaling

the AM1.5g spectrum such that its integral from 350 nm to 1100 nm is equivalent to the integral

of the SEDES2 spectrum.

For the cell model, we followed a similar approach to Repmann et al. [Repm 03], however

we used a 2 diode model with Jrec instead of the one-diode model as described in Sec. 3.6.

The two diode model was chosen because it was found to be more suitable for μc-Si:H cells

as it allows simulating the two current paths through the cell i -layer (bulk μc-Si:H and the

porous zone) of such a cell [Pyth 09b]. We fitted the model to a top limited (η= 10.5%) and

bottom limited (η= 10.2%) micromorph cell deposited in our laboratory. Note that top and

bottom limited refers to the subcell with the lowest current (that hence limits the total cell

current) under the AM1.5g spectrum. The EQE of the two cells are shown in Fig. 5.4. The

top limited cell has Jsc,top = 10.2mAcm−2/Jsc,bot = 13.6mAcm−2 and the bottom limited cell

Jsc,top = 12.8mAcm−2, Jsc,bot = 12.2mAcm−2, ”top” and ”bot” referring to the top and bottom

subcells.

1Y. Riesen, M. Boccard, C. Ballif and N. Wyrsch
2We kindly acknowledge D. R. Myers for giving us the code of SEDES2
3The services have been provided by MeteoSwiss, the Swiss Federal Office of Meteorology and Climatology
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5.3. Results and discussion

Figure 5.3 – Sketch of the simulation procedure for the study of spectral effects on micromorph
solar cells.

Figure 5.4 – EQE of the top and the bottom limited micromorph cell used for the simulation.

For each time step we calculated the photogenerated currents of the top Iph,top and bottom

(Iph,bot ) cells with the current spectrum convoluted with the measured EQE . Those current

values are then used in the diode model to calculate the output power (Pmpp) of those cells

and ultimately energy yield values.

5.3 Results and discussion

5.3.1 Modeled spectrum

To visualize how the different spectra impacts the energy yield, all SEDES2 spectra for one year

were normalized such that their total energy (integrated over all wavelength) are equivalent.

The relative contribution of each spectrum shape to the energy yield is then shown in a

histogram like plot in Fig. 5.5 left, with the color indicating the relative contribution of those

type of spectrum to the total energy yield. On the right of the same graph, the simulated Pmpp

is plotted as a function of the APE. The color scale of the data points indicates the relative

contribution to energy yield of all data points with equal and higher Pmpp.

79



Chapter 5. Spectral dependence of micromorph solar cells

����

����

���

���

���

���

�
�
	
�
�

�
��
�
�

��
��
�
��
�
�


�
�
	�
	�

��� ��� ��� ����
��

��������

�	��	��	��	��	��	�

������������
��
 !
��	�"�


#$
�	%

��

�

�

�

�

�
&
�
�
�
�

�

�

�
�
�
'�
�
�
�

�	���	(%�	(��	�%�	��

#& 
�)�

#$
�	%�
��*

���

��
*
��
*
+�
*
��
*
%�
*
��
*

,�
*

��
*

(�
*

(,	%

((
*
((	%
*

&
��
�
�
����

�

�
-
.
�
��

Figure 5.5 – (Left) Contribution to the yearly energy yield of the different spectrum shapes and
the AM1.5g spectrum. (Right) simulated Pmpp as a function of the APE and their contribution
to energy yield (from top to bottom). The height of the color scale bar is proportional to the
number of points responsible for this energy yield contribution.

Energy output SEDES2 Normalized AM1.5g relative differences
2011 [kWh/m2] [kWh/m2] [%]
Top limited 131.9 129.8 1.6
Bottom limited 120.0 120.0 0

Table 5.1 – Energy output simulation (temperature and SWE effects are not taken into account)
results for varying spectra and normalized AM1.5g spectrum.

At the simulated location (Bern, Switzerland), 88 % of the total energy yield is produced when

the spectrum is bluer (higher APE ) than the AM1.5g spectrum. This happens in summer time

in the central part of the day. 99 % of the contribution to energy yield is due to spectra with

APE values between 1.78 eV and 1.86 eV (APE(AM1.5g)= 1.81eV). To summarize, the spectra

that contributes most to energy yield are relatively similar to the AM1.5g spectrum but slightly

bluer.

5.3.2 Energy output

The results of the energy output modeling for both, the top and bottom limited cells are

presented in Tab. 5.1. The top limited cell has a 1.6 % higher energy energy output using

the simulated SEDES2 spectrum (reproducing real spectra) than using a normalized AM1.5g

spectrum. This value corresponds to literature values [Grun 09, Hass 07]. The main reason

behind this higher value, is the bluer spectrum shifting the cell to less top limited current state
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5.4. Conclusion

or even to a bottom limited state. Therefore increasing its efficiency (at least when the cell is

not too strongly bottom limited). In Fig. 5.6, we see clearly that in summer when the spectrum

is bluer due to lower AM, the top limited cell performs better than under an AM1.5g spectrum.

For the bottom limited cell, we would expect a lower energy output with the simulated SEDES2

spectrum because the cell is even more limited for bluer spectra, however energy output

values are about equal. This is mainly due to the low light performance of this cell. In fact,

when lowering the irradiance the expected efficiency gain due to a redder spectrum is often

counterbalanced by efficiency losses due to lower illumination. The low performances at

low illumination is due to high shunt currents in the μc-Si:H subcell of our test device. For

bottom limited cell without high shunt current the energy output calculated with a normalized

AM1.5g spectrum should be higher.
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Figure 5.6 – Monthly energy output of top and bottom limited micromorph cells simulated
with variable SEDES2 and normalized AM1.5g spectra.

5.4 Conclusion

In order to evaluate the spectral effects on the energy yield calculation of micromorph solar

cells we used a 2 diode model with recombination term to simulate the energy output of a top

and bottom limited cell. The energy yield was simulated with varying spectrum (simulated

using SEDES2 software) and a normalized AM1.5g spectrum. In the first case, more than

88 % of the yearly energy was produced under an irradiation spectrum that is bluer than

AM1.5g. Hence, the top limited cell has an energy output that is 1.6 % higher with a varying

spectrum than with a normalized AM1.5g. This value is in the range of the spectral effects

found in literature. Regarding cell design, this results shows that after taking in account the

degradation of the top cell, the micromorph cell should be current matched for a spectrum

slightly bluer than the AM1.5g to maximize its energy output. However for the bottom limited

cells, we did not observe a difference in energy output between the varying and constant

spectra. Lower performances at lower illumination that counterbalance the spectral effects for

our cells explains this behavior. This is an interesting case that can happen if there is a low

quality bottom cell. However a cell with a better low illumination behavior would give other

results.
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Chapter 5. Spectral dependence of micromorph solar cells

It has to be noted that the spectra used are simulated, hence inducing some errors. SEDES2 is

known to have non-negligible errors in winter [Myer 09]. Ideally, a measured spectrum should

be used to calculate the photogenerated currents and evaluate energy yield values.

In this chapter we did not take into account the influences of temperature and metastability

(SWE) and we only concentrate on the spectral effects. However, the temperature (see Sec. 4.4)

and the SWE influences the current matching conditions of multi-junction solar cells.

Same methodology could be applied to other monolithic multi-junction cells technologies as

perovskites-silicon or CIGS tandem solar cells [Lope 14, Todo 15, Mail 15].
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6 Annealing and degradation of amor-
phous silicon solar cells

Summary

Due to the metastable character of the material (as observed in the Staebler-Wronski effect), solar cell

performances of a-Si:H show degradation or recovery effects following changes in irradiance and/or

temperature conditions. The relative variation of the cell’s performances (such as Voc, F F and Pmpp)

extracted from I(V) curve measurements before and after light-soaking depends on the cell temperature

and sun simulator irradiance during those measurements. For our cells, the relative variation is more

negative (meaning higher degradation) for the Voc but more positive (lower degradation) for the F F , if

the temperature is increased during I(V) measurements. These two effects compensate each other to

result in a relative variation of the Pmpp that is roughly stable with respect to the I(V) measurements

temperature and irradiance.

Our indoor light-soaking experiments (for a 20 hours duration) showed that the degradation of the

cells performances increases when lowering temperature and increasing irradiance. However for

light-soaking at low irradiances (330 Wm−2) the relative degradation as a function of temperature is

constant and we observed that the higher the temperature the lower the irradiance dependence of the

degradation is. At 80 ◦C, the relative degradation no more depends on irradiance. Moreover annealing

experiments showed clearly the presence of different defect states.

Outdoor monitoring results of single a-Si:H, micromorph and a-Si:H/a-Si:H tandem cells and modules

showed an initial degradation followed by a seasonal variation of the Pmpp of more than 4 %, 6 % and

8 % for the a-Si:H/a-Si:H module, the micromorph module and single a-Si:H cells respectively.

Finally, we showed that it is challenging to describe the diode performance evolution (for the purpose

of energy yield determination) using a one-diode model comprising a recombination current term

using defect density dependent fitting parameters. Indeed the model require not less than four fitting

parameters which are all affected by the Staebler-Wronski effect and their relationship with defect

density is not trivial.
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Chapter 6. Annealing and degradation of amorphous silicon solar cells

6.1 Introduction

In 1977, D.L. Stabler and C.R. Wronski discovered that the conductivity of a-Si:H layers de-

creases upon light-soaking and that this change is reversible by heating (annealing) [Stae 77].

This light induced degradation (LID), also called the Stabler-Wronski effect (SWE), affects

the performance of a-Si:H solar cells. This material is hence metastable as its performance

depends on previous irradiation and temperature history. This effect must be accounted when

calculating the energy yield of a-Si:H based solar modules. We begin this introductory section

by a literature review of the SWE effect both at the microscopic and module levels and then

investigate its impact on energy yield.

6.1.1 Material level metastability

During light-soaking the defect density of a-Si:H increases and during thermal annealing

this defect density decreases. The microscopic origin of the a-Si:H metastability is still de-

bated in literature. Early on, it was deduced that hydrogen plays an important role in light

induced degradation and annealing of a-Si:H (see e.g. [Stut 85, Powe 02, Mori 05]). From

1985, Stutzmann’s breaking of weak Si-Si bonds model [Stut 85] was widely accepted until

Branz proposed the "H-collision model" in 1999 [Bran 99]. Overviews of phenomenologi-

cal and microscopic models are given in [Frit 01, Shim 04, Stra 10]. It is now thought that

the nano-structure like nano-voids or di-vacancies play an important role in the metastabil-

ity of a-Si:H [Frit 10, Stra 11, Smet 10]. The different parameters that influence degradation

and annealing are: light intensity, illumination conditions (constant or pulsed illumination

[Frit 01]), temperature of the sample, electric field in the i -layer and the history of the sample

[Yang 93, Cuet 99, Roed 00]. The comparison between annealing/degradation in p-i -n solar

cells and Schottky barrier made by Wronski et al. [Wron 02] indicates that the overall behavior

is determined by the bulk rather than interface effects. In most studies, the density of defects

or cell performances stabilizes after some time. Park et al. [Park 89] observed that this satura-

tion depends on light intensity and is not dependent on the sample temperature up to 70 ◦C

however results of other contributors did not lead to the same results.

Different models were developed to assess the evolution of defect density with LID and

annealing:

• Redfield and Bube [Bube 89] introduced an empirical stretched exponential rate equa-

tion with terms for light induced creation and annealing, as well as thermal creation

and annealing:

d N

d t
= (

t

P
)−α(GRB −DN ) (6.1)

N is the defect density, t the time, GRB , D and α are constants. Their equation describes

that defect generation and annealing are controlled by a dispersive process such as
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6.1. Introduction

hydrogen diffusion. However, for some other studies, this model was not able to correctly

describe their experimental results [Yang 93, Abra 00].

• For his model Branz [Bran 99] described annealing and degradation with equations of

the density of mobile H atoms. According to Shimizu et al. the starting assumption

that the excitation rate of a mobile H is proportional to the irradiance G and the defect

density N is not correct [Shim 04].

• Stutzmann et al. [Stut 85, Stut 86], described the time evolution of the defect density

based on physical models:

d N

d t
= ce0.04eV/kB T · (G/N )2 −eEa /kB T (N −N (0)) (6.2)

where N is the defect density, c a constant, G a parameter describing the irradiance, Ea

the activation energy for annealing of the defects and N (0) the starting defect density.

The first term of the equation describes light induced defect creation (LID) and the

second defect annealing. The authors demonstrated that there is a distribution N (Ea)

of activation energies.

• The model of Hata et al. [Hata 92] is based on the work of Stutzmann et al.. It assumes a

Gaussian distribution of potential defect site (also called defect-pool) and annealing

energies. The number of potential defect site as a function of the annealing energy

(Eann) is expressed by:

P (Eann) = Nsat exp[−(Eann −E0)2/2W 2]/(2πW 2)1/2 (6.3)

Where Nsat is the saturated defect density, Eann the activation energy for defect anneal-

ing, and E0 and W are the center and the width of the annealing energy distribution. The

envelope of this distribution constitutes the defect pool. Later, Caputo et al. [Capu 94]

incorporated a light induced annealing effect by adding the ΔEann term. The change in

defect density in time t is then given by:

d N (Eann)

d t
=Csw np[P (Eann)−N (Eann)]/Nmax −N (Eann)/τ(Eann −ΔEann) (6.4)

With Csw the Stabler-Wronski coefficient [Stut 85], n and p the free carrier densities of

electrons and holes and Eann −ΔEann the reduced thermal annealing energy. ΔEann

depends on light intensity and is correlated with the quasi-Fermi level. The thermal

annealing term is given by:

τ(Eann) = ν−1 exp[(Eann)/kT ] (6.5)

with ν the attempt to escape energy. For this model the whole degradation/annealing

history has to be taken into account.

• The experimental observation of:
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Chapter 6. Annealing and degradation of amorphous silicon solar cells

– Two different regimes during LID.

– Degradation kinetics that depends on layers light-soaking history.

– No unique relation between defect densities and the mobility-lifetime product

(μτ).

led to the suggestion of a two defect state model [Yang 93, Albe 05, Frit 01] based on

the assumption that a-Si:H based materials have two type of metastable defects state

with different annealing kinetics (i.e. fast defect states that can be annealed at typical

module operating temperatures and slow defect state that do not recover measurably

when annealing temperatures are limited to values below 70 ◦C) [Myon 06, Roed 00]. In

this case the total defect density N is given by N = N1 +N2. The system of equation is:

d Ni

d t
=Gi (NT −N1 −N2)− Ai Ni (i = 1,2) (6.6)

where Gi and Ai are the constant defect generation and annealing coefficients of the

i-th component. NT is the total number of states which can be converted into defects

[Yang 93]. This model implies that the degradation annealing history of the cell has to

be taken into account. Reasonable fits of data experiments could be obtained [Yang 93].

This two defect state model is a somehow a simplification of Hata’s model assuming

only two annealing state and not a continuous distribution.

More recently, Melskens et al. proposed a nanoscopic model for the creation of light induced

defects in a-Si:H [Mels 15] especially including the influence of several vacancies and nano-

voids [Smet 10]. Their experimental results also support the hypothesis that at least two types

of defect are involved.

6.1.2 Module level metastability

After an initial degradation phase, thin film silicon modules efficiency exhibit seasonal fluctu-

ations due to degradation and annealing effects. Literature reports amplitude fluctuations be-

tween 5%-10% depending on the sources [Apic 08, Mont 10, Skoc 11, Polv 11, Fann 11, Virt 12,

Pier 15]. In winter module efficiency degrades according to LID and in summer, higher efficien-

cies are reached because of the annealing of the material due to higher operating temperatures.

Those metastability effects are more pronounced for a-Si:H than multi-junction modules

(between 2%-5% less [Skoc 11, Apic 08, Niko 10]). Skoczeck et al. concluded that for temperate

climates, performance gains due to higher operating temperatures of fully-integrated roof

systems are higher than losses due to negative temperature coefficients of Pmpp [Skoc 11]. For

very hot climates, conversion losses due to negative temperature coefficients start to dominate

over the positive effect of thermal annealing.

Several degradation and annealing models for energy yield prediction were found in literature

and these will be reviewed in the following sections:
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6.1. Introduction

Light-soaking and thermal annealing coefficient models

Nikolaeva-Dimitrova et al. [Niko 08] light soaked modules at different intensities G (but same

temperature of 30 ◦C) until stabilization of the efficiency was obtained. For all intensities they

found a similar stabilized efficiency. From those measurements, they defined a light-soaking

(ls) coefficient (λ) which is the change in module efficiency per unit time at a given irradiance

level1 (G). They found a linear dependence for λ(G). With a similar approach, the thermal

annealing (ta) coefficient (τ) is defined as the change in efficiency per unit time at a given

temperature. It is extracted from controlled thermal annealing of the modules at different

temperatures in the dark. They found an exponential growth behavior for τ(T ). Then the daily

net effect of the change in efficiency (Δη) is expressed as:

Δηdaily =
∑

i
(λi (G)+τi (Tmod ))Δt (6.7)

Where Δt is the time interval between two measurement points.

Skoczek et al. [Skoc 11, Virt 15], presented a similar model which include the stabilized state.

The daily Staebler-Wronski state of the module SW E can be described as:

dTot =Ct a
∑

i ,(Tmod ,i−Tmi n,i )>0
(Tmod ,i −Tmi n,i ) ·ΔT +Cl s

∑
i

GiΔT (6.8)

d =
⎧⎨
⎩

SW Emax −SW En , if dTot > 0

SW En −SW Emi n , if dTot < 0
(6.9)

SW En+1 =SW En +dTot ·d , (6.10)

with Ct a , Cl s ta and ls coefficient, SW Emax /SW Emi n the maximum and the minimum state

of the module and Tmi n the minimum temperature triggering an annealing effect (typically

between 30 ◦C and 40 ◦C). Those parameters are determined from controlled indoor measure-

ments.

Polynomial or sinusoidal fit model

Later, the same authors of Equ. 6.7 [Niko 10] developed a simple model based on a sinusoidal

function. The amplitude and phase of this function are determined by controlled indoor ls

and ta measurements. Fanni et al. [Fann 11] used 4th-grade polynomial fit for one year that

interpolates indoor power measurements.

Dose model

Another approach based on the combination of the rate equation of Stutzmann Equ. 6.2 and

a dose model was proposed by Zhu et al. [Zhu 15]. This model links the defect density with

1the slope is taken before stabilization
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Chapter 6. Annealing and degradation of amorphous silicon solar cells

Pmpp degradation using the semi-empirical relation from [Smit 85]:

ΔP

P0
= A log(1+ N

N0
) (6.11)

where ΔP the degradation in Pmpp, P0 the initial device Pmpp, N0 the initial defect density and

A a constant. If the LID dominates, this degradation is expressed as:

ΔP

P0
∝ dose

(
N =G2/3eEa1/kB T

)
(6.12)

with Ea1 an activation energy.

6.1.3 Motivation and objectives

This literature review showed that the effect of a-Si:H metastability on module performance

is generally modeled using phenomenological models (see Sec. 6.1.2) which are able to

predict energy yield for a given module (when it performance evolution upon irradiation and

temperature change has been fully characterized). The link between material properties and

performance metastability is not trivial. There are several models describing the evolution of

the defect density N depending on light-soaking and thermal annealing (see Subsec. 6.1.1).

An energy yield model of the cell or module encompassing those models would provide more

physical insight and enable an extrapolation to other cell design (e.g. thicker i -layer). However,

it is not straightforward to link defect density to solar cells performance e.g. the Pmpp.

This link can be done using semi-conductor modeling tools such as ASA (4.2.1, p. 41) [Goer 15].

However many simulation parameters have to be determined, a process prone to errors.

This method is also relatively complicated and time consuming. Another way is to use semi-

empirical relations such as Equ. 6.11, allowing the use of defect density models, e.g. the dose

model to calculate energy yield [Zhu 15].

In our approach we want to use the one-diode model with a recombination term (Jrec) in-

troduced in Sec. 3.3 (Eq. (3.4)), as it describes satisfactorily the solar cells performance as

a function of operating conditions. The advantage of this approach is that, despite the fact

that it is semi-empirical (several assumptions are not correct for a-Si:H cells) the parameter

employed have a physical meaning. For example, (μτ)e f f can be linked to the defect den-

sity. Hence the different models for N evolution with light-soaking and thermal annealing

could directly be applied. This model was used to fit I(V) curves and assess the degrada-

tion state of a-Si:H modules through the analysis of the evolution of the diode parameters

[Mert 98a, Vosw 13] but not to determine energy yield.

In order to develop our model we had to get data on the evolution of cell and module perfor-

mance upon light-soaking and annealing experiment. We therefore started by measuring the

effect of different light-soaking and annealing conditions on the cell performance through

several indoor measurements. The results of I(V) measurements before and after light-soaking
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and measured in-situ are shown in Sec. 6.2.

In Sec. 6.3, degradation and annealing behavior of outdoor monitored modules are presented.

The results of lab-size (0.5X0.5 cm) single a-Si:H solar cells, micromorph minimodules (20X30

cm), full size commercial a-Si:H/a-Si:H and full size micromorph modules are presented.

Those results should allow validating the model under real conditions.

Finally in Sec. 6.4 we describe the model that we developed and evaluate its performances

and limits.

6.2 Indoor light-soaking and annealing

6.2.1 Experimental details

Experiments were performed on 0.25 cm2 thin (180-nm-i -layer thickness) high band gap

a-Si:H solar cells if not stated differently. These solar cells were light-soaked using a fully-

LED-based solar simulator [Stuc 14a](see Sec. 2.3), if not stated otherwise. Light-soaking

and annealing were carried out at constant irradiance values of about 300 Wm−2, 600 Wm−2,

1000 Wm−2 and 2500 Wm−2 and constant temperatures values of about 20 ◦C, 50 ◦C and 80 ◦C.

Most cells were light-soaked and/or annealed during 20 h time steps. We introduce the

following notation to describe the light-soaking/annealing conditions of one of these steps:

T[temperature]S[irradiance in sun, 1 sun= 1000Wm−2]h[duration]. No indication of the time

duration will be indicated for the defaults time step of 20 hours (e.g. a light-soaking step of 20

hours at 600 Wm−2 and at 50 ◦C is labeled T50S0.3). For each conditions 2-4 cells deposited on

the same substrate are measured. Before and after light-soaking or annealing the I(V) curves

of the cells were measured at STC condition using the Wacom solar simulator. Some cells were

also measured at different temperatures and irradiation with the cell tester. For annealing in

the dark, the cells were kept at constant temperature and I(V) curve were recorded during a

light flash of 5 s every minutes.

We here define the relative variation RVpar of an I(V) parameter (par ) as:

RVpar = par (tafter ls/ann)−par (tbefore ls/ann)

[par (tafter ls/ann)+par (tbefore ls/ann)] · 1
2

(6.13)

A negative value indicates degradation and a positive value recovery of the performances.

6.2.2 Results

Dependence of the relative degradation on pre-post I(V) measurements

In this section, we investigate the dependence of the RV of I(V) measurements as a function

of temperature and irradiance intensity upon light-soaking for two a-Si:H solar cells with

different i -layer. Both cell were light-soaked at same conditions T50S3. Figure 6.1 shows the
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Chapter 6. Annealing and degradation of amorphous silicon solar cells

relative degradation for 200- and 300-nm-i -layer thickness a-Si:H cells of the I(V) parameters

measured for three different irradiation intensities as a function of temperature.
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Figure 6.1 – Relative variation of the Pmpp, the Voc and the F F values measured as a function
of irradiance and temperature following a T50S3 light-soaking. The square corresponds to a
200-nm-i -layer thick cells and the bullet to 300-nm-i -layer thick cells (from i -thick. series Sec.
4.2). The F F values measured as a function of the temperature in the initial (full symbols) and
degraded (empty symbols) state (lower right figure) are also shown.

The relative variation of the Voc (RVVoc) decreases with temperature (e.g. from −3 % at 15 ◦C to

−6.5 % at 70 ◦C for the thicker cell). This behavior is a direct consequence of the lower T CVoc

due to a lower Voc in the degraded state (see Sec. 4.2.2, p. 43). Reducing the irradiance also

decreases the RVVoc, and this effect increases with increasing temperature, in accordance with

the reduction of TCVocwith decreasing irradiance (see Sec. 4.2).

The relative variation of the F F (RVFF), increases generally with temperature (e.g. from −10.5 %

at 15 ◦C to −8 % at 70 ◦C for the thicker cell). Again, this behavior is a consequence of the

differences (e.g. different TFFmax) between F F (T ) curve before and after light soaking [Fig. 6.1

(bottom, right)]. The RVFF seems to increases exponentially when lowering the irradiance

(about 3.5 % absolute gain from 1000 Wm−2/1S to 100 Wm−2/0.1S).

The relative degradation of the Jsc (RVJsc) is relatively constant with temperature and irradia-

tion for the 200-nm-cell. For the thicker cell (300-nm) the RVJsc values increase by about 1 %

from 15 ◦C to 70 ◦C (not showed).
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6.2. Indoor light-soaking and annealing

The relative degradation of the Pmpp (RVPmpp) is also approximately constant with measure-

ment temperature and irradiance. Indeed the RVFF difference with temperature and irradiance

is balanced by the changes in RVVoc.

Light-soaking at different temperatures and light irradiance

Figure 6.2 shows the time evolution of the Voc, F F and Pmpp measured in-situ during light-

soaking at two different conditions: T18S1h500 and T50S0.3h500 of thin high bandgap a-Si:H

cells.
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Figure 6.2 – Time evolution of the Voc, F F and Pmpp for two different light-soaking conditions
during 500h (T18S1h500 in red and T50S0.3h500 in blue).

The discontinuities seen for the Voc are resulting from small irradiance intensity and tempera-

ture variations during the experiments. The Pmpp values are adjusted according to the first

irradiance values, the latter being continuously measured with a photodiode during light-

soaking (to correct irradiance variations). Note, that the in-situ I(V) measurements of the two

different curves are taken at different temperature and irradiance conditions (depending on

the light-soaking condition). The Voc is higher for the T18S1h500 curve due to lower tempera-

ture and higher irradiation. Similar observation are made for the other I(V) parameters. For

all three I(V) parameters shown in Fig. 6.2, a smaller than logarithmic decrease occurs until

about 1 hours for T18S1h500 and 10 hours for T50S0.3h500 of light-soaking. After this initial

period the parameters decrease logarithmically. Between the initial state and the degraded

state at 500 h, the Pmpp begins to saturate. After 500 h, the Pmpp is reduced by RVPmpp =−20%

for (T18S1h500) and by RVPmpp =−11% for (T50S0.3h500).

In the following part, the cells were light-soaked under different conditions to study the

dependence of the I(V) parameters on temperature and irradiance during light-soaking. For

practical reasons, most of the cells were light-soaked during 20 h from their initial as deposited

state. Figure 6.3 shows the time evolution of the F F and the relative to initial Pmpp values

under different light-soaking conditions as measured in-situ during light-soaking.

From the time evolution of the F F and the Pmpp, we see that the higher the temperature and
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Figure 6.3 – Time evolution of the F F and the relative Pmpp for different light-soaking condi-
tions during 20 h (from the initial state).

the higher the irradiance, the quicker the evolution becomes logarithmic. The different RV

values as a function of light-soaking temperature are shown in Fig. 6.4 (left). We define the log

slope parameter as the slope given by a linear fit of the time evolution in log scale of an I(V)

parameter from 2 hours to the end of the light-soaking process. The log slope allows getting

rid of the I(V) measurement scattering (especially for the current) and to directly have an

indicator that can be used in a SWE model. This parameter is shown in Fig. 6.4 (right) for the

different light-soaking condition.
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Figure 6.4 – (Left) RV (extracted from I(V) measurement at STC condition before and after
degradation) and (right) log slope of in-situ measurement of the different I(V) parameters
depending on light-soaking temperature and irradiance. Each marker represents one cell
hence there are 1 to 4 cells per conditions. The lines are guide for the eyes following same
irradiance conditions.
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Let us discuss the result for each I(V) parameter separately.:

Within the studied degradation condition window, the RVVoc varies from −4 % (T20S1h500)

through 2.5 % (T20S1) to 0 % (for all low irradiation conditions S0.3 however as seen for the log

slope there is still a small degradation). At 20 ◦C, higher irradiances increases the degradation

which hence decreases RVVoc. However this RVVoc decrease seems to saturate after a light

intensity of 0.6S. However, at 50 ◦C there is almost no more difference in RVVoc between the

different intensities. Even the cells light-soaked during under 2.5S irradiance have similar

RVVoc as for the other conditions. Furthermore, the statistical deviation of the log slope of the

Voc measurements appears significant making it difficult to extract some trends. At 80 ◦C, only

a small degradation (RVVoc =−1%) of the RVVoc and the log slope is observed.

RVJsc values exhibit a lot of scattering and do not really allow extracting some trends. This noise

is thought to be due to the spatial inhomogeneity of light distribution of our sun simulator

which is on the order of RVJsc. However in-situ measurements normalized using the irradiance

values recorded by the diode demonstrates clearly that those curve are similar to the F F

degradation (not shown). Hence, the log slope of the Jsc gives a better insight. The behavior is

similar as for Voc where the degradation increases with an increase in irradiance at 20 ◦C while

the value remains stable at higher temperatures. The exception is the log slope of the T50S2.5

cells, which shows a lower RVJsc.

The RVFF values for 0.3S are between 3 % and 4 %, for the three different temperatures. The

highest degradation of the F F is encountered for the T18S1h500 cells with a RVFF of −12 %.

In general the RVFF are 2-3 times higher than the RVVoc. The general trends of the RVFF are

similar to the RVVoc. However, the light-soaking duration has a higher effect on RVFF than for

the RVVoc (e.g. the T50S0.3h500 cells degrades much more than for example the T50S1 cells).

Interestingly, the log slope of the F F for all degradation conditions higher than 0.3S increases

linearly with temperature and do not depend on the irradiance anymore.

Within the tested degradation conditions, we measured for the RVPmpp a minimum degrada-

tion of −4 % at 0.3S and for all temperatures. The RVPmpp of the T80S0.3 is certainly underesti-

mated due to the too low RVJsc induced by the errors during ex-situ I(V) measurements. The

lowest RVPmpp value is found for T18S1h500 with a value of −20 % and the lowest RVPmpp for

20 h of light-soaking is measured for T50S2.5, where RVPmpp =−16%. To summarize:

• At 20 ◦C the RVPmpp values increase with irradiance intensity and time.

• Going to higher temperatures those values for irradiance higher than S0.3 decrease.

• At 80 ◦C, RVPmpp doesn’t evolve anymore as a function of irradiance.

Hence the higher the temperature the lower the irradiance dependence on RVPmpp and at low

irradiance (S0.3) the RVPmpp do not depend much on temperature.
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Light-soaking kinetics results with varying a-Si:H cells material parameters or irradiance

spectrum can be found in Stückelberger et al. [Stuc 13] and Melskens et al. [Mels 14].

Annealing after light-soaking

In this experiment the cells are first light-soaked (T18S1h500) and then annealed (under the

same illumination level, T80S0.3h118) in the same light-soaking setup. Figure 6.5, shows

the F F and the Pmpp values measured in-situ (during light-soaking, small dots) and the I(V)

measurement performed with the Wacom simulator at STC (large dots) before and after

light-soaking, as well as before, after 20 hours and after 118 hours of annealing.
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Figure 6.5 – F F and Pmpp as function of time for a T18S1h500 light-soaking followed by
T80S0.3h118 annealing step. The large and small dots represent I(V) measurements with the
Wacom at STC and in-situ measurements, respectively.

During light-soaking, we observed a RVFF =−12% as seen in Fig. 6.4. By increasing the tem-

perature and decreasing the irradiance of the light-soaking, the F F increases logarithmically

and after about 20 hours it stabilizes, gaining 4.9 % relative variation (RVFF) from degraded

state. The same behavior is observed for the Pmpp: after losing RVPmpp=−20 % during light-

soaking, 8.1 % are recovered during annealing. Note that between the I(V) measurements at

STC and the beginning of the degradation, the cell was measured at different irradiance and

temperature in the cell tester. During those measurements the cells degraded slightly and this

could explain the discrepancy between the STC measurement with the Wacom and the first

points in the light-soaking system.

In the next experiment, the cells are first light-soaked (T50S1h20) at the same conditions

and then annealed at different temperatures and irradiances in the light-soaking setup (for

illuminated annealing) or in the cell tester (for dark annealing). The in-situ measurements are

shown in Fig. 6.6.

As expected the Voc, F F and Pmpp values increase more at 80 ◦C (red curves) than at 50 ◦C

(green curves). Interestingly, the performance of the cells subjected to an irradiance higher or

equal to S0.6, decay again after an initial annealing. The decay is more pronounced at higher

irradiances. This behavior reveal that there are more than one annealing mechanism/chan-
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Figure 6.6 – Relative Voc, relative Pmpp and F F variation with time during annealing at different
temperatures and irradiances after a degradation step of T50S1h20 (in-situ measurements
under different conditions).

nel as discussed in the literature review 6.1.1 (e.g. fast/slow defects [Roed 00, Myon 06] or

activation energy distribution [Stut 86]).

6.3 Outdoor results

In the last section, we characterized the SWE under controlled indoor conditions. Here, we

extract the SWE effect from outdoor measurements with varying temperature and irradiation

conditions. If a model can be set-up, those data will allow validating the model under real

outdoor conditions.

Note that full size modules are kept at the Pmpp when not undergoing an I(V) measurement.

Alternatively, the other cells and modules are kept at Voc when not measured. This is known

to induce slightly higher degradation (due to higher recombination than at Pmpp) and also

higher cell temperature (meaningful for outdoor monitored cells).

6.3.1 Small amorphous silicon cell monitoring

Experimental details

A 0.5 x 0.5 cm2 a-Si:H cell deposited in our laboratory encapsulated with glue and contacted

with ultrasonic soldering was placed in a white box with a 5-mm-thick-glass window. The cell

was already slightly light soaked before the outdoor experiment from another experiment. The
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temperature of the cell was recorded using an RTD temperature sensor glued on the cell. From

mid-September 2014 to mid-September 2015, an I(V) curve and the temperature is recorded

every minute. The rest of the time, the cell was left in open-circuit state. Note that the cell

was not masked, and light-trapping of the glasses could therefore increase the measured Jsc

values.

In order to evaluate the degradation and annealing of the cell, the data points that do not

respect the following conditions were filtered out:

• The measured Jsc is in the range of 3.3 mA to 3.4 mA, which corresponds to an irradiance

of 700 W/m2 to 780 W/m2 measured with a pyranometer placed just beside the cell with

the same orientation2. This value was chosen because it is also reached in winter

• The relative variation of the global horizontal irradiance (GHI) measured 10 s and 5 s

before/after the I(V) measurement is under 2 %.

• The (calculated) angle of incidence (AOI) is between 35° to 45° to reduce the angular

influences on performances.

Moreover, the Voc, F F and the Pmpp values were temperature corrected to a temperature

of 40 ◦C corresponding to the mean temperature of the filtered data points. The T C were

determined by fitting filtered Voc values as a function of temperature. In fact, the TCVoc

depends on the degradation states of the cell (as discussed in Sec. 4.2.2) and follows a seasonal

variation. In our case it varies from −0.36 %/◦C in November 2014 to 0.39 %/◦C in March and

June and back to −0.37 %/◦C in August. Same procedure is applied to the Pmpp and F F , we

got a mean T CPmpp value of −0.28 %/◦C and a T CFF value of 0.1 %/◦C.

We also normalized the Pmpp according to the Jsc, to remove spectral effects. However doing so,

we removed the contribution of the annealing and degradation of the Jsc in the Pmpp variation

(hence underestimate it). The spectral changes seems to cause variations on the order of 8 %.

Results and dicussion

Figure 6.7 shows the mean temperature, the Daily GHI and the variation of the filtered and

normalized I(V) parameters.

From mid-September to the beginning of March, the Voc changes by about −12 % while the

F F and the Pmpp decrease by −5 % and −8 % respectively. Then all parameters stabilize or

recover. From end of March until mid-May no data could be recorded because of maintenance

and construction work on the roof where the monitoring station is located. In summer due

to higher temperatures the I(V) parameters increase notably until a maximum around mid-

July. The Voc value then recovers its initial value (which could be verified for several I(V)

2At least from mid-June to mid-September 2015.
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Figure 6.7 – Time evolution of the daily mean temperature (with daily maximum and minimum
in grey), daily GHI, the temperature corrected (to 40 ◦C) Voc, the temperature corrected F F
and the normalized Jsc and temperature corrected Pmpp from outdoor monitoring.

measurements at the identical cell temperatures). However we observe that the F F and the

Pmpp values do not recover completely (4 % decrease for both).

6.3.2 Micromorph minimodules

Experimental details

Two 30 x 20 cm2 encapsulated micromorph mini-modules from an industrial partner were

mounted. The first one (B01free) was mounted on December 17, 2012 and is free standing.

The second one (B02ins) was mounted on February 19, 2013 and was isolated with a 8-cm-

thick insulating material in order to obtain higher operating temperatures, to compare the

degradation/annealing behavior of the modules with different temperatures. Both modules

were placed next to each other and south oriented with a 30° tilt. Each minute an IV curve

and the temperature of each module were recorded. On December 12, 2013, both modules
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were dismounted due to the move of our laboratory to a new building. On July 14, 2014, both

modules were mounted on the new building with same tilt but installed with an azimuth of

175° due to mounting constraints. From end of February to mid-July 2015 the modules had to

be dismounted due to maintenance and construction work on our roof.

As before the data was filtered to isolate as much as possible the SWE keeping only values with

the following conditions:

• The measured Jsc has a value between 100 mA and 110 mA corresponding to irradiance

values of 690 Wm−2 and 760 Wm−2.

• The calculated angle of incidence is between 35° and 45°.

Beside the outdoor measurements both modules were also measured several times indoor

using a flat-bed hybrid sun simulator. The module were then measured under different spectra

in order to extract the I(V) parameters as a function of current mismatch between the top and

bottom cells (as showed in Sec. 4.4). As no EQE results of those modules were available, the

mismatch calculation is not precise, and is assumed to be the same for both modules. It is

hence more an indication of spectrum variation than reliable mismatch value.

Results and discussion

We here only discuss the F F as it was the only parameter that we could clearly extract from

outdoor measurement.

Figure 6.8 (left) shows the F F as a function of mismatch for the first (February 19, 2013) and the

last (October 16, 2013) indoor measurements. We see that the current matched point of the two

modules differs by about 1 mAcm−2, with the B02ins module being more top limited. Moreover,

we see the degradation mostly affects the modules when at top-limited conditions as expected

because it is mainly the top a-Si:H cell that degrades. Moreover in a first approximation, the

degradation effect has the same magnitude for all top limited mismatch current values. We

also see that the matched point (where the module is neither top nor bottom limited) moves

towards a redder spectrum. Figure 6.8 (right) shows the time evolution of the indoor measured

minimodules in top-limited condition. The B01free module exhibit a relatively stable F F until

end of June. In fall, the F F begins to degrade significantly to reach a total decrease of about

1.5 % compared to its first value measured indoor. The B02ins module (with higher operating

temperature) begins to gain almost 1 % of F F and then loses 1.5 % from the first measurement.

The higher operating temperature of the B02ins module and resulting higher defect annealing

could explain this increase. It has to be noted that the measurement scatterings are relatively

important and we estimate (from the observed scattering during measurements) it to be about

absolute 0.5 %. The high drop between June 20 and July 1, can be explained by the relative cold

period with an average of about 20 ◦C lower daily maximum module temperature compared

to the period before).
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Figure 6.8 – (Left) F F value as a function of mismatch for the first (darkest markers) and
last indoor measurements (brightest markers) for the B01free (black) and the B02ins (blue)
micromorph modules. (Right) Time evolution of the F F measured indoor in top-limited
condition.

The result of the outdoor monitoring are shown in Fig. 6.9. In summer, the maximum

instantaneous module temperature of the back isolated B02ins module can reach temperature

values that are more than 10 ◦C higher than for the free-standing B01free module. For B01free,

we see an initial degradation of about 2 % of F F . This seems also be the case for B02ins. After

this initial period, the B02ins module shows a slightly higher F F gain in summer, gain which

is lost again in winter. We also see the F F drop due to colder temperature at the end of June

as discussed before. However, the F F of the B02ins module seems to be more stable with the

exception of the measurements around mid-February 2015. The origin of this stable behavior

is not clear. Less degradation due to higher temperature and/or spectral effects compensating

degradation (remember that the matching between the two modules are different) could

explain those results. Moreover instantaneous operating temperature influences that were not

taken into account could also contribute to this observations.

6.3.3 Micromorph and amorphous tandem module

Experimental details

In this section we present the outdoor monitoring results of full size micromorph and a-

Si:H/a-Si:H tandem module (see Sec. 2.4). Similar to the outdoor monitored a-Si:H small cells,

the data points were filtered out as follows:

• The measured Jsc were filtered out for values corresponding to an irradiance of 720 W/m2

to 760 W/m2.

• The relative variations between the nearest GHI measured irradiance and the irradiance

measured 10 s before and after is smaller than 2 %.
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Figure 6.9 – Time evolution of outdoor measured module temperature (maximum, minimum
and mean) over 4 days, filtered F F and smoothed (binomial smoothing) filtered F F of the
B01free and B02ins micromorph minimodules. The vertical lines corresponds to the indoor
measurements dates showed in Fig. 6.8.

• The (calculated) angle of incidence (AOI) is between 37° to 43°.

The temperature dependence of the F F were small and difficult to extract for both module.

Hence no temperature correction could be applied to the F F . The Pmpp are normalized using

the actual Jsc over Jsc(@740 Wm−2) ratio and the temperature values corrected to 45 ◦C using

respectively a TCPmpp of 0.28 %/◦C and −0.27 %/◦C for the micromorph and the a-Si:H/a-Si:H

modules. Note that we again assume a TC independent of the degradation annealing state,

assumption which is not completely true.

The a-Si:H/a-Si:H module was measured indoor before installation (July 11, 2014) and on

May 6, 2015.

Results and discussion

We begin with the indoor I(V) measurements of the a-Si:H/a-Si:H module shown in Tab. 6.1.

In 10 month the module lost RVFF=−18 % and RVPmpp=−19 %.

Voc [V] F F [%] Pmpp [W] Isc [A]
11.07.2014 42.4 74 123 4.00
06.05.2015 39.8 62 102 4.22
RD −6.3 % −18 % −19 % −5.4 %

Table 6.1 – IV results of indoor measurements of the a-Si:H/a-Si:H module
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Figure 6.10 shows the time evolution of the filtered F F and Pmpp of the micromorph and

a-Si:H/a-Si:H modules.
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Figure 6.10 – Time evolution of the filtered F F and Pmpp measured with the monitoring station.
The Pmpp are normalized with the Jsc (@750 Wm−2) and temperature corrected (@ 45 ◦C).

For both module, we see the characteristic initial degradation which is particularly high for

the a-Si:H/a-Si:H module. Then from mid-March 2015, due to higher operating module

temperature, the F F and the Pmpp of the micromorph and a-Si:H/a-Si:H modules increase by

about 6 % and 4 %, respectively, until beginning of August. Then as expected, the performance

of both modules decreases again.

6.4 Diode modeling

In this section we describe our diode model using a defect density dependent one-diode

equation with Jrec for reproducing the degradation and annealing behavior of a-Si:H solar

cells. This model should allow for the determination of device energy yield including the SWE.

In a first step we developed a model describing the dependence on defect density (which

should represent degradation/annealing state) of different fitting parameters. In a second

step, we analyzed, from experimental data, the change of the fitting parameter (before adding

defect density dependence) before and after degradation. Finally we check the consistency of

the model with the experimental data (from Sec. 6.2). We also evaluate and discuss the limits

of this of model.

6.4.1 Description of the model

In Chapter 3, we showed that the one-diode equation with a recombination term Jrec is able

to reproduce the temperature and irradiance dependence of amorphous silicon solar cells.
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This diode equation is repeated here:

J (V ) = Jph − Jph
d 2

i

(μτ)e f f [Vbi − (V + JRs)]
− J0

[
e

(
q V +J ·Rs

nkT

)
−1

]
− V + J ·Rs

Rp
(6.14)

with J the current density, V the voltage, Jph the photogenerated current density, di the

thickness of the i -layer, (μτ)e f f the effective mobility lifetime product, Vbi the built-in voltage,

Rs the series resistance, Rp the shunt resistance, n the ideality factor, q the unity charge and kB

the Boltzmann constant. We expect that in particular (μτ)e f f , J0 and n will depend strongly

on the defect density Nr (or recombination center density).

The lifetime can be given by [Stre 82]:

τn,p = 1

νn,pσn,p Nr
(6.15)

with νn,p =
√

3kT /mp,n the thermal velocity (mp,n are the effective masses of electrons and

holes) and σ the capture cross section. We make the assumption that ν and σ do not change

with degradation and annealing. We then make the assumption that:

(μτ)e f f (Nr ) = μe f f

νe f f σe f f Nr
= Cμ

Nr
(6.16)

with μ,ν,σe f f effective values of the mobility, thermal velocity and capture cross section

respectively. In our model we decide to group those three parameters in a fitting parameter

Cmu .

For the defect density dependency of J0, we choose the same dependency as the J0,bulk Equ.

3.7 expression (Sec. 3.3). This was done for two reasons: (1) the main change in recombination

rates happens in the i -layer (in the bulk, the role of interfaces is less important) and (2) the

fitted ideality factors are nearer to 2 than 1 (an ideality factor of 2 is normally attributed to the

J0,bulk [Rech 97, Vosw 13]). We get:

J0
∼= J0,bulk = qdi ni

τ
= qdi niνe f f σe f f Nr =C J Nr (6.17)

where we use C j = qdi niνe f f σe f f as a fitting factor and Equ. 6.15.

We did not succeed to find any expression for the ideality factor as a function of Nr .

6.4.2 Before and after degradation fit

Before adding the Nr dependence, discussed before, to the fitting parameters, we fit the one-

diode model with a recombination term (Jrec) and uses the fitting procedure described in Sec.

3.5.2 to the data of a thin high-bandgap cell in both initial and degraded state (T23S1h500).

The fitted parameters are shown in Tab. 6.2.
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Parameter Initial T23S1h500
Jph 13.7 mAcm−2 13.6 mAcm−2

J0 at 25 ◦C 1.48×10−7 mAcm−2 3.94×10−6 mAcm−2

n 1.63 1.86
(μτ)e f f 3.29×10−13 m2/Vs 2.04×10−13 m2/Vs
Vbi 1.2 V 1.07 V
Rs 0.023Ωcm2 0.026Ωcm2

Rp 1970Ωcm2 1970Ωcm2

di 120 nm 120 nm
Eact 0.73 eV 0.73 eV

Table 6.2 – Diode parameters for the one-diode model with current loss term Jrec in initial and
degraded T23S1h500 state.

The J0 increases during light-soaking by more than one order of magnitude. The ideality

factor n increases by 0.23 and the (μτ)e f f product decreases by 47 %. Additionally, Vbi also

decreases significantly as it could be expected because of a lower electrical field in the i -layer

after light-soaking due to higher charged band tails.

6.4.3 Model validation

Combining Equ. 6.16 and Equ. 6.17 we get:

(μτ)e f f (t ) · J0,bulk =CμC j . (6.18)

According to our model this product should always be constant as it is independent of the

defect density. From Tab. 6.2, we directly see that this is not the case, as it increased 14 times

upon degradation. This dependence on defect density introduced in our diode model is too

simple to reproduce the effects of degradation on the diode I(V) characteristics:

• The assumption of a unique relation between (μτ)e f f and the defects density is probably

a simplification that do no more allows an acceptable description of this effect. Indeed,

Fritzsche et al. [Frit 01] pointed out that there is no unique relation between μτ and the

defect density.

• The (μτ)e f f product is not constant through the whole device.

• Moreover, the assumption that J0 is only affected by bulk recombination seems also not

to be adequate. A more complex model is required that also includes e.g. defect states

related to open volume deficiencies and charged state located away from midgap as

stated by Melskens et al. [Mels 14].

Moreover, many assumptions leading to the diode equation are not true for a-Si:H cells. It

should be considered as a phenomenological model (although temperature and irradiance de-
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pendence could be well reproduced with this model see Sec. 3) resulting in fitting parameters

with weaker link to real material parameters. This makes it difficult to relate them to defect

densities.

In addition, from Tab. 6.2 we learn that there are at least four fitting parameters that vary

with degradation (J0, n, (μτ)e f f and Vbi ) . In addition to the (too) simple assumptions for

the dependence of (μτ)e f f and J0 with Nr , we did not find an expression for n and Vbi as a

function of Nr . A supplementary step that could be done to model the SWE with the diode

equation, would be to measure the kinetics with light-soaking of the different fitting parame-

ters. We saw in Ch. 3 that to be able to uniquely determine the fitting parameter, we need I(V)

measurements at different irradiance values. In our indoor light-soaking experiments, we have

those data from the measurements before and after light-soaking. During light-soaking we

have the I(V) measurements for only one irradiance. However, we could design an experiment

with I(V) measurements at different irradiances during light-soaking. However, it would be a

phenomenological model with no or very weak link to material properties of the cell.

6.5 Conclusion

Our experimental indoor results, showed that the relative Voc and F F variations depend

significantly on the I(V) measurement temperature and irradiance taken before and after

light-soaking. Those variations could be linked with the temperature dependence of those

factors. The relative variation of the Pmpp is less dependent on measurement conditions as

the Voc and F F degradation variations compensate each others. However, it is probable that

this compensation is not valid for all a-Si:H cells.

Additionally, light-soaking of our cells at different temperatures and irradiances showed that

for the Voc, Jsc, F F and hence Pmpp, the degradation depends on temperature and irradiance.

During light-soaking, (1) the higher the temperature, the lower the degradation, and (2)

the higher the irradiance, the higher the degradation. Interestingly at higher light-soaking

temperatures (80 ◦C), the degradation dependence on irradiance vanishes. And for light-

soaking irradiance equivalent to 0.3 sun the degradation is constant for all temperatures.

Hence an annealing degradation model has to take into account temperature and irradiance

levels.

From in-situ I(V) measurements with a thermal annealing during light-soaking (constant

conditions), we saw that under certain circumstances, the cell first anneals but then degrades

after some hours. This confirms that several (or a distribution of) activation energies are

involved in the annealing of defects.

The analysis during 14 month of lab-sized single a-Si:H cells, micromorph minimodules, and

full sized a-Si:H/a-Si:H and micromorph commercial modules, all installed outdoor, showed

the expected initial degradation and then the seasonal variation of the performance. This

variation was of about 2 %-4 % for the F F of the different modules. For all types of modules
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the magnitude of the F F annealing and degradation were comparable. Measurement of the

multi-junction devices were problematic as spectral effects (which could not be taken into

account) affect the data. For single junction a-Si:H cell, spectrum effects were compensated

by a normalization procedure which resulted in the fact that the degradation/annealing of

the Jsc could not be observed. Installing a filtered c-Si reference cells or a spectrometer would

allow taking better into account those spectral effects and to enable a reliable analysis of the

Jsc variations.

We showed that a reasonable energy yield model based on a one-diode model with Jrec with

parameters depending on defect density is difficult to achieve. Indeed at least four diode

parameters (J0, n, (μτ)e f f and Vbi ) are affected by degradation/annealing as showed by fitting

experimental I(V) curves in a way that is not known. Moreover, we did not find how the

different fitting parameters can be expressed with a common defects density parameter and

the measured values were inconsistent with our model. To simulate the effect of SWE on

the performances of a-Si:H cells a more complex model is needed taking in account more

parameters as charged states located away from the band gap and no unique relation between

(μτ)e f f and defect densities. Hence complete empirical models are the best alternative for the

moment.
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7 Photovoltaic generation and the local
electricity grid

Summary

In a near future with the expected high PV penetration into the electricity grid, the midday PV produc-

tion peak could become detrimental for grid stability. In this chapter we investigate how local electric or

heat storage, different module orientations or demand-side management could help reducing injected

power in the low voltage grid (peak shaving) thus supporting its stability. The present analysis will

mainly focus on the role of households.

We developed a simple simulation tool able to model a PV system with local storage (flux model). With

this tool we could test different control algorithms or storage strategies for the battery analyzing a case

where the power can be fed to the grid without limit and cases where the power is capped. In this

latter case, the power exceeding the feed-in power is lost if it cannot be stored locally. In case of no

feed-in limit, an electricity pricing including a tax proportional to the daily maximum feed-in power

is the best scheme for an efficient peak shaving capability. When a feed-in limit is present storage

has to be optimized to minimize energy or financial losses. We tested two different algorithms that

optimizes the financial balances due to electrical grid exchange (buying or selling electricity): (a) the

first algorithm performs an optimization based on forecast data of the PV production and the load

and (b) the second one relies only on a rough clear sky production forecast. We show that algorithm

(b) performed almost as well as algorithm (a) when exact forecast are known and much better than

algorithm (a) when real forecasts are used. Aggregating several loads (several households on the same

low voltage grid) allows diminishing significantly the losses due to the feed-in limit. We also compared

battery storage and heat storage using boilers or heat-pumps combined with a hot water reservoir for

domestic hot water heating. Generally heat storage performs as well as battery storage in reducing

losses due to the presence of a feed-in limit. Moreover, if the power of the heat-pump can be varied (in

contrast to a heat-pump with only on/off state - as it is mostly the case) the losses due to peak shaving

can be reduced further.

Changing tilt and orientation of the modules allows mainly to reduce losses due to feed-in limits and to

reduce the winter/summer production ratio by more than a factor two. However, significantly more PV

modules should be installed to achieve the same yearly energy production.

Finally, we developed a statistical method allowing to estimate the usage of different electrical appli-

ances of a household from 15-minutes measured loads, generic time use data and some characteristics

of the households (such as number of persons and electrical appliances). Using this method we esti-
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mate that about 8 % of the total load could be shifted to the midday period easily and hence reduce

accordingly the PV production peak.

Finally, we combine device and system aspects to show that varying cell technology (e.g. with different

temperature response) has a limited but not negligible impact on system output.

7.1 Introduction

The new Swiss energy strategy 2050 (decided by the federal council [Mess 13]), implies the

shut down of all Swiss nuclear power plants. Consequently, by assuming the same electricity

consumption and exchange with other countries as in 2014, 37.9 % (26.4×109 kWh) of the

yearly Swiss electric production has to be replaced by other power sources.

For planning the future electricity supply of Switzerland, in a very simplified and schematic

way (i.e. neglecting power imports and exports), we need to minimize the cost and the envi-

ronmental impacts (Eco-imp.)1. The two following objective functions have to be optimized:

minCost = min
∑
PP

C APE XPP (I P )+OPE XPP (I P, x)+Gr i d(PP, I P, x) (7.1)

minEco-imp. = min
∑
PP

CO2(I P )+E I pp (7.2)

The cost can be approximated by the sum of the investment cost (including interest rate,

C APE XPP capital expenditure), the operating cost of the power plant (including fuel and

maintenance cost, OPE XPP , operating expenditure) and the grid cost. The different costs are

mainly a function of the power plant type (PP =hydraulic, thermal, photovoltaic, wind,... )

and the respective installed power (I P ). Moreover the operating cost also depends on the

power plant operation schedule (x) and their geographical distribution. For renewable power

sources, because no fuel is used, the operating cost are generally lower (only maintenance).

The environmental impact (Equ. 7.2) is reduced by mainly minimizing the CO2 emission

during fabrication (gray energy) and operation. Other ecological impacts (EI) such as toxic

or dangerous waste emissions during fabrication, operation and decommission have also to

be taken into account. As for any optimization problem there are specific constraints. Some

major ones are expressed as follows:

Production(t ) = Load(t )∀t (7.3)

Line power(t )i ≤ Max line poweri ∀t , i (7.4)

Trafo power(t ) j ≤ Max trafo power j ∀t , j (7.5)

Generated powerPP ≤ P (Irradiance or wind or water flow)PP = PV, wind, hydro, (7.6)

the total produced electricity has to be equal to the total load plus the grid losses at every time

1It should be stressed that the actual cost structure of electricity does not include externalities, such as the
social, environmental and health cost caused by pollution such as the emission in the atmosphere of pollutants
and CO2 (global warming, disease, ...)
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t (Equ. 7.3). The maximum power (active and reactive) limits for each transport line of the

grid and the transformers (trafo) have always to be respected for each item i , j (Equ. 7.4 and

Equ. 7.5). For photovoltaic, wind and hydro the power production is strongly influenced by

meteorological conditions such as irradiation, wind speed or rain and exhibit a high degree of

variability. Additionally a power reserve is necessary to compensate for forecast errors and

load variation. The principal decision variables are:

• The type of power plants (PP ), their installed power (I P ).

• The production schedule (including on/off and curtailments) for each power plant.

• Location and distribution of the power plants in the grid.

In order to fulfill Equ. 7.3, beside adapting the production (supply-side management), the

load can also be adapted. Acting on the load-side is called demand-side management (DSM).

Electricity storage is also another way to fulfill this constrain. In Switzerland, pumped hydro is

already used as a mean of storing energy.

7.1.1 PV integration in the Swiss grid

As discussed in the general introduction in chapter 1, PV power will certainly play a non-

negligible role in the future electricity mix. PV power is not controllable and can only be used

directly or curtailed. To have an approximate figure on the share of Swiss electricity demand

that PV could supply, we performed a simple simulation using the total Swiss electricity load

of 2014 [Swis 15], the weekly run-of-river power plant production [OFEN 14] and a simulated

PV production (using irradiance and temperature data from Meteoswiss station in Neuchâtel).

No other renewable sources are taken into account. We assumed that the Swiss electric grid is

one big copperplate (neglecting grid losses and constraints 7.4, 7.5). Hence we are focusing

solely on the constraint described in Equ. 7.3. As for PV, production by run-of-river power

plant production is also not controllable. Therefore the excess PV is defined as the amount of

production that is higher than the total Swiss load subtracted by the run-of-river power plant

production (red area in Fig. 7.1). The PV production is scaled such that the yearly generated

energy reaches the given percentage of the total yearly load.

Figure 7.1, shows the simulated PV production scaled such that it covers 20 % of the yearly

Swiss load, the measured run-of-river power plant production, the measured total electricity

load and the excess PV power for a week in May 2014. The peak load coincided temporally

with the PV production peak. However, there is still a load at night (around 5 GW to 6 GW).

Most of the excess PV power is produced around midday during week-ends (e.g. 17-18 May),

as the load is then lower, and can reach more than 2 GW. For comparison, the pumped hydro

storage power capacity in Switzerland for 2012 was 1.4 GW and should be 3.5 GW in 20162

2With the new or extension of Hongrin-Léman, Nant de Drance and Linthal

109



Chapter 7. Photovoltaic generation and the local electricity grid

Time 2014
May 13 May 14 May 15 May 16 May 17 May 18 May 19

Po
w

er
 [G

W
h]

0

2

4

6

8

10 Sat. Sun.Mon. Wedn.

Pot. load

Tot. load

PVRiver PP

Figure 7.1 – Blue: Simulated PV production wiht panels facing south and 30 % tilt scaled such
that it covers 20 % of the annual total Swiss load. Top of the gray area: Total Swiss electricity
load. Gray area: run-of-river power plant production. Yellow: Potential load that can absorb
the produced PV energy (Total load − river power plant production. Red: Excess PV energy.

[Avel 12]. In a more realistic simulation the PV production peak should be lower and larger

because of distributed orientation of the panels (in our simple simulation all PV panels are

south oriented with a 30° tilt and at a same location).

Figure Fig. 7.2 a), shows the simulated excess PV production relative to the total yearly PV

production as a function of the annual PV coverage of the load. Up to 10 % of yearly PV

coverage, the remaining load (not covered by run-of-the-river hydro plants) can absorb all PV

production. At 20 % coverage, 6 % of the total PV produced energy is exceeding the remaining

load. This excess energy could either be curtailed which implies a higher cost for PV electricity

(due to wasted energy) or either be stored. This excess energy has only to be stored daily

because there is enough load at night to adsorb this excess. A similar analysis performed for

the Zurich area can be found in Baumgartner et al. [Baum 10] or for the Swiss case in Remund

et al. [Remu 14].

Beside daily fluctuations there is also a seasonal variation of the PV production. Figure 7.2

b) shows the seasonal variation of the simulated PV production and the load. PV production

decreases in winter while the load increases. The PV production variability depends on tilt

and orientation distribution of the PV panels. Seasonal storage could be provided for example

by power-to-gas [Baum 13].
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Figure 7.2 – a) Simulated excess PV production as a function of PV coverage of the total Swiss
load. b) Monthly Swiss total load in gray and simulated PV production (solid line: for Neuchâtel
and dotted line for la Chaux-de-Fonds, south oriented and 30° tilt.) for 20 % PV coverage in
blue.

7.1.2 PV integration in the local grid

At local level, in the low voltage grid, high PV penetration may lead to a breach of the con-

straints Equ. 7.4 and Equ. 7.5. Over-voltage or excess power in low to medium voltage

transformer may occur [Denh 07, Buch 13b]. In the framework of the global optimization

problem presented in Equ. 7.1 and Equ. 7.2, this chapter focuses on how peak power of PV can

be lowered at households level to avoid detrimental effects on the low voltage grid stability,

allowing for a larger PV penetration into the grid.

The PV production peaks can be minimized (peak-shaving) by a) storing electricity in a bat-

tery [Muld 10, Riff 11, Dunn 11, Schm 10, Alam 13, Appe 12, Brau 09, Mazh 11], b) changing

module tilt and orientations or c) by shifting loads to high PV production periods (DSM)

[Buch 13a, Caam 09]. These three approaches will be discussed in this chapter. Smart inverter

acting on reactive power can also contribute to decrease over-voltage created by PV at the

end of distribution lines and thus help improve grid stability [Blet 10, Brau 10]. However, this

possible solution will not be treated in this work.

In the first approach a) grid-connected PV-installations with storage can either be locally

controlled or centrally remote controlled (e.g. by the utility). In the case of a local control

no communication infrastructure is needed and the owners of the system are in general

more involved financially. Incentives are either given by the electricity pricing adapted to

discourage system owners to feed-in at midday, or by a feed-in curtailment regulation limiting

the maximum feed-in power into the grid. Such limit may be defined, as in Germany (and

for the present work) by a given ratio of the maximum feed-in power (at the injection point

into the grid) to the PV-system nominal power and it easily allows reducing the peak power

at midday [Umla 12]. If the system cannot absorb enough power through storage or load
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with respect to the feed-in limit, the excess feed-in power has to be curtailed and is lost (PV-

loss). In section 7.2, we quantify the performance for peak-shaving of a household with a PV

installation and local storage by modeling various system sizes and storage strategies. For this

goal we developed a Matlab program able to simulate those systems, it is described in sec.

7.2.1. This program includes decision algorithms controlling the power fluxes in the system,

either based on forecast data or only instantaneous data. These algorithms either optimize the

electricity cost for the user, minimizing PV-losses due to the feed-in limit (7.2.2) or maximizes

self-consumption. We then compare different electricity pricing schemes for their ability to

shave peaks (7.2.3) without imposed feed-in limits. Next, in the framework of a possible feed-in

limit regulation similar to the German case, we compare two battery control management (e.g.

two storage strategies) for their ability to minimize PV-loss and maximize self-consumption

(SC). The first strategy requires PV-power and load forecasts and the second needs only the

maximum power curve of the PV system under clear sky condition (7.2.4). The different losses

of a PV system with battery are analyzed in subsection 7.2.5. The simulation is then applied

to different households to study the sensitivity of the results to the details of the load curves

(7.2.6) and to quantify the effect of aggregating several loads for one battery (7.2.7). After that,

we discuss a control algorithm that adapts daily its feed-in power limit in such a way that all

the excess PV-power can be adsorbed by the storage. Especially for households, excess energy

could also be stored (beside batteries) as heat using an electrical water heating (EWH) system

or a heat pump (HP) combined to a water storage. In this work we only considered domestic

water heating and not household heating. As hot water heating is usually done at night (when

electricity price is low), heat storage can also be seen as demand-side management because

we shift the load. In subsection 7.2.9, we compare those two storage type in their ability to do

peak shaving.

In section 7.3, the effect of module orientations (b) on peak shaving is studied at household

level in a feed-in limit context and more generally at Swiss level.

In section 7.4, we present a statistical method for recognition/disaggregation of the different

electrical appliances of a household based on measured load curve (with a 15-minute time

resolution), time use data and some basic information about the households. Once the time of

use of different electrical appliances are known we can estimate the part of the load that can be

shifted to PV peak production and hence estimate the potential of demand-side management

(c) for shifting loads to PV production period. This method is applied to a sample of about 100

households and the results are discussed.

Finally in section 7.5 we use the result of the precedent chapter to calculate the influence of

solar cell temperature and irradiance dependence on self-consumption, PV-loss and seasonal

PV production ratio. Those results are then compared to the effect of inverter sizing and power

rating.
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7.2 Photovoltaic and storage for households

Household local electricity storage could contribute to grid stability in case of high photo-

voltaic (PV) penetration, by absorbing the power peaks around midday. Self-consumption

(SC) can also be enhanced, which means that the energy is used where it is produced (allows

also to minimize electricity transport losses). In Germany incentive exists to install battery

storage if the feed-in power is limited to 60 % of the PV system nominal power [KfW 15]. Till

2015 more than 12’000 such systems were installed in Germany [35 P]. In this section we3

first describe the system considered and the corresponding simulation program developed

for this thesis and comment the different control algorithms. We then applies those control

algorithms to different cases and discuss the results.

7.2.1 System configurations and description of the simulation

We considered several system configurations comprising a PV system, an electrochemical

storage (electrical storage in a battery) and/or a hot water storage (thermal storage in the form

of heat). We developed an energy flux simulation with a time step of one minute or 15 minutes

and a control algorithm which regulates the energy flux to/out of the battery or the heating

state of the boiler each minute.

Electrical storage and electrical converter efficiencies

For the electrical storage simulation we mainly use a DC-link configuration where the battery

is connected before the DC/AC converter. The AC-link where the battery is connected through

a bidirectional AC/DC inverter can also be simulated (Fig. 7.3). The results between the

two configurations are very similar, hence we will only show the studies using the DC-link

configuration. The efficiencies of the DC-DC converter and the DC-AC inverter are calculated

according to typical curves of commercially available systems [Nott 10] (see appendix C). If

not stated differently the converter and inverter nominal power are equal to the DC nominal

power of the PV installation. Only input power dependence of the converter efficiency is

taken into account (temperature and voltage dependence are neglected). We use a very simple

battery model with a fixed round-trip efficiency of 90 % which is in the range of standard Li-Ion

battery. The choice of a Li-Ion battery is motivated by potentially less cost in the long term

due to higher cycle number and hence lifetime [Thia 09]. In this work, the storage capacity

is defined as the effective battery capacity. For example a battery of 10 kWh storage capacity

and a minimal possible state of charge (depth of discharge) of 80 % has an effective capacity of

8 kWh.

3Y. Riesen, S. Monnier, C. Ballif and N. Wyrsch
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Figure 7.3 – Schematic of two different configurations of a PV system with battery: (left) AC-link
and (right) DC-link.

Thermal storage

For heat storage system we considered electrical water heating using boiler (EWH) or heat

pumps (HP) electrically connected to the AC side (Fig. 7.3). The energy is stored in the form of

PV Grid 

Loads and HP/EWH 

Inverter 

Figure 7.4 – Schematic of PV system with heat storage (heat pump and electrical water heating).

heat in a water tank. The water tank is modeled according to this simple equation 7.7 which

does not take into account temperature stratification [Ceri 13, Paul 10]:

m · c
dTw

d t
= Q̇el −h(Tw −Ti n f )+ṁdem(hi n −hout ), (7.7)

where m·c is the mass times heat storage capacity of the water, Tw is the water temperature, Q̇el

is the electrical input power, ṁdem is the enthalpy transfer due to hot water consumption, h =
A/( 1

h1
+∑ li

ki
+ 1

h2
) is the heat transfer characteristic with a value of h = 1.2 taken from [Paul 10].

The electrical input power is given for EWH by Q̇el = x(t ) ·Pel where x(t ) is on/off state (0 or 1)

and Pel is the electrical power of the heater. For HP it is given by ·Qel = x(t )·Pel ·COP , where the

coefficient of performance COP is given by a linear approximation COP = d0 +d1 ·Tw +d2 ·Ti

[Verh 10], where d0 = 5.6, d1 =−0.066, d2 = 0.057 are the different coefficients and Ti the inlet
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temperature. For HP we modeled two different cases: classical on/off HP where, x(t) is 0 or

1 and the continuous HP (variable power or inverter HP) where x(t) lies between a defined

minimum and 1.

Data sources

The main load profiles used are:

Reference load is based on data measured at one minute interval of a Swiss household of

five people (family house with central oil heating, including domestic hot water), from

April 2012 to March 2013 located near to Neuchâtel. The annual load consumption was

4943 kWh.

Flexi loads is based on data measured with smart meters at 15 minutes interval in a vil-

lage in canton de Neuchâtel. Most measurement are loads of family households and

apartments.

The PV production curve was generated with the PV-lib toolbox [Stei 15], using real global

horizontal irradiance and temperature data recorded at a 10-minute-interval by a MeteoSwiss

station. For the calculation, we assumed a 270-W-multi-crystalline silicon modules taken from

the PV-lib toolbox library and if not stated differently, a module tilt angle of 30° and a south

orientation. The resulting module power was then interpolated to the simulation time step.
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Figure 7.5 – Forecast, measured and clear sky PV production for 3 days

The real PV forecast is based on historical forecast data from Meteotest (48h ahead in 1 hour

time steps). The forecasts were interpolated to 30 minutes time step data (see Fig. 7.5). The

load forecast was generated by averaging for each 30 minutes the historical load profiles of

each day of the week for each season. During days when the household was unoccupied a

special holiday average load curve was generated. To compare the effect of forecast errors, we
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introduce an exact forecast having the same format as the real forecast, but using the effective

production and loads and hence no forecast errors (exact forecast).

7.2.2 Control algorithms

Three different optimization objectives were used:

• Maximize self-consumption (max. sc.).

• Minimize PV-losses due to feed-in limit (min. PV-loss).

• Optimize financial balance (cost minimization) due to electricity exchange with the grid

(buying or selling electricity, cashflow). In the presence of a feed-in limit this is equiv-

alent to first minimize the losses due to feed-in power curtailment and then enhance

self-consumption. For this objective we developed three different versions/strategies:

– Cost minimization (co. opt.) based on PV production and load forecast.

– Cost minimization without forecast (opt. both.), requiring only clear sky PV pro-

duction data; this version makes sense only if a feed-in limit exists.

– Cost minimization with variable feed-in limit, based on PV production and load

forecast.

Those strategy are only useful if the battery cannot absorb the complete daily PV pro-

duction.

For HP/EWH a scheduled operation control algorithm is used for comparison (HP/EWH

are switched on every day from 11h00 until the maximum temperature is reached in the

water storage). The different control algorithms relevant for these optimization objectives are

detailed below.

Maximize self-consumption

The battery is charged (if state-of-charge allows) as soon as PV-power exceeds load (or con-

sumption) and is discharged as soon as PV-power is lower than consumption. This strategy is

best for maximizing self-consumption (max. sc.).

Minimize PV-losses

Excess PV-power that would be curtailed by the feed-in limit is stored (if state-of-charge allows)

in the battery. The battery is discharged as soon as PV-power is lower than consumption. This

strategy is best for minimizing PV-losses (min. PV-loss) and is only applicable in the context of

a feed-in limit.
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Cost minimization with forecast

This control algorithm optimizes the gain or cost (co. opt.) due to exchange with the grid

(selling or buying electricity) and depends on feed-in tariff and electricity costs. This algo-

rithm is valid with and without feed-in limit and need some form of forecasts. A schematic

representation can be found in Fig. 7.6.

System current state 

(PV, Load, SOC..) 

System current state 

(PV, Load, SOC..) 

Control algorithm Control algorithm Cost 

Optimization 
using linear 

optimisation 

Optimized 

SOC for the 
next 48 h 

Action: 

Charge/discharge Battery 

Every time step 

Every 24 h  

48 h forecast 48 h forecast 

Figure 7.6 – Schematic representation of the cost minimization algorithm with forecast (co.
opt.) algorithm.

The developed algorithm is the following: Each 24 h, a cost optimization of the energy flux is

done with forecast data for the next 48h of PV-production, household load and buying/selling

prices (generally with 30 minutes forecast time step). Then, for each simulation time step

(generally 1 or 15 minutes time step), the control algorithm defines the battery flux or the

HP/EWH state in order to try to reach the optimized state of charge (SOC) for batteries or

temperature for hot water storage calculated during the previous cost optimization step based

on the forecasts. The control algorithm is constrained to the following rules:

• The resulting energy fluxes have to respect the different given limits of the system

(inverter power limit, power flux limits of the battery, battery size, temperature limit of

the water tank. . . ).

• If there is a feed-in limit the PV power exceeding the limit is stored as long as the

previously cited constraints are met. If it is not possible this excess PV power is lost

(considered as PV-loss); In practice, this means that the maximum power tracker of the

PV system is no more operated at maximum point.

For electrical storage, a linear programming algorithm optimizing the electricity financial bal-
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ance for the user is applied. The inverter and converter efficiencies are considered as constant

(do not dependent on the input power) to allow a linear optimization. This is considered as an

acceptable approximation as the power flux intensities that give most contribution are on the

flat part (high input power) of the efficiency curve of the inverter.

For heat storage we wrote our own optimization algorithm because, with HP, the problem

cannot be linearized anymore. Furthermore, for this on/off problem, the mixed integer prob-

lem optimization function built-in in Matlab gave poor results. Our optimization algorithm

works as follow: at each time step of the forecast, beginning from t = 0, it checks, if the tank

temperature is under the minimum. If this is the case, the algorithm tests for each time

between t = 0 and actual time step what would be the cost per gained degree if HP is turned

on at his time. Then the HP is effectively turned on at the time where the cost per gained

degree has its minimum. This procedure is done again until the temperature for this time

step crosses the lower temperature limit. Finally we get HP states that are very close to the

optimized states for a cost balance optimization.

Cost minimization without forecast

This newly developed simple algorithm optimizes the financial balance due to grid exchange

in the presence of feed-in limits and constant electricity/feed-in prices without the need for

forecast (opt. both.). In this context optimizing costs is equivalent to first minimize the losses

due to feed-in power curtailment and then enhance self-consumption. This algorithm needs

only the theoretical maximum PV-production curve to minimize PV-losses and maximize

self-consumption. For this purpose, the maximum clear-sky PV-production is calculated for

each minute using the PV-lib toolbox [Stei 15]. The battery is controlled as follow:

• Excess PV-power that would be curtailed by the feed-in limit is stored (if state-of-charge

allows) in the battery. Moreover, if the battery capacity is sufficient to absorb the

maximum excess PV production (calculated with the clear sky PV-production) of the

next 10 hours, the battery is charged further until this limit.

• If PV power is higher than the load power the battery is only charged if its capacity is

sufficient to absorb the maximum excess PV of the next 10 hours.

• If PV-power is lower than the load power the battery is discharged.

• The system boundaries must be satisfied (battery capacity, inverter power limits)

Cost minimization with variable feed-in

The cost minimization with variable feed-in algorithm is similar to the cost minimization

without forecast algorithm. For each day, the feed-in limit is fixed as the maximum limit for

which all excess PV production can be stored for the given battery size. Hence forecasts are

needed. Weniger et al. developed a similar approach [Weni 14].
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7.2.3 Comparison of different electricity pricing scheme for peak-shaving

In this section we compare the peak shaving capability of different electricity pricing using the

co. opt. control algorithm and the max. sc. algorithm with no feed-in limit (discussed in more

details later Sec. 7.2.4)

Simulation details

As data source the reference load (1 single household) and the PV production described in

section 7.2.1 are used. The PV system is sized to 5 KWp (approximately covering the yearly

household consumption with a yearly PV production of 1000 kWh/kWp) nominal power and

the battery capacity is 10 kWh. An exact forecast is used. The following four different cases are

analyzed:

Case 1 The max. sc. algorithm is used and is independent of pricing.

Case 2 The co. opt. algorithm is used with a day/night tariff scheme.

Case 3 The co. opt. algorithm is used with an electricity and feed-in price proportional to

the load minus PV-production. The feed-in price is always 10 cts/kWh lower than the

electricity price in absolute values. At high PV injection the feed-in and electricity prices

are low.

Case 4 The co. opt. algorithm is used, the electricity price is constant in time. However, a tax

proportional to the daily highest feed-in power is introduced. Under those constant

price conditions the amount of this tax do not play a role.

Results and discussion

Figure 7.7, shows the result of the simulations for two days. Case 1 that uses max. sc. algorithm

charges the battery until it is full. But then all excess power is fed into the grid. Hence, there is

still a peak in the afternoon. Case 2, does not completely shave peaks. Case 3, with pricing

depending on feed-in without battery, charges the battery only when the prices is lowest.

Hence peaks are appearing at the beginning and end of the day. Case 4, where the user has to

pay a tax which is proportional to the highest daily power peak, successfully achieves peak

shaving. Those results are similar to [Umla 12]. This clearly highlights the advantage of using

a daily power tax system for an efficient peak shaving strategy.
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Figure 7.7 – Green: Electricity flux (gridflux) with the grid without storage, blue: gridflux with
storage, black: battery state of charge (SOC), red: electricity price, gray: feed-in tariff, for the
different pricing cases and control algorithms.

7.2.4 Comparison of the different control algorithms with feed-in limit

Imposing a feed-in limit is a simple and efficient method to avoid high injection peaks. The

first purpose of this section is to compare the performance in peak shaving and enhancing

self-consumption (or cost optimization) of two different algorithms (already introduced in

Sec. 7.2.2) controlling the charge and discharge behavior of the batteries in the presence

of a feed-in limit and constant electricity and feed-in prices. The first algorithm is based

on forecast and performs a linear optimization to maximize the financial gain co. opt.. The

second algorithm needs only the theoretical maximum PV-production curve to minimize

PV-losses and maximize self-consumption opt. both.. This algorithm is therefore independent

of forecast accuracy. For comparison purposes, the results of the basic control algorithm

120



7.2. Photovoltaic and storage for households

maximizing only self-consumption (max. sc.) and another minimizing only PV-losses (min.

PV-loss) are also showed. Moreover, for the first algorithm we compare the results using real

forecast and an optimal exact forecast in order to isolate the errors due to forecast inaccuracies.

Those results are partially based on [Ries 13].

Simulation details

The reference load with a 1 minute time step is used. The PV system size is adapted such that

the total yearly PV production is equivalent to the total electricity consumption (Sec. 7.2.1)

and hence sized to 4.2 KWp. Notably, the system is not allowed to charge or discharge the

battery directly into or from the grid.

Results and discussion

The histogram in figure 7.8 a) shows the distribution of the daily excess energy due to the

feed-in limit of 60 %.
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Figure 7.8 – a) Distribution of the daily excess feed-in energy as a function of excess in percent-
age of the total PV production from April 2012 to March 2013 for 60 % feed-in limit. The areas
above the different lines represent the PV-loss corresponding to the respective storage size. b)
PV-loss as a function of feed-in limit for different storage capacities.

By summing up the area above the different lines corresponding to the different storage

capacities we get the PV-loss energy for the studied period as a function of these storage

capacities We see that only few days have an excess PV energy above 3 kWh. Therefore for this

case study, storage sizes above 3 kWh do not bring much for reducing PV-loss. Figure 7.8 b)

shows the PV loss as a function of the feed-in limit for different storage capacities. Without

storage and a feed-in limit of 0 % which means that all production has to be self-consumed,

we get a PV-loss of 70 %. With a storage of 4 kWh we can reduce this value to 42 %. Increasing
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the feed-in limit reduces rapidly the PV-loss for each storage size. At a feed-in limit of 80 %

there is almost no more losses even without storage. Note that the feed-in limit effect depends

strongly on the orientation of the modules as the feed-in limit is expressed in ratio of the

nominal power.

Figure 7.9 shows the PV-loss and the self-consumption (SC) for a feed-in-limit of 40 % as a

function of the battery capacity.
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Figure 7.9 – PV-loss and self-consumption (SC) for a single household using the different
battery control algorithm as a function of battery effective capacity with a feed-in limit of 40 %.

As expected the PV-loss is smallest for the min. PV-loss algorithm. Until a battery capacity of

5 kWh, the optimize both algorithm without forecast (opt. both.) performs almost as well as

the best (min. PV-loss) case. At higher than 5 kWh storage capacities, the battery is no more

always empty in the morning. However the algorithm assumes that it is the case and hence

underestimates the storage needed for peak shaving and as a consequence the PV-loss do not

diminish further. As the discharging power of the battery is limited by the DC/AC inverter,

increasing its nominal power could, in a limited extend, empty the battery faster during peak

consumption and slightly diminish the PV-loss for high storage capacities. Theoretically, the

cost minimization with exact forecast case (co. opt. ex.) should give equal PV-loss values as the

min. PV-loss case. This is almost the case: the differences are due to the different time steps

of the optimization algorithm (30 minutes) and the simulation time step (1 minute) and the

constant inverter efficiency approximation which result in slightly higher PV-loss for the co.

opt. ex. case. With real forecast (co. opt. re.) the PV-loss are higher; for example with a 3 kWh

battery, they are more than two times higher than for min. PV-loss. Those higher losses arise

at days when the forecast amount of excess PV is underestimated and therefore the storage is

already full when it is needed.

SC increases from 30 % without battery to over 60 % for storage capacities above 7 kWh. The
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co. opt. ex. mode is almost as well as the best case (max. sc.), even without exact forecasts.

However, the co. opt. mode with real forecasts has a lower SC than the two others. The

difference can reach 8 % in absolute.
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Figure 7.10 – Cashflow due to the electricity flux with the grid for the five different control
algorithms. With an electricity price of 20 cts/kWh, a feed-in tariff of 8 cts/kWh and a feed-in
limit of 40 %.

As we set the condition that the battery cannot charge or discharge directly from the grid, we

can link the PV-loss and the SC to the financial balance due to grid exchange (cashflow). Given

the SC (Equ. 7.8) and the PV loss (Equ. 7.9) we can calculate the cashflow C for any feed-in

tariff F+ and electricity price F−:

SC =
∑

t Lt +∑
t (PVt −Lt +B+)

∣∣
(PVt−Lt )<0∑

t PVt
(7.8)

PVloss =
∑

t (PVt −Lt +B−)|(PVt−Lt+B−)>Flimit∑
t PVt

(7.9)

C =∑
t

(PVt −Lt +B−)|(PVt−Lt )>0 ·F++∑
t

(PVt −Lt +B+)
∣∣
(PVt−Lt )<0 ·F− (7.10)

= SC ·PVtot(F−−F+)+PVtot(1−PVloss) ·F+−BlossF+−Ltot ·F− (7.11)

where Lt is the load at time t, PVt is the PV production at time t, B+is the battery discharging

energy at time t (positive value), B− is the battery discharging energy at time t (negative value),

Bloss =
∑

B++∑
B−, Ltot =∑

Lt and PVtot =∑
PVt , SC the SC and PVloss the PV loss. In order

to visualize of adding new battery capacity we can write Equ. 7.11 in differences:

ΔC = PVtot(ΔSC · (F−−F+)−ΔPVloss ·F+)−ΔBlossF+ (7.12)
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In our case, with (F+ < F−) and Fig. 7.9 we see in Equ. 7.12 that the SC value mainly influences

the cashflow. If we set the electricity price to F− = 20 cts/kWh and the feed-in tariff to F+ = 8

cts/kWh. We get the result showed in Fig. 7.10.

The co. opt. ex. algorithm performs best but is closely followed by the opt. both. algorithm

needing no forecast. However, as for SC, the algorithm with real forecast (co. opt. re.) as it

would be the case in real condition, is financially less favorable than the opt. both. algorithm.

Therefore the opt. both. control algorithm is the best choice and will be used for the next

simulations presented in this chapter. Those results are independent on pricing as far as the

electricity price is higher than feed-in price and the prices are constant in time.

7.2.5 Loss analysis

In order to compare the different losses, the 1-minute-reference load is used. The simulation

is run with a feed-in limit of 50 %, a yearly PV production and load of 4924 kWh, a PV size of

4.2 kWp and the opt. both. algorithm is used. The battery size is 1 kWh/kWp (corresponding

to 4.2 kWh).

Figure 7.11, shows the monthly relative to total PV production losses due to feed-in limitation

(PV-loss), due to the DC/AC and the DC/DC conversion and the battery losses. The monthly PV

production is represented as a blue line. The highest losses are due to the DC/AC conversion
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Figure 7.11 – Monthly losses relative to the total PV production of the the feed-in limit (PV-loss,
the DC/DC converter, the DC/AC converter and the battery. Based on 1-minute data with
a feed-in limit of 50 % and a battery size of 1 kWh/kWp. The blue line represents the total
monthly PV production.

despite the fact its efficiency can reach 95 % (see appendix C). In our simulated case, 4.4 %

of the total PV production for one year is lost in the converter. A high fraction of energy is

produced when the power is below 20 % of the nominal power where the inverter efficiency

drops and those losses are higher during the low irradiation period (winter). A smarter control
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algorithm that discharge the battery only when higher power is needed could reduces those

losses. Reducing the nominal power of the inverter could also help. However, if this power is

too low, two additional losses occurs: – if the battery is full and the production is higher, the

excess is lost. – As the discharge of the battery is limited, during sunny periods, the battery

cannot be discharged completely before a new PV production peak occurs. An optimal sizing

of this inverter can be found and depends mainly on the irradiation distribution, the battery

size, the feed-in limit and the load power distribution.

For the investigated year, 2.2 % of the PV production is lost in the DC/DC converter. The

battery losses account for 2.0 % of the total PV production. In absolute values less energy is

lost in the battery in winter due to less charging/discharging cycles, however relative to (the

lower) production, the loss is higher. As the present battery model is very simple, those battery

losses values should only be taken as an approximation.

The PV-loss reaches 1.5 % for a battery size of 4.2 kWh and a feed-in limit of 50 %. Most of the

loss arise in the sunniest months. For the chosen battery size those losses are relatively low

compared to the battery and inverter/converter losses.

7.2.6 Load shape sensitivity analysis

In this section we will again use the opt. both. control algorithm which is the best choice

between the presented control algorithm in the presence of a feed-in limit as established in

section 7.2.4. In the previous chapter the algorithms were applied to only one household

using the reference load (7.2.1). In this section we apply the opt. both. control algorithm to 44

different loads (flexi loads) to do a sensitivity study on the different load shapes (most of them

from households). The feed-in limit is fixed to 50 % and the PV installation nominal power is

fixed such that the yearly PV produced energy is equal to the total yearly consumption.

Figure 7.12 shows the mean, median, maximum and minimum values of the PV loss and SC as

a function of the relative to nominal PV power battery size. For the PV loss and the SC values,

the maximum and minimum difference is about 5 % and 12 %. Otherwise same behaviors as

for the reference load is seen.

7.2.7 Household local storage compared to district storage

Aggregating loads also allows reducing power peaks. In this section we quantify the gain of

applying the control algorithm to aggregated loads compared to the case where all household

have their own individual batteries and apply the optimization only for themselves (distributed

optimization). Aggregated loads means that the feed-in limit is applied to the sum of all loads

and that either all batteries are centrally controlled or that there is one central battery. The

optimize opt. both. control algorithm is applied and the feed-in limit is set to 50 %. The

generated yearly PV energy equals in each case the total yearly consumption.
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Figure 7.12 – Maximum, minimum, mean and median of the PV loss and the SC as a function
of the battery size divided by the nominal PV power for 44 different loads. The feed-in limit is
50 %.

In Fig. 7.13 a) the PV loss is plotted as a function of the number of aggregated loads (same 44

loads used in Sec. 7.2.6). For both relative battery sizes, the PV-loss decays rapidly by more

than 0.4 % absolute till 4 households and then continue decaying slightly with fluctuations.

The SC as a function of loads remains more or less stable and varies according to the mean of

the individual SC.
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Figure 7.13 – a) PV loss as a function of the number of aggregated loads for two different storage
capacities. b) Electricity flux with grid for one day for the initial case (blue), disseminated
(black) and central (blue) storage.

For comparison, the opt. both. control algorithm is applied individually to the 44 different

loads and PV sizes and to the case of a PV-field that has the same total energy production than

the cumulative PV production of all loads and a centralized storage. The total PV production is
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equal to the total yearly consumption (190000 kWh). For this example we use a storage size of

1 KWh/KWp and a feed-in limit of 50 %. Figure 7.13 b) shows the flux with the grid for a clear

sky day. The total PV loss, SC and cash-flow are presented in Tab. 7.1. The SC is also slightly

Disseminated centralized
PV loss 1.6 % 0.4 %
SC 49.8 % 51.3 %
Cash-flow -11 525 CHf -10 750 CHf

Table 7.1 – PV-loss, SC and cash-flow for comparison between disseminated and centralized
storage.

(1.5 %) higher for the aggregated case. The gain with aggregation for the PV-loss is larger, the

higher is the load compared to the nominal PV power. Because, on a local level, only the load

is smoothed by aggregation and not the PV production as we assume the same irradiation for

all modules.

In the presence of a feed-in limit, e.g. 50 %, aggregation allows reducing the PV-loss and in some

case to enhance the SC. Moreover, in addition to the more favorable cashflow, maintenance

and investment cost should be lower for a centralized storage compared to a distributed one.

7.2.8 Variable feed-in limit

In this section we present the results of the cost minimization with variable feed-in limit

control algorithm (see sec. 7.2.2, p.118). This algorithm gives nearly same results as the co. opt.

algorithm with a power tax proportional to the daily highest feed-in power (Sec. 7.2.3). This

algorithm maximizes SC and limits the feed-in power as much as the battery allows it.

Simulation details

The algorithm is applied separately to each of the 44 flexi loads. The PV systems are sized

such that to cover their annual total consumption. For each household, the battery is sized to

1 kWh/kWp. For the following simulation we used exact forecasts to study the optimal case.

Results

The histogram in Fig. 7.14 shows the number of days corresponding to the global feed-in limit

(the calculated feed-in limits of each household in power units are summed and divided by the

aggregated PV-nominal power). During almost 150 days the batteries could store all produced

energy and hence the daily feed-in limit is fixed to 0. Not more than 60 % of the nominal PV

power is fed into the grid with this battery size. Now we discuss the local feed-in limit. The

mean SC of the 44 households has a value of 49.7 % (maximum: 57.0 %, minimum: 44.2 %).

The PV-loss are under 1 % for each household. Ideally, it should be zero. However due to the
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Figure 7.14 – Occurrence in days of a given daily feed-in limit using the variable feed-in limit
algorithm with a relative battery size of 1 kWh/kWp.

fact that some days the battery cannot be completely discharged the value is different from

zero.

7.2.9 Electricity and heat storage comparison

For a Swiss household, 70 % of its energy consumption is used for room heating and 12.5 %

for water heating [Kemm 14]. Through heat pumps (water and room heating) or electrical

water heating, PV can also contribute to reduce CO2 emission in this sector. Moreover, in

Switzerland, where 25 % of the energy used for water heating of private household is obtained

by electrical water heating systems [BFE 12], heat energy storage method for electricity peak

shaving would require only limited investment and adaptation.

Simulation and data sources

For this subsection, the reference load curve was used and the hot water consumption profile

was estimated from a survey. The same profile was used for each day and normalized such

that the total heating energy equals 6500 kWh per year for the given household4. The PV

installation was sized such that the annual energy output equals the total yearly consumption.

Without taking in account HP/EWH loads, this corresponds to a 4.2 kWp installation. With

a HP the total yearly consumption depends on the control algorithm, but is approximately

6600 kWh. A 5.5 kWp PV installation can cover on an annual basis this consumption. For EWH,

we have a yearly consumption of about 9600 kWh which corresponds to a PV system of 8 kWp.

For heat storage, we simulated a 300 l water tank with water temperature limits between 55 ◦C

and 80 ◦C (see section 7.2.1). This tank can store about 8.7 kWh of thermal energy for EWH

and about half for HP because the mean COP is around 2. The continuous HP can vary its

power from 10 % to 100 % of Pel (see Fig. 7.15). In our case the HP is assumed to only heat hot

water.

4This is slightly higher than the Swiss average [Kemm 14]
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Figure 7.15 – Continuous 3 kW HP and a feed-in limit of 60 % using the min. PV-loss algorithm.
Top: power flux with grid (with (blue)/without (red) storage and feed-in limit), bottom: water
tank temperature.
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Figure 7.16 – PV-loss as a function of the feed-in limit for electric and heat storage. The min.
PV-loss algorithm is used

Results and discussions

Figure 7.16 shows the PV-loss modeled for HP, EWH and battery as a function of the feed-in

limit. Table 7.2 shows same data complemented by the other scenarios for a feed-in limit of

60 %. For this calculation the battery effective capacity was 3 kWh and the HP/EHW power

(Pel ) set to 2 kW. The PV-loss minimization control algorithm was used (see section 7.2.2).

Compared to the case without storage, all scenarios (even the scheduled one) reduce PV-loss

by a factor 2 or more. The smallest losses are obtained with heat storage and continuous HP

because its storage capacity is bigger than that of the battery. On/Off heating induces higher

PV-losses because the power is fixed and cannot be adjusted to the excess power. Therefore

the sizing of the On/Off HP/EHW (Pel ) has to be adapted according to the feed-in limit such

that its value is in the order of the mean excess PV power in order to minimize PV-losses.

Considering everything, heat storage for hot water is an efficient and potentially low cost peak
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Mode PV rating PV-loss
[kWp] [%] at 60 % [%] at 40 %

No storage 4.2 2.9 13.6
3 kWh battery 4.2 0.1 4.8
Continuous HP 5.5 0.1 2.2
On/Off HP 5.5 0.8 5.7
Scheduled HP 5.5 1.2 7.4
Scheduled EWH 8 1.0 6.6
On/Off EWH 8 0.4 4.0

Table 7.2 – Relative PV-loss with a 60 % and 40 % feed-in limit, using PV-loss minimization
algorithm and for comparison a scheduled operation (heating from 11h00). HP or EWH
Pel = 2kW.

shaving solution.

7.3 Module orientation and peak shaving

Changing module orientation can also contribute to lower the midday production peak and

also reduce the seasonal production variation. However more PV modules (higher nominal PV

power) are needed to keep same yearly produced energy. In this section, we quantify the effect

on SC and PV-loss of different orientations for single households in a first step. In a second

step, we analyze the effect of different module orientation configurations on the excess PV

related to the total Swiss load.

7.3.1 Simulation details

For the simulation at household level, the yearly PV production equals the total yearly con-

sumption. The opt. both. control algorithm (see section 7.2.2) is used. The algorithm is applied

separately to each of the 44 flexi loads. Three different module orientation configurations are

simulated:

• All modules are south oriented with a 30° tilt (S30°). In total 147 kWp are needed.

• Modules are east and west oriented with a 30° tilt, each side producing half of the yearly

PV energy (EW30°). 175 kWp are needed.

• Modules are east and west oriented and vertically tilted (90°)(EW90°). 196 kWp are

needed.

Figure 7.17 shows the three configuration at clear-sky condition for the 21 of June, September

and December 2012. For each household, the simulations are run with two different feed-in

limit configurations. First, the relative feed-in limit is set to 50 % of the nominal power for
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all module configuration. Second, the feed-in limit absolute value is equal for all module

configurations and corresponds to 50 % of the nominal power of the south oriented with a 30°

tilt configuration. For the east and west oriented configuration with 30° and 90° it corresponds

to value of feed-in limits of 42 % and 37.5 % respectively. The second approach allows having

a better comparison regarding peak shaving for each configuration.
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Figure 7.17 – Simulated clear sky PV-production at 21 of June, 21 of September and 21 of
December for: (black) south oriented 30° tilt, (blue) east-west oriented 30° tilt and (red)
east-west oriented 90° tilt.

For the simulation at Swiss level, the PV production is sized such that it produces 20 % of the

total Swiss load of 2014 (without excess PV). We define the orientation ratio as the ratio of

the energy produced by the east-west oriented modules and the total PV production (0: all

modules are south oriented, 1 all modules are east-west oriented). Note that the yearly PV

production of the east is sized such to be equal to the west production. The tilt is always the

same for all modules. We varied the orientation ratio from 0 to 1 and the tilt from 0° to 90°. As

in section 7.1.1 the excess power is defined as the PV power exceeding the power of the total

Swiss load minus the power of the run-of-river plant.

7.3.2 Households level results

The PV-loss and SC as a function of storage size (compared to the nominal power in the S30°

case) for the three module orientation configurations and the absolute equal feed-in limit are

shown in Fig. 7.18. Using the same absolute feed-in value for the three module orientations,

the PV-loss are highest for the S30° orientation, followed by the EW30° and is lowest for the

EW90° configuration for all battery sizes. With no storage, comparing to the S30° configuration,

there are 3 % absolute less PV-loss for the EW30° configuration but we need relative 17 % higher

nominal power. The difference between the configurations reduces with increasing battery

size. If the relative feed-in limits are set to 50 % for each configuration the PV-loss will even be

smaller for the east west orientation configurations.

Without battery, the SC is only improved by 1 % and 1.1 % for the EW30° and the EW90° com-

pared to the S30°. This small improvement is certainly due to the relative small broadening of
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Figure 7.18 – PV-loss and SC as a function of the relative battery size to the nominal PV power
in the S30° case for: (black) south oriented and 30° tilt, (blue) east-west oriented and 30° tilt
and (red) east-west oriented and 90° tilt. The thicker lines is the mean of all households and
the thinner lines the maximum and minimum values.

the peak as seen in Fig. 7.17. Increasing the battery size increases the SC until a maximum of

2 % and 4 % absolute improvement for the EW30° and the EW90° compared to the south ori-

ented module for a battery size of 0.5 kWh/kWpS30 and 1 kWh/kWpS30. Increasing the battery

size further, implies a smaller SC increases. At battery sizes higher than 1.5 kWh/kWpS30 the

S30° SC even exceed the SC of EW30°. Essentially the seasonal variation between the three

orientation configurations explain this SC behavior.

7.3.3 Swiss level results

Figure 7.19 shows the relative excess PV power (a), the ratio of the energy produced during

the months of November, December and January and during May, June and July 2014 (b), the

installed PV power (c) and the normalized compensated PV power (d) are shown as a function

of the orientation ratio and the tilt of the PV modules. We define the normalized compensated

PV power as the PV power that should be installed to reach the 20 % of the total electricity

consumption by taking in account the losses divided by the minimum of the installed PV

power5. The monthly energy production for three different PV module orientations and the

monthly total Swiss load are shown in Fig. 7.20.

The excess power has a minimum value of less than 5 % for a tilt of 90° and an orientation ratio

of 0.6. The excess increase until a value of more than 12 % in the case of horizontally tilted mod-

ules. The PV energy produced in the three months with lowest irradiation (November-January)

5In fact, we used a linear approximation and calculated this factor as fol-
lowing normalized compensated PV power = [Installed PV · (1 + excess PV/(20% ·
Tot. consumption))]/mintilt,OR(Installed PV)
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Figure 7.19 – Excess PV, PV production ratio between the months of November, December,
January and during May, June and July, PV nominal power and normalized compensated PV
power as a function of tilt angle and azimuth share (0 only south oriented and 1 only west/east
oriented modules). The PV nominal power is adapted such that 20 % of total Swiss load is
covered by solar power. Simulation is based on 2014 Swiss load and Neuchâtel irradiation.

reaches only 15 % of the PV production during the three months with highest irradiation

(May-July) in 2014 for horizontally tilted panels. However this value reaches 45 % for south

oriented vertically tilted modules. If the modules would be in La Chaux-de-Fonds (14 km north

and 500 m higher altitude than Neuchâtel) this value could even reach 68 % because of the

less foggy weather condition during fall and winter. For the selected module (see Sec. 7.2.1),

a minimum of 7.5 GWp has to be installed to cover 20 % of the yearly load with only south

oriented modules and a tilt of 45°. Going away from this module configuration increases the

needed nominal PV power until 10 GW. The normalized compensated PV power represents

the additional PV power that has to be installed to compensate the losses in order to fulfill
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Figure 7.20 – Monthly PV production for three different PV module orientations such that for
each configuration the total PV production is equivalent to 20 % of the annual Swiss load and
the total Swiss load.

the 20 % of annual electricity consumption load. Dividing this compensated PV power by

the minimum installed PV power of all orientations and tilt allows comparing the different

configuration directly. The minimum of this factor is found for south oriented modules with

45° tilt as for the PV nominal power. Here we need to install 11 % more PV to compensate the

losses. Hence this factor represents in a very first approximation (assuming that the price per

installed PV power do not depend on module tilt and neglecting the grid cost) the cost of PV

energy if the excess cannot be stored or sold to other countries.

Those simulations on Swiss level only give a rough estimate of the effect of PV system orienta-

tion on the grid. In reality, the costs and excess PV energy depend on many more parameters

such as installation costs depending on module orientation and tilt, the details of the Swiss

distribution grid (local variations, distribution losses, etc), of the type and capacities of the

other power plants and the power exchange with other countries.

7.4 Demand-side management potential for households

As mentioned at the beginning of this chapter, the PV production peaks injected into the grid

can be lowered by shifting loads to this production period. The Flexi project [Perr 15] aimed

to determine the flexibilization potential of the electricity demand for households. For the

socio-economical part of the study, 105 households were divided in three groups:

• The flexi group that received monthly a financial incentive if they performed among the

best households of the group in terms of midday ratio (defined below).

• The invoice group that just received monthly information of how much and when during

the day they consume electrical energy. They were just encouraged to enhance midday
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ratio (with no financial incentive).

• The Control group receiving no information on the goal of the project or on their

consumption/behavior.

The goal was to measure if and how the flexi or invoice group could enhance their midday

ratio. The group received their score or information from January 2014 to December 2014.

The results are detailed in [Perr 15]. In the technical part of this project one of our6 goal was to

evaluate theoretically the share of the electricity consumption that can be shifted to midday

period when PV production should be highest. In this work we define as midday ratio the ratio

of the electricity consumption between 11:00 and 15:00 and the total electricity consumption.

A sample of ca. 300 households loads with a time step of 15 minutes from the village of Cernier

(CH) was available. Moreover, out of this sample 105 households answered a detailed survey

with a description of the inhabitants, their occupation and description of the existence and

use of domestic electrical appliances. To quantify the amount of load than could be shifted,

we classified the different appliances in three categories; easily shift-able, hardly shift-able

and non shift-able. The time of use of each load should be known. The survey answers could

already give some hint of the time use, however not very accurately. The 15-minute-load curve

do not really allows assessing which appliances are used. Hence we developed a new hybrid

method using the 15-minutes-load curves, Markov chain based "human behavior model" and

"time use data" that was then applied to the 105 households which answered the survey7.

7.4.1 Methodology

For each household a synthetic load curve is generated that allows extracting the time use of

each appliances (Fig. 7.21). To build this curve the following inputs are used:

• The number of persons and the electrical appliances available which are extracted from

the survey.

• Time use data which is a list of activities coupled with time for a sample of persons

during a given period. As not such data exists for Switzerland we used a time use

data from the Netherlands [Neth 05] as input. From time use data we can extract the

probability for each activity at each time of the day and the probability to move from

one to another activity (Markov chain approach [Torr 14])

• The mean consumption values of the different appliances mean values from different

sources [Trac, Beta, Comp].

• The recorded 15-minutes load curves.

The synthetic load curve of one household is generated for one day as following:

6Y. Riesen, R. F. Tschui, C. Ballif and N. Wyrsch
7The code was mainly written by Raffael Tschui during his civil service
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Figure 7.21 – Schematic of the methodology used to recognize appliances.

1. The standby power is determined as the minimum recorded load value of the current

day. It is then subtracted from the recorded load curve.

2. Periodic loads as fridge and freezers are recognized and also subtracted from the

recorded load.

3. If no other consumption peak is detected, it is assumed that no one is in the house. Only

standby and fridge consumption are used for the load curve of this day. The algorithm

goes to the next day.

4. The light are assumed to be on between sunset and sunrise if at least one person is at

home and not resting.

5. If the survey indicates that there are children in the house a random activity sequence is

generated for them.

6. For adults in the households, the best load curve fit to the measured curve is iteratively

found by generating synthetic loads constructed with a chain of activities based on

probabilities that are determined with the following inputs:

• If the household own such a device based on the survey (if not the probability for

using this device is 0).

• During the consumption peak detected on the measured load curve, the probabil-

ity for high consuming activities is increased.

• During low consumption period the probability of big consumers is low.

• Markov chain model for human behavior [Torr 14] based on the time use data

[Neth 05]. Weekends and weekdays are distinguished are handled separately but

no seasonal effect in terms of behavior is taken into account

136



7.4. Demand-side management potential for households

Figure 7.22 – Measured (yellow) and reconstructed synthetic load of an apartment with 2
person. The time use for the different devices is also added.

A classification of the activities and their related loads can be found in the appendix B.

For this analysis, heat pumps or EHW are not taken into account, as almost all households of

this sample have oil based central heating.

7.4.2 Results

The simulated synthetic load results in 13.4 % less yearly consumed energy than the measured

electrical consumption for a 2-person household and 15.7 % for a 4-person household. The

more person living in a household the worse is the fit. The simulated midday ratio values

are slightly lower (17 % to 20 %) than the measured one (20 % to 25 %) because the synthetic

load often underestimate power peaks which are frequent around midday. Comparing the

total consumed energies between measured and synthetic load curve only partially allows

validating the model. Moreover, the modeled time use of the different appliances should be

compared with the real time use. As this is a very demanding task for a household to keep

record of all activities and appliances used as a function of time, this was only checked for one

household during two days. Figure 7.22 shows the measured and the reconstructed load for

one day. The real time use of the different appliances is added as text in the figure. The standby

and the fridge/freezers loads are well reproduced. The main peaks are also reproduced quite

well. However for the peak occurring around 19h00, the intensity is not completely correct as

well as the activity was only cooking and not housekeeping at this time in reality.

For a better validation more device time use data of the measured households are needed.
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Figure 7.23 – Relative consumption of each appliance types outside the 11:00 to 15:00 period
and the total midday consumption as determined from August 2013 to December 2014 and all
household that filled the survey.

The dependence of the result on the input time use data has also to be further investigated.

Nevertheless we still assume that those synthetic loads and the corresponding device time

use could statistically represent the reality. We therefore applied it to the 105 households that

answered the survey.

Figure 7.23 shows the relative consumption of each device types for all households outside

the 11:00 to 15:00 period and the total midday consumption from August 2013 to December

2014. The results can only be approximately compared to existing studies [Nipk 13, Kemm 14]

as the context analysis are different (for example the standby are treated differently). 19 % of

the total electricity is already consumed during midday. The rest of the day:

• 22 % of the energy is used for light. This proportion seems to be relatively high com-

pared to existing studies [Nipk 13]. The lamp consumption is quite difficult to simulate

accurately as it depends strongly on the type of lamps used and household type. This

load is considered as not shift-table.

• The standby consumption reaches 19 % and the fridge and freezers consumption 18 %.

Hence 37 % of electric energy is constituted of appliances that are always on. They are

considered as not flexible. Even if technically it is possible to shift a fridge consumption

by some hours. Also, despite the fact that we consider standby consumption as not

flexible, diminishing its load will logically enhance midday ratio.

• Cooking has a part of 8 % of the total electric consumption outside the midday period.

For people eating lunch at home it could be classified as hard shift-able otherwise it is

not shift-able.

• Computer, Hi-Fi and other electronic devices, dishwasher/wash-machine/tumbler and

housekeeping appliances reaches 6 %, 5 % and 3 % of the load respectively. Computer
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Figure 7.24 – Simulated monthly electrical device category share use for the flexi group. The
measured midday ratio for the flexi (dashed line) and the control group (dotted line ) are also
plotted.

and Hi-Fi can be considered as hardly shift-able. Housekeeping, dishwasher, wash-

machine can be considered as easy shift-able.

Considering everything, with our classification, 8 % of the consumption can be easily shifted

to the midday period and 6 % hardly shifted. The 67 % consumption left are considered as

non-shift-able.

Figure 7.24 shows the monthly simulated electricity share for the flexi group and the measured

midday ratio for the flexi and the control group. We note that as already discussed the sim-

ulated midday ratio is slightly lower than the measured one. However for the simulation as

well for the measurement the midday ratio enhances after January (start of the experiment

with the monthly financial incentives). While the midday ratio of the control group remains

stable. From now on we discuss the simulated values. The light (as expected) and standby

part diminish in summer and increase again in winter (it is also the case in absolute values).

The diminution of the standby could partially be explained by the electricity used during the

cold period to supply the circulation pump for heating. The fridge/ freezers consumption

part is increased in summer, however its absolute value oscillate over the same value during

the whole year. Housekeeping and dishwashers/wash-machine devices categories which are

considered as flexible exhibit a relative lower consumption from January to September. This is

coherent with midday ratio enhancement.

For the 105 households, in the idealized case of completely controllable loads, the 8 % eas-

ily shift-able part is roughly equivalent to the peak shaving capability of a storage size of

0.3 kWh/kWp for 30° tilted south oriented modules (see Sec. 7.2.6 and 7.2.8).
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7.5 Solar cells influence on self-consumption, PV-loss and seasonal

production

In this section, we quantify the effect of solar cell’s temperature and irradiation behavior on

self-consumption, PV-loss in the presence of a feed-in limit and winter/summer PV production

ratio (Ewint./Esumm.). For this purpose, we modeled the power production over the year of

poly-crystalline silicon (Poly), silicon heterojunction (SHJAg), thin-high-band gap single-

junction amorphous silicon (a-Si) in initial state and a thick single-junction amorphous in

degraded state (a-Si2d) solar modules. The simulation is based on the cells measured in

Sec. 4.6. Moreover, the impact of the DC/AC inverter on those results is also studied. For

simplification we don’t consider storage.

7.5.1 Simulation details

The power output as a function of irradiance and temperature (Pmpp(G ,T )) of those four

different solar modules is calculated by interpolating the indoor measurement results (at

different T and G) of the corresponding solar cells. We apply the same procedure as for the

Interp. case in Sec. 4.6.2 for determining the irradiance and the temperature:

• The in-plane irradiance as a function of time G(t) is determined by the temperature

corrected and normalized Jsc value of a c-Si module monitored on our roof in Neuchâtel

(Switzerland) from September 2014 to September 2015 (see Sec. 2.4). This methodology,

allows using directly the irradiance on cells (most angular, glass reflection and soiling

effects are therefore already taken into account). However, due to the different spectral

response of the two a-Si:H cells compared to the c-Si modules, spectral effects are not

taken into account for those cells (see Ch. 5). As a consequence, for clear sky conditions,

we slightly overestimate their output power in winter and slightly underestimate it in

summer.

• The module temperature used in the simulation T (t) is extracted from the back-of-

module temperature of the monitored c-Si module. Hence we are neglecting the dif-

ference between back-of-module temperature and the cell temperature. Moreover, we

do not take into account the fact that the module temperature also depends on the

module’s efficiency (indeed a module with higher efficiency will heat less due to lower

thermal losses). However, we estimate that these errors are negligible compared to the

effect of using real measured module temperatures and considering their influence on

module performances instead of STC performances.

For simplicity and to avoid effect of module design, we decided to use same module tempera-

ture and irradiance inputs for all four simulated modules. The choice of two different a-Si:H

cells is motivated by the fact that we then have a best case: the thin a-Si module in in initial

state and a worse case with the thicker a-Si2d module. During the simulation period, 23 days
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had to be removed due to no available monitoring data. Note that degradation and recovering

effects for a-Si:H based modules (see Ch. 6) are not directly taken into account.

To assess the impact of the DC/AC inverter we simulate the power output of the PV system

with and without taking into account the DC/AC converter losses (see Sec. 7.2.1). The maxi-

mum inverter power (Pinv,max) is sized such as maximizing the total energy output for each

technology in the case of no feed-in limit. Moreover, the PV system is sized such that the total

PV production after the converter8 is equivalent to the total electricity consumption during

this period. We used the load of the same household as the Reference load but for another

period (September 2014 to September 2015). The total consumption without the removed 23

days reaches 3350 kWh. The self-consumption (SC) was calculated for a case without feed-in

limit and the PV-loss was calculated for a feed-in limit of 50 %.

7.5.2 Results

Inverter losses and sizing

Table 7.3 shows the Efficiency and temperature coefficient of Pmpp (TCPmpp) at STC (ηstc )

together with the relative Pinv,max and the relative to total PV production inverter losses.

ηstc T CPmpp Pinv,max/Pnom Inv. loss
[%] %/◦C [%] [%]

Poly 15.3 -0.39 105 3.95
SHJAg 20.0 -0.25 107 3.98
a-Si 9.14 -0.19 109 3.99
a-Si2d 7.70 -0.25 107 3.98

Table 7.3 – Efficiency at STC (ηstc ) and TCPmpp from Sec. 4.6. Optimized relative Pinv,max to
nominal PV power and the inverter losses from the simulation.

From this table we can extract following results:

• The optimal Pinv,max/Pnom is correlated with the TCPmpp of the cells. The higher (more

favorable) the TCPmpp the higher is this ratio because the power production peaks are

higher (during production peaks the cell temperature is generally high). The power

rating (Pinv,max) of commercially available converters is defined by the manufactur-

ers at given values. Hence the Pinv,max cannot be adapted continuously and those

Pinv,max/Pnom variation are negligible.

• Inverter losses depend on the temperature behavior, as well as on low light behavior of

the modules. The fact that the thick a-Si2d has a better low light behavior than the thin

a-Si explains that their inverter losses are equal despite their different T CPmpp.

8Not as in Sec. 7.2
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SC, PV-loss and PV sizing

Table 7.4 shows the simulation results for the SC and the PV-loss depending on module types

with and without inverter losses. The installed PV capacity needed to produce the same energy

as the electric consumption is shown as well.

SC PV-loss Pnom

no inv. inv. no inv. inv. inv.
[%] [%] Wp

Poly 28.0 27.8 10.4 10.7 2946
SHJAg 27.9 27.7.0 11.5 11.7 2918
a-Si 27.7 25.0 12.0 12.2 2881
a-Si2d 27.7 25.0 11.4 11.6 2933

Table 7.4 – SC without feed-in limit and PV-loss with a feed-in limit of 50 % with and without in-
verter losses. Installed PV capacity (Pnom) to reach an annual PV production that is equivalent
to the consumed electricity.

The module type influences barely the SC in this case, although we still notice an increase of

absolute 0.1 % in SC for the Poly module due to its lower TCPmpp reducing injection peaks.

The inverter losses reduce the SC by absolute 3 % for all modules due to higher inverter losses

at low irradiation condition where the self-consumption is relatively higher than for high

irradiances.

Without inverter losses the PV-loss values are as expected lowest (10.4 %) for the module with

lowest TCPmpp (Poly) and highest (12 %) for the a-Si module with highest TCPmpp. Adding

inverter losses increases the PV-loss by absolute 2.7 % to 4.2 % depending on the module

type. The PV-loss increases because the feed-in limit in power is lower in the case of taking in

account inverter losses due to the fact that the feed-in limit is calculated by taking 50 % of the

nominal power after the inverter. If it was 50 % of the nominal power before the inverter losses,

the PV-loss would be lower in the range of 10 %. Those results also depends on several factors

as excess injection power distribution and the Pmpp as a function of irradiance behavior of the

different modules.

Winter to summer production ratio

The ratio between the total energy produced by the modules from October 29, 2014 to February

2, 2015 and from May 7, 2015 to August 8, 2015 (90 days with available monitoring data for

each period) with and without inverter losses are presented in table 7.5. Note that no feed-in

limit is used in this case.

As expected due to the more negative TCPmpp, the Ewint./Esumm. of the Poly is highest (51.2 %)

and lowest for a-Si2d (47.5 %). As for the PV-loss, it is essentially the temperature behavior

that influences most this ratio, however the irradiance behavior also plays a non-negligible
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Ewint./Esumm.

no inv. inv.
[%]

Poly 51.2 50.4
SHJAg 48.8 48.0
a-Si 48.0 47.2
a-Si2d 47.5 46.7

Table 7.5 – Ratio of the energy output between the 90 days with lowest sun (above the clouds)
irradiance and highest sun irradiance (Ewint./Esumm.).

role. Moreover for the a-Si:H cells this ratio would even be about 4 % higher due to seasonal

variation induced by the Staebler-Wronski effect (see Sec. 6.3.1).

7.6 Conclusion

In this chapter we discussed how midday PV production peaks injected into the grid can

be lowered (peak-shaving), hence supporting the low voltage grid by avoiding over-voltage

and too high reverse power flows through the transformers. The analysis was done by con-

sidering the consumption of households. Peak shaving capability of local storage, module

orientation variation, demand-side management and influences of solar cell characteristics

were discussed and quantified. As reference case for the presented results, we sized the PV

nominal power such that its total energy output covers its yearly electricity consumption. We

developed a Matlab program able to simulate a PV system with a battery or a heat storage.

This program allows us quantifying the capability of peak-shaving of such systems. With this

tool we first testes several electricity price schemes encouraging households inhabitant to do

feed-in peak-shaving. The best price scheme that minimizes the maximum feed-in power is

established to be a proportional to the daily feed-in maximum power tax. Other price scheme

such as a feed-in and electricity price inversely proportional to the PV production do not shave

completely all feed-in peaks. Introducing a fix feed-in limit also allows encouraging owner

of PV systems to limit their feed-in power. If the feed-in limit is set to 50 % of the nominal

PV power, with no batteries about 7 % to 12 % of the total PV power has to be curtailed and is

lost as shown for a sample of 44 loads (households and some shops). Adding a storage allows

reducing significantly those losses. For example, a battery capacity of 1 kWh/kWp reduces

those losses to values of 0.5 % to 4 %. In the presence of a feed-in limit with constant electricity

prices, optimizing the cashflow is equivalent to first minimizing losses due the feed-in limit

and to then maximizing self-consumption. We compared a control algorithm optimizing

cashflow due to the electrical flux with grid needing PV production and load forecast (co. opt.)

with a simple developed control algorithm needing only a simulated clear sky maximum PV

production (opt. both.). The opt. both. algorithm performs almost as well as the co. opt. algo-

rithm using an exact forecast (best case) and significantly better than the co. opt. algorithm

with real forecast. As in real condition no real forecast is possible, the opt. both. algorithm
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using no forecast is best suited. Loss analysis of such a system shows that the DC/AC inverter

sizing is crucial to optimize the system efficiency. For more realistic system efficiency analysis,

power flow simulation are not enough, voltages and currents should be taken into account as

well as a more precise battery model.

Furthermore, we evidenced the advantage of using load aggregation in the framework of feed-

in limits. When the control algorithm is applied to the sum of several loads, only one central

battery or distributed batteries but with a central control can be used. Aggregating loads

mainly diminish the PV-loss, the higher the load compared to the PV production the higher

the PV-loss diminution. Moreover in real conditions, one centralized battery should be more

cost effective than distributed systems. However one possible disadvantage of centralized

battery could be the loss of concern of the involved people or household owners. Using heat

pump or electrical water heating system and a water tank as heat storage is also a very effective

way to do peak shaving. Our case study showed that if heat storage is only used for domestic

water heating, heat storage performs as well as or even better than a 0.7 kWh/kWp battery

storage. In this context, continuous heat pump performs best as the power can be adapted

to the excess feed-in. When using ON/OFF heaters with fix power, either more or less of the

excess feed-in can be stored. As a summary, a relatively small heat or battery storage is enough

to already significantly diminish the power peaks around midday.

In the second part of this chapter, we simulated the effect of module orientation on peak

shaving for households and at Swiss level. For households in the presence of a feed-in limit of

50 %, we compared south oriented modules at 30° tilt, with west/east oriented modules with

same tilt. The later configuration allows reducing the PV-loss by 3.1 % absolute percent and the

SC by 1 % absolute percent. However, 17 % more modules have to be installed. Adding storage

will reduce the difference in PV-loss between the different orientations but increase the gain in

SC for east-west orientation. At Swiss level, we simulated the excess PV power defined as the

instantaneous PV power exceeding the total load subtracted by the run-of-river plant. This

excess power, assuming that the PV production covers 20 % of the yearly Swiss load, can be

reduced from 12 % for horizontal modules to 5 % for vertical tilted modules mainly west/east

orientated. Tilting the modules more vertically allows reducing by more than a factor two

the difference in PV production between the three month with highest and lowest irradiation.

Knowing the financial value of peak shaving and storage those results allows assessing if it is

worth or not to encourage the installation of modules at a different orientation than south.

To quantify the shift-able electrical load for households, we developed a specific algorithm.

The latter uses as input 15-minutes loads, some characteristics of the households (such

as number of persons and electrical appliances available) and time use data. Using a few

judicious assumptions, the algorithm is then able to roughly reproduce the measured load

curve and estimate the share of shift-able load. However, to validate the model more device

time use data of the households sample are needed. The result indicated that beside the

19 % share of the load that is already consumed during midday (11:00 to 15:00), 8 % could

be easily shifted and while 5 % is hardly shift-table. Note that for this study heat pumps and
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electrical water heating which are potentially very flexible loads in households are not taken

into account as they were very rare in the considered sample.

Finally, we quantified the effect of solar cells temperature and irradiance dependence on

SC, PV-loss and winter to summer production ratio. We observed that a more negative tem-

perature coefficient increases slightly SC (e.g. 0.1 % in absolute between a poly-c-Si and an

heterojunction solar cell, SHJ) and decreases PV-loss (e.g. 1.1 % less PV-loss for a poly-c-Si

compared to a SHJ cell). A lower temperature coefficient also increases the winter over sum-

mer production ratio. The performance dependence on irradiance also influences those

results but in a reduced amount compared to the temperature. Those effects are relatively

small compared to other system effects as inverter efficiency and sizing, however they are not

completely negligible.
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8 Conclusion

Improvements of PV systems have so far mainly focused on the cell or module efficiency.

However the system energy yield should be more relevant and its importance has been widely

overlooked. In this thesis we therefore studied the effect of the main parameters influencing

the useful energy production of a photovoltaic system at both cell and system levels. The

influence of module design on energy yield was not considered.

We focused specifically on thin-film silicon solar cells and we were able to link material

parameters and cell design to the temperature behavior of thin-film silicon solar cells, allowing

the optimization for energy output at specific location. We also studied spectral effects as a

function of the current matching configuration of silicon thin-film multi-junction solar cells

(micromorph) aiming at designing devices with optimum energy production. The energy yield

of a-Si:H is also sensitive to degradation or recovery effects (related to the Staebler-Wronski

effect) of the solar cell performance following changes in irradiance and/or temperature

conditions. Even though we were able to document in detail the device evolution under

various operating conditions, we were not able to model these effects using a simple diode

model approach taking into account the defect states in the device. Nevertheless the obtained

indoor and outdoor experimental results combined with temperature dependence results

opens the way for developing a more precise model (or improving existing models) with other

approaches.

To achieve high PV penetration into the electrical grid, PV systems have to be optimized to

minimize energy losses and to therefore maximize the useful energy generated. In this context,

we evaluated system losses resulting directly from measures to limit the peak rate of PV energy

injection on clear middays; such measures comprised battery storage, module orientation

variations or demand-side management. At the same time, we evaluated these measures in

their ability to support the electrical grid for enhanced PV integration. Lastly, we quantified –

based on cell level results – the influence of solar cell technology on grid integration.

More detailed conclusions and perspectives are detailed in the next sections:
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8.1 Cell level

8.1.1 Temperature dependence

We measured the temperature and irradiance dependences of different a-Si:H solar cell perfor-

mance parameters for four different cell series prepared with different deposition parameters

(power and frequency of the PE-CVD generator, the hydrogen-to-silane dilution during the

deposition of the intrinsic absorber layer (i -layer), and the thicknesses of the i -layer and

p-type doped hydrogenated amorphous silicon carbide layer) in an annealed and degraded

state. With the only exception being the i -layer thickness series, the cells that performed best

at STC also showed the most favorable temperature behavior. It follows that optimizing these

fabrication parameters for best efficiency at STC will also lead to the optimum energy output,

independent of the device operating temperature. For the i -layer series this correlation has

yet to be confirmed. Cell thickness thus is a crucial parameter for optimizing the cells. It has

to be noted that we did not take into account dynamic degradation and recovery behavior for

that part of the study. Moreover, based on numerical simulations and experimental results we

showed that the peak in the F F as a function of temperature (often occurring between 0 ◦C

and 80 ◦C) correlates with more positive space-charge in the p-layer induced by the photo-

generated holes. We also observed that the T CVoc dependence on irradiance and material

parameters generally increases linearly with the Voc. Degrading a cell increase the (is favorable

for) TCJsc and T CFF but the TCVoc get worse (because the Voc decreases with degradation)

resulting in a TCPmpp that becomes slightly worse.

The temperature dependence of microcrystalline silicon μc-Si:H solar cells exhibit a similar

behavior due to its similar geometry – with thin doped layers compared to a relatively thick i -

absorber layer. The temperature behavior of μc-Si:H cells is most sensitive to the roughness of

the transparent conductive oxide substrate because of its influence on Voc which itself impacts

the temperature coefficient of the Voc. The temperature dependence of thin film silicon

micromorph and triple junction solar cells can be understood by the temperature behavior

of their sub-cells (a-Si:H and μc-Si:H). Hence, we now have a better and comprehensive

understanding of the different mechanism influencing the temperature dependence of thin-

film silicon cells. This should benefit their design with optimum energy yield for specific

climate conditions.

We could also show that for a-Si:H solar cells with relatively high F F , a good fit of their I(V)

characteristic over orders of irradiation intensity and a wide range of temperatures can be

obtained with a 1-diode model containing a current loss term and temperature dependent

saturation current and ideality factor. For cells with lower F F , a field deformation factor is

required to obtain an acceptable fit.

Silicon heterojunction solar cells (SHJ) also exhibit a F F maximum with temperature mainly

due to the hole barrier (band offset between the a-Si:H-i layer and the c-Si wafer) in the

valence band. This effect also renders I(V) curves to be s-shaped at low temperatures. We here
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proposed a method that allows the extraction of an activation energy from those I(V) curves.

However the link between the activation energy and the band offset is not yet clear. Numerical

simulations are needed to clarify the correlations.

Finally we compared the previous results with the temperature behavior of other silicon

crystalline (c-Si) solar cells (mono-, multi-c-Si and back contacted mono-c-Si). For c-Si solar

cells, the TCVoc vs. Voc curves (the Voc is varied by changing irradiance) for each device are

almost superposed. As back-contacted and SHJ cells have a higher Voc, their TCPmpp are more

favorable (higher) than for the technologies with lower Voc. Between those two high Voc cells

the SHJ has an even better TCPmpp due to the temperature dependence of the F F . For this

study the SHJ cells were fabricated in our laboratory, and the last conclusion should be verified

with other commercial SHJ devices since this F F (T ) behavior depends on cell design.

8.1.2 Spectral dependence

We also evaluate the effect of varying spectra (simulated with SEDES2 software model) on

micromorph (a-Si:H/μc-Si:H multi-junction) solar cells using a 2-diode model with a current

loss term. We found that over 88 % of the total energy yield was produced with a solar spectrum

that is bluer than the AM1.5g spectrum (for an installation located in Bern, Switzerland). Since

with a bluer spectrum, a top limited cell become less top limited, we calculated that the

multijunction cell’s energy yield increases by 1.6 % due to the spectral effects. We conclude

that to maximize the energy yield in our location, the cells have to be matched for a slightly

bluer spectrum than AM1.5g. It is relatively easy to calculate spectral effects on solar cells

knowing their spectral response if the sun spectra are known. Therefore the highest challenge

for evaluating the spectral effects on energy yield is to simulate or measure the spectral

irradiance shape as a function of meteorological conditions, especially for overcast situations.

8.1.3 Annealing and degradation

Our 20-hours indoor light-soaking kinetics experiments showed that, as expected, the degra-

dation of cell performance increases when lowering temperature and increasing irradiance.

However for light-soaking at low irradiances (330 Wm−2) the relative degradation was ob-

served to be almost independent of temperature, and at high temperature (80 ◦C), it was

almost independent of irradiance. Outdoor monitoring results of single a-Si:H, micromorph

and a-Si:H/a-Si:H tandem cells and modules showed an initial degradation followed by a

seasonal variation of the Pmpp of more than 4 %, 6 % and 8 % for the a-Si:H/a-Si:H module, the

micromorph module and single a-Si:H cells respectively. Those results confirm observation of

previous studies.

In literature, this effect was either modeled using completely phenomenological models or

by complicated and time consuming numerical models linking detailed material properties

with solar cell performances. We choose to take a median approach using a diode model with
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parameters depending on defect density. However, we showed that it is challenging to model

the Stabler-Wronski effect with such a diode model and a simple defect density model. Indeed,

at least four diode parameters (J0, n, (μτ)e f f and Vbi ) are affected by degradation/annealing

in a way that is not clearly known. Moreover the complexity and multiple effects (charged

state, multiple dependence of the (μτ)e f f product with defect density) involved in the SWE

cannot be simplified with a single defect density variable. Hence completely empirical models

are the best alternative for the moment.

8.2 System level

With high PV penetration into the electrical grid, the midday peak production could become

detrimental for the electrical grid stability if it cannot be absorbed locally. We focused on

three possible solutions for households to diminish this peak injection into the low-voltage

electrical grid and evaluated their respective induced losses (i.e., their quantitative effect on

net system useful).

Local storage We developed a simulation tool able to model a PV system with local storage.

Grid operators can introduce a feed-in limit to encourage system owners to reduce their

peak injection using e.g. a battery. We developed a control algorithm that minimizes the

losses due to feed-in limits and maximizes the self-consumption. This algorithm needs

no production forecast and performs as good as a control algorithm with forecasts. We

also evaluate the system losses as function of this particular and other control algorithms.

For example, with a feed-in limit of 50 % of the nominal installed PV power, a battery

size of 1 kWh/KWp reduces the losses due this feed-limit from 4 % to 0.4 %. Hence, a

feed-in limit allows reducing significantly peak-injection with relatively small net useful

energy loss, and the loss could be further significantly reduced with a relatively low

storage capacity. We also demonstrated that heat storage using a boiler or heat pump

performs as well as battery storage. Aggregating loads also allows diminishing the loss

and increasing self-consumption. In this thesis we only used storage for peak-shaving.

However it could also be used for additional grid support, such as supplying reactive

power or frequency control, adding even more value to storage. Including this aspect,

the next step would be to compare a feed-in limit regulation with a centrally-controlled

battery bank to allow more services to the grid under optimal control. However, the

latter scheme does not offer very much interest to the end-user seeking to maximize the

percentage of self-consumption.

Module orientation Changing tilt and orientation of the modules allows reducing losses due

to feed-in limits and to reduce the winter/summer production ratio by more than a

factor two. However, more PV modules are needed to achieve the same production and

the detailed economic aspects are therefore critical. Those results can help one to assess

if and how different module orientations present advantages.
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Demand-side management We developed a statistical method that estimates the usage time

of different electrical appliances of a household from 15-minutes measured loads. We

applied this method to a sample of 105 households (with detailed information on the

household size, inhabitants and electrical appliances) to estimate the share of the

total load that could be shifted to the peak PV production period modeled as 11:00 to

15:00). We calculated that about 8 % of the total load could be easily shifted and 5 %

additional load could be shifted with more challenges. Note that already 19 % of the

total load is used in this target time period. Moreover, heat pump or boiler heating

were not considered as in this sample almost all households are using oil for heating.

With electrical heating (e.g. using a heat pump) the easy shiftable load would increase

significantly. With those results we can evaluate by which amount load shifting (demand-

side management) can reduce the midday injection peak.

Solar cell influence on grid integration Finally we combined the device and system part of

this thesis to quantify the effect of cell technology on self-consumption, peak-shaving

and winter/summer production ratio. A lower (more negative) TCPmpp reduces the

midday peaks and winter/summer production ratio by a few percent. The module

technology has a limited but not negligible impact on system output compared to other

influences (e.g. system, configuration, electricity management, inverter sizing).

8.3 Outlook

By analyzing separately the temperature, spectral and degradation/recovery dependence of

thin-film silicon cells, we provide the building blocks needed to predict more precisely the

energy yield of thin-film silicon solar cells as a function of operating conditions. Moreover, the

new insights gained by linking material properties and cell design to spectral and temperature

performance behavior allows highlighting the critical parameters in solar cell design that

should be adapted differently for maximizing energy output for conditions other than for

STC efficiency. Hence those results provide tools for optimizing solar cells for best energy

production in specific climates.

We also showed that it is challenging to describe degradation/recovery dependence of a-Si:H

solar cells with a diode model. However our collected experimental results could be used to

calibrate existing empirical degradation/recovery models to increase their accuracy.

Our analysis of the temperature dependence of SHJ cells provides a basis for optimizing

device design for specific operating conditions. By combining those results with numerical

simulations of their electrical characteristics, we should for instance be able to link the s-shape

behavior of the device I(V) curve to the valence-band offset of the material. Understanding

this link will allow for going towards optimizing cells for given operation conditions.

On cell level, the developed experimental and data analysis methodology can be applied to

other solar cells technologies. For example regarding multi-junction cells, this methodology
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could easily be applied to other tandem cells such as perovskites-c-Si solar cells to optimize

their energy yield.

The results of the system level portion of the thesis enables a global overview of how high

injection peaks can be reduced at household level and help for planning the future electrical

grid. Hence we provide tools to quantify how much PV power can be absorbed by the electrical

grid on a global level. Based on those general guidelines, we can then focus on the best

methods to reduce those peaks, performing a more specific local evaluation that takes into

account the local grid topology as well as reactive power. More precise results on the losses of

a PV system with battery storage could be achieved by a model that takes into account current

and voltage (and not only a simple power flux model) and a more sophisticated battery model.

While full validation is still required, our original approach for assessing the load shifting

potential is a valuable tool for the analysis of demand side management measures which are of

paramount importance to insure large and smooth PV grid integration. However, the time use

data (from a Dutch study) used for this work should also be adapted for the Swiss situation.

Throughout this thesis, we quantified the different losses occurring during the conversion

of solar energy into useful electric energy from cell to system level. Owing to this wide

perspective, the losses with highest reduction potential, from material properties to grid

integration constraint, can be targeted.
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A ASA simulation input parameters

We present here the input parameters we used for ASA simulations of a-Si:H solar cells. Values

indicated as VARIABLE are the values varied with temperature.

C Device structure;
layers electrical=6 front=2 back=1;
grid[1] d=5e-9 spaces=20;
grid[2] d=10e-9 spaces=20;
grid[3] d=10.0e-9 spaces=20;
grid[4] d=220.0e-9 spaces=200;
grid[5] d=5.0e-9 spaces=20;
grid[6] d=30.0e-9 spaces=20;
grid[f.1] d=0.5e-3;
grid[f.2] d=2.00e-06;
grid[b.1] d=2.00e-6;

C Optical properties;
optical[1] lnk.file=Lj_p-ucSi.nk;
optical[2] lnk.file=tud_p-aSiC.nk;
optical[3] lnk.file=input/i-aSi_MS_VARIABLE.nk;
optical[4] lnk.file=input/i-aSi_MS_VARIABLE.nk;
optical[5] lnk.file=tud_n-aSi.nk;
optical[6] lnk.file=tud_n-aSi.nk;
optical[f.1] ext.coeff=0 ref.index=1.5 incoherent;
optical[f.2] lnk.file=ZnoOz2min0.nk;
optical[b.1] lnk.file=ZnoOz2min0.nk;

C Semiconductor properties;
doping[1] e.act.acc=0.15;
doping[2] e.act.acc=0.45;
doping[5] e.act.don=0.15;
doping[6] e.act.don=0.05;

bands[1] e.mob=1.12-VARIABLE chi=4.05 nc=2.5E+26 nv=1.2E+26 epsilon=7.2;
bands[2] e.mob=1.9-VARIABLE chi=3.65 nc=6.0E+26 nv=6.0E+26 epsilon=7.2;
bands[3] e.mob=1.9-VARIABLE chi=3.80 nc=2.0E+26 nv=2.0E+26 epsilon=11.9;
bands[4] e.mob=1.8-VARIABLE chi=3.80 nc=2.0E+26 nv=2.0E+26 epsilon=11.9;
bands[5] e.mob=1.9-VARIABLE chi=3.80 nc=6.0E+26 nv=6.0E+26 epsilon=11.9;
bands[6] e.mob=1.12-VARIABLE chi=4.05 nc=6.0E+26 nv=6.0E+26 epsilon=11.9;

mobility[1] mu.e=10.0e-4 mu.h=1.0e-4;
mobility[2] mu.e=10.0e-4 mu.h=1.0e-4;
mobility[3] mu.e=20.0e-4 mu.h=5.0e-4;
mobility[4] mu.e=20.0e-4 mu.h=5.0e-4;
mobility[5] mu.e=10.0e-4 mu.h=1.0e-4;
mobility[6] mu.e=10.0e-4 mu.h=1.0e-4;

C Description of DOS;
vbtail[all] e.range=0.5 levels=50 c.neut=0.7e-15 c.pos=0.7e-15;
vbtail[1] n.emob=1.0e28 e.char=0.090;
vbtail[2] n.emob=1.0e28 e.char=0.090;
vbtail[3] n.emob=1.0e27 n1.emob=1.0e27 e.char=0.043 e1.char=0.043;
vbtail[4] n.emob=1.0e27 n1.emob=1.0e27 e.char=0.043 e1.char=0.043;
vbtail[5] n.emob=1.0e28 e.char=0.090;
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Appendix A. ASA simulation input parameters

vbtail[6] n.emob=1.0e28 e.char=0.090;

cbtail[all] e.range=0.5 levels=50 c.neut=0.7e-15 c.neg=0.7e-15;
cbtail[1] n.emob=5.0e27 e.char=0.070;
cbtail[2] n.emob=5.0e27 e.char=0.070;
cbtail[3] n.emob=2.0e27 e.char=0.030;
cbtail[4] n.emob=2.0e27 e.char=0.030;
cbtail[5] n.emob=1.0e28 e.char=0.080;
cbtail[6] n.emob=1.0e28 e.char=0.080;

dbond[all] levels=40 e.corr=0.2;
dbond[1] n=1e21 e.neut=-0.70 ce.pos=200.0e-15 ce.neut=1.0e-15 ch.neg=100.0e-15 ch.neut=1.0e-15;
dbond[2] n=1e25 e.neut=-0.70 ce.pos=200.0e-15 ce.neut=1.0e-15 ch.neg=100.0e-15 ch.neut=1.0e-15;
dbond[3] n=3e22 e.neut=-0.88 ce.pos=200.0e-15 ce.neut=1.0e-15 ch.neg=100.0e-15 ch.neut=1.0e-15;
dbond[4] n=3e22 e.neut=-0.88 ce.pos=200.0e-15 ce.neut=1.0e-15 ch.neg=100.0e-15 ch.neut=1.0e-15;
dbond[5] n=5e23 e.neut=-1.40 ce.pos=200.0e-15 ce.neut=1.0e-15 ch.neg=100.0e-15 ch.neut=1.0e-15;
dbond[6] n=1e21 e.neut=-1.40 ce.pos=200.0e-15 ce.neut=1.0e-15 ch.neg=100.0e-15 ch.neut=1.0e-15;

variable Wt=0.040;
variable Ech0=sqrt(Wt^2-(k*363.15/q)^2);
variable Ech=sqrt(Ech0^2 + (k*300/q)^2);
vbtail[1] e.char=Ech;
cbtail[1] e.char=Ech;

C Numerical settings;
model[all] amorphous;
model[all] external;

settings newton gummel.starts=2;
settings damp=3 max.iter=50;
settings sr.flux=1.0e16;
settings Rs=3e-4;
settings temp=VARIABLE;

opticgen spectrum=am15.dat genpro3 mult=1.0;
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B Activity and load classification

This part lists the activity categories, the considered activities (indicated in italic below) and

the corresponding appliances or devices for the synthetic load recognition method (7.4.1)

related to the time use data [Neth 05]:

Heating Space and Water heating are not implemented here, because most of the households

have oil-heating. However, the function is used to simulate the hairdryer.

Cooking Cooking and eating. Devices: Cooking group, cooking oven, coffee machine, kettle,

microwave.

Housekeeping Cleaning, set table/wash dishes,laundry/ironing/clothing repair. Devices: wash-

ing machine, dish washer, Tumble Dryer and vacuum cleaner.

Entertainment Cook, eat, shower, work at home, use computer, TV, radio and indoor activities.

Devices: TV, HiFi system, DVD-player, Game,console and TV Box.

ICT Work at home and use computer. Devices: Desktop PC, Printer/Scanner/Fax and laptop.
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C Inverter efficiencies

Inverter efficiency curves used in chapter 7. The curve are taken from [Nott 10].
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Figure C.1 – DC/DC converter and DC/AC inverter efficiencies.
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Glossary

APE Average photon energy

a-Si:H Hydrogenated amorhpous silicon

c-Si Crystalline silicon

DHI Diffuse horizontal irradiance

Eact Activation energy

E n
F Quasi-Fermi level of electrons

E p
F Quasi-Fermi level of holes

Eg Band gap

EQE Quantum efficiency (from spectral response)

F F Fill factor

GHI Global horizontal irradiance

I(V) Current as a function of voltage curve

Jmpp Current density at the maximum power point

J0 Reverse saturation current

Jrec Voltage-dependent recombination current (from [Mert 98b])

Jsc Short circuit current density

ls light-soaking

max. sc. Maximize self-consumption battery control algorithm

min. PV-loss Minimize losses due to feed-in limit battery control algorithm

n Ideality factor

opt. both. Minimize loss due to feed-in limit and maximize self-consumption algorithm (no

forecast needed)

co. opt. Optimize financial flux due to electricity excahnge with the grid battery control algo-

rithm (forecast needed).
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Pmpp Power at the maximum power point

PV-loss Losses due to feed-in limit

RV Relative variation of a parameter before/after light soaking or thermal annealing

Roc Resistivity at the open circuit point

Rp Parallel resistance

Rs Series resistance

Rsc Resistivity at the short circuit point

SC Self-consumption

TC Temperature coefficient

ta Thermal annealing

TFFmax Temperature of the F F maximum (or peak)

μc-Si:H Microcrystalline silicon

Vmpp Voltage at the maximum power point

Voc Open-circuit voltage

SHJ Silicon heterojunction solar cells

STC Standard testing conditions (25 ◦C, 1000 Wm−2 and AM1.5g spectrum)
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calibration issues 

- Partial set up and maintenance of an outdoor PV monitoring station 
(pyranometers, temperature sensors, I(V)) 

- Configuration, commissioning and debugging of a household battery storage 
system 

- Datamining and database experience gained from analysis of monitoring 
station and several hundred of household smart meter results 

- Supervised several master students and civilist working on different projects 
- Teaching assistant for the lecture “Opto- and Macroelectronic materials” 
- Performing solid state physics simulation (ASA, Casino) and system level 

simulations 

2010-2011 Service civil and internship at PV-LAB, EPFL: Setup of an EBIC (Electron Beam 
Induced Current) technique for thin film silicon cells and particle detectors.  

2008  Master thesis, ETHZ: “Analysis of spin polarized current in non-magnetic metals”: 
Elaboration and measurement of samples in ultra-high vacuum and developing 
analysis tools in Matlab and Labview. 

2007-2008 Semester thesis at CERN for the Institute for Particle Physics, ETHZ 
2008-2009  Teaching assistant for “Analysis I for Chemist”, ETHZ 
2009-2010  Intermittent teaching of mathematics and physics at high school level:  Gymnase 

français de Bienne, EMSp Moutier and Haute École Arc de Gestion in Delémont 
 
 

Scientific contribution 
I co-authored 10 scientific journal contributions included 1 as first author; further articles are in the publication 
process. I took part to 4 international conferences, gave 1 presentations and presented several posters. 
 
Miscellaneous 
I co-organised several summer camps and week-end for children and teenager. I like outdoor activities as 
hiking, cross-country skiing and biking.  
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