
An FPGA-based Accelerator for Rapid Simulation of
SC Decoding of Polar Codes

Johannes Wüthrich, Alexios Balatsoukas-Stimming, and Andreas Burg
Telecommunications Circuits Laboratory,

École Polytechnique Fédérale de Lausanne, Switzerland
Email: {johannes.wuethrich,alexios.balatsoukas,andreas.burg}@epfl.ch

Abstract—In this paper we present an FPGA-based system
for rapid frame error rate simulations of successive cancellation
decoding of polar codes. Our system is implemented on a Xilinx
Virtex-7 XC7VX485T FPGA and it supports polar codes of any
rate and of blocklength up to N = 1024 bits on that device. The
supported simulation speed with N = 1024 is 108 codewords per
second at a frequency of 100 MHz. The key idea that enables
this high throughput is that the feedback part of the successive
cancellation decoder can be ignored when evaluating the frame
error rate. Thus, we can implement a heavily parallelized and
deeply pipelined SC decoder which can output one decoded
codeword per cycle. Moreover, the random input required to
perform Monte Carlo simulations of the decoder is generated on-
chip by means of free-running XOR-based true random number
generators at a rate of approximately 1 Terasamples per second.

I. INTRODUCTION

Polar codes [1] are channel codes which can provably
achieve the capacity of various communications channels.
Moreover, they have an efficient successive cancellation (SC)
decoding algorithm whose complexity scales like N logN ,
where N is the blocklength of the code. It is know that polar
codes do not exhibit an error floor when decoded using the
SC algorithm [2]. This makes them attractive candidates for
applications where very low error rates are required, such
as high-speed communications links and storage applications.
For the binary erasure channel, there exist tight upper and
lower bounds for the frame error rate of polar codes under
SC decoding, which can be evaluated numerically in a very
efficient fashion [3]. However, for all other types of channels
such bounds are not yet known and the only way to evaluate the
frame error rate (FER) of a specific polar code is via extensive
Monte Carlo simulations. Even though the complexity of the
SC algorithm is relatively low, it is still a computationally
challenging task to simulate frame error rates on the order of,
e.g., 10−12, using standard software SC decoders, even when
they are heavily optimized.

Contributions: In this work, we present an FPGA-based
system that specifically aims at the high-speed simulation of
polar codes. We achieve a throughput of 108 codewords per
second by exploiting the fact that the feedback part of the SC
decoder can be ignored in the evaluation of the FER. Moreover,
as the soft-inputs of the SC decoder need to be generated at
extremely high rates on the order of 1 Terasample per second,
we propose to address the problem of stimuli generation with
on-chip true random number generators (TRNGs).

Outline: In Section II we will briefly introduce the
basic SC decoding algorithm and we explain why the internal
feedback of the SC decoder does not influence the frame error
rate (FER) and can therefore be ignored. We then give a
detailed description of the implemented system in Section IV,
focusing on the FPGA specific implementation choices. In
Section V, we present the implementation results of our system
on a Xilinx Virtex-7 FPGA and Section VI concludes this
paper.

II. BACKGROUND

A. Polar Coding

A polar encoder with a block size of N = 2n takes N input
bits, denoted by uN1 , and encodes them into N codeword bits,
denoted by xN1 , through the following linear transformation

xN1 = uN1 GN = uN1 F
⊗n, F =

[
1 0
1 1

]
, (1)

where ⊗ denotes the Kronecker product. Due to this linear
transformation, the bits of uN1 experience virtual transmission
channels of varying qualities. A polar code of rate R , K

N is
constructed by choosing uA freely, where A denotes the set
of indices corresponding to the K best virtual channels, and
freezing the remaining bits to zero. At the receiver, a noisy
observation of xN1 is received, which we denote by yN1 . If we
assume that the transmission channel is an AWGN channel
and that a binary antipodal modulation is used, we have

yi = (1− 2xi) + ni, ni ∼ N (0, σ2). (2)

B. Successive Cancellation Decoding

The SC algorithm decodes the bits in a successive order,
meaning that each bit ûi is determined using the received
values yN1 and the previously decoded bits ûi−11 . For each bit
a log-likelihood ratio (LLR) is calculated given by

LLRi = log

(
W (yN1 , û

i−1
1 |ui = 0)

W (yN1 , û
i−1
1 |ui = 1)

)
. (3)

Using LLRi the bit value ûi is then decided using the following
function

ûi = h(LLRi) =

0, LLRi ≥ 0 and i ∈ A,
1, LLRi < 0 and i ∈ A,
0, i ∈ Ac.

(4)

f

g

f f

ff

f

g

f

fg

g

f

g

f

f

f

g g

g

g

g

g

g

h

h

h

h

h

h

h

h

LLR
1

LLR
2

LLR
3

LLR
4

LLR
5

LLR
6

LLR
7

LLR
8

û
1

û
2

û
3

û
4

û
5

û
6

û
7

û
8

LLR
1

LLR
2

LLR
3

LLR
4

LLR
5

LLR
6

LLR
7

LLR
8

LLR
y1

LLR
y2

LLR
y3

LLR
y4

LLR
y5

LLR
y6

LLR
y7

LLR
y8

û
1

û
1
+ û

2

û
3

û
2

û
5
+ û

6

û
7

û
6

û
5

û
1
+ û

2
+ û

3
+ û

4

û
2
+ û

4

û
3
+ û

4

û
4

Fig. 1. The SC decoding graph for N = 8.

The LLR value for each received channel observation is

LLRyi = log

(
W (yi|xi = 0)

W (yi|xi = 1)

)
. (5)

The decision LLRs (i.e., LLRi) can be calculated from the
received LLRs (i.e., LLRyi) using a butterfly-based computa-
tion graph containing N logN nodes. An example for N = 8
is shown in Fig. 1. This graph contains two types of nodes,
which are commonly called f and g nodes. Both types of nodes
calculate a new LLR value Lo based on two input LLR values,
denoted by L1 and L2. A g node further takes as a third
argument a partial sum ûs, which is a modulo-2 sum of a
subset of the previously decoded codeword bits1. This partial
sum represents the decision feedback within the SC decoder.
Due to complexity considerations, hardware implementations
of the g and f functions usually employ the min-sum (MS)
approximation [5], which is given by

f(L1, L2) = sign(L1)sign(L2) min(|L1|, |L2|), (6)

g(L1, L2, ûs) = (−1)ûsL1 + L2. (7)

III. PSEUDO-SC DECODER

In this section, we summarize two observations which
allow us to simplify and highly parallelize the SC decoder
for the purpose of simulating the FER.

Observation 1. The FER is independent of the transmitted
codeword (see, e.g., [6]). It only depends on the channel used
and on the choice of the frozen bit indices.

Observation 2. In order to evaluate the FER of the SC
decoder, the decision feedback within the SC decoder can be
ignored. More specifically, using the values uN1 to calculate the
partial sums instead of the decision values ûN1 yields identical
FERs [1].

1The computation of the partial sums is not discussed further in this paper,
as we will show that we can ignore them for our approach. For a detailed
definition of the partial sums see, e.g., [4].

Fig. 2. Top-level block diagram of the FPGA-based accelerator.

In order to see this, let us assume that all the bits up to
l ∈ {1, . . . , N}, have been decoded correctly. Therefore, the
partial sums required to decode ul+1 can be calculated either
with ul1 or with ûl1, since ul1 = ûl1 by assumption. If ul+1 is
decoded incorrectly, a frame error occurs. As the SC decoder
decodes bits in a strictly increasing order, this wrong decision
can not be undone by any later action. The decoded values of
bits ui, i = l+2, . . . , N, are irrelevant in this case, as a single
erroneous bit decision renders the entire frame erroneous.2

Due to Observation 1, we can safely assume that the all-
zero codeword is always transmitted, without loss of generality.
By combining this choice with Observation 2, we see that all
partial sums become equal to 0. Thus, the g node update is
simplified from (7) to

gs(L1, L2) = L1 + L2. (8)

As the g node update no longer depends on the previously
decoded bits, it becomes possible to “decode” all bits in
parallel.

IV. SYSTEM DESCRIPTION

The general strategy for the simulation follows the well-
known principle of a Monte Carlo simulation. We randomly
generate input data, representing the values received after being
sent through the channel. In our case all this data should
represent an all 0 code word, but with added white Gaussian
noise, due to the channel. We then decode the data received
and compare decoded bit values to 0. If one of the decoded bits
in a frame is not 0 we count the frame as an error frame. At
the same time, we count the total number of simulated frames.

For the sake of simplicity, we focus on the simulation
process itself and only show data treatment and ignore the

2This is evidently only true for the frame error rate. The bit error rate can
not be simulated in such a manner as the wrong decision for ul+1 could
influence the decision of the bits ui, i = l + 2, . . . , N .

Fig. 3. Block diagram of the pseudo-SC decoder for N = 8.

control signals. The implemented simulator is packed as an
IP core which provides an AXI-4 lite bus interface for the
connection with a MicroBlaze soft-processor. The MicroBlaze
processor is also implemented on the same FPGA and it is in
charge of controlling the simulation process. The FPGA-based
accelerator is connected to a PC through an RS-232 serial port.
The channel definitions and the code definitions (N and A) are
sent from the PC to the FPGA to configure the simulation runs.
The FER results of the simulations are then sent back to the
PC for post-processing.

In the sequel, we give a more detailed description of the
simulator part. In Fig. 2 we can see the general structure of
the Monte Carlo simulation pipeline from top to bottom. We
start by randomly generating the input LLRs. The input LLRs
are then used to decode the corresponding codeword using the
pseudo-SC decoder. Finally, the output bits of the pseudo-SC
decoder corresponding to information indices are compared
to the expected value of 0 to deduce whether a frame error
occurred or not.

A. Pseudo-SC Decoder Hardware Implementation

The pseudo-SC decoder consists of n , logN pipeline
stages, each containing N/2 f nodes and N/2 g nodes. We
therefore obtain one decoded frame per clock cycle and a
latency of n cycles. The f and g nodes are standard im-
plementations of the corresponding min-sum approximation
formulas given in (8) and (7). All LLRs are represented in
sign-magnitude form using Q bits. We present an example of
the decoder structure for N = 8 in Fig. 3. The decision LLRs
obtained at the output of the n-th pipeline stage are passed to
the H function block, which implements the decision function
given in (4).

B. Input LLR Generation

Instead of generating the noisy observations yi, where
significant care needs to be taken in order to represent the

tails of the Gaussian distribution accurately, we propose to
generate the corresponding (quantized) LLRs directly on-chip.
By definition of the AWGN channel we have

W (yi|xi = 0) =
1

σ
√

2π
e

−(yi−1)2

2σ2 , (9)

W (yi|xi = 1) =
1

σ
√

2π
e

−(yi+1)2

2σ2 . (10)

Using (5), it can be shown that

LLRyi =
2yi
σ2

, (11)

meaning that, due to the all-zero codeword assumption, the
LLRs of the received values follow a normal distribution
LLRyi ∼ N (2/σ2, 4/σ2). We choose to first generate uni-
formly distributed random values and then transform them into
normally distributed values via look-up tables (LUTs), as there
exist efficient circuit-level techniques to generate uniformly
distributed random values.

We use uniform quantization with quantization step ∆ = 1
for the LLRs. All LLRs are represented with a sign-magnitude
representation using Q quantization bits. Let L denote the set
of possible LLR values with |l| < 2Q−1, ∀l ∈ L. Let R be
the set of all possible uniformly generated non-negative integer
random values with 0 ≤ x < 2U , ∀x ∈ R, with U being the
number of uniform random input bits for each channel. Each of
the values in R is then mapped to a value in L by means of a
function M : R 7→ L in such a way that the relative frequency
of appearances of any li ∈ L follows Nd

(
2/σ2, 4/σ2

)
, where

Nd denotes the discrete Gaussian distribution.

In hardware, we implement the uniform random generation
as true random number generators (TRNGs) based on XOR
ring oscillators [7]. TRNGs have the advantage over pseudo-
random number generators (PRNGs) that they do not need to
be seeded and they do not show any periodicity (a PRNG
implemented as a feedback shift register using P bits will
cycle after generating 2P values). As we will generate a
large amount of LLR values such a PRNG would need to
be reseeded periodically to avoid correlation effects due to
the periodicity. The disadvantage of using the cited TRNG is
the energy consumption. Since it consist of free running ring
oscillators, the switching frequency lies in the order of GHz
and the energy consumption is substantial.

The uniform-to-normal transformation as described above
is implemented using block RAM (BRAM) based look-up
tables. This allows for the uniform-to-random mapping to
be dynamically reconfigured, by reprogramming the BRAM
blocks, enabling the simulation of any desired SNR point. We
found that using BRAMs for this task is the most efficient way
of implementing the transformation, both in terms of speed
and area used, compared to a transformation implemented with
logic gates.

C. Frame Error Counter

The last part of the simulator system is the frame error
counter. We simply compare the decoded bits, given by the
H function, to 0. If not all bits are 0 we have a frame error
and thus we increment the counter. We also have a separate
counter counting the simulated frames. The resulting FER is

TABLE I. FPGA IMPLEMENTATION RESULTS

Available Total Utilization SC & TRNG
Slice LUTs 303, 600 113, 018(37.2%) 111, 277(36.6%)
Slice Registers 607, 200 75, 756(12.5%) 74, 223(12.2)%
BRAMs 1, 030 273(26.5%) 257(24.9%)

given by the fraction of the numbers obtained by those two
counters. All counters in the system are implemented using
64 bits.

V. FPGA IMPLEMENTATION RESULTS

The entire system is implemented on a Xilinx Virtex-7
XC7VX485T FPGA for a maximum blocklength of N =
1024. Moreover, we use Q = 5 bits for the representation
of the LLRs. Finally, we set U = 10 for the generation of the
input LLRs.

A. Resource Utilization and Clock Frequency

Resource Utilization: In Table I, we show the utilization of
the FPGA resources. We observe that most of the resources are
used by the simulator (i.e., the SC decoder and the TRNGs)
and that the resource utilization of the control part (e.g.,
the MicroBlaze core) is negligible. Moreover, while there are
enough LUTs, registers, and BRAMs to implement the system
for a maximum blocklength of N = 2048, Xilinx’s Vivado
Design Suite was unable to route the design.

Operating Frequency: The implemented system is able to
run at a clock frequency of 100 MHz, leading to a simulation
throughput of 108 codewords per second. The limiting factor
for the clock frequency are the net delays encountered after
routing the design. More precisely, for the critical path only
4% of the delay is due to logic gates, while the remaining 96%
is due to net delays. The critical path can be found within the
final comparison of the decoded bits with 0.

Power Consumption and Temperature: Our design contains
a very large number of free-running XOR-based oscillators,
which are used by the TRNGs. Since these gates are always
switching at a very high frequency, the active power con-
sumption can be extremely high and it is not clear before-
hand whether such a system can work safely on an FPGA.
Unfortunately, our setup does not enable us to measure the
power consumption of the system directly, but we did track the
FPGA temperature using the on-chip temperature sensor. The
FPGA reached a maximum temperature of about 65◦ C after
approximately 5 minutes of continuous simulation (i.e., after
simulating 3× 1010 codewords) at an ambient temperature of
approximately 20◦ C. This measured temperature is within the
limits of the FPGA, whose maximum operating temperature is
85◦ C [8].

B. Simulation results

In Fig. 4 we present examples of FER simulation results
for polar codes of various rates and blocklength N = 512.
For each data point, frames were simulated until at least 10
frame errors were observed. The total simulation time was
approximately 4 days. Moreover, the simulation results of our
system agree well with values calculated with a Matlab script.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

SNR (dB)

F
E

R

Rate: 0.5

Rate: 0.4

Rate: 0.3

Rate: 0.5 − Matlab Reference

Rate: 0.4 − Matlab Reference

Rate: 0.3 − Matlab Reference

Fig. 4. FER of a polar SC decoder of blocklength N = 512 as
simulated by our FPGA-based accelerator and calculated by a reference Matlab
implementation.

VI. CONCLUSION

In this paper, we presented an FPGA-based accelerator for
FER simulation of SC decoding of polar codes. By observing
that the feedback part of the SC decoder can be ignored for
the evaluation of the FER, the proposed accelerator is able to
achieve a simulation throughput of 108 codewords per second.
Moreover, we experimentally demonstrated the feasibility of
using a large number of free-running XOR-based oscillators
on an FPGA in order to generate the massive amounts of
randomness required by our simulator. More specifically, for a
maximum blocklength of N = 1024 and running at 100 MHz,
our system generates more than 1 Terasamples of randomness
per second.

REFERENCES

[1] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[2] M. Mondelli, S. Hamed Hassani, and R. Urbanke, “Unified scaling of
polar codes: Error exponent, scaling exponent, moderate deviations, and
error floors.” [Online]. Available: http://arxiv.org/abs/1501.02444

[3] M. Bastani Parizi and E. Telatar, “On the correlation between polarized
BECs,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), July 2013, pp. 784–
788.

[4] A. Mishra, A. J. Raymond, L. G. Amaru, G. Sarkis, C. Leroux,
P. Meinerzhagen, A. Burg, and W. J. Gross, “A successive cancellation
decoder ASIC for a 1024-bit polar code in 180nm CMOS,” in IEEE
Asian Solid State Circ. Conf. (A-SSCC). IEEE, 2012, pp. 205–208.

[5] C. Leroux, I. Tal, A. Vardy, and W. J. Gross, “Hardware architectures
for successive cancellation decoding of polar codes,” in IEEE Int. Conf.
Acoustics, Speech and Sig. Proc. (ICASSP). IEEE, 2011, pp. 1665–1668.

[6] S. H. Hassani and R. Urbanke, “Polar codes: robustness of the successive
cancellation decoder with respect to quantization,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), July 2012, pp. 1–6.

[7] C. Baetoniu, “Method and apparatus for true random number
generation,” Jun. 17 2008, US Patent 7,389,316. [Online]. Available:
http://www.google.com/patents/US7389316

[8] Xilinx, “7 series FPGAs overview,” 2015. [Online]. Avail-
able: http://www.xilinx.com/support/documentation/data sheets/ds180
7Series Overview.pdf

