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Abstract

With its real-time capabilities, stream processing is popular for applications like anomaly

detection for residential gateways and analytics for business intelligence. Just as other areas of

computing, there has been an inevitable trend to shift stream processing to the cloud, thanks

to virtualisation technologies and the ubiquity of the Web. Recently launched Amazon Kinesis

is amongst cloud-based stream buffer services that bridge the gap between off-cloud sources

and cloud-based processing engines. Yet such services are prone to commercial or physical

constraints on data ingest rate, calling for the parallelisation and chaining of processing nodes

in a multi-layer topology.

In this work, we studied the multi-layer parallelisation of time-based stream aggregation, a

commonplace component in stream processing applications, under the impact of ingest rate

constraints in the cloud. In particular, comprehensive analyses on rate transfer properties

of processing nodes at various aggregation layers were conducted by considering the stream

sources (e.g. residential gateways) and their information flow. This led to our proposal

of systematic approaches to determining a parallelisation topology that avoids ingest rate

saturation while minimising operational costs and deployment complexity. By applying these

approaches, system over-provisioning or trial-and-error design can be eliminated.

Our analyses were empirically verified through various simulations. Prototyping in the real

Kinesis environment was also conducted to back up our analytical results and proposed topo-

logy determination approaches. It is noteworthy that, although the work has been motivated

by and prototyped with Amazon Kinesis, it remains generic in nature and its applicability can

extend beyond the specific scenario of Kinesis.

Keywords: stream processing; cloud computing; Amazon Kinesis; stream buffer; ingest rate

constraint; multi-layer parallelisation; time-based stream aggregation; rate transfer analysis;

systematic approach; topology determination; provisioning.
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Résumé

Grâce à ses capacités temps-réel, le stream processing (traitement des flux de données) est

populaire pour plusieurs applications telles que la détection d’anomalies pour les passerelles

résidentielles, ou encore l’analyse pour l’informatique décisionnelle. Comme pour d’autres

domaines en informatique, il existe une tendance de fond pour la migration des approches

stream processing vers le cloud (nuage informatique), due aux technologies de virtualisation

et à l’ubiquité du Web. Amazon Kinesis, récemment lancé, compte parmi les services de

tampon pour les flux de données dans le cloud. Ces tampons permettent de relier les sources

de données hors-cloud aux moteurs de traitement dans le cloud. Néanmoins, de tels services

sont soumis à des contraintes (commerciales ou physiques) sur le débit entrant des données,

ce qui rend nécessaire la parallélisation et le chaînage des nœuds de traitement, en une

topologie multi-couches.

Dans ce travail, nous avons étudié la parallélisation multi-couches de l’agrégation temporelle

des flux de données. C’est une composante dans des applications stream-processing, qui est

impactée par les débits d’entrée limités du cloud. En particulier, nous avons effectué une

analyse en profondeur des débits résultants sur les nœuds de traitement dans les différentes

couches d’agrégation, en considérant les sources (par exemple les passerelles résidentielles) et

leurs flux d’information. Cela nous a conduit à proposer des approches systématiques pour la

détermination d’une topologie de parallélisation, afin d’éviter la saturation à l’entrée du cloud,

tout en minimisant les coûts opérationnels et la complexité de déploiement. En appliquant

ces approches, on peut éviter la sur-allocation des ressources et les essais par tâtonnement.

Nos analyses ont été vérifiées empiriquement via des simulations. Des prototypes dans l’envi-

ronnement Kinesis ont été également effectués pour conforter nos résultats analytiques et

nos approches pour la détermination d’une topologie. Il est important de noter que ce travail

reste de nature générique et donc que son applicabilité peut s’étendre au-delà du scénario

spécifique qui concerne Kinesis d’Amazon, bien que ce dernier en ait constitué sa motivation

première, ainsi que son environnement de prototypage.

Mots clefs : stream processing (traitement des flux de données), cloud computing (informa-

tique en nuage), Amazon Kinesis, tampon pour les flux de données, contrainte sur le débit

d’entrée, parallélisation multi-couches, agrégation temporelle des flux de données, analyse

des débits, approche systématique, détermination d’une topologie, allocation des ressources.
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1 Introduction

1.1 From batch to stream processing

Since the early days of computer technologies, enterprise and scientific computing has centred

around data processing. Indeed, the information age has been driven in part by the demand

to handle huge datasets. With the advent of modern hardware and the ability to interconnect

machines, many breakthroughs have exhibited in the field over the decades.

One major milestone was MapReduce [1] by Google Inc., a simple yet highly scalable model

for batch processing on clusters of commodity hardware or virtual machines. It requires

user-defined map and reduce phases for key-value data processing while the runtime takes

care of data partition, task distribution and scheduling, fault tolerance, and communication.

Besides Google’s proprietary implementation, Apache Hadoop [2] is a popular open-source

MapReduce framework. As the name implies, batch processing engines like Hadoop require

data be preloaded into some storage, e.g. a Hadoop Distributed File System (HDFS) [3].

An alternative paradigm called stream processing thus emerged to relax the storage require-

ments and allow ‘online’ processing upon data arrivals. Not only does it enable processing of

gigantic amounts of data at high rate (where store-then-process proves much less feasible), but

it is also crucial for applications like infrastructure anomaly detection and real-time business

intelligence (where timely insights into live data is vital to competitive advantage).

Various stream processing notions exist in the literature as the model attracted studies at the

turn of the century. Babcock et al. [4] defined it as a potentially unbounded data stream of

continuous arrivals, no control over processing order and almost no possible retrievals of pro-

cessed data. Similarly, Stonebraker et al. [5] discussed ‘rules’ for real-time stream processing —

zero-storage processing, in-stream querying, imperfection handling, outcome predictability,

high availability, data integration, distribution and scalability, and instantaneous response.

While batch processing has been briefly discussed in this section for background and compar-

ison, we focused solely on stream processing in this work.
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1.2 Stream processing systems

Numerous systems have been proposed thus far in academia, notably for stream querying like

STREAM [6], Aurora [7] and Borealis [8]. In the industry, Google Inc. employs MillWheel [9], its

low-latency stream processing framework for time-based aggregation, and Photon [10], its

distributed system for fault-tolerant and scalable joining of real-time data streams.

In the open-source world, Apache Storm [11] is a popular distributed computing framework

for scalable, fault-tolerant and real-time processing of data streams. On the whole, Storm

deals with the computation of data streamed from sources called spouts. It allows to define a

topology where these data get processed at computing nodes termed bolts. In such a topology,

different bolts represent distinct transformations on the data. Each bolt can be scaled as

independent and parallel task instances at runtime as the topology is deployed onto a cluster.

1.3 Streaming towards the cloud

Thanks to virtualisation technologies and the ubiquity of the Web, cloud computing is pro-

gressing fast with more diverse offerings available, including those from Internet giants like

Google Cloud Platform [12] and Amazon Web Services (AWS) [13]. The move from traditional

software and infrastructure to online ‘utility’ services [14, 15] relieves companies of inflexible

provisioning and the burden of physical maintenance. Just as other computing areas, stream

processing is no exception and the trend to shift towards the cloud is inevitable.

At first glance, the shift could just involve the deployment of any stream processing systems, say

Storm [section 1.2], onto cloud-based virtual machines such as Google Compute Engine [16]

or Amazon Elastic Compute Cloud (EC2) [17]. Nonetheless, in practice, there remains the issue

of ingesting data streams from real-life off-cloud sources. Examples of this ‘streaming towards

the cloud’ scenario include the monitoring of residential gateways by telecommunication

operators and the processing of sensor network data streams. This calls for a scalable, reliable

and highly available cloud-based stream buffer that integrates well with the cloud-enabled

stream processing engine of choice, in order to fully realise stream processing in the cloud.

In late 2013, Amazon Web Services Inc. launched Amazon Kinesis [18], adding to its cloud

computing suite. Much as it is advertised as a service for ‘real-time processing of streaming

data’ [18], Kinesis implements precisely and solely the cloud-based stream buffer discussed

above with no processing facility provided. In other words, Kinesis must necessarily be em-

ployed in conjunction with other systems and services, either from Amazon’s cloud ecosystem

or otherwise, to complete the cloud-based stream processing work flow.

Section 1.4 attempts to review relevant aspects of Kinesis beyond corporate buzzwords and

marketing terms, for the service partly serves as the motivation [section 1.6] and prototype

environment [section 6.5] for this work. For more comprehensive technical details, the reader

is however advised to consult Amazon’s official documentation [19].
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1.4 Amazon Kinesis

As a Web service, Amazon Kinesis [18] can be interacted via an HTTP Application Program-

ming Interface (HTTP API) [20]. Typical clients include Web browsers, cURL [21] and custom

programs running an HTTP client library like libcurl [21] or HttpComponents [22]. For con-

venience, certain administrative tasks can be accomplished through a Web portal [23] and

Software Development Kits (SDKs) [24, 25] are available for Java [26] and PHP [27]. The former

embeds relevant calls in Web pages whereas the latter wrap the entire API in the respective

languages. Figure 1.1 depicts various methods of interaction with Amazon Kinesis.

Figure 1.1: Methods of interaction with Amazon Kinesis

In terms of functionality, Kinesis is a high-capacity, high-throughput and reliable buffer in

the cloud. It accepts data records from producers and releases them to consumers upon

request. All producer, consumer and dual-role applications are external to Kinesis and must

be deployed elsewhere, albeit local or remote, physical or cloud-based. Amazon EC2 [17] is

thus a viable but not the sole option for hosting Kinesis applications.

Each data record comprises a partition key and a free-format payload. It is noteworthy that,

due to the nature of HTTP, data ought to be actively pushed to and pulled from Kinesis by

applications, either via the HTTP API or convenient wrapper SDKs. In other words, no push

consumptions are possible by default. Moreover, a particular record can be consumed multiple

times by multiple applications; ingested data are actually retained for 24 hours.

The Kinesis buffer of a particular AWS account and region is organised into streams. Each

stream consists of independent sub-streams called shards where data actually reside. Every

producer only indicates the desired target stream when pushing data to Kinesis while the

aforementioned ‘partition key’ field is used to route data records to a constituent shard. In

fact, a cryptographic hash function is applied on the partition key and each shard is ‘in charge’

of a portion of the hash value range. Shard splits and merges are possible but can only be

specified along the hash value range, which could be less intuitive for certain applications.
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Furthermore, each consumer must indicate the specific shard of interest. The service then

allows first-in-first-out (FIFO) and last-in-first-out (LIFO) consumption orders on that shard,

with FIFO being suitable for many use cases. All in all, the Kinesis buffer structure and its

producer-consumer operations can be summarised in the illustration of figure 1.2.

Figure 1.2: Amazon Kinesis structure and basic operations

In Kinesis, billing is conducted primarily on the basis of shards and their active duration. At the

time of this write-up, each shard costs US$0.015 an hour. Apart from this data-independent

price determined solely by usage set-up and duration, Amazon is also charging another

US$0.028 for every 1,000,000 records pushed to the service. More details on pricing and

payment schemes can be found in Amazon’s documentation [28].

One crucial issue with Kinesis is that several service limits apply, for technical and/or com-

mercial reasons. Some concern data sizes (e.g. maximum 50 KB for a record payload) and

default first-tier offer (e.g. maximum 10 shards in total, extensible on demand). Others pertain

to processing throughput, as quoted verbatim from the documentation [29] below:

• Each shard can support up to 5 read transactions per second up to a maximum total of

2 MB of data read per second.

• Each shard can support up to 1,000 write transactions per second up to a maximum

total of 1 MB data written per second.

In the above, ‘transaction’ refers to an HTTP API call where by design, a write pushes a single

record while a read can pull multiple records. These inevitable shard throughput limits and

the shard-based billing scheme partly contributed to the motivation of this work [section 1.6].

In practice, most consumer applications would prefer the intuitive push consumption model

following the observer design pattern [30, chapter 5] (aka publish-subscribe or listener).

Therefore, Amazon offers on top of the SDK a convenient Kinesis Client Library (KCL) [31]

which implements exactly this push model. Meanwhile, KCL is only available for Java [26].

Despite its misleading name, KCL shall not be confused with the SDK. Both are client libraries

for Kinesis but the former partially wraps the latter which in turn invokes the underlying HTTP

API. Certainly, KCL is an option only for consumer applications, and supports only the push
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consumption model. Other operations must still go through the SDK or HTTP API. Indeed, a

typical Kinesis usage with producer-consumer applications involves both the SDK and KCL,

as shown in figure 1.3, and was considered in this work.

Figure 1.3: Typical usage scenario of Amazon Kinesis

When using KCL, a consumer instance is associated with a stream and can have one (typically)

or multiple workers instantiated. At most one worker consumes data from each shard at a

time. Should the need arises, one worker can be assigned to multiple shards, triggering it to

spawn multiple threads, each for a record processor responsible for a shard. Record processor

is the user-defined listener or event handler that processes data pushed down by KCL from

the shard. Assignments of workers to shards are automated by KCL, as opposed to the explicit

shard indication when using the SDK. These are coordinated via a checkpointing scheme

backed by an Amazon DynamoDB [32] table (hardcoded use by KCL, separate billing). The

coordination is scoped to application instances bearing the same application ID.

Last but not least, Kinesis streams and associated application instances can be chained in a

topology to realise more complex stream processing scenarios. Amazon also offers connector

libraries [33, 34] to conveniently integrate Kinesis applications with other Amazon services

and Storm [11]; nonetheless, the use of these is not mandatory.

1.5 Time-based stream aggregation

As the title implies, this work examined time-based stream aggregation. Despite its simplicity,

it is commonplace in many applications, either as a stand-alone one or a constituent phase of

a larger data processing work flow. This section introduces its fundamental concepts in order

to set the scene for subsequent discussions and analyses.
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Definition 1.1 (Time-based stream aggregation). Time-based stream aggregation in-

volves multiple streaming data sources and an aggregation system which implements an

admissible aggregate function agg(.) [definition 1.4]. Data sources emit streams of key-value

tuples (T, v) where T is a time period ID [definition 1.2] and v is a target value [definition 1.3].

From a particular source, there can be multiple tuples emitted with the same k. Also, the

overall collection of tuples with a particular k can originate from many sources. The concrete

format of time period IDs is irrelevant as long as they conform to definition 1.2.

Definition 1.2 (Time period ID). In the context of time-based stream aggregation [defini-

tion 1.1], time period ID T in emitted tuple (T, v) is a unique symbolic identifier drawn from an

arbitrary but predefined domain to denote a particular disjoint time period along the universal

timeline. Every tuple (T, v) is emitted at a time point contained in the period identified by T .

Example 1.1. In some arbitrary application, T = 1 may denote ‘August 1985’ and T = 2

indicates ‘September 1985’. In another separate application, T =α can mean ‘8:00–11:59 am,

8th August 2014’ while T =β represents ‘2:00–7:59 pm, 8th August 2014’.

As can be seen from definition 1.2, time period IDs are indeed application-specific but their

definitions should be uniform throughout the application concerned. Next, the notion of

target value v can be formalised by definition 1.3.

Definition 1.3 (Target value). In the context of time-based stream aggregation [defini-

tion 1.1], target value v in emitted tuple (T, v) is a data item drawn from an arbitrary but pre-

defined domain, and compatible with admissible aggregate function agg(.) [definition 1.4].

For most practical applications, target value v is usually numerical, for instance, v ∈ N or

v ∈ R+. However, this is not necessarily the case as long as the domain is compatible with

the admissible aggregate function in use. Next, we identify the class of admissible aggregate

functions considered for time-based stream aggregation by giving definition 1.4.

Definition 1.4 (Admissible aggregate function). Let V ? be a multiset of target val-

ues [definition 1.3] drawn from domain D. Let
{
V ?

i

∣∣ i ∈ {1..N }
}

be a partitioning of V ? into N

disjoint sub-multisets (N ∈N∗). Aggregate function agg
(
V ?

) ∈D is admissible if and only if:

agg
(
V ?

)= agg

(
N⊎

i=1

{
agg

(
V ?

i

)})
(1.1)

where
⊎

denotes ‘addition of multisets’.

Example 1.2. Aggregate functions in relational database management systems (RDBMs)

such as SUM, COUNT, MAX and MIN are good examples of admissible aggregate functions.
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Remark 1.1 (Generalised admissible aggregate function). Definition 1.4 can be gener-

alised with agg
(
V ?

)
returning a multiset of D-valued target values (instead of a single one).

Equation (1.1) then becomes:

agg
(
V ?

)= agg

(
N⊎

i=1
agg

(
V ?

i

))
(1.2)

Example 1.3. Examples of generalised agg(.) include finding top-K and bottom-K from a

multiset of totally-ordered target values. Note that MAX and MIN in RDBMs are actually special

cases of top-K and bottom-K when K = 1.

In this work, only original definition 1.4 was considered, though, without loss of generality.

Remark 1.2 (Initialiser & accumulator for admissible aggregate function). An ad-

missible aggregate function agg(.) can be defined by initialiser agg(;) (or singleton-based

agg({v})) and accumulator agg
(
V ?] {v}

)= accumagg
[
agg

(
V ?

)
, v

]
.

Example 1.4. sum
(
V ?

)= ∑
v∈V ?

v (cf. SUM in RDBMs) where v ∈R,∀v ∈ V ? can be defined by:

sum(;) = 0 or sum({v}) = v (initialiser)

sum
(
V ?] {v}

)= accumsum
[
sum

(
V ?

)
, v

]= sum
(
V ?

)+ v (accumulator)
(1.3)

Informally speaking, an aggregate function is admissible if it can be applied in phases –

first on disjoint sub-multisets of target values to obtain intermediate results, then on the

multiset formed by these intermediate results. In other words, such functions permit partial

accumulation and parallelisation of the aggregation process.

Lastly, we conclude this introductory section by presenting the complete time-based stream

aggregation work flow in definition 1.5.

Definition 1.5 (Time-based stream aggregation output). In the context of time-based

stream aggregation [definition 1.1], for every time period ID T [definition 1.2] present in the

streams, the aggregation system must output a single tuple (T, vT ) such that:

vT = agg
(
V ?

T

)
(∀T ) (1.4)

where V ?
T is the multiset of target values v [definition 1.3] emitted in all tuples (T, v) from all

sources, and agg(.) is the admissible aggregate function [definition 1.4] in use.
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1.6 Motivation & problem statement

This section explores plausible set-ups for time-based stream aggregation [section 1.5], in

general as well as in the cloud context. From there the project motivation is identified through

a series of questions then a problem statement is formally presented.

Our goal is to identify a simple yet efficient set-up for time-based stream aggregation. First of

all, the straightforward and minimal set-up with a single aggregation node called ‘sink’ can

be considered [figure 1.4]. Key-value tuples (T, v) from the sources are fed to this sink which

records T and continuously accumulates v into an internal buffer b using the accumulator

of agg(.) [remark 1.2]. Here minimal single-buffer processing is adopted. The accumulation

continues as long as received tuples have the form (T,−). Upon detecting a key change, i.e.

receiving (T ′,−) where T ′ 6= T (start of a new time period), the sink outputs (T,b), records T ′

and reset b using the initialiser of agg(.) [remark 1.2].

Figure 1.4: Minimal set-up for time-based stream aggregation

In reality, streams from several sources may incur varying propagation delays and slightly

different key-change moments due to inaccurate demarcation of time periods. Their interleav-

ing at the sink then results in an ‘unclean’ output stream where certain keys unsatisfactorily

appear multiple times near the ideal point (cf. definition 1.5). To alleviate this, a cleaner node

can be added after the sink. This cleaner behaves similarly to the sink but it does not output

immediately upon a detected key change and delay to a heuristically reasonable extent for

‘no’ further duplicates. Such delay can be a time-out or based on recent tuples cache, both of

which need configuration. In subsequent discussions, a cleaner is assumed to always exist but

it will neither be mentioned nor depicted for the sake of brevity.

Figure 1.4’s set-up is generally sufficient, unless a substantially large number of sources emit

data at considerably fast rates while ingest rate constraints exist at aggregation nodes like the

sink. Overloaded nodes cannot cope with the incoming amount of data, leading to significant

data drops and vastly inaccurate results for time-based stream aggregation. This scenario is

highly relevant when porting to the cloud with buffer services like Kinesis imposing throughput

limits [section 1.4]. In fact, the sink can be realised by a single-shard Kinesis stream and an

associated KCL-based consumer instance with a single worker (consequentially a single record

processor). The overall ingest constraint is contributed from the combined read/write limits

on the shard, and possibly also bounded computing power at the sink’s host.

An intuitive solution to the aforementioned issue is to parallelise with multiple aggregation
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nodes called ‘processors’ [figure 1.5]. These processors behave in exactly the same manner as

the sink and do not communicate amongst themselves, i.e. single-buffer, zero-coordination

processing. Outputs from the processors (1st aggregation phase) will finally need to be fed

into a single sink (2nd aggregation stage) to ensure a single final output stream. Distribution of

data to parallelised nodes should be uniformly random for maximal efficiency and unbiased

load balance. Actually, parallelisation and multi-staging are possible thanks to the nature

of admissible aggregate function agg(.) [definition 1.4]. Unlike the sink, there is no cleaner

attached to the output of every processor for simplicity and efficiency. As cleaners require

heuristic configuration of the delay extent and more complex operations, clean-up should be

restricted to just before the ultimate output consumption.

Figure 1.5: Time-based stream aggregation with single layer of parallelised processors

Figure 1.5’s topology is also applicable to Kinesis deployment thanks to the ability to chain

Kinesis streams and define the number of shards [section 1.4]. In particular, one would

have two streams — the first connects the sources to the processors with as many shards

as the number of processors while the second links the processors to the sink with one

shard. For simplicity and to maximise resource efficiency, one can have as many KCL-based

consumer instances (with one internal worker each) as the number of processors so that KCL

will assign one full worker for each shard. Effectively, one shard coupled with a full KCL-based

single-worker instance implements the model’s abstract processor. Also, for an unbiased

uniform spread of data to parallelised processors, Kinesis partition keys [section 1.4] should

be randomised; the designation of specific shards for specific data records is undesired here.

A first question emerges at this point — ‘How many processors should there be in the parallel-

isation layer of figure 1.5?’ At first glance, the issue might appear straightforward. One may

just evaluate the total source emission rate and use that information to compute the number

of processors with respect to their ingest constraint (all rates and constraints determined

by specifications or empirical assessments). Usually, the more processors, the ‘safer’ it is;

however, one needs to balance also the operation costs as more processors imply a higher

price to pay. This is specifically true in the case of Kinesis where each processor is associated

with one shard, the basis for billing [section 1.4]. An informed safety threshold is therefore

preferred, not just going for an infinite number of processors to achieve utmost safety.

In addition, as the whole purpose of introducing parallelisation is to tackle potential problems

incurred by ingest rate constraints, a second question arises – ‘Does the single parallelisation

layer of figure 1.5 suffice to safely avoid rate-related problems?’ The answer to this question is no
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longer as straightforward. In fact, it all depends on the output rate at those processors, which

become ingest rate for the subsequent sink. With the presence of real-world propagation

delays and inaccurate time period demarcation (see above), the determination of such output

rate is in no way trivial and thus requires insightful and streamlined analysis.

Based on the output rates of the first layer, one or more additional layers could be necessary

before output data can flow into the sink [figure 1.6]. Two more questions naturally follow —

‘How many additional parallelisation layers are required?’ and ’How many processes should

there be in each of these layers?’ Answers to these questions are certainly non-trivial. It is

noteworthy that, besides safety with respect to rate saturation issues (which is definitely guar-

anteed with over-provisioning — infinite number of layers with infinite number of processors

each), balancing with the costs directly resulting from the topology size is also of great con-

cern, as discussed above. Again, this is highly relevant when the use of Kinesis is adopted,

owing to its inherent service limits and billing basis [section 1.4]. Furthermore, in cases where

propagation delays are significant, more layers can introduce unsatisfactory latency as well.

Figure 1.6: Time-based stream aggregation with multi-layer parallelisation

All in all, a systematic approach to determining a safe and reasonable topology for such a multi-

layer parallelisation is preferable, especially to over-provisioning, purely heuristic estimation

or unfounded trial-and-error. Based on the above motivational factors, this work specifically

tackled the following problem.

Problem statement. Considering the multi-layer parallelisation (consisting of aggregation

nodes organised as layers of processors and a last aggregation sink, cf. figure 1.6) of time-based

stream aggregation [section 1.5] with ingest rate constraints at single-buffer zero-coordination

aggregation nodes, derive an informed, streamlined and systematic approach to determine a

reasonable parallelisation topology such that ingest rate saturation is guaranteed to be averted

at all nodes while minimising the topology size for reduced cost and complexity.

While partly motivated by cloud-based stream buffer systems like Kinesis [section 1.4], the

problem remains sufficiently versatile and generic and could potentially be generalised and

extended for applicability in a broader context.
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1.7 Related work

As briefly cited in section 1.2, Photon [10] is Google’s distributed system for fault-tolerant and

scalable joining of real-time data streams. It tackles the problem of joining primary and foreign

data streams, similar to the join operator in relational databases. Operand data however do

not reside in tables but are instead presented continuously . Technically speaking, Photon

reads timestamped inputs, e.g. event logs, from a distributed Google File System (GFS) [35].

Photon highlights the importance of obtaining joined results in near real-time as valuable

information with immense business value is usually embedded therein. Certain data can be

collected in pre-joined form but this could be costly due to traffic overheads. An example

is the join between search-query and ad-click streams in Google’s advertising system where

extracted information allows advertisers to adjust their strategies to evolving user behaviour.

Photon successfully solves the problem under many constraints — exactly-one semantics, fault

tolerance at data-centre level, high scalability, low latency, unordered streams and delayed

primary streams. Most of these challenges are related to having operations across geograph-

ically distributed data centres. A notable value is that Photon has been deployed to real

production environments, permitting thorough performance and design evaluations.

Compared to our work, while sharing the same ultimate goal of achieving timely outputs from

data streams, Photon tackles a more specific problem. The focus is rather on how to perform

all operations reliably in a distributed and timely manner. Furthermore, Photon also realises a

database-like operation (join, instead of aggregation) but it focuses on sophisticated solutions

for many distributed computing challenges without considering ingest rate constraints.

In a different realm, netmap [36] proposes ultra-fast methods for handling streaming data

with close-to-zero latency. Nonetheless, this solution operates at the Media Access Control

(MAC) layer or Open Systems Interconnection (OSI) layer 2. Thus it is not directly suitable for

application-level problems like time-based stream aggregation presented in this work.

Besides, ECM-Sketch [37] approaches stream processing differently. It does sketching of

aggregation over distributed, high-dimensional streams using sliding window. It does not deal

with ingest rates but employs a tree for aggregation. Our work could therefore be adapted to

determine the tree topology for ECM-sketch in the presence of ingest rate constraints.

In terms of application, LD-Sketch [38] suggests that time-based stream aggregation is essen-

tial for anomaly detection in network traffic data streams. Parallelisation is indeed LD-Sketch’s

approach to cope with the ever increasing amount and heterogeneity of input streams. Just as

ECM-sketch, it still employs the sketching paradigm. Considering Amazon Kinesis [section 1.4]

and our motivation discussions [section 1.6], exact aggregation is possible with a processing

model such as single-buffer zero-coordination. Hence, the choice between sketching and

exact aggregation of streaming data remains an application-specific decision.

11
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1.8 Organisation of the thesis

Apart from this introductory chapter, the rest of the thesis is organised as follows:

• First and foremost, chapter 2 specifies the project scope with ample discussions and

justifications. It then formalises the problem for proper analyses and solutions. The

chapter also outlines the methodology adopted in this work.

• Next, chapter 3 explores several preliminaries necessary for subsequent analyses. Al-

though the contents can always be consulted through back references, the reader is

strongly advised to peruse all background information before proceeding.

• Chapter 4 delves into the details of rate transfer analysis at various layers of the parallel-

isation of time-based stream aggregation. This analytical chapter and its foundational

chapter 3 constitute the most significant portion of the work. Indeed, they together

provide a solid basis for the topology determination presented in chapter 5.

• As mentioned above, chapter 5 is dedicated to topology determination which estab-

lishes the systematic approach to multi-layer parallelisation for time-based stream

aggregation under ingest constraints — the very topic of this work — based on import-

ant results from chapter 4.

• Chapter 6 presents the empirical verification of certain analyses with simulations, as

well as the application of the proposed design approach as a prototype in the real

Amazon Kinesis environment.

• Lastly, chapter 7 concludes the thesis by highlighting major contributions as well as

suggesting possible future work.
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2 Formalisation & methodology

2.1 Project scope

Owing to the project’s time and resource constraints, the problem statement [section 1.6] was

tackled within the scope presented here. This does not alter the problem, but rather positions

it in acceptable settings for analyses and applications.

First of all, it is assumed that every source emits tuples (T, v) according to a homogeneous

Poisson process [39, section 2.1, pp. 11–13] on the one-dimensional timeline. Homogeneity

refers to the fact that there should be no fluctuations in mean arrival rate. Poisson process

is chosen because sources are meant to represent pseudo-regular data arrivals, with minor

irregularities due to natural randomness. Indeed, Poisson process has been popular in physics,

computer networks and queueing theory to model this kind of arrival phenomena [39].

In addition, all data sources shall be homogeneous amongst themselves, in the sense that they

exhibit the same mean rates. This assumption works in the application context of time-based

stream aggregation whereby multiple sources belong to the same device class configured to

emit data in the same manner. Similarly, rates shall be measured in terms of the number of

arrivals per second (items/sec), implying that all data items have the same size. Bytes-based

rates like MB/sec or kbps can be converted to items/sec using an average data item size.

Furthermore, we consider regular key changes, implying equal time periods represented

by keys k, the time period IDs [definition 1.2]. As a matter of fact, this is a natural set-up

for time-based stream aggregation as one typically uses periodic clock- or calendar-based

intervals as periods of interest, such as hourly, daily or weekly aggregation. In order to model

the inaccuracy of time period demarcations by individual sources, Gaussian key-change

offsets will be employed. This means actual key change moments are normally distributed

around their respective ideally regular ones. This simulates clock skews commonly found in

practice, and is analogous to other studies (e.g. Kohno et al. [40] models clock skews using a

Gaussian distribution around their server’s system time). Since all sources are homogeneous,

the aforementioned Gaussian offsets shall have the same variance for consistency.
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Last but not least, for the aggregation nodes (processors and the sink), while being completely

independent from one another due to zero-coordination processing [section 1.6], all shall

exhibit the same ingest rate constraint. This models real-world scenario where one would

normally launch multiple instances on the same software and hardware specifications, albeit

local or cloud-based, for parallelised aggregation nodes. The rate constraints can be derived

from published specifications (e.g. service throughput limits indicated by Kinesis documenta-

tion [29]) or obtained from empirical assessments on real systems (to cover multiple aspects

like computing power and network bottlenecks at the same time).

2.2 Problem formalisation

In this section, we formalise the multi-layer parallelisation [section 1.6] of time-based stream

aggregation [definition 1.1]. Various formal concepts and notations presented here serve

as the foundation for subsequent system analyses [chapter 4] as well as the derivation of a

systematic approach [chapter 5] to determining a topology for such parallelisation.

Definition 2.1 (Multi-layer parallelisation). The multi-layer parallelisation of time-based

stream aggregation [definition 1.1] is a topology of n0 sources [definition 2.2] (n0 ∈ N∗) in

layer 0 and L aggregation layers (L ∈ N∗). Aggregation layer ` (` ∈ {1..L−1}) comprises n`
processors [definition 2.4] (n` ∈ N∗) while the last layer L has a single sink [definition 2.5]

(nL = 1). The kth node in layer ` (k ∈ {1..n`} ,` ∈ {0..L}) is denoted as (`,k). Consecutive layers

`−1 and ` (` ∈ {1..L}) form a complete bipartite graph where directed edges point from layers

`−1 to `, representing directed flows of data streams.

Figure 2.1: Formalised multi-layer parallelisation of time-based stream aggregation

This topology for multi-layer parallelisation is depicted in figure 2.1. Next, we clarify the

concepts, functionalities and characteristics of various nodes in the topology.
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Definition 2.2 (Source). Source (0,k) (k ∈ {1..n0}) in the multi-layer parallelisation [defin-

ition 2.1] emits data tuples according to a homogeneous Poisson process with same mean

arrival rate λ(out)
0k (t) = λ0 ∈ R+ (items/sec), ∀k ∈ {1..n0} ,∀t ∈ R. At each source, tuples are

uniformly routed to all processors (1,m) in the next layer (m ∈ {1..n1}), i.e. a tuple is routed to

processor (1,m) with probability
1

n1
. Furthermore, at time t ∈ [

tki , tk,i+1
]
, source (0,k) emits

data tuples in the form (Tki , v). Key-change moment tki = t (ideal)
i +Ωk where independent

random offsetΩk ∼Normal
(
0,σ2

k

)
for source (0,k) and t (ideal)

i = t (ideal)
i−1 +∆t ,∀i with constant

ideal key-change period ∆t ∈R∗
+ applicable to all sources.

Definition 2.3 (Aggregation node). Every node in layers 1 to L (L ∈N∗) in the multi-layer

parallelisation [definition 2.1] is an aggregation node, which can either be a processor [defini-

tion 2.4] or the sink [definition 2.5].

Definition 2.4 (Processor). Processor (`,m) (` ∈ {1..L−1} ,m ∈ {1..n`} ,L ∈N∗) in the multi-

layer parallelisation [definition 2.1] receives data tuples in the form of stream superposition

from all nodes in the previous layer `−1. Each processor runs algorithm 2.1 (single-buffer,

zero-coordination operation) using an internal time period ID cache T0, a target value buffer

b (cf. section 1.6), as well as the initialiser and accumulator of admissible aggregation function

agg(.) [definition 1.4]. Output tuples are then uniformly routed to all processors (`+1, w)

in the next layer (w ∈ {1..n`+1}), i.e. a tuple is routed to processor (`+1, w) with probability
1

n`+1
.

Algorithm 2.1: Single-buffer, zero-coordination operation at aggregation node

T0 ← null; b ← agg(;);

foreach tuple (T, v) received do
if T0 = null then

T0 ← T ; b ← agg({v});
else if T 6= T0 then

emit tuple (T0,b);
T0 ← T ; b ← agg({v});

else
b ← accumagg(b, v);

Definition 2.5 (Sink). The sink (L,1) (L ∈ N∗) in the multi-layer parallelisation [defini-

tion 2.1] behaves in precisely the same manner as that of a processor [definition 2.4], except

that there is no uniform routing to the next layer (as there is no such layer). Instead, tuples are

sent to a cleaner node (cf. section 1.6) which interfaces with the ultimate output consumer.
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The following definitions formalise the notations of incoming and outgoing rates incurred at

various nodes, as well as the ingest rate constraint at these nodes (which is the fundamental

condition to be satisfied in our problem statement). These are also illustrated in figure 2.1.

Definition 2.6 (Rates in multi-layer parallelisation). In the context of multi-layer paral-

lelisation [definition 2.1], data stream flowing from nodes (`−1,k) to (`,m) (` ∈ {1..L}) has

rate λ(`−1)k:`m(t) (items/sec) at time t . Total incoming rate at time t at aggregation node

(`,m) (` ∈ {1..L}) is denoted as λ(in)
`m (t) (items/sec). Total outgoing rate at time t at source or

processor (`,m) (` ∈ {0..L−1}) is denoted as λ(out)
`m (t ) (items/sec).

Definition 2.7 (Ingest rate constraint). Every aggregation node [definition 2.3] in the multi-

layer parallelisation [definition 2.1] imposes the same ingest rate constraint θ (items/sec)

(θ ∈R+). Ingest rate saturation can be avoided (cf. section 1.6) if and only if:

λ(in)
`m (t )6 θ (∀` ∈ {1..L} ,∀m ∈ {1..n`} ,∀t ∈R) (2.1)

Lastly, we present the formalised problem statement (cf. section 1.6) using the above notations.

Formalised problem statement. Consider the formalised multi-layer parallelisation [defin-

ition 2.1] of time-based stream aggregation [definition 1.1]. Given the number of sources n0,

the total emission rate λ0 at each source, the ingest rate constraint θ at each aggregation node,

derive an informed, streamlined and systematic approach to determining the parallelisation

topology, i.e. the reasonable numbers of processors n` at layers ` (` ∈ {1..L−1}), such that ingest

rate saturation can be avoided at all aggregation nodes [equation (2.1)] while employing the

least number of nodes
L∑
`=1

n` possible and the least number of layers L possible.



min
n1,n2,...,nL−1

L−1∑
`=1

n`

min
L

L

subject to: L,n1,n2, . . . ,nL−1 ∈N∗

subject to: λ(in)
`m (t )6 θ (∀` ∈ {1..L} ,∀m ∈ {1..n`} ,∀t ∈R)

(2.2)

It is noteworthy that the determination of the parallelisation topology boils down to determin-

ing the numbers of processors n` at layers ` because interconnections within the topology

are well-defined (see definition 2.1) and there must always be nL = 1 sink. The minimisation

of the number of nodes results in the minimisation of deployment cost (see discussions in

section 1.6) while the minimisation of the number of layers reduces complexity and possible

latency, consequently increasing overall efficiency.
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2.3 Methodology

As can be seen from the formalised problem statement [section 2.2], the ultimate goal is to

minimise the total number of aggregation nodes and the total number of layers while satisfying

the constraints dictated by equation (2.1). This requires precise knowledge of λ(in)
`m (t), or at

least partial knowledge in terms of an upper bound. Indeed, λ(in)
`m (t ) at layer ` depends on all

λ(out)
(`−1)k (t ) from the previous layer `−1, which in turn depends on all λ(`−2)w :(`−1)k (t ) flowing

from layer `−2 to layer `−1, so on and so forth.

As a result, rate transfer analysis, which examines the relationship between the above time-

varying rates, would be an essential first step. This phase may require several preliminary

analyses which are rather general but directly applicable to the rate transfer analysis at hand.

Once the rate characteristics at various nodes and layers have been identified, topology

determination can follow. This phase may require reformulation of the problem statement

as well as derivation of concrete solutions. Lastly, empirical verification through simulations

and prototyping in a real environment would help solidify the findings and their applicability.
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3 Preliminaries for analysis

As introduced in section 1.8, this chapter may appear to diverge slightly from the problem

statement [section 2.2]. However, this is to establish preliminary background necessary for the

main discussions in chapters 4 and 5. Definitions and theorems presented here are essential

to the principal problem, yet they are generic and can be perused out of context.

Indeed, this chapter forms a solid foundation for subsequent discussions and hence con-

stitutes a major component of the work. In particular, results from sections 3.7 and 3.8 are

respectively employed in the rate transfer analyses of the first and subsequent layers of our

multi-layer parallelisation [sections 4.4 and 4.5].

3.1 Sequence

First and foremost, we focus on mathematical sequences and define the following additional

concepts. It will soon become clear as to why sequences are central to our analysis.

Definition 3.1 (Value set of a sequence). V is a value set of sequence 〈ui 〉 (i ∈ N∗)

if and only if ∀i ∈N∗,ui ∈ V and ∀v ∈ V ,∃i ∈N∗ such that ui = v .

Definition 3.2 (Strictly increasing sequence). Sequence 〈ui 〉 (i ∈N∗) with a totally ordered

value set [definition 3.1] is strictly increasing if and only if ∀i1, i2 ∈N∗, i1 < i2 ⇔ u(i1) < u(i2).

Definition 3.3 (Change index of a sequence). Sequence 〈m`〉 (` ∈N∗) with value set N∗

is the change index of sequence 〈ui 〉 (i ∈N∗) if and only if 〈m`〉 is strictly increasing [defini-

tion 3.2] and ∀i ∈N∗,ui 6= ui+1 ⇔∃` ∈N∗,m` = i .

Definition 3.4 (Compression of a sequence). Let 〈ui 〉 (i ∈N∗) be a sequence with change

index 〈m`〉 (` ∈ N∗) [definition 3.3]. Sequence 〈z`〉 (` ∈ N∗) is the compression of 〈ui 〉
if and only if ∀` ∈N∗, z` = u(m`).
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Remark 3.1 (Value set of sequence compression). It follows directly from definition 3.4

that the compression of sequence 〈ui 〉 with value set V also has value set V .

Example 3.1. Sequence 〈a,b,b, a, a, a,c,c,b, a, . . .〉 has value set V ⊇ {a,b,c} [definition 3.1],

change index 〈1,3,6,8,9, . . .〉 [definition 3.3] (which is strictly increasing [definition 3.2]) and

compression 〈a,b, a,c,b, . . .〉 [definition 3.4] (whose value set is also V [remark 3.1]).

Next, we present lemma 3.1 pertaining to the constancy of elements between consecutive

change index locations. This immediately leads to theorem 3.2 which describes the definite

difference between any consecutive elements of a sequence compression [definition 3.4], to

be used later in corollary 3.4 [section 3.4].

LEMMA 3.1 (Constancy between change indices). If 〈m`〉 is the change index [defini-

tion 3.3] of sequence 〈ui 〉 (`, i ∈N∗), then ∀` ∈N∗,∀i ∈ {
(m`+1) ..

(
m(`+1)

)}
,ui = u(m`+1).

Proof. For m(`+1) = m`+1, the proposition holds trivially. We now consider m(`+1) > m`+1.

Let x = u(m`+1). For i = m`+1, we have ui = x by identity. Assuming that the proposition

holds for i = i0 ∈ {
(m`+1) ..

(
m(`+1) −1

)}
, i.e. u(i0) = x, if u(i0+1) 6= x then u(i0) 6= u(i0+1) and

∃`0 ∈N∗,m(`0) = i0 [definition 3.3].

We have m(`0) = i0 ∈
{
(m`+1) ..

(
m(`+1) −1

)}⇔ m` < m(`0) < m(`+1) but 〈m`〉 is strictly increas-

ing [definition 3.3] so `< `0 < `+1 [definition 3.2] ⇔ `0 ∈∅, which is contradictory. Hence

u(i0+1) = x, i.e. the proposition also holds for i = i0 + 1 given that it holds for i = i0. This

concludes our proof by induction for i ∈ {
(m`+1) ..

(
m(`+1)

)}
.

THEOREM 3.2 (Consecutive elements of sequence compression). If 〈z`〉 (` ∈N∗) is the

compression [definition 3.4] of some sequence 〈ui 〉 (i ∈N∗), then ∀` ∈N∗, z` 6= z`+1.

Proof. Let 〈m`〉 be the change index [definition 3.3] of 〈ui 〉. If ∃` ∈ N∗, z` = z`+1, then

u(m`) = u(m(`+1)). However, by definition 3.4, u(m`) 6= u(m`+1) so u(m`+1) 6= u(m(`+1)), which

is contradictory with lemma 3.1. Thus the contrary ∀` ∈N∗, z` 6= z`+1 holds.

3.2 Thinning a sequence

In this section, we formally define the process of creating a new sequence by probabilistically

thinning an original one. General properties of the resultant ‘thinned’ sequence are also

discussed. Other properties related to the thinning of specific types of sequences will be

explored later in the respective discussions of those sequence types [sections 3.3 and 3.4].
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Definition 3.5 (Sequence thinning). Let 〈ui 〉 (i ∈N∗) be a sequence. The thinning of 〈ui 〉
with probability α ∈ (0,1] (or α-thinning for short) is the process of creating a new sequence

〈r j 〉 ( j ∈N∗), termed theα-thinned copy of 〈ui 〉, by transferring every ui to 〈r j 〉with probability

α. In other words, ui is ignored with probability 1−α. Relative order amongst the elements

remains intact, i.e. elements appear in 〈r j 〉 in the same order as they originally do in 〈ui 〉.

Remark 3.2 (Sequence thinning using Bernoulli trials). The α-thinning of 〈ui 〉 [defini-

tion 3.5] is equivalent to conducting an independent, identically distributed Bernoulli trial [41,

section 3.2] for every i ∈N∗, with success probability α (and failure probability 1−α). If the

experiment’s outcome is ‘success’, element ui gets transferred to 〈r j 〉; otherwise, it is ignored.

The α-thinning of 〈ui 〉 can thus be expressed as algorithm 3.1 using Bernouilli trials.

Algorithm 3.1: α-thinning of sequence 〈ui 〉
Input: 〈ui 〉 (i ∈N∗), α ∈ (0,1]
Output: 〈r j 〉 ( j ∈N∗)

j ← 1;

for i ← 1 to +∞ do
X ← Bernoulli-trial(α);

if X = success then
r j ← ui ; emit r j ; j ← j +1;

Remark 3.3 (1-thinned copy of sequence). For α= 1, there is effectively no thinning as

all elements are transferred with absolute certainty. The 1-thinned copy of 〈ui 〉 is hence a

verbatim copy of 〈ui 〉.

Remark 3.4 (Value set of α-thinned copy). According to definition 3.5, sequence thin-

ning is probabilistic in nature. Any elements from the original sequence 〈ui 〉 can end up in

the α-thinned copy 〈r j 〉. Thus if 〈ui 〉 has value set V , then 〈r j 〉 also has value set V .

To facilitate subsequent analyses, the concept of ‘origin’ and related properties are now estab-

lished. Informally speaking, the origin of an element in an α-thinned copy refers to its index

in the original sequence.

Definition 3.6 (Origin function in sequence thinning). Let 〈r j 〉 ( j ∈N∗) be an α-thinned

copy [definition 3.5] of sequence 〈ui 〉 (i ∈ N∗). The origin function for 〈r j 〉 is defined as

orig :N∗ →N∗ where orig( j ) = i if and only if element ui gets transferred as element r j during

the thinning process.

Remark 3.5 (Range of origins in sequence thinning). AsN∗ is the range of probabilistic

function orig(.) [definition 3.6] (cf. domain of a random variable), it trivially follows that:

∞∑
i=1

Pr
[
orig( j ) = i

]= 1 (∀ j ∈N∗) (3.1)

21



Chapter 3. Preliminaries for analysis

LEMMA 3.3 (Origin gap in sequence thinning). Let 〈r j 〉 ( j ∈ N∗) be an α-thinned

copy [definition 3.5] of sequence 〈ui 〉 (i ∈ N∗). The probability that the origins of two con-

secutive elements in 〈r j 〉 differ by a distance of d steps is:

Pr
[
orig( j +1) = i +d

∣∣ orig( j ) = i
]=α(1−α)d−1 (∀i , j ,d ∈N∗) (3.2)

Proof. Consider the α-thinning of sequence 〈ui 〉 as a series of independent, identically dis-

tributed Bernoulli trials [remark 3.2 and algorithm 3.1].

Given that r j originates from ui (⇔ orig( j ) = i , ∀i , j ∈ N∗), the fact that the next element

r j+1 originates from ui+d (⇔ orig( j +1) = i +d , ∀d ∈N∗), which is d steps away from ui , is

equivalent to conducting d additional Bernouilli trials, of which the first d −1 fail (hence ui+1

to ui+d−1 ignored) while the last one succeeds (hence ui+d transferred as r j+1).

As all Bernoulli trials involved have success probability α and failure probability 1−α each,

and that they are independent from one another, the probability of getting such a series of

outcomes (d −1 failures followed by a single success) is indeed α(1−α)d−1.

3.3 Constant sequence

In this section, we formally define constant sequence [definition 3.7], a special type of math-

ematical sequence in which all elements have the same value. An associated concept called

characteristic function [definition 3.8] is also established, ready for use in section 3.7.

Definition 3.7 (Constant sequence). Sequence 〈ui 〉 (i ∈ N∗) with value set V [defini-

tion 3.1] is a constant sequence if and only if |V | = 1. For V = {v0}, 〈ui 〉 can be denoted as

〈v0〉i or 〈v0〉.

Remark 3.6 (Consecutive elements of constant sequence). It follows directly from

definition 3.7 that, if 〈ui 〉 (i ∈ N∗) is a constant sequence, then for an unbiased N∗-valued

random index I :

Pr[uI+1 6= v | uI = v] = 0 (∀v) (3.3)

Remark 3.7 (Thinning of constant sequence). Let 〈ui 〉 (i ∈N∗) be a constant sequence

[definition 3.7] with value set {v0}. It follows from remark 3.4 that any α-thinned copy [defini-

tion 3.5] of 〈ui 〉 also has value set {v0}. As the singleton value set uniquely defines a constant
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sequence, all α-thinned copies of 〈ui 〉 are constant sequences with value set {v0}, and actually

verbatim copies of 〈ui 〉.

Definition 3.8 (Characteristic function of constant sequence). Characteristic func-

tion ξ(v) of constant sequence 〈v0〉 [definition 3.7] is defined as follows:

ξ(v) =
1 if v = v0

0 otherwise
(3.4)

Remark 3.8 (Squared characteristic function of constant sequence). It follow directly

from definition 3.8 that:

ξ2(v) = ξ(v) (∀v) (3.5)

Remark 3.9 (Sum of characteristic functions of constant sequence). It follow directly

from definition 3.8 that:

∑
v∈V

ξ(v) =
1 if V 3 v0

0 otherwise
(3.6)

Remark 3.10 (Prior probability of constant sequence). It follows directly from defini-

tions 3.7 and 3.8 that, if 〈ui 〉 (i ∈N∗) is a constant sequence, then the prior probability of a

randomly selected element taking a particular value v is:

Pr[uI = v] = ξ(v) (∀v) (3.7)

where I is an unbiasedN∗-valued random index and ξ(v) is the characteristic function evalu-

ated at v of 〈ui 〉.

3.4 Binary & alternating binary sequences

This section formalises the notion of binary sequence [definition 3.9], another important

class of mathematical sequences used in our analyses. Related concepts such as the subclass

alternating binary sequence [definition 3.10] and relevant properties will also be discussed.

Definition 3.9 (Binary sequence). Sequence 〈ui 〉 (i ∈N∗) with value set V [definition 3.1]

is a binary sequence if and only if |V | = 2.

Example 3.2. 〈1,0,0,1,1,1,0, . . .〉 is the snapshot of the first few elements of a binary sequence

with value set {0,1}.
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Definition 3.10 (Alternating binary sequence). Binary sequence 〈ui 〉 (i ∈N∗) with value

set V [definition 3.9] is an alternating binary sequence if and only if ∀i ∈N∗,ui+1 ∈ V \ {ui }, or

equivalently ∀i ∈N∗,ui 6= ui+1.

Remark 3.11 (Alternating binary sequence with value set {0,1}). If V = {0,1}, then

ui+1 ∈ V \ {ui } ⇔ ui+1 = 1−ui ,∀i ∈N∗.

Example 3.3. 〈0,1,0,1,0,1,0,1, . . .〉 is the snapshot of the first few elements of an alternating

binary sequence with value set {0,1}.

Remark 3.12 (Thinning of binary sequence). It follows directly from definitions 3.9

and 3.10 and remark 3.4 that any α-thinned copy of a binary sequence (alternating or not) is

also a binary sequence with the same value set.

COROLLARY 3.4 (Compression of binary sequence). The compression [definition 3.4] of a

binary sequence [definition 3.9] is an alternating binary sequence [definition 3.10].

Proof. Let 〈ui 〉 (i ∈ N∗) be a binary sequence with compression 〈z`〉 (` ∈ N∗). As 〈ui 〉 is

a binary sequence, 〈z`〉 is also binary [remark 3.1]. Furthermore, we have z` 6= z`+1,∀` ∈
N∗ [theorem 3.2]. Thus by definition 3.10, 〈z`〉 is an alternating binary sequence.

LEMMA 3.5 (Determinism in alternating binary sequence). If 〈ui 〉 (i ∈N∗) is an alternat-

ing binary sequence with value set {0,1} [definition 3.10], then the values of all elements ui are

deterministic given that of the initial element u1:ui = u1 ∀i = 2k −1,k ∈N∗ (i odd)

ui = 1−u1 ∀i = 2k,k ∈N∗ (i even)
(3.8)

In particular, the conditional probabilities of table 3.1 apply.

Table 3.1: Conditional probabilities given u1 of alternating binary sequence 〈ui 〉

i ∈N∗ v ∈ {0,1} ṽ ∈ {0,1} Pr[ui = v | u1 = ṽ]

odd 0 0 1
odd 0 1 0
odd 1 0 0
odd 1 1 1
even 0 0 0
even 0 1 1
even 1 0 1
even 1 1 0

24



3.4. Binary & alternating binary sequences

Proof. For k = 1, equation (3.8) is trivially true:u2k−1 = u1 = u1 (identity)

u2k = u2 = 1−u1 [remark 3.11]

Assuming equation (3.8) is true for some k0 ∈N∗, i.e. u2k0−1 = u1 and u2k0 = 1−u1, and using

the fact that ui+2 = 1−ui+1 = 1−(1−ui ) = ui ,∀i ∈N∗ [remark 3.11], then we have the following

which concludes our proof by induction on k ∈N∗:u2(k0+1)−1 = u(2k0−1)+2 = u2k0−1 = u1

u2(k0+1) = u2k0+2 = u2k0 = 1−u1

Table 3.1 is then a verbose expression of equation (3.8) in terms of conditional probabilities

which only take values 0 and 1 due to determinism.

Definition 3.11 (Unbiased alternating binary sequence). Alternating binary sequence

〈ui 〉 (i ∈N∗) [definition 3.10] is an unbiased alternating binary sequence if and only if the value

of initial element u1 is random but uniformly distributed on binary value set V :

Pr[u1 = v] = 1

2
(∀v ∈ V ) (3.9)

LEMMA 3.6 (Prior probability of α-thinned copy of unbiased alternating binary se-
quence). If 〈ui 〉 (i ∈N∗) is an unbiased alternating binary sequence with value set {0,1} [defin-

ition 3.11] and 〈r j 〉 ( j ∈N∗) is an α-thinned copy of 〈ui 〉 (α ∈ (0,1]) [definition 3.5], then the

prior probability of a randomly selected element in 〈r j 〉 taking a particular value v ∈ {0,1} is:

Pr
[
r J = v

]= 1

2
(∀v ∈ {0,1}) (3.10)

where J is an unbiasedN∗-valued random index.

Proof. Using Bayes’ theorem and the orig(.) function [definition 3.6], we have ∀v ∈ {0,1}:

Pr
[
r J = v

]= ∞∑
j=1

Pr
[
r J = v

∣∣ J = j
]

Pr
[

J = j
]= ∞∑

j=1
Pr

[
r j = v

]
Pr

[
J = j

]
=

∞∑
j=1

Pr
[

J = j
] ∞∑

i=1
Pr

[
r j = v

∣∣ orig( j ) = i
]

Pr
[
orig( j ) = i

]
=

∞∑
j=1

Pr
[

J = j
] ∞∑

i=1
Pr[ui = v]Pr

[
orig( j ) = i

]
=

∞∑
j=1

Pr
[

J = j
] ∞∑

i=1
Pr

[
orig( j ) = i

] 1∑
ṽ=0

Pr[ui = v | u1 = ṽ]Pr[u1 = ṽ] = 1

2
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(∵ unbiased, Pr[u1 = ṽ] = 1

2
,∀ṽ ; ∵ lemma 3.5,

1∑
ṽ=0

Pr[ui = v | u1 = ṽ] = 1,∀i ;

∵ remark 3.5,
∞∑

i=1
Pr

[
orig( j ) = i

]= 1,∀ j ; ∵N∗-valued J ,
∞∑

j=1
Pr

[
J = j

]= 1)

LEMMA 3.7 (Consecutive elements in α-thinned copy of alternating binary sequence).

If 〈ui 〉 (i ∈ N∗) is an alternating binary sequence with value set {0,1} [definition 3.11] and

〈r j 〉 ( j ∈ N∗) is an α-thinned copy of 〈ui 〉 (α ∈ (0,1]) [definition 3.5], then for an unbiased

N∗-valued random index J :

Pr
[
r J+1 = 1− v

∣∣ r J = v
]= 1

2−α (∀v ∈ {0,1}) (3.11)

Proof. Due to the determinism of alternating binary sequence 〈ui 〉 [lemma 3.5]:

∀i ,d ∈N∗,∀v ∈ {0,1} , Pr[ui+d = 1− v | ui = v] =
0 if d = 2k,k ∈N∗ (d even)

1 if d = 2k −1,k ∈N∗ (d odd)
(3.12)

Using Bayes’ theorem and the orig(.) function [definition 3.6], we have ∀v ∈ {0,1}:

Pr
[
r J+1 = 1− v

∣∣ r J = v
]= ∞∑

j=1
Pr

[
r J+1 = 1− v

∣∣ r J = v ∧ J = j
]

Pr
[

J = j
]

=
∞∑

i=1

∞∑
d=1

∞∑
j=1

Pr
[
r j+1 = 1− v

∣∣ r j = v ∧ orig( j ) = i ∧ orig( j +1) = i +d
]

Pr
[

J = j
]

Pr
[
orig( j ) = i ∧ orig( j +1) = i +d

]
=

∞∑
i=1

∞∑
d=1

Pr[ui+d = 1− v | ui = v]
∞∑

j=1
Pr

[
J = j

]
Pr

[
orig( j +1) = i +d

∣∣ orig( j ) = i
]

Pr
[
orig( j ) = i

]
=

∞∑
i=1

∞∑
d=1

d odd

∞∑
j=1

Pr
[

J = j
]
α (1−α)d−1 Pr

[
orig( j ) = i

]
( ∵ equation (3.12); ∵ lemma 3.3, Pr

[
orig( j +1) = i +d

∣∣ orig( j ) = i
]=α (1−α)d−1, ∀i , j ,d)

=α
∞∑

j=1
Pr

[
J = j

] ∞∑
i=1

Pr
[
orig( j ) = i

] ∞∑
k=1

(1−α)2(k−1) (∵ substituting d = 2k −1,k ∈N∗)

=α
∞∑

j=1
Pr

[
J = j

] ∞∑
i=1

Pr
[
orig( j ) = i

] 1

1− (1−α)2 (∵ geometric series with
∣∣(1−α)2

∣∣< 1)

= 1

2−α (∵α 6= 0; ∵ remark 3.5,
∞∑

i=1
Pr

[
orig( j ) = i

]= 1,∀ j ; ∵N∗-valued J ,
∞∑

j=1
Pr

[
J = j

]= 1)
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3.5 Relative rate of Poisson process

It is evident from the problem formalisation [section 2.2] that Poisson processes play a vital

role in this work. This section introduces a convenient concept called relative mean arrival

rate, which is handy when dealing with a set of homogeneous Poisson processes.

Definition 3.12 (Relative mean arrival rate of Poisson process). The relative mean

arrival rate ρk of homogeneous Poisson process P (λk ) amongst N homogeneous Poisson

processes
{
P (λk ) | k ∈ {1..N }

}
(N ∈N∗) with mean arrival rates λk ∈R+,∀k ∈ {1..N } is:

∀k ∈ {1..N } , ρk =



1

N
if λ` = 0,∀` ∈ {1..N }

λk

N∑
`=1

λ`

otherwise (3.13)

Remark 3.13 (Range of Poisson relative mean arrival rate). It follows directly from

definition 3.12 that ρk ∈ [0,1],∀k ∈ {1..N } , N ∈N∗.

Remark 3.14 (Vector notations for definition 3.12). If λ= [λk ] ∈ (R+)N and 1 = [1]k ∈
{1}N , then ∀N ∈N∗:

ρ = [
ρk

]=


[
1

N

]
k
∈

{
1

N

}N

ifλ= 0

λ

λᵀ1
∈ [0,1]N otherwise

(3.14)

Remark 3.15 (Sum of relative mean arrival rates of Poisson processes). It follows

directly from definition 3.12 (and the vector notations of remark 3.14) that:

N∑
k=1

ρk =ρᵀ1 = 1 (∀N ∈N∗) (3.15)

3.6 Poisson sequence & superposition

This section is dedicated to presenting an extended concept of Poisson process called Poisson

sequence [definition 3.13]. It also formalises the superposition of these sequences [defini-

tion 3.14] and discusses related properties.
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Definition 3.13 (Poisson sequence). Let P (λ) be a homogeneous Poisson process with

mean arrival rate λ ∈R+. Sequence 〈ui 〉 (i ∈N∗) is a Poisson sequence with mean arrival rate λ,

denoted as 〈ui 〉 ∼P (λ), if and only if there exists a one-to-one correspondence:

f : {τi } → {ui }

τi 7→ ui ,∀i ∈N∗ (3.16)

where τi ∈ R+ is the arrival time of the i th event of P (λ). Such correspondence f describes

the Poisson event arriving at time τi as the occurrence of element ui .

Example 3.4. Figure 3.1 illustrates the one-to-one correspondence f which defines a Poisson

sequence 〈ui 〉 ∼P (λ) as occurrences of elements ui at Poisson arrival times τi [definition 3.13].

Figure 3.1: Poisson sequence 〈ui 〉 ∼P (λ) as occurrences of ui at Poisson arrival times τi

Definition 3.14 (Superposition of Poisson sequences). Let
{〈uki 〉i ∼P (λk ) | k ∈ {1..N }

}
be N Poisson sequences (i , N ∈N∗,λk ∈R+∀k ∈ {1..N }) [definition 3.13]. Let the superposition

of N homogeneous Poisson processes
{
P (λk ) | k ∈ {1..N }

}
be P (λ), which is also a Poisson

process [39, Superposition Theorem, section 2.2, pp. 14–17]. Let τ j ∈R+ be the arrival time of

P (λ)’s j th event ( j ∈N∗). There exists a one-to-one correspondence:

fs :N∗ → {1..N }×N∗

j 7→ (k, i ) (3.17)

describing every j th event in the superposition P (λ) as originating from the i th event of

constituent process P (λk ). Poisson sequence 〈s j 〉 ∼ P (λ) is the superposition of Poisson

sequences
{〈uki 〉 ∼P (λk ) | k ∈ {1..N }

}
if and only if s j = u f ( j ),∀ j ∈N∗.

Example 3.5. Figure 3.2 shows the superposition of two concrete Poisson sequences and

illustrates their mappings fs as given in definition 3.14.

Remark 3.16 (Mean arrival rate of Poisson sequence superposition). According to

the Superposition Theorem for Poisson processes [39, section 2.2, pp. 14–17], mean arrival

rate λ of Poisson sequence 〈s j 〉 ∼P (λ) is:

λ=
N∑

k=1
λk =λᵀ1 (∀N ∈N∗) (3.18)
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Figure 3.2: Mappings fs in the superposition of two Poisson sequences

whereλ= [λk ] ∈ (R+)N and 1 = [1]k ∈ {1}N .

Remark 3.17 (Value set of Poisson sequence superposition). It is trivial to show that,

if constituent {〈uki 〉i | k ∈ {1..N }} have value sets {Vk | k ∈ {1..N }} [definition 3.1] then the su-

perposition 〈s j 〉 has value set
⋃

k∈{1..N }
Vk . Consequently, if all {〈uki 〉i | k ∈ {1..N }} are binary

sequences each with value set V [definition 3.9] then 〈s j 〉 is also a binary sequence with the

same value set V .

Remark 3.18 (Index distances in Poisson sequence superposition). Owing to the

nature of superposition, elements from each constituent sequence maintain their relative

order and retain or increase their relative index distances when appearing in the superposi-

tion, forming a partial order in the latter. Employing function fs given in definition 3.14, the

following holds:

∀ j1, j2, i1, i2 ∈N∗, ∀k ∈ {1..N } ,


fs( j1) = (k, i1)

fs( j2) = (k, i2)

j2 > j1

⇒ j2 − j1 > i2 − i1 > 0 (3.19)

Definition 3.15 (Source function for Poisson sequence superposition). Let 〈s j 〉 be the

superposition of N Poisson sequences {〈uki 〉i | k ∈ {1..N }} (N ∈ N∗) [definition 3.14]. The

source function for 〈s j 〉 is defined as src :N∗ → {1..N } where src( j ) = k if and only if element s j

originates from 〈uki 〉i , i.e. ∃i ∈N∗, fs( j ) = (k, i ) with function fs given in definition 3.14.

Example 3.6. In the example of figure 3.2, we have src(1) = src(3) = src(5) = src(6) = src(8) = 1

while src(2) = src(4) = src(7) = 2.

Remark 3.19 (Origin in Poisson sequence superposition). With unbiased N∗-valued

random index J on 〈s j 〉 ∼P (λ), the probability that an element s J originates from one of

independent processes
{〈uki 〉i ∼P (λk )

}
is:

Pr[src(J ) = k] = ρk (∀k ∈ {1..N } , N ∈N∗) (3.20)
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where ρk is the relative mean arrival rate of P (λk ) [definition 3.12].

Remark 3.20 (Independent origins in Poisson sequence superposition). In addition

to remark 3.19, the origins of distinct elements s J and s J+d are independent:

Pr[src(J ) = k ∧ src(J +d) = `] = ρkρ` (∀d ∈N∗,∀k,` ∈ {1..N } , N ∈N∗) (3.21)

Next, we establish in lemma 3.8 the probability of two consecutive elements of a binary Poisson

sequence superposition being different from each other. This important but general result

will be employed in more specific scenarios in theorems 3.9 and 3.13.

LEMMA 3.8 (Consecutive elements in Poisson sequence superposition). Let 〈s j 〉 ∼P (λ)

be the superposition of N independent Poisson sequences
{〈uki 〉i ∼P (λk ) | k ∈ {1..N }

}
[defin-

ition 3.14] (i , j , N ∈ N∗ and λk ∈ R+,∀k ∈ {1..N }). If 〈s j 〉 is a binary sequence with value

set {0,1} [definition 3.9], then the probability of two consecutive elements of 〈s j 〉 being different

from each other is:

Pr
[
s J 6= s J+1

]= N∑
k=1

ρk

1∑
v=0

Pr[ukI = v]

ρk Pr
[
uk,I+1 = 1− v

∣∣ ukI = v
]+ N∑

`=1
6̀=k

ρ`Pr
[
u`Ĩ = 1− v

]
(3.22)

where ρk is the relative mean arrival rate of homogeneous Poisson process P (λk ) [defini-

tion 3.12], J is an unbiased N∗-valued random index, and I , Ĩ are J-derived random indices

such that (k, I ) = fs(J ) and
(
`, Ĩ

)= fs(J +1) (with function fs as given in definition 3.14).

Proof. Applying Bayes’ theorem and using the facts that 〈s j 〉 has value set {0,1} and {〈uki 〉i }

are independent from one another, we have:

Pr
[
s J 6= s J+1

]= 1∑
v=0

Pr
[
s J+1 = 1− v ∧ s J = v

]
=

1∑
v=0

N∑
k=1

N∑
`=1

Pr[src(J ) = k ∧ src(J +1) = `]Pr
[
s J+1 = 1− v ∧ s J = v

∣∣ src(J ) = k ∧ src(J +1) = `]
=

1∑
v=0

N∑
k=1

N∑
`=1

ρkρ`Pr
[
u`Ĩ = 1− v ∧ ukI = v

]
(∵ independent origins [remark 3.20])

=
N∑

k=1
ρk

N∑
`=1

ρ`

1∑
v=0

Pr[ukI = v]Pr
[
u`Ĩ = 1− v

∣∣ ukI = v
]

=
N∑

k=1
ρk

1∑
v=0

Pr[ukI = v]

ρk Pr
[
uk Ĩ = 1− v

∣∣ ukI = v
]+ N∑

`=1
6̀=k

ρ`Pr
[
u`Ĩ = 1− v

∣∣ ukI = v
]

(3.23)
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• For ` = k (i.e. src(J) = src(J + 1)): fs(J) = (k, I ) and fs(J + 1) = (
k, Ĩ

)
. According to

equation (3.19), 0 < Ĩ − I 6 (J +1)− J = 1 ⇔ Ĩ = I +1.

∴ Pr
[
uk Ĩ = 1− v

∣∣ ukI = v
]= Pr

[
uk,I+1 = 1− v

∣∣ ukI = v
]

(3.24)

• For l 6= k: 〈u`Ĩ 〉 and 〈ukI 〉 are distinct and independent sequences.

∴ Pr
[
u`Ĩ = 1− v

∣∣ ukI = v
]= Pr

[
u`Ĩ = 1− v

]
(3.25)

Lastly, substituting equations (3.24) and (3.25) into equation (3.23) yields equation (3.22).

3.7 Superposition of constant Poisson sequences

The superposition of constant Poisson sequences will now be examined. In particular, the

probability of consecutive elements being different is established [theorem 3.9]. This leads

to corollary 3.10 where a closed-form formula is identified for the Poisson rate formed by

these differences. In corollary 3.11, we narrow down corollary 3.10’s scenario to the case where

all constituent sequences exhibit the same rate. Lastly, theorem 3.12 determines the upper

bounds of corollary 3.11’s rate. These are crucial for the first-layer rate analysis [section 4.4].

THEOREM 3.9 (Consecutive elements in superposition of constant Poisson sequences).

Let Poisson sequence 〈s j 〉 ∼P (λ) be the superposition of N independent Poisson sequences{〈uki 〉i ∼P (λk ) | k ∈ {1..N }
}

[definition 3.14] (i , j , N ∈ N∗ and λk ∈ R+,∀k ∈ {1..N }) If every

〈uki 〉i is a constant sequence [definition 3.7] with value set Vk such that V =
⋃

k∈{1..N }
Vk has

cardinality 2 (implying N > 2), then the probability of two consecutive elements of 〈s j 〉 being

different from each other is:

Pr
[
s J 6= s J+1

]= 1−
∑

v∈V

[
N∑

k=1
ρkξk (v)

]2

(3.26)

where ρk is the relative mean arrival rate of homogeneous Poisson process P (λk ) [defini-

tion 3.12], ξk (v) is the characteristic function evaluated at v of constant sequence 〈uki 〉i [defini-

tion 3.8], and J is an unbiasedN∗-valued random index.

Remark 3.21 (Vector notations for theorem 3.9). Using the same vector notations as

in remark 3.14 and ξv = [ξk (v)]k ∈ {0,1}N , equation (3.26) can be rewritten as:

Pr
[
s J 6= s J+1

]= 1−
∑

v∈V

(
ρᵀξv

)2 (3.27)
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Proof. Superposition 〈s j 〉 has value set
⋃

k∈{1..N }
Vk = V [remark 3.17]. In addition, |V | = 2 so 〈s j 〉

is a binary sequence. Without loss of generality, let V = {0,1}. Applying lemma 3.8 gives:

Pr
[
s J 6= s J+1

]= N∑
k=1

ρk

1∑
v=0

Pr[ukI = v]

ρk Pr
[
uk,I+1 = 1− v

∣∣ ukI = v
]+ N∑

`=1
6̀=k

ρ`Pr
[
u`Ĩ = 1− v

]
We have the following facts for constant sequences {〈ur i 〉i }, each with value set {0,1}:

∀v ∈ {0,1} , ∀r ∈ {1..N } ,



Pr[ur I = v] = ξr (v) [remark 3.10]

Pr[ur I = 1− v] = 1−Pr[ur I = v] = 1−ξr (v) [remark 3.10]

Pr
[
ur,I+1 = 1− v

∣∣ ur I = v
]= 0 [remark 3.6]

ξr (v) = ξ2
r (v) [remark 3.8]

and also


N∑

r=1
ρr = 1 [remark 3.15]

1∑
v=0

ξr (v) = 1,∀r ∈ {1..N } ∵ V = {0,1} ⊇ Vr [remark 3.9]

∴Pr
[
s J 6= s J+1

]= N∑
k=1

ρk

1∑
v=0

ξk (v)
N∑
`=1
6̀=k

ρ` [1−ξ`(v)]

=
N∑

k=1
ρk

1∑
v=0

ξk (v)

{
−ρk [1−ξk (v)]+

N∑
`=1

ρ` [1−ξ`(v)]

}

=−
N∑

k=1
ρ2

k

1∑
v=0

ξk (v)+
N∑

k=1
ρ2

k

1∑
v=0

ξ2
k (v)+

N∑
k=1

ρk

1∑
v=0

ξk (v)
N∑
`=1

ρ`−
N∑

k=1
ρk

1∑
v=0

ξk (v)
N∑
`=1

ρ`ξ`(v)

=−
N∑

k=1
ρ2

k +
N∑

k=1
ρ2

k +1−
1∑

v=0

N∑
k=1

ρkξk (v)
N∑
`=1

ρ`ξ`(v) = 1−
1∑

v=0

[
N∑

k=1
ρkξk (v)

]2

COROLLARY 3.10 (Events of different consecutive elements in superposition of con-
stant Poisson sequences). In the scenario of theorem 3.9, the events of two consecutive

elements of 〈s j 〉 being different from each other form a homogeneous Poisson process P
(
λ̃
)

with

mean arrival rate:

λ̃=
{

1−
∑

v∈V

[
N∑

k=1
ρkξk (v)

]2} N∑
`=1

λ` (3.28)

Remark 3.22 (Vector notations for corollary 3.10). Using the same vector notations as

in remark 3.21, equation (3.28) can be rewritten as:

λ̃=
[

1−
∑

v∈V

(
ρᵀξv

)2

]
λᵀ1 (3.29)
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Proof. Superposition 〈s j 〉has mean arrival rateλ=
N∑
`=1

λ` [remark 3.16]. Besides, the definition

of P
(
λ̃
)

implies that it is indeed the thinning of homogeneous Poisson process P (λ) with

probability p̃ = Pr[s J+1 6= s J ] where J is an unbiased N∗-valued random index. Thus P
(
λ̃
)

is

also a homogeneous Poisson process with mean arrival rate λ̃= p̃λ= p̃
N∑
`=1

λ` [39, Colouring

Theorem, section 5.1, pp. 53–55]. According to theorem 3.9, p̃ = 1−
∑

v∈V

[
N∑

k=1
ρkξk (v)

]2

, hence

equation (3.28).

Example 3.7. Let us consider five Poisson sequences
{〈uki 〉i ∼P (λk ) | k ∈ {1..5}

}
satisfying

all conditions of corollary 3.10 and having mean arrival ratesλ=
[

0.1 0.3 0.35 0.15 0.1
]ᵀ

as well as ξ0 =
[

0 1 1 0 0
]ᵀ

, ξ1 =
[

1 0 0 1 1
]ᵀ

and V = {0,1}.

Superposition 〈s j 〉 of {〈uki 〉i } is a Poisson sequence with mean arrival rate λ=λᵀ1 = 0.1+0.3+
0.35+0.15+0.1 = 1 [remark 3.16]. Relative rates [definition 3.12] of

{
P (λk )

}
are ρ = λ

λᵀ1
=[

0.1 0.3 0.35 0.15 0.1
]ᵀ

. Thusρᵀξ0 = 0.3+0.35 = 0.65 whileρᵀξ1 = 0.1+0.15+0.1 = 0.35.

Moreover, applying corollary 3.10 in vector notations [remark 3.22] yields mean arrival rate λ̃

for the new Poisson process formed by different-consecutive-elements events in 〈s j 〉: λ̃ =[
1− (

ρᵀξ0
)2 − (

ρᵀξ1
)2

]
λᵀ1 = [

1− (0.65)2 − (0.35)2
]×1 = 0.455.

COROLLARY 3.11 (Events of different consecutive elements in superposition of con-
stant equi-rate Poisson sequences). In the scenario of corollary 3.10, if λk = λ0,∀k ∈
{1..N } ,λ0 ∈R+, then:

λ̃= 2Nv (N −Nv )

N
λ0 (∀v ∈ V ) (3.30)

where Nv = |{k ∈ {1..N } | Vk 3 v}| ∈ {1..(N −1)} ,∀v ∈ V .

Proof. Using vector notations as in remark 3.22, we have λ= [λ0]k ∈ {λ0}N , so λ=λᵀ1 = Nλ0,

ρ =
[

1

N

]
k
∈

{
1

N

}N

and ∀w ∈ V , ρᵀξw =
N∑

k=1
Vk3w

1

N
= Nw

N
. We also have |V | = 2 so {Nw | w ∈ V } =

{N v, N −N v} ,∀v ∈ V . Applying corollary 3.10 yields ∀v ∈ V :

λ̃=
[

1−
∑

w∈V

(
ρᵀξw

)2

]
λᵀ1 =

[
1−

∑
w∈V

(
Nw

N

)2
]

Nλ0 =
[

N − 1

N

∑
w∈V

N 2
w

]
λ0

=
[

N − N 2
v + (N −Nv )2

N

]
λ0 =

N 2 −N 2
v −N 2 +2N Nv −N 2

v

N
λ0 =

2Nv (N −Nv )

N
λ0
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THEOREM 3.12 (Maximum mean arrival rate of Poisson process formed by differ-
ent-consecutive-elements events in superposition of constant equi-rate Poisson se-
quences). In the scenario of corollary 3.11:

∀v ∈ V ,



max
Nv∈{1..(N−1)}

λ̃=


N

2
λ0 if N = 2r,∀r ∈N∗ (N even)

(N −1)(N +1)

2N
λ0 if N = 2r +1,∀r ∈N∗ (N odd)

arg max
Nv∈{1..(N−1)}

λ̃ ∈
{⌊

N

2

⌋
,

⌈
N

2

⌉} (3.31)

Remark 3.23 (Upper bound of mean arrival rate of Poisson process formed by dif-
ferent-consecutive-elements events in superposition of constant equi-rate Poisson
sequences). It is noteworthy from theorem 3.12 that ∀N ∈ N∗ \ {1} (both odd and even),

N 2 −1 < N 2 ⇔ (N −1)(N +1)

2N
< N

2
, therefore λ̃6

N

2
λ0,∀Nv ∈ {1..(N −1)}.

Proof. Applying corollary 3.11, we have ∀v ∈ V :

arg max
Nv∈{1..(N−1)}

λ̃= arg max
Nv∈Dg

2Nv (N −Nv )

N
λ0 = arg max

Nv∈Dg

(−N 2
v +N Nv

)= arg max
Nv∈Dg

g (Nv )

where Dg = {1..(N −1)} and function g : Dg →R is g (Nv ) =−N 2
v +N Nv .

x

y

0

N 2

4

N 2 −1

4

N

2

N −1

2

N +1

2

N −1

1 N −1

Figure 3.3: Plot of y = f (x) =−x2 +N x on [1, N −1] where N ∈N∗ \ {1}

Let D f = [1, N −1]. Analysing function f : D f →Rwhere f (x) =−x2+N x (plotted in figure 3.3)

yields f ′(x) = d f (x)

dx
= −2x + N = 0 ⇔ x = N

2
and f ′′(x) = d2 f (x)

dx2 = −2 < 0,∀x ∈ D f . Thus

34



3.8. Superposition of α-thinned alternating binary Poisson sequences

f (x) has a single local cum global maximum at x = N

2
. In order to adapt to g (Nv ) on Dg , we

consider Nv being the closest integers to
N

2
, i.e. arg min

n∈Dg

∣∣∣∣n − N

2

∣∣∣∣ ∈ {⌊
N

2

⌋
,

⌈
N

2

⌉}
:

• For N even:

⌊
N

2

⌋
=

⌈
N

2

⌉
= N

2
so arg max

Nv∈Dg

λ̃= N

2
, and max

Nv∈Dg

λ̃= 2

N

(
N

2

)2

λ0 =
N

2
λ0.

• For N odd:

⌊
N

2

⌋
= N −1

2
and

⌈
N

2

⌉
= N +1

2
but g

(
N −1

2

)
= g

(
N +1

2

)
= N 2 −1

4
= g0 so

arg max
Nv∈Dg

λ̃ ∈
{⌊

N

2

⌋
,

⌈
N

2

⌉}
and max

Nv∈Dg

λ̃= 2

N
g0λ0 =

(N −1)(N +1)

2N
λ0.

3.8 Superposition ofα-thinned alternating binary Poisson sequences

This section studies the superposition of α-thinned alternating binary Poisson sequences. The

probability of consecutive elements being different is first established in theorem 3.13, then

corollary 3.14 derives the Poisson rate formed by these differences. Next, corollary 3.15 restricts

the scenario of corollary 3.14 to same-rate constituent sequences and finally, theorem 3.16

shows the upper bounds of corollary 3.14’s rate. These results will be crucial for the rate

analysis at non-first layers of our multi-layer parallelisation [section 4.5].

THEOREM 3.13 (Consecutive elements in α-thinned alternating binary Poisson se-
quence superposition). Let Poisson sequence 〈s j 〉 ∼ P (λ) be the superposition of N in-

dependent Poisson sequences
{〈uki 〉i ∼P (λk ) | k ∈ {1..N }

}
[definition 3.14] (i , j , N ∈ N∗ and

λk ∈ R+,∀k ∈ {1..N }). If every 〈uki 〉i is an α-thinned copy (α ∈ (0,1]) [definition 3.5] of an

unbiased alternating binary sequence [definition 3.11] with the same value set V , then the

probability of two consecutive elements of 〈s j 〉 being different from each other is:

Pr
[
s J 6= s J+1

]= 1

2

(
1+ α

2−α
N∑

k=1
ρ2

k

)
(3.32)

where ρk is the relative mean arrival rate of homogeneous Poisson process P (λk ) [defini-

tion 3.12] and J is an unbiasedN∗-valued random index.

Remark 3.24 (Vector notations for theorem 3.13). Using the same vector notations as

in remark 3.14, equation (3.32) can be rewritten as:

Pr
[
s J 6= s J+1

]= 1

2

(
1+ α

2−α
∥∥ρ∥∥2

)
(3.33)

Proof. Being an α-thinned copy of a binary sequence with value set V , each 〈uki 〉i is binary

with value set V [remark 3.12], and so is superposition 〈s j 〉 [remark 3.17]. Without loss of
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generality, let V = {0,1}. Applying lemma 3.8 gives:

Pr
[
s J 6= s J+1

]= N∑
k=1

ρk

1∑
v=0

Pr[ukI = v]

ρk Pr
[
uk,I+1 = 1− v

∣∣ ukI = v
]+ N∑

`=1
6̀=k

ρ`Pr
[
u`Ĩ = 1− v

]
We have the following facts for α-thinned copies of unbiased alternating binary sequences

{〈uki 〉i }, each with value set {0,1}:

∀v ∈ {0,1} , ∀r ∈ {1..N } ,


Pr[ur I = v] = Pr[ur I = 1− v] = 1

2
, [lemma 3.6]

Pr
[
ur,I+1 = 1− v

∣∣ ur I = v
]= 1

2−α , [lemma 3.7]

and also
N∑

r=1
ρr = 1 [remark 3.15]

∴Pr
[
s J 6= s J+1

]= N∑
k=1

ρk

1∑
v=0

1

2

 ρk

2−α +
N∑
`=1
6̀=k

1

2
ρ`

=
N∑

k=1
ρk

[
ρk

2−α + 1

2

(
−ρk +

N∑
`=1

ρ`

)]

= 1

2

N∑
k=1

ρk

(
2ρk

2−α −ρk +1

)
= 1

2

[
N∑

k=1
ρk +

(
2

2−α −1

) N∑
k=1

ρ2
k

]
= 1

2

(
1+ α

2−α
N∑

k=1
ρ2

k

)

COROLLARY 3.14 (Events of different consecutive elements in α-thinned alternating
binary Poisson sequence superposition). In the scenario of theorem 3.13, the events of

two consecutive elements of 〈s j 〉 being different from each other form a homogeneous Poisson

process P
(
λ̃
)

with mean arrival rate:

λ̃= 1

2

(
1+ α

2−α
N∑

k=1
ρ2

k

)
N∑
`=1

λ` (3.34)

Remark 3.25 (Vector notations for corollary 3.14). Using the same vector notations as

in remark 3.14, equation (3.34) can be rewritten as:

λ̃= 1

2

(
1+ α

2−α
∥∥ρ∥∥2

)
λᵀ1 (3.35)

Proof. The proof is analogous to that of corollary 3.10 except that theorem 3.13 is applied

(instead of theorem 3.9) to obtain p̃ = 1

2

(
1+

N∑
k=1

ρ2
k

)
and arrive at equation (3.34).

Example 3.8. Let us consider five Poisson sequences
{〈uki 〉i ∼P (λk ) | k ∈ {1..5}

}
satisfying

all conditions of corollary 3.14 and having mean arrival ratesλ=
[

0.15 0.2 0.35 0.1 0.2
]ᵀ

.

Also, sequences 〈uki 〉 are
1

3
-thinned copies of alternating binary sequences, i.e. α= 1

3
.
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Superposition 〈s j 〉 of {〈uki 〉i } is a Poisson sequence with mean arrival rate λ=λᵀ1 = 0.15+
0.2+0.35+0.1+0.2 = 1 [remark 3.16]. Relative rates [definition 3.12] of

{
P (λk )

}
are ρ = λ

λᵀ1
=[

0.15 0.2 0.35 0.1 0.2
]ᵀ

and
∥∥ρ∥∥=

√
(0.15)2 + (0.2)2 + (0.35)2 + (0.1)2 + (0.2)2 =p

0.235.

Furthermore, applying corollary 3.14 in vector notations [remark 3.25] yields mean arrival

rate λ̃ for the new Poisson process formed by different-consecutive-elements events in 〈s j 〉:

λ̃= 1

2

(
1+ α

2−α
∥∥ρ∥∥2

)
λᵀ1 = 1

2

(
1+

1
3

2− 1
3

(p
0.235

)2
)
×1 = 0.5235.

COROLLARY 3.15 (Events of different consecutive elements in α-thinned equi-rate al-
ternating binary Poisson sequence superposition). In the scenario of corollary 3.14, if

λk =λ0,∀k ∈ {1..N } ,λ0 ∈R+, then:

λ̃= 1

2

(
N + α

2−α
)
λ0 (3.36)

Proof. Using vector notations as in remark 3.25, we haveλ= [λ0]k ∈ {λ0}N , so λ=λᵀ1 = Nλ0

and ρ =
[

1

N

]
k
∈

{
1

N

}N

, i.e.
∥∥ρ∥∥2 = N ×

(
1

N

)2

= 1

N
. Applying corollary 3.14 yields:

λ̃= 1

2

(
1+ α

2−α
∥∥ρ∥∥2

)
λᵀ1 = 1

2

(
1+ α

2−α × 1

N

)
Nλ0 =

1

2

(
N + α

2−α
)
λ0

THEOREM 3.16 (Maximum Poisson mean arrival rate formed by different-consecut-
ive-elements events in α-thinned equi-rate alternating binary Poisson sequence su-
perposition). In the scenario of corollary 3.15, if λ0 ∈ [0,λmax] ,λmax ∈R+, then:

max
λ0∈[0,λmax]

λ̃= 1

2

(
N + α

2−α
)
λmax

arg max
λ0∈[0,λmax]

λ̃=λmax

(3.37)

Proof. Applying corollary 3.15, we have:

arg max
λ0∈[0,λmax]

λ̃= arg max
λ0∈[0,λmax]

1

2

(
N + α

2−α
)
λ0 = arg max

λ0∈[0,λmax]
λ0 =λmax

∴ max
λ0∈[0,λmax]

λ̃= 1

2

(
N + α

2−α
)
λmax
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4 Rate transfer analysis

At this point, we are ready to shift our focus back to the main problem statement [section 2.2]

and delve into the rate transfer analysis at various layers of the parallelisation.

For the purpose of rate analysis, we first derive a simplified data stream representation [sec-

tion 4.1] and the notion of consideration periods [section 4.2]. We also examine data stream

emissions at the sources to state a practical prerequisite [section 4.3]. The actual rate analysis

then proceeds layer by layer [sections 4.4 and 4.5], before a consolidation for all layers is

presented [section 4.6] ready for use in topology determination [chapter 5].

4.1 Stream representation for rate analysis

Time-based stream aggregation [definition 1.1] deals with streams of data tuples (T, v) com-

prising time period ID T [definition 1.2] and target value v [definition 1.3]. This is reinforced

in the problem formalisation [section 2.2], especially in the definition of data sources [defin-

ition 2.2]. Nevertheless, a closer look at aggregation nodes’ behaviour [definition 2.3], in

particular the operation conducted at these nodes [algorithm 2.1], reveals that a simpler

stream representation suffices for rate transfer analysis.

Indeed, rate transfer analysis refers to the determination of an output rate given specific input

conditions while the existence of outputs (which governs how the output rate turns out to be)

depends solely on time period IDs T [algorithm 2.1]. Therefore, we can consider each data

item in our streams (emitted from either a source or an aggregation node) to consist of only

time period ID T , instead of tuple (T, v). In other words, target values v are irrelevant when

it comes to rate analysis, as long as they are aggregated correctly according to algorithm 2.1

using aggregate function agg(.) [definition 1.4].

We shall consistently adopt this simplified stream representation throughout this chapter,

hence the interchangeable use of ‘data item’ and ‘time period ID’ and the characterisation of

data streams solely based on the time period IDs contained therein.
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4.2 Consideration period

With the simplified stream representation of section 4.1 in place, the characteristics of our

system (for the purpose of rate analysis) are determined solely by which time period IDs the

sources emit and how they emit these (in terms of rate and other properties). Therefore, we

now establish the following important notion of ‘consideration period’.

Definition 4.1 (Consideration period). If we consider the superposition of all key-change

moments tki of all sources (0,k) [definition 2.2] in time-based stream aggregation [defini-

tion 1.1], the universal timeline can be split into several consideration periods demarcated by

these key-change moments.

The illustration in figure 4.1 shows consideration periods for time-based stream aggregation

with three sources (0,1), (0,2) and (0,3) during a short time snippet.

Figure 4.1: Consideration periods in time-based stream aggregation with three sources (different
colours on timeline denote distinct time period IDs in respective source streams)

Remark 4.1 (Static system characteristics within a consideration period). It is evident

that within each consideration period [definition 4.1], system characteristics remain static

with every source (0,k) emitting a constant Poisson sequence 〈uki 〉i ∼P (λ0) [definitions 3.7

and 3.13] (cf. definition 2.2 and figure 4.1).

4.3 Practical prerequisite at sources

According to definition 2.2, key-change moments at source (0,k) always exhibit random offset

Ωk from the ideal time point determined by constant ideal key-change period ∆t . Depending

on variance σ2
k of normally distributed Ωk , it can happen, though rather unlikely, that an

arbitrary number of distinct time period IDs can be present in a particular consideration

period [definition 4.1].
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In practice, however, as offsets are typically small (with respect to ∆t) causing actual key-

change moments to cluster around their respective ideal counterpart, rather than spreading

infinitely on both sides of the latter. In such a practical scenario, there are at most two distinct

time period IDs emitted by any sources within a consideration period. We shall adopt this

practical scenario as a prerequisite for our analyses in this work.

Figure 4.2: Practical scenario with at most two distinct time period IDs in each consideration
period (denoted by different colours on timeline of respective source streams)

Figure 4.2 depicts a toy example with three sources conforming to the practical scenario.

Data streams emitted by the sources are graphically shown as colour strips on the respective

timeline where different colours denote distinct time period IDs. Consideration periods and

ideal key-change moments are also indicated in figure 4.2.

A reasonable condition for such a practical scenario is to ensure a high enough probability (i.e.

confidence level) that all independent random offsets {Ωk | k ∈ {1..n0}} fall within

[
−∆t

2
,
∆t

2

]
.

In other words, we have the following condition for variances
{
σ2

k

}
of {Ωk }:

Pr

[
Ωk ∈

[
−∆t

2
,
∆t

2

]
,∀k ∈ {1..n0}

]
=

n0∏
k=1

∫ ∆t
2

− ∆t
2

fNormal
(
0,σ2

k

)(x)dx > P (4.1)

where fNormal
(
0,σ2

k

)(x) = 1

σk
p

2π
e

−x2

2σ2
k is the Gaussian probability density function ofNormal

(
0,σ2

k

)
,

and P ∈ [0,1] is the prescribed confidence level (typically P ≈ 1).
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As long as all variances
{
σ2

k

}
satisfy equation (4.1), the practical scenario described above

applies, implying that it is ‘highly unlikely’ to have more than two distinct time period IDs

in a particular consideration period. This likelihood is so significantly negligible that for all

practical purposes, one can reasonably assume that indeed there are at most two distinct time

period IDs in each consideration period.

4.4 First aggregation layer

This section discusses the rate transfer (from input to output) occurring at processor (1,m)

(∀m ∈ {1..n1}) [definition 2.4] in the first aggregation layer of our parallelisation [definition 2.1].

LEMMA 4.1 (Input characteristics at first-layer processor). In the context of multi-

layer parallelisation [definition 2.1], at any time t ∈ R, processor (1,m) (m ∈ {1..n1}) re-

ceives from sources {(0,k) | k ∈ {1..n0}} a superposition [definition 3.14] of n0 Poisson sequences{〈uki 〉i ∼P (λ0:1) | k ∈ {1..n0}
}

[definition 3.13] where mean arrival rate is constant:

λ0k:1m(t ) =λ0:1 =
λ0

n1
(∀k ∈ {1..n0} ,∀m ∈ {1..n1} ,∀t ∈R) (4.2)

Furthermore, within a particular consideration period [definition 4.1] and under the practical-

scenario assumption [section 4.3], every 〈uki 〉i is a constant sequence [definition 3.7] with value

set Vk such that V =
⋃

k∈{1..n0}
Vk has cardinality |V | ∈ {1,2}.

Proof. Each source (0,k) emits a Poisson sequence with mean arrival rate λ0 [definition 2.2].

As this is uniformly spread among all processors in layer 1 and data items are routed to (1,m)

with probability p = 1

n1
[definition 2.2], (1,m) receives a Poisson sequence with rate pλ0 =

λ0

n1
from source (0,k) [39, Colouring Theorem, section 5.1, pp. 53–55]. Considering all sources,

(1,m) receives a superposition of n0 Poisson sequences with rate
λ0

n1
each.

Also, within a particular consideration period, (1,m) receives from (0,k) a p-thinned copy [defin-

ition 3.5] of a constant Poisson sequence [remark 4.1] which remains the same constant Pois-

son sequence [remark 3.7]. The practical scenario [section 4.3] guarantees that there are at

most two distinct time period IDs within a consideration period. Therefore, it follows that

every 〈uki 〉i is a constant sequence and |V | ∈ {1,2}.

THEOREM 4.2 (Total incoming rate at first-layer processor). In the context of multi-layer

parallelisation [definition 2.1] under the practical-scenario assumption [section 4.3], the total

incoming rate at processor (1,m) (m ∈ {1..n1}) is constant:

λ(in)
1m (t ) =λ(in)

1 = n0λ0

n1
(∀m ∈ {1..n1} ,∀t ∈R) (4.3)

42



4.4. First aggregation layer

Proof. Processor (1,m) receives a superposition of n0 Poisson processes

{
P

(
λ0

n1

)}
[lemma 4.1],

hence equation (4.3) [39, Superposition Theorem, section 2.2, pp. 14–17].

THEOREM 4.3 (Output characteristics at first-layer processor). In the context of multi-

layer parallelisation [definition 2.1], within a particular consideration period Tc [definition 4.1]

and under the practical-scenario assumption [section 4.3], processor (1,m) (m ∈ {1..n1}) out-

puts Poisson sequence 〈s̃ j 〉 ∼ P
(
λ(out)

1

)
[definition 3.13] where 〈s̃ j 〉 is an alternating binary

sequence [definition 3.10] (in the long run) and the total outgoing rate is constant:

λ(out)
1m (t ) =λ(out)

1 = 2n0v (n0 −n0v )λ0

n0n1
(∀m ∈ {1..n1} ,∀t ∈ Tc ) (4.4)

where n0v = |{k ∈ {1..n0} | Vk 3 v}| ∈ {1..n0} ,∀v ∈ V (with V defined in lemma 4.1).

Proof. We have |V | ∈ {1,2} [lemma 4.1]. When |V | = 1, there is no output from (1,m) [al-

gorithm 2.1]. In this case, λ(out)
1m (t ) = 0,∀m, t . Equation (4.4) trivially holds.

When |V | = 2, there is a superposition of n0 constant Poisson sequences each with same rate
λ0

n1
at (1,m) [lemma 4.1] resulting in the superposition being a binary sequence. As outputs

are triggered at different-consecutive-elements events [algorithm 2.1], the total outgoing rate

is
2n0v (n0 −n0v )

n0
× λ0

n1
[corollary 3.11].

Also, algorithm 2.1 implies that output sequence 〈s̃ j 〉 is the compression [definition 3.4] of

the incoming superposition (which is a binary sequence when |V | = 2). Therefore 〈s̃ j 〉 is an

alternating binary sequence [corollary 3.4]. This ‘alternating binary’ property applies in the

long run, ignoring at most one initial element ‘drifted’ from the previous cluster of key-change

moments due to the emission behaviour of algorithm 2.1.

COROLLARY 4.4 (Upper bound of total outgoing rate at first-layer processor). In the

context of multi-layer parallelisation [definition 2.1] under the practical-scenario assump-

tion [section 4.3], the total outgoing rate of the output Poisson sequence at processor (1,m)

(m ∈ {1..n1}) has the following upper bound:

λ(out)
1m (t )6λ(out)

1,max =
n0λ0

2n1
(∀m ∈ {1..n1} ,∀t ∈R) (4.5)

Proof. We have |V | ∈ {1,2} [lemma 4.1]. When |V | = 1, λ(out)
1m (t ) = 0,∀m, t [theorem 4.3]. Equa-

tion (4.5) trivially holds. When |V | = 2, there is a superposition of n0 constant Poisson se-

quences each with same rate
λ0

n1
at (1,m) [lemma 4.1] resulting in a binary superposition

sequence. Also, outputs are triggered at different-consecutive-elements events [algorithm 2.1].

Thus the total outgoing rate has upper bound
n0

2
× λ0

n1
[theorem 3.12 and remark 3.23].
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Figure 4.3: Total outgoing rate at first-layer processor as spikes at key-change-moment cluster
(colours on timeline denote distinct time period IDs in source streams; diagram not to scale)

With constant λ(out)
1m (t ) within each consideration period (characterised by n0v ≈ the ‘mix’ ratio

between two time period IDs) [theorem 4.3], λ(out)
1m (t ) across consideration periods is piecewise

constant with ‘spikes’ at key-change-moment clusters. Figure 4.3 shows an illustrative sketch

of λ(out)
1m (t) in a toy example. The spikes roughly correspond to the discretisation of f (x) in

the proof of theorem 3.12 and their peaks correspond to n0v ≈ n0

2
(i.e. ≈ 1 : 1 mix), which is

consistent with theorem 3.12 and corollary 4.4.

4.5 Subsequent aggregation layers

This section discusses the rate transfer (from input to output) occurring at aggregation node

(`,m) (processor or sink [definition 2.3], ∀` ∈ {2..L}, m ∈ {1..n`}) in one of the non-first layers

in our parallelisation [definition 2.1]. All properties at layer ` are recursively dependent on

those of the precedent layer `−1.

LEMMA 4.5 (Input characteristics at non-first-layer aggregation node). In the context

of multi-layer parallelisation [definition 2.1], within a particular consideration period Tc [defin-

ition 4.1] and under the practical-scenario assumption [section 4.3], aggregation node (`,m)

(` ∈ {2..L}, m ∈ {1..n`}) receives from {(`−1,k) | k ∈ {1..n`−1}} a superposition [definition 3.14] of

n`−1 Poisson sequences
{〈uki 〉i ∼P (λ`−1:`) | k ∈ {1..n`−1}

}
[definition 3.13] where each 〈uki 〉i

is an
1

n`
-thinned copy of an unbiased alternating binary sequence [definition 3.10] (in the long

run) and its mean arrival rate is constant:

λ(`−1)k:`m(t ) =λ`−1:` =
λ(out)
`−1

n`
(∀` ∈ {2..L} ,∀k ∈ {1..n`−1} ,∀m ∈ {1..n`} ,∀t ∈ Tc ) (4.6)
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4.5. Subsequent aggregation layers

Proof. We first consider `= 2. During Tc , each (`−1,k) = (1,k) emits an alternating binary

Poisson sequence with constant mean arrival rate λ(out)
`−1 = λ(out)

1 [theorem 4.3]. As this is

uniformly spread among all nodes in layer ` and data items are routed to (`,m) with probability

p = 1

n`
[definition 2.4], (`,m) receives a Poisson sequence with rate pλ(out)

`−1 =
λ(out)
`−1

n`
from

(`−1,k) [39, Colouring Theorem, section 5.1, pp. 53–55] whose content 〈uki 〉i is a p-thinned

copy [definition 3.5] of the above alternating binary Poisson sequence.

Considering the whole layer `−1, (`,m) receives a superposition of n`−1 Poisson sequences,

each of which is a p-thinned copy of an alternating binary sequence and has rate
λ(out)
`−1

n`
each.

The underlying sequence is equivalently unbiased thanks to the uniform spread.

Repeating this proof recursively by applying theorem 4.7 and lemma 4.5, the conclusion can

be obtained ∀` ∈ {2..L}. Just as theorem 4.3, the ‘alternating binary’ property applies in the

long run, ignoring at most ` initial elements ‘drifted’ from the previous cluster of key-change

moments due to the emission behaviour of algorithm 2.1.

THEOREM 4.6 (Total incoming rate at non-first-layer aggregation node). In the context

of multi-layer parallelisation [definition 2.1] under the practical-scenario assumption [sec-

tion 4.3], the total incoming rate at aggregation node (`,m) (` ∈ {2..L} ,m ∈ {1..n`}) is constant:

λ(in)
`m (t ) =λ(in)

`
= n`−1

n`
λ(out)
`−1 (∀m ∈ {1..n1} ,∀t ∈R) (4.7)

Proof. Node (`,m) receives a superposition of n`−1 Poisson processes

{
P

(
λ(out)
`−1

n`

)}
[lemma 4.5],

hence equation (4.7) [39, Superposition Theorem, section 2.2, pp. 14–17].

THEOREM 4.7 (Output characteristics at non-first-layer aggregation node). In the con-

text of multi-layer parallelisation [definition 2.1], within a particular consideration period

Tc [definition 4.1] and under the practical-scenario assumption [section 4.3], aggregation node

(`,m) (` ∈ {2..L} ,m ∈ {1..n`}) outputs Poisson sequence 〈s̃ j 〉 ∼P
(
λ(out)
`

)
[definition 3.13] where

〈s̃ j 〉 is an alternating binary sequence [definition 3.10] (in the long run) and the total outgoing

rate is constant:

λ(out)
`m (t ) =λ(out)

`
= 2n`n(`−1) −n(`−1) +1

2n`(2n`−1)
λ(out)
`−1 (∀` ∈ {2..L} ,∀m ∈ {1..n`} ,∀t ∈ Tc ) (4.8)

Proof. (`,m) receives a superposition of n`−1 Poisson sequences, each of which is a
1

n`
-
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Chapter 4. Rate transfer analysis

thinned copy of an unbiased alternating binary sequence and has the same mean arrival

rate
λ(out)
`−1

n`
[lemma 4.5]. As outputs are triggered at different-consecutive-elements events [al-

gorithm 2.1], the total outgoing rate is as follows [corollary 3.15]:

λ(out)
`

= 1

2

(
n`−1 +

1
n`

2− 1
n`

)
λ(out)
`−1

n`
= 2n`n(`−1) −n(`−1) +1

2n`(2n`−1)
λ(out)
`−1

Also, algorithm 2.1 implies that output sequence 〈s̃ j 〉 is the compression [definition 3.4] of

the incoming superposition (which is a binary sequence [remark 3.17]). Therefore 〈s̃ j 〉 is an

alternating binary sequence [corollary 3.4].

Just as lemma 4.5, the ‘alternating binary’ property applies in the long run, ignoring at most `

initial elements ‘drifted’ from the previous cluster of key-change moments due to the emission

behaviour of algorithm 2.1.

COROLLARY 4.8 (Upper bound of total outgoing rate at non-first-layer aggregation
node). In the context of multi-layer parallelisation [definition 2.1] under the practical-

scenario assumption [section 4.3], the total outgoing rate of the output Poisson sequence at

aggregation node (`,m) (` ∈ {2..L} ,m ∈ {1..n1}) has the following upper bound:

λ(out)
`m (t )6λ(out)

`,max =
2n`n(`−1) −n(`−1) +1

2n`(2n`−1)
λ(out)

(`−1),max (∀` ∈ {2..L} ,∀m ∈ {1..n1} ,∀t ∈R) (4.9)

Proof. Node (`,m) receives a superposition of n`−1 Poisson sequences each of which is a
1

n`
-thinned copy of an unbiased alternating binary sequence and has the same mean arrival

rate
λ(out)
`−1

n`
[lemma 4.5].

Also, we have
λ(out)
`−1

n`
∈

[
0,
λ(out)

(`−1),max

n`

]
[corollary 4.8 recursively] and outputs are triggered at

different-consecutive-elements events [algorithm 2.1]. Thus the total outgoing rate has the

following upper bound [theorem 3.16]:

λ(out)
`,max =

1

2

(
n`−1 +

1
n`

2− 1
n`

)
λ(out)

(`−1),max

n`
= 2n`n(`−1) −n(`−1) +1

2n`(2n`−1)
λ(out)

(`−1),max
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4.6 Consolidation for all layers

THEOREM 4.9 (Upper bound of total incoming rate at aggregation node). In the con-

text of multi-layer parallelisation [definition 2.1] under the practical-scenario assumption [sec-

tion 4.3], total incoming rate at any aggregation node (`,m) (` ∈ {1..L} ,m ∈ {1..n1}) has the

following upper bound:

λ(in)
`m (t )6λ(in)

`,max =
n0λ0

2`−1n`

`−2∏
k=1

2nk+1nk −nk +1

nk (2nk+1 −1)
(∀` ∈ {1..L} ,∀m ∈ {1..n`} ,∀t ∈R) (4.10)

Proof. Intensively applying various results from sections 4.4 and 4.5 yields:

λ(in)
1,max =λ(in)

1 = n0λ0

n1
[theorem 4.2]

λ(out)
1,max =

n0λ0

2n1
[corollary 4.4] (4.11)

λ(in)
2,max =

n1

n2
λ(out)

1,max =
n1

n2
× n0λ0

2n1
= n0λ0

2n2
[theorem 4.6 and equation (4.11)]

λ(out)
2,max =

2n2n1 −n1 +1

2n2(2n2 −1)
λ(out)

1,max =
2n2n1 −n1 +1

2n2(2n2 −1)
× n0λ0

2n1

= n0λ0(2n2n1 −n1 +1)

22n1n2(2n2 −1)
[corollary 4.8 and equation (4.11)] (4.12)

λ(in)
3,max =

n2

n3
λ(out)

2,max =
n2

n3
× n0λ0(2n2n1 −n1 +1)

22n1n2(2n2 −1)

= n0λ0(2n2n1 −n1 +1)

22n3(n1)(2n2 −1)
[theorem 4.6 and equation (4.12)]

λ(out)
3,max =

2n3n2 −n2 +1

2n3(2n3 −1)
λ(out)

2,max =
2n3n2 −n2 +1

2n3(2n3 −1)
× n0λ0(2n2n1 −n1 +1)

22n1n2(2n2 −1)

= n0λ0(2n3n2 −n2 +1)(2n2n1 −n1 +1)

23n1n2n3(2n3 −1)(2n2 −1)
[corollary 4.8 and equation (4.12)]

(4.13)

λ(in)
4,max =

n3

n4
λ(out)

3,max =
n3

n4
× n0λ0(2n3n2 −n2 +1)(2n2n1 −n1 +1)

23n1n2n3(2n3 −1)(2n2 −1)

= n0λ0(2n3n2 −n2 +1)(2n2n1 −n1 +1)

23n4(n1n2)(2n3 −1)(2n2 −1)
[theorem 4.6 and equation (4.13)]

λ(out)
4,max = . . .

∴λ(in)
`,max =

n0λ0

2`−1n`

`−2∏
k=1

2nk+1nk −nk +1

nk (2nk+1 −1)
(∀` ∈ {1..L})
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5 Topology determination

With a closed-form formula for the upper bound of total incoming rate at any aggregation

node λ(in)
`,max (∀` ∈ {1..L}) [theorem 4.9], we are ready to revisit the problem statement in

section 5.1 and explore systematic approaches to topology determination.

Considering various objectives and circumstances, the problem statement [section 2.2] can

be transformed in different ways for practical solutions. Some of these could be slightly

more restrictive than others with respect to the original problem. However, all are valid and

plausible, as outlined in section 5.2 and discussed in sections 5.3 to 5.6.

5.1 Problem statement revisited

In this section, we revisit the formalised problem statement [section 2.2] for topology determ-

ination. Applying theorem 4.9, the ingest rate constraint of definition 2.7 becomes:

λ(in)
`,max 6 θ⇔ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L}) (5.1)

where function ψ`(n1,n2, . . . ,n`) is defined as follows ∀` ∈ {1..L}:

ψ`(n1,n2, . . . ,n`) = n0λ0

`−2∏
k=1

(2nk+1nk −nk +1)−θ2`−1n`
`−2∏
k=1

nk (2nk+1 −1) (5.2)

Using equation (5.1) above, the formalised problem statement [equation (2.2), section 2.2] can

then be restated more precisely as:

min
n1,n2,...,nL−1

L−1∑
`=1

n`

min
L

L

subject to: L,n1,n2, . . . ,nL−1 ∈N∗

subject to: ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L})

(5.3)
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Chapter 5. Topology determination

The problem presented in equation (5.3) is actually ill-posed as there are two ‘independent’

minimisations (i.e. two objective functions) without a clear indication of their relative priority.

It will no longer be ill-posed if we introduce parameters β,γ ∈R∗
+ to linearly combine the two:

min
L,n1,n2,...,nL−1

(
β

L−1∑
`=1

n`+γL

)
subject to: L,n1,n2, . . . ,nL−1 ∈N∗

subject to: ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L})

(5.4)

Certainly, parameters β and γ ought to be specified a priori. Although this new problem is not

precisely the original ill-posed one, it is a reasonable approximation.

NB. While there is always one sink, i.e. constant nL = 1 [definition 2.1], it is convenient at times

(especially in solution implementation) to incorporate nL as an extra variable together with a

trivial linear range constraint. For instance, on top of equation (5.4), we have:

min
L,n1,n2,...,nL

(
β

L∑
`=1

n`+γL

)
subject to: L,n1,n2, . . . ,nL−1 ∈N∗

subject to: nL = 1

subject to: ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L})

(5.5)

5.2 Road map to topology determination

As can be seen from section 5.1, topology determination boils down to finding a plausible

assignment for L,n1,n2, . . . ,nL−1 according to the requirements stated in equation (5.4). In

fact, the well-posed problem in equation (5.4) resembles mathematical optimisation with L

integer variables (L,n1,n2, . . . ,nL−1), L linear range constraints (all variables being positive), L

non-linear inequality constraints (equation (5.1)) and a linear objective function.

Nevertheless, such optimisation is rather non-standard owing to the presence of optimisation

variable L in the indices. Specifically, the number of variables and constraints are not fixed.

They are all dependent on L, itself an optimisation variable, while mathematical optimisation

generally operates on a prescribed number of variables which need to satisfy a fixed number

of constraints while optimising the objective function.

Consequently, some relaxation is necessary to transform either the ill-posed [equation (5.3)]

or non-standard problem [equation (5.4)] so that plausible solutions can be reached and

systematic approaches to topology determination can be identified. Any relaxation will

slightly alter the original scenario; however, as the reader will soon discover, the transforms

employed in this work are admissible under practical circumstances.

Our road map to topology determination is depicted in figure 5.1. Various alternative solu-
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5.3. Priority-based brute force

tion paths will be presented in subsequent sections, as outlined below. These constitute

systematic approaches to multi-layer parallelisation of time-based stream aggregation, based

on solid analytical foundation [chapters 3 and 4] and in accordance with the methodology

adopted [section 2.3].

• To tackle the original ill-posed problem [equation (5.3)], we can prioritise on either of

the two minimisations or employ heuristics specific to the constraints [equation (5.1)].

This leads to brute-force approaches [section 5.3], mixed-integer non-linear program-

ming (MINLP) [section 5.4] or conservative sequential assignments [section 5.5].

• To tackle the well-posed non-standard problem [equation (5.4)], we can cap L at some

Lmax ∈N∗. This also leads to a MINLP-based approach [section 5.6].

Figure 5.1: Road map to topology determination

It is noteworthy that these approaches are in stark contrast with over-provision or trial-and-

error. Overly large n` and L may satisfy all constraints [equation (5.1)] but could result in

costly and inefficient set-ups (cf. sections 1.6 and 2.2). The reader is also reminded that the

worst-case scenario has been adopted in the derivation [chapters 3 and 4] so that all solutions

ensure non-saturation of ingest rate constraint [definition 2.7].

5.3 Priority-based brute force

Brute force or exhaustive search is never a good idea as it is not scalable. Nonetheless, it is a

good starting point before venturing into better solutions. Brute-force approaches offer an

opportunity to examine potential solution sketches, especially for ill-posed problems.
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Chapter 5. Topology determination

In the ill-posed problem of equation (5.3), both objective functions map to N∗. For each

objective alone (assuming the other being constant), brute-force minimisation can proceed

as follows: We first assign 1 as the objective function value, derive all possible variable as-

signments that result in such value and check these against the constraints. If an assignment

satisfies all constraints, it is deemed the ‘optimal’ solution and the process returns. If all fail,

we increment the objective function value by 1 then repeat until a solution is found or some

stop condition applies (e.g. time-out, cap on objective function value, etc.)

When both objective functions are in effect, we can prioritise either of them so as to remain

brute-force manner without the linear combination of equation (5.4). Prioritisation refers

to the same conservative increments of individual objective function values as above. How-

ever, these should now proceed in two nested loops, the outer of which is for the prioritised

function. We propose this method as the priority-based brute-force approach to topology

determination as algorithms 5.1 and 5.2 which prioritise the minimisation of the number of

aggregation nodes N =
L∑
`=1

n` and the number of layers L, respectively.

Algorithm 5.1: Brute-force topology determination: prioritise min
n1,...,nL−1

L−1∑
`=1

n`

Input: n0 ∈N∗, λ0 ∈R+, θ ∈R+, nL = 1
Output: L,n1,n2, . . . ,nL−1 ∈N∗

if ψ1 (1)6 0 then L ← 1; return L; ;

for N ← 2 to +∞ do
for L ← 2 to N do

P =
{(

n(i )
1 ,n(i )

2 , . . . ,n(i )
L−1

) ∣∣∣ i ∈ {1.. |P |}
}
← ordered-partition(N −1,L−1);

for i ← 1 to |P | do
n(i )

L ← 1;

if ψ`

(
n(i )

1 ,n(i )
2 , . . . ,n(i )

`

)
6 0,∀` ∈ {1..L} then

n1 ← n(i )
1 ; n2 ← n(i )

2 ; . . . ; nL−1 ← n(i )
L−1; return L,n1,n2, . . . ,nL−1;

In algorithm 5.1, no stop condition is shown for the sake of brevity. When such condition

applies but solutions have yet to be found, the algorithm returns null indicating ‘no feasible

solution’. Moreover, n`> 1,∀` ∈ {1..L} ⇔ N =
L∑
`=1

n`> L. Therefore, the inner loop is restricted

to L 6 N , ensuring that each outer-loop iteration never runs infinitely. Also, the special case

N = L = 1 is treated separately outside the nested loops. Moving to algorithm 5.2, there is no

major difference except the swapping of the loops and the existence of an Nmax cap to prevent

outer-loop iterations from running infinitely. As shown above, L 6 N 6 Nmax so the outer

loop is also restricted to L 6 Nmax for consistency. Consequently, even without another stop

condition, the algorithm may still exhaust all possibilities and return null.
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Algorithm 5.2: Brute-force topology determination: prioritise min
L

L, restrict
L∑
`=1

n` ∈ {L..Nmax}

Input: n0 ∈N∗, λ0 ∈R+, θ ∈R+, Nmax ∈N∗, nL = 1
Output: L,n1,n2, . . . ,nL−1 ∈N∗

if ψ1 (1)6 0 then L ← 1; return L; ;
if Nmax < 2 then return null; ;

for L ← 2 to Nmax do
for N ← L to Nmax do

P =
{(

n(i )
1 ,n(i )

2 , . . . ,n(i )
L−1

) ∣∣∣ i ∈ {1.. |P |}
}
← ordered-partition(N −1,L−1);

for i ← 1 to |P | do
n(i )

L ← 1;

if ψ`

(
n(i )

1 ,n(i )
2 , . . . ,n(i )

`

)
6 0,∀` ∈ {1..L} then

n1 ← n(i )
1 ; n2 ← n(i )

2 ; . . . ; nL−1 ← n(i )
L−1; return L,n1,n2, . . . ,nL−1;

return null;

In both algorithms, subroutine ordered-partition(n, p) returns the set of all possible

ordered p-partitions of n, i.e. all ordered partitions of n into a sum of p terms (n, p ∈ N∗).

A plausible algorithm for ordered-partition(n, p) is to line up n 1’s then find all possible

unordered placements of p−1 commas in n−1 spaces in between the 1’s. For each placement,

‘+’ signs can be inserted into the remaining spaces then simple arithmetic yields the result. As

there are C
p−1
n−1 =

(n −1)!

(p −1)!(n −p)!
placements of commas, there are C

p−1
n−1 such partitions.

Example 5.1. R = {(1,1,3), (1,2,2), (1,3,1), (2,1,2), (2,2,1), (3,1,1)} is the output when invok-

ing ordered-partition(5,3). Indeed, we have |R| =C2
4 =

4!

2!2!
= 6 elements.

5.4 L-priority mixed-integer non-linear programming

In algorithm 5.3, the inner loop deals with a transformed problem where L is no longer a vari-

able. With constant L, the number of optimisation variables is fixed (L−1), so are the number

of linear range constraints (L−1) and non-linear inequality constraints (L). In particular, we

have the following problem, for every L dictated by the outer loop of algorithm 5.3.


min

n1,n2,...,nL−1

L−1∑
`=1

n`

subject to: n1,n2, . . . ,nL−1 ∈N∗

subject to: ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L})

(5.6)
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The problem in equation (5.6) is indeed mixed-integer non-linear programming (MINLP) [42,

43] although there are only integer variables and a linear objective function. Inspired by the

L-priority approach as in algorithm 5.2 but employing a standard off-the-shelf MINLP solver

instead of the naïve brute-force inner-loop, we obtain algorithm 5.3. This is the L-priority

MINLP-based approach proposed for multi-layer parallelisation.

Algorithm 5.3: MINLP-based topology determination, prioritising min
L

L

Input: n0 ∈N∗, λ0 ∈R+, θ ∈R+, nL = 1
Output: L,n1,n2, . . . ,nL−1 ∈N∗

for L ← 1 to +∞ do

variables V ← {n1,n2, . . . ,nL−1};

objective ω←
[

min
n1,n2,...,nL−1

L−1∑
`=1

n`

]
;

range constraints C1 ←
{
[n` ∈N∗] | ` ∈ {1..L−1}

}
;

general constraints C2 ←
{[
ψ`(n1,n2, . . . ,n`)6 0

] ∣∣ ` ∈ {1..L}
}
;

(n1,n2, . . . ,nL−1) ← MINLP-solver(V ,ω,C1
⋃

C2);

if (n1,n2, . . . ,nL−1) 6= null then
return L,n1,n2, . . . ,nL−1;

Just as in section 5.3, no stop condition like time-out or Lmax is shown for the sake of concise-

ness. Variables, objective and constraints supplied as parameters to the MINLP solver closely

follow equation (5.6). No Nmax cap is required as the solver should be able to handle standard

MINLP without additional constraints. Of course, it may implement its own stop condition,

resulting in possible ‘no feasible solution’.

Regarding MINLP in general, the problem has been intensively studied [42, 43] and various

techniques have been implemented as off-the-shelf optimisation suites. For instance, an

extension of the ant colony optimisation meta-heuristic and the oracle penalty method for

constraint handling [44] are employed in MIDACO [45], a MINLP-focused general-purpose op-

timiser. Similarly, SCIP [46], a mixed-integer programming (MIP) and MINLP solver, integrates

constraint programming with MIP modelling and solving techniques [47, 48, 49].

Given the sets of variables V and constraints C as well as the objective ω, MIDACO and SCIP

solvers are feasible candidates to realise subroutine MINLP-solver(V ,ω,C ) of algorithm 5.3.

It is worth highlighting that MINLP solvers are employed as black boxes as the details of their

solving techniques are not the subject of this study.
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5.5 Conservative sequential assignments

We revisit the constraints [equation (5.1)] which can be equivalently transformed as follows:

n`>
n0λ0

θ2`−1

`−2∏
k=1

2nk+1nk −nk +1

nk (2nk+1 −1)
= ψ̃`(n1,n2, . . . ,n`−1) (∀` ∈ {1..L}) (5.7)

As can be seen from equation (5.7), the criterion for n` at layer ` relies on the outcome of

function ψ̃`(n1,n2, . . . ,n`−1) which only depends on the numbers of nodes at layers preceding

`. This makes sequential assignments of n` with incremental ` possible, resembling the

L-priority idea of algorithm 5.2.

The minimisation of
L∑
`=1

n` can then be achieved by conservatively selecting the smallest

possible value for every n`. As n` > ψ̃`(n1,n2, . . . ,n`−1) [equation (5.7)] and n` ∈ N∗, this

corresponds to picking n` =
⌈
ψ̃`(n1,n2, . . . ,n`−1)

⌉
. The process terminates as soon as n` = 1

at some ` (the single sink [definition 2.5], with ` being the finalised number of layers L).

Conservative sequential assignments are proposed in algorithm 5.4 as another systematic

approach to multi-layer parallelisation. It does not involve any search but rather employing a

heuristic specific to the ill-posed problem [equation (5.3)] based on equation (5.7).

Algorithm 5.4: Conservative sequential assignments for topology determination

Input: n0 ∈N∗, λ0 ∈R+, θ ∈R+, Nmax ∈N∗

Output: L,n1,n2, . . . ,nL ∈N∗

for `← 1 to +∞ do

n`←
⌈

n0λ0

θ2`−1

`−2∏
k=1

2nk+1nk −nk +1

nk (2nk+1 −1)

⌉
;

if n` = 1 then
L ← `; return L,n1,n2, . . . ,nL ;

The results obtained from algorithm 5.4 may not be optimal in the strict sense, which is not

clearly defined anyway for an ill-posed problem like equation (5.3). However, in some practical

cases, it could be more efficient than those presented earlier [sections 5.3 and 5.4].

5.6 L-cap mixed-integer non-linear programming

This section attempts to tackle the well-posed non-standard problem [equation (5.4)] by

capping L ∈ {1..Lmax} for some Lmax ∈N∗. With Lmax in place, we can remove the problem’s

non-standard aspect discussed in [section 5.2] — i.e. making the number of variables and
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constraints static to properly fit a MINLP formulation.

In particular, dummy optimisation variables nL+1 to n(Lmax) can be introduced alongside n1

to nL (NB. nL = 1 incorporated as a variable for convenience here, cf. section 5.1). Dummy

variables are distinguished from the rest by Lmax binary masks {m` ∈ {0,1} | ` ∈ {1..Lmax}} where

m` = 0 indicates that the corresponding n` is dummy and does not constitute a layer in the

resultant topology. With the total number of non-dummy layers L ∈ {1..Lmax}, we must have

the following so that binary masks m` are valid:

m` =
1 if ` ∈ {1..L}

0 if ` ∈ {(L+1)..Lmax}
(5.8)

In other words, as ` increments, binary masks {m`} are non-increasing with fixed initial m1 = 1.

Index ` such that m` = 1 and m`+1 = 0 is the total number of non-dummy layers L; we must

have nL = 1. Previously problematic variable L (causing dynamic number of variables and

constraints) can now be represented by a fixed number of binary masks {m`} as additional

optimisation variables. The following newly introduced constraints incorporate the above

non-increasing property (with dummy fixed m(Lmax+1) = 0 for convenience) as well as the

restriction nL = 1 at the single decreasing point of masks {m`}.

06 n`(m`−m`+1)6 1 (∀` ∈ {1..Lmax}) (5.9)

We also need to adapt the original constraints of equation (5.1) as these do not apply to all

variables n1 to n(Lmax) but only non-dummy ones n1 to nL . This can be achieved simply by

multiplying the corresponding binary mask m` to the `th constraint:

ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..L})

⇔ m`ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..Lmax}) (5.10)

With all constraints in place, the objective function can be adapted in the same manner. Note

that fixed m1 = 1 is not considered a variable for the sake of simplicity:

min
L,n1,n2,...,nL

(
β

L∑
`=1

n`+γL

)

⇔ min
n1,n2,...,n(Lmax)

m2,m3,...,m(Lmax)

(
β

Lmax∑
`=1

n`m`+γ
Lmax∑
`=1

m`

)
(5.11)

Putting everything together, we obtain a MINLP problem [42, 43] similar to section 5.4, which
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can be solved with an off-the-shelf MINLP solver like MIDACO [50] or SCIP [46]:



min
n1,n2,...,n(Lmax)

m2,m3,...,m(Lmax)

(
β

Lmax∑
`=1

n`m`+γ
Lmax∑
`=1

m`

)
subject to: n` ∈N∗ (∀` ∈ {1..Lmax})

subject to: m` ∈ {0,1} (∀` ∈ {2..Lmax})

subject to: 06 n`(m`−m`+1)6 1 (∀` ∈ {1..Lmax})

subject to: m`ψ`(n1,n2, . . . ,n`)6 0 (∀` ∈ {1..Lmax})

(5.12)

We propose this as an L-cap MINLP-based approach to multi-layer parallelisation in al-

gorithm 5.5. More variables need to be involved (2Lmax − 1) and generally larger Lmax is

preferred to achieve feasible solutions. As can be seen from algorithm 5.5, the process can be

wrapped in an incremental-Lmax loop for greater flexibility, avoiding the heuristic prescription

of Lmax.

Algorithm 5.5: MINLP-based topology determination, restricting L ∈ {1..Lmax} (Lmax ∈N∗)

Input: n0 ∈N∗, λ0 ∈R+, θ ∈R+, Lmax ∈N∗, m1 = 1, m(Lmax+1) = 0
Output: L,n1,n2, . . . ,nL ∈N∗

variables V ← {
n1,n2, . . . ,n(Lmax)

}⋃{
m2,m3, . . . ,m(Lmax)

}
;

objective ω←
 min

n1,n2,...,n(Lmax)
m2,m3,...,m(Lmax)

(
β

Lmax∑
`=1

n`m`+γ
Lmax∑
`=1

m`

);

range constraints C1 ←
{
[n` ∈N∗] | ` ∈ {1..Lmax})

}
;

C1 ←C1
⋃

{[m` ∈ {0,1}] | ` ∈ {2..Lmax}};

general constraints C2 ← {[06 n`(m`−m`+1)6 1] | ` ∈ {1..Lmax}};
C2 ←C2

⋃{[
m`ψ`(n1,n2, . . . ,n`)6 0

] ∣∣ ` ∈ {1..Lmax}
}
;(

n1,n2, . . . ,n(Lmax),m2,m3, . . . ,m(Lmax)
)← MINLP-solver(V ,ω,C1

⋃
C2);

if
(
n1,n2, . . . ,n(Lmax),m2,m3, . . . ,m(Lmax)

)= null then
return null;

for `← 1 to Lmax do
if m`+1 = 0 then

L ← `; break;

return L,n1,n2, . . . ,nL ;
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6 Simulations & prototypes

6.1 Empirical verification of corollary 3.10

Besides mathematical analyses [chapter 3], a computer simulation was conducted in this

study to empirically verify corollary 3.10 on the superposition of constant Poisson sequences,

one of the major foundations for first-layer rate transfer analyses [section 4.4].

The simulation package was developed in Python [51] with intensive use of its scientific com-

puting package SciPy [52] and plotting library matplotlib [53]. Backed by a MySQL relational

database [54], the simulation directly implements the mathematical model of corollary 3.10.

In fact, the package also supports the model of corollary 3.14 for use in a later empirical

verification [section 6.2]. It allows flexible configurations of N (total number of input Pois-

son sequences), λ and ξv (mean arrival rates and characteristic functions of these constant

sequences) as well as simulation duration [0, tmax].

A simulation run was launched for the concrete scenario of example 3.7 [page 33] over a

period of 12 hours in simulation time, i.e. tmax = 43,200 seconds. Its outcomes are presented

in figures 6.1 to 6.3 and table 6.1 and discussed in the subsequent paragraphs.

As can be seen in figure 6.1, the normalised histogram of inter-arrival times ∆τki of each

input process P (λk ) closely matches the probability density function of exponential distri-

bution Exp (λk ), confirming the plausibility of these Poisson process generations. Indeed,

inter-arrival time ∆τi of a homogeneous Poisson process with mean arrival rate λ should be

exponentially distributed with mean λ−1 [39, Interval Theorem, section 4.1, pp. 38–41]. In

other words, ∆τi ∼Exp (λ) for P (λ).

Figure 6.2 shows normalised histograms of inter-arrival times of observed processes and

the ideal probability density functions of Exp (λ) and Exp
(
λ̃
)

with λ and λ̃ computed in

example 3.7 [page 33]. The graphical matches demonstrate no discrepancies with the fact that

these processes are indeed homogeneous Poisson with the respective rates [corollary 3.10].

All histograms employ Freedman-Diaconis rule [55] to determine the ‘best’ number of bins for

59



Chapter 6. Simulations & prototypes

(a) k = 1 (b) k = 2 (c) k = 3

(d) k = 4 (e) k = 5

Figure 6.1: Normalised histograms and ideal probability density function of inter-arrival
times ∆τki ∼Exp (λk ) of controlled Poisson processes P (λk ) in the simulation of section 6.1

(a) Superposition P (λ) (b) Different-consecutive-elements events P
(
λ̃
)

Figure 6.2: Normalised histograms and ideal probability density function of inter-arrival
times ∆τi ∼ Exp (λ) and ∆τ̃i ∼ Exp

(
λ̃
)
of observed Poisson processes P (λ) and P

(
λ̃
)
re-

spectively in the simulation of section 6.1
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inter-arrival time samples {∆τi }:

#bins{∆τi } =

(
max

i
∆τi −min

i
∆τi

)
3
p

n

2× IQR{∆τi }
(6.1)

where n = |{∆τi }| is the sample size and IQR{∆τi } denotes the sample inter-quartile range.

The experimental outcomes of both input (controlled) and output (observed) Poisson pro-

cesses are also summarised in table 6.1 with the following details:

• Rates — Nominal values from either input configurations (for controlled processes{
P (λk )

}
) or applications of corollary 3.10 in example 3.7 [page 33] (for observed pro-

cesses — superposition P (λ) and new P
(
λ̃
)

formed by different-consecutive-elements

events in superposition sequence 〈s j 〉 ∼P (λ)).

• Sample sizes — Total number of inter-arrival time samples ∆τi ∼Exp (λ) generated by

the respective process P (λ) throughout the simulation duration [0, tmax].

• Rate estimates — Maximum likelihood estimation λ̂ for distribution Exp (λ) based on

n inter-arrival time samples {∆τi } of the corresponding process P (λ):

λ̂= n∑
i
∆τi

(6.2)

where n = |{∆τi }| is the sample size.

• 95% confidence intervals — Based on the confidence interval of the underlying inter-

arrival time ∆τi ∼ Exp (λ) [56, section 7.6, pp. 267–268], the 100(1−α)% confidence

interval (α ∈ [0,1]) of arrival rate λ of P (λ) is:qfChiSq(2n)

(α
2

)
2n

λ̂,
qfChiSq(2n)

(
1− α

2

)
2n

λ̂

 (6.3)

where n = |{∆τi }| is the sample size and qfChiSq(m)(p) is the quantile function evaluated

at p ∈ [0,1] of a χ2 distribution with m degrees of freedom. In this case, equation (6.3)

was applied with α= 0.05 to obtain the 95% confidence intervals.

In order to inspect the evolution of arrival rates over time, statistical analyses similar to

table 6.1 can be performed over a reduced look-back window of n inter-arrival time samples

at every time point t . This is instead of considering the entire sample set {∆τi } corresponding

to the whole simulation duration [0, tmax]. The window-based approximation attempts to

simulate a ‘rate meter’ which continually evaluates the ‘instantaneous’ arrival rate at time t .

Such meter remains hypothetical and hence approximate as Poisson arrivals are inherently

discrete events, albeit over a continuous timeline.
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Table 6.1: Arrival rate estimates, sample sizes and 95% confidence intervals of rate estimates
for homogeneous Poisson processes in the simulation of section 6.1

Process Type Rate Rate estimate Sample size 95% confidence interval

P (λ1) controlled λ1 = 0.1 λ̂1 ≈ 0.0992027 n1 = 4281 [0.0962530,0.1021962]
P (λ2) controlled λ2 = 0.3 λ̂2 ≈ 0.2991061 n2 = 12919 [0.2939704,0.3042858]
P (λ3) controlled λ3 = 0.35 λ̂3 ≈ 0.3504991 n3 = 15140 [0.3449380,0.3561041]
P (λ4) controlled λ4 = 0.15 λ̂4 ≈ 0.1517023 n4 = 6553 [0.1480512,0.1553971]
P (λ5) controlled λ5 = 0.1 λ̂5 ≈ 0.0984213 n5 = 4251 [0.0954847,0.1014019]
P (λ) observed λ= 1 λ̂≈ 0.9987856 n = 43144 [0.9893830,1.0082320]

P
(
λ̃
)

observed λ̃= 0.455 ˆ̃λ≈ 0.4545280 ñ = 19634 [0.4481922,0.4609077]

The outcomes of this rate evolution inspection are plotted in figure 6.3, with 95% confidence

intervals indicated in light colour shades for observed processes. The estimates are unsurpris-

ingly fluctuating around the theoretical value for smaller look-back window size n, exhibiting

wider confidence intervals [equation (6.3)]. At the same time, larger n gives more stable results

which are relatively closer to the theoretical values calculated in example 3.7 [page 33] by

applying corollary 3.10. As all Poisson processes involved are homogeneous, there are no

major rate shifts other than minor fluctuations around a stable mean.

The aforementioned simulation and empirical analyses were repeated for different values

of N ,λ and ξv , all of which yielded similarly consistent outcomes with regard to corollary 3.10.

Details of these other simulation runs are thus omitted for the sake of brevity.

6.2 Empirical verification of corollary 3.14

Computer simulation was also employed to empirically verify corollary 3.14 on the superposi-

tion ofα-thinned alternating binary Poisson sequences, a major foundation for non-first-layer

rate transfer analyses [section 4.5].

In fact, the same simulation package as that of section 6.1 was used as it was designed to be

compatible with the mathematical models of both corollaries 3.10 and 3.14, allowing either

constant or alternating binary sequences as inputs. All configuration options remain intact

except that characteristic functions ξv are irrelevant and thinning probabilityα [definition 3.5]

needs to be supplied in the latter case.

A simulation run was launched for the concrete scenario of example 3.8 [page 36] over

a period of 12 hours in simulation time. Its outcomes are presented in figures 6.4 to 6.6

and table 6.2. Only main conclusions from these results are summarised below as all observa-

tions and discussions are deemed analogous to those of section 6.1.

First of all, the plausibility of Poisson process generations were confirmed through the his-

tograms of figure 6.4. Furthermore, figure 6.5 demonstrates no discrepancies with the fact
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(a) n = 200 (b) n = 500

(c) n = 103 (d) n = 2×103

(e) n = 5×103 (f ) n = 104

Figure 6.3: Arrival rate estimates λ̂k , λ̂ and ˆ̃λ of Poisson processes P (λk ), P (λ) and P
(
λ̃
)
in

the simulation of section 6.1, using different look-back window sizes n. For λ̂ and ˆ̃λ, light
colour shades indicate 95% confidence intervals.
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(a) k = 1 (b) k = 2 (c) k = 3

(d) k = 4 (e) k = 5

Figure 6.4: Normalised histograms and ideal probability density function of inter-arrival
times ∆τki ∼Exp (λk ) of controlled Poisson processes P (λk ) in the simulation of section 6.2

that observed processes are homogeneous Poisson with the rates affirmed by corollary 3.14.

All histograms employ Freedman-Diaconis rule [55] to determine the ‘best’ number of bins

[equation (6.1)]. Similar to table 6.1 whose description can be found on page 61, table 6.2

summarises the experimental results.

In addition, rate evolution was inspected just as in section 6.1 with results presented in

figure 6.6. Same observations can be drawn — no major fluctuations due to homogeneity and

closer results to the theoretical calculations of example 3.8 [page 36] for larger window size.

Lastly, the experiment was repeated for varying input configurations, all of which yielded

consistent results with corollary 3.14. Details of these extra simulation runs can therefore be

skipped for the sake of conciseness.

6.3 Prototypes of topology determination approaches

Apart from empirical verifications [sections 6.1 and 6.2], working prototypes of various topo-

logy determination approaches [chapter 5] were also developed in this study. Python [51] was

selected as the environment of choice due to its portability and flexibility.
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(a) Superposition P (λ) (b) Different-consecutive-elements events P
(
λ̃
)

Figure 6.5: Normalised histograms and ideal probability density function of inter-arrival
times ∆τi ∼ Exp (λ) and ∆τ̃i ∼ Exp

(
λ̃
)
of observed Poisson processes P (λ) and P

(
λ̃
)
re-

spectively in the simulation of section 6.2

Table 6.2: Arrival rate estimates, sample sizes and 95% confidence intervals of rate estimates
for homogeneous Poisson processes in the simulation of section 6.2

Process Type Rate Rate estimate Sample size 95% confidence interval

P (λ1) controlled λ1 = 0.15 λ̂1 ≈ 0.1514153 n1 = 6541 [0.1477679,0.1551066]
P (λ2) controlled λ2 = 0.2 λ̂2 ≈ 0.2001115 n2 = 8643 [0.1959147,0.2043522]
P (λ3) controlled λ3 = 0.35 λ̂3 ≈ 0.3480085 n3 = 15033 [0.3424674,0.3535935]
P (λ4) controlled λ4 = 0.1 λ̂4 ≈ 0.0972787 n4 = 4201 [0.0943591,0.1002422]
P (λ5) controlled λ5 = 0.2 λ̂5 ≈ 0.2004611 n5 = 8659 [0.1962608,0.2047052]
P (λ) observed λ= 1 λ̂≈ 0.9971744 n = 43077 [0.9877797,1.0066129]

P
(
λ̃
)

observed λ̃= 0.5235 ˆ̃λ≈ 0.5540629 ñ = 23935 [0.5470656,0.5611041]
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(a) n = 200 (b) n = 500

(c) n = 103 (d) n = 2×103

(e) n = 5×103 (f ) n = 104

Figure 6.6: Arrival rate estimates λ̂k , λ̂ and ˆ̃λ of Poisson processes P (λk ), P (λ) and P
(
λ̃
)
in

the simulation of section 6.2, using different look-back window sizes n. For λ̂ and ˆ̃λ, light
colour shades indicate 95% confidence intervals.
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For priority-based brute-force approaches [section 5.3], a single prototype was implemented

for both algorithms 5.1 and 5.2. The user can configure the number of sources n0 [defini-

tion 2.1], mean arrival rate of each source λ0 [definition 2.2] and the ingest rate constraint

at each aggregation node θ [definition 2.7]. All of these constitute inputs to the topology

determination problem as discussed in chapter 5. An additional configuration for the max-

imum number of aggregation nodes Nmax is also required, as indicated in algorithm 5.2. For

convenience purposes, Nmax is also applicable to algorithm 5.1 as a simple stop condition.

Algorithm selection is governed by a ‘priority’ parameter which can be either ‘number of

aggregation nodes’ (for algorithm 5.1) or ‘number of layers’ (for algorithm 5.2).

For the L-priority MINLP-based approach [section 5.4], two separate prototypes were de-

veloped, both based on algorithm 5.3. One employs MIDACO [50] as the black-box MINLP

optimiser while the other incorporates SCIP [46] for solving MINLP. The choices of MIDACO

and SCIP were purely technical and convenient. Both have Python APIs (natively offered

for MIDACO and through wrapper module python-zipopt [57] for SCIP) available for non-

commercial use. On the whole, adaptation was required according to each solver’s specifica-

tion (e.g. how constraints should be passed); however, this does not change the nature of our

MINLP problem. The outer loop of algorithm 5.3 with incremental-L was not included and

should rather be constructed at the invocation script level for simplicity.

Owing to the non-commercial editions of MIDACO and SCIP, our prototypes unfortunately

suffer from significant drawbacks in terms of problem scale. In particular, non-commercial

MIDACO only allows up to four optimisation variables (directly limiting our number of lay-

ers L) while its counterpart SCIP permits only bilinear constraints (indirecting limiting L

as well, cf. equation (5.1)). Consequently, no prototypes have been provided for the N -cap

MINLP-based approach [section 5.6] as algorithm 5.5 inherently requires a much larger MINLP

problem scale than that of algorithm 5.3.

For conservative sequential assignments [section 5.5], a prototype was also developed based

on algorithm 5.4. This prototype has exactly the same interface as that of its brute-force

counterparts described above. It is however much more efficient that brute-force searches and

does not suffer from non-commercial MINLP solvers’ constraints. As a result, this prototype

will be used to determine the topology for subsequent experiments.

6.4 Simulation of multi-layer parallelisation

A complete simulation package was developed to study the overall behaviour of source and

aggregation nodes at various layers of the parallelisation [definition 2.1].

Just as the smaller-scale simulations of sections 6.1 and 6.2, this package was implemented

in Python [51] using scientific computing package SciPy [52], plotting library matplotlib [53]

and a MySQL relational database [54] to simulate all aspects of the formalisation [section 2.2].

Configurations for a simulation run include:
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(a) Inter-arrival times (b) Rate estimates (window size 200)

Figure 6.7: Behaviour at a randomly selected layer-0 source node in the simulation of section 6.4

• [0, tmax]: Simulation duration.

• n0: Number of sources [definition 2.2].

• n = [n`] ∈ (N∗)L : Numbers of aggregation nodes [definition 2.3] at layers ` ∈ {1..L}.

• λ0: Poisson mean arrival rate at each source [definition 2.2].

• ∆t : Ideal key-change period at each source [definition 2.2].

• σ: Standard deviation for key-change offsetΩk at each source [definition 2.2].

• agg(.): Admissible aggregate function [definition 1.4] – min(.), max(.), sum(.) or count(.).

• Range {vmin..vmax} for random integer target values v in tuples (T, v) output by sources.

• Propagation delay induced between any two layers.

It is noteworthy that the last three configurations, while included for completeness, are

irrelevant for our rate-focused analyses, cf. chapter 4. We then experimented with a concrete

scenario over a period of 2 hours in simulation time (tmax = 7,200 seconds): n0 = 500 sources,

λ0 = 0.5 items/sec, ∆t = 1,200 seconds, σ = 24 seconds, sum(.) as aggregation function,

vmin = 0, vmax = 99 and 2-second propagation delay. Assuming an ingest rate constraint θ =
20 items/sec [definition 2.7] at each aggregation node, executing the topology determination

prototype [section 6.3] based on conservative sequential assignments [section 5.5] yielded a

5-layer topology with sizes n = [n`] =
[

13 7 4 2 1
]ᵀ

. The simulation was conducted with

the above scenario and this n.

Experimental outcomes of the run are presented in figures 6.7 and 6.8 for source and aggrega-

tion layers respectively. Indeed, Poisson process generations at the prescribed rate λ0 = 0.5 by

sources were confirmed through inter-arrival time histograms and evolution of rate estimates,

shown in figure 6.7 for a randomly selected source. Just as in sections 6.1 and 6.2, Freedman-

Diaconis rule [55] was used to identify the number of histogram bins and rate evolution was

based on maximum likelihood estimation over a look-back window.
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(a) `= 1 (b) `= 2 (c) `= 3

(d) `= 4 (e) `= 5

Figure 6.8: Rate estimates at randomly selected layer-` aggregation nodes in the simulation of
section 6.4 (look-back window size 200)

For aggregation layers, evolution plots of rate estimates were also obtained, as shown in fig-

ure 6.8 for one randomly selected node per layer. Besides the constant incoming rate at layer

1, all other incoming and outgoing rates [definition 2.6] exhibited obvious ‘spikes’ around

ideal key-change moments
{

t (ideal)
i

}
, i.e. every ∆t = 1,200 seconds. This is in line with the ana-

lyses of sections 4.4 and 4.5. However, these rates are dynamic and fast-changing (piecewise

constant with small constant-rate time windows). Therefore, measured amplitudes in the

evolution could be unreliable due to insufficient samples for maximum likelihood estimation

(cf. section 6.1). In fact, they are sensitive to the look-back window size (cf. figures 6.3 and 6.6).

The simulation was repeated for different configuration values and gave similar outcomes.

Details of these other runs are therefore not presented.

6.5 Amazon Kinesis-based prototype

In order to demonstrate the practicality and applicability of proposed approaches, prototyp-

ing and experiments were conducted in the real Amazon Kinesis [section 1.4] environment.

The prototype suite consists of four Java [26] applications — CreateStreamApp, SourceApp,
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ProcessorApp and SinkApp. For experimental purposes, all applications log to a MySQL [54]

relational database for post-analysis. As the names imply, administrative CreateStreamApp
is responsible for Kinesis stream creation, while the rest correspond directly to sources [defin-

ition 2.2] and aggregation nodes [definition 2.3] of our multi-layer parallelisation [defini-

tion 2.1]. Runtime interactions of these prototype applications with the environment are

depicted in the diagram of figure 6.10.

Figure 6.9: Interactions of prototype applications with Amazon Kinesis

Indeed, the applications follow the typical Kinesis usage scenario of figure 1.3 [section 1.4].

SourceApp is a single-role producer, ProcessorApp is a dual-role producer-consumer and

SinkApp is a single-role consumer. As explained in section 1.4, producers interact with Kinesis

via the SDK while consumers can employ KCL for push-model data consumption and the

SDK for other operations. With many shared functionalities amongst the applications, object-

oriented inheritance was employed to ensure maintainability and extensibility.

These applications realise the way Kinesis can be employed for time-based stream aggregation,

as described in section 1.6. Consequently, their deployment in the Kinesis environment

resembles the structure sketched in figure 6.10. In essence, every aggregation layer comprises

a Kinesis stream with as many shards as the number of aggregation nodes, each being a single-

worker consumer integrated in dual-role ProcessorApp or single-role SinkApp. Furthermore,

uniform data spread to the next layer is automatically regulated by Kinesis shard partitioning

scheme. Once the system has stabilised, KCL mechanism ensures that there is a one-to-one

correspondence between shards and consumer.

In terms of parameters, apart from technical ones like AWS region ID, service endpoint and

HTTP proxy, each application needs to be configured with an experiment duration [0, tmax], a

node ID and relevant stream names. Specifically, outgoing and incoming stream names apply
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Figure 6.10: Deployment of prototype applications and Amazon Kinesis streams

respectively to SourceApp and SinkApp while both have to be provided for ProcessorApp
(cf. figure 6.10). Moreover, emission rate λ0 and ideal key-change period ∆t are required for

proper data generation of the SourceApp.

We also developed a Python [51] script to instantiate all applications and orchestrate their

instances according to a given topology by ‘chaining’ them through correctly indicated incom-

ing and/or outgoing stream names. In particular, this script takes in similar parameters as that

of the simulation in section 6.4:

• [0, tmax]: Experiment duration.

• n0: Number of sources [definition 2.2].

• n = [n`] ∈ (N∗)L : Numbers of aggregation nodes [definition 2.3] at layers ` ∈ {1..L}.

• λ0: Data emission rate at each source [definition 2.2].

• ∆t : Key-change period at each source [definition 2.2].

• agg(.): Admissible aggregate function [definition 1.4] – min(.), max(.), sum(.) or count(.).

• Technical parameters: AWS region ID, Kinesis endpoint, HTTP proxy, etc.

Unlike the simulation of section 6.4, each running SourceApp instance emits data tuples and

switch time period IDs at pseudo-regular intervals. Natural randomness is added by real

system and network conditions rather than artificially controlled Poisson processes.

For experimental purpose, our SourceApp emits data payload at the maximum size of 50 KB

each [29] (padding is done when necessary). Considering the service limits of Kinesis, we

approximately worked out the ingest rate constraint [definition 2.7] θ = 20 items/sec based

on the bottleneck of 1 MB written per second and the maximum payload size of 50 KB [29].

These tight configurations with respect to Kinesis limits allow us to experiment a ‘saturation

threshold’ scenario. In practice, extra tolerance should be added to θ for additional safety
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while data payloads may not necessary be all of the maximum size. In fact, the maximum-

size assumption is another way to add safety buffer to θ. Moreover, in production systems,

empirical assessments can be conducted to determine θ instead of relying completely on

specifications published by the service provider.

We then experimented with a concrete scenario during ≈ 1.1 hours (tmax = 4,000 seconds):

n0 = 500 sources, λ0 = 0.5 items/sec, ∆t = 1,200 seconds and sum(.) as aggregation function.

Using θ = 20 items/sec derived above, running the topology determination prototype [sec-

tion 6.3] based on conservative sequential assignments [section 5.5] yielded a 5-layer topology

with sizes n = [n`] =
[

13 7 4 2 1
]ᵀ

. In other words, we are considering a similar scenario

to that of section 6.4 but now in the real Kinesis environment where natural randomness exists

and true service limits apply.

To facilitate comparison, five experiments were launched with the aforementioned topology

as well as modified versions of it. These variations attempt to reduce the number of layers and

terminate early with a single sink. In particular, the following topologies were experimented

in the real Amazon Kinesis environment:

• (a) n =
[

1
]

• (b) n =
[

13 1
]ᵀ

• (c) n =
[

13 7 1
]ᵀ

• (d) n =
[

13 7 4 1
]ᵀ

• (e) n =
[

13 7 4 2 1
]ᵀ

While all previous experiments had been conducted on an in-house Linux computing server,

these five were launched on cloud-based Amazon EC2 [17] due to more demanding resource

requirements by the experiments’ scale. The outcomes of these experiments are presented

in figure 6.11. Basically, we would like to observe the amount dropped data upon their arrivals

at various aggregation layers (due to ingest rate saturation at aggregation nodes).

We noted that the number of data tuples and their significance levels vary greatly from one

layer to another. For instance, layer 1 receives a considerably large amount of data emitted

by a huge collection of sources (in our case, 500 sources versus tens of aggregation nodes).

On the contrary, fewer data tuples arrive at subsequent layers `> 1 with substantially higher

importance, for these are (`−1)st-level aggregates of several original tuples, cf. algorithm 2.1.

In other words, ∀`1,`2 ∈ {1..L} such that `1 < `2, a drop at layer `2 is more ‘costly’ for the

final output than its counterpart at layer `1. Therefore, drop percentages (instead of absolute

numbers) at individual aggregation node were considered for reasonable cross comparison.

As can be seen from figure 6.11, the single sink layer in topology (a) suffered from a significantly

high drop percentage of approximately 80%. This was unsurprisingly consistent because,

according to theorem 4.2, the total incoming rate is λ(in)
1 = n0λ0

n1
= 500×0.5

1
= 250 À 20 = θ.

72



6.5. Amazon Kinesis-based prototype

(a) n = [
1
]

(b) n = [
13 1

]ᵀ
(c) n = [

13 7 1
]ᵀ

(d) n = [
13 7 4 1

]ᵀ
(e) n = [

13 7 4 2 1
]ᵀ

Figure 6.11: Percentages of accepted/dropped data in Kinesis-based experiments of section 6.5
– Each experiment is denoted by n = [n`], numbers of nodes at various aggregation layers

73



Chapter 6. Simulations & prototypes

With 13 processors, topology (b) exhibited a much lower drop percentage at layer 1. This was

reduced from ≈ 80% to ≈ 5% but not absolute zero as ideally expected because we operated in

a saturation threshold scenario based on published service limits. At sink layer 2, there were

still some drops measured at around 6% of the total number of data arrivals.

As more aggregation layers were added in topologies (c) and (d), there were a noticeable

decrease (to almost zero) of the drop percentages at intermediate layers and also smaller

drop percentages at the sink layer. The latter was then reduced to almost zero when the

complete 5-layer topology (e) suggested by the topology determination prototype [section 6.3]

was adopted. The reader is reminded that, drops at subsequent layers were considered more

‘costly’ in than those in preceding layers, as discussed above.

All in all, using the topology determined through a systematic approach turned out to be

more beneficial in terms of the overall accuracy and completeness for our time-based stream

aggregation. Moreover, such approach minimises the total number of aggregation nodes (read

‘number of shards’ in the context of Amazon Kinesis, which forms the fundamental basis for

billing [28], cf. section 1.4) as well as the number of layers (read ‘number of streams’ in the

Kinesis context, directly related to system complexity and output latency).
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In sum, we successfully addressed the given problem statement [section 2.2] with solid

analyses [chapter 4] and plausible solutions [chapter 5], supported by theoretical found-

ations [chapter 3] as well as empirical verifications [chapter 6]. In this concluding chapter,

major contributions of the work are first highlighted [section 7.1] before some possible future

work is suggested [section 7.2].

7.1 Contributions

In this thesis, we have studied the rate transfer properties at all layers of the multi-layer

parallelisation of time-based stream aggregation, both analytically [chapters 3 and 4] and

empirically [chapter 6]. To the best of the author’s knowledge, no such studies had been

conducted previously in this context.

Based on the above analyses, various systematic approaches to the determination of a topology

for such multi-layer parallelisation have been proposed [chapter 5] in the context of ingest

rate constraints present at aggregation nodes. These proposed approaches, given as both

theoretical algorithmic methods [chapter 5] and practical prototype implementations [sec-

tion 6.3], aim to optimise operational cost, output latency and system complexity. These are

achieved by concurrently minimising the total number of aggregation nodes and the number

of aggregation layers, while ensuring that no ingest rate saturation due to constraint violation

occurs any aggregation nodes throughout the topology.

Relevant simulations and experiments have also been conducted [chapter 6] to verify system

behaviours and the plausibility of the proposed topology determination methods. While the

whole work has been motivated [section 1.6] by and experimented [section 6.5] on the Amazon

Kinesis environment [section 1.4], all analyses and proposed approaches remain applicable

in the general context [section 2.2] without being restricted to any specific platforms and

adaptable to situations beyond the stated project scope [section 2.1].
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7.2 Possible future work

There certainly remains room for improvement and extension in this study. Some possible

candidates for future work include:

• Adaptation to dynamic/heterogeneous data emission rates at sources.

• Adaptation to dynamic/heterogeneous ingest rate constraints at aggregation nodes.

• Application to parallelisation schemes of local stream processing frameworks such as

the computing-focused Storm [11].

• Reliable method to assess ingest rate constraints without complete reliance on published

specifications from cloud service provider.
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