
1
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Abstract—Interest in deep probabilistic graphical models has
increased in recent years, due to their state-of-the-art perfor-
mance on many machine learning applications. Such models are
typically trained with the stochastic gradient method, which can
take a significant number of iterations to converge. Since the
computational cost of gradient estimation is prohibitive even for
modestly-sized models, training becomes slow and practically-
usable models are kept small. In this paper we propose a
new, largely tuning-free algorithm to address this problem.
Our approach derives novel majorization bounds based on the
Schatten-∞ norm. Intriguingly, the minimizers of these bounds
can be interpreted as gradient methods in a non-Euclidean
space. We thus propose using a stochastic gradient method in
non-Euclidean space. We both provide simple conditions under
which our algorithm is guaranteed to converge, and demonstrate
empirically that our algorithm leads to dramatically faster
training and improved predictive ability compared to stochastic
gradient descent for both directed and undirected graphical
models.

I. INTRODUCTION

Graphical models have become increasingly popular as a
probabilistic approach to learning, allowing control over model
complexity with modular extensions into “deep” models. Re-
sulting models have already produced state-of-the-art perfor-
mance on various classification tasks [1]. For instance, Markov
Random Fields (MRFs) have been successfully applied to a
wide number of data types. Examples include binary images
with the Restricted Boltzmann Machine (RBM) [2] and count
modeling with the Replicated Softmax [3]. Deep extensions of
MRFs include the Deep RBM [4]. Directed graphical models,
also known as Bayesian Networks or Belief Nets (BN), have
also found increasing popularity.

Unfortunately, training elaborate deep models is notoriously
hard. Since the optimization objective is typically non-convex,
even asserting local optimality is difficult. In spite of often
having differentiable objective functions, computation of the
gradient scales poorly with the dimensionality of the model
parameters, rendering exact gradient computation intractable
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for even modest-sized models. For instance, the recent rise
of interest in BNs is due to the tractability of approximate
methods, including variational methods [5] and recognition
models [6, 7]. However, the computational bottleneck still
remains the gradient estimation, where Markov Chain Monte
Carlo (MCMC) methods, including Contrastive Divergence
(CD) methods [2], are used in both MRFs and BNs.

As a result, learning schemes typically proceed by using
classical stochastic gradient descent (SGD), which is guar-
anteed to converge to a stationary point, or with methods
that attempt to locally adapt to the Euclidean geometry,
including ADAgrad [8] and RMSprop [9]. These algorithms
may suffer from diminishing returns in training performance,
where minor improvements require orders of magnitude more
training iterations. Combined with the high cost of gradient
estimation, this poses a hindrance to the adoption of large-
scale probabilistic models for many practical applications.

In this paper we motivate a novel algorithm that operates
on a non-Euclidean geometry. Central to our algorithm is
a new class of global majorization bounds for objective
functions in probabilistic graphical models (or, more gener-
ally, energy based models), which, from the majorization-
minimization perspective, suggests searching for the steepest
descent direction with respect to the Schatten-∞ norm. We
provide numerical evidence to demonstrate major performance
improvements over previous methods, suggesting the fact that
non-Euclidean geometry is preferred over Euclidean geometry
in probabilistic graphical models.

The organization of this paper is as follows. In Section II, we
first show how to adapt to the global geometry of the objective
function in a non-Euclidean space, derive novel majorization
bounds that use the Schatten-∞ norm (alternatively known as
the spectral or matrix-2 norm), and show the conditions under
which the algorithm is guaranteed to converge. In Section III
we show that viewing BNs as a Boltzmann energy distribution
allows a joint framework for analyzing both discrete MRFs
and BNs. Using this framework, in Section IV we propose the
Stochastic Spectral Descent algorithm (SSD), which employs
relatively inexpensive nonlinear operations (as compared to
the gradient estimation) on the gradient to minimize the
majorization bound. Using the convergence theory in Section
II-C, we propose a method that adapts the minibatch size to
approximate convergence conditions. Empirically, we show
in Section V that SSD not only provides up to an order
of magnitude speed-up compared to other approaches, but
also leads to state-of-the-art performance for similarly-sized
models due to improved optimization.

The main contributions of the paper include the rigorous
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analysis of SSD as generalized gradient descent, the extension
of the algorithm to directed models, as well as replicated-
softmax models, and finally a series of experiments that
demonstrate the algorithm works well in practice, leading to
state-of-the-art performance for directed models that rivals
performance of undirected models.

A. Notation and Preliminaries

Bold lower-case letters represent vectors, and bold upper-
case letters represent matrices. 〈·, ·〉 denotes an inner product,
and x � y denotes element-wise (Hadamard) multiplication.
Wm,· denotes the mth row of a matrix. The `p norm for
a vector x is defined ||x||p = (

∑
n |xn|p)1/p. Letting λ =

(λ1, . . . , λK)T be the vector of singular values of a matrix
X ∈ RM×N , where K = min(M,N), then the Schatten p-
norm is defined as ||X||Sp

= (
∑K
n=1 |λn|p)1/p and ||X||S∞ =

max{|λ1|, . . . , |λK |}. The dual norm is written as || · ||∗. The
Frobenius norm is || · ||F .

Bounds written as only a subset of the parameters consider
all unwritten parameters to be held constant. The sigmoid
function σ(·) is given by σ(x) = exp(x)

1+exp(x) . The softmax
function softmax(·) is defined for x ∈ RN as softmax(x) =

1∑N
n=1 exp(xn)

(exp(x1), . . . , exp(xN ))T .

II. NON-EUCLIDEAN GEOMETRY OF MINIMIZATION
PROBLEMS

A. The Generalized Gradient Descent

Consider the minimization of a function F (x) with Lips-
chitz gradient in the Euclidean norm:

||∇F (x)−∇F (y)||2 ≤ L2||x− y||2

where L2 > 0 is the Lipschitz constant. It is well-known that
such function admits a global majorization bound

F (y) ≤ F (x) + 〈∇F (x),y − x〉+
L2

2
||y − x||22. (1)

The usual gradient descent aims at minimizing the above
majorization bound, which results in the iteration

xk+1 = xk −
1

L2
∇F (xk).

It is well known that gradient descent generates a sequence
of points {xk}’s with ∇F (xk) → 0 [10]. In the case where
F (·) is also convex, one can show convergence to the global
minimum.

Now, suppose that instead of the Euclidean norm, ∇F (·) is
Lipschitz with respect to a general norm:

||∇F (x)−∇F (y)||∗ ≤ L||x− y||.

Then the majorization bound (1) is still valid, with the Eu-
clidean norm replaced by a general norm || · || and L2 by L
(see appendix of [11] for a proof). Based on this perspective,
consider the iteration rule based on minimizing the right-hand
side of (1) at each stage:

xk+1 ∈ arg min
y
F (xk) + 〈∇F (xk),y−xk〉+

L

2
||y−xk||2.

(2)

Define the #-operator [12] as

s# ∈ arg max
x

{
〈s,x〉 − 1

2
||x||2

}
. (3)

Then one can show (see [11] or [13]) that the resulting iteration
is given by

xk+1 = xk −
1

L
[∇F (xk)]

#
. (4)

In the following we call the iteration (4) generalized gradient
descent (GGD). The term “gradient descent” (GD) is reserved
for Euclidean norm. Notice that neither (2) or (3) need the
minimizers to be unique. In those cases, the iteration (4) is to
be understood as picking an arbitrary element in [∇F (xk)]#.

Though resembling the mirror descent in its proximal iter-
ation with Bregman distance form [14], (3) is not an instance
of mirror descent, but instead is closer to the classical gradient
descent in spirit. One can see that our iteration (4) generates
a monotonically decreasing sequence in function values, a
characteristic shared by classical gradient descent but not
by mirror descent. Another way of seeing the difference is
from the perspective of monotone operator theory. First, by a
result in the monotone operator theory (Lemma 1 of [15]),
the set of minimizers of the mirror descent iteration must
either be unique or empty. However, the minimizer of (3)
is not necessarily unique, thereby ruling out the possibility
of (3) corresponding to proximal iteration with any Bregman
distance regularizer. Consequently, (3) is not an instance of
mirror descent in the classical sense.

Generalizing proximal methods to Banach spaces is, for
the time being, a highly nontrivial work. Specifically, the
iteration (3) corresponds to a proximal-type algorithm in the
`∞ geometry. Although there exist some initial works of
proximal algorithm in the Banach spaces (see, e.g., [16]), they
usually only apply to `p spaces with 1 < p < ∞, and `∞
is excluded due to its ill-behaved geometry (e.g., it is not
uniformly convex). From this perspective, we prefer not to
link (3) with any proximal-type algorithms (including mirror
descent), except for classical gradient descent.

B. Motivations for Non-Euclidean Geometry

There is no reason a priori that GGD is better than the GD.
To compare the two on the same footing, we use the following
convergence rate that is proven in [11]:

F (xk)− F (x∗) ≤ const.× LR2

k
(5)

where R = ||x0−x∗|| is the radius from the initial point to the
optimal point, measured with respect to the norm || · ||. Notice
that there is a tradeoff between the involved parameters: from
(1), using a larger norm (such as 2-norm) may result in a
better Lipschitz constant, while the corresponding iterate (4)
leads to a worse radius dependency. Remarkably, an example
in [11] shows that, for certain functions, the product L∞R2

∞
can be much smaller than L2R

2
2, where L∞ and R∞ denote

the Lipschitz constant and radius measured with respect to `∞
norm, and similar for L2 and R2. In a sense, a function with
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the above property is said to exhibit “favorable geometry” in
Schatten-∞ norm.

Inspired by the above arguments, in this paper we aim to
explore the “favorable geometry” of loss functions appearing
in the deep discrete graphical models. However, two obstacles
present themselves along the way:
• How can we find a majorization bound (2) for loss

functions in deep discrete graphical models?
• Computing the gradient of loss functions is in practice a

computationally prohibitive task.
In [13], the first problem is solved for Restricted Boltzmann

Machines (RBM) as follows: the authors showed that, although
the loss function is non-convex, it is possible to treat the “data
term” (see subsequent sections) and the partition function
term separately to obtain a global majorization bound that
is naturally expressed in Schatten-∞ norm. Furthermore, not
only does the bound (2) continue to hold, it is also empirically
observed that doing GGD with respect to Schatten-∞ norm
outperforms all state-of-the-art learning algorithms for RBM,
which all lie Euclidean norms. This brings out the important
message:

The loss function of an RBM favors the global
geometry induced by the Schatten-∞ norm rather
than the Euclidean norm.

In this paper, we will extend this observation to several impor-
tant deep discrete graphical models and also show empirically
that the Schatten-∞ norm is indeed a superior choice over
Euclidean norm for bounding the loss functions in the analyzed
graphical models. In our analysis, LF and LS∞ are the same
for the matrix parameters in these models1, leading to a
comparison on the radius RF versus RS∞ . We note that
R2
S∞ ≤ R2

F ≤ rank(X0 −X∗)R2
S∞ . The optimization radius

for the Schatten-∞ norm tends to scale better with the dimen-
sionality of the model, which is demonstrated empirically in
the experiments.

The common solution to the second problem is to consider
only a stochastic estimate of the gradient, which is much
cheaper than obtaining the exact gradient. The price to pay,
however, is that now the algorithms become sensitive to the in-
exactness (or the so-called noise level) of gradient estimate. In
order to address this problem, in the next subsection we derive
general conditions under which the convergence is ensured. In
practice, however, in certain cases the derived conditions may
be too conservative and may cause the algorithm to converge
slowly. As a result, we will also consider heuristic settings of
stepsizes in our experiments.

C. The Generalized Stochastic Gradient Descent

In this subsection we derive the basic conditions for our
algorithms to converge. We present the analysis in full general-
ity; to conclude the convergence of our algorithms, it amounts
to substituting the corresponding inner products, constants and
norms.

1These quantities are dependent on the L∞ and L2 for the log-sum-exp
function. In [17], we show that L∞ is no worse than Ω(logN) compared to
L2, further motivating the use of LS∞

Consider the minimization of a general (non-convex) func-
tion

min
x
F (x)

with a global majorization bound

F (y) ≤ F (x) + 〈∇F (x),y − x〉+ C||y − x||2 (6)

where C > 0 is a constant. We assume that minx F (x) >
−∞. Instead of exact gradient, we only have access to a noisy
first order oracle information:

G(x) = ∇F (x) + w(x)

where w(x) is random and satisfies Ew(x) = 0. We propose
the following Generalized Stochastic Gradient Descent (Gen-
eralized SGD) iteration:

xk+1 = xk − hkG(xk)# (7)

where the hk’s are stepsizes. Notice that each xk is a random
variable depending on realizations of {G(xi)}k−1

i=0 or, equiv-
alently, {w(xi)}k−1

i=0 . Denote Fk = F (xk), ∇Fk = ∇F (xk),
Gk = G(xk) and wk = w(xk).

In the following, a key assumption we shall make is that,
for each k, there exists tk > 0 such that ||wk||∗ ≤ tk||∇Fk||∗.
We note that this assumption is rather unconventional, since
in most classical works on stochastic optimization the noise is
usually assumed to be independent and identically distributed
(iid). However, in classical problems, the noise is usually due
to the environment and must be incorporated into the problem
formulation. In our case, the noise arises due to the gradient
estimate, which we can control. Under our assumption, we
are allowed to keep constant stepsize across iterations and still
obtain convergence. This is in sharp contrast to the iid noise
case, where one must decrease the stepsize along a carefully
chosen sequence, so as to guarantee convergence (see, e.g.,
[18]).

We now show that the iteration (7) produces a sequence
{xk}’s whose gradients converge to 0, hence in a sense we can
reach to a stationary point in expectation, if hk’s are chosen
properly according to the noise level.

Theorem II.1. Suppose that there exists a ρ such that
(1−2tk)2

4C(1−tk)2 ≥ ρ > 0 for all k, and suppose that the stepsizes
hk’s satisfy

0 < hk ≤
1√
C

[√
(1− 2tk)2

4C(1− tk)2
− ρ+

1− 2tk

2
√
C(1− tk)

]
. (8)

Then ||E∇Fk||2∗ → 0 as k → ∞. Moreover, let ε be a
given precision: ||∇F (x)||∗ < ε. Then the required number
of iteration is no greater than O( 1

ε2 ).

If it happens that F (·) is also convex or our starting point
lies in a convex region of F (·), then it is also possible to
derive the convergence rate in function value. Denote

q(h,C, t) = h(1− Ch)− t

1− t
h.

Theorem II.2. Let F (·) be convex and satisfying (6). Suppose
that there exists a ρ such that q(hk, C, tk)(1 − tk)2 ≥ ρ > 0
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for all k. Then

EFk − F ∗ ≤
R2

1
C + 2kρ

= O
(

1

k

)
(9)

where F ∗ is the optimal function value and

R , max
x:F (x)≤F (x0)

min
x∗∈X∗

||x∗ − x||,

X ∗ the set of minimizers.

The proofs can be found in Appendix A.
An important observation from our theorems is that the

stepsize can be fixed to a constant. For example, let us fix tk’s
to 1

3 . In view of (8), it suffices to set ρ = 1
16C and hk = 1

4C .
Similar conclusions hold for Theorem II.2.

Notice that, although we derive our theorems based on the
deterministic relation ||wk||∗ ≤ tk||∇Fk||∗, our theorems can
be readily generalized to the case where this relation holds
with high probability. Combining with the observation in the
last paragraph, we see that, in order to guarantee a high
probability convergence, it suffices to set tk = ||∇Fk||∗

||wk||∗ to a
large constant. This can be achieved through setting a constant
SNR in the sampling procedures, which we approximate in our
experiments.

We note that there are two ways that the SNR ratio is
controlled for these problems: the number of samples used in
a Monte Carlo Integration step and the size of the minibatch.
We primarily control the SNR by adapting the minibatch
size. Previously, [19] proposed adapting the minibatch size to
control the SNR of the gradient and gave convergence analysis
in the GD case. Our proposed method is very similar to [19],
but we used different variance estimators (see Section IV-A3)
and adapt this step for non-Euclidean norms.

III. GLOBAL MAJORIZATION BOUNDS

Given the general algorithmic template described above, we
now show its adaptation to the broad class of energy-based
models, which includes the RBM, SBN, and their replicated-
softmax variants, which will be studied more closely in the
next section. Assume that a model has both visible observa-
tions (units) v ∈ V and hidden units h ∈ H where both V
and H are finite sets, such as the binary vector {0, 1}M . The
joint probability distribution for {v,h} is parameterized by θ,
and the marginal likelihood on the observations is pθ(v) =∑
h∈H pθ(v,h). The maximum likelihood (ML) estimator

for observations {v}n=1,N is θML = arg maxθ
∏
n pθ(vn).

This probability distribution may be represented in terms of
a Boltzmann or Gibbs distribution with an energy function
−Eθ(v,h) that is uniquely defined up to a constant by the
model, with

p(v,h) =
exp(−Eθ(v,h))

Z(θ)
.

Z(θ), called the partition function, forces the sum of the
probability for all possible states {v,h} to equal 1. The
objective function can be written as the sum of the data term

f(θ) and the log-partition function logZ(θ),

θML = arg min
θ
F (θ) = arg min

θ
f(θ) + logZ(θ)

f(θ) = − 1
N

∑
n log

∑
h exp(−Eθ(vn,h))

logZ(θ) = log
∑
v

∑
h exp(−Eθ(v,h)). (10)

Although the models we discuss in Section IV are non-convex,
it is possible to derive a global upper bound on F (θ) by
combining upper bounds on the data term f(θ) and the log-
partition function logZ(θ). We first note that for energy
functions of class C1 with respect to parameters θ have a
bound on the data term.

Theorem III.1. The difference between f(θ) and f(φ) for
parameters θ and φ is bound by

f(φ)− f(θ) ≤ 〈∇θf(θ),φ− θ〉
− min

n,h
(Eθ(vn,h)− Eφ(vn,h)

+ 〈∇θE(vn,h),φ− θ〉).

See Appendix B for a proof.

We note that for convex negative energy function, such as
the RBM, then Jensen’s inequality simplifies this to

f(φ) ≤ f(θ) + 〈∇θf(θ),φ− θ〉. (11)

The log partition function has a similar bound.

Theorem III.2. The difference in the log partition function
evaluated at parameters θ and φ is bound by

logZ(φ)− logZ(θ) ≤ 〈∇θ logZ(θ),φ− θ〉
+ max

v,h
(Eθ(v,h)− Eφ(v,h)

+ 〈∇θE(v,h),φ− θ〉) (12)

+
1

2
max
v,h

(Eθ(v,h)− Eφ(v,h))2.

See Appendix C for a proof.

To apply these theorems, we focus on two broad special
cases. First, in many generative BN models, the partition
function is known analytically as a constant, so only the data
term changes. In this case, an upper bound can be found by
utilizing only Theorem III.1. The second special case is when
the energy function is linear, such as in Ising Models, Binary
RBMs, or in the RBM part of the Deep Belief Net. In this
case, Theorem III.2 reduces to

f(φ) ≤ f(θ) + 〈∇θf(θ),φ− θ〉

+
1

2
max
v,h

(〈∇θ(−E(v,h)),φ− θ〉)2. (13)

The first max statement in (12) drops out because the first
order approximation in a linear function is exact. The second
max statement is simplified to only depend on the gradient
that determines the difference between the energy functions
exactly.

Given Theorems III.1 and III.2, the global bound on F (θ)
is the combination of the upper bound on (11) and (12) (or
(11) and (13) if appropriate). Note that ∇F (θ) = ∇f(θ) +
∇(logZ(θ)), so the bound is dependent on the gradient with
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respect to F (θ).
If instead of using the ML estimator, a penalized ML

or maximum a posteriori scheme is used, the global lower
bounds have an additional term due to the penalization on the
parameters.

A. Variational Methods

Instead of directly using the model likelihood to estimate
model parameters, variational methods provide a lower bound
to the model likelihood, replacing the true posterior pθ(h|v)
over the hidden units with a simple, tractable form q(h). This
approximation is commonly performed in Sigmoid Belief Nets
[20, 6, 21]. The Evidence Lower Bound Objective (ELBO)
uses this variational posterior to give a lower bound on the
model likelihood. The ELBO is then maximized instead of
the model likelihood,

log pθ(v) ≥ L
L = Eq(h)[log pθ(h,v)− log q(h)]

L = −g(θ, q)− logZ(θ)− Eq(h)[log q(h)]

g(θ, q) = − log
∑
h

exp(−Eθ(v,h) + log q(h)).

The log partition function has the same form as g(θ, q), i.e.,
the log of the sum of exponentials. In the parallel to (11), the
difference between g(θ, q) and g(φ, q) has the bound

g(φ, q) ≤ g(θ, q) + 〈∇θg(θ, q),φ− θ〉
− min

n,h
(−Eφ(vn,h) + Eθ(vn,h)

+ 〈∇θ(−E(vn,h)),φ− θ〉). (14)

The proof of (14) is identical in form to the proof of Theorem
III.1 in Appendix B. Using (14), the bounding techniques hold
for both the likelihood and the ELBO.

IV. MODEL DEFINITIONS, MAJORIZATION BOUNDS, AND
DESCENT SCHEMES

Here we show the application of Theorems III.1 and III.2
to specific types of models, and we show that similar directed
and undirected graphical models have similar bounds on their
parameters. The norms used in this section and their associated
#-operators can be found in Table I for reference.

A. Binary Models: Sigmoid Belief Nets and Binary Restricted
Boltzmann Machines

Both the Sigmoid Belief Net (SBN) [22] and the Binary
RBM [2] consist of a two layer model with visible units v ∈
{0, 1}M and hidden units h ∈ {0, 1}J with parameters θ =
{c,W, b}, where c ∈ RM , b ∈ RJ , and W ∈ RM×J . Both
models have the relationship that

pθ(v|h) =

M∏
m=1

pθ(vm|h) =

M∏
m=1

Bern(vm;σ([c+ Wh]m).

However, because the SBN is a directed graphical model and
the RBM is an undirected graphical model, the relationship
between the hidden units and the visible units is different.

Specifically, the SBN has a form such that the hidden nodes
are simple to draw a priori and the RBM has posterior units
that are simple to draw a posteriori. This is summarized by

SBN: pθ(h) =
∏J
j=1 Bern(hj ;σ(bj))

RBM: pθ(h|v) =
∏J
j=1 Bern(hj ;σ([b+ WTv]j)).

These relationship leads to the following energy functions,

SBN:− Eθ(v,h) = vT c+ vTWh+ hT b

−
∑M
m=1 log(1 + exp([c+ Wh]m))

−
∑J
j=1 log(1 + exp(bj))

RBM:− Eθ(v,h) = vT c+ vTWh+ hT b.

Although the SBN has a more complicated energy function,
the partition function is a constant at 1. In contrast, the RBM
log partition function is intractable to calculate for realistic
problem sizes, and is estimated through Annealed Importance
Sampling (AIS) [23].

We first focus specifically on the global bounds for W
when perturbing it by an amount U. We previously proposed
a bound for the RBM using the Schatten-∞ in [13], which
was derived by viewing the RBM objective as a difference-
of-convex-functions problem. This bound was

F (W + U) ≤ F (W) + tr(∇WF (W)UT )+MJ
2 ||U||

2
S∞ (15)

Here we apply our framework to the SBN problem. Since
the SBN has a constant, analytic partition function, we only
need to apply Theorem III.1. In the SBN this reduces to
bounding the first order approximation over W on vTWh−∑M
m=1 log(1 + exp([c+ Wh]m)). Analyzing these functions

gives a bound on the Schatten-∞ norm, and we provide a
derivation of this in Appendix E. In the SBN, W has a global
bound:

F (W + U) ≤ F (W) + tr(∇WF (W)UT ) +
J

8
||U||2S∞ . (16)

Intriguingly, under our results both these models have the
same Lipschitz constants in the Schatten-∞ norm as in the
Frobenius norm. Typically the Frobenius norm would actually
have a better constant, but under our theory we cannot prove
this. The minimizer of this majorization function is not in the
direction of the gradient. Rather, the #-operator that minimizes
this bound is given by taking the SVD of the gradient,
Adiag(λ)BT = ∇WF (W), and setting U = s||λ||1ABT ,
with s set at −4

J for the SBN and −1
MJ for the RBM.

We bound the vector parameters c and b on the `2 norm.
This leads to standard gradient updates, and these majorization
functions are both minimized by a stepsize of −4. Details can
be found in Appendix E.

1) SBN Gradient Estimates: Gradient estimation in the
SBN is computationally intensive. The gradient on W is
−∇WF (θ) = 1

N

∑N
n=1 Ep(h|vn)[(vn − σ(c + Wh))hT ].

Following [22], each of these expectations can be estimated
by Monte Carlo integration. Generating samples from p(h|v)
is not analytic, and instead a Gibbs sampler is used to sample
from p(hj |hi, i 6= j,v). This estimation procedure costs
O(NbatchCMJ2), where Nbatch is the number of data sam-
ples used in a mini-batch and C is the number of Gibbs sweeps
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used in the estimation procedure. The cost with the standard
variational approximation is the same with C representing the
number of block coordinate passes. This gradient estimation
is the main computational bottleneck in the algorithm.

This procedure is similar to the Contrastive Divergence
(CD) procedure for the RBM [2]. In CD, a Gibbs sampler
is repeatedly used to draw approximate samples from the full
model of p(v,h), and then these approximate samples are used
to estimate the model gradients. For CD, the computational
cost is O(NbatchCMJ), which scales better than the estima-
tion procedure for the SBN. We note there is an increasing
amount of work on sampling related binary variables [24],
as well as deterministic methods approximating functions of
random fields [25]. If possible, adapting these methods to the
SBN case could make the computational cost the same for the
gradient estimation in the SBN and the RBM.

Instead of using posterior sampling, variational meth-
ods [20, 5] are often used, putting a simple, tractable
form on q(h) =

∏
j Bern(hj ;πj) and minimizing π =

arg minπ KL(q(h)||p(h|v)) in order to get simple estimation
procedures. In this case, a simpler MCI scheme is used to es-
timate the gradient by drawing samples from q(h), as in [26].
This can be used with mini-batches to estimate parameters in
the Stochastic Variational Inference scheme [27].

2) Computational Cost of the #-Operator: The #-operator
requires an SVD, which is typically regarded an expen-
sive operation. However, the computational cost of gra-
dient estimation for the RBM (O(NbatchCMJ)) and the
SBN (O(NbatchCMJ2)) is more expensive, rendering the
SVD as a small overhead on an iteration. The computa-
tional cost of the SVD is O(MJ min(M,J,Nbatch)). Since
relatively large numbers of samples (C ' 25 [23]) are
needed for the RBM, a typical batch size makes the SVD
relatively cheap. For the SBN, the relative cost scales at
O(CNbatchJ/min(M,J,Nbatch). For large networks and
batch sizes, the gradient estimation cost scales to make the
SVD a relatively cheaper operation.

3) Adapting Minibatch Size to Gradient SNR: An approach
for convergence given in Section II-C is to use a constant step
size while maintaining a minimum SNR given on the gradient
estimate. However, it is not known a priori what the magnitude
of the gradient will be, nor what the estimation error will be.
One strategy to approximate this requirement is to estimate the
current SNR by using bootstrap methods over the data points
used in the gradient estimation, using sufficient statistics saved
during the Monte Carlo Integration or the Variational Posterior
step. This bootstrap step introduces trivial overhead, since the
computations required are the same as in Section IV-A2.

While the theory uses the dual norm (nuclear norm), we
propose here to estimate the Frobenius norm error for two
reasons: (i) the nuclear norm calculation requires non-trivial
computational resources, and repeating it for a bootstrap leads
to non-negligible overhead, and (ii) the Frobenius norm error is
expected to scale with O( 1√

Nb
) [19]. This scaling relationship

makes it easy to estimate the number of samples necessary for
the desired SNR (i.e. to decrease SNR by half, the batch size
must be increased four times).

We note that there is a second source of stochastic noise,

from Monte Carlo integration (MCI). Surprisingly, we found
empirically that changing the number of MCI samples in the
SBN had a much smaller effect on the noise estimate than
the minibatch size, and that adapting the minibatch size had
a much larger effect for given computational resources. We
note as well that the error due to MCI also scales O( 1√

CNb
),

so increasing the minibatch size also decreases the MCI error.
In our experiments, we only adapt the minibatch size. After
the batch size is reached, the number of samples must be
increased, but this limit is not feasibly obtained in these
problems.

4) SBN Function Evaluation: Explicit function evaluations
for the SBN is limited to models with very small treewidth
[20]. Instead of calculating the model likelihood directly,
one approach is to lower bound the model likelihood with
variational methods [20, 21]. Recently, [21] proposed to use
the Harmonic Mean Estimator to estimate the model likelihood
in the SBN. However, this estimator is known to dramatically
overestimate performance, and the variance on the estimator
may be infinite [28].

The Annealed Importance Sampler (AIS) [29] is an al-
ternative to the Harmonic Mean Estimator based on the
Gibbs samplers and simulated annealing. Asymptotically, the
estimator is unbiased and the variance goes to 0. This has
recently been applied to evaluate RBM and the Deep Belief
Network [23], as well as topic models [3]. While the AIS
estimator is asymptotically unbiased, for finite numbers of
samples the estimates are biased positively, which can cause
performance to be overestimated. Recently, the Reverse AIS
Estimator (RAISE) [30] was proposed to address this problem
in Markov Random Fields, and is asymptotically unbiased
and biased negatively for finite sample sizes. Running both
AIS and RAISE for finite sample sizes can give an accurate
performance range on the model.

For the SBN, we have implemented AIS to perform accurate
model evaluations, and give algorithmic details in Appendix
D. As well, we extended the RAISE method to the SBN to
give a lower bound on the model performance. These methods
are costly, so line search methods are inappropriate in this
problem.

5) Deep Versions: There has been significant interest in
deeper versions of the SBN and the RBM. For the RBM,
Salakhutdinov [4] gave a framework for learning and evaluat-
ing a multiple hidden layer RBM. The SBN has historically
had deeper versions [22, 20], and is the inspiration for the
Deep Belief Net [31]. In a three-layer model, they have visible
nodes v ∈ {0, 1}M , h(1) ∈ {0, 1}J(1)

, and h ∈ {0, 1}J(2)

,
with parameters {c, b(1), b(2),W(1),W(2)}. The energy func-
tion for the DRBM is

−Eθ(v,h(1),h(2)) = vT c+ vTW(1)h(1) + (h(1))T b(1)

+ h(1)W(2)h(2) + (h(2))T b(2),

and the generative model for the DSBN is

pθ(h(2)) =
∏J(2)

j=1 Bern(h
(2)
j ;σ(b

(2)
j ))

pθ(h(1)|h(2)) =
∏J(1)

j=1 Bern(h
(1)
j ;σ([b(1) + W(2)h(2)]j)

pθ(v|h(2)) =
∏M
m=1 Bern(vm;σ([c+ W(1)h(1)]m).
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TABLE I
LIST OF #-OPERATORS WHEN USING THE FOLLOWING NORMS IN ( 3 )

Norm X# or x#

|| · ||22 or || · ||2F x or X
|| · ||2S∞ ||s||1UV,

Udiag(s)VT = X (SVD)
|| · ||2∞ ||x||1 × sign(x)

maxm=1,...,M ||Um,·||21 A
∑
m′ ||Xm′,·||∞

Amj = sign(Xmj)1|Xmj |=||Xm·||∞

TABLE II
LIPSCHITZ-GRADIENT CONSTANTS AND THEIR IMPLIED STEP SIZES, WITH
RESPECT TO THE PARAMETER MATRIX W ∈ RM×J . CONSTANTS M , J ,

AND D̄ ARE DEFINED IN SECTION IV.

RBM SBN RSBN RS-RBM

Lip. step Lip. step Lip. step Lip. step

S∞ MJ 1
MJ

J
4

4
J

D̄J
1

1
D̄J

D̄2J
1

1
D̄2J

`1R – – – – D̄
1

1
D̄

D̄2

1
1
D̄2

Both the DSBN and the DRBM have Schatten-∞ bounds
on the parameters W(1) and W(2). The minimizers of the
majorization functions for these parameters are the same as
(15) and (16) for W(1), and for W(2) the stepsize is − 4

J(2)

for the DSBN and − 1
J(1)J(2) for the DRBM. These patterns

continue for deeper models.

B. Topic Modeling: Replicated Softmax Models

For topic modeling problems, document n is represented by
a vector of counts vn ∈ ZM , where each unit vnm represents
the number of times the unique dictionary word m appears in
document n. The total number of words in the document is
Dn = ||vn||1. This bag-of-words assumption is common in
probabilistic topic modeling problems [32].

An undirected topic model called the Replicated Softmax-
RBM (RS-RBM) was proposed in [3], and a directed topic
model, which we will refer to as the Replicated Softmax Belief
Network (RSBN) was proposed in [26]. Both use this vector
representation of the observations and binary hidden nodes b ∈
{0, 1}J . Both models are parameterized by θ = {c,W, b},
and both have a multinomial distribution given the hidden
units, with

vn|hn = Multi(Dn; softmax(c+ Wh)).

Like in the binary models, the difference in the undirected and
directed models is the relationship to the hidden units,

RSBN: pθ(h) =
∏J
j=1 Bern(hj ;σ(bj))

RS-RBM: pθ(h|v) =
∏J
j=1 Bern(hj ;σ([Db+ WTv]j).

These relationships give the following energy functions,

RSBN:− Eθ(v,h) = vT c+ vTWh+ hT b

− D log
∑M
m=1 exp([c+ Wh]m))

−
∑J
j=1 log(1 + exp(bj))

RS-RBM:− Eθ(v,h) = vT c+ vTWh+DhT b.

We first examine the relationship for W versus a perturbed
version W + U. For the RS-RBM, the energy function is
linear and convex, so we use (11) and (13). The bound depends
on the final term in (13) over the gradient −∇WE(v,h) =
vThT , which is simplified to

1

2
max

v∈ZM ||v||1≤D
h∈{0,1}J

tr(vhTUT )2 ≤ D2

2
||U||2S∞ .

Letting D̄2 represent the average squared number of words in
a document, the global bound is

F (W + U)≤F (W) + tr(∇WF (W)UT )+
D̄2J

2
||U||2S∞ (17)

This leads to the same update steps as in the SBN and RBM
with a different stepsize. A further derivation of (17) is in
Appendix F. We note that this could be alternatively bounded
by

F (W + U) ≤ F (W) + tr(∇WF (W)UT )

+
D̄2

2
max

m=1,...,M
||Um,·||21. (18)

The relationship is bounded by the maximum `1-norm of the
perturbation in a row. Letting A = ∇WF (W), the minimizer
of (18) is given by

Ũmj =

 α sign(Amj)
∑
m′

||Am′,·||∞, |Amj | = ||Am·||∞

0, otherwise

with α = 1
D̄2 . The result for the RSBN depends on the first

order approximation of the concave negative energy function.
Despite a different derivation, the RSBN has the same bounds
as the RS-RBM expressed in (18) and (17), with D̄2 replaced
by D̄. The derivation of (17) for the RSBN is in Appendix G.

We note that similar to the binary models in Section IV-A,
our bound for these problems is tighter on the Schatten-
∞ norm compared to the Frobenius norm. This motivates
using methods that work either in the Schatten-∞ norm or
the max `1 row norm. There is a computational trade-off
between the two geometries because the max `1-row update
is parallelizable and the nonlinear operations on the gradient
are calculable in linear time.

Both the RS-RBM and RSBN are bound on the `∞ norm
for c and the `2 norm on b. The optimal step for the `∞ norm
uses only the `1 norm and the sign of the gradient, and bound
derivation are provided in Appendix G and F.

1) Gradient Estimation, Variational Methods, and Function
Evaluations: For the RS-RBM, the gradient estimation and
function evaluation proceed as in [3], which estimates gradi-
ents with a contrastive divergence procedure and the gradient
with an AIS sampler.
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For the RSBN, the gradient is given in [26], and we estimate
this via Monte Carlo Integration with a Gibbs sampler over
the hidden units to get approximate samples. To match the
performance evaluation in the RS-RBM, we develop an AIS
sampler for the RSBN, which is very close in procedure to
the RS-RBM AIS sampler in [3], as well as the AIS sampler
for the SBN detailed in Appendix D. For the RS-RBM, we
use the approach of [3]. The variational methods of [20, 26]
are applied here as well, which evaluate a lower bound on the
model likelihood.

The same procedure discussed in Section IV-A3 can be used
to approximate the SNR and choose an appropriate minibatch
size.

2) Computational Complexity of the #-Operator: We note
here that the computational costs of the gradient estimations
follow Section IV-A2, where the RS-RBM has the same
computational scaling as the RBM and the RSBN has the
same computational cost as the SBN. Because of this, the SVD
required in the #-operator when the spectral norm is used leads
to small overhead. The #-operator corresponding to the bound
in (18) is O(MJ) and causes trivial overhead for the size of
the minibatch and the number of Gibbs samples used in the
experiments.

3) Deeper Versions: A deeper version of the RS-RBM,
called the Over-Replicated Softmax-RBM, was introduced in
[33]. A stochastic autoencoder deeper version of the RSBN
was shown in [6, 26]. Instead of these models, a deep RSBN
and a deep RS-RBM could also be defined by using the same
relationship for hidden layers h(1) and h(2) shown in Section
IV-A5. In these models, W(1) has the bound given in (18)
or (17), while the deeper layers would have the same global
bounds and steps as the DSBN and the DRBM for W(`) for
` > 1.

C. Deep Belief Nets

Deep Belief Nets (DBN) [31] are deep graphical models
that have both undirected and directed edges. For a 3-layer
DBN, the first hidden layer h(1) ∈ {0, 1}J(1)

and the second
hidden layer h(2) ∈ {0, 1}J(2)

are jointly drawn from an
undirected RBM model with parameters {b(1),W(2), b(2)},
and the visible units v ∈ {0, 1}M are drawn from the directed
model with vm|h(1) ∼ Bern(vm;σ([c + W(1)h(1)]m)). The
energy function for this model is written as

−Eθ(h,v(1),v(2)) = vT c+ vTW(1)h(1) + (h(1))T b(1)

−
M∑
m=1

log(1 + exp([c+ W(1)h(1)]m))

+ (h(1))TW(2)h(2) + (h(2))T b(2).

The exact log partition function is intractable for realistic
size problems, but there are joint AIS and variational lower
bounding techniques to approximate the model likelihood [23].

The theories that we have developed allow us to create
global bounds on the DBN, and the DBN follows the bounds
developed for the SBN and RBM cases. Specifically, the
bound on W(1) is dependent on the Schatten-∞ norm with
J(1)

8 ||U
(1)||2S∞ , and the bound on W(2) is dependent on

the Schatten-∞ norm with J(1)J(2)

2 ||U(2)||2S∞ . An L-layer
DBN models will follow the SBN updates on W` for ` =
1, . . . , L− 1 and the RBM for W(L).

V. EXPERIMENTS

We compare the stochastic algorithms using the proposed
geometries to Stochastic Gradient Descent (SGD), as well as
RMSprop [9] and ADAgrad [8]. Both ADAgrad and RMSprop
are pertinent comparisons, because they both are designed
to utilize the local geometry of the learning problem [34].
These general-purpose descent algorithms dynamically learn
the geometry from the historical gradients, and perform an
element-wise re-weighting of the gradient. These procedures
are widely used in training neural networks, and are subject
to continued investigation [35, 34]. These algorithms use
the parameters in Table III when appropriate (ADAgrad and
RMSprop have defined step-size schemes in the algorithm).

In contrast, our algorithms use the geometry of the objective
function, and do not need the historical gradient information.
It therefore does not have a burn-in period where it learns
the appropriate settings. We denote the algorithm utilizing
the maximum `1 row as L1R. Following [13], we call the
stochastic algorithm using the Schatten-∞ norm Stochastic
Spectral Descent. As well, the comparative performance of
Stochastic Spectral Descent actually improves with increased
dimensionality due to the optimization radius (see Section
II-B). This result is similar to [11], which bases algorithms
on the `∞ norm to scale to larger problem sizes.

We perform two distinct versions of the Stochastic Spectral
Descent algorithm: (i) uses a constant minibatch size with a
heuristically decreasing step-size constant (denoted as SSD)
with the values in Table III; and (ii) uses the same step
size for all iterations, but adapts the size of the minibatch to
approximate a constant SNR in the experiments (here, chosen
to be 1/3), which we denote as SSD-adapt. This procedure
estimates the current SNR on W via the method in Section
IV-A3. If the SNR on the current iteration is too low, then we
draw the additional datapoints necessary to achieve the desired
SNR. The next minibatch size is chosen to approximately give
the desired SNR. A minimum minibatch size of 10 is used.
The SSD-adapt scheme approximates the conditions necessary
for convergence, although it does not strictly satisfy them
due to the use of the Frobenius instead of the dual norm for
computational reasons.

A. Implementation Details

The codes developed here are implemented in MATLAB
R2015a. However, because the bulk of the computational
cost is due to large, vectorized linear algebra operations, the
relative time taken by the SVD should be fairly accurate. For
the RBM based models, the computational time is similar
to the RBM toolbox2, and a version written in C++ with
Eigen3 gave marginal speed-ups. For the directed graphical
models, because the computational scaling of the gradient

2https://github.com/skaae/rbm toolbox
3http://eigen.tuxfamily.org/
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Fig. 1. Synthetic Dataset for the SBN model (Left) The objective surface as a function of the first singular vector pair and the second singular vector
pair of the gradient at the initial point. The training curves for gradient descent and spectral descent projected into this space are shown to demonstrate the
improved search direction of spectral descent. (Middle) Learning curves for synthetic data with MAP estimation. (Right) Learning curves with synthetic data
for Variational approximations
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Fig. 2. Learning curves for the MNIST dataset on the SBN model. Using derived step-sizes for SSD, and tuned step-sizes for other algorithms (Left) MAP
estimation curves for J=25 (Middle) MAP estimation problem for J=100 (Right) Variational estimation problem for J=25

TABLE III
EXPERIMENTAL SETTINGS

SBN RSBN RS-RBM
(R)AIS Samples 500 100 100
Gibbs Sweeps 7 7 5

W Base Step-Size 8/J 1/(D̄J) 1/(J)
Stepsize Decay t−.5 t−.5 t−.5

`2 Norm Penalty 10−4 10−4 10−4

Minibatch Size 100 100 100

is significantly worse than the SVD operation, the overhead
is trivial; in these experiments it was less than 2 percent
per iteration. To normalize the presentation of the results,
all timing information is shown in normalized time, where
1 unit corresponds to the about of time a SGD iteration takes.
The experiments were run on a 4-core Xeon processor at 1.8
GHz with 64 GB of RAM, and repeated on several similar
machines.

B. Sigmoid Belief Nets

The SBN has recently experienced an increased focus on
training [26, 21]. Most recent approaches have focused on

using variational approximations to learn larger models, and
the SGD approach [22] is typically used to learn the objective
function of small models. Here, we demonstrate that we are
able to effectively learn the true objective function up to
hundreds of hidden nodes. As well, we use the result in Section
III-A and apply our techniques to the variational approxima-
tion, and also demonstrate improved fitting performance in the
variational models.

To demonstrate the effect of the spectral descent step, we
first use a small, synthetic dataset. First, in Figure 1, we
use a small (M = 25, J = 10) network so that explicit
calculations can be used. At the initial point, we take the
gradient and limit steps to the first singular vector pair and
the second singular vector pair for visualization purposes.
The steps from gradient descent and spectral descent are
projected into this space, and we run updates for the two
algorithms using the same step sizes. Gradient descent first
optimizes primarily the first singular vector pair, and then
turns to optimize the second singular vector pair. The spectral
descent steps accurately capture an effective search direction.
We continue with synthetic data, where we show the SBN for
a M = 250, J = 25 network, with a MAP learning curves in
Figure 1(middle) and VB learning curves in Figure 1 (right).
These results use 8/J step sizes for the SSD and SSD-adapt
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TABLE IV
COMPARISON OF RESULTS ON MNIST. RESULTS FROM PROPOSED

METHOD MARKED WITH ∗ . BRACKETS GIVE AN UPPER AND LOWER
BOUND ON PERFORMANCE. SINGLE NUMBERS ARE LOWER BOUNDS OR

UNBIASED ESTIMATES.

Method Dimension Test log-prob.
RBM (CD3) [23] 25 -143.20
SBN (Online VB) [21] 25 -138.34
SBN (VB, SSD) ∗ 25 -125.70
SBN (SSD) ∗ 25 [-128.12, -127.45]
SBN (SSD-adapt) ∗ 25 [-129.25, -127.23]
RBM (CD25) [13] 100 -97.11
SBN (VB, SSD) ∗ 100 109.76
SBN (SSD) ∗ 100 [-104.5, -102.0]
SBN (SSD-adapt) ∗ 100 [-101.6, -99.1]
SBN (online VB) [21] 200 -118.12
SBN (VB) [21] 200 -116.96
SBN (NVIL) [26] 200 -113.1
SBN (VB, SSD) ∗ 200 -109.11
SBN (SSD)∗ 200 [-101.0, -98.5]
SBN (SSD-adapt) ∗ 200 [-100.4, -98.0]
RBM (SGD) [23] 500 -86.22
RBM (SSD) [13] 500 -85.65
DBN [23] 500 – 2000 -86.22
DBM [4] 500 – 1000 -84.62

algorithms, but the step sizes for all other algorithms were
tuned by sweeping over step-sizes. This tuning proceeded
by starting at the same stepsize as SSD, and increasing the
stepsize over W until performance no longer improved. Only
the best curves for the tuned algorithms (SGD, ADAgrad,
RMSprop) are shown. Even for this small network, SSD shows
improved performance over the competing algorithms, and
SSD-adapt shows modest improvements over SSD.

We next used the MNIST dataset that has been stochastically
binarized as in [23]. First, we show the learning curves for a
J = 25 network in Figure 2 (left) for the MAP estimate and
the variational estimate (middle). Even in these small models,
SSD and SSD-adapt improve performance over the tuned
competing algorithms. As well as improving learning speed,
SSD-adapt is giving state-of-the-art performance over the best
reported model, which is detailed in Table IV. Compared to
the heuristic SSD method, SSD-adapt shows improvement in
the ML estimation case, and near identical performance in the
variational case.

Of primary concern is the training of larger networks. For
the J=100 case, we show the learning curves for the MAP
estimation problem in Figure 2(right). Here, after thousands
of iterations, no competing algorithm is able to learn the SBN
as well as SSD can in 100 iterations, representing more than
an order of magnitude improvement. SSD-adapt improves over
SSD as well. In Table IV, we show that this model is about
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2 nats away from the RBM model of a corresponding size.
While this algorithm is not beating the corresponding RBM,
this is a much closer margin than previously demonstrated.

We note that the SSD-adapt algorithm allows optimization
to an improved point compared to SSD, or any other compared
algorithm. One reason for this is the improved optimization at
later times, where SSD-adapt takes many fewer steps with
a much larger batchsize. We demonstrate the batchsizes in
Figure 3 (left). At early times, the batchsize is smaller than the
heuristic size of 100 that we use, but at late times can be orders
of magnitude larger, which drastically reduces the number
of total iterations. Empirically, the growth in the batchsize
appears to grow exponentially at a near constant rate.

With the SSD or the SSD-adapt algorithm, it is possible to
learn even larger networks. Learning curves for these algo-
rithms are not shown because the competing algorithms are
thoroughly uncompetitive. However, we give the comparison
for larger networks in Table IV, which shows over 10 nat
improvement in the model likelihood with 200 hidden nodes.

C. Topic Modeling

To demonstrate performance on the RSBN and the RS-
RBM models, we compared the algorithms using geometry
(L1R, SSD, SSD-adapt) with SGD and RMSprop. We first test
our algorithms on a dataset of synthetically generated data.
These data were created by substantiating a RSBN or RS-
RBM with weights sampled from a normal distribution. Unit
biases were set to zero. Samples were generated by setting the
hidden layer to a random binary vector and then sampling an
assignment for the visible layer, either by a simple forward
pass in the case of the RSBN, or with Gibbs sampling for
the RS-RBM. Using initial small random weights, we then
proceeded to test the convergence, in terms of perplexity,
of the various algorithms on problems of different scale.
Perplexity is a commonly used metric in topic-modeling [32],
with perplexity(θ) = exp(−(ND̄)−1

∑
n log p(v|θ)). There

is a deterministic mapping between the objective function
(log-likelihood) and the perplexity estimate, and a decrease
in perplexity corresponds to an increase in log-likelihood.
The RSBN and RS-RBM used the stepsizes in Table III for
SSD, SSD-adapt, and L1R, which is more optimistic than the
Lipschitz step. The stepsizes for RMSprop, ADAgrad, and
SGD were tuned as in the previous section.

For these synthetic datasets, we first show the performance
for the RSBN with exact gradients in Figure 3(middle) with
J=10 and M=100. In these case, L1R, SSD, and ADAgrad
show similar performance, with greatly improved performance
over SGD and RMSprop. SSD-adapt shows further improve-
ments over the competing algorithms. For the RS-RBM, we set
the CD order to 3 and used 100 samples in AIS per document
as in [3]. We show a synthetic dataset with 25 hidden nodes
with RS-RBM in Figure 3(right). In the RS-RBM, SSD and
SSD-adapt are very similar, showing improved performance
over competing algorithms.

We compare results on the well-known 20-Newsgroups
dataset4. We used the preprocessing of [3], which reduced the

4http://qwone.com/˜jason/20Newsgroups/

vocabulary to M=2,000 most frequent words in the corpus,
split the corpus into a training set (11,284 documents) and
evaluation set (7,502 documents). For the RSBN, the resulting
convergence plot is shown in Figure 4 (middle) for J=100.
SSD is the clear winner, and both L1R and RMSprop sig-
nificantly improve over SGD. The RS-RBM training result is
shown in Figure 4 (left) for J=50. For the RS-RBM, SSD and
SSD-adapt show similar performance, with dominant perfor-
mance over competing algorithms. While SSD and SSD-adapt
give essentially the same performance, we mention that SSD-
adapt is significantly smoother as a result of taking many fewer
iterations. As well, using the same AIS settings as [3], the
estimated mean test perplexity is 841.53, which is considerably
lower than the reported perplexity for SGD training of 953
[3]. Unlike the RBM problem [36], different local modes in
the RS-RBM appear to have different performance levels. Our
SGD code achieved a level of 945 after 50,000 iterations.

We applied the RSBN to the Reuters Corpus. This was split
into a 794,414 training documents and 10,000 testing docu-
ment. The size of the corpus allowed an online optimization
scheme where mini-batches are observed in an online fashion.
The data were preprocessed to contain M = 10, 000 unique
words. To show that the algorithms scale in an online setting,
an RSBN with J = 100 hidden units was used. Figure 4 (right)
shows the results of training this experiment. SSD shows
the best performance, and converges well before the other
algorithms. After 10,000 iterations, the hold-out perplexity is
1712 from the SSD algorithm, versus 1841 for RMSprop and
2190 for L1R. SGD was uncompetitive for this network size.

VI. DISCUSSION

In this paper we have introduced a novel framework
for analyzing discrete graphical models with hidden, unob-
served nodes. This is used to develop novel majorization-
minimization schemes for several different models, all of
which lead to bounds on the Schatten-∞ norm. The form
of this bound inspires the use of the SSD algorithm, which
for larger models gives orders-of-magnitude improvements
in learning efficiency over other standard stochastic gradient
techniques. This optimization technique is supported with
convergence analysis of the nonlinear stochastic algorithms.

As well as using heuristic schemes based upon decreasing
step-sizes, we developed a version of the SSD algorithm,
denoted SSD-adapt, which used a constant step size and adapts
the minibatch size to approximate the conditions necessary
for convergence. This adaptive algorithm either surpasses or
matches the effective of the SSD algorithm with heuristic
stepsizes in our experiments.

Via the increase in learning efficiency from the SSD algo-
rithm, we not only get increased learning efficiency but also
generate state-of-the-art performance for networks of the same
size. While the performance of the SBN does not beat the
RBM here, the performance differences are greatly decreased.
As well, there is a great deal of work improving the gradient
estimation in RBMs [25, 37]. Our SBN experiments used a
naive Gibbs sampler, but the adaptation of techniques from
the RBM or binary sampling schemes [24] could lead to



12

great improvements in model optimization and performance.
The SSD algorithm combined with future work on gradient
estimation may make the SBN modeling performance improve
or tie the RBM for large graphical models.

Further, we have demonstrated similar results with topic
models, and have shown that it yields state-of-the-art learning
efficiency in the topic modeling problems considered here.
This demonstrates the broad applicability of the theorems
presented in this paper. As well, the analysis has revealed sim-
ilar properties between the directed and undirected graphical
models, as well as similar model performance.
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APPENDIX

A. Proof of Theorem II.1 and II.2

We will need the following property of #-operator, whose
proof can be found in [11] or [13]:

〈s, s#〉 = ||s||2∗ = ||s#||2. (19)

By substituting the iteration (7) into the majorization bound
and using the property (19), we have

Fk+1 ≤ Fk − hk〈∇Fk, G#
k 〉+ Ch2

k||G
#
k ||

2

= Fk − hk〈Gk, G#
k 〉+ Ch2

k||G
#
k ||

2 + hk〈wk, G#
k 〉

= Fk − hk(1− Chk)||Gk||2∗ + hk〈wk, G#
k 〉

≤ Fk − hk(1− Chk)||Gk||2∗ + hk||wk||∗||Gk||∗

where the last line follows by Hölder’s inequality. By as-
sumption, ||wk||∗ ≤ tk||∇Fk||∗ and therefore ||Gk||∗ ≥
1−tk
tk
||wk||∗. Using this inequality, we can further simplify the

above to
Fk − Fk+1 ≥ q(hk, C, tk)||Gk||2∗

where
q(h,C, t) = h(1− Ch)− th

1− t
.

Taking expectation (with respect to w0, w1, ..., wk) on both
sides therefore gives

E [Fk − Fk+1] ≥ q(hk, C, tk)E||Gk||2∗
≥ q(hk, C, tk)||E∇Fk||2∗ (20)

where we have used Jensen’s inequality and Ewk = 0. Now,
the condition (8) of the stepsizes ensures that

q(hk, C, tk) ≥ ρ > 0

for all k. Therefore, summing up (20) from 0 to k − 1 gives

E [F0 − Fk] ≥ ρ
k−1∑
i=0

||E∇Fi||2∗

Let F ∗ denote the minimum value of the objective function.
Then Fk ≥ F ∗ for all k, which implies

ρ

k−1∑
i=0

||E∇Fi||2∗ ≤ E [F0 − Fk] ≤ F0 − F ∗ <∞. (21)

Since this relation holds for all k, letting k → ∞ we see
that the sum on the left-hand side converges to a finite value,
thus implying limk→∞ ||E∇Fk||∗ → 0. This proves the first
assertion of Theorem II.1.

To prove the second half, let ε > 0 be a given precision.
Let Fk = min0≤i≤k−1 ||E∇Fi||∗. In view of (21),

F2
k ≤

1

k

k−1∑
i=0

||E∇Fi||2∗ ≤
1

kρ
(F0 − F∗). (22)

To get an upper bound on k to ensure ||E∇Fk||∗ < ε, it
suffices, by (22), to solve√

1

kρ
(F0 − F∗) < ε

which is of rate k = O( 1
ε2 ). This completes the proof of

Theorem II.1.

To prove Theorem II.2, note that since F (·) is convex, we
have, for all k, the following deterministic relation:

Fk − F ∗ ≤ 〈∇Fk, xk − x∗〉
= 〈Gk, xk − x∗〉 − 〈wk, xk − x∗〉
≤ ||Gk||∗||xk − x∗||+ ||wk||∗||xk − x∗||

≤ 1

1− tk
R||Gk||∗ (23)

where we have used ||Gk||∗ ≥ 1−tk
tk
||wk||∗ again. Taking

expectation of (23) and substituting into (20), we get

E [Fk − Fk+1] ≥ q(hk, C, tk)(1− tk)2

R2
(E [Fk − F ∗])2

.

Denote ζk = E [Fk − F ∗]. Then

1

ζk+1
− 1

ζk
=

ζk − ζk+1

ζkζk+1

≥ q(hk, C, tk)(1− tk)2

R2

ζ2
k

ζ2
k

=
q(hk, C, tk)(1− tk)2

R2
. (24)

Summing up (24) from 0 to k − 1 gives

1

ζk
− 1

ζ0
≥ 1

R2

k−1∑
i=0

q(hi, C, ti)(1− ti)2. (25)

Since ∇F (x∗) = 0, F0 ≤ F ∗ + C||x0 − x∗||2 ≤ F ∗ + CR2.
Combining this with (25) yields

1

ζk
≥ 1

R2

[
1

C
+

k−1∑
i=0

q(hi, C, ti)(1− ti)2

]
, (26)

which completes the proof of Theorem II.2.
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B. Proof of Theorem III.1

To prove the bound in Theorem III.1, we first consider the
data term with a single observation v

f(θ) = − log
∑
h

exp(−Eθ(v,h)), (27)

and define the log-sum-exp function as

g(x) = log
∑
i

exp(xi). (28)

Define the vector x ∈ R|H| with each entry xi = −Eθ(v,hi)
and y ∈ R|H| with each entry yi = −Eφ(v,hi), then note by
convexity of g(·) that

g(y) ≥ g(x) + 〈∇xg(x),y − x〉, or
f(φ) ≤ f(θ)− 〈∇xg(x),y − x〉. (29)

Using the relationships

∇θf(θ) = −
|H|∑
i

[∇xg(x)]i∇θ (−Eθ(v,hi)) ,

yi − xi = 〈∇θ(−Eθ(v,hi)),φ− θ)〉+ ri,

ri = −Eφ(v,hi) + Eθ(v,hi)

−〈∇θ(−Eθ(v,hi)),φ− θ)〉,

where ri denotes the error from the first order approximation,
then

〈∇xg(x),y − x〉

=

|H|∑
i

〈[∇xg(x)]i (〈∇θ(−Eθ(v,hi)),φ− θ)〉+ ri)

= −〈∇θf(θ),φ− θ〉+

|H|∑
i

[∇xg(x)]i ri. (30)

Combining (29) and (30) gives

f(φ) ≤ f(θ) + 〈∇θf(θ),φ− θ〉 −
|H|∑
i

[∇xg(x)]i ri. (31)

Since ∇xg(x) takes values in a simplex, this is bounded by

−
|H|∑
i

[∇xg(x)]i ri ≤ max
||c||=1

(−cTr) = −min
i
ri,

giving

f(φ) ≤ f(θ) + 〈∇θf(θ),φ− θ〉 −min
i
ri, (32)

which proves the result for a single observation v. Union
bound is used to extend to multiple observations.

C. Proof of Theorem III.2

To prove Theorem III.2, we analyze the form of

logZ(θ) = log
∑
v

∑
h

exp(−Eθ(v,h)).

First, define the vector x ∈ R|H×V| with each entry
xi = −Eθ(vi,hi) and y ∈ R|H×V| with each entry yi =

−Eφ(vi,hi), then using the upper bound on the log-sum-exp
function from [13] gives

g(y) ≤ g(x) + 〈∇xg(x),y − x〉+
1

2
||y − x||2∞, or

logZ(φ) ≤ logZ(θ) (33)

+〈∇xg(x),y − x〉+
1

2
||y − x||2∞.

Using the relationships from (29) and (30) with the different
sign gives

〈∇xg(x),y − x〉 ≤ 〈∇θ logZ(θ),φ− θ〉+ max
i
ri. (34)

We can rewrite the infinity norm as

||y − x||2∞ = max
v,h
| − Eφ(v,h)−−Eφ(v,h)|2. (35)

Plugging (34) and (35) into (33) gives the stated result in
Theorem III.2. Equation (13) will follow simply because ri =
0 ∀i.

D. AIS

In the SBN, the log partition function for the full model
is explicit and constant, but the log-partition function for the
marginal probability on the observations is not. This follows
because

pθ(v) = log
∑
h exp(−Eθ(v,h)) = Zθ,v

is unfortunately intractable for large numbers of hidden nodes.
However, the ratio between Zθ,v

Zφ,v
can be estimated by using

the the Annealed Importance Sampler (AIS) [29, 3]. If we
let W associated with φ be a zero matrix, then the parti-
tion function Zφ,v is analytic. Define a set of temperatures
0 = β0 < β1 · · · < βK−1 < βK = 1 with pk(v,h) =
exp(−βkEφ(v,h) − (1 − βk)Eφ(v,h)) and Tk(·|·) denote
a Gibbs sweep over h associated with pk(v,h), then the
necessary conditions for AIS to give asymptotically unbiased
estimates are satisfied [29]. The log probability of the obser-
vation can be calculated via AIS as in Algorithm 1. We note
that this procedure is computationally expensive, but unlike
the harmonic mean estimator [28, 21] generates accurate esti-
mates. As well, this is trivially extended to the RAISE method
of [30], which addresses the non-asymptotic bias of AIS to
give conservative estimates. For the number of samples used,
AIS and RAISE gave near-identical performance, supporting
the accuracy of the estimator. A similar algorithm was used
for the RSBN algorithm.

Algorithm 1 SBN Annealed Importance Sampler
1: Inputs: v, t0, . . . , tK , θ
2: Sample h0 ∼ p0(h)
3: logω = log p1(v,h0)− log p0(v,h0)
4: for k = 0, . . . ,K − 1 do
5: Sample hk ∼ Tk(hk|hk−1)
6: logω = logω + log pk+1(v,hk)− log pk(v,hk)
7: end for
8: log p̂(v) = logZ0 + logω
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E. Proofs of Sigmoid Belief Net Results

First, we want to prove (16). Since the SBN log partition
function is a constant, we only need to use Theorem III.1.
Focusing on the parameter W, the energy function is

−EW(v,h) = const+ vTWh

−
∑M
m=1 log(1 + exp([c+ Wh]m)).

Because the log partition function is a constant, we need only
the term

−min
n,h

(−EW+U(vn,h) + EW(vn,h) +

〈∇W(EW(vn,h)),U〉),

which is equivalent in Taylor’s theorem to

−min
n,h

∫ 1

0

〈∇WEW(vn,h)−∇WEW+tU(vn,h),U〉dt

≤ −1

2
min
n,h

min
t∈[0,1]

〈 d
dt
∇WEW+tU(vn,h),U〉.

Letting v̂t = σ(c+ (W + tU)h), we have

∇WEW+tU(vn,h) = (v − v̂t)hT ,
d

dt
∇WEW+tU(vn,h) = (−v̂t � (1− v̂t)�Uh)hT ,

which gives

〈 d
dt
∇WEW+tU(vn,h),U〉

≥ tr((−v̂t � (1− v̂t)�Uh)(Uh)T )

= tr(diag(−v̂t � (1− v̂t))UhhTUT )

≥ min
m

[−v̂t � (1− v̂t)]mtr(UhhTUT )

≥ −1

4
||Uh||22,

and
−1

2
min
n,h

min
t∈[0,1]

〈 d
dt
∇WEW+tU(vn,h),U〉 (36)

≤ − min
n,h,t∈[0,1]

(
−1

4
||Uh||22

)
≤ max

n,h,t∈[0,1]

(
1

4
||Uh||22

)
≤ J

4
||U||2S∞ . (37)

The result in (37) is directly applied to get the Schatten-∞
bound for the SBN. The linear bounds on b and c are standard
analysis from logistic regression.

F. Proof of Replicated Softmax-Restricted Boltzmann Machine
Results

First, we prove (17). The energy function in the RS-RBM is

− Eθ(v,h) = vT c+ vTWh+DhT b.

This is linear, so the only result needed is for (13). For W,
note that

−∇WEθ(v,h) = vhT

and for perturbation U

max
v,h
〈vhT ,U〉2 = max

v,h
(vTUh)2

≤ max
v,h
||v||22 ||h||22 ||U||2S∞

≤ D2J ||U||∞S . (38)

The result in (38) is applied to give the result for W. For c
with a perturbation a,

max
v,h
〈v,a〉2 = max

v∈Z+,||v||1=D
(vTa)2

= D2 max
m

(am)2 = D2||a||2∞. (39)

The result on c is shown from (39). For b with perturbation
a, this is

max
v,h
〈Dh,a〉2 = D2 max

v∈Z+,||v||1=D
(hTa)2

≤ D2M ||a||22. (40)

G. Proofs of Replicated Softmax Belief Net Result

We want to prove the alternative to (17) for the RSBN.
Focusing first on W, the energy function for the RSBN is

−Eθ(v,h) = const+ vTWh

−D log

M∑
m=1

exp([c+ Wh]m)),

with gradient

−∇WEW+tU(h,v) = (v −Dv̂t)hT

v̂t = softmax(c+ (W + tU)h).

As in Section E, the needed bound is on

− min
n,h,t∈[0,1]

〈−d
dt
∇WEW+tU(h,v),U〉. (41)

With this gradient given by

−d
dt
∇WEW+tU(v,h)

= −D(diag(v̂)− v̂v̂T )UhhT . (42)

The inner argument in (41) is simplified

〈−d
dt
∇WEW+tU(h,v),U〉

= −D · tr((diag(v̂t)− v̂tv̂Tt )UhhTUT )

= −D · (Uh)T ((diag(v̂t)− v̂tv̂Tt )(Uh)

≥ −D · ||Uh||22 ||diag(v̂t)− v̂tv̂Tt ||S∞ .

From Böhning [38], ||diag(v̂t)− v̂tv̂Tt ||S∞ ∈ [0, 1
2 ]. Plugging

into (41), we have

− min
n,h,t∈[0,1]

〈−d
dt
∇WEW+tU(h,v),U〉

≤ D

2
max
h
||Uh||22 (43)

≤ DJ

2
||U||2S∞ , (44)
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which gives the result on W. b is a standard result from
logistic regression. c with a perturbation of a is given by
noting

− d

dt
∇cEc+ta(v,h) = D(diag(v̂)− v̂v̂T )a,

and then

− min
n,h,t∈[0,1]

〈−d
dt
∇cEc+ta(vn,h),a〉

≤ D max
n,h,t∈[0,1]

aT (diag(v̂t)− v̂tv̂Tt )a.

This relates to the log-sum-exp `∞ bound, and using the proof
of Theorem 1 from [13], the upper bound reduces to D||a||2∞,
or, alternatively, using [38], D/2||a||22.
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[38] D. Böhning, “Multinomial logistic regression algorithm,”
Annals of the Institute of Statistical Mathematics, 1992.

PLACE
PHOTO
HERE

David Carlson received the B.S.E, M.S, and Ph.D.
degrees in electrical and computer engineering from
Duke University in Durham, NC in 2010, 2014, and
2015, respectively. Since 2015, he has been a post-
doctoral researcher in the Department of Statistics
at Columbia University, New York, NY. He is a
member of the Eta Kappa Nu honor societies.

PLACE
PHOTO
HERE

Ya-Ping Hsieh received my B.S.E. degree in Elec-
trical Engineering in 2010 and an M.S. degree in
Communication Engineering in 2012, both from Na-
tional Taiwan University. He was a research assistant
at the Research Center for Information Technology
Innovation, Academia Sinica, from 2013 to 2014.
Since 2015, he has been a doctoral assistant at
EPFL, advised by Prof. Volkan Cevher. He am
broadly interested in any theory regarding data anal-
ysis, including statistical learning and convex/non-
convex optimization. He also enjoys browsing sev-

eral branches of mathematics, including the information theory and concen-
tration of measure phenomenon.

PLACE
PHOTO
HERE

Edo Collins is currently a Ph.D. student at the
Image and Visual Representation Lab at EPFL. He
completed his bachelor studies in Computer Science
at the Open University of Israel in 2009, and his
master studies in Computational Linguistics at the
university of Tübingen in 2014.
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