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Abstract—Recent results in monocular visual-inertial navi-
gation (VIN) have shown that optimization-based approaches
outperform filtering methods in terms of accuracy due to their
capability to relinearize past states. However, the improvement
comes at the cost of increased computational complexity. In this
paper, we address this issue by preintegrating inertial measure-
ments between selected keyframes. The preintegration allows us
to accurately summarize hundreds of inertial measurements into
a single relative motion constraint. Our first contribution is a
preintegration theory that properly addresses the manifold struc-
ture of the rotation group and carefully deals with uncertainty
propagation. The measurements are integrated in a local frame,
which eliminates the need to repeat the integration when the
linearization point changes while leaving the opportunity for
belated bias corrections. The second contribution is to show that
the preintegrated IMU model can be seamlessly integrated in a
visual-inertial pipeline under the unifying framework of factor
graphs. This enables the use of a structureless model for visual
measurements, further accelerating the computation. The third
contribution is an extensive evaluation of our monocular VIN
pipeline: experimental results confirm that our system is very fast
and demonstrates superior accuracy with respect to competitive
state-of-the-art filtering and optimization algorithms, including
off-the-shelf systems such as Google Tango [1].

I. INTRODUCTION

The fusion of cameras and inertial sensors for three-
dimensional structure and motion estimation has received
considerable interest in the robotics community. Both sensor
types are cheap, ubiquitous, and complementary. A single
moving camera is an exteroceptive sensor that allows us
to measure appearance and geometry of a three-dimensional
scene, up to an unknown metric scale; an inertial measurement
unit (IMU) is a proprioceptive sensor that renders metric scale
of monocular vision and gravity observable [2] and provides
robust and accurate inter-frame motion estimates. Applications
of VIN range from autonomous navigation in GPS-denied
environments, to 3D reconstruction, and augmented reality.

Although impressive results have been achieved in VIN,
state-of-the-art algorithms require trading-off computational
efficiency with accuracy. Batch non-linear optimization, which
has become popular for visual-inertial fusion [3–15], allows
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Fig. 1: Real test comparing the proposed VIN approach against Google Tango.
The 160m-long trajectory starts at (0, 0, 0) (ground floor), goes up till the
3rd floor of a building, and returns to the initial point. The figure shows
a side view (left) and a top view (right) of the trajectory estimates for our
approach (blue) and Tango (red). Google Tango accumulates 1.4m error, while
the proposed approach only has 0.5m drift. 3D points triangulated from our
trajectory estimate are shown in green for visualization purposes.

one to compute an optimal estimate; however, real-time op-
eration quickly becomes infeasible as the trajectory and the
map grow over time. Therefore, it has been proposed to
discard frames except selected keyframes [9, 16–18] or to
run the optimization in a parallel thread, using a tracking
and mapping dual architecture [5, 19]. Another approach is
to maintain a local map of fixed size and to marginalize old
states [6, 7, 9], which is also termed fixed-lag smoothing. To
that extreme, if only the latest sensor state is maintained,
we speak of filtering, which amounts the vast majority of
related work in VIN [20, 21]. Although filtering and fixed-
lag smoothing enable fast computation, they commit to a
linearization point when marginalizing; the gradual build-up
of linearization errors leads to drift and possible inconsis-
tencies [22]. A breakthrough in the direction of reconciling
filtering and batch optimization has been the development of
incremental smoothing techniques (iSAM [23], iSAM2 [24]),
which leverage the expressiveness of factor graphs to identify
and update only the typically small subset of variables affected
by a new measurement. Although this results in constant
update time in odometry problems, previous VIN applications
still work at low frame rates [25].

In this work, we present a system that uses incremental
smoothing for fast computation of the optimal maximum a
posteriori (MAP) estimate. The first step towards this goal
is the development of a novel preintegration theory. The use
of preintegrated IMU measurements was first proposed in
[26] and consists of combining many inertial measurements



between two keyframes into a single relative motion constraint.
We build upon this work and present a preintegration theory
that properly addresses the manifold structure of the rotation
group and allows us to analytically derive all Jacobians.
This is in contrast to [26], which adopted Euler angles as
global parametrization for rotations. Using Euler angles and
applying the usual averaging and smoothing techniques of
Euclidean spaces for state propagation and covariance esti-
mation is not properly invariant under the action of rigid
transformations [27]. Moreover, Euler angles are known to
have singularities. Our theoretical derivation in Section V
also advances previous works [10, 12, 13, 25] that used
preintegrated measurements but did not develop the corre-
sponding theory for uncertainty propagation and a-posteriori
bias correction. Besides these improvements, our model still
benefits from the pioneering insight of [26]: the integration is
performed in a local frame, which does not require to repeat
the integration when the linearization point changes.

As a second contribution, we frame our preintegrated IMU
model into a factor graph perspective. This enables the design
of a constant-time VIN pipeline based on iSAM2 [24]. Our
incremental-smoothing solution avoids the accumulation of
linearization errors and provides an appealing alternative to
using an adaptive support window for optimization [10].

Inspired by [20, 28], we adopt a structureless model for
visual measurements, which allows one to eliminate large
numbers of variables (i.e., all 3D points) during incremental
smoothing, further accelerating the computation.

The third contribution is an efficient implementation and
extensive evaluation of our system. Experimental results high-
light that our back-end requires an average CPU time of 10ms
to compute the full MAP estimate and achieves superior ac-
curacy with respect to competitive state-of-the-art approaches.
The paper is accompanied by supplementary material [29]
that reports extra details of our derivation. Furthermore, we
release our implementation of the IMU preintegration and the
structurless vision factors in the GTSAM 4.0 optimization
toolbox [30]. A video showing an example of the execution
of our system is available at https://youtu.be/CsJkci5lfco

II. PRELIMINARIES

A. Notions of Riemannian geometry

This section recalls useful concepts related to the Special
Orthogonal Group SO(3) and the Special Euclidean Group
SE(3). Our presentation is based on [31, 32].

a) Special Orthogonal Group: SO(3) describes the
group of 3D rotation matrices and it is formally defined as
SO(3)

.
= {R ∈ R3×3 : RTR = I,det(R) = 1}. The group

operation is the usual matrix multiplication, and the inverse is
the matrix transpose. The group SO(3) also forms a smooth
manifold. The tangent space to the manifold (at the identity)
is denoted so(3), which is also called the Lie algebra and
coincides with the space of 3 × 3 skew symmetric matrices.
We can identify every skew symmetric matrix with a vector

SO(3)

so(3)

δφ

Log(R)
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Exp(φ + δφ)
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Fig. 2: The right Jacobian Jr relates an additive perturbation δφ in the tangent
space to a multiplicative perturbation on the manifold SO(3), as per Eq. (7).

in R3 using the hat operator:

ω∧ =

ω1

ω2

ω3

∧ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ∈ so(3). (1)

Similarly, we can map a skew symmetric matrix to a vector in
R3 using the vee operator (·)∨: for a skew symmetric matrix
S = ω∧, the vee operator is such that S∨ = ω. A property of
skew symmetric matrices that will be useful later on is:

a∧b = −b∧a, ∀ a,b ∈ R3. (2)

The exponential map (at the identity) exp : so(3)→ SO(3)
associates an element of the Lie Algebra to a rotation:

exp(φ∧) = I + sin(‖φ‖)
‖φ‖ φ∧ + 1−cos(‖φ‖)

‖φ‖2
(
φ∧
)2
. (3)

A first-order approximation of the exponential map is:

exp(φ∧) ≈ I + φ∧ . (4)

The logarithm map (at the identity) associates a matrix R

in SO(3) to a skew symmetric matrix:

log(R) =
ϕ · (R− RT)

2 sin(ϕ)
with ϕ = cos−1

(
tr (R)− 1

2

)
. (5)

Note that log(R)∨ = aϕ, where a and ϕ are the rotation axis
and the rotation angle of R, respectively.

The exponential map is a bijection if restricted to the open
ball ‖φ‖ < π, and the corresponding inverse is the logarithm
map. However, if we do not restrict the domain, the exponen-
tial map becomes surjective as every vector φ = (ϕ+ 2kπ)a,
k ∈ Z would be an admissible logarithm of R.

For notational convenience, we adopt “vectorized” versions
of the exponential and logarithm map:

Exp : R3 3 φ → exp(φ∧) ∈ SO(3),
Log : SO(3) 3 R → log(R)∨ ∈ R3,

(6)

which operate directly on vectors, rather than on so(3).
Later, we will use the following first-order approximation:

Exp(φ+ δφ) ≈ Exp(φ) Exp(Jr(φ)δφ). (7)

The term Jr(φ) is the right Jacobian of SO(3) [31, p.40] and
relates additive increments in the tangent space to multiplica-
tive increments applied on the right-hand-side (Fig. 2):

Jr(φ) = I− 1−cos(‖φ‖)
‖φ‖2 φ∧ + ‖φ‖−sin(‖φ‖)

‖φ3‖ (φ∧)2. (8)

A similar first-order approximation holds for the logarithm:

Log
(

Exp(φ) Exp(δφ)
)
≈ φ+ J−1

r (φ)δφ. (9)

https://youtu.be/CsJkci5lfco


An explicit expression for the inverse of the right Jacobian is
given in the supplementary material [29]. Jr(φ) reduces to the
identity for ‖φ‖=0.

Another useful property of the exponential map that follows
directly from the Adjoint representation is:

R Exp(φ) RT = exp(Rφ∧RT) = Exp(Rφ) (10)

⇔ Exp(φ) R = R Exp(RTφ) (11)

b) Special Euclidean Group: SE(3) describes the group
of rigid motion in 3D and it is defined as SE(3)

.
=

{(R,p) : R ∈ SO(3),p ∈ R3}. The group operation is T1·T2 =
(R1R2 , R1p2 + p1), and the inverse is T−1

1 = (RT1 , −RT1 p1).
The exponential map and the logarithm map for SE(3) are
defined in [32]. However, these are not needed in this paper
for reasons that will be clear in Section II-C.

B. Uncertainty Description in SO(3)

A fairly natural definition of uncertainty in SO(3) is to
define a distribution in the tangent space, and then map it
to SO(3) via the exponential map (6) [32–34]:

R̃ = R Exp(ε), ε ∼ N (0,Σ), (12)

where R is a given noise-free rotation (the mean) and ε is a
small normally distributed perturbation with zero mean.

The distribution of the random variable R̃ ∈ SO(3) can be
computed explicitly, as shown in [33], leading to:

p(R̃) = β(R̃) e−
1
2‖Log(R−1R̃)‖2

Σ (13)

where β(R̃) is a normalization factor that can be safely ap-
proximated as β(R̃)'1/

√
2π det(Σ) when Σ is small. If we

approximate β as a constant, the negative log-likelihood of a
rotation R given a measurement R̃ distributed as in (13) is:

L(R) =
1

2

∥∥Log(R−1R̃)
∥∥2

Σ
+const =

1

2

∥∥Log(R̃−1R)
∥∥2

Σ
+const

C. Gauss-Newton Method on Manifold

Let us consider the optimization problem minx∈M f(x),
where f(·) is a given cost function, and the variable x belongs
to a manifoldM; for simplicity we consider a single variable,
while the description can be easily generalized.

A standard approach for optimization on manifold [35, 36],
consists of defining a retraction Rx, which is a bijective map
between an element δx of the tangent space (at x) and a
neighborhood of x ∈ M. Using the retraction, we can re-
parametrize our problem as follows:

min
x∈M

f(x) ⇒ min
δx∈Rn

f(Rx(δx)) (14)

The re-parametrization is usually called lifting [35]. Roughly
speaking, we work in the tangent space defined at the current
estimate, which locally behaves as an Euclidean space. We can
now apply standard optimization techniques to the problem
on the right in (14). In the GN framework, we square the
cost around the current estimate. Then we solve the quadratic
approximation to get a vector δx? in the tangent space. Finally,
the current guess on the manifold is updated as x̂← Rx̂(δx?).

TWB
.= (RWB,Wp)

ρl

TBC

Body/IMU
Cam

World

zl

Fig. 3: TWB
.
= (RWB, Wp) is the pose of the body frame B w.r.t. the world

frame W. We assume that the body frame coincides with the IMU frame. TBC

is the pose of the camera in the body frame, known from prior calibration.

A possible retraction is the exponential map. However,
computationally, this may be not the most convenient, see [37].

For SE(3), we use the following retraction at T .
= (R,p):

RT(δφ, δp) = (R Exp(δφ), p + R δp), [δφ δp] ∈ R6

(15)
which explains why in Section II-A we only defined the
exponential map for SO(3): with this choice of retraction we
never need to compute the exponential map for SE(3).

III. MAXIMUM A POSTERIORI VISUAL-INERTIAL
STATE ESTIMATION

System and assumptions. We consider a VIN problem in
which we want to track the state of a sensing system (e.g., a
mobile robot or a hand-held device), equipped with an IMU
and a monocular camera. We assume that the IMU frame “B”
coincides with the body frame we want to track, and that the
transformation between the camera and the IMU is fixed and
known from prior calibration (Fig. 3). Furthermore, we assume
that a front-end provides pixel measurements of 3D landmarks
at unknown position. The front-end also selects a subset of
images, called keyframes [16], for which we want to compute
a pose estimate. Section VII discusses implementation aspects,
including the choice of the front-end in our experiments.

The state. The state of the system at time i is described
by the IMU orientation, position, velocity and biases: xi

.
=

[Ri,pi,vi,bi]. Recall that (Ri,pi) ∈ SE(3), while velocities
live in a vector space, i.e., vi ∈ R3. IMU biases can be written
as bi = [bgi bai ] ∈ R6, where bgi ,b

a
i ∈ R3 are the gyroscope

and accelerometer bias, respectively.
Let Kk denote the set of all keyframes up to time k. In our

approach we estimate the state of all keyframes:

Xk .
= {xi}i∈Kk

. (16)

We adopt a structureless approach (cf., Section VI), hence the
3D landmarks are not part of the variables to be estimated.

The measurements. The input to our estimation problem are
the measurements from the camera and the IMU. We denote
with Ci the camera measurements at keyframe i. At time i, the
camera can observe multiple landmarks l, hence Ci contains
multiple pixel observations zil. With slight abuse of notation
we write l ∈ Ci when a landmark l is seen at time i.

We denote with Iij the set of IMU measurements acquired
between two consecutive keyframes i and j. Usually, each set
Iij contains hundreds of IMU measurements.

The set of measurements collected up to time k is

Zk .
= {Ci, Iij}(i,j)∈Kk

, (17)
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Fig. 4: Left: visual and inertial measurements in VIN. Right: factor graph in
which several IMU measurements are summarized in a single preintegrated
IMU factor and a structureless vision factor constraints keyframes observing
the same landmark.

Factor graphs and MAP estimation. A factor graph encodes
the posterior probability of the variables Xk, given the avail-
able measurements Zk and priors p(X0):

p(Xk|Zk) ∝ p(X0)p(Zk|Xk) = p(X0)
∏

(i,j)∈Kk

p(Ci, Iij |Xk)

= p(X0)
∏

(i,j)∈Kk

p(Iij |xi,xj)
∏
i∈Kk

∏
l∈Ci

p(zil|xi). (18)

The terms in the factorization (18) are called factors. A
schematic representation of the connectivity of the factor graph
underlying the problem is given in Fig. 4 (the connectivity of
the structureless vision factors will be clarified in Section VI).

The MAP estimate corresponds to the maximum of (18), or
equivalently, the minimum of the negative log-posterior. Under
the assumption of zero-mean Gaussian noise, the negative log-
posterior can be written a sum of squared residual errors:

X ?k
.
= arg min

Xk

− loge p(Xk|Zk) (19)

= arg min
Xk

‖r0‖2Σ0
+

∑
(i,j)∈Kk

‖rIij‖2Σij
+
∑
i∈Kk

∑
l∈Ci

‖rCil‖2ΣC

where r0, rIij , rCil are the residual errors associated to the
measurements, and Σ0, Σij , and ΣC are the corresponding
covariance matrices. The goal of the following sections is to
provide expressions for the residual errors.

IV. IMU MODEL AND MOTION INTEGRATION

An IMU measures the rotation rate and the acceleration of
the sensor with respect to an inertial frame. The measurements,
namely Bã(t), and Bω̃WB(t), are affected by additive white noise
η and a slowly varying sensor bias b:

Bω̃WB(t) = BωWB(t) + bg(t) + ηg(t) (20)

Bã(t) = RTWB(t) (Wa(t)− Wg) + ba(t) + ηa(t), (21)

In our notation, the prefix B denotes that the corresponding
quantity is expressed in the frame B (c.f., Fig. 3). The pose
of the IMU is described by the transformation {RWB, Wp},
which maps a point from sensor frame B to W. The vector
BωWB(t)∈R3 is the instantaneous angular velocity of B relative
to W expressed in coordinate frame B, while Wa(t)∈R3 is the
acceleration of the sensor; Wg is the gravity vector in world
coordinates. We neglect effects due to earth’s rotation, which
amounts to assuming that W is an inertial frame.

The goal now is to infer the motion of the system from IMU
measurements. For this purpose we introduce the following

Images:
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Fig. 5: Different rates for IMU and camera.

kinematic model [38, 39]:

ṘWB = RWB Bω
∧
WB, Wv̇ = Wa, Wṗ = Wv, (22)

which describes the evolution of the pose and velocity of B.
The state at time t+∆t is obtained by integrating Eq. (22).

Applying Euler integration, which is exact assuming that Wa
and BωWB remain constant in the interval [t, t+ ∆t], we get:

RWB(t+ ∆t) = RWB(t) Exp (BωWB(t)∆t)

Wv(t+ ∆t) = Wv(t) + Wa(t)∆t

Wp(t+ ∆t) = Wp(t) + Wv(t)∆t+
1

2
Wa(t)∆t2. (23)

Using Eqs. (20)–(21), we can compute Wa and BωWB as a
function of the IMU measurements, hence (23) becomes

R(t+ ∆t) = R(t) Exp
((
ω̃(t)− bg(t)− ηgd(t)

)
∆t
)

v(t+ ∆t) = v(t) + g∆t+ R(t)
(
ã(t)−ba(t)−ηad(t)

)
∆t

p(t+ ∆t) = p(t) + v(t)∆t+
1

2
g∆t2

+
1

2
R(t)

(
ã(t)−ba(t)−ηad(t)

)
∆t2, (24)

where we dropped the coordinate frame subscripts for read-
ability (the notation should be unambiguous from now on).
The covariance of the discrete-time noise ηgd is a function of
the sampling rate and relates to the continuous-time spectral
noise ηg via Cov(ηgd(t)) = 1

∆tCov(ηg(t)), and the same
relation holds for ηad (cf., [40, Appendix]).

V. IMU PREINTEGRATION ON MANIFOLD

This section contains the first key contribution of the paper.
While Eq. (24) could be readily seen as a probabilistic
constraint in a factor graph, it would require to include states
in the factor graph at high rate. Here we show that all
measurements between two keyframes at times k = i and
k = j can be summarized in a single compound measurement,
named preintegrated IMU measurement, which constrains the
motion between consecutive keyframes. This concept was first
proposed in [26] using Euler angles and we extend it, by
developing a suitable theory for preintegration on manifold.

We assume that the IMU is synchronized with the camera
and provides measurements at discrete times k (cf., Fig. 5).1

1We calibrate the IMU-camera delay using the Kalibr toolbox [41]. An
alternative is to add the delay as a state in the estimation process [42].



Iterating the IMU integration (24) for all ∆t intervals
between k = i and k = j (c.f., Fig. 5), we find:

Rj = Ri

j−1∏
k=i

Exp
((
ω̃k − bgk − η

gd
k

)
∆t
)
,

vj = vi+ g∆tij +

j−1∑
k=i

Rk

(
ãk − bak − ηadk

)
∆t (25)

pj = pi+

j−1∑
k=i

vk∆t+
1

2
g∆t2ij +

1

2

j−1∑
k=i

Rk

(
ãk−bak−ηadk

)
∆t2

where we introduced the shorthands ∆tij
.
=
∑j
k=i ∆t and

(·)i .= (·)(ti) for readability.
While Eq. (25) already provides an estimate of the motion

between time ti and tj , it has the drawback that the integration
in (25) has to be repeated whenever the linearization point at
time ti changes (intuitively, a change in the rotation Ri implies
a change in all future rotations Rk, k = i, . . . , j−1, and makes
necessary to re-evaluate summations and products in (25)).

Our goal is to avoid repeated integrations. For this purpose,
we define the following relative motion increments that are
independent of the pose and velocity at ti:

∆Rij
.
= RTi Rj =

∏j−1
k=i Exp

((
ω̃k − bgk − η

gd
k

)
∆t
)

∆vij
.
= RTi (vj−vi−g∆tij)=

∑j−1
k=i ∆Rik

(
ãk−bak−ηadk

)
∆t

∆pij
.
= RTi

(
pj − pi − vi∆tij − 1

2g∆t2ij
)

=
∑j−1
k=i

[
∆vik∆t+ 1

2∆Rik
(
ãk−bak−ηadk

)
∆t2

]
=
∑j−1
k=i

[
3
2∆Rik

(
ãk−bak−ηadk

)
∆t2

]
(26)

where we defined ∆Rik
.
= RTi Rk and ∆vik

.
= vk − vi.

Unfortunately, summations and products in (26) are still
function of the bias. We tackle this problem in two steps.
In Section V-A, we assume bi is known; then, in Section V-C
we show how to avoid repeating the integration when the bias
estimate changes. In the rest of the paper, we assume that the
bias remains constant between two keyframes:

bgi = bgi+1 = . . . = bgj−1, bai = bai+1 = . . . = baj−1. (27)

A. Preintegrated IMU Measurements

In this section, we assume that the bias at time ti is known.
We want to isolate the noise in (26). Therefore, starting with
the rotation increment ∆Rij , we use the first-order approxi-
mation (7) (rotation noise is “small”) and rearrange the terms,
by “moving” the noise to the end, using the relation (11):

∆Rij
eq.(7)'

j−1∏
k=i

[
Exp ((ω̃k − bgi ) ∆t) Exp

(
−Jkr ηgdk ∆t

)]
eq.(11)

= ∆R̃ij

j−1∏
k=i

Exp
(
−∆R̃Tk+1j J

k
r η

gd
k ∆t

)
.
= ∆R̃ijExp

(
−δφij

)
(28)

with Jkr
.
= Jkr ((ω̃k − bgi )∆t). We defined the preintegrated

rotation measurement ∆R̃ij
.
=
∏j−1
k=i Exp ((ω̃k − bgi ) ∆t),

and its noise δφij , which will be analysed in the next section.

Substituting (28) back into the expression of ∆vij in (26),
using the approximation (4) for Exp

(
−δφij

)
, and dropping

higher-order noise terms, we obtain:

∆vij
eq.(4)'

j−1∑
k=i

∆R̃ik(I− δφ∧ik) (ãk−bai ) ∆t−∆R̃ikη
ad
k ∆t

eq.(2)
= ∆ṽij+

j−1∑
k=i

[
∆R̃ik (ãk−bai )

∧
δφik∆t−∆R̃ikη

ad
k ∆t

]
.
= ∆ṽij − δvij (29)

where we defined the preintegrated velocity measurement
∆ṽij

.
=
∑j−1
k=i∆R̃ik(ãk−bai ) ∆t and its noise δvij .

Similarly, substituting (28) in the expression of ∆pij
in (26), and using the first-order approximation (4), we obtain:

∆pij
eq.(4)'

j−1∑
k=i

3

2
∆R̃ik(I−δφ∧ik) (ãk−bai ) ∆t2−

j−1∑
k=i

3

2
∆R̃ikη

ad
k ∆t2

eq.(2)
= ∆p̃ij+

j−1∑
k=i

[
3

2
∆R̃ik (ãk−bai )

∧
δφik∆t2− 3

2
∆R̃ikη

ad
k ∆t2

]
.
= ∆p̃ij − δpij (30)

where we defined the preintegrated position measurement
∆p̃ij and its noise δpij .

Substituting the expressions (28), (29), (30) back in the
original definition of ∆Rij ,∆vij ,∆pij in (26), we finally get
our preintegrated measurement model:

∆R̃ij = RTi RjExp
(
δφij

)
∆ṽij = RTi (vj−vi−g∆tij) + δvij

∆p̃ij = RTi

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)
+ δpij (31)

where our compound measurements are written as a function
of the (to-be-estimated) state “plus” a random noise, described
by the random vector [δφT

ij , δv
T
ij , δp

T
ij ]

T. The nature of the
noise terms is discussed in the following section.

B. Noise Propagation

Let us start with the rotation noise:

Exp
(
−δφij

) .
=
∏j−1
k=i Exp

(
−∆R̃Tk+1jJ

k
r η

gd
k ∆t

)
. (32)

Taking the Log at both members and changing signs, we get:

δφij = −Log
(∏j−1

k=i Exp
(
−∆R̃Tk+1jJ

k
r η

gd
k ∆t

))
. (33)

Repeated application of the first-order approximation (9) (re-
call that ηgdk as well as δφij are small rotation noises, hence
the right Jacobians are close to the identity) produces:

δφij '
∑j−1
k=i ∆R̃Tk+1j J

k
r η

gd
k ∆t (34)

Up to first order, the noise δφij is zero-mean and Gaussian, as
it is a linear combination of zero-mean noise terms ηgdk . This is
desirable, since it brings the rotation measurement model (31)
exactly in the form (12).



Dealing with the noise terms δvij and δpij is now easy:
these are linear combinations of the acceleration noise ηadk
and the preintegrated rotation noise δφij , hence they are also
zero-mean and Gaussian.

Therefore, we can fully characterize the noise as:

[δφT
ij , δv

T
ij , δp

T
ij ]

T ∼ N (09×1,Σij). (35)

The expression for the covariance Σij is provided in the
supplementary material [29], where we also show that both
the preintegrated measurements ∆R̃ij ,∆ṽij ,∆p̃ij , and the
covariance Σij can be computed incrementally.

C. Incorporating Bias Updates

In the previous section, we assumed that the bias bi used to
compute the preintegrated measurements is given. However,
more likely, the bias estimate changes during optimization.
One solution would be to recompute the delta measurements
when the bias changes; however, that is computationally
expensive. Instead, given a bias update b ← b̄ + δb, we can
update the delta measurements using a first-order expansion:

∆R̃ij(b
g
i ) ' ∆R̃ij(b̄

g
i ) Exp

(
∂∆R̄ij
∂bg δbg

)
∆ṽij(b

g
i ,b

a
i ) ' ∆ṽij(b̄

g
i , b̄

a
i ) +

∂∆v̄ij

∂bg δbgi +
∂∆v̄ij

∂ba δbai

∆p̃ij(b
g
i ,b

a
i ) ' ∆p̃ij(b̄

g
i , b̄

a
i ) +

∂∆p̄ij

∂bg δbgi +
∂∆p̄ij

∂ba δbai
(36)

This is similar to the bias correction in [26] but operates di-
rectly on SO(3). The Jacobians {∂∆R̄ij

∂bg ,
∂∆v̄ij

∂bg , . . .} (computed
at b̄i) describe how the measurements change due to a change
in the bias estimate. The derivation of the Jacobians is very
similar to the one we used in Section V-A to express the mea-
surements as a large value plus a small perturbation; hence,
we omit the complete derivation, which can be found in the
supplementary material [29]. Note that the Jacobians remain
constant and can be precomputed during the preintegration.

D. Preintegrated IMU Factors

Given the preintegrated measurement model in (31) and
since measurement noise is zero-mean and Gaussian up to
first order (35), it is now easy to write the residual errors
rIij

.
= [rT∆Rij

, rT∆vij
, rT∆pij

]T ∈ R9, where

r∆Rij

.
= Log

((
∆R̃ij(b̄

g
i )Exp

(
∂∆R̄ij
∂bg δbg

))T
RTi Rj

)
r∆vij

.
= RTi (vj − vi − g∆tij)

−
[
∆ṽij(b̄

g
i , b̄

a
i ) +

∂∆v̄ij

∂bg δbg +
∂∆v̄ij

∂ba δba
]

r∆pij

.
= RTi

(
pj − pi − vi∆tij − 1

2g∆t2ij
)

−
[
∆p̃ij(b̄

g
i , b̄

a
i ) +

∂∆p̄ij

∂bg δbg +
∂∆p̄ij

∂ba
δba

]
, (37)

in which we also included the bias updates of Eq. (36).
According to the “lift-solve-retract” method (Section II-C),

at each GN iteration we need to re-parametrize (37) using the
retraction (15). Then, the “solve” step requires to linearize
the resulting cost. For the purpose of linearization, it is
convenient to compute analytic expressions of the Jacobians
of the residual errors, which we derive in [29].

E. Bias Model

When presenting the IMU model (20), we said that biases
are slowly time-varying quantities. Hence, we model them
with a “Brownian motion”, i.e., integrated white noise:

ḃg(t) = ηbg, ḃa(t) = ηba. (38)

Integrating (38) over the time interval [ti, tj ] between two
consecutive keyframes i and j we get:

bgj = bgi + ηbgd, baj = bai + ηbad, (39)

where, as done before, we use the shorthand bgi
.
= bg(ti),

and we define the discrete noises ηbgd and ηbad, which have
zero mean and covariance Σbgd .

= ∆tijCov(ηbg) and Σbad .
=

∆tijCov(ηba), respectively (cf. [40, Appendix]).
The model (39) can be readily included in our factor graph,

as a further additive term in (19) for all consecutive keyframes:

‖rbij‖2
.
= ‖bgj − bgi ‖2Σbgd + ‖baj − bai ‖2Σbad (40)

VI. STRUCTURELESS VISION FACTORS

In this section we introduce our structureless model for
vision measurements. The key feature of our approach is the
linear elimination of landmarks. Note that the elimination is
repeated at each Gauss-Newton iteration, hence we are still
guaranteed to obtain the optimal MAP estimate.

Visual measurements contribute to the cost (19) via the sum:∑
i∈Kk

∑
l∈Ci ‖rCil‖2ΣC =

∑L
l=1

∑
i∈X (l) ‖rCil‖2ΣC (41)

which, on the right-hand-side, we rewrote as a sum of contri-
butions of each landmark l = 1, . . . , L. In (41), X (l) denotes
the subset of keyframes in which l is seen.

A fairly standard model for the residual error of a single
pixel measurement zil is [13]:

rCil = zil − π(Ri,pi, ρl), (42)

where ρl ∈ R3 denotes the position of the l-th landmark, and
π(·) is a standard perspective projection, which also encodes
the (known) IMU-camera transformation TBC.

Direct use of (42) would require to include the landmark
positions ρl, l = 1, . . . , L in the optimization, and this impacts
negatively on computation. Therefore, in the following we
adopt a structureless approach that avoids optimization over
the landmarks, thus ensuring to retrieve the MAP estimate.

As recalled in Section II-C, at each GN iteration, we lift the
cost function, using the retraction (15). For the vision factors
this means that the original residuals (41) become:∑L

l=1

∑
i∈X (l) ‖zil − π̌(δφi, δpi, δρl)‖2ΣC (43)

where δφi, δpi, δρl are now Euclidean corrections, and π̌(·)
is the lifted cost function. The “solve” step in the GN method
is based on linearization of the residuals:∑L

l=1

∑
i∈X (l) ‖FilδTi + Eilδρl − bil‖2, (44)

where δTi
.
= [δφi δpi]

T; the Jacobians Fil,Eil, and the vec-
tor bil (both normalized by Σ

1/2
C ) result from the linearization.

The vector bil is the residual error at the linearization point.



Writing the second sum in (44) in matrix form we get:∑L
l=1 ‖Fl δTX (l) + El δρl − bl‖2 (45)

where Fl,El,bl are obtained by stacking Fil,Eil,bil, respec-
tively, for all i ∈ X (l). We can eliminate the variable δρl by
projecting the residual into the null space of El:∑L

l=1

∥∥Q(Fl δTX (l) − bl)
∥∥2

(46)

where Q
.
= I−El(E

T
l El)

−1ET
l is an orthogonal projector of

El as shown in the supplementary material [29]. Using this
approach, we reduced a large set of factors (43) which involve
poses and landmarks into a smaller set of L factors (46), which
only involve poses. In particular, the factor corresponding to
landmark l only involves the states X (l) observing l, creating
the connectivity pattern of Fig. 4.

VII. IMPLEMENTATION

Our implementation consists of a high frame rate tracking
front-end based on SVO2 [43] and an optimization back-end
based on iSAM23 [24]. The front-end tracks the pose at camera
rate while the back-end optimizes in parallel the state of
selected keyframes as described in this paper.

SVO [43] is a precise and robust monocular visual odometry
system that employs sparse image alignment, which estimates
incremental motion and tracks features by minimizing the
photometric error between subsequent images. Thereby, SVO
avoids every-frame feature extraction, resulting in high-frame-
rate motion estimation. Combined with an outlier resistant
probabilistic triangulation method, SVO provides increased
robustness in scenes with repetitive and high frequency texture.

The computation of the MAP estimate in Eq. (19) is
based on iSAM2 [24], which is a state-of-the-art incremental
smoothing approach. iSAM2 exploits the fact that new mea-
surements often have only local effect on the MAP estimate,
hence applies incremental updates directly to the square-root
information matrix, only re-solving for the variables affected
by the new measurements. In odometry problems, the use of
iSAM2 results in constant-time updates.

VIII. EXPERIMENTS

The first experiment shows that the proposed approach
is more accurate than two competitive state-of-the-art ap-
proaches, namely ASLAM [9], and MSCKF [20]. The ex-
periment is performed on the indoor trajectory of Fig. 6.
The dataset was recorded with a forward-looking VI-Sensor
[44] that consists of an ADIS16448 MEMS IMU and two
embedded WVGA monochrome cameras (we only use the
left camera). Intrinsic and extrinsic calibration was obtained
using [41]. The camera runs at 20Hz and the IMU at 800Hz.
Ground truth poses are provided by a Vicon system mounted in
the room; the hand-eye calibration between the Vicon markers
and the camera is computed using a least-squares method [45].

2http://github.com/uzh-rpg/rpg svo
3http://borg.cc.gatech.edu

Fig. 6: Left: two images from the indoor trajectory dataset with tracked
features in green. Right: top view of the trajectory estimate produced by our
approach (blue) and 3D landmarks triangulated from the trajectory (green).
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Fig. 7: Comparison of the proposed approach versus the ASLAM al-
gorithm [9] and an implementation of the MSCKF filter [20]. Relative
errors are measured over different segments of the trajectory, of length
{10, 40, 90, 160, 250, 360}m, according to the odometric error metric in [46].
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Fig. 8: Processing-time per keyframe for the proposed VIN approach.

Fig. 7 compares the proposed system against the ASLAM
algorithm [9], and an implementation of the MSCKF fil-
ter [20]. Both these algorithms currently represent the state-
of-the-art in VIN, ASLAM for optimization-based approaches,
and MSCKF for filtering methods. We obtained the datasets as
well as the trajectories computed with ASLAM and MSCKF
from the authors of [9]. We use the relative error metrics
proposed in [46] to obtain error statistics. The metric eval-
uates the relative error by averaging the drift over trajectory
segments of different length ({10, 40, 90, 160, 250, 360}m in
Fig. 7). Our approach exhibits less drift than the state-of-
the-art, achieving 0.3m drift on average over 360m travelled

http://github.com/uzh-rpg/rpg_svo
 http://borg.cc.gatech.edu
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Fig. 9: Outdoor trajectory (length: 300m) around a building with identical start
and end point at coordinates (0, 0, 0). The end-to-end error of the proposed
approach is 1.0m. Google Tango accumulated 2.2m drift. The green dots are
the 3D points triangulated from our trajectory estimate.

distance; ASLAM and MSCKF accumulate an average error
of 0.7m. We observe significantly less drift in yaw direction
in the proposed approach while the error in pitch and and roll
direction is constant for all methods due to the observability
of the gravity direction.

Figure 8 illustrates the time required by the back-end to
compute the full MAP estimate, by running iSAM2 with 10
optimization iterations. The experiment was performed on a
standard laptop (Intel i7, 2.4 GHz). The average update time
for iSAM2 is 10ms. The peak corresponds to the start of the
experiment in which the camera was not moving. In this case
the number of tracked features becomes very large making
the back-end slightly slower. The SVO front-end requires
approximately 3ms to process a frame on the laptop while
the back-end runs in a parallel thread and optimizes only
keyframes. Although the processing times of ASLAM were
not reported, the approach is described as computationally
demanding [9]. ASLAM needs to repeat IMU integration at
every change of the linearization point, which we avoid by
using the preintegrated IMU measurements.

The second experiment is performed on an outdoor trajec-
tory, and compares the proposed approach against the Google
Tango Peanut sensor (mapper version 3.15), which is an
engineered VIN system. We rigidly attached the VI-Sensor to
a Tango device and walked around an office building. Fig. 9
depicts the trajectory estimates for our approach and Google
Tango. The trajectory starts and ends at the same location,
hence we can report the end-to-end error which is 1.5m for
the proposed approach and 2.2m for the Google Tango sensor.

The third experiment is the one in Fig. 1. The trajectory
goes across three floors of an office building and eventually
returns to the initial location on the ground floor. Also in this
case the proposed approach guarantees a very small end-to-end
error (0.5m), while Tango accumulates 1.4m error.

We remark that Tango and our system use different sensors,
hence the reported end-to-end errors only allow for a qualita-
tive comparison. However, the IMUs of both sensors exhibit
similar noise characteristics [47, 48] and the Tango camera
has a significantly larger field-of-view and better shutter speed
control than our sensor. Therefore, the comparison is still
valuable to assess the accuracy of the proposed approach.

The fourth experiment evaluates a specific aspect of our
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Fig. 10: Error committed when using the first-order approximation (36) instead
of repeating the integration, for different bias perturbations. Left: ∆R̃ij(b̄i +
δbi) error; Center: ∆ṽij(b̄i + δbi) error; Right: ∆p̃ij(b̄i + δbi) error.
Statistics are computed over 1000 Monte Carlo runs.

approach: the a-posteriori bias correction of Section V-C. To
evaluate the quality of the first-order approximation (36), we
performed the following Monte Carlo analysis. First, we com-
puted the preintegrated measurements ∆R̃ij(b̄i),∆ṽij(b̄i) and
∆p̃ij(b̄i) over 100 IMU measurements at a given bias esti-
mate b̄i. Then, we applied a perturbation δbi (in a random
direction with magnitude between 0.04 and 0.2) to both the
gyroscope and accelerometer bias. We repeated the integration
at b̄i+ δbi, and we obtained ∆R̃ij(b̄i+ δbi),∆ṽij(b̄i+ δbi)
and ∆p̃ij(b̄i + δbi). Finally, we compared the result of the
integration against the first-order correction in (36). Fig. 10
reports statistics of the errors in the preintegrated variables
between the re-integrated variables and the first-order correc-
tion, over 1000 Monte Carlo runs. The order of magnitude of
the errors suggests that the first-order approximation captures
very well the bias change, and can be safely used for relatively
large bias fluctuations.

A video demonstrating the execution of our approach for
the real experiments discussed in this section can be viewed
at https://youtu.be/CsJkci5lfco

IX. CONCLUSION

We propose a novel preintegration theory that provides a
grounded way to model a large number of IMU measurements
as a single motion constraint. Our proposal improves over
related works that perform integration in a global frame,
e.g., [8, 20], as we do not commit to a linearization point
during integration. Moreover, it leverages the seminal work
on preintegration [26], bringing to maturity the preintegration
and uncertainty propagation in SO(3). We also discuss how
to use the preintegrated IMU model in a VIN pipeline; we
adopt a structureless model for visual measurements which
avoids optimizing over 3D landmarks. Our VIN approach uses
iSAM2 to perform constant-time incremental smoothing.

An efficient implementation of our approach requires 10ms
to perform inference (back-end), and 3ms for feature tracking
(front-end). We provide comparisons against state-of-the-art
alternatives, including filtering and optimization-based tech-
niques. We release the source-code of the IMU preintegration
and the structurless vision factors in the GTSAM 4.0 optimiza-
tion toolbox [30] and provide additional theoretical derivations
and implementation details in the supplementary material [29].
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