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Abstract
The new LIUQE algorithm computes a real-time reconstitution of the plasma in TCV, which gives interesting
prospectives of tokamak control. Its computation relies on multiple linear regression. The study is introduced
with theoretical features on regression in LIUQE algorithm and error propagation. Covariance and correlation
matrices, as well as standard error values for parameters of regression are then computed on a TCV shot, allowing
to study the effects of weights and the propagation of errors in the algorithm. The analysis of results focuses on
improving the tuning of the algorithm: the optimal weights for plasma current and toroidal flux are determined,
and redundant weighting is highlighted. The propagation of errors in the algorithm confirms also that a two
basis function model is preferable to a three basis function model in the regression.

1 Introduction
1.1 Regression analysis
A few elements of notation for regression analysis are
described in annexes.

1.1.1 The LIUQE regression

The equations of MHD can be used to describe the
plasma equilibrium in the TCV. A few calculations [3]
in cylindrical coordinates lead from these equations to
the following result :

∆∗ψ = −2πµ0rjφ (1)

with the definitions of the operator and the current den-
sity:

∆∗ = r
∂

∂r

1
r

∂

∂r
+ ∂2

∂z2 (2)

jφ = 2π
(

dp
dψ + T

µ0r

dT
dψ

)
(3)

where p is the pressure. p and T are only functions of
ψ. The combination of 2 and 3 gives the Grad-Shafranov
equation at the core of the LIUQE algorithm:

∆∗ψ = −4π2µ0r

(
rp′ + TT ′

µ0r

)
(4)
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This equation is non-linear, and requires specific algo-
rithmic methods.

1.1.2 Weighting the parameters

Matrix system for regression The values of the set
of free parameters on the inner computational grid are
stored in a rectangular matrix:

Tyg = rνgy gg (ψ(ry, rz)) ∆r∆z (5)
With this, the expected measurements can be written in
matrix notation (cf [1], page 18, with the same notation):

measurements︷ ︸︸ ︷
ψf
Bm
Ia
Is
Ip
Φt

 = AdG ·

parameters︷ ︸︸ ︷
Ja
Js
ag
δz

 (6)

AdG =


Mfa Mfs Mfy ·Tyg ∂zfMfy · Iy
Bma Bms Bmy ·Tyg ∂zmBmy · Iy
1a 0 0 0
0 1s 0 0
0 0 Tpg 0
0 0 Ttg 0


where Iy = j

(n−1)
φ (ry, zy)∆r∆z; Tpg =

∑
y Tyg; and

1a is the identity matrix. Ja and Js are additionnal
free parameters corresponding to uncertainties on coil
currents measurements and vessel currents observer.

Introduction of weights This system is solved in a
least square sense, each equation being given a weight w...
inversely proportional to the associated measurement er-
ror. In order to improve the algorithm, the block struc-
ture of the matrix is used:

Yr =
[
wfψf
wmBm

]
Yi =

[
wpIp
wtΦt

]
Ye =

[
waIa
wsIs

]
Je =

[
Ja
Js

]
aj =

[
ag
δz

]
which gives a more compact expression (weighted version
of equation 6). AdGw is also the weighted expression of
AdG. This rewriting exhibits the linear regression at
the core of the algorithm:YrYe

Yi

 = AdGw ·

agJe
δz


or, written more simply:

Y = AdGw ·aG (7)

The aim of the study is to analyse the influence of the
weights choice on the regression, and the better value
that should be applied to it.

1.2 Error propagation analysis
As the measurements made on the TCV coils have un-
certainties, and as the LIUQE algorithm makes iterations
on those measurements, it is necessary to study the error
propagation.
In that purpose, the most common formula for the un-
certainty of a variable R depending on N parameters xi
is the following differential :

∆R(x1, . . . , xN ) =
∣∣∣∣ ∂R∂x1

∣∣∣∣∆x1 + · · ·+
∣∣∣∣ ∂R∂xN

∣∣∣∣∆xN
where the ∆ symbol denotes an uncertainty.
Nevertheless, this expression is incomplete as it is only
of order 1, and it does not take in account the correla-
tions between the parameters. These correlations could
increase or decrease the global uncertainty of the vari-
able R. Fortunately it is very easy to express thanks to
a correlation matrix (cf annexes). In that way, the un-
certainty formula can be rewritten at order 2 in terms of
variance and covariance (cf [4], page 10):

σ2
R = (∇R)T · ĉorrel(β̂) ·∇R (8)

σ2
R =

N∑
i=1

∣∣∣∣ ∂R∂xi
∣∣∣∣2 ĉorrel(β̂)ii

+
N∑

i,j=1

∣∣∣∣ ∂R∂xi · ∂R∂xj
∣∣∣∣ ĉorrel(β̂)ij︸ ︷︷ ︸

off-diagonal terms

As the correlation matrix is symmetric, this last expres-
sion can be simplified by summing only on the upper side
off to the diagonal :

σ2
R =

N∑
i=1

∣∣∣∣ ∂R∂xi
∣∣∣∣2 ĉorrel(β̂)ii

+ 2
N−1∑
i=1

N∑
j=2

∣∣∣∣ ∂R∂xi · ∂R∂xj
∣∣∣∣ ĉorrel(β̂)ij︸ ︷︷ ︸

correlation terms

(9)

The off-diagonal terms are those related to correlations
between parameters.

The exact formula for uncertainties is then:

∆R =
√
σ2
R (10)
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2 Derivation of error propagations
2.1 Expression of the diagnostic func-

tions
The two diagnostics from the TCV probes gives mea-
surements of jφ and p in the Grad-Shafranov equation
(cf annex A.5). Therefore the error propagation study
should begin from these quantities.

In LIUQE algorithm, the parametrization of the core
equation 3 is linear :

jφ =
∑
g

agr
νggg (ψ(r, z + δz)) (11)

with the notations :

ν1 = +1 g1 = (ψ − ψ0) for p′ (12)
ν2 = −1 g2 = (ψ − ψ0) for TT ′ (13)
ν3 = −1 g3 = (ψ − ψ0)(ψ − ψA) for TT ′ (14)

where ψ0 is the flux function value at the border of the
plasma, ψA is the value on the magnetic axis. The third
linear function 14 comes only if the chosen model uses
three basis functions.

The expression of the derivative function p′ is then
trivial (with a 2πr correction):

p′(ψ) = a1 · r+1 (ψ − ψ0)
2πr = a1

(ψ − ψ0)
2π

Consequently, in this parametrization, the pressure p
has the following expression (using the border condition
p = 0 at ψ = ψ0):

p(ψ) =
∫ ψ

ψ0

p′(φ)dφ = a1

2π

(
ψ2

2 − ψψ0 + ψ2
0

2

)
(15)

For jφ it is also obvious :

jφ(ψ) = a1
(ψ − ψ0)

2π + a2
(ψ − ψ0)

r

+ a3
(ψ − ψ0)(ψ − ψA)

r︸ ︷︷ ︸
only with 3 basis functions

(16)

2.2 Related variance
Applying equation 9 for jφ and p with respect to the pa-
rameters of the LIUQE regression gives the variances of
the error propagation.

The derivatives are:

∂jφ
∂a1

= (ψ − ψ0)
2π

∂jφ
∂a2

= (ψ − ψ0)
r

∂jφ
∂a3

= (ψ − ψ0)(ψ − ψA)
r

∂p

∂a1
= 1

2π

(
ψ2

2 − ψψ0 + ψ0
2

2

)
∂p

∂a2
= 0

∂p

∂a3
= 0

and the variances are:

σ2
jφ

=
(

(ψ − ψ0)
2π

)2
ĉovar(β̂)57,57

+
(

(ψ − ψ0)
r

)2
ĉovar(β̂)58,58

+
(

(ψ − ψ0)(ψ − ψA)
r

)2
ĉovar(β̂)59,59

+ 2
∣∣∣∣ (ψ − ψ0)

2π
(ψ − ψ0)

r

∣∣∣∣ ĉovar(β̂)57,58

+ 2
∣∣∣∣ (ψ − ψ0)

2π
(ψ − ψ0)(ψ − ψA)

r

∣∣∣∣ ĉovar(β̂)57,59

+ 2
∣∣∣∣ (ψ − ψ0)

r

(ψ − ψ0)(ψ − ψA)
r

∣∣∣∣ ĉovar(β̂)58,59 (17)

σ2
p =

(
1

2π

(
ψ2

2 − ψψ0 + ψ0
2

2

))2

ĉovar(β̂)57,57 (18)

Taking the square root of these variances finally gives
the errors.
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3 Results and discussion
The LIUQE algorithm has been used during the whole study exclusively on the TCV shot n◦ 43760, at a time of 1
second.

3.1 Weights for plasma current Ip and
toroidal flux Φt

The weights for plasma current Ip and toroidal flux Φt
are first chosen for the study as they are related to the
two diagnostic quantities in the Grad-Shafranov equation
: jφ and p′. wt influences mainly p, as jφ is influenced
by both wt and wp. Consequently the fine tuning of
those weights should have the stronger influence from
all weights on the algorithm regression, and that is the
reason why the study is focused on it.

The default values used in the LIUQE algorithm for
wp and wt are:

wp = (2400A)−1 = 4.1667 · 10−4A−1

wt = (1.27 · 10−4Wb)−1 = 7874Wb−1

The first part of the study consist into a research of
minimal values of χ2

min, covariances and variances in the
2-D space of weights {wt;wp}, using a meshgrid. Pre-
liminary results of the meshgrid with 2 basis functions
are presented in figures 1a, 1b, and 1c. The first conclu-
sion is that the variations of the studied quantities (min-
imal residual and variances) with respect to wp are much
weaker than along the wt axis (a precise evaluation shows
that it is of more than 8 orders of magnitude), and there-
fore not visible in this 3-D representation. Consequently,
the two weights will be studied one after another.

3.1.1 Influence of wt
Therefore, the influence of wt is studied at a fixed value
of 10−4A−1 for wp. Results are shown on figures 2, 3 and
4.

At fixed wp, it appears that the covariance between
parameters a1 and a2 tends towards zero when wt in-
creases. This means that the higher the wt, the lower
the correlations between these parameters.

3.1.2 Influence of wp
As said before, the influence of wp is extremely weak
compared to the one of wt. Results are shown on figures
5, 6 and 7.

Those graphs suggest that wt should be increased in
order to reduce the variance of parameters, and also the

correlation with the wt parameter. Nevertheless, as it
has a very weak influence, the improvement of the al-
gorithm regression shall focus on the other parameters,
especially wt.

3.2 Error propagation
The values of pressure and current from the magnetic
axis to the vessel are computed thanks to expressions
15, 16, and the equations of the subsection 2.2. The
results given with LIUQE algorithm on the TCV shot
#43760 are gathered in figure 8, for the two and three
basis function models.

The model with two basis functions provides good
results, as the standard error is 3.26% for the pressure
and less than 2.10% for the current. At the opposite, the
model with three basis functions is not trustworthy as
the standard error is at 11.51% for pressure, and reaches
values around 70% for current at some point of the axis.
Note that the standard error for pressure does not de-
pend on the radius as it is computed thanks to the square
root of equation 18.

3.3 Discussion
The weight study exhibits the importance of wt: it
should be increased in order to reduce the correlations
with wp. This study should also be systematized to the
other weights in order to determine the overall parame-
ters correlations.
The weak influence of wp is not surprising at the end,
as it is attached to the Ip plasma current calculation,
which depends on the integration of magnetic field on
the contour (cf [1], page 13):

Ip = Ipm ·Bm

The Bm fields are already weighted with wm. As the
plasma current computation takes information on all of
these fields, its weighting seems redundant. The algo-
rithm is quite too general in the case of TCV as this
equation is implicit, but it is a strength for adaptability
for other tokamaks.

Finally, the study of error propagation confirms that
the two basis function model is the most relevant for the
LIUQE algorithm, as noted in the previous report.
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(a) Surface of the minimal residual on a grid with weights wt and
wp, plotted with the surf Matlab function. The wt axis is log-
arithmic. The mean minimal residual value has been subtracted
from the values in order to exhibit the variations around this mean
value.
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(b) Surface of the variance of parameter a1 (from the corre-
lation matrix) on a grid with weights wt and wp, plotted with
the surf Matlab function. The wt axis is logarithmic.
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Figure 1: Graphs for the first 3D overview on the weights meshgrid.
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has been subtracted from the values in order to exhibit the variations around this mean value.
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(b) Error propagation for the current, with the 3 basis function
model.
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Figure 8: Graphs for error propagation study.
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4 Possible directions for further improvement and research
As the correlations between wt and other weights than wp have not been treated, the study of the other weights
in order to find the most impacting correlations would give the better choice of weights set in order to reduce the
unuseful correlations between the parameters.
The analysis of the algorithm regression could also be applied on several other TCV shots, in order to verify the
validity of the two basis function choice.
The propagation of errors from the current measurements to the basis function coefficient could also be studied
more precisely.

Until now, the LIUQE algorithm applied on TCV has been proved to be very general and adaptable, so it
should be very reliable on other tokamaks. The validity of the considerations on weights and error propagation
on TCV should be conserved when applied on these other tokamaks, as the core of the LIUQE algorithm (e.g.
Grad-Shafranov equation) remains.
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A Annexes
A.1 Basics of linear regression
Linear regression analysis is a collection of methods
whose aim is understanding relations between variables,
in a quite simple and very elegant way. The simple re-
gression assumes that two random variables (r.v.) Y and
X are linearly connected together with the relationship:

Y = β0 + β1X (19)

where β0 and β1 are the exact coefficients of the linear
equation. One need to add statistical error which can
arise from several sources:

Y = β0 + β1X + e (20)

For the i-th measurement, the r.v. will take the experi-
mental values yi, xi, and ei:

yi = β0 + β1xi + ei (21)

The equation 20 is supposed to represent the real phys-
ical correlation between Y and X, but it is obviously
false. Therefore, the main aim of the experimental data
treatment is to estimate the βj coefficients from a set of
measurements, obtaining a simple regression model:

Y = β̂0 + β̂1X + ê (22)

where β̂0 and β̂1 are the estimates of β0 and β1, and ê
is called the residual. The "hat" notation will be used
in the following to specify when a mathematical object
is an estimate. The method focuses on finding the best
estimates β̂0 and β̂1 minimizing the so called residual
sum of squares on the whole set of n measurements:

RSS(β̂0, β̂1) =
n∑
i=1

(yi − (β0 + β1xi))2 =
n∑
i=1

e2
i (23)

In the LIUQE case, the regression model has no con-
stant β0 coefficient, and is extended to multiple variables
(p parameters, or r.v.). It still remains linear with respect
to all of this new variables:

Y = β1X1 + β2X2 + β3X3 + . . .+ e (24)

Ŷ = β̂1X1 + β̂2X2 + β̂3X3 + . . .+ ê (25)

These equations are commonly expressed in matrix no-
tation for n measurements and p parameters:

Y = Xβ + e (26)

with the vectors and matrix:

Y =


y1
y2
...
yn

 e =


e1
e2
...
en

 (27)

X =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

...
...

xn1 xn2 . . . xnp

 β =


β1
β2
...
βp

 (28)

All vectors are written with bold symbols whereas scalar
values are written normally. One has to be aware thatX
is a n ∗ p-matrix and β a p-vector, whereas Y and e are
n-vectors. This notation is very useful for simplification
of calculus.

A.2 Minimization of the residual and
variance ellipsoids

The residual of a multiple linear regression can be com-
puted in matrix notation:

RSS(β) =
n∑
i=1

(yi − xi
Tβ)2 = (Y −Xβ)T (Y −Xβ)

(29)
For simplicity the residual will be denoted by χ2 :=
RSS(β).
The estimate of the vector of regression coefficients is
expressed by:

β̂ = (XTX)−1(XTY ) (30)

This estimate is the vector that minimizes the residual.
Another useful expression is easily derivable from the last
two result, isolating the minimal value of χ2:

χ2 = χ2
min + (β − β̂)T (XTX)(β − β̂) (31)

with
χ2
min = (Y −Xβ̂)T (Y −Xβ̂) (32)

The second term on the right of equation 31 correspond
to the parametrization of an ellipsoid centered on the
point of coordinates β̂, in the space of coefficients {βi}
of dimension p. In order to exhibit the equation of an
ellipsoid, a singular value decomposition can be applied,
leading to a diagonalisation of the XTX matrix:

χ2 = χ2
min + (β − β̂)T (UTSU)(β − β̂) (33)
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S is the diagonal matrix and U is a unitary matrix.
This equation can be understood with the following: the
columns of U give the axes of the ellipsoid in the coef-
ficient space. Those vectors (noted U i for the i-th col-
umn) constitutes an orthonormal basis as U is unitary.
The eigenvalues on the diagonal of S give the length of
the semi-axes of the ellipsoid.

A.3 Variance and correlations
In matrix notation, the correlation matrix for the β̂i pa-
rameters can be expressed as follows:

correl(β̂) = σ2(XTX)−1

and its estimation:

ĉorrel(β̂) = σ̂2(XTX)−1 (34)

with the global estimator of variance (where p is the num-
ber of parameters in the model):

σ̂2 = χ2
min

n− p
(35)

This correlation matrix is normalizable in a covariance
matrix in order to show clearly the correlations between
parameters, avoiding the problem of different dimensions
and order of magnitude. The normalization consists into
dividing a correlation term between two parameters by
the corresponding diagonal variances:

(
ĉovar(β̂)

)
ij

:=

(
ĉorrel(β̂)

)
ij√(

ĉorrel(β̂)
)
ii
·
(
ĉorrel(β̂)

)
jj

(36)

A.4 Relationship between the covariance
matrix and the ellipsoids

It is possible to show that the correlation matrix diag-
onal gives the exact same maximal values of standard
error as the projection of the standard error ellipsoid on
the parameters axes, in the case χ = 2χ2

min.
Noting that the points of the ellipsoid surface with max-
imal standard errors with regard to a parameter axis are
those where the gradient is parallel to the parameter axis,
one obtains:

∇χ2 = 2hiêi (37)
where êi is the unit vector of the parameter axis and 2hi
is an arbitrary coefficient with convenient notation.
From equation 31 in the case χ = 2χ2

min, the following
comes:

∇χ2 = 2(XTX)(β − β̂) (38)

i.e. the vector β − β̂ is known:

β − β̂ = hi(XTX)−1êi (39)

This vectors goes from the center of the ellipsoid at β̂ to
the point β where the gradient is null. Replacing it in
equation 31, one gets:

χ2 = 2χ2
min = χ2

min + h2
i ê
T
i (XTX)−1êi

or, after the writing of the products with êi vectors:

χ2
min = h2

i

∑
kl

δik(XTX)−1
kl δli = h2

i (XTX)−1
ii

So the coefficient has now the expression:

hi = χmin√
(XTX)−1

ii

(40)

The refreshment of equation 39 gives:

β − β̂ = χmin√
(XTX)−1

ii

(XTX)−1êi (41)

In order to get the maximal standard error for the i-
th parameter, one has to compute the corresponding
component of equation 41. In the simplest case where
n− p = 1, we get:

βi − β̂i = χmin√
(XTX)−1

ii

∑
k

(XTX)−1
ik δki

= χmin√
(XTX)−1

ii

(XTX)−1
ii

=
√

(XTX)−1
ii χmin

=
√
ĉorrel(β̂)ii

Consequently, when χ = 2χ2
min, the correlation matrix

diagonal gives the exact same maximal values of standard
error as the projection of the standard error ellipsoid on
the parameters axes.

A.5 LIUQE regression loop
LIUQE algorithme relies on this single linear regression:

aG = (AdG)−1Y (42)

All the equations from the previous subsection
about linear regression analysis are then applicable with
AdG := X and aG := β.

The complete algorithm loop is summarized on figure
9.
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Figure 9: LIUQE algorithm loop.
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