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Abstract
High-level languages allow programmers to express data structures and algorithms that ab-

stract over the type of data they handle. This improves code reuse and makes it possible to

develop general-purpose libraries. Yet, data abstractions slow down program execution, as

they require low-level indirection. In this thesis we explore three compile-time approaches

that leverage type systems to reduce the cost of data abstractions, thus improving program

performance.

In the first part of the thesis we present miniboxing, a compile-time transformation that

replaces generic classes by more efficient variants, optimized to handle primitive types. These

variants use the miniboxed data encoding, producing speedups of up to 20× compared to

generic classes. The miniboxing transformation is the main result of this thesis and motivates

the other techniques.

Generalizing miniboxing, we show the Late Data Layout (LDL) mechanism, which uses the

type system to guide performance-oriented program rewritings. It can be instantiated to

perform a host of transformations, such as miniboxing generics, inlining value classes and un-

boxing primitive types. The LDL mechanism has many desirable properties, such as provable

correctness in handling different data representations, reduced number of conversions and

built-in support for the object-oriented paradigm.

Finally, we show Data-centric Metaprogramming, a technique that allows programmers to

go beyond standard compiler optimizations by defining custom representations to be used

for their data. These representations are then automatically introduced by the compiler

when translating programs. This technique, similar in spirit to metaprogramming, opens

new directions in programmer-driven optimizations and shows encouraging results, with

speedups of up to 25×. Under the hood, Data-centric Metaprogramming uses the Late Data

Layout mechanism.

Key words: Data Representation; Transformation; Object-Oriented; Static Type System; Perfor-

mance; Generics; Specialization; Java; Java Virtual Machine; Bytecode; Semantics.
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Résumé

Les langages de programmation haut niveau permettent aux programmeurs de développer des

structures de données et algorithmes en faisant abstraction du type de données qu’ils gèrent.

Cela permet la réutilisation du code et le développement des bibliothèques d’usage général.

Mais l’abstraction de données a pourtant un coût sur la performance, en raison de plusieurs

indirections bas-niveau que cette dernière introduit. Cette thèse explore trois techniques

de compilation qui utilisent les systèmes de typage afin d’améliorer les performances d’un

programme en réduisant le coût des abstractions de données.

Dans la première partie de la thèse, nous présentons le “miniboxing”, une transformation qui

remplace des classes génériques par des variantes optimisées pour gérer les types primitifs.

Ces variantes utilisent un encodage “miniboxé” des données, produisant des programmes qui

peuvent être jusqu’à 20× plus rapides. Le “miniboxing” est le résultat principal de la thèse et

motive les autres techniques.

En généralisant le miniboxing, nous introduisons le mécanisme de “Late Data Layout” (LDL),

qui utilise le système de typage pour guider les transformations. Il peut être utilisé pour effec-

tuer une multitude de optimisations, tels que le miniboxing, l’”inlining” des “value classes”, et

l’élimination du “boxing” des types primitifs. Le mécanisme de LDL a de nombreuses proprié-

tés souhaitables : nous prouvons que les différentes manipulations de données sont correctes,

que le nombre de conversions entre différents formats est minimisé, et nous intégrons cette

transformation dans les langages orienté objet.

Finalement, nous introduisons la métaprogrammation centrée sur les données (Data-centric

Metaprogramming), une technique qui permet aux programmeurs d’aller au-delà des opti-

misations standard du compilateur, et de définir des représentations sur mesure pour leur

données. Ces représentations sont ensuite automatiquement utilisées par le compilateur

lors de la transformation d’un programme. Cette technique, dans le même esprit que la

métaprogrammation, ouvre de nouvelles directions dans les optimisations dirigées par le

programmeur et montre des résultats encourageants, produisant des programmes jusqu’à

25× plus rapides. A la base, la “Data-centric Metaprogramming” utilise le mécanisme “Late

Data Layout”.

Mots clefs :

Représentation des données ; Transformation ; Programmation orientée objet ; Systèmes de ty-

page statiques ; Performance ; Generics ; Spécialisation ; Java ; Java Virtual Machine ; Bytecode ;

Sémantique.
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1 Introduction

A computer’s processor is an amazing device: it executes millions of instructions each second,

at a speed difficult to comprehend. Yet each instruction is very simple and operates on precise

data types: read 64 bits from memory address X into register R1, subtract R1 from R2 using

unsigned 64-bit integer semantics, etc. For the processor, data is made up of bits and each

instruction needs to know the exact size and semantics of its operands, information that allows

the processor to decide which logic gates to activate.

On the opposite side of the spectrum, people think in terms of very high-level goals, such as

summing up the elements contained in a list. In this high-level goal, there is no mention of

what type of elements are contained in the list (integers, floating-point numbers, something

else...) or the size and semantics of the result. There are two steps to bridge the gap between

a high-level goal and the precise low-level machine instructions necessary to implement it:

first, programming languages allow people to express their intent and second, compilers and

interpreters translate this intent, written in the source code, into precise low-level machine

instructions.

High-level languages such as Python, Scala, Ruby and JavaScript gloss over many implemen-

tation details to allow programmers to directly express high-level goals. For example, the

following code written in Python sums up a list of numbers:

1 >>> list = [1, 2, 3, 4, 5, 6.0]

2 >>> print sum(list)

3 21.0

Notice the non-uniform nature of the list: the first five elements are integers while the last is

a floating-point number. To allow such code to run, the elements in the list are stored using

a uniform representation: each element is a heap-allocated object, with type information

attached. Then, to execute the sum operation, at each step the next element is inspected

and the correct operation is chosen based on its type. In this case, the first five additions use

integer semantics, followed by a floating-point number addition.
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Chapter 1. Introduction

Flexibility and abstraction ease programming, but they come at the cost of performance.

High-level constructs require long sequences of machine instructions, where data is stored

inside heap-allocated objects and operations are executed through indirect calls. These

indirections, meant to allow language constructs to handle different use cases are also an

important source of slowdowns: values require allocating heap memory while indirect code

behaves in unpredictable ways, degrading processor-level optimizations such as caching,

prefetching and branch prediction, all of which expect direct and uniform code patterns.

Most of the flexibility provided at the language level remains unused in real programs. For

example, in practice, it is rather uncommon for a program to store both integers and floating-

point numbers in the same list. But, if the language allows it, the low-level code must be

prepared to handle it, through indirections.

In statically typed programming languages, generics allow programmers to express the fact

that all elements of a list should have the same type. Then, the compiler can check (or infer) the

type of elements in the list. In our next example, written in the Scala programming language

[96], the compiler decides that the wider 64-bit floating-point type can express all numbers in

the list without loss of precision, so it infers the type of list to be List[Double]:

1 scala> val list = List(1, 2, 3, 4, 5, 6.0)

2 list: List[Double] = List(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Therefore, the integer values are converted to double-precision (64 bit) floating-point numbers

so the list stores only one type of elements1. This restriction, known at compile-time, has the

potential to bring important speed improvements, for two reasons: (1) the elements in the

list all have the same type and (2) this type is known during compilation. This potential for

improvement also extends to the sum operation:

1 scala> println(list.sum) // static knowledge: this operation is summing

2 21.0 // up double-precision floating-point numbers

Using the type system to restrict run-time behavior opens the door to using more efficient

data representations and faster operations. Yet, the object-oriented model poses unique

challenges, which prevent standard compiler optimizations. For example, in the general case,

the sum operation cannot be inlined and adapted for 64-bit floating-point numbers, as it

may be overridden in a subclass of List. Therefore, in many cases, object-oriented language

compilers forgo the optimization opportunities uncovered by static type systems.

This thesis describes three compile-time approaches that leverage the type system to optimize

programs for the data they handle. They were designed from the ground up to support for

object-oriented patterns and separate compilation. Together, the three approaches are used

in the artifact of the thesis, the miniboxing Scala compiler plugin.

1If the programmer explicitly wants to store the two types of elements, this can be expressed using the Any
top-level type: List[Any](1, 2, 3, 4, 5, 6.0)
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1.1. Thesis Outline

1.1 Thesis Outline

The main technical artifact of the thesis is a generics compilation scheme called miniboxing,

implemented as a plugin to the Scala compiler, which produces Java Virtual Machine (JVM)

bytecode. Miniboxing derives compatible drop-in replacements of generic classes, optimized

for primitive types. Then, it automatically introduces these replacements into the code based

on type information, improving performance by factors ranging between 1.1 and 20×. In this

section we explain how the different chapters of the thesis work together to cover all aspects

of the miniboxing transformation.

1.1.1 The Miniboxing Data Representation (Chapter 2)

Figure 1.1 – Miniboxing Logo

Genericity, also known as parametric polymorphism in func-

tional languages, is a very powerful tool for abstraction: in a

statically typed language, it allows defining data structures

and algorithms that operate identically for different types of

data. For example, the standard linked list class in the Scala

library is parameterized on type of its elements: List[T]

signals that all elements in the list have type T. Yet, regard-

less of the instantiation of T, the list preserves the same con-

tract and asymptotic behavior for all its operations. Using

generics increases safety, since type-correctness is checked

during compilation and promotes code reuse, as the same linked list class can be employed

in different contexts, for different types of elements: 32-bit integers, floating-point numbers,

strings or any other objects or data structures.

However, under the hood, the Java Virtual Machine (JVM) execution platform only supports

defining non-generic (monomorphic) classes. Therefore, the generic information in the pro-

gramming language must somehow be projected onto the less expressive bytecode, producing

monomorphic classes. The default solution taken by both the Java and Scala compilers is to

use a transformation called erasure [44], which compiles a generic class to a single bytecode

entity: a monomorphic class where the generic data is stored using references.

Yet, there is a fundamental tension between the different sizes and semantics of the incoming

data and the fact that there is a single class which must handle everything. The technical

solution taken is to encode primitive types, such as booleans, bytes, integers and floating-

point numbers into heap objects, so they can be handled similarly to strings, data structures

and other programmer-defined objects. But this operation, known as boxing, is inefficient,

introducing indirections and inflating the memory footprint.

The first solution to improve generics in Scala, dubbed specialization, was implemented

by Iulian Dragos [53, 54] in 2009: instead of compiling the list into a single bytecode class,

specialization creates multiple variants, each adapted for a primitive type. Despite the great
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speedups brought by this transformation, an important problem soon became apparent:

with 10 variants per type parameter, covering the entire Cartesian product of primitives for

two or three type parameters produces too many variants. For example, the Map class in the

Scala library takes two type parameters, so specialization produces as many as 102 variants.

Similarly, fully specializing classes such as Tuple3 and Function2, both of which have three

type parameters, results in 103 variants. Since all these specialized variants become part of the

bytecode, the specialization transformation cannot be used extensively in the Scala standard

library, which needs to be keep at a reasonable size.

We begin this thesis where specialization left off: addressing the large number of specialized

variants produced when compiling generic classes. Chapter 2 presents the miniboxing data

encoding, which uses 64-bit long integers to encode primitive values2, regardless of their type.

Using this data representation, instead of generating ten variants per type parameter, we only

generate two3, reducing the amount of bytecode produced. For example, with the miniboxing

data encoding, Map has just four variants while Tuple3 and Function2 each have eight.

Figure 1.2 – Miniboxing Compatible Transformation

Figure 1.2 shows the two specialized variants of class List[T], automatically generated by the

miniboxing transformation. They act as compatible drop-in replacements for the List[T]

class, and are automatically introduced by rewriting the new operator. However, when deriving

the code for the List_M[T] class there’s a different type of data representation transformation

taking place: values of type T, previously represented as heap objects, are now transformed

into 64-bit long integers. These two data representations are not compatible, so, when a value

passes from one representation to another the compiler has to introduce conversions.

For the initial prototype of miniboxing, the transformation from T to long integer was done

using the simple and conservative syntax-based transformation described in Section 2.4. But

the problems in scaling this transformation to all the source code patterns expressible in Scala

created the need for a better, more principled transformation mechanism. This is how the

Late Data Layout mechanism came to be.

2We extend the term “value” to mean either a final variable (“value” in the Scala terminology), a variable, an

argument or the return of a method. This notation is used consistently throughout the thesis. For immediate

constants such as the integer 5 we use the term “constant” or “constant value”.
3In the latest implementation of the miniboxing compiler plugin, version 0.4, the miniboxing transformation

generates three variants instead of two, in order to avoid negative interactions with the HotSpot Just-in-time

compiler in the Oracle Java Virtual Machine. More information is available on the miniboxing plugin website [16].
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1.1.2 Late Data Layout (Chapter 3)

Figure 1.3 – LDL Logo

Late Data Layout (LDL) is a general mechanism for transforming

the data representation when the target and its replacement are

incompatible. To preserve program consistency, the compiler

needs to automatically introduce conversions when values are

passed across representations.

The LDL mechanism is inspired by the transformations performed

in the Scala compiler backend: The built-in scala.Int type cor-

responds to a 32-bit integer, but it abstracts over the boxed and un-

boxed representations, exposing fewer decisions to programmers.

Then, in the Scala compiler backend, scala.Int is transformed

to either an unboxed integer (int in Java and JVM bytecode) or, as dictated by interactions

with other language features, to a boxed one (java.lang.Integer). Then, if a value in the

unboxed representation is passed to a method expecting the boxed representation or vice-

versa, the compiler automatically introduces conversions. This is done without involving the

programmer, who only sees the scala.Int high-level type, not its two representations.

Miniboxing and unboxing primitive types in the Scala backend are both instances of LDL

transformations. The common pattern handled by LDL is having a high-level type (the type

parameter T for miniboxing or scala.Int) that can be represented in two or more ways.

Then, based on the LDL mechanism, the compiler transforms the high-level type into its

representations, introducing conversions each time a value is passed across different (and

thus incompatible) representations. The LDL mechanism is backed by the type system, which

means it is guaranteed to correctly introduce conversions where necessary. Furthermore,

LDL allows individually picking the representation of each value in the program, allowing

fine-grained control over the resulting lower-level code. Finally, special attention was paid to

object-oriented code patterns, such as dynamic dispatch, subtyping and interactions with

generics, all of which are correctly handled by LDL.

There are three important properties that stem from the current design of LDL:

• Selectivity in the choice of data representation, at the level of individual value;

• Consistency in terms of passing values between representations;

• Coercion push-down, which reduces the number of coercions executed at runtime

Miniboxing makes full use of the three properties, allowing it to offset the code transformation

to LDL and focus on the compatible class duplication and the code rewriting.

LDL scales beyond miniboxing and unboxing Scala primitive types: it can also drive value

class inlining [66, 110, 111] and provide the compiler support necessary for multi-stage pro-

gramming [91, 107]. The common trait across these transformations is that the high-level type

and its representations are fixed inside the compiler. But this needs not be the case...
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1.1.3 Data-Centric Metaprogramming (Chapter 4)

Figure 1.4 – Data-Centric
Metaprogramming Logo

Data-centric Metaprogramming is an extension of LDL that makes

data representation transformations accessible to programmers.

Through entities called transformation description objects, pro-

grammers can target values of specific (high-level) types and safely

replace their data representations by custom, more efficient alter-

natives. Any type in the language can be targeted, from simple

classes all the way to generic nested data structures. The alterna-

tive representation is written by the programmer, and it can be

based on run-time profiling information or knowledge of how the

data is used. Unlike LDL, Data-centric Metaprogramming needs

to be explicitly triggered by the compiler. To do so, programmers

enclose anything from expressions to entire class definitions inside transformation scopes,

where the compiler automatically introduces the custom, improved representation.

The thesis describes four cases of using data-centric metaprogramming to improve perfor-

mance:

• Improving locality by splitting arrays of records into records of arrays;

• Transforming eager collections into lazy collections, achieving deforestation [144];

• Replacing variable-width integers by more efficient fixed-width alternatives;

• Specializing a class from a library, which was previously impossible without changing

the source code for the class.

As expected, programmers do have the manual alternative: refactoring their code by hand

instead of using data-centric metaprogramming. Yet, the cost of doing so in large code

bases quickly becomes prohibitive and, lacking clear benchmarks, there is no guarantee the

refactoring will pay off. Instead, data-centric metaprogramming allows writing idiomatic code

which is automatically transformed by the compiler, based on the transformation definitions.

Additionally, being able to experiment with the transformation description makes it possible

to quickly prototype and benchmark different transformations.

What makes this extension unique is that it allows programmers to improve the data rep-

resentation based on their own usage patterns, instead of limiting them to a fixed set of

predefined compiler optimizations, as LDL does. This custom nature brings our approach

close to metaprogramming. Yet, unlike metaprogramming, where the abstract syntax trees

of the program can be manipulated directly, potentially breaking invariants, data-centric

metaprogramming only allows a limited and well-behaved subset of transformations that offer

correctness guarantees in terms of preserving the object-oriented aspects of the language.

To complete the story, the data-centric metaprogramming approach was actually motivated

and used by the miniboxing transformation, in order to efficiently handle the functional

aspects of the Scala language. This is explained in the next part.
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1.1.4 Scaling Miniboxing To Scala (Chapter 5)

The last chapter of the thesis presents the technical challenges of scaling the miniboxing

transformation to the entire Scala language, with problems such as interoperating with erased

and specialized generics and efficient construction and access for core language constructs,

such as tuples, functions, arrays and type classes.

Figure 1.5 – Miniboxing
Component Puzzle

In particular, the most interesting part is how a data-centric

metaprogramming transformation is used to introduce a better

function construct, one that can be called directly from miniboxed

code. The function transformation was initially tailored for in the

miniboxing plugin but we later separated it into the data-centric

metaprogramming project. This shows how the three techniques

(miniboxing, Late Data Layout and Data-centric Metaprogram-

ming) have been developed together throughout their existence,

with the miniboxing plugin being the technical artifact and Late

Data Layout being the underlying transformation.

The next section describes the layers involved in compiling and executing Scala programs and

how they are impacted by the miniboxing transformation.

1.2 Execution Pipeline

Figure 1.6 – Scala Stack

This thesis has been developed in the context of the

Scala programming language with the Java Virtual

Machine (JVM) backend, a fact that influences the

design decisions in all the techniques presented. Fig-

ure 1.6 shows the simplified stack, with the additions

shown in darker gray. The components are:

The Scala source code is the target of the data repre-

sentation transformations. At this level, the transfor-

mations should have a very limited footprint, ideally

consisting only of annotations. As we will see later,

the act of marking a class or method as miniboxed or

marking a scope as transformed must be persisted at

the source level, to allow binary compatibility. Since

we expect existing code to be optimized with the tech-

niques presented in the thesis, we avoid any change

to the language and restrict the addition of APIs to

what is strictly necessary to improve performance.
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The compiler is where most of the changes changes occur. The plug-in architecture allows

new phases to be injected in the compilation pipeline and existing phases to be skipped. In

principle, this allows us to have complete control over the compilation process, from parsing to

emitting the low-level code. This would allow us to emit any output desired, such as JavaScript

[21] or even LLVM. However, we decided to continue targeting standard JVM bytecode, since

this is the platform where Scala has the most traction. Aside from emitting bytecode, the Scala

compiler persists high-level signatures in the class file so they can be read back in the separate

compilation scenario. We use this feature to record data representation transformations.

The runtime/library layer can include additional runtime support specific to the data rep-

resentation transformation used. Still, the calls to the runtime support should not be made

directly by the programmer but should be introduced automatically by the compiler, based on

the source-level annotations.

We assume that both the Scala library and the Java runtime support remain unmodified.

Theoretically, the Scala library could be compiled using miniboxing, but for technical and

policy reasons, we chose to keep miniboxing as a separate compiler plugin. One of the

consequences, seen in Chapter 5, is that miniboxing includes optimized implementations of

some standard library constructs such as functional interfaces, arrays and type classes.

The Java virtual machine layer receives standard bytecode and is assumed to have a just-in-

time (JIT) compiler that performs certain optimizations, such as inlining, loop unswitching

and dead code elimination. These are standard optimizations that can be expected of any

modern virtual machine. Chapter 2 explains exactly how these optimizations impact the

performance of miniboxed code.

The layers below, namely the operating system and hardware are abstracted by the virtual

machine layer, which offers a uniform API in the runtime/library layer. We are not directly

concerned by this layer, although we assume certain common features, such as caching and

branch prediction.

The next section describes the high-level goals of the techniques presented.

1.3 High-level Goals

Most changes in the execution pipeline occur at the compilation level, meaning the transfor-

mation techniques presented in the thesis need to handle the set of features supported by

Scala. It is nevertheless useful to sketch out the high-level goals and analyze their alternatives,

for completeness.
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1.3.1 Implicit Representation Choice

The first design goal in both the miniboxing and data-centric metaprogramming projects is to

avoid directly exposing representations to the programmer, instead only offering a high-level

concept type. This stems from the desire to reduce the number of decisions a programmer

needs to make, assuming this will boost productivity4. However, the opposite choice is equally

valid: C++ aims to maintain a one to one relation between the language syntax and the low-

level machine code. This means that a computationally expensive operation will require a

syntactically more verbose piece of code at the source level. Either approach has its merits:

one tries to reduce the decisions while the other improves predictability.

Chapter 5 shows how performance advisories can be used to counter the unpredictable nature

of using high-level concepts: since the compiler explicitly introduces expensive operations

during LDL transformations, it can also warn the programmer, explaining where a slowdown

is likely to occur and why. These warnings, coupled with actionable advice on avoiding each

slowdown can help programmers improve performance even without a strong understanding

of the code base. Section 5.5 shows such an example and goes on to evaluate performance

advisories.

1.3.2 Compile-time vs Refactoring-time

Both miniboxing and data-centric metaprogramming could equally be seen as source to

source transformations. The miniboxing transformations, such as creating class variants and

using them where possible could be persisted in the source code. Similarly, the data-centric

metaprogramming transformations can also be done by programmers directly on the source

code. So a natural question is “Why not have miniboxing and data-centric metaprogramming

do source to source transformations, like a refactoring tool would”? The answer is: “Doing

so would lower the abstraction level in the code, forcing the programmer to make more

choices (e.g. which variant of the class should I instantiate here?) and making the code more

verbose and difficult to follow”. Therefore, we prefer to have high-level code as input and data

representation transformations in the compiler pipeline.

1.3.3 Object Oriented Paradigm

Since the work was done in Scala, we assume object orientation as a given. In fact, the

object oriented paradigm has the merit of being very close to the natural thought process,

specifically to the genus/differentia kind of intensional definitions we use in daily life: a Cat is

an Animal that meows, the Dog is an Animal that barks. However, it is exactly this aspect that

poses the most challenges: the genus/differentia definitions force the last-moment binding

of method implementations. In technical terms, dynamic dispatch or virtual calls decide

the implementation (e.g. the noise made by an animal) to be decided at just before the call.

4Unfortunately we do not currently have rigorous empirical evidence for this assumption.
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Indeed, a big part of the data-centric metaprogramming extension to LDL is dedicated to

supporting and emulating dynamic dispatch and to preserving the overriding relationships in

the presence of signature changes. These problems would not have occurred in a functional

language built on the type classes paradigm.

1.3.4 Side Effects

Another challenge is posed by the imperative aspects in Scala: Assuming a managed heap

and ignoring OutOfMemory errors, the primitive boxing and unboxing operations can be

considered side-effect free. Yet, allowing the programmer to specify new data representation

transformations, with custom box/unbox conversions, exposes the risk of affecting semantics.

Indeed, this is the subject of Sections 3.4.1 and 4.3.1, that explain which conditions must be

met for a transformation to preserve semantics. On the other hand, the evaluation in Section

4.5 clearly shows that slightly bending semantics, in a controlled manner, can actually bring

significant performance benefits.

1.3.5 Managed Heap

In the transformations we assume a managed heap. Neither miniboxing nor data-centric

metaprogramming would work with manual deallocation, since coercions allocate heap

objects. It may seem like the coercions that “unbox” could be used to free the allocated

memory, but, in practice, there is no guarantee that the object being unboxed is not aliased

somewhere else. We think that the techniques shown in this thesis would work on a region-

based [133] memory management system as well, although we have not tested this.

1.3.6 Reflection

Depending on the level where reflection is implemented, data representation transformations

may or may not be exposed. Scala’s own reflection uses types persisted before data representa-

tion transformations take place, so the miniboxing and data-centric metaprogramming are

not exposed. The Java reflection, on the other hand, is implemented at the bytecode level, so it

exposes any data representation transformations that occured. The three ways a program can

become aware of the data representation transformations it was subjected to are: (1) Querying

Java reflection, (2) Inspecting stack traces and (3) Using indentity-based comparisons for

value-type objects.

1.3.7 Compile-Time Transformation

The transformations we describe in the thesis take place at compile-time. The implications are

that transformations are permanent and that they make their way into the emitted bytecode.

Other alternatives include load-time transformations, such as the .NET class specialization

10
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[76] and run-time transformations, such as the ones done by Mozilla’s [57] and Google’s virtual

machines for JavaScript, the PyPy virtual machine for Python [41] and the Truffle interpreter

framework [147].

Load-time data representation transformations have the merit of avoiding the extra low-level

code emitted by their compile-time counterparts. Yet this is done at the expense of a one-time

overhead when a class is loaded. We have experimented with load-time transformations

and the conclusion was that, although in theory it is a one-time overhead, avoiding per-

instantiation cost requires rather complex machinery. We present this in Section 2.6.

Run-time data representation transformations have the advantage of being able to speculate

on the runtime properties of the data manipulated by the program. This allows them to opti-

mistically rewrite the program during just-in-time compilation, while also having the option

of undoing a rewrite that proves too optimistic. Run-time data representation transformations

are critical for dynamic language virtual machines, where types are not present to limit the

possible run-time behaviors and only profiling can uncover optimization opportunities.

1.3.8 Open World Assumption and Separate Compilation

The open world assumption takes a central position in the work presented in this thesis: new

classes may be loaded into the system at any given time. Aside from the open world assump-

tion, all three approaches presented support separate compilation, allowing transformations

to compose across compilation runs. We discuss this requiremnt in Section 4.3.3. A closed

world approach, despite its drawbacks, would allow much more aggressive optimizations,

possibly at the expense of more costly analyses.

1.3.9 Binary Compatibility

The act of changing the data representation is, by definition, binary incompatible, since it

modifies method signatures. This means that updating the data representation in a class

or method requires recompiling all its users, so they can also adapt to the transformation.

We propose a relaxed binary compatibility guarantee: as long as the data representation

transformation is not changed, clients compiled before are binary compatible.

This requires the data representation transformations to be persisted at the source level,

through the use of annotations. For example, the miniboxing transformation for a class is

triggered by the @miniboxed annotation, not by the usage of that class. Should this not be

the case, the decision whether to minibox a generic class would be taken based on the usages

already compiled or currently compiling along with the class. However, this would break even

the relaxed binary compatibility guarantee, as compiling with different classes visible would

influence how the class is transformed, rendering other compiled clients binary incompatible.
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Chapter 5 describes how the miniboxing plugin generates performance advisories when en-

countering clients that would benefit from miniboxing a class. However, the act of annotating

type parameters is still done by the programmer and is persisted in the source code.

1.4 Contributions

The thesis makes the following contributions:

• It presents the miniboxing generics compilation scheme with (1) its data encoding, (2)

its solution to offering compatible drop-in versions of classes and (3) its approaches for

interoperating with other generics compilation schemes (Chapters 2 and 5);

• It explains Late Data Layout (LDL), a general mechanism for data representation trans-

formations (Chapter 3);

• It extends LDL into the Data-centric Metaprogramming approach, which makes data

representation transformations directly accessible to programmers (Chapter 4).

1.5 Publications

The thesis is based on four prior publications:

• Chapter 2 is based on “Miniboxing: Improving the Speed to Code Size Tradeoff in

Parametric Polymorphism Translations” (OOPSLA ’13) by Vlad Ureche, Cristian Talau

and Martin Odersky [138];

• Chapter 3 is based on “Late Data Layout: Unifying Data Representation Transformations”

(OOPSLA ’14) by Vlad Ureche, Eugene Burmako and Martin Odersky [139];

• Chapter 4 is based on “Automating Ad hoc Data Representation Transformations” (OOP-

SLA ’15) by Vlad Ureche, Aggelos Biboudis, Yannis Smaragdakis and Martin Odersky

[140];

• Chapter 2 is based on “Improving the Interoperation between Generics Translations”

(PPPJ ’15) by Vlad Ureche, Milos Stojanovic, Romain Beguet, Nicolas Stucki and Martin

Odersky [141].
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The papers are used in the thesis with the co-authors’ permission.

The implementation artifacts for the first three papers have been checked

by the OOPSLA Artifact Evaluation Committee and have received the seal of

quality. The PPPJ conference does not offer a similar distinction. The plugin

implementations are openly available: [7, 12, 13, 15, 16].
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2 Miniboxing

2.1 Introduction

Parametric polymorphism allows programmers to describe algorithms and data structures

irrespective of the data they operate on. This enables code reuse and type safety. For the

programmer, generic code, which uses parametric polymorphism, exposes a uniform and

type safe interface that can be reused in different contexts, while offering the same behavior

and guarantees. This increases productivity and improves code quality. Modern programming

languages offer generic collections, such as linked lists, array buffers or maps as part of their

standard libraries.

But despite the uniformity exposed to programmers, the lower level translation of generic code

struggles with fundamentally non-uniform data. To illustrate the problem, we can analyze the

contains method of a linked list parameterized on the element type, T, written in the Scala

programming language:

1 def contains(element: T): Boolean = ...

When translating the contains method to lower level code, such as assembly or bytecode

targeting a virtual machine, a compiler needs to know the exact type of the parameter, so it

can be correctly retrieved from the stack, registers or read from memory. But since the list is

generic, the type parameter T can have different bindings, depending on the context, ranging

from a byte to a floating point number or a pointer to a heap object, each with different sizes

and semantics. So the compiler needs to bridge the gap between the uniform interface and

the non-uniform low level implementation.

Two main approaches to compiling generic code are in use today: heterogeneous and homo-

geneous. Heterogeneous translation duplicates and adapts the body of a method for each

possible type of the incoming argument, thus producing new code for each type used. On

the other hand, homogeneous translation, typically done with erasure, generates a single

method but requires data to have a common representation, irrespective of its type. This
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common representation is usually chosen to be a heap object passed by reference, which leads

to indirect access to values and wasteful data representation. This, in turn, slows down the

program execution and increases heap requirements. The conversions between primitive

types and heap objects are known as boxing and unboxing. A different uniform representation,

typically reserved to virtual machines for dynamically typed languages, uses the fixnum [146]

representation. This representation can encode different types in the same unit of memory

by reserving several bits to record the type and using the rest to store the value. Aside from

reducing value ranges, this representation also introduces delays when dispatching operations,

as the value and type need to be unpacked. An alternative is the tagged union representation

[70], which does not restrict the value range but requires more heap space.

C++ [122] and the .NET Common Language Runtime [32, 76] have shown that on-demand het-

erogeneous translations can obtain good performance without generating significant amounts

of low level code. However, this comes at a high price: C++ has taken the approach of on-

demand compile-time template expansion, where compiling the use of a generic class involves

instantiating the template, type checking it and generating the resulting code. This provides

the best performance possible, as the instantiated template code is monomorphic, but un-

dermines separate compilation in two ways: first, libraries need to carry source code, namely

the templates themselves, to allow separate compilation, and second, multiple instantiations

of the same class for the same type arguments can be created during different compilation

runs, and need to be eliminated in a later linking phase. The .NET Common Language Run-

time takes a load-time, on-demand approach: it compiles generics down to bytecode with

embedded type information, which the virtual machine specializes, at load-time, for the type

arguments. This provides good performance at the expense of more a complex virtual machine

and lock-step advancements of the type system and the virtual machine implementation.

In trying to keep separate compilation and virtual machine backward compatibility, the Java

programming language [85] and other statically typed JVM languages [2, 11, 22, 30] use ho-

mogeneous translations, which sacrifice performance. Recognizing the need for execution

speed, Scala specialization [53] allows an annotation-driven, compatible and opportunistic

heterogeneous transformation to Java bytecode. Programmers can explicitly annotate generic

code to be transformed using a heterogeneous translation, while the rest of the code is trans-

lated using boxing [44]. Specialization is a compatible transformation, in that specialized and

homogeneously translated bytecode can be freely mixed. For example, if both a generic call

site and its generic callee are specialized, the call will use primitive values instead of boxing.

But if either one is not specialized, the call will fall back to using boxed values. Specialization is

also opportunistic in the way it injects specialized code into homogeneous one. Finally, being

annotation-driven, it lets programmers decide on the tradeoff between speed and code size.

Unfortunately the interplay between separate compilation and compatibility forces specializa-

tion to generate all heterogeneous variants of the code during the class compilation instead

of delaying their instantiation to the time they are used, like C++ does. Although in some

libraries this behavior is desirable [43], generating all heterogeneous variants up front means
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specializing must be done cautiously so the size of the generated bytecode does not explode.

To give a sense of the amount of bytecode produced by specialization, for the Scala program-

ming language, which has 9 primitive value types and 1 reference type, fully specializing a

class like Tuple3 given below produces 103 classes, the Cartesian product of 10 variants per

type parameter:

1 class Tuple3[A, B, C](a: A, b: B, c: C)

In this chapter we propose an alternative translation, called miniboxing, which relies on a

very simple insight to reduce the bytecode size by orders of magnitude: since larger primitive

types (such as integers) can hold smaller primitive types (such as bytes), it is enough for a

heterogeneous translation to generate variants for the larger primitive types. In our case, on

the Java Virtual Machine, miniboxing reduces the number of code variants from 10 per type

parameter to just 2: reference types and the largest primitive type in the language, the long

integer. In the Tuple3 example, miniboxing only generates 23 specialized variants, two orders

of magnitude less bytecode than specialization. Miniboxed code is faster than homogeneous

code, as data access is done directly instead of using boxing. Unlike fixnums and tagged

unions, miniboxing does not attach the type information to values but to classes and methods

and thus leverages the language’s static type system to optimize storage. Furthermore, the

full miniboxing transformation eliminates the overhead of dispatching operations by using

load-time class cloning and specialization (§2.6). In this context, we make the following

contributions:

• Presents an encoding that reduces the number of variants per type parameter in hetero-

geneous translations (§2.3) and the code transformations necessary to use this encoding

(§2.4);

• Optimizes bulk storage (arrays) in order to reduce the heap footprint and maintain

compatibility to homogeneous code, produced using erasure (§2.5);

• Utilizes a load-time class transformation mechanism to eliminate the cost of dispatching

operations on encoded values (§2.6).

The miniboxing encoding can reduce duplication in any heterogeneous translation, as long as

the following criteria are met:

• The value types of the statically typed target language can be encoded into one or more

larger value types (which we call storage types) - in the work presented here we use the

long integer as the single storage type for all of Scala’s primitive value types;

• Conversions between the value types and their storage type do not carry significant

overhead (no-op conversions are preferable, but not required);

• The set of operations allowed on generic values in the language is fixed (similar to fixing

the where clauses in PolyJ [36]);
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• All value types have boxed representations, in order to have a common data representa-

tion between homogeneous and miniboxed code. This representation is used to ensure

compatibility between the two translations.

In order to optimize the code output by the miniboxing transformation, this chapter explores

the interaction between value encoding and array optimization on the HotSpot Java Virtual

Machine. The final miniboxing transformation, implemented as a Scala compiler plug-in1, ap-

proaches the performance of monomorphic code, matches the performance of specialization,

and obtains speedups of up to 22x over the current homogeneous translation, all with modest

increases in bytecode size (§2.7).

We will first explain the specialization transformation (§2.2) upon which miniboxing is built.

We then go on to explain the miniboxing encoding (§2.3), transformation (§2.4), runtime

support (§2.5) and load-time specialization (§2.6). We finish by presenting the evaluation

(§2.7), surveying the related work (§2.8) and concluding (§2.9).

2.2 Specialization in Scala

This section presents specialization [53], a heterogeneous translation for parametric poly-

morphism in Scala. Miniboxing builds upon specialization, inheriting its main mechanisms.

Therefore a good understanding of specialization and its limitations is necessary to motivate

and develop the miniboxing encoding (§2.3) and transformation (§2.4).

There are two major approaches to translating parametric polymorphism to Java bytecode:

homogeneous, which requires a common representation for all values, and heterogeneous,

which duplicates and adapts code for each type. By default, both the Scala and Java compilers

use homogeneous translation with each value type having a corresponding reference type.

Boxing and unboxing operations jump from one representation to the other. For example, int

has java.lang.Integer as its corresponding reference type.

Boxing enables a uniform low level data representation, where all generic type parameters are

translated to references. While this simplifies the translation to bytecode, it does come with

several disadvantages:

• Initialization cost: allocating an object, initializing it and returning a pointer takes longer

than simply writing to a processor register;

• Indirect access: Extracting the value from a boxed type requires computing a memory

address and accessing it instead of simply reading a processor register;

• Undermined data locality: Seemingly contiguous memory storages, such as arrays

of integers, become arrays of pointers to heap objects, which may not necessarily be

aligned in the memory. This can affect cache locality and therefore slow down the

execution;

1Available at http://scala-miniboxing.org/.
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• Heap cost: the boxed object lives on the heap until it is not referenced anymore and is

garbage collected. This puts pressure on the heap and triggers garbage collection more

often.

To eliminate the overhead of boxing, the Scala compiler features specialization: an annotation-

driven, compatible and opportunistic heterogeneous transformation. Specialization is based

on the premise that not all code is worth duplicating and adapting: code that rarely gets

executed or has little interaction with value types is better suited for homogeneous translation.

Since a compile-time transformation such as specialization has no means of knowing how

code will be used, it relies on programmers to annotate which code to transform. Recent

research in JavaScript interpreters [57, 147] uses profiling as another method of triggering

compatible specialization of important traces in the program.

With specialization, programmers explicitly annotate the code to be transformed heteroge-

neously (§2.2.1 and §2.2.2) and the rest of the program undergoes homogeneous translation.

The bytecode generated by the two translations is compatible and can be freely mixed. This

allows specialization to have an opportunistic nature: it injects specialized code, in the form of

specialized class instantiations and specialized method calls (§2.2.3), but the injected entities

are always compatible with the homogeneous translation (§2.2.4). However, the interaction

with separate compilation leads to certain limitations that miniboxing addresses (§2.2.5).

2.2.1 Class Specialization

To explain how specialization applies the heterogeneous translation, we can use an immutable

linked list example:

1 class ListNode[@specialized T]

2 (val head: T, val tail: ListNode[T]) {

3 def contains(element: T): Boolean = ...

4 }

Each ListNode instance stores an element of type T and a reference to the tail of the list. The

null pointer, placed as the tail of a list, marks its end. A real linked list from the Scala standard

library is more sophisticated [90, 104], but for the purpose of describing specialization this

example is sufficient. It is also part of the benchmarks presented in the Evaluation section

(§2.7), as it depicts the behavior of non-contiguous collections that require random heap

access.

The ListNode class has the generic head field, which needs to be specialized in order to

avoid boxing. To this end, specialization will duplicate the class itself and adapt its fields for

each primitive value type. Figure 2.1 shows the class hierarchy created: the parent class is the

homogeneous translation of ListNode, which we also call generic class. The 10 subclasses

are the specialized variants. They correspond to the 8 Java primitive types, Unit (which is
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Figure 2.1 – Class hierarchy generated by Specialization. The letters in class suffix represent
the type they are specialized for: V-Scala Unit, Z-Boolean, B-Byte . . . J-Long, L-AnyRef. The
names are simplified throughout the chapter, and we avoid discussing the problem of name
mangling, which was addressed in [53].

Figure 2.2 – Method overriding and redirection for ListNode and two of its specialized variants.
Constructors and accessors are omitted from this diagram.

Scala’s object-oriented representation of void) and reference types2. Each of these specialized

classes contains a head field of a primitive type, and inherits (or overrides) methods defined

in the generic class. So far, specialization duplicated the class and adapted the fields, but in

order to remove boxing the methods also need to be transformed heterogeneously.

2.2.2 Method Specialization

In the specialized variants of ListNode, the contains method needs to be duplicated and

adapted to accept primitive values as arguments instead of their boxed representations. Since

the contains method is already inherited from the generic class, it actually needs to be

overridden. But it cannot be overridden, because its signature after the erasure [44] transfor-

mation expects a reference type (java.lang.Object) and the specialized signature expects

a primitive value. Therefore specialized methods need to be name-mangled, giving birth to

new methods such as contains_I for Int and contains_J for Long.

2Technical note: For a single type parameter the reference variant will not be generated and the generic class

will be used instead.
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The contains method from the generic parent class will be inherited by all the specialized

classes. But its code is generic and does not make use of primitive values, which is subopti-

mal. Therefore each specialized class overrides the generic contains and redirects it to the

corresponding specialized variant, such as contains_I or contains_J. The redirection is

done by unboxing the argument received by contains and calling the specialized method

with the value type, as shown in Figure 2.2. The same transformation is applied for accessors

of specialized fields, such as head in the ListNode class. We defer the discussion of what

happens to fields to Section 2.2.5.

2.2.3 Opportunistic Tree Transformation

The program code can only refer to generic classes and methods, not their specialized variants.

This happens because the specialization phase, which creates the variants, runs after the type

checking phase. Thus the program is checked only against the generic classes and methods.

But this does not mean specialization duplicates code in vain: aside from creating the variants,

specialization also injects the specialized variants in the program code.

The last step in eliminating boxing is rewriting the Scala abstract syntax tree (AST) to instantiate

specialized classes and use specialized methods. We call this process rewiring. Rewiring

works across separate compilation, as the specialization metadata is written in the generated

bytecode. This makes is possible to use specialized code from libraries without carrying source

code, like C++ does.

The instantiation rewiring injects specialized classes when the new keyword is used. When

the instantiated class has a more specific specialized variant for the given type arguments, the

instantiation is rewired. Despite constructing a different class, the types in the AST are not

adjusted to reflect this: In the example given below, although the instantiation is rewired to

new ListNode_I, the type of node1 remains ListNode[Int]. This makes specialization

compatible: whether or not the instantiation is rewired, both the specialized class and the

generic class are still subtypes of ListNode[Int]. Rewiring can only be done if the type

arguments are statically known:

1 // before rewiring:

2 val node1: ListNode[Int] =

3 new ListNode[Int](3, null)
4 // after rewiring:

5 val node1: ListNode[Int] =

6 new ListNode_I(3, null)
7 // not rewired if U is an abstract type or the

8 // type parameter of an enclosing class/method

9 val node2: ListNode[U] =

10 new ListNode[U](u, null)
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The next step of rewiring changes inheritance relations when parent classes have specialized

variants that match the type arguments. This injects specialized variants of a class in the

inheritance chain, making it possible to use unboxed values when extending a specialized

class. This is yet another opportunistic transformation, since the inheritance relation is only

rewritten if the type arguments are known statically, as shown by the following example:

1 // before rewiring:

2 class IntNode(head: Int, tail: IntNode)

3 extends ListNode[Int](head, tail)

4 // after rewiring:

5 class IntNode(head: Int, tail: IntNode)

6 extends ListNode_I(head, tail)

7 // not rewired, T not known statically:

8 class MyNode[T](head: T, tail: MyNode[T])

9 extends ListNode[T](head, tail)

The two rewirings above inject specialized classes in the code. Still, call sites point to the ho-

mogeneous methods, which use boxed values. The last rewiring addresses methods, which are

rewritten depending on the type of their receiver. Any call site with a specialization-annotated

receiver for which the type argument is statically known is rewritten to use specialized versions

of the methods. In the first call site of the example below, the receiver is the specialization-

annotated class ListNode and the type argument is statically known to be Int. Therefore the

call to contains is rewired to the specialized contains_I:

1 // before rewiring:

2 (node1: ListNode[Int]).contains(3)

3 // after rewiring:

4 (node1: ListNode[Int]).contains_I(3)

5 // not rewired if U is an abstract type or the

6 // type parameter of an enclosing class/method

7 (node2: ListNode[U]).contains(u)

2.2.4 Specialization Compatibility

Since the rewiring process only takes place for statically known type arguments, the generic

class and its specialized subclasses may be mixed together. In the following snippet, the

first branch of the if statement is rewired to create an instance of ListNode_I while the

second branch calls the node method, whose type parameter T is not annotated for special-

ization, and thus creates the generic class ListNode. Therefore, the value lst (of static type

ListNode[Int]) may be either an instance of ListNode_I or of ListNode, depending on

the random condition:
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1 // new ListNode[T] not rewired to

2 // ListNode_I since T is a type parameter

3 def node[T](t: T) = new ListNode[T](t, null)
4

5 val lst: ListNode[Int] =

6 if (Random.nextInt().isEven)

7 new ListNode[Int](1, null) // ListNode_I

8 else
9 node(2) // ListNode

10

11 lst.contains(0) // rewired to contains_I

Therefore, calling a specialized method, contains_I in this case, can have as receivers both

the generic class, ListNode, and the specialized one, ListNode_I. So both classes must

implement the specialized method. To do so, in ListNode, containswill be implemented us-

ing generic code and contains_Iwill box the argument and call contains. In ListNode_I,

contains_I will be implemented using primitive value types and contains will unbox and

redirect. This can be generalized to multiple specialized variants, as can be seen in Figure 2.2:

The generic class at the top of the hierarchy contains all specialized variants of the contains

method as redirects to the generic method. Then, each specialized variant of the class in-

herits from the generic class and overrides its corresponding specialized methods (such as

contains_I for ListNode_I) with the heterogeneously transformed code and redirects the

generic method to the specialized variant.

This shows the compatible nature of specialization: in order to avoid boxing, both the call site

and the receiver need to be rewired, which means the receiver needs to be specialized and the

call site needs to know the type arguments statically or be part of code that will be specialized.

But if either condition is not fulfilled, the code remains compatible by boxing, either at the call

site itself or inside the redirecting method.

From the perspective of typing the abstract syntax trees, compatibility is achieved because

types are assigned before the specialization phase and are not modified later, so they refer

to the generic class, even in the presence of rewiring. The first example in §2.2.3 shows that

despite rewiring the new operator to create an instance of ListNode_I, the type of the node1

value remains ListNode[Int]. Thus type-level compatibility is satisfied by ListNode_I

being a subtype of ListNode, and the reverse subtyping is not necessary, as types never refer

to ListNode_I3.

2.2.5 Limitations of Specialization

There are two limitations in specialization: the bytecode explosion and the crippled specialized

class inheritance. We will describe each problem and show how both can be addressed by the

miniboxing encoding.

3Except for the this type and singleton types in the adapted code.
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The specialization mechanism for generating variants is static: whenever the compiler en-

counters a class annotated for specialization, it generates all its variants up front and outputs

bytecode for each of them. This is done to support separate compilation.

Theoretically, the specialized variant creation could be delayed until the actual usage but this

requires that the source files for specialized classes are available in all future compilation

stages, exactly like in C++. This approach is undesirable from a user perspective, as it also

requires encoding the original compilation flags and state, which can influence the generated

code. Therefore the simplest, although bytecode-expensive solution was chosen: to generate

specialized variants for all value types during compilation.

Fulfilling the bytecode compatibility requirements described before, for n type parameters

and full specialization, means the generic class needs to implement 10n methods, of which

10n −2 are then inherited in the specialized subclasses and 2 are overridden by each of the

10n subclasses. This makes the bytecode size proportional to 10n . If the methods were not

inherited but defined in each subclass, the bytecode size would be proportional to 102n .

Still, the generic parent design choice affects inheritance between specialized classes. Figure

2.3 shows an example where the design of specialization bumps into a multiple class inheri-

tance, which is forbidden by Java. In this case, the children inherit from their generic parent,

which is suboptimal, since the specialized variants of MyList cannot use the specialization

in ListNode. Experienced Scala programmers might suggest that MyNode should be a trait,

so it can be mixed in [93]. Indeed this solves the multiple inheritance problem, but creates

bytecode proportional to 102n , because the compiler desugars the trait into an interface, and

each specialized MyList_* class has to implement the methods in that interface. Other more

technical problems stem from this design choice too, but could be avoided by having an ab-

stract parent class. For example, fields from the generic class are inherited by the specialized

classes, therefore increasing their memory footprint. Constructors also require more complex

code because instantiating a specialized class calls the constructor of its parent, the generic

class, which needs to be prevented from running, such that side effecting operations in the

original class’ constructor are not executed twice.

All in all, at the heart of the bytecode explosion problem and thus the other limitations

of specialization, lies the large number of variants per type parameter: 10. For two type

parameters, full specialization with correct inheritance creates 104 times the bytecode. In

practice this is not acceptable. Therefore a natural question to ask is how can we reduce

the number of variants generated per type parameter? This is the question that inspired

miniboxing.
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2.3 Miniboxing Encoding

Constraints on the bytecode size currently prevent us from extending the use of specialization

in the standard library, namely, to tuples of three elements, to the collections hierarchy and to

Function traits, which are used in Scala’s object oriented representation of functions. There-

fore we propose the miniboxing encoding and transformation as a solution to reduce bytecode

size and allow library specialization. Along with the encoding, we present a transformation

based on the principles of specialization, but using the miniboxed encoding (§2.4) instead of

primitive value types.

The miniboxing technique relies on a simple insight: grouping different primitive types

reduces the number of variants necessary in the heterogeneous translation. To this end,

we need to group the primitive types in the language into disjoint sets and for each set

designate a primitive type, also called a storage type, which can encode any type in that set.

This definition is not limited to primitive types, and can easily be extended to value classes

[110, 111]. However, this extension requires a more complex translation. In the rest of the

presentation we simplify matters by only considering primitive types, and point out what

needs to be done to extend to value classes.

Four conditions need to be satisfied for the miniboxing transformation to work:

• All of the value types in the language can be encoded into one or more storage types;

• The overhead of transforming between any value type and its storage type must be

limited, ideally a no-op;

• The operations available for generic types in the language (inherited from the top of the

hierarchy, such as toString, hashCode and equals) must be fixed;

• All the value types need to have boxed representations, to enable compatibility be-

tween the miniboxed and homogeneous translations (§2.2.4). If the bytecode’s common

representation is tagged union, the requirement changes to having tagged union repre-

sentations.

In this case, the heterogeneous translation only needs to generate variants for the storage

types and references. References are a special storage type, since all primitive types are also

considered to be part of the reference group. During the translation, whenever a type is not

known to be miniboxed to one of the storage types, it is automatically assumed to be attached

to the references group. This allows the opportunistic (§2.2.3) and compatible (§2.2.4) rewiring

of the tree: indeed since any primitive type has a boxed representation, it is always correct

(but not optimal) to store it as a boxed reference. In the extreme case where all primitive types

are their own storage types, we are back to specialization.

The next subsection will present miniboxing in Scala.
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Figure 2.3 – An example of specialized class inheritance made impossible by the current
translation scheme.

2.3.1 Miniboxing in Scala

In order to apply the miniboxing encoding to Scala, we decided to use the long integer (Long)

as the storage type of all other primitive value types. Other sets of storage types could also be

implemented to improve specific scenarios, such as running on 32-bit architectures (32-bit

Int and 64-bit Long) or using floating-point numerics extensively4 (64-bit Double and 64-bit

Long). Still, for the rest of the description, we will use the long integer as the only storage type,

in order to be consistent with the current implementation of the miniboxing plugin.

The transformation primitives from values to Long and back are implemented in the HotSpot

Java Virtual Machine and have direct translations to bytecode4 and to processor instructions

[71]. Nevertheless, two concerns need our attention when using miniboxing:

• Packing and unpacking cost;

• Memory footprint of the miniboxed encoding.

Packing and unpacking cost. Boxing and unboxing accesses the heap memory. The main

goal of miniboxing is to eliminate this overhead, but, in doing so, conversions to and from long

integers must not slow down program execution significantly compared to monomorphic

code. Our benchmarks show that indeed the overhead is negligible (§2.7).

Memory footprint. The miniboxed encoding has a memory footprint between that of monomor-

phic and generic code. Considering byte as the type argument, the memory footprint of the

miniboxed encoding is 8 times larger than the one for monomorphic code, which would store

the byte directly. However, due to alignment constraints in the virtual machine, this factor

is rarely 8, as the objects are padded by unused bytes. Bulk storage (arrays) are specialized

internally, and special accessors are developed to interface them to miniboxed code.

4The floating point to integer bit-preserving transformations, which are implemented as intrinsics, do incur a

measurable overhead.
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Figure 2.4 – An example of miniboxed class inheritance. The suffixes are: M - miniboxed
encoding and L - reference type. Compare to the specialized class inheritance in Figure 2.3.

On the other hand, when compared to boxing on 64 bit processors, the factor is exactly 1, as

both a pointer and a long integer have 8 bytes. And this does not take into account the heap

space occupied by the boxed values themselves. Therefore, all things considered, miniboxing

has a memory footprint larger than the monomorphic and heterogeneous translations, but

smaller than homogeneous translations based on boxing.

2.4 Miniboxing Transformation

The miniboxing transformation, which we developed as a Scala compiler plugin, builds

upon specialization, which has been formalized in [53]. It has the same opportunistic and

compatible nature and performs class and method duplication in a similar manner. Still, five

elements set it apart:

• the different inheritance scheme (§2.4.1)

• the type bytes for storing encoded types (§2.4.2, §2.4.2)

• the use of a shallow type transformation (§2.4.2)

• the use of the final peephole transformation (§2.4.2)

• the runtime support for miniboxed values (§2.4.3 and §2.5)

2.4.1 Inheritance

Miniboxing uses a generic trait as the parent of the specialized classes, therefore avoiding the

limitation that miniboxed classes cannot inherit from each other (§2.2.5). Figure 2.4 shows an

example miniboxed class inheritance. As explained in §2.2.5, for n specialized type parameters,

having a trait as the parent increases the bytecode size from 2n to 4n , since each of the 2n

miniboxed variants needs to implement all 2n methods. Still, the extra bytecode is well spent,

for two reasons:
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• Having a trait at the top of the hierarchy means no generic fields are inherited in the

specialized variants, as it happens when the homogeneous translation is at the top of

the hierarchy (§2.2.5);

• This inheritance scheme allows specialized classes to inherit their specialized parent,

thus achieving better performance in deep hierarchies.

Since the types assigned to tree nodes do not reference the specialized variants but only the

generic interface, this inheritance scheme does not interfere with covariance or contravariance.

Indeed, if the type parameter of ListNode is defined as covariant, ListNode_M[Int] is

subtype of ListNode[Int] and, transitively, of ListNode[Any].

2.4.2 Miniboxing Specifics

This section will work its way from small examples to describing the new elements in the

miniboxing transformation, as compared to specialization. In order to simplify the presenta-

tion, we will use the Long-based encoding for miniboxing, but the transformation can still be

generalized to any number of storage types.

Type Bytes

In some cases, such as calling the toString method on a generic type, the original type of

the miniboxed value needs to be recorded. In the current approach, since we only consider

primitive types, all we need is an integral type with enough distinct values for each primitive

type. In this case, a byte suffices. A more general approach, that also works for value classes, is

presented in Section 2.5.4, where the encoding descriptor is an object.

The need for type-encoding bytes (or type bytes) is shown by the following example:

1 def print[@minispec T](value: T): Unit = println(value.toString)

Having the type parameter T annotated with @minispec will trigger miniboxing, which will

duplicate this method for Long-encoded value types, which we also call miniboxed types.

Like specialization, miniboxing produces groups of overloaded methods, with the original

method being the all-reference implementation in its group. In our case, only the miniboxed

overload needs to be created. To do so, the compiler will create another version of print for

long integers, which we call print_M:

1 def print_M(value: Long): Unit = println(value.toString)

This is a very naive translation. Calling print(false), after method rewiring, will transform

the boolean to a long integer whose value will be printed on the screen instead of the “false”

string. To perform the correct action, the translation should recover the string representation
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of the boolean value false from the Long encoding. This suggests the toString operation

should be rewritten to:

1 def print_M(value: Long): Unit = println(MBRuntime.toString(value))

The code above shows a less naive implementation, since it rewires toString calls on the

miniboxed value to a special runtime support object in order to obtain the string representa-

tion. But passing a single miniboxed value isn’t enough, as we mentioned miniboxing does not

encode the type with the value as tagged unions do [70]. Therefore, it should have a separate

parameter to encode the original type:

1 def print_M(T_Type: Byte, value: Long): Unit =

println(MBRuntime.toString(value, T_Type))

This is close to the minibox-transformed version of print_M the plugin would output. The

T_Type field only encodes the 9 primitive types in Scala, therefore it does not incur the

typical overhead of full reified generics [116]. A call to print(false) will be translated to the

following code, where BOOLEAN is the type byte for boolean values:

1 print_M(BOOLEAN, MBRuntime.BoolToMinibox(false))

The method call above shows two differences between rewiring in miniboxing and specializa-

tion:

1. Calling a miniboxing-transformed method (or instantiating a miniboxing-transformed

class) requires passing type bytes for all the Long-encoded type arguments;

2. The arguments to minibox-transformed methods need to be explicitly encoded in the

storage type.

We will now present exactly how the miniboxing plugin arrives to this transformed code. As

the miniboxing transformation takes place, it needs to preserve program semantics and type

correctness. In order to do so, the transformation for print is actually done in three steps.

First, the new signature is created, knowing the type parameter T is encoded as Long. The

method name is mangled (mangled names are simplified in this presentation) and the type

byte for T is added to the signature. Then parameters are added, with all parameters of type

T being replaced by parameters of type Long. As this happens, the symbols whose types

changed are recorded and treated specially. In this case, the only miniboxed parameter is

value, which is recorded. It is also recorded that the type byte T_Type corresponds to the

encoded type T. This yields: (we’ll see later why the type parameter T still appears)

1 def print_M[T](T_Type: Byte, value: Long): Unit = // need to copy and

adapt body from print
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In the second step, the body is copied from the print method. To maintain type correctness,

all the symbols previously recorded as having their types changed are now automatically

boxed back to generic type T, so the newly generated code tree is consistent in terms of types:

1 def print_M[T](T_Type: Byte, value: Long): Unit =

println(MBRuntime.MiniboxToBox[T](value, T_Type).toString)

In the final step, the tree rewrite rules will transform the call to MiniboxToBox followed by

toString into a single call to the MBRuntime system, which typically yields better perfor-

mance:

1 def print_M[T](T_Type: Byte, value: Long): Unit =

println(MBRuntime.toString(value, T_Type))

The next section will explain why it is necessary to carry the type parameter T.

Shallow and Deep Type Transformations

To further understand the miniboxing transformation, let us look at a more complex example,

which builds a linked list with a single element:

1 def list[@minispec T](value: T): ListNode[T] = new ListNode[T](value,

null)

As explained before, the list method will become the all-reference overload. But the interest-

ing transformation happens in the miniboxed variant. If specialization were to transform this

method its signature would be:

1 def list_M[T](value: Long): ListNode[Long]

The return type is incorrect, as we expect list(3) to return a ListNode[Int], and yet

rewiring list(3) to list_M(...) would return a ListNode[Long]. This exposes the

difference between the deep type transformation in specialization and the shallow type trans-

formation in miniboxing: In miniboxing, only values of type T are transformed to Long, but

any type referring to T, such as ListNode[T], will remain the same. This explains why the

type parameter T is carried over to print_M and list_M: it may still be used in the method’s

signature and code. The full transformation for method list_M will be:

1 def list_M[T](T_Type: Byte, value: Long): ListNode[T] =

2 new ListNode[T](MiniboxToBox[T](value, T_Type))

The shallow type transformation also changes types of local variables from T to Long and

recursively transforms all nested methods and classes within the piece of code it is adapting.

This propagates the storage type representation throughout the code.

28



2.4. Miniboxing Transformation

Peephole Transformation

The last transformation to touch the code before it is shipped to the next phase is the peephole

transformation, which performs a final sweep over the code to remove redundant conversions.

To show this phase at work, let us consider what happens if the ListNode class in the last

example is also annotated for miniboxing. In this case, the class will have a miniboxed variant,

ListNode_M to which the instantiation is rewired. Since the head parameter of the ListNode

constructor is boxed, while the head parameter of the ListNode_M constructor is miniboxed,

the transformation will introduce a new BoxToMinibox conversion:

1 def list_M[T](T_Type: Byte, value: Long): ListNode[T] =

2 new ListNode_M[T](T_Type, BoxToMinibox[T](MiniboxToBox[T](value, ...)),

null)

Converting from Long to the boxed representation and back before creating the list node

will certainly affect performance. Such consecutive complementary conversions and other

suboptimal constructs are automatically removed by the peephole optimization:

1 def list_M[T](T_Type: Byte, value: Long): ListNode[T] =

2 new ListNode_M[T](T_Type, value, null)

The code produced by the rewiring phase can be optimized by a single pass of the peephole

transformation so there is no need to iterate until a fixed point is reached.

Type Bytes in Classes

The class translation is slightly more complex than method translation. For classes, type bytes

are also included as fields in the miniboxed variants, to allow the class’ methods to encode

and decode miniboxed values as necessary:

1 class ListNode[@minispec T]

2 (val head: T, val tail: ListNode[T]) {

3 def contains(element: T): Boolean = ...

4 }

The interface resulting after miniboxing will be:

1 trait ListNode[T] {

2 ... // getters for head and tail

3 def contains(element: T): Boolean

4 def contains_M(T_Type_local: Byte, element: Long): Boolean

5 }

And the miniboxed variant of this class will be:
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1 class ListNode_M[T]

2 (T_Type: Byte, head: Long, tail: ListNode[T]) extends ListNode[T] {

3 ... // getters for head and tail

4 def contains(element: T): Boolean =

5 ... // redirect to this.contains_M

6 def contains_M(T_Type_local: Byte, element: Long): Boolean =

7 ... // specialized implementation

8 }

ListNode_M has two type tags: T_Type is a class parameter and becomes a field of the

class while T_Type_local is passed to the contains_M method directly. In the code ex-

ample, T_Type is used to convert the element parameter of contains to its miniboxed

representation when redirecting the call to contains_M. But T_Type_local is not used in

the ListNode_M class. To understand when T_Type_local is necessary, we have to look at

the reference-carrying variant of the ListNode class:

1 class ListNode_L[T]

2 (head: T, tail: ListNode[T]) extends ListNode[T] {

3 ... // getters for head and tail

4 def contains(element: T): Boolean =

5 ... // generic implementation

6 def contains_M(T_Type_local: Byte, element: Long): Boolean =

7 ... // redirect to this.contains

8 }

All instantiations of ListNode where the type argument is statically known to be a value type

are rewired to ListNode_M. The rest of the instantiations are rewired to ListNode_L, either

because the type argument is not known statically or because it is known to be a reference

type. Therefore, there is no reason for ListNode_L to carry T_Type as a global field. But, in

order to allow contains_M to decode the miniboxed value element into a boxed form and

redirect the call contains, a local type byte is necessary. Since the ListNode interface and

its two implementations, ListNode_L and ListNode_M need to be compatible, the local

type byte in contains_M is also present for ListNode_M, although in the miniboxed class it

is redundant.

2.4.3 Calling the Runtime Support

The previous examples have shown how the miniboxing plugin uses the MBRuntime ob-

ject for conversions between unboxed, miniboxed and boxed data representations. But the

MBRuntime object is not limited to conversions. In Scala, any type parameter is assumed to

be a subtype of the Any class, so the programmer can invoke methods such as toString,

hashCode and equals on generic values. As shown in §2.4.2, these calls can be translated by

a conversion to the boxed representation followed by the call, but are further optimized by

calling the implementations in MBRuntime, which work directly on miniboxed values.
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Aside from conversions and implementations for the methods in the Any class, the miniboxing

runtime support contains code to allow direct interaction between arrays and miniboxed

values. An example that uses arrays is the ArrayBuffer class:

1 class ArrayBuffer[@minispec T: Manifest] {

2 // fields:

3 private[this] var array = new Array[T](32)

4 ...

5 // methods:

6 def getElement(idx: Int): T = array(idx)

7 ...

8 }

The miniboxed variant ArrayBuffer_M is rewritten to call the MBArray object to create and

access arrays in the miniboxed format:

1 // ArrayBuffer miniboxed variant for primitives:

2 class ArrayBuffer_M[T: Manifest](T_Type: Byte)

3 extends ArrayBuffer[T] {

4 // fields:

5 private[this] var array: Array[T] = MBArray.mbarray_new(32, T_Type)

6 ...

7 // methods:

8 def getElement(idx: Int): T =

9 MiniboxToBox(getElement_M(T_Type, idx), ...)

10 def getElement_M(T_Type_local: Byte, idx: Int): Long =

11 MBArray.array_get(array, idx, T_Type)

12 ...

13 }

The implementation of the MBArray object is critical to numeric algorithms and performance

data structures, as it has to be small enough to be inlined by the just-in-time compiler and

structured in ways that return the result as fast as possible for any of the primitive types. The

following two sections describe the runtime support for arrays and give technical insights into

the pitfalls of the implementation.

2.5 Miniboxing Bulk Storage Optimization

Arrays are Java’s bulk storage facility. They can store primitive types or references to heap

objects. This is done efficiently, as values are stored one after the other in contiguous blocks

of memory and access is done in constant time. Their characteristics make arrays good

candidates for internal data structures in collections and algorithms.

But in order to implement compact storage and constant access overhead, arrays are monomor-

phic under the hood, with separate (and incompatible) variants for each of the primitive value
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types. What’s more, each array type has its own specific bytecode instructions to manipulate

it.

The goal we set forth was to match the performance of monomorphic arrays in the context of

miniboxing-encoded values. To this end, we had two alternatives to implementing arrays for

miniboxed values: use arrays of long integers to store the encoded values or use monomorphic

arrays for each type, and encode or decode values at each access.

Storing encoded values in arrays provides the advantage of uniformity: all the code in the

minibox-specialized class uses the Long representation and array access is done in a single

instruction. Although this representation wastes heap space, especially for small primitive

types such as boolean or byte, this is not the main drawback: it is incompatible with the rest of

the Scala code.

In order to stay compatible with Java, Scala code uses monomorphic arrays for each primitive

type. Therefore arrays of long integers in miniboxed classes must not be allowed to escape

from the transformed class, otherwise they may crash outside code attempting to read or write

them. To maintain compatibility, we could convert escaping arrays to their monomorphic

forms. But the conversion would introduce delays and would break aliasing, as writes from

the outside code would not be visible in the miniboxed code and vice versa. Since completely

prohibiting escaping arrays severely restricts the programs that can use miniboxing, this

solution becomes unusable in practice.

Thus, the only choice left is to use arrays in their monomorphic format for each primitive

type, so we maintain compatibility with the rest of the Scala code. This decision led to another

problem: any array access requires a call to the miniboxing runtime support which performs a

dispatch on the type byte. Depending on the type byte’s value, the array is cast to its correct

type and the corresponding bytecode instruction for accessing it is used. This is followed by

the encoding operation, which converts the read value to a long integer. The following snippet

shows the array read operation implemented in the miniboxing runtime support code:

1 def array_get[T](array: Array[T], idx: Int, tag: Byte): Minibox = tag

match {

2 case INT =>
3 array.asInstanceOf[Array[Int]](idx).toLong

4 case LONG =>
5 array.asInstanceOf[Array[Long]](idx)

6 case DOUBLE => Double.doubleToRawLongBits(

7 array.asInstanceOf[Array[Double]](idx)).toLong

8 ...

9 }

The most complicated and time-consuming part of our work involved rewriting the miniboxing

runtime support to match the performance of specialized code. The next subsections present

the HotSpot Java Virtual Machine execution (§2.5.1), the main benchmark we used for testing
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(§2.5.2) and two implementations for the runtime support: type byte switching (§2.5.3) and

object-oriented dispatching (§2.5.4).

2.5.1 HotSpot Execution

We used benchmarks to guide our implementation of the miniboxing runtime support. In this

section we will briefly present the just-in-time compilation and optimization mechanisms in

the HotSpot Java Virtual Machine [79, 99], since they directly influenced our design decisions.

Although the work is based on the HotSpot Java Virtual Machine, we highlight the underlying

mechanisms that interfere with miniboxing, in hope that our work can be used as the starting

point for the analysis on different virtual machines.

The HotSpot Java Virtual Machine starts off by interpreting bytecode. After several executions,

a method is considered “hot” and the just-in-time compiler is called in to transform it into

native code. During compilation, aggressive inlining is done recursively on all the methods that

have been both executed enough times and are small enough. Typical inlining requirements

for the C25 (server) just-in-time compiler are 10000 executions and size below 35 bytes.

When inlining static calls, the code is inlined directly. For virtual and interface calls, however,

the code depends on the receiver. To learn which code to inline, the virtual machine will profile

receiver types during the interpretation phase. Then, if a single receiver is seen at runtime,

the compiler will inline the method body from that receiver. This inlining may later become

incorrect, if a different class is used as the receiver. For such a case the compiler inserts a

guard: if the runtime type is not the one expected, it jumps back to interpretation mode. The

bytecode may be compiled again later if it runs enough times, with both possible method

bodies inlined. But if a third runtime receiver is seen, the call site is marked as megamorphic

and inlining is not performed anymore, not even for the previous two method bodies.

After inlining as much code as feasible, the virtual machine’s just-in-time compiler applies

optimizations, which significantly reduce the running time, especially for array operations

which are very regular and for which bounds checks can be eliminated.

2.5.2 Benchmark

We benchmarked the performance on the two examples previously shown before, ListNode

and ArrayBuffer. Throughout benchmarking, one particular method stood out as the most

sensitive to the runtime support implementation: the reverse method of the ArrayBuffer

class. The rest of this section uses the reversemethod to explore the performance of different

implementations of the runtime support:

5We did not use tiered compilation.
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Single Context Multi Context
generic 20.4 21.5
miniboxed, no inlining 34.5 34.4
miniboxed, full switch 2.4 15.1
miniboxed, semi-switch 2.4 17.2
miniboxed, decision tree 24.2 24.1
miniboxed, linear 24.3 22.9
miniboxed, dispatcher 2.1 26.4
specialized 2.0 2.4
monomorphic 2.1 N/A

Table 2.1 – The time in milliseconds necessary for reversing an array buffer of 3 million integers.
Performance varies based on how many primitive types have been used before (Single Context
vs. Multi Context).

1 def reverse_M(T_Type_local: Byte): Unit = {

2 var idx = 0

3 val xdi = elemCount - 1

4 while (idx < xdi) {

5 val el1: Long = getElement_M(T_Type, idx)

6 val el2: Long = getElement_M(T_Type, xdi)

7 setElement_M(T_Type, idx, el2)

8 setElement_M(T_Type, xdi, el1)

9 idx += 1

10 xdi -= 1

11 }

12 }

The running times presented in table 2.1 correspond to reversing an integer array buffer of

3 million elements. To put things into perspective, along with different designs, the table

also provides running times for monomorphic code (specialized by hand), specialization-

annotated code and generic code. Measurements are taken in two scenarios: For “Single

Context”, an array buffer of integers is created and populated and its reverse method is

benchmarked. In “Multi Context”, the array buffer is instantiated, populated and reversed for

all primitive value types first. Then, a new array buffer of integers is created, populated and

its reverse method is benchmarked. The HotSpot Java Virtual Machine optimizations are

influenced by the historical paths executed in the program, so using other type arguments

can have a drastic impact on performance, as can be seen from the table, where the times for

“Single Context” and “Multi Context” are very different: this means the virtual machine gives

up some of its optimizations after seeing multiple instantiations with different type arguments.

“Multi Context” is the likely scenario a library class will be in, as multiple instantiations with

different type arguments may be created during execution.
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2.5.3 Type Byte Switching

The first approach we tried, the simple switch on the type byte, quickly revealed a problem:

The array runtime support methods were too large for the just in time compiler to inline

at runtime. This corresponds to the “miniboxing, no inlining” in table 2.1. To solve this

problem, we tasked the Scala compiler with inlining runtime support methods in its backend,

independently of the virtual machine. But this was not enough: the reverse_M method

calls getElement_M and setElement_M, which also became large after inlining the runtime

support, and were not inlined by the virtual machine. This required us to recursively mark

methods for inlining between the runtime support and the final benchmarked method.

The forced inlining in the Scala backend produced good results. The measurement, corre-

sponding to the “miniboxed, full switch” row in the table, shows miniboxed code working at

almost the same speed as specialized and monomorphic code. This can be explained by the

loop unswitching optimization in the just-in-time compiler. With all the code inlined by the

Scala backend, loop unswitching was able to hoist the type byte switch statement outside

the while loop. It then duplicated the loop contents for each case in the switch, allowing

array-specific optimizations to bring the running time close to monomorphic code.

But using more primitive types as type arguments diminished the benefit. We tested the

reverse operation in two situations, to check if the optimizations still take place after we use

it on array buffers with different type arguments. It is frequently the case that the HotSpot Java

Virtual Machine will compile a method with aggressive assumptions about which paths the

execution may take. For the branches that are not taken, guards are left in place. Then, if a

guard is violated during execution, the native code is interrupted and the program continues

in the interpreter. The method may be compiled again later, if it is executed enough times

to warrant compilation to native code. Still, upon recompilation, the path that was initially

compiled to a stub now becomes a legitimate path and may preclude some optimizations. We

traced this problem to the floating point encoding, specifically the bit-exact conversion from

floating point numbers to integers, that, once executed, prevents loop unswitching.

We tried different constructions for the miniboxing runtime support: splitting the match

into two parts and having an if expression that would select one or the other (“semi-switch”),

transforming the switch into a decision tree (“decision tree”) and using a linear set of 9 if

statements (“linear”), all of which appear in table 2.1. These new designs either degraded in the

multiple context scenario, or provided a bad baseline performance from the beginning. What’s

more, the fact that the runtime “remembered” the type arguments a class was historically

instantiated with made the translation unusable in practice, since this history is not only

influenced by code explicitly called before the benchmark, but transitively by all code executed

since the virtual machine started.
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2.5.4 Dispatching

The results obtained with type byte switching showed that we were committing to a type too

late in the execution: Forced inlining had to carry our large methods that covered all types

inside the benchmarked method, where the optimizer had to hoist the switch outside the loop:

1 while (...) {

2 val el1: Long = T_Type match { ... }

3 val el2: Long = T_Type match { ... }

4 T_Type match { ... }

5 T_Type match { ... }

6 }

Ideally, this switch should be done as early as possible, even as soon as class instantiation.

This can be done using an object-oriented approach: instead of passing a byte value during

class instantiation and later switching on it, we can pass objects which encode the runtime

operations for a single type, much like the where objects in PolyJ [36]. We call this object the

dispatcher. The dispatcher for each primitive type encodes a common set of operations such

as array get and set. For example, IntDispatcher encodes the operations for integers:

1 abstract class Dispatcher {

2 def array_get[T](arr: Array[T], idx: Int): Long

3 def array_update[T](arr: Array[T], idx: Int, elt: Long): Unit

4 ...

5 }

6 object IntDispatcher extends Dispatcher { ... }

Dispatcher objects are passed to the miniboxed class during instantiation and have final

semantics. Additionally, using objects to encode the value type scales beyond primitive

types and to value classes. In the reverse benchmark, this would replace the type byte

switches by method invocations, which could be inlined. Dispatchers make forced inlining

and loop unswitching redundant. With the final dispatcher field set at construction time,

the reverse_M inner loop body can have array access inlined and optimized: (“miniboxed,

dispatcher” in tables 2.1 and 2.2)

1 // inlined getElement:

2 val el1: Long = dispatcher.array_get(...)

3 val el2: Long = dispatcher.array_get(...)

4 // inlined setElement:

5 dispatcher.array_update(...)

6 dispatcher.array_update(...)

Despite their clear advantages, in practice dispatchers can be used with at most two different

primitive types. This happens because the HotSpot Java Virtual Machine inlines the dispatcher

code at the call site and installs guards that check the object’s runtime type. The inline cache

works for two receivers, but if we try to swap the dispatcher a third time, the callsite becomes
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Single Context Multi Context
generic 20.4 21.5
miniboxed, full switch 2.4 15.1
mb. full switch, LS 2.5 2.4
miniboxed, dispatcher 2.1 26.4
mb. dispatcher, LS 2.0 2.7
specialized 2.0 2.4
monomorphic 2.1 N/A

Table 2.2 – The time in milliseconds necessary for reversing an array buffer of 3 million
integers. Miniboxing benchmarks ran with the double factory mechanism and the load-time
specialization are marked with LS.

megamorphic. In the megamorphic state, the array_get and array_set code is not inlined,

hence the disappointing results for the “Multi Context” scenario.

Interestingly, specialization performs equally well in both “Single Context” and “Multi Context”

scenarios. The explanation lies in the bytecode duplication: each specialized class contains

a different body for the reverse method, and the profiles for each method do not interact.

Accordingly, the results for integers are not influenced by the other primitive types used. This

insight motivated the load-time cloning and specialization, which is described in the next

section.

2.6 Miniboxing Load-time Optimization

The miniboxing runtime support, in both incarnations, using switching and dispatching, fails

to deliver performance in the “Multi Context” scenario. This problem has been addressed in

the latest version of the miniboxing plugin by rewriting the accessors in Java as static methods,

for which the HotSpot JIT inlining heuristics are more favorable. However, in this section we

describe our initial approach, namely to use a load-time transformation, which we abandoned

later in the development cycle.

The reason for the poor performance in the “Multi Context” scenario, in both incarnations of

the runtime support, is that execution takes multiple paths through the code and this prevents

the Java Virtual Machine from optimizing. Therefore an obvious solution is to duplicate the

class bytecode, but instead of duplicating it on the disk, as specialization does, we do it in

memory, on-demand and at load-time. The .NET Common Language Runtime [32, 76] and

the OpenJDK Project Valhalla [63, 64] both perform on-demand specialization at load-time,

but they do so using more complex transformations encoded in the virtual machine. Instead,

we use Java’s classloading mechanism.

We use a custom classloader to clone and specialize miniboxed classes. Similar to the approach

in Pizza [94], the classloader takes the name of a class that embeds the type byte value. For

example, ListNode_I corresponds to a clone of ListNode_M with the type byte set to INT.
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From the name, the classloader infers the miniboxed class name and loads it from the classpath.

It clones its bytecode and adjusts the constant table [47]. All this is done in-memory.

Once the bytecode is cloned, the paths taken through the inlined runtime support in each

class remain fixed during its lifetime, making the performance in “Single Context” and “Multi

Context” comparable, as can be seen in Table 2.2. The explanation is that the JVM sees different

classes, with separate type profiles, for each primitive type.

Aside from bytecode cloning, the classloader also performs class specialization:

• Replaces the type tag fields by static fields (as the class is already dedicated to a type);

• Uses constant propagation and dead code elimination to reduce each type tag switch

down to a single case, which can be inlined by the virtual machine, thus eliminating the

need for forced inlining;

• Performs load-time rewiring, which is described in the next section.

2.6.1 Miniboxing Load-time Rewiring

When rewiring, the miniboxing transformation follows the same rules set forth by special-

ization (§2.2.3). Load-time cloning introduces a new layer of rewiring, which needs to take

the cloned classes into account. The factory mechanism we employ to instantiate cloned

and specialized classes (§2.6.2) is equivalent to the instance rewiring in specialization. The

two other rewiring steps in specialization are method rewiring and parent class rewiring.

Fortunately method rewiring is done during compilation and since methods are not modified,

there is no need to rewire them in the classloader. Parent classes, however, must be rewired at

load-time to avoid performance degradation.

Load-time parent rewiring allows classes to inherit and use miniboxed methods while keeping

type profiles clean. If the parent rewiring is done only at compile-time, all classes extending

ArrayBuffer_M share the same code for the reverse_M method. But since they may use

different type arguments when extending ArrayBuffer, they are back to the “Multi Context”

scenario in table 2.1. To obtain good performance, rewiring parent classes is done first at

compile time, to the miniboxed variant of the class, and then at load-time, to the cloned and

specialized class.

A good question at this point is, given a load-time transformation, why should we still perform

the miniboxing transformation during compilation? The answer is that, once the class has

been miniboxed, the transformation is as simple as hard-coding the type byte into the loaded

class and running simple constant propagation and dead code elimination optimization

phases on the bytecode to eliminate redundant branches. Instead, if we were to keep the

generic information at the bytecode level, the bytecode format would have to be updated and

the load-time transformations would be more complex.

The following snippet shows parent rewiring in the case of dispatcher objects:
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1 // user code:

2 class IntBuff extends ArrayBuffer[Int]

3 // after compile-time rewiring:

4 class IntBuff extends ArrayBuffer_M[Int](IntDispatcher)

5 // after load-time rewiring:

6 class IntBuff extends ArrayBuffer_I[Int](IntDispatcher)

The load-time rewiring of parent classes requires all subclasses with miniboxed parents to

go through the classloader transformation. This includes the classes extending miniboxed

parents with static type arguments, such as the IntBuff class in the code snippet before. This

incurs a first-instantiation overhead, which is an inconvenience especially for classes that

are only used once, such as anonymous closures extending FunctionX. But not all classes

make use of the miniboxing runtime for arrays, so we can devise an annotation which hints to

the compiler which classes need factory instantiation. This would only incur the cloning and

specialization overhead when the classes use arrays. The annotation could be automatically

added by the compiler when a class uses array operations and propagated from parent classes

to their children:

1 @loadtimeSpec

2 class ArrayBuffer[@minispec T]

3

4 // IntBuff automatically inherits @loadtimeSpec

5 class IntBuff extends ArrayBuffer[Int]

2.6.2 Efficient Instantiation

Imposing the use of a global classloader is impossible in many practical applications. To

allow miniboxing to work in such cases, we chose to perform the class instantiation through a

factory that loads a local specializing classloader, requests the cloning and specialization of

the miniboxed class and instantiates it via reflection. We benchmarked the approach and it

introduced significant overhead, as instantiations using reflection are very expensive.

To counter the cost of reflective instantiation, we propose a “double factory” approach that

uses a single reflective instantiation per cloned class. In this approach each cloned and

specialized class has a corresponding factory – that instantiates it using the new keyword.

When instantiating a miniboxed class with a new set of type arguments, its corresponding

factory is specialized by the classloader and instantiated via reflection. From that point on,

any new instance is created by the factory, without the reflective delay. The following code

snippet shows the specialized (or 2nd level) factory:
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1 // Factory interface

2 abstract class ArrayBufferFactoryInterface {

3 def newArrayBuffer_M[T: Manifest](disp: Dispatcher[T]): ArrayBuffer[T]

4 }

5 // Factory instance, to be specialized

6 // in the classloader

7 class ArrayBufferFactoryInstance_M extends ArrayBufferFactoryInterface {

8 def newArrayBuffer_M[T: Manifest](disp: Dispatcher[T]): ArrayBuffer[T] =

9 new ArrayBuffer_M(disp)

10 }

2.7 Evaluation

This section presents the results obtained by the miniboxing transformation. It will first

present the miniboxing compiler plug-in and the miniboxing classloader (§2.7.1). Next, it will

present the benchmarking infrastructure (§2.7.2) and the benchmark targets (§2.7.3). Finally,

it will present the results (§2.7.4 - §2.7.8) and draw conclusions (§2.7.9).

2.7.1 Implementation

The miniboxing plug-in adds a code transformation phase in the Scala compiler. Like spe-

cialization, the miniboxing phase is composed of two steps: transforming signatures and

transforming trees. As the signatures are specialized, metadata is stored on exactly how the

trees need to be transformed. This metadata later guides the tree transformation in dupli-

cating and adapting the trees to obtain the miniboxed code. The duplication step reuses the

infrastructure from specialization, with a second adaptation step which transforms storage

from generic to miniboxed representation.

The plugin performs several transformations:

• Code duplication and adaptation, where values of type T are replaced by long integers

and are un-miniboxed back to T at use sites (§2.4.2);

• Rewiring methods like toString, hashCode, equals and array operations to use the

runtime support (§2.4.3);

• Opportunistic rewiring: new instance creation, specialized parent classes and method

invocations (§2.2.3);

• Peephole minibox/un-minibox reduction (§2.4.2).

The Appendix of this chapter shows some corner cases and how the miniboxing transformation

handles them.

The miniboxing classloader duplicates classes and performs the specialized class rewiring. It

uses transformations from an experimental Scala backend to perform constant propagation
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and dead code elimination in order to remove switches on the type byte. It supports miniboxed

classes generated by the current plug-in and in the current release only works for a single

specialized type parameter. The infrastructure for the double factory instantiation was written

and tuned by hand, but can easily be integrated in the plug-in.

The latest version of the miniboxing plug-in no longer uses the load-time transformation

since we were able to tune the array accessors so the HotSpot JIT would inline them. Yet, in

this chapter, we show the numbers obtained with the naive array accessors and using the

load-time transformation. Current numbers, obtained as of Nov 2015, with the latest version

of the miniboxing plugin are similar to the miniboxed code with the load-time transformation.

Furthermore, Chapter 5 shows the replacement of the Array construct, the MbArray.

The project also contains code for testing the plug-in and the classloader and performing

microbenchmarks, something which turned out to be more difficult than expected.

2.7.2 Benchmarking Infrastructure

The miniboxing plug-in produces bytecode which is then executed by the HotSpot Java Virtual

Machine. Although the virtual machine provides useful services to the running program, such

as compilation, deoptimization and garbage collection, these operations influence our mi-

crobenchmarks by delaying or even changing the benchmarked code altogether. Furthermore,

the non-deterministic nature of such events make proper benchmarking harder [61].

In order to have reliable results for our microbenchmarks, we used ScalaMeter [103], a

tool specifically designed to reduce benchmarking noise. ScalaMeter is currently used in

performance-testing the Scala standard library. When benchmarking, it forks a new virtual

machine such that fresh code caches and type profiles are created. It then warms up the

benchmarked code until the virtual machine compiles it down to native code using the C2

(server) [99] compiler. When the code has been compiled and the benchmark reaches a steady

state, ScalaMeter measures several execution runs. The process is repeated several times,

100 in our case, reducing the benchmark noise. For the report, we present the average of the

measurements performed.

We ran the benchmarks on an 8-core i7 machine running at 3.40GHz with 16GB of RAM

memory. The machine ran a 64 bit version of Linux Ubuntu 12.04.2. For the Java Virtual

Machine we used the Oracle Java SE Runtime Environment build 1.7.0_11 using the C2 (server)

compiler. The following section will describe the benchmarks we ran.

2.7.3 Benchmark Targets

We executed the benchmarks in two scenarios:
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• “Single Context” corresponds to the benchmark target (ArrayBuffer or ListNode)

executed with a single value type, Int;

• “Multi Context” corresponds to running the benchmark for all value types and only then

measuring the execution time for the target value type, Int;

The benchmarks were executed with 7 transformations:

• generic: the generic version of the code, uses boxing;

• mb. switch: miniboxed, using the type byte switching;

• mb. dispatcher: miniboxed, dispatcher runtime support;

• mb. switch + LS: miniboxed, type byte switching, load-time specialization with the

double factory mechanism;

• mb. dispatcher + LS: miniboxed, dispatcher, load-time specialization with the double

factory mechanism;

• specialized: code transformed by specialization;

• monomorphic: code specialized by hand, which does not need the redirects generated

by specialization.

For the benchmarks, we used the two classes presented in the previous sections: TheArrayBuffer

class simulates collections and algorithms which make heavy use of bulk storage and the

ListNode class simulates collections which require random heap access. We chose the

benchmark methods such that each tested a certain feature of the miniboxing transformation.

We used very small methods such that any slowdowns can easily be attributed to bytecode

or can be diagnosed in a debug build of the virtual machine, using the compilation and

deoptimization outputs.

ArrayBuffer.append creates a new array buffer and appends 3 million elements to it. This

benchmark tests the array writing operations in isolation, such that they cannot be grouped

together and optimized.

ArrayBuffer.reverse reverses a 3 million element array buffer. This benchmark proved

the most difficult in terms of matching the monomorphic code performance.

ArrayBuffer.contains checks for the existence of elements inside an initialized array

buffer. It exercises the equals method rewiring and revealed to us that the initial transforma-

tion for equals was suboptimal, as we were not using the information that two miniboxed

values were of the same type. This benchmark showed a 22x speedup over generic code.

List construction builds a 3 million element linked list using ListNode instances. This bench-

mark verifies the speed of miniboxed class instantiation. It was heavily slowed down by the

reflective instantiation, therefore we introduced the double factory for class instantiation

using the classloader.
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ArrayBuffer.append ArrayBuffer.reverse ArrayBuffer.contains

Single Ctx. Multi Ctx. Single Ctx. Multi Ctx. Single Ctx. Multi Ctx.
generic 50.1 48.0 20.4 21.5 1580.1 3628.8
mb. switch 30.9 35.5 2.5 15.1 161.5 554.3
mb. dispatch 16.5 58.2 2.1 26.5 160.7 2551.6
mb. switch + LS 15.6 14.8 2.5 2.4 159.9 161.7
mb. dispatch + LS 15.1 15.9 2.0 2.7 161.8 161.3
specialization 39.7 38.5 2.0 2.4 155.8 156.3
monomorphic 16.2 N/A 2.1 N/A 157.7 N/A

List creation List.hashCode List.contains

Single Ctx. Multi Ctx. Single Ctx. Multi Ctx. Single Ctx. Multi Ctx.
generic 16.7 1841 22.1 20.4 1739.5 2472.4
mb. switch 11.4 11.7 18.3 18.8 1438.2 1443.2
mb. dispatch 11.4 11.5 15.6 21.0 1369.1 1753.2
mb. switch + LS 11.5 11.6 16.2 16.1 1434.9 1446.3
mb. dispatch + LS 12.1 12.7 16.1 15.3 1364.2 1325.9
specialization 11.4 11.4 14.5 36.4 1341.0 1359.2
monomorphic 10.2 N/A 13.3 N/A 1172.0 N/A

Table 2.3 – Benchmark running times. The benchmarking setup is presented in §2.7.2 and the
targets are presented in §2.7.3. The time is measured in milliseconds.

List.hashCode computes the hash code of a list of 3 million elements. We used this

benchmark to check the performance of the hashCode rewiring. It was a surprise to see

the hashCode performance for generic code running in the interpreter (Table 2.4). It is al-

most one order of magnitude faster than specialized code and 5 times faster than miniboxing.

The explanation is that computing the hash code requires boxing and calling the hashCode

method on the boxed object. When the benchmarks are compiled and optimized, this is

avoided by inlining and escape analysis, but in the interpreter, the actual object allocation and

call to hashCode do happen, making the heterogeneous translation slower.

List.contains tests whether a list contains an element, repeated for 3 million elements. It

tests random heap access and the performance of the equals operator rewiring.

2.7.4 Benchmark Results

Table 2.3 presents the main results of our benchmarks. The table highlights “mb. switch +

LS” and “mb. dispatch + LS”, which represent the miniboxing encoding using the load-time

specialization invoked with the double factory mechanism.

The miniboxing encoding based on type tag switching, “mb. switch + LS”, offers steady

performance close to that of specialization and monomorphic code, with slowdowns ranging

between 0 and 20 percent. The classloader specialization, coupled with constant propagation

and dead code elimination, make the type tag switching approach the most stable across

multiple executions with different type arguments, with at most 6 percent difference between

“Single Context” and “Multi Context”, in the case of ArrayBuffer.append.
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ArrayBuffer List
generic 4.6 2.2 367.0 1.4 0.2 16.6
mb. switch + LS 1.6 0.3 25.0 0.8 1.3 4.2
mb. dispatch + LS 2.5 0.7 88.9 1.1 1.5 7.3
specialization 4.3 0.5 30.7 0.6 1.9 2.2
monomorphic 1.0 0.2 12.7 0.4 1.2 2.2

Table 2.4 – Running time for the benchmarks in the HotSpot Java Virtual Machine interpreter.
The time is measured in seconds as instead of milliseconds as in the other tables. “Single
context” and “Multi context” have similar results.

The dispatcher-based encoding, “mb. dispatch + LS”, also offers performance close to special-

ization and monomorphic code, with slightly better performance when traversing the linked

list (benchmarks hashCode and contains), and a lower performance on List creation. This

suggests that passing the dispatcher object on the stack is more expensive than passing a type

tag.

It is worth noting that the dispatcher-based implementation relies on inlining performed by

the just-in-time compiler. Although the load-time cloning mechanism ensures type profiles

remain monomorphic, the burden of inlining falls on the just-in-time compiler. In the case

of virtual machines that perform ahead-of-time compilation, such as Excelsior JET [86], the

newly specialized class is compiled to native code without interpretation, thus no type profiles

are available and no inlining takes place for the miniboxing runtime. In contrast to dispatching,

type tag switching only requires loading-time constant propagation and dead code elimination

to remove the overhead of the miniboxing runtime. This makes it easier to obtain performance

across different virtual machines. The next section will present interpreter benchmarks.

2.7.5 Interpreter Benchmarks

Before compiling the bytecode to native machine code, the HotSpot Virtual Machine interprets

it and gathers profiles that later guide compilation. Table 2.4 presents results for running

the same set of benchmarks in the interpreter, without compilation. It is important that

transformations do not visibly degrade performance in the interpreter, as this slows down

application startup. The data highlights a steady behavior for the the type tag switching, while

the dispatcher-based approach suffers from up to 4x slowdowns.

The data shows a consistent slowdown of the tag switching approach compared to the

monomorphic code in 4 of the 6 experiments. This can most likely be attributed to the

mechanism for invoking object methods, which requires loading a reference to the module

from a static field and then performing a method call. Even after the method call is inlined,

the Scala backend (and the load-time specializer) do not remove the static field access, thus

leaving the redundant but possibly side-effecting instruction in the hot loop. In the native

code the field access is compiled away by the just-in-time compiler. This could be improved

in the Scala backend.
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2.7.6 Bytecode Size

Table 2.5 presents the bytecode generated for ArrayBuffer and ListNode by 4 transforma-

tions: erasure, miniboxing with dispatcher, miniboxing with switching and specialization. The

fraction of bytecode created by miniboxing, when compared to specialization, lies between

0.2x to 0.4x. This is marginally better than the fraction we expected, 0.4x, which corresponds

to 4n/10n for n = 1. The reason the fraction is 4n/10n instead of 2n/10n is explained in §2.4.1.

The double factory mechanism adds a significant bytecode, in the order of 10 kilobytes per

class.

In order to evaluate the benefits of using the miniboxing encoding for real-world software,

we developed a “specialization-hijacking” mode, where specialization was turned off and

all @specialized notations were treated as @minispec, thus triggering miniboxing on all

methods and classes where specialization was used. For this benchmark we only used the

switching-based transformation.

The first evaluation was performed on Spire [98], a Scala library providing abstractions for

numeric types, ranging from boolean algebras to complex number algorithms. Spire is the

one library in the Scala community which uses specialization the most, and the project owner,

Erik Osheim, contributed numerous bug fixes and enhancements to the Scala compiler in

the area of specialization. The results, presented in Table 2.6, show a bytecode reduction of

2.8x and a 1.4x, or 40%, reduction in the number of specialized classes. The two reductions

are not proportional because specialized methods inflate the code size of classes, but do not

increase the class count. The bytecode reduction is limited to 2.8x because specialization is

used in a directed manner, pointing exactly to the value types which should be specialized.

So, instead of generating 10 classes per type parameter, it only generates the necessary value

types. Nevertheless, even starting from manually directed specialization, the miniboxing

transformation is able to further reduce the bytecode size.

The second evaluation, shown in Table 2.7, is motivated by a common complaint in the Scala

community: that the collections in the standard library should be specialized. To perform

an evaluation on collections, we sliced a part of the library around the Vector class and

examined the impact of using the specialization and miniboxing transformations. On the

approximately 64 Scala classes, traits and objects included in our slice, the bytecode reduction

erasure dispatch switch spec.
ArrayBuffer 4.4 19.5 24.5 57.6
ArrayBuffer factory – + 9.0 + 8.5 –
ListNode 3.1 10.9 11.5 45.0
ListNode factory – + 8.7 + 8.3 –

Table 2.5 – Bytecode generated by different translations, in kilobytes. Factories add extra
bytecode for the double factory mechanism. “spec.” stands for specialization.
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bytecode size (KB) classes
Spire - specialized (current) 13476 2545
Spire - miniboxed 4820 1807
Spire - generic 3936 1530

Table 2.6 – Bytecode generated by using specialization, miniboxing and leaving generic code
in the Spire numeric abstractions library. We only count the bytecode on disk.

obtained by miniboxing compared to specialization is 4.7x. Compared to the generic Vector,

the miniboxing code growth is 1.7x, opposed to almost 8x for specialization.

2.7.7 Load-time Specialization Overhead

In this section we will evaluate the overhead of the double factory mechanism. There are three

types of overhead involved:

• Bytecode overhead, shown in the previous section;

• Time spent specializing and loading a class;

• Heap overhead for the classloader and factory.

We will further explore the last two sources of overhead.

Time Spent Specializing

Table 2.3, in the “List creation” column, shows the overhead of the double factory mechanism

and class specialization is not statistically noticeable after the mechanism is warmed up.

Nevertheless, it is important to understand how the mechanism behaves during a cold start,

as this directly impacts an application’s startup time. In this subsection we will examine the

overhead for a cold start, coming from two different sources:

• The runtime class specialization;

• The cold start of the double factory mechanism.

The evaluation checks the two overheads separately: in the first experiment we only load the

classes (using Class.forName) to trigger the runtime class specialization, while in the second

experiment we instantiate the classes, either directly, using the new operator or through the

double factory mechanism. In order to evaluate the class specialization, we instrumented

bytecode size (KB) classes
Vector - specialized 5691 1434
Vector - miniboxed 1210 435
Vector - generic (current) 715 223

Table 2.7 – Bytecode generated by using specialization, miniboxing and leaving generic code
on the Scala collection library slice around Vector.
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time in ms classes
classpath - just load 182 ± 5 9 × 25 = 225
classloader - warmed up 300 ± 4 225
classloader - cold start 461 ± 9 225

Table 2.8 – Loading time (classpath) and time for cloning and specialization (classloader) for
the 9 specialized variants of Vector and their transitive dependencies.

the specializing classloader to dump the resulting class files, such that we can compare the

specializing classloader to simply loading the specialized variants from the classpath.

For the comparison, we use the Vector class described in the previous section. The Vector

class mixes in 36 traits [93] which are translated by the Scala compiler as transitive depen-

dencies of the class. In our experiments, loading the Vector class using Class.forName

transitively loaded another 24 specialized classes for each variant. Instantiating a vector using

new further loads another 18 classes, mainly specialized trait implementations and internal

classes, leading to a total of 42 classes loaded with each specialized variant of Vector.

In each experiment we start the virtual machine, start counting the time, load or instantiate

Vector for all 9 value types in Scala, output the elapsed time and exit. Once a class is loaded,

its internal representation in the virtual machine remains cached until its classloader is

garbage collected. In order to perform correct benchmarks, we chose to use a virtual machine

to load the 9 specialized variants of Vector only once, and then restart the virtual machine.

We repeated the process 100 times for each measurement.

The first experiment involves loading the class: this can be done either by using the specializing

classloader to instantiate a template or by loading the class file dumped from a previous

specialization run. We observed a significant difference between cold starting the specializing

classloader and warming it up on a different set of classes. This is shown in Table 2.8: cold

starting the specialization classloader incurs a slowdown of 153% while warming it up before

leads to a 65% slowdown in class loading time.

The second experiment involves instantiating the class, either directly (using the new operator)

or through the double factory mechanism. Table 2.9 presents the results. The surprising result

of this experiment is that the overhead caused by the double factory mechanism is under

4%. As before, most of the time is spent specializing the template to produce the specialized

time in ms classes
classpath - new 258 ± 5 9 × 42 = 378
classpath - factory 268 ± 6 378
classloader - factory - warm 488 ±10 378
classloader - factory - cold 655 ± 9 378

Table 2.9 – Instantiation time for the 9 specialized variants of Vector and their transitive
dependencies.
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class, which, depending on whether the classloader was used before, can lead to a slowdown

between 84% and 144%. It is important to point out this overhead is a one-time cost, and

further instantiations of the specialized variants take on the order of tens of milliseconds.

Heap Overhead

In this section we will attempt to bound the heap usage of the double factory mechanism.

The double factory mechanism consists of a first level factory, which uses reflection to create

second level factories, which, in turn, use the new operator to instantiate load-time specialized

classes. This mechanism was imposed in order to avoid the cost of reflection-based instantia-

tion, which we found to be more expensive in terms of overhead. Each second level factory

corresponds to a set of pre-determined type tags, thus instantiating two specialized variants

will require two separate second level factories.

The first level factory mechanism keeps a cache of 10n references pointing to second level

factories, which is initially empty and fills up as the different variants are created. The second

level factories are completely stateless and only offer a method for each specialized class

constructor. Therefore the maximum heap consumption, for a 64 bit system running the

HotSpot Virtual Machine, would be 16 bytes for each second level factory and 8 bytes for its

cached reference, all times 10n , assuming all variants are loaded. This means a total of 24×10n

bytes of storage. For a class with a single type parameter, this would mean a heap overhead

in the order of hundreds of bytes. Assuming all of spire’s specialized classes used arrays and

required the two factory mechanism, since most take a single type parameter, it would mean a

heap overhead in the order of tens of kilobytes.

However a hidden overhead is also present, consisting of the internal class representations for

the second level factories inside the virtual machine. To bound this overhead, we can compare

the factories to the classes themselves: for each specialized variant of the class there will be a

specialized factory, with a method corresponding to each constructor of the class. The factory

will therefore always have a strictly smaller internal representation than the specialized class,

leading to at most a doubling of the internal class representation in the virtual machine.

2.7.8 Extending to Other Virtual Machines

In order to asses whether the miniboxing runtime system provides good performance on other

virtual machines, we have evaluated it on Graal [148]. The Graal Virtual Machine consists of

the same interpreter as the HotSpot Virtual Machine but a completely rewritten just-in-time

compiler. Since the interpreter is the same, the same type profiles and hotness information is

recorded, but the code is compiled using different transformations and heuristics. The results

in Table 2.10 exhibit both a much lower variability but also a lower peak performance compared

to the C2 compiler in HotSpot (in Table 2.3). With the single exception of ArrayBuffer’s
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ArrayBuffer.append ArrayBuffer.reverse ArrayBuffer.contains

Single Ctx. Multi Ctx. Single Ctx. Multi Ctx. Single Ctx. Multi Ctx.
generic 78.3 52.3 3.2 20.3 607.6 3146.1
mb. switch 27.6 × 7.4 × 844.4 ×
mb. dispatch 27.0 34.8 3.2 10.8 844.7 962.7
mb. switch + LS 22.2 14.3 3.8 2.9 725.4 725.2
mb. dispatch + LS 32.9 26.4 3.4 4.0 844.6 845.3
specialization 21.7 13.4 3.5 2.7 488.7 489.4
monomorphic 19.8 N/A 3.1 N/A 490.4 N/A

List creation List.hashCode List.contains

Single Ctx. Multi Ctx. Single Ctx. Multi Ctx. Single Ctx. Multi Ctx.
generic 32.6 23.3 13.4 13.6 1846.5 2168.1
mb. switch 23.7 18.0 11.7 10.9 1420.8 1421.5
mb. dispatch 20.9 18.3 12.4 11.4 1359.3 1427.5
mb. switch + LS 23.2 17.1 12.2 10.5 1414.8 1459.4
mb. dispatch + LS 25.0 18.3 12.1 10.5 1390.6 1402.9
specializare 21.7 16.9 12.4 10.6 1463.5 1459.8
monomorphic 19.6 N/A 11.7 N/A 1249.2 N/A

Table 2.10 – Running times on the Graal Virtual Machine. “×” marks benchmarks for which
the bytecode generated crashed the Graal just-in-time compiler. The time is measured in
milliseconds.

contains benchmark, the switching runtime support with class loading behaves similarly to

specialized code.

2.7.9 Evaluation Remarks

After analyzing the benchmarking results, we believe the miniboxing transformation with type

byte switching and classloader duplication provides the most stable results and fulfills our ini-

tial goal of providing an alternative encoding for specialization, which produces less bytecode

without sacrificing performance. Using the classloader for duplication and switch elimination,

the type byte switching does not require forced inlining, making the transformation work

without any inlining support from the Scala compiler.

2.8 Related Work

The work by Sallenave and Ducournau [114] shares the same goals as miniboxing: offering

unboxed generics without the bytecode explosion. However, the target is different: their

Lightweight Generics compiler targets embedded devices and works under a closed world as-

sumption. This allows the compiler to statically analyze the .NET bytecode and conservatively

approximate which generic classes will be instantiated at runtime and the type arguments

that will be used. This information is used to statically instantiate only the specialized variants

that may be used by the program. To further reduce the bytecode size, instantiations are

aggregated together into three base representations: ref, word and dword. This significantly

reduces the bytecode size and does not require runtime specialization. At the opposite side of
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the spectrum, miniboxing works under an open-world assumption, and inherits the oppor-

tunistic and compatible nature from specialization, which enables it to work under erasure

[44], without the need for runtime type information. Instead, type bytes are a lightweight and

simple mechanism to dispatch operations for encoded value types.

According to Morrison et al [92] there are three types of polymorphism: textual polymor-

phism, which corresponds to the heterogeneous translation, uniform polymorphism which

corresponds to the homogeneous translation and tagged polymorphism which creates uni-

form machine code that can handle non-uniform store representations. In the compiler

they develop for the Napier88 language, the generated code uses a tagged polymorphism

approach with out-of-band signaling, meaning the type information is not encoded in the

values themselves but passed as separate values. Their encoding scheme accommodates

surprisingly diverse values: primitives, data structures and abstract types. As opposed to the

Napier88 compiler, the miniboxing transformation is restricted to primitives. Nevertheless, it

can optimize more using the runtime specialization approach, which eliminates the overhead

of tagging. Furthermore, the miniboxing runtime support allows the Java Virtual Machine

to aggressively optimize array instructions, which makes bulk storage operations orders of

magnitude faster. The initial runtime support implementations presented in §2.5 show that it

is not possible to have these optimizations in a purely compiler-level approach, at least not on

the current incarnation of the HotSpot Java Virtual Machine.

Fixnums in Lisp [146] reserve bits for encoding the type. For example, an implementation may

use a 32-bit slot to encode both the type, on the first 5 bits, and the value, on the last 27 bits. We

call this in-band type signaling, as the type is encoded in the same memory slot as the value.

Although very efficient in terms of space, the fixnum representation has two drawbacks that

we avoid in the miniboxing encoding: the ranges of integers and floating point numbers are

restricted to only 27 bits, and each operation needs to unpack the type, dispatch the correct

routine and pack the value back with its type. This requires a non-negligible amount of work

for each operation. Out-of-band types are used in Lua [70], where they are implemented using

tagged unions in C. Two differences set miniboxing apart: first, fixnums and tagged unions

are used in homogeneous translations, whereas the miniboxing technique simplifies hetero-

geneous translations. Secondly, miniboxing leverages static type information to eliminate

redundant type tags that would be stored in tagged unions. For example, miniboxing uses the

static type information that all values in an array are of the same type: in such a case, keeping

a tag for each element, as would be done with tagged unions, becomes redundant. Therefore,

we consider miniboxing to be an encoding applicable to strongly typed languages, which

reduces the bytecode size of heterogeneous translations, whereas fixnums and tagged unions

are encodings best applied to dynamically typed languages and homogeneous translations.

The .NET Common Language Runtime [32, 67, 76] was a great inspiration for the specializing

classloader. It stores generic templates in the bytecode, and instantiates them in the virtual

machine for each type argument used. Two features are crucial in enabling this: the global

presence of reified types and the instantiation mechanism in the virtual machine. Contrarily,
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the Java Virtual Machine does not store representations of the type arguments at runtime

[44] and re-introducing them globally is very costly [116]. Therefore, miniboxing needs to

inherit the opportunistic behavior from specialization. On the other hand, the classloading

mechanism for template instantiation at runtime is very basic, and not really suited to our

needs: it is both slow, since it uses reflection, and does not allow us to modify code that

is already loaded from the classpath. Consequently we were forced to impose the double

factory mechanism for all classes that extend or mix-in miniboxed parents, creating redundant

boilerplate code, imposing a one-time overhead for class instantiation and increasing the heap

requirements. Additionally, the .NET CLR shares code between different specializations when

there is no difference in the implementation (e.g. the bytecode does not have any specific

instructions that depend on type parameters). Having no control over the virtual machine,

the miniboxing classloader does generate redundant specializations of the code when it does

not depend on the type parameter’s instantiation.

The Pizza generics support [94] inspired us in the use of traits as the base of the specialized

hierarchy, also offering insights into how class loading can be used to specialize code. The

mechanism employed by the classloader to support arrays is based on annotations, which

mark the bytecode instructions that need to be patched to allow reading an array in con-

formance with its runtime type. In our case there is no need for patching the bytecode

instructions, as miniboxing goes the other way around: it includes all the code variants in

the class and then performs a simple constant propagation and dead code elimination to

only keep the right instruction. Miniboxing also introduces the double factory mechanism,

which pays the reflective instantiation overhead only once, instead of doing it on each class

instantiation. The class generation from a template was first presented in the work of Agesen

et al [34].

Around the same time as Pizza, there has been significant research on supporting polymor-

phism in Java, leading to work such as GJ [44], NextGen [49] and the polymorphism translation

based on reflective features of Viroli [142]. NextGen [35, 49, 115] presents an approach where

type parameter-specific operations are placed into snippet methods, which are grouped in

wrapper classes, one for each polymorphic instantiation. Wrapper classes, in turn, extend

a base class which contains the common functionality independent of the type parameters.

It also implements a generated interface which gives the subtyping relation between the

specialized classes, also supporting covariance and contravariance for the type parameters.

Taking this approach of grouping common functionality in base classes, as specialization does,

could reduce code duplication in miniboxed variants, at the cost of duplicating all snippet

methods from the parent in the children classes. Since the collections hierarchy in Scala is

up to 6 levels deep, the cost of duplicating the same snippet method 6 times outweighs the

benefit of reducing local duplication in each class.

The dispatcher objects in miniboxing are specialized and restricted where clauses from PolyJ

[36]. Since the methods that operate on primitive values are fixed and known a priori, unlike

PolyJ, we can use dispatcher objects and type tags without any change to the virtual machine.
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Nevertheless it is worth noting that our implementation does pay the price of carrying dis-

patcher objects in each instance, which PolyJ avoids by implementing virtual machine support

for invoking methods in where clauses.

In the context of ML, Leroy presented the idea of mixing boxed and unboxed representations

of data and described the mechanism to introduce coercions between the two whenever exe-

cution passes from monomorphic to polymorphic code or back [84]. Miniboxing introduces

similar coercions between the boxed and miniboxed representation, whenever the expected

type is generic instead of miniboxed. The peephole optimization in miniboxing could be seen

as a set of rules similar to the ones given by Jones et al in [72]. The work on passing explicit

type representations in ML [68, 88, 131, 134] can also be seen as the base of specialization

and also miniboxing. However, since we control rewiring and do it in a conservative fashion,

we only use the type tags available, thus miniboxing does not need any mechanism for type

argument lifting.

This chapter has systematically avoided the problem of name mangling, which has been

discussed in the context of Scala [53] and more recently of X10 [130]. Finally, miniboxing is

not limited to classes and methods, but could also be used to reduce bytecode in specialized

translations of random code blocks in the program [124].

2.9 Conclusions

We described miniboxing, an improved specialization transformation in Scala, which signifi-

cantly reduces the bytecode generated. Miniboxing consists of the basic encoding (§2.3) and

code transformation (§2.4), the runtime support (§2.5) and the specializing classloader (§2.6).

Together, these techniques were able to approach the performance of monomorphic and

specialized code and obtain speedups of up to 22x over the homogeneous translation (§2.7).

2.10 Appendix: Miniboxing Transformation Corner Cases

In this appendix we show a number of examples that exercise more complex cases of the

miniboxing transformation.

2.10.1 Type Bytes in Traits

One of the surprising parts of the miniboxing transformation relates to how traits (interfaces

with default methods) store their type bytes. To see the problem, we need to first look at the

class translation:

1 class C[@miniboxed T]

Is transformed to:
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1 trait C[@miniboxed T] extends Object

2 class C_M[Tsp] extends Object with C[Tsp] {

3 private[this] val C_M|T_TypeTag: Byte = _ // type byte field

4 def <init>(C_M|T_TypeTag: Byte): C_M[Tsp] = // class constructor

5 }

6 class C_L[Tsp] extends Object with C[Tsp] {

7 def <init>(): C_L[Tsp] = // class constructor

8 }

The example shows the fact that class C_M stores its type byte as a field. Then, extending it:

1 class D extends C[Int]

Is implemented by calling the constructor with the type byte:

1 class D extends C_M[Int] {

2 def <init>(): D = {

3 D.super.<init>(INT) // intialize type byte

4 ()

5 }

6 }

But traits cannot store fields, so they have to be translated differently. For example:

1 trait T[@miniboxed T]

The miniboxing transformation leaves the type byte as a method:

1 trait T[@miniboxed T] extends Object

2 trait T_M[Tsp] extends Object with T[Tsp] {

3 def T_M|T_TypeTag(): Byte // type byte accessor

4 }

5 trait T_L[Tsp] extends Object with T[Tsp]

And when a class extends the trait:

1 class U extends T[Int]

It also implements the abstract type byte accessor:

1 class U extends Object with T_M[Int] {

2 def T_M|T_TypeTag(): Byte = INT

3 def <init>(): U = // class constructor

4 }

Therefore, type bytes are stored differently in classes and traits.
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2.10.2 Overriding

Another non-obvious problem occurs with creating specialized overloads is that, through

name mangling, no longer override correctly. To show how overriding works, let us start from

the following example:

1 class C[T, U] {

2 def foo(t: T, u: U): Int = 1

3 }

4

5 class D[T, @miniboxed U] extends C[T, U] {

6 override def foo(t: T, u: U): Int = 2

7 }

Which is transformed to (constructors omitted for brevity):

1 class C[T, U] extends Object {

2 def foo(t: T, u: U): Int = 1

3 }

4

5 trait D[T, @miniboxed U] extends C[T,U] {

6 override def foo(t: T, u: U): Int

7 def foo_M(U_TypeTag: Byte, t: T, u: Long): Int

8 }

9 class D_M[Tsp, Usp] extends C[Tsp,Usp] with D[Tsp,Usp] {

10 private[this] val D_M|U_TypeTag: Byte = _

11 override def foo(t: Tsp, u: Usp): Int = // redirect to foo_M

12 def foo_M(U_TypeTag: Byte, t: Tsp, u: Long): Int = 2

13 }

14 class D_L[Tsp, Usp] extends C[Tsp,Usp] with D[Tsp,Usp] {

15 override def foo(t: Tsp, u: Usp): Int = 2

16 def foo_M(U_TypeTag: Byte, t: Tsp, u: Long): Int = // redirect to foo

17 }

The method foo in class C is correctly overridden by the implementations in both class D_L

and D_M. However, let us now define class E:

1 class E[@miniboxed T, @miniboxed U] extends D[T, U] {

2 override def foo(t: T, u: U): Int = 1

3 }

The common trait is:
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1 trait E[@miniboxed T, @miniboxed U] extends D[T,U] {

2 override def foo(t: T, u: U): Int

3 def foo_MM(T_TypeTag: Byte, U_TypeTag: Byte, t: Long, u: Long): Int

4 def foo_ML(T_TypeTag: Byte, t: Long, u: U): Int

5 def foo_LM(U_TypeTag: Byte, t: T, u: Long): Int

6 }

And the specialized variant for corresponding to both type parameters being primitive types

is:

1 class E_MM[Tsp, Usp] extends D_M[Tsp,Usp] with E[Tsp,Usp] {

2 private[this] val E_MM|T_TypeTag: Byte = _

3 private[this] val E_MM|U_TypeTag: Byte = _

4 override def foo(t: Tsp, u: Usp): Int = // redirect to foo_MM

5 def foo_MM(T_TypeTag: Byte, U_TypeTag: Byte, t: Long, u: Long): Int = 3

6 def foo_ML(T_TypeTag: Byte, t: Long, u: Usp): Int = // redirect to foo_MM

7 def foo_LM(U_TypeTag: Byte, t: Tsp, u: Long): Int = // redirect to foo_MM

8 override def foo_M(U_TypeTag: Byte, t: Tsp, u: Long): Int = // redirect

to foo_MM

9 }

The E_MM class contains an unexpected member: foo_M. This method is generated since

the class must override the method with the same name in class D_M, which does not have a

corresponding equivalent with the same name in class E_MM. This is a feature inherited from

the specialization transformation.

2.10.3 Inner classes

Inner classes pose an interesting challenge for the transformation:

1 class C[@miniboxed T] {

2 class E(t: T)

3 }

They can be translated in two ways: either (1) create a single inner class D, which boxes and

(2) duplicate class D in each specialization. The current version of the miniboxing plug-in

implements solution (1) and warns the user:

1 $ mb-scalac inner.scala

2 inner.scala:2: warning: The class E will not be miniboxed based on type

parameter(s) T of miniboxed class C. To have it specialized, add the type

parameters of class C, marked with "@miniboxed" to the definition of class

E and instantiate it explicitly passing the type parameters from class C:

3 class E(t: T)

4 ^

5 one warning found
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Instead, if the class E is located inside a method, it will be automatically duplicated, according

to solution (2).

2.10.4 Binary Compatibility

As explained in Chapter 1, data representation transformations are not binary compatible.

Another compatibility question that can be asked is what happens if a library is compiled with

the miniboxing plugin and then a client tries to use it without adding the miniboxing plugin.

In such scenarios, the compilation should fail:

1 $ cat C.scala

2 class C[@miniboxed T]

3

4 $ cat D.scala

5 class D extends C[Int]

6

7 $ mb-scalac C.scala

8

9 $ scalac D.scala

10 D.scala:1: error: The class C can only be referred to when using the

miniboxing plugin. Please see scala-miniboxing.org.

11 class D extends C[Int]

12 ^

13 one error found

Indeed, the miniboxing plugin annotates all transformed classes with a special marker that

prevents the vanilla compiler from referring to them. The underlying mechanism is a general

annotation, called @compileTimeOnly(message: String) that prevents the compiler

from emitting any reference to a symbol in the backend. When the miniboxing plugin is

active, transformed classes have the annotation automatically removed, so the backend can

refer to the symbols. However, when the miniboxing plugin is not active, the transformed

classes loaded from the classpath maintain their annotation, preventing the compilation

process.
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3.1 Introduction

Language and compiler designers are well aware of the intricacies of erased generics [44, 53,

68, 72, 76, 84, 92, 138], one of which is requiring object-based representations for primitive

types. To illustrate this, let us analyze the identity method, parameterized on the argument

type, T:

1 def identity[T](arg: T): T = arg

2 val x: Int = identity[Int](5)

The low-level compiled code for identity needs to handle incoming arguments of differ-

ent sizes and semantics: booleans, bytes, characters, integers, floating point numbers and

references to heap-allocated objects. To implement this, some compilers impose a uniform

representation, usually based on references to heap objects. This means that primitive types,

such as integers, have to be represented as objects when passed to generic methods. The

process of representing primitive types as objects is called boxing. Since boxing slows down

execution, whenever primitive types are used outside generic environments, they use their

stack-based (unboxed) representation. Thus, in the low-level compiled code, x is using the

unboxed representation, denoted as int:

1 def identity(arg: Object): Object = arg

2 // val x: Int = identity[Int](5):

3 val arg_boxed: Object = box(5)

4 val ret_boxed: Object = identity(arg_boxed)

5 val x: int = unbox(ret_boxed)

The low-level code shows the two representations of the high-level Int concept: the unboxed

primitive int and the boxed Object, which is compatible with erased generics. There are two

approaches to exposing this duality in programming languages: In Java, both representations

are accessible to programmers, making them responsible for the choice and exposing the lan-
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guage feature interactions. On the other hand, in order to avoid burdening programmers with

implementation details, languages such as ML, Haskell and Scala expose a unified concept,

regardless of its representation. Then, during compilation, the representation is automatically

chosen based on the interaction with the other language features and the necessary coercions

between representations, such as box and unbox, are added to the code.

This strategy of exposing a unified high-level concept with multiple representations is used in

other language features as well:

Value classes [4, 25, 66] behave as classes in the object-oriented hierarchy, but are optimized

to efficient C-like structures [122] where possible. This exposes two representations of the

value class concept: an inline, efficient struct representation and a flexible object-oriented

representation that supports subtyping and virtual method calls.

Specialization [53, 54, 63] is an optimized translation for generics, which compiles methods

and classes to multiple variants, each adapted for a primitive type. An improvement to

specialization is using the miniboxed representation and creating a single variant for all

primitive types, called a minibox. In this transformation, a generic type T can be either boxed

or miniboxed, in yet another instance of a concept with multiple representations.

Multi-stage programming (also referred to as “staging”) [129] allows executing a program in

multiple stages, at each execution stage generating a new program that is compiled and run,

until the final program outputs the result. In practice, this technique is used to lift expressions

to operation graphs and to generate new, optimized code for them. This shows a very different

case of dual representations: a value can be represented either as itself or as a lifted expression,

to be evaluated in a future execution stage.

The examples above seem like unrelated language features. And, indeed, compiler imple-

menters have provided dedicated solutions for each of them, entangling the core transfor-

mation mechanism with assumptions about the language and platform. For instance, the

solutions employed by ML and Scala are aimed at satisfying the constraints of erased generics

[44, 84, 132], and hardcode this decision into their rewriting algorithm. Miniboxing, shown in

Chapter 2, uses a custom transformation implemented as a Scala compiler plugin, aimed at

only the miniboxed representation. Finally, the Lightweight Modular Staging framework [107]

in Scala relies on a custom fork of the main compiler, dubbed Scala-Virtualized [91], which is

specifically retrofitted to support lifting language constructs.

Yet, these transformations share two common traits:

(1) the use of multiple representations for the same concept and

(2) the automatic introduction of coercions between these representations during program

compilation.

These similarities suggest there is an underlying principle that generalizes the individual

algorithms. We believe exposing this principle can disentangle the transformations from their
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assumptions, providing a framework that researchers can formally reason about and that

implementors can reuse when developing new transformations.

To this end, we present an elegant and minimalistic type-driven mechanism that uses annota-

tions to guide the introduction of coercions between alternative representations, which we

call the Late Data Layout (LDL) mechanism. In doing so, we make the following contributions:

• We survey the existing approaches to data representation transformation, show their

limitations and explore the additional features required (§3.2 and §3.3);

• We show the Late Data Layout (LDL) representation transformation mechanism, which

does not impose the semantics of alternative representations and coercions (§3.4) and

reason intuitively about its properties (§3.5);

• We validate the mechanism by implementing three language features as Scala compiler

extensions using the LDL transformation: value classes1, specialization using the mini-

boxing representation2 and a simple staging mechanism3 (§3.6). For each of these use

cases, we describe the implementation in detail, we compare it to the existing trans-

formations in terms of code size and complexity, we evaluate the resulting programs

in terms of performance and finally show the specific extensions we added to the LDL

mechanism to support each use case.

The Late Data Layout mechanism relies on two key insights: (1) annotated types conveniently

capture the semantics of using multiple representations and (2) local type inference can be

used to consistently and efficiently introduce coercions between these representations. The

following paragraphs describe the insights and how they influence the mechanism.

Key Insights

Through annotations, additional metadata can be attached to the types in a program [10, 24].

This, in turn, allows external plugins to verify more properties of the code while leveraging

the existing type system infrastructure. Annotated types have been used to statically check a

wide range of program properties, from simple non-null-ness to effect tracking and purity

analysis [100, 112].

Our first key insight is that annotated types are a perfect match for encoding the multiple

representations of a high-level concept. For example, changing a value’s type from Int to

@unboxed Int marks it for later unboxing. This provides generality, selectivity and automa-

tion.

Generality. The annotations can be introduced either automatically, by the compiler, based on

the interactions of different language features, or manually, by programmers. This provides

1http://github.com/miniboxing/value-plugin
2http://github.com/miniboxing/miniboxing-plugin
3http://github.com/miniboxing/stage-plugin
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the flexibility necessary to capture a wide variety of transformations: some of them work

automatically, like unboxing primitive types and value classes, whereas others, like staging,

require manual annotation, corresponding to domain-specific knowledge.

Selectivity. Annotated types allow selectively marking values with their alternative represen-

tation. For example, marking a value’s type as @unboxed means it will use the alternative

unboxed representation. Contrarily, leaving it unmarked will continue to use the default,

boxed, representation. In the following example, we show how simple it is for the compiler to

signal whether a value should be boxed or unboxed and whether generics are erased, as in

Java, or specialized, as in the .NET CLR [32, 76]:

1 // erased generics, boxed value:

2 val x: Int = identity[Int](5)

3 // erased generics, unboxed value:

4 val x: @unboxed Int = identity[Int](5)

5 // specialized generics, unboxed value:

6 val x: @unboxed Int = identity[@unboxed Int](5)

This flexibility of annotating individual values with their alternative representation is in sharp

contrast to state of the art data representation transformations [44, 84]. These transformations

consider the unboxed representation as always desirable and hardcode the semantics of

erased generics into their transformation rules. Section §3.3.3 shows that being able to

selectively annotate the values that use a different representation is crucial to implementing

transformations in object-oriented languages. This flexibility is also fundamental to multi-

stage programming, where the choice of execution stage has to be done for each individual

value.

Automation. The semantics of annotated types can be specified externally and can change

as the compilation pipeline advances: keeping annotated and non-annotated types com-

patible emulates the unified concept, allowing seamless inter-operation regardless of the

representation. Later, making annotated types incompatible emulates the difference between

representations, automatically triggering the introduction of coercions.

Our second key insight is that local type inference [95, 101] can be used to consistently intro-

duce coercions based on the annotated types and push them down in the AST to improve

performance. Once the unified concept has been refined into several representations by

making annotated types incompatible, type-checking the program’s abstract syntax tree (AST)

again reveals the representation inconsistencies, where coercions are required.

Coercion push-down. Name resolution and type propagation can be seen as a forward data flow

analysis [77] that, through annotated types, propagates the data representation. On the other

hand, local type inference [95, 101] propagates expected types from the outer expressions,

providing a backward data flow analysis. Having these two analyses meet at points where the

representation doesn’t match ensures that coercions are introduced only when necessary:
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1 // erased generics, boxed value:

2 val x: Int = identity(box(5))

3 // erased generics, unboxed value:

4 val x: @unboxed Int = unbox(identity(box(5)))

5 // specialized generics, unboxed value:

6 val x: @unboxed Int = identity[@unboxed Int](5)

Consistency. Type checking a program means proving its correctness with respect to the

theory introduced by the types. Therefore, making representation information available to the

type system allows it to prove correctness with respect to the representations in use and the

coercions introduced between them, thus proving consistency.

Generality again. The last step of the transformation gives the annotated types their final se-

mantics, by making the alternative representations explicit. For example, primitive unboxing

replaces @unboxed Int by int and gives the coercions, box and unbox, their semantics: in

this case creating the boxed object and reading the unboxed integer from the object represen-

tation. This allows the rest of the transformation to work regardless of the actual alternative

representations, thus isolating the general mechanism from the representation semantics.

Being type-driven, our approach can be seen as a generalization of the work of Leroy on

unboxing primitive types in ML [84]. Yet, it is far from a trivial generalization: (1) we introduce

the notion of selectively picking the representation for each value, which is crucial to enabling

staging, specialization and creating bridge methods [49], (2) we extend the transformation to

work in the context of object-oriented languages, with the complexities introduced by subtyp-

ing and virtual method calls and (3) we disentangle the transformation from the assumptions

that generics are erased and that the alternative representation is always desirable.

In the following sections we explain the motivation for the Late Data Layout mechanism,

present it in detail and validate our approach.

3.2 Data Representation Transformations

In this section we present several approaches to transforming the data representation, high-

lighting their strong and weak points on small examples. We start with a naive approach,

continue with a syntax-based transformation that eagerly introduces coercions and conclude

with a type-driven transformation, which only introduces coercions when necessary. To facili-

tate the presentation, the examples refer to unboxing primitive types, but the explanations

can be generalized to all the three use cases described in the validation section: value classes,

miniboxing and staging.

In the rest of the presentation we consider the integer concept to be boxed by default and

represent it by Int. The goal of the transformations is to use the unboxed integer, int,

whenever possible. Unless otherwise specified, all generic classes are assumed to be compiled

to erased homogeneous low-level code. Finally, to improve readability, we place annotations
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in front types (e.g. @unboxed Int) instead of after (e.g. Int @unboxed), as the Scala syntax

requires.

3.2.1 Naive Transformations

To begin, let us analyze a simple code snippet, where we take the first element of a linked list

of integers (List[Int]) and construct a new linked list with this one element:

1 val x: Int = List[Int](1, 2, 3).head

2 val y: List[Int] = List[Int](x)

A naive approach to compiling down this code would be to replace all boxed integers by their

unboxed representations without performing any data-flow analysis:

1 val x: int = List[Int](1, 2, 3).head

2 val y: List[Int] = List[Int](x)

The resulting code is invalid. In the first statement, x is unboxed while the right-hand side

of its definition, the head of the generic list, is boxed. In the second statement, we create a

generic list, which expects the elements to be boxed. Yet, x is now unboxed. This example

motivates a more elaborate transformation for unboxing integers.

3.2.2 Eager (Syntax-driven) Transformations

The previous example shows that naively replacing the representation of a value is not enough:

we need to patch the definition site and all the use sites, coercing to the right representation:

1 val x: int = unbox(List[Int](1, 2, 3).head)

2 val y: List[Int] = List[Int](box(x))

In the snippet above, two coercions have been introduced. In the first line, since x becomes

unboxed, the right-hand side of its definition also needs to be unboxed. In the second line, x

is boxed to satisfy the list constructor. This means that by eagerly adding coercions we can

keep the program code consistent. Let us take another example:

1 val a: Int = ...

2 val b: Int = a

Since a is transformed from boxed to unboxed, all its occurrences are replaced by box(a):

1 val a: int = unbox(...)

2 val b: Int = box(a)

When b is transformed, its right hand side is unboxed:
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1 val a: int = unbox(...)

2 val b: int = unbox(box(a))

The definition of b is suboptimal: it boxes a just to unbox it immediately after. In some cases,

thanks to escape analysis [121], the Java Virtual Machine just-in-time compiler [79, 99] can

remove redundant boxing and unboxing operations. Yet it typically takes 10000 executions

to trigger the optimizing just-in-time compiler [80], which means 10000 boxed integers are

created just to be immediately unboxed and garbage collected later. And escape analysis

is a best-effort optimization, as there are no guarantees on the patterns it will optimize. It

would therefore be best if the data representation transformation would eliminate redundant

coercions from the start. This is where the peephole optimization comes in.

3.2.3 Peephole Optimization For Eager Transformations

A peephole optimization [72] can be used to remove the redundant coercions introduced

by an eager (syntax-driven) transformation. The name “peephole” comes from the very

limited scope of the rewriting rules, usually encompassing a coercion and another abstract

syntax tree node. For example, the peephole optimization rewrites box(unbox(t)) and

unbox(box(t)) to just t. This simple rewrite rule eliminates the redundant coercions in the

definition of b. Yet, it is not enough.

Unboxed operations. Let us take an example operation between two boxed values, where a

and b are the values defined in the previous section:

1 val c: Int = a + b

Eager transformations box a and b and unbox the result of their addition, which is inefficient:

1 val c: int = unbox(box(a) + box(b))

Therefore, we need an extra rule for distributing the unboxing operation inside: unbox(t1 +

t2)⇒ unbox(t1) _+_ unbox(t2), where _+_ is the platform-provided intrinsic unboxed

integer addition. With this extra rule, coupled with coercion elimination, the expression is

fully optimized.

Conditional optimization. The previous rule is not enough to produce optimal code in all

cases:

1 def foo(x: Int, y: Int): Int =

2 if (...) x else y

In order to optimize the foo method, the compiler unboxes x, y and the return type of foo

and introduces three coercions: two for boxing x and y back and one for unboxing the body of

foo:
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1 def foo(x: int, y: int): int =

2 unbox(if (...) box(x) else box(y))

In this case, we need a rule for distributing the coercion surrounding anifnode to its branches:

unbox(if (...) a else b)→ if (...) unbox(a) else unbox(b):

1 def foo(x: int, y: int): int =

2 if (...) unbox(box(x)) else unbox(box(y))

Which in turn is completely optimized by the first rule, unbox(box(t))→ t.

Block optimizations. Let us take one final example:

1 def bar(): Boolean = {

2 foo(..., ...)

3 true
4 }

Since the type of foo was transformed, any call to it needs to be adapted: integer arguments

need to be unboxed and the result needs to be boxed back:

1 def bar(): Boolean = {

2 box(foo(unbox(...), unbox(...)))

3 true
4 }

In a block with n expressions, the first n −1 expressions are treated as statements, so their

results are ignored. Therefore boxing the result of foo is redundant, since the boxed value

will be ignored anyway. Thus we have to introduce a specific rule for blocks which removes

coercions on statements. Not only that this rule is already stateful, depending on the position

in the block, but it is even not sufficient: the last expression in a block, which acts as the block’s

result, has the distribution property of if conditionals. Furthermore, given multiple stateful

rules, they can be mixed together: What if a conditional is nested in a block, in statement

position? Should coercions be distributed or ignored?

In practice, a peephole optimization needs multiple stateful rewrite rules for each type of node

in the intermediate representation of the program, usually an abstract syntax tree (AST) in

the compiler. This suggests that although eager transformations work well for minimalistic

intermediate representations, such as Haskell’s Core, the number and complexity of AST nodes

in the Scala compiler makes a peephole transformation impractical. The initial implementa-

tion of miniboxing presented in Chapter 2 used an eager transformation but the tedium of

maintaining and tweaking the peephole optimization rules led to the development of the Late

Data Layout mechanism, which, itself, is based on a type-driven transformation.
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3.2.4 Type-driven Transformations

Syntax-driven transformations are straightforward, but they eagerly introduce coercions,

which need to be optimized later. An alternative would be to introduce coercions only when

a representation mismatch occurs, using a dedicated mechanism to check representation

consistency.

The dedicated mechanism can be the type checker. Indeed, injecting the representation infor-

mation in the type checker allows it to automatically and reliably detect mismatches, which

can be patched by introducing coercions, in a mechanism similar to the implicit conversions

of Scala. This achieves the same result out of the box in the case of foo shown before, as the

type checker knows all variables are unboxed, hence no coercions are necessary:

1 def foo(x: int, y: int): int =

2 if (...) x else y

This type-driven transformation is a precursor to the Late Data Layout mechanism. Yet, in the

current from, type-driven transformations are still not always efficient and not applicable in

a general setting. To show why, let us assume we introduce a boxed unsigned integer UInt,

which we unbox to int. The operators for the unsigned type are different, but the unboxed

representation is exactly the same as for Int. In practice, this is the norm: several value classes

can have the same parameter types, so their unboxed representations coincide. Furthermore,

all staged expressions share the same alternative representation. Let us consider the following

example using the signed Int and the unsigned UInt:

1 val m: UInt = ...

2 val n: Int = ...

3 List[AnyVal](if (...) m else n)

Transforming the example, both m and n are unboxed to int, so the if expression produces

an int:

1 val m: int = unbox_uint(...)

2 val n: int = unbox_int(...)

3 List[AnyVal](

4 if (...) m else n

5 // ^ mismatch (expected: AnyVal, found: int)

6 )

The generic linked list constructor expects a boxed argument, but we pass in an unboxed

int, triggering a mismatch. Thus, the if expression needs to be boxed. But what coercion

should be used? Should it be box_uint or box_int? Since the provenance of the expression

has been lost, we can’t discern between the two. A correct translation would have introduced

coercions earlier:
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1 val m: int = unbox_uint(...)

2 val n: int = unbox_int(...)

3 List[AnyVal](if (.) box_uint(m) else box_int(n))

It may seem that transforming values one by one might provide a way out of this conundrum.

This way, only a single value at a time would be in flux, which would make it easy to guess

the coercion necessary to patch mismatches. However, this takes us back to square one

with respect to the suboptimality of the resulting code: transforming one value at a time is

equivalent to having an eager transformation, which needs to be consistent at each step and

does so by introducing too many coercions. For example, transforming one value at a time

would break the first example, the foo method, which would end up requiring a peephole

optimization:

1 def foo(x: int, y: int): Int = // now to unbox

2 if (...) box(x) else box(y) // the foo return

Clearly, a different approach is required to make type-driven transformations viable in a

general setting. But before going into the Late Data Layout mechanism, we dive into the inter-

action between object-oriented language features and data representation transformations.

3.3 Object-Oriented Data Representation

The previous section presented the problems faced by data representation transformations,

especially given complex intermediary representations (IRs) such as the one used in the Scala

compiler. This section identifies additional challenges introduced by object orientation.

3.3.1 Subtyping

In object-oriented languages, all reference types have a common super type, usually called

Object, which provides universal methods such as toString, hashCode and equals. This

challenges representation transformations:

1 val a: Int = ... // can be unboxed

2 val b: Object = a // needs to be boxed back

Although a can use the unboxed representation, it needs to be boxed back when it is assigned

to b, since b is compiled to an object reference in the low level code.

This is also the case for value classes: whenever a variable is statically known to hold a value

class, it can be optimally represented by its fields. But when the value class is used in a context

where a super type is expected, it has to be boxed:
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1 trait T

2 @value class X(val x: Int) extends T

3 @value class Y(val x: Int) extends T

4 val x: X = new X(3) // can be unboxed

5 val y: Y = new Y(3l)// can be unboxed

6 val t: T = if (...) x else y // must be boxed

Even though X and Y unbox to Int, unboxing t is still not possible, as it would lose the

provenance information necessary for boxing: an integer corresponding to the unboxed t

could have originated from unboxing either X or Y, but, after unboxing, it would not be known

from which. Therefore, to avoid generating incorrect programs, conformance to super types,

or up-casting, requires boxing.

3.3.2 Virtual Method Calls

Virtual method calls also pose challenges for data representation transformations. Boxed

objects can act as the receivers of virtual method calls, because their headers link to virtual

dispatch tables. Contrarily, unboxed values cannot handle virtual dispatch:

1 val a: Int = 1 // can be unboxed

2 println(a.toString) // needs special treatment

There are two approaches to handling virtual calls: (1) the unboxed receiver can be boxed so

the virtual call can be executed, or (2) if the corresponding method is final, its implementation

can be extracted into a static method, rendering the call static instead of dynamic. Both

of these techniques have been used in practice, although the second is markedly better for

performance: in the method extraction process, the receiver becomes an explicit parameter

and can be unboxed. In Scala, methods extracted from value classes are called extension

methods [25]:

1 def extension_toString(i: int): String = ...

For the earlier example where val c = a + b, boxing a and applying the object-oriented +

operation would be suboptimal, as it would require boxing b too and unboxing the result of

the operation:

1 val c: int = unbox(box(a) + box(b))

Instead, we can use the extension method approach, rewriting the call to use the platform-

intrinsic addition operation, which we denote as _+_ in the example. The intrinsic _+_

operation requires unboxed representations, so a can act as the receiver and b as the argument.

Finally, the result is also unboxed, so no coercion is necessary:
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1 val c: int = a _+_ b

3.3.3 Selectivity

We argue that selectivity should be built into data representation transformations as a first-

class concern, allowing the programmer or the compiler to individually pick the values that

will use alternative representations. Most state-of-the-art data representation transformations

make the assumption that all values that can use an alternative representation should use it.

However, we identified several cases that invalidate this assumption:

The low level target language may impose certain restrictions on the representations used.

For example, the Scala compiler targets Java Virtual Machine (JVM) bytecode [85], which, at

the time of writing, does not have a notion of structs and only allows methods to return a

single primitive type or a single object. This restriction forces all methods returning multi-

parameter value classes to keep the return type boxed, which is only possible if the compiler

can selectively pick the values to be unboxed;

Bridge methods [49] are introduced to maintain coherent inheritance and overriding relations

between generic classes in the presence of erasure and other representation transformations.

Bridge methods are introduced when the low-level signature of a method does not conform to

one of the base method it overrides. Consider the following example:

1 @value class D(val x: Int)

2 class E[T] {

3 def id(t: T) = println("boo")

4 }

5 class F extends E[D] {

6 override def id(d: D) = println("ok")

7 }

A naive translation, which doesn’t account for erasure, will output the method F.id with a

low-level signature (d: int): Unit, which, on the JVM platform, does not override the base

method E.id with the low-level signature (t: Object): Unit. This will lead to virtual calls

to E.id not being dispatched to F.id. A correct translation for F must introduce a bridge

method that takes an instance of the value class D as an boxed argument. This method is

correctly perceived as overriding E.id by the JVM:

1 class F extends E[D] {

2 override def id(d: Object) = id(unbox(d))

3 def id(d: int) = println("ok")

4 }

Generating this code is impossible if the data representation transformation always unboxes

D, making bridge methods another example that requires selectivity.
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The optimal data representation is not always unboxed. If a value is produced and consumed

in its boxed representation, there is no reason to unbox it:

1 def reverse_list(list: List[Int]): List[Int] = {

2 var lst: List[Int] = list

3 var tsl: List[Int] = Nil

4 var elt: Int = 0 // stored in unboxed form

5 while (!lst.isEmpty) {

6 elt = lst.head // converting boxed to unboxed

7 tsl = elt::tsl // converting unboxed to boxed

8 lst = lst.tail

9 }

10 tsl

11 }

If the data representation transformation hardcodes the fact that all primitive types should

be unboxed, this code becomes very slow: during each iteration, assigning the head of the

(generic) list to elt coerces a boxed integer to the unboxed representation, while the subse-

quent statement performs the inverse transformation, creating a new boxed integer from elt.

This sequence of coercions not only impacts performance but also creates redundant heap

garbage.

Summarizing §3.2 and §3.3, we note that an ideal data representation transformation should

be smart about introducing coercions, should account for object orientation and should allow

for selective coercions. The next section presents exactly that - a general, consistent, efficient,

selective and object-oriented data representation transformation.

3.4 Late Data Layout

This section presents an approach to unifying data representation transformations under a

general, consistent, efficient and selective mechanism: the Late Data Layout. We start with an

overview (§3.4.1) and then present the three phases of the mechanism (§3.4.2-3.4.4), followed

by their properties (§3.5).

3.4.1 Overview

The type-driven data representation transformation (§3.2.4) has shown that coercions can

be guided by the type system. Still, this approach was limited by the fact that high-level

concepts have to injectively map into low-level representations, which is not always the case.

Furthermore, as we will see in this section, local type inference [95] is the key to pushing down

coercions in a type-driven transformation, to make the program more efficient.

Instead of directly jumping to the target representation (i.e. int in the examples), Late Data

Layout (LDL) makes the transition in three phases: first it uses annotated types to mark the
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values that will use an alternative representation (the INJECT phase), then it adds coercions

in places where annotation mismatches occur, signaling the incompatible representations

(the COERCE phase) and finally, in the last step, it transforms annotated types to the target

representation (the COMMIT phase). Using annotated types allows high-level concepts to map

injectively to alternative representations, enabling type-driven transformations.

The three LDL phases are added to the compiler pipeline. The transformation expects a correct,

type-checked program AST as input and outputs another correct, type-checked AST, where the

high-level concept has been replaced by its representations. During the transformation, the

program is type-checked again, so the type-checking procedure needs to be idempotent: once

a program was successfully type-checked once, further type-checking runs should succeed

and produce the same result.

A desirable property is that, given a type system with local type inference [95, 101], the LDL

mechanism can efficiently insert coercions, making peephole optimizations redundant. Still,

to use the LDL mechanism, we need to make sure that coercions are contextually equivalent:

box(unbox(t)) ∼=ct x t and unbox(box(t)) ∼=ct x t

This condition can translate to different things, depending on the context. For example, when

dealing with values:

• isomorphism of the representations: the results ofbox(unbox(t)) andunbox(box(t))

are structurally equal to t;

• purity of the coercions: coercions between representations should not produce any

side-effects.

When dealing with random heap objects (where reference equality matters), contextual equiv-

alence can lead to stronger requirements:

• isomorphism of the representations:

box(unbox(t)) = t and unbox(box(t)) = t;

• purity of the coercions: coercions between representations should not produce any

side-effects (including not throwing exceptions).

Given these two restrictions, the coercions can “float” in the AST and can be moved around.

Throughout the section we use the following example:

1 def fact(n: Int): Int =

2 if (n <= 1)

3 1

4 else
5 n * fact(n - 1)
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While parsing the source code, the Scala compiler desugars this program to:

1 def fact(n: Int): Int =

2 if (n.<=(1))

3 1

4 else
5 n.*(fact(n.-(1)))

In the desugared version, operators are transformed into method calls, and we make this

explicit by adding the commonly accepted method call notation: receiver. method (args).

Thus, an expression such as n <= 1 is actually expressed as a call to the <= method: n.<=(1).

The LDL mechanism consists of three phases: INJECT, COERCE and COMMIT. The next sections

present each individual phase.

3.4.2 The INJECT Phase

The INJECT phase selectively marks values, such as fields or method arguments, with the target

representation. This is done by annotating their type, for example, by adding the @unboxed

annotation to a primitive type. The annotations can be introduced either automatically, by the

compiler, based on the interactions of different language features, or manually, by program-

mers. This provides the flexibility necessary to capture a wide variety of transformations: some

of the transformations work automatically, like unboxing primitive types and value classes,

whereas others, like staging, require manual annotation, corresponding to domain-specific

knowledge. In the latter case, the INJECT phase can be omitted from the compilation pipeline.

The INJECT phase transforms the running example to:

1 def fact(n: @unboxed Int): @unboxed Int =

2 if (n.<=(1: @unboxed Int))

3 (1: @unboxed Int)

4 else
5 n.*(fact(n.-(1: @unboxed Int)))

The constant literals were explicitly marked for unboxing: the literal constant 1 can be pro-

duced either as a boxed or unboxed value, but the unboxed representation is preferred. There-

fore, constant literals are ascribed to @unboxed Int and, if necessary, the next phase can add

a boxing coercion.

Although the example given uses a single alternative representation, this is not a requirement.

For example, in the latest version of the miniboxing plugin, we use three representations:

generic, miniboxed to a long integer and miniboxed to a double-precision floating point

number. To encode this, we use the generic annotation @storage[T]. By annotating with

@storage[Long] and @storage[Double]we can choose how the value will be represented.

In this case, we have three coercions: minibox2box, box2minibox and minibox2minibox.
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The last coercion, minibox2minibox, changes the underlying miniboxed representation,

either from long to double or back.

The annotations are used to carry representation information, but their underlying semantic

is controlled externally, by an annotation checker, which is orthogonal to the language’s type

system. In a simplified view, whenever two types T and S are involved in a subtyping check,

S <: T, two conditions are being checked: (1) that S’ <: T’ according the the standard type

system, where S’ and T’ are S and T without any annotations and (2) that all the annotation

checkers present agree that, given the annotations in S and T, they can be subtypes: S <: T.

In reality, these two steps are made in tandem, to account for variance in generics, which relies

on the sub-typing relation of the type arguments.

The transformation mechanism injects an annotation checker that allows the different rep-

resentations to be compatible during the INJECT phase. This is done on purpose in the LDL

mechanism, to allow the delayed introduction of coercions. Should annotated types be in-

compatible in the INJECT phase, the AST would become type-inconsistent, requiring the

introduction of coercions to regain consistency. But there is a big win in being able to ma-

nipulate the tree with annotations but without coercions: for miniboxing, methods can be

redirected to “specialized” variants without worrying about coercions, while for value classes

and primitive unboxing, bridge methods can forward to their target without explicitly coercing

the arguments.

In the next phase, the annotation checker makes representations incompatible, driving the

introduction of coercions.

3.4.3 The COERCE Phase

The COERCE phase is the centerpiece of the LDL mechanism and is similar for all data rep-

resentation transformations. It is responsible for introducing the necessary coercions such

that representations are used consistently in the transformed program. Unlike the INJECT

phase, which updates the signatures of symbols, the COERCE phase only adapts the AST by in-

troducing coercions, based on the additional representation information carried by annotated

types.

The COERCE phase transforms the abstract syntax tree in two steps: (1) in the annotation

checker, the different representations become incompatible, thus invalidating the current AST

and (2) the COERCE phase type-checks the AST and introduces coercions where necessary. The

coercions are introduced based on the representation mismatches revealed by the local type

inference (§3.4.3): when a certain representation is required but a different one is passed, a

coercion is introduced (§3.4.3). Since the names have been resolved and the tree has been type-

checked before, type-checking the tree again will only be responsible for inserting coercions

(given that the type checker is indeed idempotent). Finally, object-oriented features of the

language need to be taken into account (§3.4.3).
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Local Type Inference

Local type inference [95, 101] is used to reduce the boilerplate in source code, by inferring

certain type annotations instead of requiring the programmer to write them by hand.

Type inference is done in two steps: (1) creating synthetic type variables for polymorphic

expressions in the AST and (2) using bidirectional propagation to gather constraints on the

synthetic type variables, which are then solved to exact types. We will illustrate how it works

with an example:

1 def identity[T](t: T): T = t

2 identity(3) // should infer identity[Int](3)

Since the call to identity is polymorphic, the local type inference algorithm introduces a

synthetic type variable, which we call ?T in the example:

1 identity[?T](3)

It then type-checks the AST using bidirectional propagation. Along with propagating types

from the innermost AST nodes to the outside, local type inference also propagates expected

types from the outside nodes towards the inside. Namely, in the example, identity[?T]

expects an argument of type ?T, so the literal constant 3 is type-checked with an expected

type ?T. But the literal constant is known to be of type Int. In this case, the condition for

successfully calling the identity method is that Int <: ?T. Therefore the only constraint

on ?T is that it needs to be a super type of Int. Solving this constraint to the most specific

type yields ?T = Int, which is replaced in the original call:

1 identity[Int](3)

In the COERCE phase we only use the expected type propagation feature, as the input AST

is already type-checked and all type annotations have already been inferred. The next part

describes exactly how the expected type propagation drives the introduction of representation

coercions.

Placing Coercions

Coercions are introduced when an AST node’s representation doesn’t match the one required

by the outside node. In the compiler, name resolution is effectively the high-level equivalent

of a forward data flow analysis [52], tracking the reaching definitions via symbols. Coupled

with the type system, name resolution propagates the types of symbols in a program’s syntax

tree and, along with them, the representation information. On the other hand, the expected

type propagation in local type inference acts as a backward data flow analysis tracking the

expected representation of a node.
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Therefore, name resolution and local type inference collaborate to produce a forward and

backward data flow analysis which detects mismatching representations:

1 def foo(x: Int): @unboxed Int =

2 x // forward analysis: name "x" refers to

3 // argument x of method foo of type Int

4 // backward analysis: the return type of

5 // method foo needs to be @unboxed Int

6 // representation mismatch => coercion

AST nodes such as conditional expressions and blocks have very interesting behaviors when it

comes to expected type propagation: an if conditional propagates the expected type to its

then and else expressions while a block propagates the expected type only to its expression

(the last expression in the block, the first n −1 expressions are treated as statements). On the

other hand, since the statements in a block are designed to perform side-effecting actions and

their results are ignored, they are type-checked without an expected type, thus accepting any

representation.

Propagating expected types delays the introducing of coercions until a node with a fixed type

is encountered, such as the value x in the previous example, and the expected type requires a

different representation. This sinks coercions as deep in the AST as possible, side-stepping

the need for a peephole optimization (§3.2.3) and making the program efficient. Coercion

push-down is further discussed in §3.5.3.

Implicit conversions in the Scala programming language could also be used to introduce

coercions. Both implicit conversions and representation coercions adapt a node to the type

expected by the outer expression. However, since implicit conversions can be influenced by

the program code, we prefer to use a separate, albeit similar mechanism to introduce the

coercions, in order to avoid any interactions. The fact that implicit conversions are resolved in

the compiler frontend does help: by the time LDL-based transformations kick in, implicits

have been resolved, so the transformation only needs to add representation coercions.

Object-Oriented Aspects

During the transformation, which type-checks the AST again in a DFS approach, the COERCE

phase needs to take care of the object-oriented aspects in the language. For example, method

calls with unboxed receivers require either boxing or forwarding to an extension method [25].

Fortunately, super types do not require special handling: only types that can be unboxed are

annotated, not their super types, so expressions that conform to super types are automatically

boxed through annotation-driven coercions.

Forwarding to an extension method or intrinsic deserves a more detailed explanation. In the

factorial example we use the * operator, which requires boxing the receiver and the argument

and returns a boxed result. Instead of the * operation, the COERCE phase will use _*_, the
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platform-provided intrinsic multiplication for unboxed integers. To do so, while descending

in the AST to type-check each node, the COERCE phase intercepts method calls where the

receiver is unboxed. One such method is n.*(...), where n has type @unboxed Int. Since

the * operation does have an intrinsic equivalent, _*_, it is replaced in the tree. Following the

replacement, the COERCE transformer descends and type-checks the argument with the new

expected type, which requires it to be unboxed. Once the argument has been type-checked,

the COERCE transformer returns to the intrinsic method call, and, given the expected type for

the result, decides whether a coercion is necessary or not. The result is:

1 def fact(n: @unboxed Int): @unboxed Int =

2 if (n._<=_(1: @unboxed))

3 (1: @unboxed)

4 else
5 n._*_(fact(n._-_(1: @unboxed)))

No coercions are introduced at all, but the operators are now redirected to their intrinsic

variants _<=_, _*_ and _-_.

3.4.4 The COMMIT Phase

The COMMIT phase is the final phase in the transformation mechanism and is meant to

transform the annotated types to the actual alternative representation. It is also tasked with

replacing coercion markers (box and unbox) by the actual operations necessary for creating

objects and extracting the unboxed values. For instance, when unboxing primitive types,

the COMMIT phase is going to transform @unboxed Int to int, unbox into a method call

that returns the unboxed value, and box into the construction of a java.lang.Integer

object. If extension methods were used (in this case the underlying platform’s intrinsics),

their signatures are automatically transformed to the native representation (i.e. replacing

@unboxed Int by int). After the COMMIT phase the program is fully transformed:

1 def fact(n: int): int =

2 if (n._<=_(1))

3 1

4 else
5 n._*_(fact(n._-_(1)))

The COMMIT phase is heavily dependent on the transformation at hand when updating

the symbol signatures and the AST. For certain transformations, it can go beyond replacing

coercion markers by actual operations: unboxing multiple-parameter value classes requires

creating multiple fields and populating them. Yet, the AST transformations have local scopes

and are always triggered either by a coercion marker, an annotated type in the node or a

library method that carries special semantics for the given transformation. For example, in the

staging plugin, the method compile[T](expr: @staged T): T has the special meaning

that a staged expression needs to be compiled to optimized code and executed. It is redirected
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by the staging plugin from identity (the default implementation, in the case staging is turned

off) to a special implementation that generates the code, compiles it and invokes the result.

The Validation section (§3.6) describes the rules of the COMMIT phases for each of the three

extensions we developed using the Late Data Layout mechanism.

3.5 Transformation Properties

This section presents the properties of the Late Data Layout mechanism. Although a partial

formal description of the transformation is available [136], this section only provides an

intuitive reasoning about the properties of the mechanism:

• Consistency in terms of value representation;

• Selectivity in terms of value representation;

• Efficiency in terms of runtime coercions;

To the best of our knowledge, we are the first to describe a general-purpose mechanism that

has the last two properties: selectivity and efficiency.

3.5.1 Consistency

In the LDL mechanism, we track the representation of each value, inside its type. During the

COERCE phase, the annotation checker makes the representations incompatible, leading to

the introduction of coercions, so the tree type-checks successfully. Since type-checking builds

a formal proof of the program correctness modulo the theory introduced by types, injecting

the representation information into the type system allows it to extend the correctness proof

to the consistency of representations and coercions. This leads to the property that trees

transformed by the coerce phase are consistent in terms of representation.

It worth observing that, depending on the transformations in the COMMIT phase, a consistent

program may become inconsistent. This only occurs because the mechanism is general-

purpose, so it does not impose the actions performed in the COMMIT transformation. Still, for

simple transformations, where annotated types are transformed to another representation

along with their coercions, the consistency guarantee extends to the entire transformation. On

the other hand, for complex transformations, such as the ones necessary for multi-parameter

value classes, each individual rewriting rule has to be proven correct. Still, it is important that

coercions are introduced consistently and efficiently, allowing the COMMIT transformation to

build on a solid foundation and to have a simplified proof based on the LDL invariants.

76



3.5. Transformation Properties

3.5.2 Selectivity

Selectivity results directly from the fact that individual values can have their types annotated

separately. Furthermore, the miniboxing plugin demonstrated that the LDL mechanism can

handle multiple representations without any issues.

3.5.3 Coercion Push-down

Experience with the LDL mechanism reveals an interesting fact: Thanks to the expected type

propagation in local type inference, representation constraints are propagated deeper in the

AST and, in certain branches or expressions, the coercions are elided completely, when the

expected representation matches the actual one. This leads us to think that, for any given

execution trace of the input program, the LDL mechanism minimizes the number of coercions

executed. While we do not formally prove this property, we give an intuitive explanation

of why it occurs. It should be noted that the minimization is done modulo the annotations

introduced by the INJECT phase, that dictate which values are unboxed and that can potentially

be suboptimal (§3.3.3).

Revisiting the behavior of if nodes and blocks, described in Section 3.4.3, we can partition

the AST nodes into opaque and transparent. Opaque AST nodes have a fixed type, which is

not influenced by the expected type of the outer expressions. For example, a constant literal 3

is an integer regardless of the expected type. Transparent nodes, on the other hand, adapt to

the expected type by further constraining their children AST nodes, as the if expression does.

This binary classification does not capture the full wealth of features in Scala’s type checker,

such as implicit conversions, overloads and polymorphic nodes. However, these are typically

resolved during the initial program type-checking phase, in the compiler frontend, and do not

influence LDL-based transformations.

Furthermore, the relation between an AST node and its child sub-nodes can be characterized

as either oblivious or constraining. The typical example of oblivious relation occurs

between blocks and the statements they contain: the results produced by the statements are

ignored, so there is no reason to constrain them. Contrarily, the constraining relationship

propagates an expected type to the subnodes. Refining this further, we have propagated and

fixed constraints. For example, the condition of an if expression has a fixed constraint that

it needs to be a boolean. On the other hand, the then and else branches, have propagated

constraints: they get the expected type from the parent node.

With these definitions, we can observe that the peephole optimization actually implements

the transport of coercions through transparent nodes with propagated constraints and the

removal of constraints from oblivious nodes. The similarity between an eager transformation

with a peephole optimization and the LDL mechanism is now becoming clear: the peephole

optimization is for coercions what the local type inference is for expected types: a mechanism
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for transporting information in the AST which sinks either coercions or constraints deeper

into the tree.

Thanks to expected type propagation, when a coercion is introduced, it is introduced as deep

in the tree as possible, even if this requires duplication. Let us take an example:

1 def baz(t1: @unboxed T, t2: @unboxed T, t3: T, c1: Boolean, c2: Boolean):

@unboxed T =

2 if (c1)

3 t1

4 else
5 if (c2)

6 t2

7 else
8 unbox(t3)

We can see that only t3 is coerced, since the if expressions are transparent. During execution,

sinking coercions in the tree means they are only executed if this is unavoidable, as a represen-

tation mismatch occurred at one point in the execution trace. An interesting remark is that a

minimum number of constraints in any execution trace doesn’t translate to a minimum total

number of constraints introduced in the program:

1 def buz(t1: T, t2: T, c: Boolean): @unboxed T =

2 if (c)

3 unbox(t1)

4 else
5 unbox(t2)

Since constraints are sunk to the bottom of the tree, they may be duplicated several times for

nodes such as conditionals and pattern matches. Therefore, the total number of coercions

introduced in the tree is not minimum, in our example being 2, instead of 1, which corresponds

to coercing the if expression. Still, given any execution trace in the program, the total

coercions executed is minimum, in our example, just 1. Note that coercions may be further

reduced or increased by changing the output of the INJECT phase (§3.3.3). Also, naively

implementing the COMMIT phase can introduce to redundant coercions. Unfortunately, it is

impossible to reason about the INJECT and COMMIT phases in a general setting, as they are

specific to each transformation.

Arguably, sinking coercions could potentially place them inside hot loops. In Scala, since

for loops are desugared to method calls, the only two mechanisms for low-level looping are

while loops and tail-recursive calls. Both while loops and for comprehensions, which are

desugared into method calls, are opaque nodes in the AST and do not propagate expected

types. Therefore, for the Scala ASTs, we do not expect the LDL mechanism to sink coercions

inside hot loops. Still, coercions may be introduced in hot loops based on the annotations

introduced by the INJECT phase for loop-local values, which may require coercing (§3.3.3).
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3.6 Validation and Evaluation

This section describes how we validated the Late Data Layout mechanism by using it to

implement three very different language features: value classes, specialization via miniboxing

and support for multi-stage programming.

In our case studies we observed increased productivity thanks to the reuse of the Late Data

Layout mechanism. Two decisions in LDL also provided tangible benefits to the development

process: (1) decoupling the decision to unbox values from the mechanism that introduces

coercions and (2) decoupling the alternative representation semantics from the coercions and

annotated types.

A highlight of the validation is the fact that we reimplemented and extended the Scala compiler

support for value classes [25] with just two developer-weeks of work and without reusing any

pre-existing code.

We begin by describing the plugin architecture in the Scala compiler and how it can be used to

implement data representation transformations. Afterwards, we present and evaluate each of

the three case studies.

3.6.1 Scala Compiler Plug-ins

The Scala compiler allows extension via plugins. These can customize the type system through

annotation checkers and can inject new compilation phases. In this section we describe the

annotation checker framework and the custom compiler phases added by the LDL mechanism.

The annotation checker framework allows compiler plugins to inject annotations during

type-checking, to provide custom logic for the joins and meets of annotated types and to

apply custom transformations to abstract syntax trees (ASTs) whose type is annotated. Still,

the most important feature for the LDL transformation is allowing plugins to extend the

vanilla subtyping logic in the Scala compiler by providing custom and phase-dependent rules

for annotated types. Using this framework, Rytz created a purity and effects checker [112]

that uses annotations to track side-effecting code, while Rompf implemented a type-driven

continuation-passing style (CPS) transformation [108].

LDL-based transformations use the annotation checker framework to encode the high-level

concept with its representations in the type system. Before the COERCE phase, annotated types

are compatible with their non-annotated counterparts, exposing the unified concept. During

and after the COERCE phase, however, this compatibility is broken, emulating the difference

between representations. This newly created incompatibility drives the insertion of coercions

in the program’s abstract syntax tree (AST).
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1 def annotationsConform(tpe1: Type, tpe2: Type) =

2 if (phase.id < coercePhase.id)

3 true
4 else
5 // this check can be expanded to account

6 // for multiple representations, not just

7 // unboxed or boxed, which corresponds to

8 // annotated or not annotated:

9 (tpe1.isAnnotated == tpe2.isAnnotated) || tpe2.isWildcard

Custom compiler phases allow plugins to transform both the AST and the symbol signatures

at precise points in the compilation pipeline. An LDL-based plugin typically adds three

custom phases, corresponding to INJECT, COERCE and COMMIT. However, each specific

transformation is free add more phases and can even interpose them between the standard

LDL phases.

The INJECT phase initiates the transformation process by marking values with their alternative

representations. To do so, the phase visits all entries in the symbol table and updates their

signatures: fields, local values, method arguments and returns are marked using annotated

types. Since this phase is dependent on the transformation and typically does more than just

adding annotations, it will be described in detail in each of the case studies.

The COERCE phase is the core of the transformation mechanism and is similar for all case

studies. Since the annotation checker exposes the different representations, the COERCE

phase essentially starts with an inconsistent abstract syntax tree, where the type mismatches

correspond to clashing representations. The COERCE phase makes the tree consistent again by

type-checking it while using local type inference to guide the introduction of coercions.

In Scala, the type checker consists of two parts:

1. a typing judgement, which assigns a type to each AST node and

2. an adaptation routine, which transforms AST nodes so their type matches the expected

one.

The adaptation routine is responsible for inserting implicit conversions, resolving implicit

parameters and synthesizing reified types [116]. The next code snippet shows a heavily

simplified Scala-like type-checking algorithm:
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1 def typed(tree: Tree, exp: Type): (Tree, Type) =

2 /* (1) */ typing_judgement(tree, exp) match {

3 case (tree1, tpe1) if
4 subtype(tpe1, exp) &&

5 annotationsConform(tpe1, exp) =>
6 (tree1, tpe1)

7 case (tree2, tpe2) =>
8 /* (2) */ adapt(tree2, tpe2, exp)

9 }

We assume the methods have the following signatures:

1 def typing_judgement(tree: Tree, exp: Type):

2 (Tree, Type) = ...

3 def adapt(tree: Tree, tpe: Type, exp: Type):

4 (Tree, Type) = ...

In the type-checking algorithm, the adaptation routine (2) is only triggered if the type of the

current tree, as decided by the typing judgement (1), does not conform to the expected type.

As a result, only opaque nodes (§3.5.3) reach the adaptation routine. For example, the typing

judgement for an if expression will propagate the expected type to the branches, leading to

each individual branch conforming or being adapted to conform. This makes the conditional

itself conform, therefore bypassing adaptation.

The main change added by the COERCE phase to the typing algorithm concerns the adaptation

routine: whenever a mismatch between representations is detected, a coercion is introduced.

For example, if the expected type is Int, and the actual type is @unboxed Int, a box coercion

is added.

The COERCE phase also adds a rule to the typing judgement: when a method call is en-

countered, the receiver expression is type-checked without an expected type, in order not

to constrain it. If the result is a boxed expression, the method call can be performed as-is.

On the other hand, if the result uses an alternative representation, there are two options:

(1) if the specific transformation does have alternative methods for unboxed receivers (such

as extension methods), the call can be redirected to the alternative method or (2) if such a

method is not available, the receiver expression is type-checked again expecting a boxed type,

leading to the introduction of a coercion. This allows performing method calls regardless of

the receiver’s representation.

Thanks to the annotation checker, when a node is type-checked expecting a super type, it is

automatically boxed. This occurs because, as discussed in §3.3.1, super types of an unboxed

type cannot themselves be unboxed. Along with the method call transformation, the super

type boxing forms the LDL support for the object-orientated features in the Scala programming

language.
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Finally the COMMIT phase transforms the symbol signatures and the tree to use the low-level

alternative representations. When the AST reaches the COMMIT phase, it is consistent and has

the all the annotations and coercions necessary to guide the transformation. Again, since this

phase is specific to the representation, we describe it the each of the case studies, along with

counting the lines of code and the number of rewrite rules.

3.6.2 Case Study 1: Value Classes

Value classes [4, 25, 66] marry the homogeneity and dynamic dispatch of classes with the

memory efficiency and speed of C-like structures. In order to get the best of both worlds, value

classes have two different in-memory representations. Instances of value classes (referred to

as value objects) can be represented as fully-fledged heap objects (the boxed representation)

or, when possible, use a struct-like unboxed representation with by-value semantics.

For instance, in the example below, the Meter value class is used to model distances in a

flexible and performant manner, providing both object-orientation (including virtual methods

and subtyping) and efficiency of representation. Our implementation transforms methods

+, <= and report such that their arguments and return types are unboxed value classes.

Furthermore, values of type Meter will use the unboxed representation wherever possible.

1 @value class Meter(val x: Double) {

2 def +(other: Meter) = new Meter(x + other.x)

3 def <=(other: Meter) = x <= other.x

4 }

5 def report(m: Meter) = {

6 if (m.<=(new Meter(9000)))

7 println(m.toString)

8 }

Before we dive into the transformation, let us consider some basic facts about value classes,

correlating them with existing implementations for C# [4] and Scala (both the official transfor-

mation shipped with Scala 2.10 [25], and the prototype presented here).

Final semantics. Even though value classes can extend traits, their participation in the class

hierarchy has to be limited in order to allow correct boxing and unboxing. Indeed, if along with

Meter it were possible to define another value class Kilometer that extended Meter, then

unboxing m would be ambiguous, as its boxed representation might be either of the classes.

This observation is consistent with both C#, where value classes cannot be extended, and

Scala, where value classes are declared by inheriting from the marker class AnyVal and are

automatically made final.

By-value semantics. When compiling value classes to low-level bytecode, additional care must

be taken to accommodate their by-value semantics on otherwise object-oriented platforms:

both the JVM and the CLR have a universal superclass called Object that exposes by-reference
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equality and hashing. Moreover, both platforms provide APIs to lock on objects based on

reference. While we can’t control what happens to value objects that are explicitly cast to

Object, we can restrict uses of by-reference APIs. In C# this is done by having a superclass

of all value classes, called ValueType, which provides reasonable default implementations

of Equals and GetHashCode, whereas in Scala all value classes get equals and hashCode

implementations generated automatically. Both in C# and Scala synchronization on value

classes is outlawed.

Single-field vs multi-field. While single-field value classes like Meter trivially unbox to a

single value, devising an unboxed representation for multi-field value classes may pose a

challenge if the underlying platform does not provide support for structures. And indeed, in

the case of Scala, the JVM does not support structs or returning multiple values, so we have to

box multi-field value objects when returning them from methods. Still, for fields, locals and

parameters we do unbox multi-field value objects into multiple separate entries, providing a

faithful emulation of struct behavior. It is worth noting that the value class implementation in

Scala 2.10 only supports single-field value classes, therefore sidestepping this issue altogether.

C# doesn’t have this problem, because the .NET CLR provides a primitive for structs.

Having seen these aspects of value classes, we can now dive into the implementation of our

prototype. It follows the standard three phases: INJECT, COERCE and COMMIT, all preceded by

an extension methods phase, ADDEXT:

The ADDEXT phase makes several changes to the tree: it adds standard hashCode and equals

implementations for value classes, it transforms value class methods into extensions and

finally adds redirects from the value class to the extension methods in the companion object.

The extension methods are later used by the COERCE phase, which redirects method calls as

described in §3.4.3. The result is:

1 @value class Meter(val x: Double) {

2 def +(other: Meter) = Meter.+(this, other)

3 def <=(other: Meter) = Meter.<=(this, other)

4 ... // hashCode, equals redirections

5 }

6 object Meter {

7 def +(self: Meter, other: Meter) =

8 new Meter(self.x + other.x)

9 def <=(self: Meter, other: Meter) =

10 self.x <= other.x

11 ... // hashCode, equals extension methods

12 }

13 def report(m: Meter) = ...

The INJECT phase marks values to be transformed using the @unboxed annotation. It marks

all fields, locals and parameters of value class type as well as return types of methods that

produce single-field value objects:
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1 @value class Meter(val x: Double) {

2 def +(other: @unboxed Meter) =

3 Meter.+(this, other)

4 def <=(other: @unboxed Meter) =

5 Meter.<=(this, other)

6 ... // hashCode, equals redirections

7 }

8 object Meter {

9 def +(self: @unboxed Meter, other: @unboxed Meter) = new Meter(self.x +

other.x)

10 def <=(self: @unboxed Meter, other: @unboxed Meter) = self.x <= other.x

11 ... // hashCode, equals extension methods

12 }

13 def report(m: @unboxed Meter) = {

14 if (m.<=(new Meter(9000)))

15 println(m.toString)

16 }

This is a notable use-case for the first-class selectivity support provided by the LDL mechanism.

Methods that return multi-field value objects are not annotated with @unboxed on the return

type, since the JVM lacks the necessary support for multi-value returns: Simply leaving off the

@unboxed annotation is all it takes to have the result automatically boxed in the method and

unboxed at the caller.

Another responsibility of the INJECT phase is the creation of bridge methods (§3.3.3). If a

method that has value class parameters overrides a generic method, INJECT creates a corre-

sponding bridge:

1 trait Reporter[T] {

2 def report(x: T): Unit

3 }

4 class Example extends Reporter[Meter] {

5 def report(x: Meter) = report(x) // bridge

6 override def report(x: @unboxed Meter) = ...

7 }

Code emitted for these bridges is particularly elegant, again thanks to the selectivity of the

transformation. It turns out that it is enough to just have the bridge be a trivial forwarder to the

original method with its parameters being selectively annotated. This produces a compatible

signature for the JVM and the COERCE phase automatically manages representations by

introducing coercions.

The COERCE phase follows the pattern established in §3.4, making @unboxed types incom-

patible with their non-annotated counterparts and inserting box and unbox markers in case

of representation mismatches. The coerce phase also redirects to extension methods where

possible. For our running example, the following code is produced:
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1 @value class Meter(val x: Double) {

2 def +(other: @unboxed Meter) =

3 Meter.+(unbox(this), other)

4 Meter.<=(unbox(this), other)

5 ... // hashCode, equals redirections

6 }

7 object Meter {

8 def +(self: @unboxed Meter, other: @unboxed Meter): @unboxed Meter =

unbox(new Meter(box(self).x + box(other).x))

9 def <=(self: @unboxed Meter, other: @unboxed Meter) = box(self).x <=

box(other).x

10 ... // hashCode, equals extension methods

11 }

12 def report(m: @unboxed Meter) = {

13 if (Meter.<=(m, unbox(new Meter(9000))))

14 println(box(m).toString)

15 }

The COMMIT phase uses the annotations established by the INJECT phase and the marker

coercions to represent the annotated value classes by their fields. In particular, the COMMIT

phase changes the signatures of all fields, locals and parameters annotated with @unboxed

into their unboxed representations, creating as many duplicated fields as necessary to store

the unboxed multi-field value classes. Return types of methods are unboxed as well, but only

for single-field value classes.

On the level of terms, the transformation centers around the coercion markers, causing

box(e) calls to become object instantiations and rewriting unbox(e) calls to field accesses.

Additionally, we devirtualize box(e).f expressions as much as possible, which is done by

transforming box(e).f into a reference to the unboxed field.

Finally, term transformations perform the necessary bookkeeping to account for duplicated

fields (arguments and parameters of value class types are duplicated as necessary, assignments

to locals and fields or value class types become multiple assignments to duplicated locals and

fields, etc).

The COMMIT phase transforms our example to:
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1 final class Meter(val x: Double) {

2 def +(other: Double) = Meter.+(x, other)

3 def <=(other: Double) = Meter.<=(x, other)

4 ... // hashCode, equals redirections

5 }

6 object Meter {

7 def +(self: Double, other: Double): Double = self + other

8 def <=(self: Double, other: Double) = self <= other

9 ... // hashCode, equals extension methods

10 }

11 def report(m: Double) = {

12 if (Meter.<=(m, 9000))

13 println(new Meter(m).toString)

14 }

It is worth mentioning that even with the necessity to cater for the lack of built-in struct

support in the JVM, the resulting transformation is remarkably simple. First, we have been

able to implement it without changing the compiler itself (in particular, without customizing

the built-in ERASURE phase). Second, custom logic in INJECT, COERCE and COMMIT phases

spans only about 500 lines of code. This shows the LDL mechanism can significantly reduce

the effort necessary to implement complex data representation transformations.

Evaluation

We evaluate the plugins on three metrics:

• Lines of code and complexity of the commit phase;

• Runtime performance improvements;

• Additional features added to the LDL mechanism.

Lines of code and complexity. The value class plugin has 17 files Scala files with 1286 lines

of code, as reported by the cloc counter [3]. Unfortunately, it is impossible to compare these

stats to the Scala implementation, as several transformations are merged into the ERASURE

phase and untangling them is a very difficult challenge.

The COMMIT phase for the value class plugin has 180 lines of code and 29 transformation

rules:

• 6 rules for transforming coercions;

• 23 rules for different AST nodes - triggered either by coercions or by annotations.

In the COMMIT phase, many of the rules that expand definitions into multiple fields are

triggered either by coercions or by annotations, such as @unboxed on the value definition:
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1 val c: @unboxed Complex = ...

2 // => will be split into c_re and c_im.

Runtime performance. We evaluated the runtime performance using an FFT example from

the Rosetta Code website [19]. The speedups we observed come from transforming the

complex number case class into a value class, allowing it to be inlined. The results we obtained

using the scalameter [103] benchmarking framework, expressed in milliseconds, were:

1 ::Benchmark FFT.Scala Complex::

2 Parameters(data size = 2^ -> 4): 11.9418295

3

4 ::Benchmark FFT.Valium Complex::

5 Parameters(data size = 2^ -> 4): 11.8187571

The speedup is only 1% because, at this point, we cannot unbox value classes when returning

them. We are currently looking at different ways to improve the performance by side-effectfully

writing the value to a thread-local variable on method return and reading it back in the caller.

A different benchmark we tried was adding up 214 complex numbers:

1 ::Benchmark Ops.Scala Complex::

2 Parameters(data size = 2^ -> 14): 0.1461588

3

4 ::Benchmark Ops.Valium Complex::

5 Parameters(data size = 2^ -> 14): 0.0930053

This is where value classes really speed up the program: a simple @value annotation produces

an almost 2x speedup.

The extra feature added by the value class plugin over the standard LDL mechanism is the

ability to indicate code patterns that should always be boxed. This is done in the COERCE phase

and it reduces the code patterns the COMMIT phase needs to handle. This feature requires

an extra 3-line rule in the typing judgement which matches a pattern and type-checks the

expression with a boxed expected type. In the current implementation, the pattern matches

unstable expressions (that can change the value from one access to the next), which cannot be

unboxed to multiple fields:

1 val c1: @unboxed Complex = ...

2 val c3: @unboxed Complex = ...

3 val c3: @unboxed Complex =

4 unbox(if (...) // if => unstable expression

5 box(c1)

6 else
7 box(c2))
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The COERCE phase requires the if expression to be boxed and unboxes it before assigning the

result to c3 (since c3 is unboxed, we assign to the duplicated fields of c3: c3_re and c3_im).

There are three reasons for this transformation: (1) to reduce the commit phase complexity,

(2) since the Scala AST representation does not allow multi-field block returns and (3) since

this pattern is easily detected and optimized by the just-in-time compiler in the JVM.

3.6.3 Case Study 2: Miniboxing

The miniboxing transformation presented in Chapter 2 is the most complex case study and

also the most established. The miniboxing plugin initially used an eager transformation

coupled with a peephole optimization. The difficulties in maintaining and expanding the

peephole rewriting rules motivated the development of the LDL mechanism. This section

briefly mentions the ideas behind specialization and miniboxing and then explains how the

code is transformed using the LDL mechanism.

Specialization [53] improves the performance of erased generics by duplicating methods

and classes and adapting them for each primitive type. These adapted versions, also called

specialized variants, receive and return unboxed primitive types, thus allowing the program

to use them efficiently. Yet, specialization leads to bytecode duplication, with 10 variants per

type parameter: 9 for the primitive types in Scala plus the erased generic. This means that

specializing a tuple of 3 elements, which has 3 type parameters, produces 103 classes, too

much for practical use.

Miniboxing was designed to reduce the bytecode explosion in specialization. It is based on two

key insights: (1) in Scala, any primitive type can be encoded in a long integer, thus reducing

the duplication to two variants per type parameter and (2) the encoding requires provenance

information, namely a type tag that represents the original type of the long-encoded value.

With miniboxing, fully specializing a 3-element tuple creates 8 classes and an interface.

To explain how the miniboxing transformation works, let us use the identity example again:

1 def identity[@miniboxed T](t: T): T = t

2 identity[Int](5)

The @miniboxed annotation on the type parameter T triggers the transformation of the

the method. This will duplicate and adapt the body of identity, creating a new method

identity_M, care acceptă primitive. This new method encodes the primitive types into a

long integer and requires a type tag corresponding to the type parameter T. The low level code

resulting from compilation is:

1 def identity(t: Object): Object = t

2 def identity_M(tag: byte, t: long): long = t

3 _identity_M(INT, int2minibox(5))
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Let us walk through the steps necessary to obtain this low level code. The first step of the

INJECT phase duplicates the method identity to identity_M and adds the type tag:

1 def identity[T](t: T): T = t

2 def identity_M[T](tag: Byte, t: T): T = t

In the second step, in order to adapt identity_M to primitive types, the miniboxing plugin

transforms all values of type T to Long. Doing this transformation consistently and efficiently

requires an LDL cycle, so the INJECT phase starts by marking values of type T that will use the

miniboxed encoding. The annotation used in miniboxing is @storage:

1 def identity[T](t: T): T = t

2 def identity_M[T](tag: Byte, t: @storage T): @storage T = t

In the third step, the INJECT phase specializes method calls. It does so by redirecting calls from

miniboxed methods to their specialized variants, based on the type arguments:

1 identity_M[Int](INT, 5)

The COERCE phase contains the standard LDL logic. In our example, it does not change the

two method definitions, but the call to identity_M gets the argument coerced (we assume

the call is in statement position, otherwise the result would also have to be coerced back to

Int):

1 identity_M[Int](INT, marker_box2minibox(5))

The COMMIT phase converts @storage T to Long and replaces the marker_ methods by

their actual implementations, either the more general minibox2box / box2minibox, which

use the type tag, or the more efficient minibox2X / X2minibox when X is a primitive type.

The result after the COMMIT phase is:

1 def identity[T](t: T): T = t

2 def identity_M[T](tag: Byte, t: Long): Long = t

3 identity_M[Int](INT, int2minibox(5))

Finally, as this code passes through the Scala compiler’s backend, the ERASURE phase unboxes

the Long integers into long and erases the type parameter T to Object. This produces the

exact result we showed in the beginning.

It is worth mentioning that miniboxing exploits all the flexibility available in the LDL mecha-

nism: in the last version it features 2 alternative encodings (miniboxing to Long or Double),

the alternative representation mapping is not injective, since all miniboxed type parame-

ters map to either Long or Double, the selectivity is used to generate bridge methods for

similar reasons to those presented in §3.3.3 and the compatibility between annotated and non-
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annotated types in the INJECT phase is used to easily redirect method calls from miniboxed

methods to their specialized variants.

Evaluation

Lines of code and complexity. The miniboxing plugin has 17 Scala files with 2584 lines of code.

The specialization transformation currently available in the Scala compiler [53] has 2 Scala

files with 1541 lines of code. However, we are not comparing similar things: the miniboxing

plugin performs a more complex transformation compared to specialization and bears the

boilerplate necessary to build a compiler plugin.

The COMMIT phase for miniboxing has 260 lines of code and 12 transformation rules:

• 3 rules for coercions (minibox2box, box2minibox, minibox2minibox);

• 4 rules for redirecting methods inherited from Any, such as toString - triggered by

coercions;

• 4 rules for optimizing arrays - triggered by array operations (a.{apply,update,length}

and new T[]);

• 1 extra rule for optimizing the function representation.

In the miniboxing plugin, universal methods inherited from Object are redirected to library-

provided extension methods, and, since they do not require a different representation, the

redirection is done in the COMMIT phase instead of the COERCE phase. These rewritings could

have been done in the COERCE phase equally well.

We can compare the miniboxing plugin before and just after the LDL mechanism was added:

• Before (29th of October 2014): 2285 LOC (out of which approximately 500 LOC in the

peephole optimization)

• After (14th of February 2014): 2246 LOC (out of which approximately 200 LOC in the

commit phase + 250 LOC for the general and reusable LDL mechanism)

Runtime performance. The miniboxing plugin and its runtime have been thoroughly bench-

marked in Chapter 2. Yet, a more recent result is a benchmark on a slice of the Scala collections

library [60] centered around the linked list collection. The benchmark consists of running the

least squares method for fitting data points on several input sizes. The results, summarized

in Figure 3.1, show a 45% speedup produced by using the miniboxing transformation. It

should be noted that Scala collections are notoriously hard to transform, since they use many

advanced features of the language, such as type classes, higher-kinded types and anonymous

and nested classes. Indeed, we also tried to run the benchmark with the current specialization

transformation in the Scala compiler [53], but the results were disappointing: due to technical

difficulties, the specialized linked list was slower than the generic one.
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Figure 3.1 – Least squares method using linked lists

The miniboxing plugin has also transformed larger projects, with spire [98] being the largest at

31KLoC, and produced reliable results. This shows the LDL mechanism is not just a toy but

can correctly transform large code bases.

Two extra features are added by the miniboxing plugin over the standard LDL mechanism:

• using multiple alternative representations, Long and Double in the current version. To

implement this, the @storage annotation was parameterized with a type, allowing the

INJECT phase to include the target representation in the annotation: @storage[Long]

→ Long and @storage[Double] → Double. This lead to a third coercion marker,

marker_minibox2minibox;

• a second LDL cycle is used to change the object-oriented representation of functions to

a miniboxing-friendly representation.

These additions are described on the miniboxing website [16].

3.6.4 Case Study 3: Staging

Multi stage programming [129] allows a program to execute in several steps, at each step

generating new code, compiling and then executing it. In Scala, this technique has been

used by Rompf to develop the lightweight modular staging (LMS) framework [107, 109], which

removes the cost of abstraction in many high-level embedded DSLs [33, 78, 106, 127, 137].
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Using the LMS framework requires the ability to lift built-in language constructs, such as

method calls, if expressions and variable accesses. This is done by transforming these

constructs into calls to methods provided by the programmer or by the LMS framework.

Currently, lifting is done using a custom version of the compiler, dubbed scala-virtualized

[91] or using Yin-Yang [75], a macro-based frontend that allows selectively lifting parts of a

program.

In this section, we show that lifting can be modelled as a data representation transformation,

allowing LDL-transformed programs to be optimized by an LMS-like framework. One of the

early examples of staging given by Rompf is eliminating the recursion from a power function:

1 def pow(b: @staged Double, e: Int): @staged Double =

2 if (e == 0) 1.0

3 else if (e % 2 == 1) b * pow(b, e-1)

4 else {

5 val x = pow(b, e/2)

6 x * x

7 }

8 val pow5 = function(arg => pow(arg, 5))

9 println("3.0^5 = " + pow5(3.0))

10 println("4.0^5 = " + pow5(4.0))

The pow method computes be. The base, b, and the return type are marked as @staged,

whereas the exponent, e, is not. This means that calls to pow, instead of computing a value,

accumulate the operations necessary to produce be for a variable base b and a fixed exponent

e.

Indeed, the call to function in line 8 first triggers the execution of pow for the variable base

b=arg and the fixed exponent e=5. The operation graph recorded corresponds to arg5 and

is used by the function call to generate optimized code, compile it, and to expose it as a

function from Double to Double, corresponding to arg => arg5:

1 function: compiling the following code:

2 ***************************************
3 (arg: Double) => {

4 val x0: Double = arg * arg

5 val x1: Double = x0 * x0

6 val x2: Double = arg * x1

7 x2: Double

8 }

9 ***************************************
10 3.0^5 = 243.0

11 4.0^5 = 1024.0

The generated code shows the if conditional and the recursive calls were eliminated. Indeed,

running pow for the exponent 5 executes exactly three non-trivial operations transitively

involving the argument arg, all three appearing in the generated code. This shows the opera-
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tions were lifted and recorded in the operation graph, allowing the code above to be generated

in the next stage. Let us see how the pow code was transformed to allow lifting.

In the case of staging, there is no INJECT phase, since the programmer manually marks the

arguments to be @staged.

The COERCE phase follows the usual pattern of introducing coercions, with an additional

constraint: immediate values can be coerced to staged constants, but not the other way

around. This is done so that staging and compiling are only triggered explicitly, through

calls such as compile and function. This restriction could easily be removed, but keeping

it makes the performance predictable, as it puts the programmer in control of the lengthy

staging and compilation process. Seen in relation to primitive types, when staging, boxing is

cheap, but unboxing can potentially be expensive, so we want to trigger it explicitly.

The COERCE phase is also responsible for redirecting method calls for @staged receivers,

which is essentially the lifting mechanism. Unlike the previous transformations, where ex-

tension methods were either provided by the library or extracted automatically, in the case

of staging, they are manually written by the programmers. These methods are called infix

methods [91] and they contain the mechanism to build the operation graph used to generate

optimized code. Since this part is very similar to what is done in the LMS framework and is not

our contribution, we point the reader to the works of Rompf [106, 107, 109] for more details.

The COMMIT phase transforms @staged T to the operation graph representation used in

the lightweight modular staging framework, Rep[T], and redirects calls to compile and

function to compile_impl and function_impl, which trigger the synthesis and compila-

tion for the operation graph.

The staging prototype serves to show that lifting language constructs can be modelled as an

LDL-based representation transformation.

Evaluation

Lines of code and complexity. The staging plugin consists of 12 Scala files with 487 lines of

code. The difference between the standard Scala compiler and Scala-virtualized is +2247/-

578 LOC, including the library changes necessary to support lifting language constructs.

Although the staging plugin is still far from being on-par with scala-virtualized in terms of

lifting capabilities, it is 4 times smaller, despite the boilerplate necessary to create a Scala

compiler plugin.

The COMMIT phase for the staging plugin has 110 lines of code and 5 transformation rules:

• 3 rules for redirecting markers to actual coercions;

• 2 rules for the special methods compile and function.
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Runtime performance. We tested the staging plugin on the FFT example from Rosetta Code

[19]. To stage the FFT example, we lifted the operations on complex numbers but left ev-

erything else to evaluate during staging. The separation into even and odd numbers and all

the butterfly connections specific to FFTs are done only once during staging. Of course, this

requires deciding on the number of elements ahead of time, thus fixing the batch size for the

FFT analysis. With this, we get the following results:

1 ::Benchmark FFT.Scala Complex::

2 Parameters(data size = 2^ -> 3): 0.966099

3

4 ::Benchmark FFT.Stagium Complex::

5 Parameters(data size = 2^ -> 3): 0.018612

The times for executing the FFT (expressed in milliseconds) suggest that lifting the code and

removing collection-related abstraction can bring a speedup of 53x, making staging worth it

when running the FFT code multiple times.

The two extra features in the staging plugin are: (1) using programmer-written infix methods

instead of synthetic or library extension methods and (2) the ability to restrict a class of

coercions, in this case from staged to direct values, outputting meaningful error messages and

explaining the problem to the user.

3.7 Related Work

Generics. Interoperation with generics motivates many of the data representation transfor-

mations in use today. The implementation of generics is influenced by two distinct choices:

the choice of low-level code translation and the runtime type information stored.

The low-level code generated for generics can be either heterogeneous, meaning different

copies of the code exist for different incoming argument types or homogeneous, meaning a

single copy of the code handles all incoming argument types. Heterogeneous translations

include Scala specialization [53], compile-time C++ template expansion [122] and load-time

template instantiation [76] as done by the .NET CLR [32]. Homogeneous translations, on the

other hand, require a uniform data representation, which may be either boxed values [44, 84],

fixnums [146] or tagged unions [92].

In order to perform tests such as checking if a value is a list of integers at runtime, the type

parameter must be taken into account. In homogeneous and load-time template expansions,

one has to carry reified types for the type parameters. While this has an associated runtime

cost [116], several solutions have been proposed to reduce it: in the CLR, reified types are

computed lazily [76]. In Java, several papers presented viable schemes for carrying reified

types, including PolyJ [36], Pizza [94], NextGen [49] and the work by Viroli et al. [142]. Finally,

in ML, generic code (also called parametrically polymorphic in functional languages) can

carry explicit type representations [68, 131].
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Unboxed primitive types. In the area of unboxed primitive types, Leroy [84] presents a formal

data representation transformation for the ML programming language based on typing deriva-

tions. The comparison in the introduction states that Late Data Layout introduces selectivity,

object-oriented support and disentangles the transformation from its assumptions. This

is a somewhat shallow comparison. A deeper comparison is that in Leroy’s transformation

the INJECT and COMMIT phases are implicit and hard-coded while the two versions of the

transformation rules presented by Leroy correspond to duplicating the COERCE phase for

boxed and unboxed expected types. Instead of expected types, the ML transformation knows

where generic parameters occur, and uses this information to invoke the correct version

of the transformation. Therefore our main contribution is discovering and formulating the

underlying principle and successfully extending it to a more broad context, to include value

classes, specialization and staging, which have very different requirements.

Shao further extends Leroy’s work [117, 118] by presenting a more efficient representation,

at the expense of carrying explicit type representations [68, 131]. Minamide further refines

the transformation and is able to formally prove that the transformed code has the same

time complexity as the original program [89]. Tracking value representation in types has been

presented and extended to continuation-passing style [55] by Thiemann in [132]. Two pieces of

information are tracked in a lattice: whether the value corresponding to the type is used at all

(otherwise its representation can be ignored - called “Don’t care polymorphism” and equivalent

to our oblivious relation between AST nodes) and whether a certain representation is

required. This information is used in a type inference algorithm which can elide coercions

when the parameters are discarded or when a method call is in tail position, namely it doesn’t

need to box the result only to have the caller unbox it. It should be noted that the coercions

operate on a continuation-passing-style intermediary representation.

A different direction in unboxing primitive types is based on escape analysis [52], where the

program is analyzed at runtime and a local and conservative data representation transforma-

tion is performed. When implemented in just-in-time compilers [121] of virtual machines

such as PyPy [41], Graal [148] or HotSpot [99], and coupled with aggressive inlining, the escape

analysis can make an important difference, although it is limited by not being able to optimize

containers outside its local scope. Late Data Layout and escape analysis are fundamentally

different – escape analysis has a local scope and relies heavily on inlining, while LDL can safely

optimize across method boundaries as long as the transformation consistently makes the

same decisions in subsequent separate compilations. Interpreter-based techniques such as

quickening [46] and trace-based specialization [57] can further improve escape analysis based

on the dynamic execution profiles. Truffle [147] partially evaluates the interpreter for the

running program and makes aggressive assumptions about the data representation, yielding

the best results in terms of top speed at the expense of a longer warm-up time.

The Haskell programming language has two reasons to box primitive types in the low level

code: (1) due to the non-strictness of the language, arguments to a function may not have

been evaluated yet and are thus represented as thunks and (2) due to erased parametric
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polymorphism. Haskell exposes both the boxed Int representation and the unboxed Int#,

although the compiler does transform Int values to Int# where possible. To do so, the

Glasgow Haskell Compiler uses a syntax-based transformation coupled with a peephole

optimization [72, 82]. In general, peephole optimizations have been formalized by Henglein in

[69]. Haskell also features calling convention optimizations that make the argument laziness

explicit and can unbox primitives in certain situations [40].

Value classes have been proposed for Java as early as 1999 [66, 110, 111]. The most recent

description, which is also closest to our current approach, is the value class proposal for the

Scala programming language [25]. We build upon the idea that a single concept should be

exposed despite having multiple representations, but we step away from ad-hoc encodings

and fixed rules in the type system. In this way, we can capture other representations, such as

the tagged representation in [92]. Value classes have also been implemented in the CLR [4],

but to the best of our knowledge the implementation has not been described in an academic

setting. The Haskell programming language offers the newtype declaration [6] that, modulo

the bottom type ⊥, is unboxed similarly to value classes.

Specialization for generics is a technique aimed at eliminating boxing deep inside generic

classes. Specialization has been implemented in Scala [53, 54] and has been improved by

miniboxing [16, 138]. Specialization and macros have been combined to produce a mechanism

for ad-hoc specialization of code in Scala [124]. The .NET CLR automatically specializes all

generics, thanks to its bytecode metadata and reified types [76].

A different approach to deep boxing elimination is described for Haskell [73] and Python

[42]. It relies on specializing arrays while providing generic wrappers around them. This

allows memory-efficient storage without the complex problem of providing heterogeneous

translations for each of the methods exposed by data structures.

Multi-stage programming (also called staging) [129] requires lifting certain expressions in

the program to a reified representation. Staging can be implemented using macros [48,

58, 75], or using specialized compiler extensions [91]. One of the applications is removing

the abstraction overhead of high-level and embedded domain specific languages. Indeed,

staging was successfully used to optimize and re-target domain-specific languages (DSLs)

[45, 78, 106, 107, 109, 137].

Annotated types [10, 24] have been introduced to trigger code transformations and to allow

the extension of the type system into the area of program verification while reusing as much

infrastructure from the compiler as possible [100]. In the context of Java, type annotations

have been used to selectively add reified type argument information to erased generics [62].

In the context of Scala, annotated types have been used to track and limit the side-effects

of expressions [112, 113], to designate macro expansions [48] and to trigger continuation-

passing-style transformations [108].
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Formalization. In [84], Leroy presents a full formalization for the primitive unboxing for ML,

including a proof of operational equivalence. The .NET generics are formalized in [150]. An

effort to formalize LDL is currently on-going [136] and it relies on local type inference, as

described by Odersky et al. [95] and Pierce et al. [101]. Also in the formal realm lies the work

in [135], which extends the Hindley-Milner inference system to add coercion-based structural

subtyping.

In the area of formal descriptions, two papers on type-directed coercion insertion stand out

as very closely related to this chapter [83, 128]. The work of Swami et al. [128] focuses on

automatically composing several coercions together in order to bridge the gap between differ-

ent types. The highlight of the paper are the powerful composition rules and the proofs that,

despite their generality, always produce syntactically unique, non-ambiguous rewritings. This

work resembles the mechanisms used to introduce implicit conversions in Scala, although

the rules provide more flexibility and are proven not to diverge. On the other hand, Leather

et al. [83] describe a coercion insertion mechanism which deliberately produces ambiguous

rewritings from which heuristics can pick the best. More importantly, the formalism pre-

sented in [83] is also capable of consistently changing types in the rewrite rules, making the

transformation very versatile. Unfortunately, the two formalisms do not handle backward

propagation, object orientation and subtyping, all of which are crucial to performing optimal

data representation transformations in Scala. Furthermore, they do not provide the ability to

selectively transform the data representation, making them unusable for the three use cases

we presented. By comparison, an important limitation of our work is that the box and unbox

coercions we introduce are un-ambiguous and not composible by design, as we aim for a

one-step conversion between different representations.

3.8 Conclusion

In this chapter we presented a general mechanism that allows refining a high-level concept

into multiple representations. This is done in a selective way, by annotating values in the

program with their desired representation. The coercions necessary for maintaining program

consistency with regards to representations are introduced automatically, consistently and

efficiently thanks to local type inference.

We validated the algorithm for three cases: multi-parameter value classes, specialization

through miniboxing and a simple multi-stage programming mechanism. The results were

encouraging: we were able to reuse much of the infrastructure (which has been developed

as part of the miniboxing plugin) for the other plugins and the development time was in the

order of developer-weeks.

Finally, the key insights of the chapter are that annotated types are a perfect vehicle for carrying

representation information and introducing coercions can be done consistently and efficiently

using the expected type mechanism in local type inference.
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4.1 Introduction

An object encapsulates code and data and exposes an interface. Modern language facilities,

such as extension methods, type classes and implicit conversions allow programmers to evolve

the object interface in an ad hoc way, by adding new methods and operators. For example, in

Scala, we can use an implicit conversion to add the multiplication operator to pairs of integers,

with the semantics of complex number multiplication:

1 scala> (0, 1) * (0, 1)

2 res0: (Int, Int) = (-1, 0)

Unlike evolving the interface, there is no mechanism in modern languages for evolving an

object’s encapsulated data as the programmer sees fit. The encapsulated data format is

assumed to be fixed, allowing the compiled code to contain hard references to data, encoded

according to a convention known as the object layout. For instance, methods encapsulated by

the generic pair class, such as swap and toString, rely on the existence of two generic fields,

erased to Object. This leads to inefficient storage in our running example, as the integers

need to be boxed, producing as many as 3 heap objects for each “complex number”: the two

boxed integers and the pair container. What if, for a part of our program, instead of the pair,

we concatenated the two 32-bit integers into a 64-bit long integer, that would represent the

“complex number”? We could pass complex numbers by value, avoiding the memory allocation

and thus the garbage collection cost. Additionally, what if we could also add functionality,

such as arithmetic operations, directly on our ad hoc complex numbers, without any heap

allocation overhead?

Object layout transformations are common in dynamic language virtual machines, such as

V8, PyPy and Truffle. These virtual machines profile values at run-time and make optimistic

assumptions about the shape of objects. This allows them to improve the object layout in the

heap, at the cost of recompiling all of the code that references the old object layout. If, later in

the execution, the assumptions prove too optimistic, the virtual machine needs to revert to
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the more general (and less efficient) object layout, again recompiling all the code that contains

hard references to the optimized layout. As expected, this comes with significant overheads.

Thus, runtime decisions to change the low-level layout are expensive (due to recompilation)

and have a global nature, affecting all code that assumes a certain layout.

Since transforming the object layout at run-time is expensive, a natural question to ask is

whether we can leverage the statically-typed nature of a programming language to optimize

the object layout during compilation? The answer is yes. Transformations such as “class

specialization” and “value class inlining” transform the object layout in order to avoid the

creation of heap objects. However, both of these transformations take a global approach:

when a class is marked as specialized or as a value class (and assuming it satisfies the semantic

restrictions) it is transformed at its definition site. Later on, this allows all references to the

class, even in separately compiled sources, to be optimized. On the other hand, if a class is not

marked at its definition site, retrofitting specialization or the value class status is impossible, as

it would break many non-orthogonal language features, such as dynamic dispatch, inheritance

and generics.

Therefore, although transformations in statically typed languages can optimize the object

layout, they do not meet the ad hoc criterion: they cannot be retrofitted later, and they have a

global, all-or-nothing nature. For instance, in Scala, the generic pair class is specialized but

not marked as a value class. As a result, the representation is not fully optimized, still requiring

a heap object for each pair. Even worse, specialization and value class inlining are mutually

exclusive, making it impossible to optimally represent our “complex numbers” even if we had

complete control over the Scala library. Furthermore, our encoded “complex number” data

representation may be applicable for specific parts of the client code, but might not make

sense globally.

In our “complex numbers” abstraction, we only use a fraction of the flexibility provided by the

library tuples, and yet we have to give up all the code optimality. Even worse, for our limited

domain, we are aware of a better representation, but the only solution is to transform the

code by hand, essentially having to choose between an obfuscated or a slow version of the

code. What is missing is a largely automated and safe transformation that allows us to use

our domain-specific knowledge to mark a scope where the “complex numbers” can use the

encoded representation, effectively specializing that part of our program.

In this chapter we present such an automated transformation that allows programmers to

safely change the data representation in limited, well-defined scopes that can include any-

thing from expressions to method and class definitions. The transformation, which occurs

during compilation, maintains strong correctness guarantees in terms of non-orthogonal

language features, such as dynamic dispatch, inheritance and generics, while also maintaining

consistence across separate compilation runs.

Like metaprogramming, which allows developers to transform their code in an ad-hoc ways,

our technique allows redefining the data representation to be used inside delimited scopes.
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Because of its power, the technique also affords potential for misuse. In some cases, specifi-

cally for mutable and reference-based data structures, the transformations must be carefully

designed to preserve language semantics (§4.3.5). Still, altering program semantics may be

desirable—we exploit this property in the deforestation benchmark, shown in the evaluation

section (§4.5).

The scoped nature of the transformation tightly controls which parts of the code use the new

data representation and operations while the mechanism for defining transformations auto-

matically eliminates many of the common semantics-altering pitfalls. Given a programmer-

designed data representation transformation, inside the delimited scopes the compiler is

responsible for: (1) automatically deciding when to apply the transformation and when to

revert it, in order to ensure correct interchange between representations, (2) enriching the

transformation with automatically generated bridge code that ensures correctness relative

to overriding and dynamic dispatch and (3) persisting the necessary metadata to allow trans-

formed program scopes in different source files and compilation runs to communicate using

the optimized representation—a property we refer to as composability in the following sec-

tions. Thus, our approach adheres to the design principle of separating the reusable, general

and provably correct transformation mechanism from the programmer-defined policy, which

may contain incorrect decisions [81]. In this context, our main contributions are:

• Introducing the data representation metaprogramming problem, which, to the best of

our knowledge, has not been addressed at all in the literature (§4.2);

• Presenting the extensions that allow global data representation transformations to be

used as scoped programmer-driven transformations (§4.3);

• Implementing the approach presented as a Scala compiler plugin [7] that allows pro-

grammers to express custom transformations (§4.4) and benchmarking the plugin on

a broad spectrum of transformations, ranging from improving the data layout and

encoding, to retrofitting specialization and value class status, and to collection defor-

estation [144]. These transformations produced speedups between 1.8 and 24.5x on

user programs (§4.5).

4.2 Motivation and Overview

This section presents a motivating example featuring the complex numbers transformation,

which we use throughout the chapter. It then shows how the data representation transforma-

tion is triggered and introduces the main concepts. Finally, it shows a naive transformation,

hinting at the difficulties lying ahead.

4.2.1 Motivating Example

In the introduction, we focused on adding complex number semantics to pairs of integers.

Complex numbers with integers as both their real and imaginary parts are known as Gaussian
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integers [5, 59], and are a countable subset of all complex numbers. The operations defined on

Gaussian integers are similar to complex number operations, with one exception: to satisfy the

abelian closure property, division is not precise, but instead rounds the result to the nearest

Gaussian integer, with both the real and imaginary axes containing integers. This is similar to

integer division, which also rounds the result, so that, for example, 5/2 produces value 2.

An interesting property of Gaussian integers is that we can define the “divides” relation and the

greatest common divisor (GCD) between any two Gaussian integers. Furthermore, computing

the GCD is similar to Euclid’s algorithm for integer numbers:

1 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int) = {

2 val remainder = n1 % n2

3 if (remainder.norm == 0) n2 else gcd(n2, remainder)

4 }

Unfortunately, as our algorithm recursively computes the result, it creates linearly many pairs

of integers, allocating them on the heap. If we run this algorithm with no optimizations,

computing the GCD takes around 3 microseconds (on the same setup as used for our full

experiments in §4.5):

1 scala> timed(() => gcd((544, 185), (131, 181)))

2 The operation takes 3.05 us (based on 10000 executions)

3 The result is (10, 3).

Let us now run gcdADRT, which has the same code as gcd but encodes the Gaussian integers

into 64-bit long integers:

1 scala> timed(() => gcdADRT((544, 185), (131, 181)))

2 The operation takes 0.23 us (based on 10000 executions)

3 The result is (10, 3).

This rather large speedup, of 13x, is the effect of using the long integer representation for

Gaussian Integers, which:

(1) Provides a direct representation, which does not require any pointer dereferencing;

(2) Allocates Gaussian integers on the stack, since the Long primitive type is unboxed by

the compiler backend, thus avoiding object allocation and garbage collector pauses.

The Benchmarks section (§4.5) shows the contribution of each element to the speedup. This

example (and many others in the Benchmarks section) show that optimizing the data rep-

resentation is worthwhile. However, transforming the code by hand is both tedious and

error-prone.
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4.2.2 Automating the Transformation

In order to reap the benefits of using the improved representation without manually transform-

ing the code, we present the Ad hoc Data Representation (ADR) Transformation technique,

which is triggered by the adrt marker. This marker method accepts two parameters: the

first parameter is the transformation description object and the second is a block of code that

constitutes the transformation scope, which can contain anything from expressions all the way

to method or even class definitions:

1 adrt(IntPairComplexToLongComplex) {

2 def gcdADRT(n1: (Int, Int), n2: (Int, Int)) = {

3 val remainder = n1 % n2

4 if (remainder.norm == 0) n2 else gcdADRT(n2, remainder)

5 }

6 }

The gcdADRT method has exactly the same code as gcd, but wrapped in the adrt scope.

Therefore, during compilation, the method is transformed to use the long integer representa-

tion. Two elements trigger the transformation: the description object and the transformation

scope.

The transformation description object

The transformation description object is responsible for defining the transformation that

will be applied to the code. In our example, IntPairComplexToLongComplex designates a

transformation from the high-level type, in this case (Int, Int) to the representation type,

in this case Long:

1 object IntPairComplexToLongComplex

2 extends TransformationDescription {

3 // coercions:

4 def toRepr(high: (Int, Int)): Long = ...

5 def toHigh(repr: Long): (Int, Int) = ...

6 // bypass methods:

7 ...

8 }

Transformation description objects are described in more detail in §4.3, but we can already

preview their components:

• The toRepr and toHigh methods serve a double purpose:

– At the type level, they define the high-level type, in this case (Int, Int), which

serves as the target of the transformation, and the representation type, in this case

Long, which will be used as the optimized value representation;

– At the term level, they allow converting values between the two representations;
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• The “bypass methods” part of the definition allows operations such as *, % and norm to

run directly on values encoded in the representation type (in this case Long), instead of

decoding them back to the high-level type in order to execute the dynamic dispatch. We

explain how bypass methods are defined and used later on, in §4.3.4.

Description objects split the task of optimizing the data representation into:

(1) Devising an improved data representation: Defining the improved data representation

is done once and uses domain-specific knowledge about the program. Therefore, we

let the developer decide how data should be encoded and how operations should be

handled. This information is stored in the description object.

(2) Transforming the source code to use the improved representation, based on the de-

scription object: This is repetitive, tedious and error-prone work, which we completely

automate away.

A natural question to ask is why not automate the process of finding a better data represen-

tation? Any change in the data representation speeds up certain patterns at the expense of

slowing down others. For example, unboxing primitive types speeds up monomorphic code,

which handles primitives directly. Yet, erased generics still require values to be boxed, so any

interaction with them triggers boxing operations, which slow down execution.

Furthermore, there are many aspects that can be optimized: eliminating pointer dereferencing,

improving cache locality, reducing the memory footprint to avoid garbage collection pauses,

reducing numeric value ranges, specializing or delaying operations, and many others. Thus,

there are many choices to make, depending on the context, to the point where automation does

not make sense. Instead, armed with application profiles and domain-specific information

about how the data is used, a programmer can decide what is the best transformation to apply

to each critical part of an application. And, interestingly, not all parts of an application have

the same needs. This is where scopes come in.

The transformation scope

The transformation scope is delimited by the adrt marker method, which behaves much like

a keyword. Values, methods and classes defined in the scope are also visible outside, since the

inlining occurs early in the compilation pipeline:
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1 scala> adrt(IntPairComplexToLongComplex) {

2 | def gcdADRT(n1: (Int, Int), n2: (Int, Int))={

3 | ...

4 | }

5 | }

6 defined method gcdADRT

7

8 scala> timed(() => gcdADRT((544, 185), (131, 181)))

9 ...

Scoped transformations bring two advantages:

• Different parts of a program can use different transformations, using the best data

representation for the task;

• Transformations are clearly marked in the source code.

The fact that different transformations can be applied to different components gives the

ADR transformation its scoped nature, and sets it apart from classical optimizations such as

unboxing primitive types, generic specialization and value class inlining, which occur globally.

However, this scoped nature makes the transformation more complex, as the next paragraphs

will show.

4.2.3 A Naive Transformation

Despite its simple interface, the Ad hoc Data Representation Transformation mechanism is by

no means simple. Let us try to make the transformation by hand and see the challenges that

appear. The initial result, the gcdNaive method, would take and return values of type Long

instead of (Int, Int):

1 def gcdNaive(n1: Long, n2: Long): Long = {

2 val remainder = n1 % n2

3 if (remainder.norm == 0) n2 else gcdNaive(n2, remainder)

4 }

There are many questions one could ask about this naive translation. For example, how does

the compiler know which parameters and values to transform to the long integer represen-

tation (§4.3.1)? How and when to encode and decode values, and what to do about values

that are visible outside the scope (§4.3.2)? Even worse, what if parts of the code are compiled

separately, in a different compiler run (§4.3.3)?

Going into the semantics of the program, we can ask if the % (modulo) operator maintains the

semantics of Gaussian integers when used for long integers. Also, is norm defined for long

integers? Unfortunately, the response to both questions is negative. Therefore, to correctly

transform the code, ADRT needs equivalent versions of the methods that operate on the long

integer representation (§4.3.4).
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We could also ask what would happen if gcd was overriding another method. Would the new

signature still override it? The answer is no, so the naive translation would break the object

model (§4.3.5):

1 trait WithGCD[T] {

2 def gcd(n1: T, n2: T): T

3 }

4

5 class Complex extends WithGCD[(Int, Int)] {

6 // expected: gcd(n1: (Int, Int), n2: (Int, Int)) ...

7 // found: gcd(n1: Long, n2: Long): Long

8 // (which does not implement gcd in trait WithGCD)

9 def gcd(n1: Long, n2: Long): Long = ...

10 }

What we can learn from this naive transformation, which is clearly incorrect, is that transform-

ing the data representation is by no means trivial and that special care must be taken when

performing it. Our approach, the Ad hoc Data Representation Transformation, addresses the

questions above in a reliable and principled fashion.

4.3 Ad hoc Data Representation Transformation

The Ad hoc Data Representation (ADR) transformation adds two new elements to the existing

Late Data Layout (LDL) mechanism: (1) it enables custom, programmer-defined alternative

representations and (2) it allows the transformation to take place in limited scopes, ranging

from expressions all the way to method and class definitions. This allows programmers to use

locally optimal transformations that may be suboptimal or even incorrect for code outside the

given scope.

Section 4.2.2 showed how the ADR transformation is triggered by the adrt marker. The

running example is reproduced below for quick reference:1

1 adrt(IntPairComplexToLongComplex) {

2 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int)={

3 val remainder = n1 % n2

4 if (remainder.norm == 0) n2 else gcd(n2, remainder)

5 }

6 }

The following sections take a step by step approach to explaining how our technique al-

lows programmers to define transformations and to use them in localized program scopes,

improving the performance of their programs in an automated and safe fashion.

1In the following paragraphs, the gcdmethod is assumed to be always transformed, so we will skip the ADRT
suffix, which was used in the Motivation section (§4.2) to mark the transformed version of the method.
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4.3.1 Transformation Description Objects

The first step in performing an adrt transformation is defining the transformation description

object. This object is required to extend a marker interface and to define the transformation

through the toRepr and toHigh coercions:

1 object IntPairComplexToLongComplex

2 extends TransformationDescription {

3 // coercions:

4 def toRepr(high: (Int, Int)): Long = ...

5 def toHigh(repr: Long): (Int, Int) = ...

6 // bypass methods:

7 ...

8 }

The coercions serve a double purpose: (1) the signatures match the high-level type, in this

case (Int, Int) and indicate the corresponding representation type, Long and vice-versa

and (2) the implementations are called in the transformed scope to encode and decode values

as necessary.

Since the description objects can accommodate very different transformations, as shown in

the Benchmarks section (§4.5), we will not attempt to give a recipe for optimizing programs

here. Each transformation should be devised by programmers based on runtime profiles and

domain-specific knowledge of how data is processed inside the application. Instead, we will

focus on the transformation facilities available to the description objects.

Bypass Methods

The description object can optionally include bypass methods, which correspond to the

methods exposed by the high-level type, but instead operate on values encoded in the repre-

sentation type. Bypass methods allow the transformation to avoid coercing receivers to the

high-level type by rewriting dynamically dispatched calls to their corresponding statically-

resolved bypass method calls. Method call rewriting in adrt scopes is more general, and we

describe it in section §4.3.4.

Generic Transformations

In our example, both the high-level and representation types are monomorphic (i.e., not

generic). Still, in some cases, the ADR transformation is used to target collections regardless

of the type of their elements. We analyzed multiple approaches to allowing genericity in the

transformation description object and converged on allowing the coercions to be generic

themselves. This approach has the merit of being concise and extending naturally to any type

constructor arity:
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1 def toRepr[T](high: List[T]): LazyList[T] = ...

2 def toHigh[T](repr: LazyList[T]): List[T] = ...

Since the coercion signatures “match” the high-level type and return the corresponding

representation type, a value of type List[Int] will be matched by the adrt transformation

and subsequently encoded as a LazyList[Int]. This allows the adrt scopes to transform

collections, containers and function representations. The benchmarks section (§4.5) shows

two examples of generic transformations.

Target Semantics

It is worth noting that coercions defined in transformation objects must maintain the seman-

tics of the high-level type. In particular, semantics such as mutability and referential identity

must be preserved if the program relies on them. For example, correctly handling referential

identity requires the coercions to return the exact same object (up to the reference) when

interleaved:

1 assert(toHigh(toRepr(x)) eq x) // referential equality

These semantics prevent the coercions from simply copying the value of the object into the

new representation. For example, the referential equality condition above would be violated if

the toRepr and toHigh methods would simply allocate new objects (which would get new

references). Instead, the toRepr coercion would have to cache the original value so that,

when decoding, the toHigh coercion could return the exact same object as originally given.

As expected, referential equality and mutability make transformations a lot more difficult.

Luckily, in most use cases, the targets, such as library collections and containers, have value

semantics: they are immutable, final and only use structural equality. Such high-level types can

be targeted at will, since they can be reconstructed at any time without the program observing

it. A desirable extension of our approach would be to statically check the compatibility of

the high-level type with its coercions. This could prevent the programmer from incorrectly

copying internally mutable objects inside the coercions.

The complete transformation description object for the complex number encoding is given in

the Appendix.

4.3.2 Transformation Scopes and Composability

Existing LDL-based data representation transformations, such as value class inlining and

specialization, have fixed semantics and occur in separate compiler phases. Instead, the ADR

transformation handles all scopes in the source code concurrently, each with its own high-level

target, representation type, and coercions. This is a challenge, as handling the interactions
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between these concurrent scopes, some of which may even be nested, demands a disciplined

treatment.

The key to handling all concurrent scopes correctly is shifting focus from the scopes themselves

to the values they define. Since we are using the underlying LDL mechanism, we can track

the encoding of each value in its type, using annotations. To keep track of the different

transformations introduced by different scopes, we extend the LDL annotation system to

reference the description object, essentially referencing the transformation semantics with

each individual value. We then leverage the type system and the signature persistence facilities

to correctly transform all values, thus allowing scopes to safely and efficiently pass data among

themselves, using the representation type—a property we refer to as composability.

We look at four instances of composability:

• allowing different scopes to communicate, despite using different representation types

(high-level types coincide);

• isolating high-level types, barring unsound value leaks through the representation type;

• handling nested transformation description objects;

• passing values between high-level types in the encoded (representation) format;

Although the four examples cover the most interesting corner cases of the transformation,

the interested reader may consult the “Scope Nesting” page on the project wiki [8], which

describes all cases of scope overlapping, collaboration and nesting. Furthermore, scope

composition is tested with each commit, as part of the project’s test suite.

A high-level type can have different representations in different scopes. This follows from

the scoped nature of the ADR transformation, which allows programmers to use the most

efficient data representation for each task. But it raises the question of whether values can be

safely passed across scopes that use different representations:

1 adrt(IntPairToLong) { var x = (3, 5) }

2 adrt(IntPairToDouble) { val y = (2, 6); x = y }

At a high level, the code is correct: the variable x is set to the value of y, both of them having

high-level type (Int, Int). However, being in different scopes, these two values will be

encoded differently, x as a long integer and y as a double-precision floating point number. In

this situation, how will the assignment x = y be translated? Let us look at the transformation

step by step.

After parsing, the scope is inlined and the program is type-checked against the high-level

types. Aside from checking the high-level types, the type checker also resolves implicits and

infers all missing type annotations. While type-checking, the description objects are stored as

invisible abstract syntax tree attachments (described in §4.4):
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1 var x: (Int, Int) = (3, 5) /* att: IntPairToLong */

2 val y: (Int, Int) = (2, 6) /* att: IntPairToDouble */

3 x = y

Then, during the INJECT phase, each value or method definition that matches the descrip-

tion object’s high-level type is annotated with the @repr annotation, parameterized on the

transformation description object:

1 var x: @repr(IntPairToLong) (Int, Int) = (3, 5)

2 val y: @repr(IntPairToDouble) (Int, Int) = (2, 6)

3 x = y

The @repr annotation is only attached if the value’s type matches the high-level type in the

description object. Therefore, programmers are free to define values of any type in the scope,

but only those values whose type matches the transformation description object’s target will

be annotated.

Based on the annotated types, the COERCE phase notices the mismatching transformation

description objects in the last line: the left-hand side is on its way to be converted to a long

integer (based on the description object IntPairToLong) while the right-hand side will

become a floating point expression (based on the description object IntPairToDouble).

However, both description objects have the same high-level type, the integer pair, which can

be used as a middle ground in the conversion:

1 var x: @repr(IntPairToLong) (Int, Int) = toRepr(IntPairToLong, (3, 5))

2 val y: @repr(IntPairToDouble) (Int, Int) = toRepr(IntPairToDouble, (2, 6))

3 x = toRepr(IntPairToLong, toHigh(IntPairToDouble, y))

Finally, the COMMIT phase transforms the example to:

1 var x: Long = IntPairToLong.toRepr((3, 5))

2 val y: Double = IntPairToDouble.toRepr((2, 6))

3 x = IntPairToLong.toRepr(IntPairToDouble.toHigh(y))

In the end, the value x is converted from a double to a pair of integers, which is subsequently

converted to a long integer. This shows the disciplined way in which different adrt scopes

compose, allowing values to flow across different representations, from one scope to another.

Similarly to the LDL transformation, the mechanism aims to employ a minimal number of

conversions.

Different transformation scopes can be safely nested and the high-level types are correctly

isolated:
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1 adrt(FloatPairAsLong) {

2 adrt(IntPairAsLong) {

3 val x: (Float, Float) = (1f, 0f)

4 var y: (Int, Int) = (0, 1)

5 // y = x

6 // y = 123.toLong

7 }

8 }

Values of the high-level types in the inner scope are independently annotated and are trans-

formed accordingly. Since both the integer and the float pairs are encoded as long integers,

a natural question to ask is whether values can leak between the two high-level types, for

example, by un-commenting the last two lines of the inner scope. This would open the door

to incorrectly interpreting an encoded value as a different high-level type, thus introducing

unsoundness.

The answer is no: the code is first type-checked against the high-level types even before the

INJECT transformation has a chance to annotate it. This prohibits direct transfers between the

high-level types and their representations. Thus, the unsound assignments will be rejected,

informing the programmer that the types do not match. This is a non-obvious benefit of

using the ADR transformation instead of manually refactoring the code and using implicit

conversions, which, in some cases, would allow such unsound assignments.

Handling nested transformation description objects is another important property of

composition:

1 adrt(PairAsMyPair) { // (Int,Int) -> MyPair[Int,Int]

2 adrt(IntPairAsLong) { // (Int,Int) -> Long

3 val x: (Int, Int) = (2, 3)

4 }

5 println(x.toString)

6 }

In the code above, the type of x matches both transformation description objects, so it could

be transformed to both representation types MyPair[Int, Int] and Long. However, during

the INJECT phase, if a value is matched by several nested adrt scopes, this can be reported

to the programmer either as an error or, depending on the implementation, as a warning,

followed by choosing one of the transformation description objects for the value (our current

solution):

1 console:9: warning: Several adrt scopes can be applied to value x. Picking

the innermost one: IntPairAsLong

2 val x: (Int, Int) = (2, 3)

3 ^
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Furthermore, since the INJECT phase annotates value x with the chosen transformation, there

will be no confusion on the next line, where x has to be converted back to the high-level type

to receive the toString method call, despite the fact that the adrt scope surrounding the

instruction uses a different transformation description object.

A different case of nested transformation description objects is what we call “cascading”

scopes:

1 adrt(TtoU) { // T -> U

2 adrt(UtoV) { // U -> V

3 val t: T = ??? // T -> U -> V (?)

4 }

5 }

It may seem natural that the value t will be transformed to use the V representation type: first,

converting from T to U and then from U to V. Unfortunately, the underlying mechanism, Late

Data Layout, only allows values to undergo one representation change in the COERCE phase.

Thus, to enable cascading scopes, we would have to either run the COERCE phase until a

fixpoint or extend both the theory and the implementation to handle multiple conversions in a

single run, neither of which is a straightforward extension. Therefore, in the current approach,

we disallow cascading scopes:

1 cascading.scala:25: warning: Although you may expect value t to use the

representation type U, by virtue of nesting the transformation description

objects (TtoU,UtoV), "cascading" scopes are not supported:

2 val t: T = ???

3 ^

Instead, the value t undergoes a single ADR transformation, to the representation type V. By

disallowing “cascading” scopes we also protect against cyclic scopes, such as TtoU nested

inside UtoT, which could cause infinite loops.

Prohibiting access to the representation type inside the transformation scope is limiting.

For example, a performance-conscious programmer might want to transform the high-level

integer pair into a floating-point pair without allocating heap objects. Since the programmer

does not have direct access to the representation, it looks like the only solution is to decode

the integer pair into a heap object, convert it to a floating-point pair and encode it back to the

long integer.

There is a better solution. As we will later see, the programmer can use bypass methods to

“serialize” the integer pair into a long integer and “de-serialize” it into a floating-point pair. Yet,

this requires a principled change in the transformation description object. This is the price to

pay for a safe and automated representation transformation.
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To recap: focusing on individual values and storing the transformation semantics in the

annotated type allows us to correctly handle values flowing across scopes, a property we call

scope composition. Although we focused on values, method parameters and return types are

annotated in exactly the same way. The next part extends scope composition across separate

compilation.

4.3.3 Separate Compilation

Annotating the high-level type with the transformation semantics allows different adrt scopes

to seamlessly pass encoded values. To reason about composing scopes across different com-

pilation runs, let us assume we have already compiled the gcd method in the motivating

example:

1 adrt(IntPairComplexToLongComplex) {

2 def gcd(n1: (Int,Int), n2: (Int,Int)): (Int,Int) =...

3 }

After the INJECT phase, the signature for method gcd is:

1 def gcd(

2 n1: @repr(IntPairComplexToLongComplex) (Int, Int),

3 n2: @repr(IntPairComplexToLongComplex) (Int, Int)

4 ): @repr(IntPairComplexToLongComplex) (Int, Int) = ...

And, after the COMMIT phase executed, the bytecode signature for method gcd is:

1 def gcd(n1: long, n2: long): long = ...

When compiling source code that refers to existing low-level code, such as object code or

bytecode compiled in a previous run, compilers need to load the signature of each symbol.

For C and C++ this is done by parsing header files while for Java and Scala, it is done by reading

the source-level signature from the bytecode metadata. However, not being aware of the ADR

transformation of method gcd, a separate compilation could assume it accepts two pairs

of integers as input. Yet, in the bytecode, the gcd method accepts long integers and cannot

handle pairs of integers.

The simplest solution is to create two versions for each transformed method: the transformed

method itself and a bridge, which corresponds to the high-level signature. The bridge method

would accept pairs of integers and encode them as longs before calling the transformed

version of the gcd method. It would also decode the result of gcd back to a pair of integers.

This approach allows calling gcd from separately compiled files without being aware of the

transformation. Still, we can do better.
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Persisting Transformation Annotations

Let us assume we want to call the gcd method from a scope transformed using the same trans-

formation description object as we used when compiling gcd, but in a different compilation

run:

1 adrt(IntPairComplexToLongComplex) {

2 val n1: (Int, Int) = ...

3 val n2: (Int, Int) = ...

4 val res: (Int, Int) = gcd(n1, n2)

5 }

In this case, would it make sense to call the bridge method? The values n1 and n2 are already

encoded, so they would have to be decoded before calling the bridge method, which would

then encode them back. This is suboptimal.

Instead, we want the adrt scopes to compose across separate compilation, allowing the call

to go through in the encoded format. This is achieved by persisting the transformation infor-

mation in the generated bytecode, but we have to do so without making ADR transformations

a first-class concept. The approach we took is to persist the injected annotations, including

the reference to the transformation description object. These become part of the signature of

gcd:

1 // loaded signature (description object abbreviated):

2 def gcd(n1: @repr(.) (Int, Int), n2: @repr(.) (Int, Int)): @repr(.) (Int,

Int)

The annotations are loaded just before the INJECT phase, which transforms our code to:

1 val n1: @repr(.) (Int, Int) = ...

2 val n2: @repr(.) (Int, Int) = ...

3 val res: @repr(.) (Int, Int) = gcd(n1, n2)

With the complete signature for gcd, the COERCE phase does not introduce any coercions,

since the arguments to method gcd use the same encoding as the method parameters did in

the previous compilation run. This allows adrt scopes to seamlessly compose even across

separate compilations. After the COMMIT phase, the scope is compiled to:

1 val n1: Long = ...

2 val n2: Long = ...

3 val res: Long = gcd(n1, n2) // no coercions!!!
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Making Bridge Methods Redundant

Persisting transformation information in the high-level signatures allows us to skip creating

bridges. For example:

1 val res: (Int, Int) = gcd((55, 2), (17, 13))

Since the signature for method gcd references the transformation description object, the

COERCE phase knows exactly which coercions are necessary:

1 val res: (Int, Int) = toHigh(...,

2 gcd(toRepr(..., (55, 2)), toRepr(..., (17, 13))))

Generally, persisting references to the description objects in each value’s signature allows

efficient scope composition across separate compilation runs.

4.3.4 Optimizing Method Invocations

When choosing a generic container, such as a pair or a list, programmers are usually motivated

by the natural syntax and the flexible interface, which allows them to quickly achieve their goal

by invoking the container’s many convenience methods. The presentation so far focused on

optimizing the data representation, but to obtain peak performance, the method invocations

need to be transformed as well:

1 adrt(IntPairComplexToLongComplex) {

2 val n = (0, 1)

3 println(n.toString)

4 }

When handling method calls on an encoded receiver, the default LDL behavior is very conser-

vative: it decodes the value back to its high-level type, which exposes the original method and

generates a dynamically-dispatched call:

1 val n: Long = ...

2 println(IntPairComplexToLongComplex.toHigh(n).toString)

The price to pay is decoding the value into the high-level type, which usually leads to heap

allocations and can introduce overheads. If a corresponding bypass method is available, the

LDL transformation can use it:

1 val n: Long = ...

2 println(IntPairComplexToLongComplex.bypass_toString(n))

The bypass method can operate directly on the encoded version of the integer pair, avoiding a

heap allocation. In practice, when the receiver of a method call is annotated, our modified LDL
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transformation looks up the bypass_toString method in the transformation description

object, and, if none is found, warns the programmer and proceeds with decoding the receiver

and generating the dynamically-dispatched call.

Methods Added via Implicit Conversions

Methods added via implicit conversions and other enrichment techniques, such as extension

methods or type classes, add another layer or complexity, only handled in the ADR transforma-

tion. For example, we can see the multiplication operator *, added via an implicit conversion

(we will further analyze the interaction with implicit conversions in §4.3.5):

1 adrt(IntPairComplexToLongComplex) {

2 val n1 = (0, 1)

3 val n2 = n1 * n1

4 }

Type-checking the program produces an explicit call for the implicit conversion that introduces

the * operator:

1 val n1: (Int, Int) = (0, 1)

2 val n2: (Int, Int) = intPairAsComplex(n1) * n1

This is a costly pattern, requiringn1 to be decoded into a pair and passed to theintPairAsComplex

method, which itself creates a wrapper object that exposes the * operator. To optimize this

pattern, the ADR transformation looks for a bypass method in the transformation description

object that corresponds to a mangled name combining the implicit method name and the

operator. For simplicity, if we assume the name is implicit_* and the bypass exists in the

IntPairComplexToLongComplex object, the COERCE phase transforms the code to:

1 val n1: Long = toRepr((0,1))

2 val n2: Long = IntPair...Complex.implicit_*(n1, n1)

This allows the call to the * operator to be transformed into a bypass call, avoiding heap object

creation, and thus significantly improving the performance and heap footprint.

Bypass Methods

Both normal and implicit bypass methods defined in the transformation description object

need to correspond to the original method they are replacing and:

• Add a first parameter corresponding to the receiver;

• Have the rest of the parameters match the origin method;

• Freely choose parameters to be encoded or decoded.
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Therefore, during the COERCE phase, which introduces bypass method calls, the implicit_*
has the signature:

1 def implicit_*(recv: @repr(...) (Int, Int), n2: @repr(...) (Int, Int)):

@repr(...) (Int, Int)

Since the programmer defining the description object is free to choose any encoding for the

bypass arguments, the following (suboptimal) signature would be equally accepted:

1 def implicit_*(recv:(Int,Int), n2:(Int,Int)):(Int,Int)

With the second signature, despite calling a bypass method, the arguments still have to be

coerced, since the high-level type (Int, Int) is expected.

It is interesting to notice that representation-agnostic method rewriting relies on two previous

design choices:

(1) shifting focus from scopes to individual values and

(2) carrying the entire transformation semantics in the signature of each encoded value. Yet,

there is still a snag.

Constructors

Constructors create heap objects before they can be encoded in the representation type. In

our example, the first line runs the pair (Tuple2) constructor, which creates a heap object,

and then converts it to the Long representation:

1 // In Scala, (0,1) is a shorthand for new Tuple2(0,1):

2 val n1: Long = toRepr((0,1))

3 val n2: Long = IntPair...Complex.implicit_*(n1, n1)

Instead of allocating the Tuple2 object, the ADR transformation can intercept and rewrite

constructor invocations into constructor bypass methods:

1 val n1: Long = IntPair...Complex.ctor_Tuple2(0, 1)

2 val n2: Long = IntPair...Complex.implicit_*(n1, n1)

Notice that the integers are now passed as arguments to the constructor bypass method

ctor_Tuple2, by value. This completes this scope’s transformation, allowing it to execute

without allocating any heap object at all.
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4.3.5 Interaction with Other Language Features

This section presents the interaction between the ADR transformation and object-oriented

inheritance, generics and implicit conversions, explaining the additional steps that are taken

to ensure correct program transformation.

Dynamic Dispatch and Overriding

Dynamic dispatch and overriding are an integral part of the object-oriented programming

model, allowing objects to encapsulate code. The main approach to evolving this encapsu-

lated code is extending the class and overriding its methods. However, changing the data

representation can lead to situations where source-level overriding methods are no longer

overriding in the low-level bytecode:

1 trait X {

2 def identity(i: (Int, Int)): (Int, Int) = i

3 }

4 adrt(IntPairAsLong) {

5 class Y(t: (Int, Int)) extends X {

6 override def identity(i: (Int, Int)) = t

7 }

8 }

After the ADR transformation, the identity method in class Y no longer overrides method

identity in trait X, since its signature expects a long integer instead of a pair of integers.

To address this problem, we extend the Late Data Layout mechanism by introducing a new

BRIDGE phase, which runs just before COERCE and inserts bridge methods to enable correct

overriding. After the INJECT phase, the code corresponding to class Y is:

1 class Y(t: @repr(...) (Int, Int)) extends X {

2 override def identity(i: @repr(...) (Int, Int)) = t

3 }

The BRIDGE phase inserts the methods necessary to allow correct overriding (return types are

omitted):

1 class Y(t: @repr(...) (Int, Int)) extends X {

2 def identity(i: @repr(...) (Int, Int)) = t

3 @bridge // overrides method identity from class X:

4 override def identity(i: (Int, Int)) = identity(i)

5 }

The COERCE and COMMIT phases then transform class Y as before, resulting in a class with

two methods, one containing the optimized code and another that overrides the method from

class X, marked as @bridge:
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1 class Y(t: Long) extends X {

2 def identity(i: Long): Long = t

3 @bridge override def identity(i: (Int, Int)) = ...

4 }

If we now try to extend class Y in another adrt scope with the same transformation description

object, overriding will take place correctly: the new class will define both the transformed

method and the bridge, overriding both methods above. However, a more interesting case

occurs when extending class Y from a scope with a different description:

1 adrt(IntPairAsDouble) { // != IntPairAsLong

2 class Z extends Y(...) {

3 override def identity(i: (Int, Int)): (Int, Int) = i

4 }

5 }

The ensuing BRIDGE phase generates 2 bridge methods:

1 class Z extends Y(...) {

2 def identity(i: Double): Double = i

3 @bridge override def identity(i: (Int, Int)) = ...

4 @bridge override def identity(i: Long): Long = ...

5 }

Although the resulting object layout is consistent, the @bridge methods have to transform

between the representations, which makes them less efficient. This is even more problematic

when up-casting class Z to Y and invoking identity, as the bridge method goes through the

high-level type to convert the long integer to a double. In such cases the BRIDGE phase issues

warnings to notify the programmer of a possible slowdown caused by the coercions.

Dynamic and Native Code

Thanks to the BRIDGE phase, class Z conforms to the trait (interface) X, thus, any call going

through the interface will execute as expected, albeit, in this case, less efficiently. This allows

dynamically loaded code to work correctly:

1 Class.forName("Z").newInstance() match {

2 case x: X[_] => x.identity((3, 4))

3 case _ => throw new Exception("...")

4 }

We have not tested the Java Native Interface (JNI) with ADR transformations, but expect the

object layout assumptions in the C code to be invalidated. However, method calls should still

occur as expected.
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Generics

Another question that arises when performing ad hoc programmer-driven transformations

is how to transform the data representation in generic containers. Should the ADR trans-

formation be allowed to change the data representation stored in a List? We can use an

example:

1 def use1(list: List[(Int, Int)]): Unit = ...

2 adrt(IntPairAsLong) {

3 def use2(list: List[(Int, Int)]): Unit = use1(list)

4 }

In the specific case of the Scala immutable list, it would be possible to convert the list

parameter of use2 from type List[Long] to List[(Int, Int)] before calling use1. This

can be done by mapping over the list and transforming the representation of each element.

However, this domain-specific knowledge of how to transform the collection only applies to

the immutable list in the standard library, and not to other generic classes that may occur in

practice. Furthermore, there is an entire class of containers for which this approach is incorrect:

mutable containers. An invariant of mutable containers is that any elements changed will

be visible to all the code that holds a reference to the container. Duplicating the container

itself and its elements (stored with a different representation) breaks this invariant: changes

to one copy of the mutable container are not visible to its other copies. This is similar to the

mutability restriction in §4.3.1.

The approach we follow in the ADR transformation is to preserve the high-level type inside

generics. Thus, our example after the COMMIT phase will be:

1 def use1(list: List[(Int, Int)]): Unit = ...

2 def use2(list: List[(Int, Int)]): Unit = use1(list)

However, this does not prevent a programmer from defining another transformation descrip-

tion object that targets List[(Int, Int)] and replaces it by List[Long]:

1 adrt(ListOfIntPairAsListOfLong) {

2 def use3(list: List[(Int, Int)]): Unit = use1(list)

3 }

In this second example, following the COMMIT phase, the List[(Int, Int)] is indeed

transformed to List[Long]:

1 def use3(list: List[Long]): Unit = use1(toHigh(list))

To summarize, adrt scopes are capable of targeting:

• generic types, such as List[T] for any T;
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• instantiated generic types, such as List[(Int, Int)];

• monomorphic types, such as (Int,Int), outside generics

Using these three cases and scope composition, programmers can conveniently target any

type in their program.

Implicit Conversions

Implicit conversions interact in two ways with adrt scopes:

Extending the object functionality through implicit conversions, extension methods, or type

classes must be taken into account by the method call rewriting in the COERCE phase. The

handling of all three means of adding object functionality is similar, since, in all three cases,

the call to the new method needs to be intercepted and redirected. Depending on the exact

means, the mangled name for the bypass method will be different, but the mechanism and

signature transformation rules remain the same (§4.3.4).

Offering an alternative transformation mechanism. Despite the apparent similarity, implicit

conversions are not powerful enough to replace the ADRT mechanism. For example, assuming

the presence of implicit methods to coerce integer pairs to longs and back, we can try to

transform:

1 val n: (Int, Int) = (1, 0)

2 val a: Any = n

3 println(a)

To trigger the transformation, we update the type of n to Long in the source code and wait for

the implicit conversions to do their work:

1 val n: Long = (1, 0) // triggers implicit conversion

2 val a: Any = n // does not trigger the reverse

3 println(a)

This resulting code breaks semantics because no coercion is applied to a, since Long is a

subtype of Any. In turn, the output becomes 4294967296 instead of (1, 0). Using the

LDL mechanism, the missing coercion is correctly inserted when annotations track the value

representation, since annotations are orthogonal to the host language type system.

With this, we presented the Ad hoc Data Representation Transformation mechanism and how

it interacts with other language features to guarantee transformation correctness. The next

section describes the architecture and implementation of our Scala compiler plugin.
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4.4 Implementation

We implemented the ADR transformation as a Scala compiler plugin [7], by extending the open-

source multi-stage programming transformation provided with the LDL artifact, available

at [12]. In this section we describe the technical aspects of our implementation that are

not directly related to the transformation itself, but meant to provide a good programmer

experience. Readers should also refer to the Appendix for an end-to-end example of the

transformation phases. Additionally, the artifact implementation is public and can be used to

explore the transformation.

The adrt scope acts as the trigger for the ADR transformation. We treat it as a special keyword

that we transform immediately after parsing, in the POSTPARSER phase. To show this, we

follow a program through the compilation stages:

1 def foo: (Int, Int) = {

2 adrt(IntPairToLong) {

3 val n: (Int, Int) = (2, 4)

4 }

5 n

6 }

Immediately after the source is parsed, the POSTPARSER phase transforms the adrt scopes in

three steps:

• it attaches a unique id to each adrt scope;

• it records and clears the block enclosed by the adrt scope

• it inlines the recorded code immediately after the now-empty adrt scope and, in the

process, it marks the value and method definitions by the adrt scope’s unique id (or by

multiple ids, if adrt scopes are nested).

Following the POSTPARSER phase, the code is:

1 def foo: (Int, Int) = {

2 /* id: 100 */ adrt(IntPairToLong) {}

3 /* id: 100 */ val n: (Int, Int) = (2, 4)

4 n

5 }

This code is ready for type-checking: the definition of n is located in the same block as its

use, making the scope correct. During the type-checking process, the IntPairToLong object

is resolved to a symbol, missing type annotations are inferred and implicit conversions are

introduced explicitly in the tree. After type-checking and pattern matching expansion, the

INJECT phase traverses the tree and:

• for every adrt scope it records the id and description object, before removing it from

the abstract syntax tree;
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• for value and method definitions, if the type matches one or more transformations, it

adds the @repr annotation.

Following the INJECT phase, the code for our example is:

1 def foo: (Int, Int) = {

2 val n: @repr(IntPairToLong) (Int, Int) = (2, 4)

3 n

4 }

After the INJECT phase, the annotated signatures are persisted, allowing the scope composition

to work across separate compilation. Later, the BRIDGE, COERCE and COMMIT phases proceed

as described in Chapter 3 and Section §4.3.

The transformation description objects extend the marker traitTransformationDescription.

Although the marker trait is empty, the description object needs to define at least the toHigh

and toRepr coercions, which may be generic, as shown in §4.3.1. The programmer is then

free to add bypass methods, in order to avoid decoding the representation type for the purpose

of dynamically dispatching method calls. To aid the programmer in adding bypass methods,

the COERCE phase warns whenever it does not find a suitable bypass method, indicating both

the expected name and the expected method signature.

Here we encountered a bootstrapping problem: although bypass methods handle the repre-

sentation type, during the COERCE phase, their signatures are expected to take parameters

of the annotated high-level type, in order to allow redirecting method calls. To work around

this problem, we added the @high annotation, which acts as an anti-@repr and marks the

representation types:

1 object IntPairToLong extends TransformationDescription{

2 ...

3 // source-level signature (type-checking the body):

4 def bypass_toString(repr: @high Long): String = ...

5 // signature during coerce (allows rewriting calls):

6 // def bypass_toString(repr: @repr(...) (Int, Int))

7 // signature after commit (bytecode signature):

8 // def bypass_toString(repr: Long)

9 }

This mechanism allows programmers to both define and use the transformation description

objects in the same compilation run—an obvious benefit over full macro-based metaprogram-

ming in Scala [48]. This reflects our design decision to only allow the description object to drive

the transformation through its members and types, without running code that manipulates

the AST.
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Another advantage we get for free, thanks to referencing the transformation description object

in the type annotation, is an explicit dependency between all transformed values and their

description objects. This allows the Scala incremental compiler to automatically recompile all

scopes when the description object in their adrt marker has changed.

Compiler Entry Points. In many of the descriptions so far we have implicitly assumed the

Scala compiler features. To ease other compiler developers in porting this approach, we

highlight the exact Scala compiler features that we use:

• The type checker is available at all times during compilation;

• We can change/see a symbol’s signature at any phase;

• The compiler supports type annotations and external annotation checkers;

• The compiler support AST attachments;

• The compiler offers expected type propagation during type checking (In Scala, this is

part of the local type inference.)

This concludes the section, which explained how we solved the main technical problems in

the ADR Transformation and how this impacted the compilation pipeline. We now continue

with our experimental evaluation.

4.5 Benchmarks

This section evaluates the experimental benefits of ADR transformations in targeted micro-

benchmarks and in the setting of a library and its clients.

We ran the benchmarks on an Intel i7-4702HQ quad-core processor machine with the fre-

quency fixed at 2.2GHz, and 2GB of RAM, running the Oracle Java SE 1.7.0_80-b15 distribu-

tion on Ubuntu 14.04 LTS. To avoid the noise caused by the just-in-time (JIT) compiler and

garbage collection (GC) cycles, we measured the running times using the ScalaMeter bench-

marking platform [103], which warms up the Java Virtual Machine according to statistically

rigorous performance evaluation guidelines [61].

Our benchmarking platform, ScalaMeter, executes micro-benchmarks using the following

recipe:

• First, fork a new JVM;

• Execute the benchmark several times to warm up the JVM, only measuring the noise;

• When the noise drops below a threshold, execute the benchmark and gather measure-

ments;

For each benchmark run, we monitor:

• The benchmark running time;
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• GC cycles occurring during the run (in-benchmark);

• GC cycles occurring after the run (inter-benchmark);

At the end of a cycle, we manually trigger a full GC cycle so the current run does not affect

the next. The memory collected after the run (inter-benchmark) corresponds to the input

and output data and any garbage produced by running the benchmarked code that was not

automatically collected during its execution (in-benchmark).

This allows us to record the following parameters for each benchmark:

• Benchmark running time (ms)

• In-benchmark garbage collected (MB)

• In-benchmark GC pause time (ms)

• Inter-benchmark garbage collected (MB)

• Inter-benchmark GC pause time (ms)

Since the ADR transformation is directly related to memory layout and, thus, to memory

consumption, we paid special attention to GC cycles. Please notice that the benchmark

running time includes the in-benchmark GC pause but not the inter-benchmark GC pause.

This allows us to separately measure the speedups gained by avoiding GC cycles and from

other factors, such as:

• Avoiding pointer dereferencing;

• Improving cache locality;

• Simplifying operations;

• Specializing operations;

• Lazyfying operations.

For each benchmark, we broke down the transformation in several steps, which allowed us

to quantify the exact contribution obtained by each transformation step. Unfortunately, due

to space constraints, we cannot include the complete analysis here. Interested readers can

review it in the accompanying artifact or on the project website [8].

We chose representative micro-benchmarks in order to cover a wide range of transformations

using the adrt scope:

• the greatest common divisor algorithm, presented in §4.2;

• least squares benchmark + deforestation [144];

• averaging sensor readings + array of struct;

• computing the first 10000 Hamming numbers.

All benchmarks are fully automated and use the adrt markers and transformation description

objects. We will proceed to explain the transformation in each benchmark, but, due to space

constraints, the full descriptions are only available on the website.
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In-benchmark Inter-benchmark
Benchmark Time Speedup Garbage GC

time
Garbage GC

time
(ms) (MB) (ms) (MB) (ms)

10K GCD runs, original 28.1 none 0 0 13.5 13
10K GCD runs, class 12.5 2.2x 0 0 2.5 10
10K GCD runs, boxed 15.0 1.9x 0 0 8.7 11
10K GCD runs, unboxed 2.2 12.7x 0 0 0.5 9

Table 4.1 – Greatest Common Divisor benchmark results.

The Gaussian Greatest Common Divisor

is the running example described in §4.2 and used throughout the chapter. It is a numeric,

CPU-bound benchmark, where the main slowdown is caused by heap allocations and GC

cycles. We broke down the transformation into four steps, with the result shown in Table 4.1.

None of the transformations triggered GC pauses during the measured runs, but they did

produce different amounts of garbage objects:

The “original” benchmark does not apply any transformation, thus modeling Gaussian inte-

gers using Scala’s Tuple2 class. Due to limitations in the specialization [53, 54] translation in

Scala, the memory footprint of Tuple2 classes is larger than it should be.

The “class” transformation applies an adrt transformation which encodes Gaussian integers

as our own Complex class, essentially retrofitting specialization. This obtains a 2x speed

improvement and reduces the garbage by 5x:

1 case class Complex(_1: Int, _2: Int)

The “boxed” transformation encodes Gaussian integers as long integers, but keeps them

heap-allocated. This is slower than having our own class since it requires encoding values into

the long integer representation. To achieve boxing, we use java.lang.Long objects, which

the Scala backend does not unbox. The additional value encoding produces a small slowdown

and for unknown reasons increases the garbage produced.

The “unboxed” transformation is the one shown throughout the chapter. It encodes Gaussian

integers as scala.Long values, which are automatically unboxed by the Scala compiler

backend. This brings a significant speedup to the benchmark, allowing execution to occur

without any heap allocation, as explained in §4.3.4. Compared to using pairs of integers, the

speedup is almost 13x and the garbage is reduced by 27x.

The transformation description objects for the three transformations above range between 30

and 40 lines of code and include more operations than necessary for the benchmark, such as

addition, multiplication, multiplication with integers, subtraction, etc.
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In-benchmark Inter-benchmark
Benchmark Time Speedup Garbage GC

time
Garbage GC

time
(ms) (MB) (ms) (MB) (ms)

LSM, original 8264 none 1166 7547 809 5317
LSM, scala-blitz 3464 2.4x 468 2936 1165 5236
LSM, adrt generic 429 19.3x 701 3 933 5210
LSM, adrt miniboxed 280 29.5x 0 0 701 5193
LSM, manual deforestation 195 42.4x 0 0 702 5269
LSM, manual fusion 79 105.0x 0 0 702 5282

Table 4.2 – Least Squares Method benchmark results.

The Least Squares Method

takes a list of points in two dimensions and computes the slope and offset of a straight line that

best approximates the input data. The benchmark performs multiple traversals over the input

data and thus can benefit from deforestation [144], which avoids the creation of intermediate

collections after each map operation:

1 adrt(ListAsLazyList){

2 def leastSquares(data: List[(Double, Double)]) = {

3 val size = data.length

4 val sumx = data.map(_._1).sum

5 val sumy = data.map(_._2).sum

6 val sumxy = data.map(p => p._1 * p._2).sum

7 val sumxx = data.map(p => p._1 * p._1).sum

8 ...

9 }

10 }

The adrt scope performs a generic transformation from List[T] to LazyList[T]:

1 object ListAsLazyList extends TransformationDescription {

2 def toRepr[T](list: List[T]): LazyList[T] = ...

3 def toHigh[T](list: LazyList[T]): List[T] = ...

4 // bypass methods

5 }

The LazyList collection achieves deforestation by recording the mapped functions and exe-

cuting them lazily, either when force is invoked on the collection or when a fold operation

is executed. Since the sum operation is implemented as a foldLeft, the LazyList applies

the function and sums the result without creating an intermediate collection.

To put the transformation into context, we explored several scenarios:
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The “original” case executes the least squares method on 5 million points without any trans-

formation. Table 4.2 shows that, on average, as much as 1.1 GB of heap memory is reclaimed

during the benchmark run, significantly slowing down the execution. If it was not for the

in-benchmark GC pause, the execution would take around 700ms, in line with the other

transformations.

What we can also notice is that, across all benchmarks, the input data occupies around 700MB

of heap space and is only collected at the end of the benchmark. A back-of-the-envelope

calculation can confirm this: each linked list node takes 32 bytes (2-word header + 8-byte

pointer to value + 8-byte pointer to the next cell) and contains a tuple of 48 bytes (2-word

header + two 8-byte pointers and two 8-byte doubles, due to limitations in specialization),

which itself contains 16 bytes per boxed double. Considering 5 million such nodes, we have:

(32+48+2×16)∗5×106 = 560×106, approximately 560MB of data.

The “blitz” transformation uses the dedicated collection optimization tool scalablitz

[23, 105] to improve performance. Under the hood, scalablitz uses compile-time macros to

rewrite the code and improve its performance. Indeed, the tool manages to both cut down on

garbage generation and improve the running performance of the code.

The “adrt” transformation performs deforestation by automatically introducing LazyLists.

This avoids the creation of intermediate lists and thus significantly reduces the garbage

produced. We tried using two versions of LazyList: one using erased generics (adrt generic)

and one using miniboxing specialization (adrt miniboxed).

The erased generic LazyList executed the code on par with the scalablitz optimizer but

produced less garbage and the GC pause was much shorter (probably requiring a simple

young-generation collection, not a full mark and sweep).

The miniboxed LazyList, on the other hand, both executed faster and did not produce

any in-benchmark garbage. If we count in-benchmark GC pauses, the speedup produced by

combining “adrt” scopes for deforestation and miniboxing for specialization is 29.5x compared

to the original code. If we only count execution time, subtracting in-benchmark GC pauses,

the speedup is 2.56x.

Manual transformations complete the picture: in the “deforestation” transformation we write

C-like while loops by hand to traverse the input list. We use four separate loops, to simulate the

best case scenario for an automated transformation. The result is a 1.43x speedup compared

to “adrt miniboxed”.

The “fusion” manual transformation unites the four separate input list traversals into a single

traversal. While this transformation cannot be applied unless we assume a closed world, it is

still interesting to compare our transformation to a best-case scenario. The manual fusion

improves the performance by 3.54x compared to “adrt miniboxed”. However, what we can
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notice is that both “adrt miniboxed” and the manual transformations produce the exact same

amount of garbage: 700MB.

In terms of programmer effort, the LazyList definition takes about 60 LOC and the trans-

formation description object about 30 LOC. The difference between “adrt erased” and “adrt

miniboxed” is the presence of @miniboxed annotations in the LazyList classes and in the

description object.

The Sensor Readings

benchmark is inspired by the Sparkle visualization tool [26], which is able to quickly dis-

play, zoom, transform and filter sensor readings. To obtain nearly real-time results, Sparkle

combines several optimizations such as streaming and array-of-struct to struct-of-array con-

versions, all currently implemented by hand. In our benchmark, we implemented a mock-up

of the Sparkle processing core and automated the array-of-struct to struct-of-array transform:

1 type SensorReadings = Array[(Long, Long, Double)]

2 class StructOfArray(arrayOfTimestamps: Array[Long],

3 arrayOfEvents: Array[Long],

4 arrayOfReadings: Array[Double])

5

6 object AoSToSoA extends TransformationDescription {

7 def toRepr(aos: SensorReadings): StructOfArray = ...

8 def toHigh(soa: StructOfArray): SensorReadings = ...

9 ...

10 }

In the benchmark, we have an array of 5 million events, each with its own timestamp, type

and reading. We are seeking to average the readings of a single type of event occurring in the

event array. Since our transformation influences cache locality, we had two different speedups

depending on the event distribution:

• Randomly occurring events are triggered with a probability of 1/3 in the sensor reading

array;

• Uniformly occurring events appear every 3rd element, thus offering more room for CPU

speculation.

Using the adrt scope to transform the array of tuples into a tuple of arrays allows better

cache locality and fewer pointer dereferences. With random events, the “adrt” transformation

produces a speedup of 1.8x. With uniformly distributed events, both the original and the

transformed code run faster, yet resulting in a speedup of 5.7x.

In all four cases, the amount of memory allocated is approximately the same and no objects

are allocated aside from the input data. Thus, the operation speedups are obtained through

improving cache locality.
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In-benchmark Inter-benchmark
Benchmark Time Speedup Garbage GC

time
Garbage GC

time
(ms) (MB) (ms) (MB) (ms)

array of struct, random 55.5 none 0 0 451 15
struct of array, random 30.4 1.8x 0 0 435 13
array of struct, uniform 32.5 none 0 0 454 16
struct of array, uniform 5.7 5.7x 0 0 433 19
10001-th number, original 6.56 none 0 0 31 11
10001-th number, step 1 2.70 2.4x 0 0 31 11
10001-th number, step 2 2.16 3.0x 0 0 31 12
10001-th number, step 3 1.64 4.0x 0 0 31 10

Table 4.3 – Sensor Readings and Hamming Numbers benchmark results.

The transformation description object is 50 LOC and requires 20 additional LOC to define

implicit conversions.

The Hamming Numbers Benchmark

computes numbers that only have 2, 3 and 5 as their prime factors, in order. Unlike the other

benchmarks, this is an example we randomly picked from Rosetta Code [19] and attempted to

speed up:

1 adrt(BigIntToLong) {

2 adrt(QueueOfBigIntAsFunnyQueue) {

3 class Hamming extends Iterator[BigInt] {

4 import scala.collection.mutable.Queue
5 val q2 = new Queue[BigInt]

6 val q3 = new Queue[BigInt]

7 val q5 = new Queue[BigInt]

8 def enqueue(n: BigInt) = {

9 q2 enqueue n * 2

10 q3 enqueue n * 3

11 q5 enqueue n * 5

12 }

13 def next = {

14 val n = q2.head min q3.head min q5.head

15 if (q2.head == n) q2.dequeue

16 if (q3.head == n) q3.dequeue

17 if (q5.head == n) q5.dequeue

18 enqueue(n); n

19 }
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1 def hasNext = true
2 q2 enqueue 1

3 q3 enqueue 1

4 q5 enqueue 1

5 }

6 }

7 }

An observation is that, for the first 10000 Hamming numbers, there is no need to use BigInt,

since the numbers fit into a Long integer. Therefore, we used two nested adrt scopes to

replace BigInt by Long and Queue[BigIng] by a fixed-size circular buffer built on an array.

The result was an 4x speedup. The main point in the transformation is its optimistic nature,

which makes the assumption that, for the Hamming numbers we plan to extract, the long

integer and a fixed-size circular buffer are good enough. This is similar to what a dynamic

language virtual machine would do: it would make assumptions based on the code and would

automatically de-specialize the code if the assumption is invalidated. In our case, when the

assumption is invalidated, the code will throw an exception.

As with other benchmarks, we broke down the transformation is several steps:

The “original” code is the unmodified version from the Rosetta Code website, which we kept

as a witness.

The “step1” code uses adrt scopes to replace the Queue object with a custom, fixed-size

array-based circular buffer. This collection specialization brings a 2.4x speedup without any

memory layout transformation.

The “step2” code uses adrt scopes to replace the BigInt object in both class Hamming and

the circular buffer by boxed java.lang.Long objects. This additional range restriction brings

an extra 1.25x speedup.

The “step3” code replaces theBigInt objects by unboxedscala.Long values. This unboxing

operation produces an additional 1.31x speedup, as fewer objects are created during the

benchmark execution.

The conclusion is that, although the ADR transformation can be viewed as a memory layout

optimization, it can additionally trigger more optimizations that bring orthogonal speedups,

such as specializing operations and collections.

For this example, the two transformation objects are 100 LOC and the circular buffer is another

20 LOC.
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4.6 Related Work

Changing data representations is a well-established and time-honored programming need.

Techniques for removing abstraction barriers have appeared in the literature since the inven-

tion of high-level programming languages and often target low-level data representations.

However, our technique is distinguished by its automatic determination of when data repre-

sentations should be transformed, while giving the programmer control of how to perform

this transformation and on which scope it is applicable.

As discussed earlier, the standard optimizations that are closest to our approach are value

classes [25] and class specialization [53, 138]. These are optimizations with great practical

value, and most modern languages have felt a need for them. For instance, specialization

optimizations have recently been proposed for adoption in Java, with full VM support [63].

Rose has an analogous proposal for value classes [110, 111] in Java. Unlike our approach,

all the above are whole-program data representation transformations and receive limited

programmer input (e.g., a class annotation).

In parallel to our work, Mattias De Wael et al proposed a data structure transformation targeted

at offering the best asymptotic performance for a given set of operations [50, 51]. The main

difference is the fact that alternative data structures have to conform to the same interface,

eliminating the need to introduce coercions. This greatly simplifies the transformation but

also reduces the cases that can be covered. Additionally, in [51] describe a comprehensive

taxonomy of data representation transformations.

Virtual machine optimizations often also manage to produce efficient low-level representa-

tions through tracing [57] or inlining and escape analysis [52, 121]. Furthermore, modern

VMs, such as V8, Truffle [148] and PyPy [41] attempt specialization and inference of optimized

layouts. However, the ability to perform complex inferences dynamically is limited, and there

is no way to draw domain-specific knowledge from the programmer. Generally VM optimiza-

tions are often successful at approaching the efficiency of a static language in a dynamic

setting, but not successful in reliably exceeding it.

In terms of transformations, we already presented the Late Data Layout mechanism in the

Scala setting. Similar approaches, with different specifics in the extent of type system and

customization support, have been applied to Haskell [72]. Foundational work exists for ML,

with Leroy [84] presenting a transformation for unboxing objects, with the help of the type

system. Later work extends [132] and generalizes [117] such transformations. In terms of

runtime-dispatched generics, we refer to the work on Napier88 [92] and the TIL compiler

[68, 131].

In the specific setting of data structure specialization, the CoCo approach [149] adaptively

replaces uses of Java collections with optimized representations. CoCo has a similar high-level

goal as our techniques, yet focuses explicitly on collections only. Approaches that only target a

finite number of classes (data structure implementations) can be realized entirely in a library.
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An adaptive storage strategy for Python collections [42], for instance, switches representations

once collections become polymorphic or once they acquire many elements. The Scala Blitz

optimizer uses macros to improve collection performance [23, 105].

Among mechanisms for extending an interface, such as extension methods, implicit conver-

sions [97] and type classes [145] we can also mention views, which allow data abstraction and

extraction through pattern matching [143].

Multi-stage programming [129] is another technique that optimizes the data representation.

Its Scala implementation, dubbed lightweight modular staging, can both optimize and even

re-target parts of a program to GPUs [45, 107]. Yet, multi-stage programming scopes are not

accessible from outside, making it impossible to call a transformed method or read a trans-

formed value. Instead, the transformation scope is closed and nothing is assumed to be part

of the interface. Hopefully, this will be improved by techniques such as the Yin-Yang staging

front-end [74], based on Scala macros [48]. Another type-directed transformation in the Scala

compiler is the pickling framework [87], also based on macros. Instead of transforming the

data representation in-place, pickler combinators create serialization code that can efficiently

convert an object to a wide range of formats.

4.7 Conclusion

In this chapter, we presented an intuitive interface over a safe and composable programmer-

driven data representation transformation, where the composition works not only across

source files but also across separate compilation runs. The transformation takes care of all the

tedium involved in using a different representation, by automatically introducing coercions

and bridge methods where necessary, and optimizing the code via extension methods. Bench-

marking the resulting transformation shows significant performance improvements, with

speedups between 1.8x and 24.5x. We demonstrated our mechanism in the Scala language,

yet speculate that the same principles are applicable in different language settings.
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4.8 Appendix: Full Transformation Listing

In this appendix we give the signatures of the Gaussian Integer transformation object and walk

through each step of the compilation. The complete source code can be found in the artifact

distributed with the chapter:

1 package ildl.benchmark.gcd_minimal

2 import ildl._

3

4 object IntPairAsGaussianInt extends Transformation{

5 // coercions:

6 def toRepr(pair: (Int, Int)): @high Long = ...

7 def toHigh(l: @high Long): (Int, Int) = ...

8

9 // constructor:

10 def ctor_Tuple2(_1: Int, _2: Int): @high Long = ...

11

12 // interface:

13 def implicit_GaussianInt_%(n1: @high Long, n2: @high Long): @high Long =

...

14 def implicit_GaussianInt_norm(n: @high Long): Int = ...

15 }

16 object GCD {

17 implicit class GaussianInt(pair: (Int, Int)) {

18 def %(that: (Int, Int)): (Int, Int) = ...

19 def norm = ...

20 }

21

22 adrt(IntPairAsGaussianInt) {

23 def gcd(n1: (Int, Int), n2: (Int, Int)): (Int, Int) = {

24 val remainder = n1 % n2

25 if (remainder.norm == 0) n2 else gcd(n2, remainder)

26 }

27 }

28 }

The most important compiler phases injected by the ADRT plugin are: POSTPARSER, INJECT,

BRIDGE, COERCE and COMMIT. We show how each of these phases transforms the code. After

the source code has been parsed, before type checking and name resolution, the POSTPARSER

phase inlines the adrt scopes and attaches unique ids to the abstract syntax tree (AST) nodes,

both for the transformation object and for the transformed scope:

1 object IntPairAsGaussianInt extends Transformation{

2 // same as before

3 }
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1 object GCD {

2 // The GaussianInt class does not change:

3 implicit class GaussianInt(pair: (Int, Int))...

4

5 /* id: 100 */ adrt(IntPairAsGaussianInt) {}

6 /* id: 100 */ def gcd(...): (Int, Int) = {

7 /* id: 100 */ val remainder = n1 % n2

8 /* id: 100 */ if (remainder.norm == 0) ...

9 /* id: 100 */ }

10 }

After the POSTPARSER phase, the tree is ready for name resolution and type checking. These

two phases run in tandem and transform the literal IntPairAsGaussianInt into a fully

qualified reference, which points to the object symbol. Along the way, the type-checker

ensures that IntPairAsGaussianInt extends the Transformation trait and that it is an

object.

During type checking, the missing type annotations and implicit conversions are added to the

AST:

1 object GCD {

2 ...

3 /* id: 100 */ adrt(IntPairAsGaussianInt) {}

4 /* id: 100 */ def gcd(...): (Int, Int) = {

5 /* id: 100 */ val remainder: (Int, Int) = new GaussianInt(n1).%(n2)

6 /* id: 100 */ if ((new GaussianInt(remainder).norm) == 0) ...

7 /* id: 100 */ }

8 }

After name resolution and type checking, the INJECT phase transforms the tree attachments

into annotations. Since there is a single transformation object in the example, we will use

@repr to mean @repr(IntPairAsGaussianInt):

1 object GCD {

2 ...

3 def gcd(n1: @repr (Int, Int), n2: @repr (Int, Int)): @repr (Int, Int) = {

4 val remainder: @repr (Int, Int) = ...

5 if ((new GaussianInt(remainder).norm) == 0) ...

6 }

7 }

The INJECT phase takes place right before the Scala signatures are persisted. Therefore, it

needs to change the signatures in the IntPairAsGaussianInt object as well, by replacing

all references to @high Long by @repr (Int, Int), except for the two coercions:
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1 object IntPairAsGaussianInt extends Transformation{

2 // coercions:

3 def toRepr(pair: (Int, Int)): @high Long = ...

4 def toHigh(l: @high Long): (Int, Int) = ...

5

6 // constructor:

7 def ctor_Tuple2(_1: Int, _2: Int): @repr (Int, Int)

8

9 // and so on ...

10 }

The member signatures are then persisted, meaning that all future compilation runs see the

signatures left by the INJECT phase. Thus, to ensure scope composition, none of the signatures

computed by the INJECT phase can contain references to the representation type, except for

the toHigh and toRepr coercions. Then, all signatures that are transformed contain two

pieces of information: the high-level type and the transformation description object.

As explained in §4.3.3 and §4.3.5, bridges are only necessary when a transformed method

overrides or implements a method that was not transformed, in order to preserve the object

model despite the low-level signature change. In our case, the gcdmethod neither implements

existing interfaces nor overrides existing methods. Thus, the BRIDGE phase leaves the AST

unchanged. Should the gcd method be called from outside an adrt scope, the arguments

and return are adapted at the call site, based on the @repr annotation, which is persisted in

method gcd’s signature.

Then, the COERCE phase introduces coercions and rewrites dynamic calls to bypass methods.

The transformation description objects are skipped by the COERCE phase, as re-type-checking

them with the modified signatures would lead to errors:

1 object GCD {

2 ...

3 def gcd(n1: @repr (Int, Int), n2: @repr (Int, Int)): @repr (Int, Int) = {

4 val remainder: @repr (Int, Int) = implicit_GaussianInt_%(n1, n2)

5 if (implicit_GaussianInt_norm(remainder) == 0) n2 else gcd(n2,

remainder)

6 }

7 }

Finally, the COMMIT phase transforms the code to:
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1 object IntPairAsGaussianInt extends Transformation{

2 // coercions:

3 def toRepr(pair: (Int, Int)): Long = ...

4 def toHigh(l: Long): (Int, Int) = ...

5

6 // and so on ...

7 }

8

9 object GCD {

10 ...

11 def gcd(n1: Long, n2: Long): Long = {

12 val remainder = implicit_GaussianInt_%(n1, n2)

13 if (implicit_GaussianInt_norm(remainder) == 0) n2 else gcd(n2,

remainder)

14 }

15 }

Later in the compilation pipeline, the Long integer is unboxed to long, producing the follow-

ing bytecode (for which we give the source-equivalent Scala code):

1 object IntPairAsGaussianInt extends Transformation{

2 // coercions:

3 def toRepr(pair: (Int, Int)): long = ...

4 def toHigh(l: long): (Int, Int) = ...

5

6 // and so on ...

7 }

8

9 object GCD {

10 ...

11 def gcd(n1: long, n2: long): long = {

12 val remainder = implicit_GaussianInt_%(n1, n2)

13 if (implicit_GaussianInt_norm(remainder) == 0) n2 else gcd(n2,

remainder)

14 }

15 }

This is the bytecode that will ultimately execute in the Java Virtual Machine. Notice the fact

that it executes without any object allocation and does not use dynamic dispatch. This ensures

good performance and minimizes the garbage collection pauses.
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5.1 Introduction

Generics on the Java platform are compiled using the erasure transformation [44], which

allows them to be fully backward compatible with pre-generics bytecode. Unfortunately, this

also means that they only handle by-reference values (objects) and not primitive types. Thus,

primitive values such as bytes and integers have to be converted to heap objects each time

they interact with generics. This conversion, known as boxing, compromises the execution

performance and increases the heap footprint, forcing Java and JVM languages to lag behind

lower-level languages such as C or C++.

A solution to avoid the boxing overhead is having different versions of a class or method for

the primitive types, in a transformation called specialization. This allows instantiating the

most specific class and calling the most specific method, in both cases avoiding the need for

boxing primitive types. Specialization is currently being implemented in Java as part of Project

Valhalla [63, 110, 111].

The Scala programming language, which compiles to JVM bytecode, has had compile-time

specialization for 6 years [53, 54] and currently has three mechanisms for compiling generics:

erasure, specialization and miniboxing. In Scala, all three generics compilation schemes can

be freely mixed:

137



Chapter 5. Scaling Miniboxing to Scala

1 // The Mbox class is miniboxed by virtue of the type

2 // parameter annotation (but could be specialized

3 // as well, using @specialized):

4 class Mbox[@miniboxed T](value: T) {

5 def getValue(): T = ...

6 }

7

8 // The getMboxValue method is erased:

9 def getMboxValue[U](mbox: Mbox[U]): U = mbox.getValue()

10

11 // (1) erased code can handle specialized instances:

12 getMboxValue(new Mbox[Int](5))

13 // (2) programmers can abstract over specializations:

14 val mbox: Mbox[_] = new Mbox[Int](5)

15 println(mbox.getValue())

Yet, despite the uniform behavior, Scala does pay a hefty price for being able to freely mix code

using the three generics compilation schemes: calls between different compilation schemes

require boxing primitive values. The reason is that only boxed primitive values are understood

by all three transformations. Furthermore, as we will see later on, instantiating a miniboxed (or

specialized) class from erased code leads to the erased version being instantiated instead of its

miniboxed (or specialized) equivalent, in turn leading to unexpected performance regressions.

In this chapter, we show how we completely eliminate the unexpected slowdowns in the

miniboxing transformation and, as a side effect, allow programmers to easily and robustly use

miniboxing to speed up their programs. The underlying property we are after is that, inside

hot loops and performance-sensitive parts of the program, all generic code uses the same

compilation scheme, in this case, miniboxing. This way, primitive types are always passed

using the same data representation, whether that’s the miniboxed encoding (for miniboxing)

or the unboxed representation (for specialization).

We show two approaches for harmonizing the compilation scheme across performance-

sensitive code:

Issuing actionable performance advisories when compilation schemes do not match, al-

lowing the programmer to harmonize them. For example, when a generic method takes a

miniboxed class as a parameter and tries to call methods on it, we automatically generate

performance advisories:

1 scala> def getMboxValue[U](mbox: Mbox[U]): U =

2 | mbox.getValue()

3 <console>:9: warning: The following code could benefit from miniboxing if

the type parameter U of method getMboxValue would be marked as "@miniboxed

U":

4 mbox.getValue()

5 ^
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Another problem that occurs frequently concerns library evolution: as a new compilation

scheme arrives, it is best if all libraries start using it as soon as possible. However, back-

ward compatibility prohibits changing the compilation scheme for the standard library, as it

would break old bytecode. In Scala, we had this problem because many of the core language

constructs, such as functions and tuples use specialization instead of miniboxing. Similarly,

Java has as many as 20 manual specializations for the arity 1 lambda, such as IntConsumer,

IntPredicate and so on. Replacing these by a single specialized functional interface would

be desirable, but is realistically impossible. We present a solution for this:

Efficiently bridging the gap between compilation schemes. In the case of miniboxing, which

is a compiler plugin, we were not able to change the Scala standard library functions and

tuples to use the miniboxing scheme. Instead, we describe the approaches we use to effi-

ciently communicate to the existing library classes, and, where necessary, to replace them by

miniboxed equivalents.

With this, the chapter makes four key contributions to the field of compiling object-oriented

languages with generics:

• Describing the problems involved in mixing different generics compilation schemes

(§5.2);

• Describing a general mechanism for harmonizing the compilation scheme (§5.3);

• Describing the approaches we use to fast-path communication between different

generic compilation schemes (§5.4);

• Validating the approach using the miniboxing plugin (§5.5).

The evaluation section (§5.5) shows that warnings not only help avoid performance regres-

sions, but can also guide developers into further improving their program’s performance.

5.2 Compilation Schemes for Generics

This section briefly reviews the different compilation schemes for generics in Scala.

5.2.1 Erasure

The current compilation scheme for generics in both Java and Scala is called erasure, and is

the simplest compilation scheme possible for generics. Erasure requires all data, regardless of

its type, to be passed in by reference, pointing to heap objects. Let us take a simple example, a

generic identity method written in Scala:

1 def identity[T](t: T): T = t

2 val five = identity(5)

139



Chapter 5. Scaling Miniboxing to Scala

When compiled, the bytecode for the method is1:

1 def identity(t: Object): Object = t

As the name suggests, the type parameter T was “erased” from the method, leaving it to

accept and return Object, T’s upper bound. The problem with this approach is that values

of primitive types, such as integers, need to be transformed into heap objects when passed

to generic code, so they are compatible with Object.This process, called boxing goes two

ways: the argument of method identity needs to be boxed while the return value needs to

be unboxed back to a primitive type:

1 val five = identity(Integer.valueOf(5)).intValue()

Boxing primitive types requires heap allocation and garbage collection, both of which degrade

program performance. Furthermore, when values are stored in generic classes, such as

Vector[T], they need to be stored in the boxed format, thus inflating the heap memory

requirements and slowing down execution. In practice, generic methods can be as much as 10

times slower than their monomorphic (primitive) instantiations. This gave rise to a simple

and effective idea: specialization.

5.2.2 Specialization

Specialization [53, 54] is the second approach used by the Scala compiler to translate generics

and, for methods, is similar to Project Valhalla. It is triggered by the @specialized annota-

tion:

1 def identity[@specialized T](t: T): T = t

2 val five = identity(5)

Based on the annotation, the specialization transformation creates several versions of the

identity method:

1 def identity(t: Object): Object = t

2 def identity_I(t: int): int = t

3 def identity_C(t: char): char = t

4 // ... and another 7 versions of the method

Having multiple methods, also called specialized variants or simply specializations of the

identity method, the compiler can optimize the call to identity:

1 val five: int = identity_I(5)

1Throughout the chapter, we show the source-equivalent of bytecode. The context clarifies whether we are

showing source code or compiled bytecode.
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This transformation side-steps the need for a heap object allocation, improving the program

performance. However, specialization is not without limitations. As we have seen, it creates 10

versions of the method for each type parameter: the reference-based version plus 9 specializa-

tions (Scala has the 8 primitive types in Java plus the Unit primitive type, which corresponds

to Java’s void). And it gets worse: in general, for N specialized type parameters, it creates 10N

specialized variants, the Cartesian product covering all combinations.

Lacking Project Valhalla’s virtual machine support, Scala specialization generates the special-

ized variants during compilation and stores them as bytecode. This prevents the Scala library

from using specialization extensively, since many important classes have one, two or even

three type parameters. This led to the next development, the miniboxing transformation.

5.2.3 Miniboxing

Taking a low level perspective, we can observe the fact that all primitive types in the Scala

programming language fit within 64 bits. This is the main idea that motivated the miniboxing

transformation: instead of creating separate versions of the code for each primitive type alone,

we can create a single one, which stores 64-bit encoded values, much like C’s untagged union.

The previous example:

1 def identity[@miniboxed T](t: T): T = t

2 val five = identity(5)

Is compiled2 to the following bytecode:

1 def identity(t: Object): Object = t

2 def identity_M(..., t: long): long = t

3 val five: int= minibox2int(identity_M(int2minibox(5)))

Alert readers will notice the minibox2int and int2minibox transformations act exactly

like the boxing coercions in the case of erased generics. This is true: the values are being

coerced to the miniboxed representation, much like boxing in the case of erasure. Yet, our

benchmarks on the Java Virtual Machine platform have shown that the miniboxing conversion

cost is completely eliminated when just-in-time compiling to native 64-bit code. Further

benchmarking has shown that the code matches the performance of specialized code within a

10% slowdown due to coercions, compared to a 10x slowdown in the case of boxing.

There is an ellipsis in the definition of the identity_M method, which stands for what we call

a type byte: a byte describing the type encoded in the long integer, allowing operations such

as toString, hashCode or equals to be executed correctly on encoded values:

2In the rest of the chapter we assume the miniboxing Scala complier plugin is active unless otherwise noted.

For more information on adding the miniboxing plugin to the build please see http://scala-miniboxing.org.
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1 def string[@miniboxed T](t: T): String = t.toString

In order to transform this method, we need to treat the primitive value as its original type

(corresponding to T) rather than a long integer. To do so, we use the type byte:

1 def string(t: Object): String = t.toString

2 def string_M(T_Type: byte, t: long): String =

3 minibox2string(T_Type, t)

Then, when the programmer makes a call to string:

1 string[Boolean](true)

It automatically gets transformed in the compiler pipeline to:

1 string_M(BOOL, bool2minibox(true))

Knowing the type byte, the minibox2string can do its magic: decoding the long integer into

a “true” or “false” string, depending on the encoded value. Although seemingly simple, the

code transformation to implement the miniboxing transformation is actually rather tricky, as

shown in Chapter 3.

So far, we have only looked at methods, but transforming classes poses even greater challenges.

5.2.4 Class Transformation in Miniboxing

Scala specialization [53, 54] introduced a better class translation, which is compatible to

erased generics. Miniboxing inherited and adapted this scheme, addressing two of its major

drawbacks, namely the double fields and broken inheritance. For this reason, we will present

the miniboxed class translation scheme directly.

The main challenge of interoperating with erased generics is to preserve the inheritance rela-

tion while providing specialized variants of the class, where fields are encoded as miniboxed

long integers instead of Objects. Let us take the linked list node class again, this time written

in Scala:

1 class Node[@miniboxed T](val head:T, val tail:Node[T])

The Scala compiler desugars the class to (some aspects omitted):

1 class Node[@miniboxed T](_head: T, _tail: Node[T]) {

2 def head: T = this._head // getter for _head

3 def tail: Node[T] = this._tail // getter for _tail

4 }
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There are three subtleties in the Node translation:

• First, there should be two versions of the class: one where _head is miniboxed, called

Node_M and another one where _head is an Object, called Node_L;

• Then, types like Node[_], which corresponds to Java’s wildcard Node<any> can be

instantiated by both classes, so the two need to share a common interface, the “erased

view”;

• Finally, this shared interface has to contain the specialized accessors corresponding to

both classes (so both classes should implement all the methods).

Given these constraints, miniboxing compiles Node to an interface:

1 interface Node {

2 def head(): Object // reference-based accessor

3 def head_M(...): long // specialized accessor

4 def tail: Node[T]

5 }

Note that the tail method does not have a second version, as it doesn’t accept or return

primitive values. Then, we have the two specialized variants of class Node:

1 class Node_L(_head: Object, _tail: Node) impl Node {

2 def head(): Object = this._head
3 def head_M(...): long = box2minibox(..., head)

4 def tail(): Node[T] = this._tail
5 }

6

7 class Node_M(..., _head: long, _tail: Node) ... {

8 def head(): Object = minibox2box(..., head_M(...))

9 def head_M(...): long = this._head
10 def tail(): Node[T] = this._tail
11 }

As before, the ellipsis corresponds to the type bytes. With this translation, code that instantiates

the Node class is automatically transformed to use one of the two variants. For example:

1 new Node[Int](4, null)

Is automatically transformed to:

1 new Node_M[Int](INT, int2minibox(4), null)

And, when Node is instantiated with a miniboxed type parameter:

1 def newNode[@miniboxed T](t: T) =

2 new Node[T](t, null)
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The code is translated to:

1 def newNode(t: Object) =

2 new Node_L(t, null)
3 def newNode_M(T_Type: byte, t: long) =

4 new Node_M(T_Type, t, null)

The translation hints at an optimization that can be done: given a value of type Node[T]

where T is either a primitive or known to be miniboxed, the compiler can call head_M instead

of head, skipping a conversion. The following code:

1 val n = new Node[Int](3, null)
2 n.head

Is translated to:

1 val n = new Node_M(..., 3, null)
2 n.head_M(...)

The rewrite also occurs when the type argument is miniboxed:

1 def getFirst[@miniboxed T](n: Node[T]) = n.head

This method is translated to:

1 def getFirst(n: Node): Object =

2 n.head // using reference accessor

3 def getFirst_M(T_Type: byte, n: Node) =

4 n.head_M(T_Type) // using miniboxed accessor

At this point, you may be wondering why the getFirst bytecode receives a parameter of type

Node instead of Node_L, or, respectively, Node_M. The reason is interoperability with erased

generics.

5.2.5 Interoperating with Erased Generics

So far, we have seen the following two invariants:

• we call the head_M accessor on receivers of type Node[T] where T is either miniboxed

or is a primitive type, optimistically assuming the receiver is an instance of class Node_M;

• otherwise, we call the head accessor, assuming the receiver is an instance of class

Node_L.

Unfortunately, interoperating with erased generics violates both invariants. Consider the

following method:
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1 def newNodeErased[T](head: T) =

2 new Node[T](head, null)

During the compilation of this method, using to erased generics, the compiler is forced to

make a static (compile-time) choice: Which class to instantiate for the new Node[T]?

Since newNodeErased can be called with both (boxed) primitives and objects, the only valid

choice is Node_L, which can handle both cases. Contrarily, Node_M can’t handle references,

since object pointers are not directly accessible in the JVM. Thus, we have:

1 def newNodeErased(head: Object) =

2 new Node_L(head, null)

Which allows the erased generics to invalidate the invariants:

1 val n: Node[Int] = newNodeErased[Int](3)

2 n.head // n: Node[Int] => call head_M

1 val n: Node = newNodeErased(...) // retuns a Node_L

2 n.head_M(INT) // assumption: receiver has type Node_M

This way, the call to head_M occurs on a Node_L instance. The symmetric case can also occur,

calling head on a Node_M class. And, what is worse, we can end up with a Node_L class storing

a primitive value, which means it will be boxed.

Fortunately, by never promising more than the erased view, Node, the compilation scheme is

robust enough to handle the mix-up. This allows correctly compiling both cases of calls:

1 def getNodeTail[T](t: Node[T]): Node[T] = t.tail

2 getNodeTail(new Node[Int](5, null))
3 val node: Node[_] = new Node[Int](5, null)
4 node.tail()

By producing the following bytecode:

1 def getNodeTail(t: Node): Node = t.tail()

2 getNodeTail(new Node_M(...)) // Node_M impls Node

3 val node: Node = new Node_M(...) // Node_M impls Node

4 node.tail() // call through the Node interface
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5.3 Performance Advisories

The previous section has shown that, when used globally, miniboxed generics provide two key

invariants that ensure primitive values are always passed using the miniboxed (long integer)

encoding:

• Instantiations of miniboxed classes use the most specific variant (e.g. a value of type

Node[Int] has runtime class Node_M);

• Methods called on a miniboxed class use the most specific specialization available (e.g.

a runtime class Node_M always receives calls to the miniboxed head_M accessor)

The presence of erasure and wildcard-type abstractions (such as Node[_]) leads to violations

of these two invariants: the reference variant of a miniboxed class may be instantiated in place

of a miniboxed variant or the method called may not be the most specific one available. In

both cases, the compilation scheme is resilient, producing correct results, at the expense of

performance regressions, caused by boxing primitive types.

There key to avoiding these subtle performance regressions is to intercept the class instantia-

tions and method calls that violate the invariant and report actionable advisories to the users,

in the form of compiler warnings. Luckily, all the information necessary to detect invariant

violations is available during compilation.

5.3.1 Performance Advisories Overview

Advisories are most commonly triggered by interacting with erased or specialized generics,

but can also be caused by technical or design limitations. There are as many as ten different

performance advisories implemented in the miniboxing plugin, but in order to focus on the

concept, we will only look at the three most common advisories, two of which are caused by

the interaction with erased generics. To show exactly how the slowdowns occur, we can take

the following piece of code:

1 def foo[@miniboxed T](t: T): T = bar(t)

2 def bar[@miniboxed U](u: U): U = baz(u)

3 def baz[@miniboxed V](v: V): V = v

The code is compiled to:

1 def foo(t: Object): Object = bar(t)

2 def bar(u: Object): Object = baz(u)

3 def baz(v: Object): Object = v

4 def foo_M(..., t: long): long = bar_M(..., t)

5 def bar_M(..., u: long): long = baz_M(..., u)

6 def baz_M(..., v: long): long = v
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The translation shows that once execution entered the miniboxed path, by calling foo_M, it

goes through without any boxing, only passing the value in the encoded (miniboxed) repre-

sentation. Now let’s see what happens if the @miniboxed annotation is removed:

1 def foo[@miniboxed T](t: T): T = bar(t)

2 def bar[T](u: U): U = baz(u)

3 def baz[@miniboxed V](v: V): V = v

The bytecode produced is:

1 def foo(t: Object): Object = bar(t)

2 def bar(u: Object): Object = baz(u)

3 def baz(v: Object): Object = v

4 def foo_M(..., t: long): long = box2minibox(bar(minibox2box(t))) //

boxing :(

5 def baz_M(..., v: long): long = v

Two problems occur here:

• When method foo_M is called, it does not have a miniboxed version of bar to call further

on, so it calls the erased one;

• When method bar is called, although baz has a miniboxed version, it cannot be called

as the type information was erased.

These two problems correspond to the main two performance advisories: forward and back-

ward warnings. A third one, related to data representation ambiguity, will be shown below.

Forward advisories.

The first advisory (compiler warning) received by the programmer is also called a forward

warning:

1 test.scala:7: warning: The method bar would benefit from miniboxing type

parameter U, since it is instantiated by miniboxed type parameter T of

method foo:

2

3 def foo[@miniboxed T](t: T): T = bar(t)

4 ^

This advisory pushes the miniboxed representation from caller to callee when the arguments

need to be boxed before being passed.

Backward advisories.

The miniboxing annotation is also propagated from callee to caller:
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1 test.scala:8: warning: The following code could benefit from miniboxing

specialization if the type parameter U of method bar would be marked as

"@miniboxed U" (it would be used to instantiate miniboxed type parameter V

of method baz):

2

3 def bar[U](u: U): U = baz(u)

4 ^

Ambiguity advisories.

Scala allows types to abstract over both primitives and objects. For example, wildcard types

(known as existentials in Scala) can abstract over any type in the language. Any is the top of the

Scala type system hierarchy, with two subclasses: AnyVal is the superclass of all value types

(and thus primitives) while AnyRef is the superclass of all reference types, corresponding

to Java’s Object. Therefore, existentials, Any and AnyVal are not specific enough to pick a

primitive or a reference representation. In this case, we issue a warning and box the values:

1 test.scala:12: warning: Using the type argument "Any" for the miniboxed

type parameter T of method foo is not specific enough, as it could mean

either a primitive or a reference type. Although method foo is miniboxed,

it won’t benefit from specialization:

2 foo[Any](5)

3 ^

With these actionable warnings, even a novice programmer, not familiar to the miniboxing

transformation, can still achieve the same performance as an expert manually sifting through

the generated bytecode. We have several examples where programmers achieved speedups

over 2x just by following the miniboxing advisories [16, 18, 28]. We will now explain the

intuition behind generating performance advisories.

5.3.2 Unification: Intuition

The reason we chose to present the “forward”, “backward” and “ambiguity” advisories is

because, although they are only three of the ten cases, they are the warnings a typical program-

mer is most likely to encounter. They appear in all cases where a specialized variant of either a

method or class needs to be chosen:

• Calling a miniboxed method;

• Instantiating a miniboxed class;

• Calling the method of a miniboxed class;

• Extending a miniboxed class or trait;

The one element common to all these cases is the need to pick the best matching miniboxed

variant for the given type arguments. For example, given the method foo defined previously,
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for a call to foo[Int](4), the compiler needs to find the best variant of foo and redirect the

code to it. In this case, since the type argument of method foo is Int, which is a primitive

type, and since the type parameter T in the definition of foo is marked as miniboxed, it will

pick the foo_M variant, which uses the miniboxed representation. This operation is called

unification, and we have unified the type parameter of foo, namely T, and a type argument,

Int. The unification algorithm is also responsible for issuing advisories.

Let us now focus on a more formal definition.

5.3.3 Unification: Formalization

Let us call the original method or class O, with the type parameters F1 to Fn and VO the set

of specialized variants corresponding to O. Each specialized variant V∈VO corresponds to a

mapping from the type parameters to a representation in the set of {miniboxed, reference,

erased}. Let us inverse this mapping, to produce another mapping from type parameters and

representations to the specialized variants. Let’s call it VS.

Then the unification algorithm can be reduced to choosing the corresponding V∈VO, for a

term of type O[T1, .., Tn]. This can be done following the algorithm in Figure 5.1.

Let us take an example to illustrate this:

1 class C[@miniboxed M, N] // M is mboxed, N is erased

2 class D[L] extends C[L, Int]

When deciding which specialized variant of the miniboxed class C to use as class D’s parent,

we have:

• the original class O = C;

• the type parameters F1 = M and F2 = N;

• the set of variants VO = {C_M, C_L};

• the inverse mapping VS = {M: miniboxed and N: erased → C_M, M: reference and N: erased

→ C_L}

Now, applying the unification algorithm in Figure 5.1 for the type parameter F1 = M coupled

with the type argumentT1 =L, it issues a forward warning followed by outputting (M: reference).

Then, applying it to F2 = N and T2 = Int, it issues a backward warning and outputs (N: erased).

From the two bindings, we obtain the specialized variant C_L to be a parent of D. Indeed, this

is what happens in practice:
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Figure 5.1 – Unification algorithm for picking the data representation of a type parameter.
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1 scala> class C[@miniboxed M, N]

2 defined class C

3

4 scala> class D[L] extends C[L, Int]

5 <console>:8: warning: The following code could benefit from miniboxing

specialization if the type parameter L of class D would be marked as

"@miniboxed L" (it would be used to instantiate miniboxed type parameter M

of class C):

6 class D[L] extends C[L, Int]

7 ^

8 <console>:8: warning: The class C would benefit from miniboxing type

parameter N, since it is instantiated by a primitive type:

9 class D[L] extends C[L, Int]

10 ^

11 defined class D

12

13 scala> classOf[D[_]].getSuperclass

14 res7: Class[_ >: D[_]] = class C_L

Now it is easy to guess where the forward and backward names come from: the direction in

which the miniboxing transformation propagates between the type parameter and the type

argument.

5.3.4 Unification: Implementation

The performance advisories are tightly coupled with the unification algorithm, which decides

the variant that should be used for transforming the code. The processing is done one step at

a time, with a type parameter and type argument pair. We will now show some issues that an

implementer must be careful about.

Owner chain status.

Since methods and classes in Scala can be nested in any order, we must be careful to propagate

the status of the type parameters in the owner chain. In the following example:

1 def a[@miniboxed A] = {

2 def b[@miniboxed B] = {

3 // need to be aware the representation of

4 // type parameters A and B when deciding

5 // which variant of C to instantiate:

6 new C[A, B]()

7 }

8 ...

9 }
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When deciding which miniboxed variant of class C to instantiate, we need to be aware of the

nested methods we are located in as we duplicate and specialize the code: if we’re in method

b_M inside method a_M, we can rely on values of type A and B to be miniboxed. Contrarily, if

we are in method b inside method a, values of type A and B are references.

Caching warnings.

Instead of issuing warnings right away, they are being cached and later de-duplicated. The rea-

son is that issuing too many warnings diminishes their value. Aside from the three advisories

shown, there are special advisories dealing with the specialization transformation in Scala

and certain library constructs that we show in the next section. Thus, we define an ordering of

advisory priority and, if multiple warnings are cached, we only issue the most important ones.

Suppressing warnings.

In certain scenarios, programmers are aware of their sub-optimal erased generic code but,

due to compatibility requirements with other JVM programs or due to the fact that code lies

outside the hot path, they chose not to change it. In these situations, they need to suppress the

warnings, because instead of improving visibility, they might obscure other more important

performance regressions in the program. However, a coarse-grained approach such as turning

off all warnings is not desirable either, as it completely voids the benefit of advisories. For

this scenario, the miniboxing transformation provides the @generic annotation, which can

suppress performance advisories:

1 scala> def zoo[@miniboxed T](t: T) = t

2 defined method zoo

3

4 scala> zoo[Any @generic](3) // no ambiguity warning

5 res1: Any = 3

6

7 scala> def boo[@generic T](t: T) = t

8 defined method boo

9

10 scala> boo[Int](3) // no backward warning

11 res2: Int = 3

Libraries.

In other cases boxing is caused by the interaction with erased generics from libraries. In

this case, the default decision is not to warn, unless the programmer specifically sets the

-P:minibox:warn-all compiler flag:
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1 scala> 3 :: Nil

2 <console>:8: warning: The method List.:: (located in scala-library.jar)

would benefit from miniboxing type parameter B, since it is instantiated

by a primitive type:

3 3 :: Nil

4 ^

5 res0: List[Int] = List(3)

As we will see in the benchmarking section (§5.5), the performance advisories allow program-

mers who are not familiar with the transformation to make the same changes an expert would

do.

5.4 Interoperating with Existing Libraries

There is a clear parallel between the manual lambda specializations that are already in the

Java Standard Library and thus cannot be eliminated and the specialized constructs in the

Scala Standard Library, which cannot be replaced by a compiler plugin. Project Valhalla brings

the ability to specialize generics to Java, while miniboxing brings a new compilation scheme

for Scala generics. What is common between the two cases is the hard requirement that the

new transformations work well with the existing constructs, which use different compilation

schemes. This is the problem of interoperating with existing libraries.

In this section we will show how performance regressions occur when miniboxed code in-

teracts with the Scala standard library, which uses either erased generics or the original

specialization transformation. To counter these performance regressions, we show three ap-

proaches to efficiently bridge the gap between the miniboxing and specialization compilation

schemes. Although this section mostly focuses on the interoperation between miniboxing and

specialization, the techniques are general and can be applied to Java lambdas and Valhalla as

well.

5.4.1 The Interoperation Problem

When interacting with the library from miniboxed code, the programmers forget the fact that

library constructs, such as tuples and functions, do not share the same compilation scheme.

Thus, they expect the same performance and flexibility as when using miniboxed classes.

However, calling specialized code from miniboxed methods and vice-versa is not easy. For

example:

1 def spec[@specialized T](t: T): String = t.toString

2 def mbox[@miniboxed T](t: T): String = spec(t)

The code is translated to:
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1 def spec(t: Object): String = t.toString

2 def spec_I(t: int): String = Integer(t).toString

3 def spec_J(t: long): String = Long(t).toString

4 ... // other 7 specialized variants

5 def mbox(t: Object): String = spec(t)

6 def mbox_M(T_Type: byte, t: long): String = ...

The reference-based mbox and spec methods can directly call each other, since there is a 1 to

1 correspondence. The problem is that, unlike these two methods, none of the specialized vari-

ants have a 1 to 1 correspondence to mbox_M. This only leaves the reference-based methods

as candidates for the direct interoperation between miniboxing and specialization.

Although it may seem like mbox_M could directly invoke spec_J, since the argument types

match, this would be incorrect, as the value t in mbox_M can be any primitive type, encoded as

a long, whereas t in spec_J can only be a long integer. Thus, if we were to call spec_J from

mbox_M passing an encoded boolean, instead of returning either “true” or “false”, it would

return the encoded value of the boolean.

The mbox_M method has one more piece of information: T_Type, the type byte describing the

encoded primitive. In theory, the miniboxed method could use this type byte to dispatch the

right specialized counterpart:

1 def mbox_M(T_Type: byte, t: long): String =

2 T_Type match {

3 case INT => spec_I(minibox2int(t))

4 case LONG => spec_M(minibox2long(t))

5 ...

6 }

Although this indirect approach seems to work and can easily be automated, it is actually a step

in the wrong direction: the miniboxing transformation would be introducing extra overhead

without offering the programmer any feedback on how and why this happens. Furthermore,

when multiple type parameters are specialized, all 10N possible combinations would have to

be added to the match, making it very large. This is likely to confuse the Java Virtual Machine

inlining heuristics, causing severe performance regressions.

It may seem like the other way around would be easier: allowing specialized code to call

miniboxed methods without performing a switch. However this is not the case because,

having been developed first, specialization is not aware of miniboxing. Thus, when calling

miniboxed methods, specialization invokes the reference version, boxing the arguments and

unboxing the returned value.

With this in mind, our decision was to go with simplicity and symmetry: the bridge between

miniboxing and specialization goes through boxing. To allow transparency, miniboxing issues

performance advisories about specialized code that should be miniboxed:
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1 scala> def mbox[@miniboxed T](t: T): String = spec(t)

2 <console>:8: warning: Although the type parameter T of method spec is

specialized, miniboxing and specialization communicate among themselves by

boxing (thus, inefficiently) for all classes other than FunctionX and

TupleX. If you want to maximize performance, consider switching from

specialization to miniboxing:

3 def mbox[@miniboxed T](t: T): String = spec(t)

4 ^

This solution works well with most of the code that lies within the programmer’s control,

including for the case where 3rd party libraries distribute both a specialized and a miniboxed

version. However, the one library which cannot have multiple versions and happens to use

specialization is the Scala standard library. The two most wide-spread constructs affected

by this are Tuples and Functions, both of which are specialized. This makes the following

function a worst-case scenario for vanilla miniboxing:

1 def tupleMap[@miniboxed T,

2 @miniboxed U](tup: (T, T), f: T => U) =

3 (f(tup._1), f(tup._2))

Despite the annotations, with the vanilla miniboxing transformation, all versions of the

tupleMap method use reference-based tuple accessors and function applications, leading to

slow paths irreversibly creeping into miniboxed code. For many applications, this is a no-go,

so our task was to eliminate these slowdowns. In the following subsection we present three

possible approaches and show where each works best.

5.4.2 Eliminating the Interoperation Overhead

We show three approaches to eliminating the boxing overhead when calling specialized code

from miniboxed classes or methods.

Accessors

The simplest answer to the problem of inter-operating with specialization is to switch on the

type byte, as shown previously. To avoid confusing the Java Virtual Machine inlining heuristics,

we can extract the operation into a static method, that we call separately. This approach needs

to be implemented both for accessors, allowing the specialized values to be extracted directly

into the miniboxed encoding and for constructors, allowing miniboxed code to instantiate

specialized classes without boxing. This is the approach taken for Tuple classes (§5.4.3);
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Transforming objects

The accessors approach allows us to pay a small overhead with each access. This is a good trade-

off when the constructs are only accessed a couple of times during their lifetime, which is the

case for tuples. In other cases, such as functions, the applymethod is presumably called many

times during the object lifetime, making it worthwhile to completely eliminate the overhead.

In this case, a better approach is to replace the Function objects by MiniboxedFunctions,

introducing conversions between them where necessary. This way, the applymethod exposed

by MiniboxedFunction can be called directly, and this can compensate for a potentially

greater cost of constructing the MiniboxedFunction object. This way, switching on the type

bytes is done only once, when converting the function, and then amortizes over the function

lifetime (§5.4.4);

New API

In some cases, the API and guarantees are hardcoded into the platform. This is the case for

the Scala Array class, for which the original miniboxing plugin chose the accessors approach

(Chapter 2). However, a better tradeoff is achieved by defining a new MbArray class with a

similar API but different guarantees. This approach will be briefly mentioned in the Arrays

subsection (§5.4.5).

The next sections discuss the three methods above.

5.4.3 Tuple Accessors

The Scala programming language offers a very concise and natural syntax for library tuples,

allowing users to write (3,5) instead of the desugared new Tuple2[Int, Int](3,5). Sim-

ilarly, it allows programmers to write (Int, Int) instead of Tuple2[Int, Int]. If we were

to introduce miniboxed tuples, we would not be able to use the syntactic sugar to express

programs, losing the support of many programmers. Instead, a better choice is to efficiently

access specialized Scala tuples.

Although we don’t have statistically significant data, our experience suggests that Tuple

classes have their components accessed only a few times during their life. Therefore, both for

compatibility reasons and to avoid costly conversions, we decided to allow the Tuple class

to remain unchanged, instead focusing on providing accessors and constructors that use the

miniboxed encoding.

The optimized tuple accessors

are written by hand and are explicitly given the type byte:
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1 def tuple1_accessor_1[T](T_Tag: Byte, tp: Tuple1[T]) =

2 T_Tag match {

3 case INT =>
4 // the call to _1 will be rewritten to a call

5 // to the specialized variant _1_I, which

6 // returns the integer in the unboxed format:

7 int2minibox(tp.asInstanceOf[Tuple1[Int]]._1)

8 ...

9 }

Once the tuple is cast to a Tuple1[Int], the specialization transformation kicks in and trans-

forms the call to _1 into a specialized call to _1_I, the integer variant. Since the int2minibox

conversion also takes an unboxed integer, the overhead of boxing is completely eliminated.

The specialized constructors

are motivated by two observations: (1) allocating tuples in the miniboxed code without special

support requires boxing and, even worse (2) the tuples created use the reference-based variant

of the specialized class, thus voiding the benefits of having added tuple accessors. The code

for the tuple constructors is also written by hand and is very similar to the accessor code: it

dispatches on the type tags to create tuples of primitive types, which specialization can rewrite

to the optimized variants.

Introducing accessors and constructors

is done by the miniboxing plugin when encountering a tuple access followed by a conversion to

the miniboxed representation or when the tuple constructor is invoked with all the arguments

being transformed from the miniboxed representation to the boxed one. There are two reasons

this step needs to be automated:

• By default, programmers do not have access to the type bytes directly, as this would allow

them to introduce unsoundness in the type system (they can inspect their representation

using miniboxing reflection, but this is outside the scope);

• One of the reasons tuples are useful is their great integration with the language, allowing

a very concise syntax. Asking programmers to use anything other than this syntax would

be as bad as developing our own, no-syntax-sugar miniboxed tuple.

With these three changes, benchmarks show a 2x speedup when accessing tuples and a 5%

slowdown compared to the equivalent code which accesses the tuples directly. The benchmark

we used was a tuple quicksort algorithm (§5.5). Pretty neat, huh?

With the three elements above, accessors, constructors and the automatic code rewriting

we create a direct bridge between specialized tuples and miniboxed classes. Unfortunately,

as we’ve seen before, adding such accessors has to be a carefully-weighted, context-specific
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decision, so automating it would not provide much benefit. For example, this choice would

not be suitable for functions.

5.4.4 Functions

Like tuples, functions in Scala have a concise and natural syntax, which ultimately desugars to

one of the FunctionX traits, where X is the function arity. For example:

1 val f: Int => Int = (x: Int) => x + 1

Desugars to:

1 val f: Function1[Int, Int] = {

2 class $anon extends Function1[Int, Int] {

3 def apply(x: Int): Int = x + 1

4 }

5 new $anon()

6 }

Since Function objects are specialized, the code is compiled to:

1 val f: Function1[Int, Int] = {

2 class $anon extends Function1_II {

3 def apply_II(x: int): int = x + 1

4 def apply(x: Object): Object = // call apply_II

5 }

6 new $anon()

7 }

When interoperating with miniboxed code, functions can only use the reference-based apply,

introducing performance regressions.

In our early experiments on transforming the Scala collections hierarchy using the minibox-

ing transformation [60], we were proposing an alternative miniboxed function trait, called

MbFunction, and were performing desugaring by hand. The performance obtained was good,

but desugaring by hand was too tedious. Later on, we received a suggestion from Alexandru

Nedelcu stating that, since functions in Scala are specialized, we should be able to interface

directly, thus benefiting from the desugaring build into Scala without paying for the boxing

overhead.

Our initial approach used accessors, but we soon learned that switching on as many as 3 type

bytes with each function application incurs a significant overhead. Instead, we decided to

re-introduce MbFunctionX within the code compiled by the miniboxing plugin, where X is

the arity and can range between 0 and 2 (Scala includes functions with arities up to 22, but
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arities above 2 are no longer specialized). Yet, this time the MbFunctionX objects would be

introduced automatically.

Code transformation.

The miniboxing plugin automatically transforms FunctionX to MbFunctionX:

• All references to FunctionX are converted to MbFunctionX;

• Function definitions create MbFunctionX instead of FunctionX;

For example, the code:

1 def choice[@miniboxed T](seed: Int): (T, T) => T =

2 (t1: T, t2: T) => if (seed % 2 == 0) t1 else t2

3

4 val function: Int => Int = choice(Random.nextInt)

5 List((1,2), (3,4), (5,6)).map(function)

Is transformed into:

1 def choice(seed: int): MbFunction2 =

2 new AbstractMbFunction2_LL {

3 def apply(t1: Object, t2: Object) = ...

4 val functionX: Function2 = ...

5 }

6 def choice_M(T_Type: byte, seed: int): MbFunction2 =

7 new AbstractMbFunction2_MM {

8 def apply_MM(..., t1: long, t2: long) = ...

9 val functionX: Function2 = ...

10 }

11 val function: MbFunction2 = choice_M(...)

12 List((1,2), (3,4), (5,6)).map(function.functionX)

The code transformation is based on the data-centric metaprogramming technique presented

in Chapter 4. The result is that, within miniboxed code, only the MbFunctionX representation

is used. FunctionX is only referenced in a limited number of cases:

• When miniboxed code needs to pass a function to pre-miniboxing code (which uses the

FunctionX representation);

• When miniboxed code receives a function from pre-miniboxing code (using theFunctionX

representation);

• When a miniboxed class or method extends a pre-miniboxed entity that takesFunctionX

arguments;

• When an MbFunctionX value is assigned to supertypes of FunctionX, it needs to be

converted;
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Conversions

can occur in both directions, from FunctionX objects to MbFunctionX and back.

Converting FunctionX objects to their miniboxed counterparts is done using switches that

allow the newly created MbFunctionX to directly call the unboxed apply, fără boxing:

1 def function0_bridge[R](R_Tag: Byte, f: Function0[R]):

MiniboxedFunction0[R] =

2 (R_Tag match {

3 case INT =>
4 val f_cast = f.asInstanceOf[Function0[Int]]

5 new MbFunction0[Int] {

6 def functionX: Function0[Unit] = f_cast

7 def apply(): Int = f_cast.apply()

8 }

9 ...

10 }).asInstanceOf[MiniboxedFunction0[R]]

In the above code, f is statically known to be of type Function[Int], thanks to the type

byte. This allows the code to introduce f_cast, which in turn allows the specialization

transformation to rewrite the call from the reference-based apply to the unboxed apply_I.

On its side, miniboxing instantiates MbFunction0_M instead of MbFunction0 and moves the

code to the specialized apply_M method. With these rewrites, the anonymous MbFunction

instance can call the underlying function without boxing:

1 new MbFunction0_M {

2 def T_Type: byte = INT

3 // fast path for function application:

4 def apply_M(): long = int2minibox(f_cast.apply())

5 // fast path for conversion:

6 val functionX: Function0 = f_cast

7 }

Converting MbFunctionX objects to FunctionX easy, since each MbFunctionX object con-

tains its FunctionX counterpart in the functionX field.

By transforming the function representation, we have eliminated the overhead of calling func-

tions completely. Furthermore, using the previous two strategies to minimize the conversion

overhead, we enabled function-heavy applications to achieve speedups between 2 and 14x [8].

5.4.5 Arrays

The array transformation [37] is beyond the scope of this chapter, but we included it as a good

example for using performance advisories.
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Benchmark Generic Miniboxed
Builder 161.61 s 53.56 s
Map 98.43 s 49.38 s
Fold 87.98 s 46.14 s
Reverse 27.97 s 33.84 s

Table 5.1 – RRB-Vector operations for 5M elements.

The Array bulk storage in Scala makes certain assumptions that are not compatible with mini-

boxing, leading to performance regressions in some corner cases. To address this limitation,

we introduced a new type of array, dubbed MbArray, which integrates very well within the

miniboxing transformation. However, since the MbArray guarantees do not match the ones of-

fered by Scala arrays, we cannot automate the transformation. Instead, we issue performance

advisories to inform programmers about MbArray:

1 scala> def newArray[@miniboxed T: ClassTag] =

2 | new Array[T](100)

3 <console>:8: warning: Use MbArray instead of Array to eliminate the need

for ClassTags and benefit from seamless interoperability with the

miniboxing specialization. For more details about MbArrays, please check

the following link: http://scala-miniboxing.org/arrays.html

This concludes the three approaches to interoperating with the specialized Scala library.

5.5 Benchmarks

In this section we show three different scenarios where miniboxing has significantly improved

performance of user programs. We specifically avoid mentioning benchmarking methodology,

as each of the experiments was ran on a different setup. Yet, all three examples show a

clear trend: the techniques explained here improve both performance and the programmer

experience.

The RRB-Vector

data structure [123, 125] is an improvement over the immutableVector, allowing it to perform

well for data parallel operations. Currently, the immutable Vector collection in the Scala

library offers very good asymptotic performance over a wide range of sequential operations,

but fails to scale well for data parallel operations. The problem is the overhead of merging

the partial results obtained in parallel, due to the rigid Radix-Balanced Tree, the Vector’s

underlying structure. Contrarily, the RRB-Vector structure uses Relaxed Radix-Balanced

(RRB) Trees, which allow merges to occur in effectively constant time while preserving the

sequential operation performance. This enables the RRB-Vector to scale linearly with the

number of cores when executing data parallel operations. Thanks to its improved performance,
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Benchmark Generic Miniboxed Miniboxed
+functions

Sum 98.2 ms 158.6 ms 18.0 ms
SumOfSquares 131.6 ms 193.1 ms 12.0 ms
SumOfSqEven 92.3 ms 189.6 ms 48.7 ms
Cart 217.4 ms 214.9 ms 57.5 ms

Table 5.2 – Scala Streams pipelines for 10M elements.

the RRB-Vector data structure is slated to replace the Vector implementation in the Scala

library in a future release.

The original RRB-Vector implementation used erased generics. To show that performance

advisories can indeed guide developers into improving performance, we asked a Scala de-

veloper who was not familiar with the RRB-Vector code base to switch the compilation

scheme to miniboxing. Before handing in the code, we removed the parallel execution sup-

port [20], reducing the code base by 30%. Then, the developer compiled the code with the

miniboxing plugin, which produced 28 distinct warnings. These warnings guided the addi-

tion of @miniboxed annotations where necessary and the introduction of MbArray objects

instead of Scala arrays. By following the performance advisories, in less than 30 minutes of

work, our developer managed to improve the performance of the RRB-Vector operations

by up to 3x. A counter-intuitive effect was that it took three rounds of compiling and ad-

dressing the warnings before the improvement was visible: each iteration introduced more

@miniboxed annotations, in turn triggering new warnings, as new methods could benefit

from the annotation.

Table 5.1 shows the performance improvements measured on four key operations of the

RRB-Vector: creating the structure element by element using a builder and invoking bulk

data operations: map, fold and reverse. The ScalaMeter framework [103] was used as a

benchmarking harness on a quad-core Intel Core i7-4600U processor running at 2.10GHz with

12GB of RAM, on OpenJDK7.

The numbers show speedups between 1.9 and 3x for the builder, map and fold benchmarks.

This can be explained by the fact that, in the erased version, each element required at least

a boxing operation, and thus a heap allocation. On the other hand, the reverse operation

does not require any boxing so there is no speedup achieved. Nevertheless, introducing the

miniboxing transformation does not lead to significant slowdowns.

If we consider the RRB-Vector development time, which took four months of work and

resulted in ~3K lines of source code, the performance advisories issued by the miniboxing

plugin allowed a new developer, with no knowledge of the code base, to deploy the miniboxing

transformation in a negligible period of 30 minutes, producing speedups of up to 3x.
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The Scala-Streams library

[38] imitates the design of the Java 8 stream library, to achieve high performance (relative to

standard Scala libraries) for functional operations on data streams. The library is available as

an open-source implementation [1]. In its continuation-based design, each stream combi-

nator provides a function that is stacked to form a transformation pipeline. As the consumer

reads from the final stream, the transformation pipeline is executed, processing an element

from the source into an output element. However, the pipeline architecture is complex, since

combinators such as filter may drop elements, stalling the pipeline.

Table 5.2 shows the result of applying our data representation transformation to the Scala-

Streams published benchmarks. (The benchmarks are described in detail in prior literature

[38, 39].) As can be seen, the miniboxing transformation is an enabler of our optimization but

produces worse results by itself (due to extra conversions).

Compared to the original library, the application of miniboxing and data representation

optimization for functions achieves a very high speedup—up to 11x for the SumOfSquares

benchmark. In fact, the speedup relative to the miniboxed code without the function repre-

sentation optimization is nearly 16x!

The Framian Vector implementation

is an exploration into deeply specializing the immutable Vector bulk storage without using

reified types [27, 28]. This is a benchmark created by a third party (a commercial entity

using Scala). Table 5.3 shows a 4.4x speed improvement when the function representation is

optimized and shows that the ADR-transformed function code performs within 10% of the

fully specialized and manually optimized code.

Image processing.

Performance advisories can be used to improve the performance of Scala programs without

any previous knowledge of how the transformation works. This was shown at the PNWScala

2014 developer conference [17], where Vlad Ureche presented how the miniboxing plugin

guides the programmer into improving the performance of a mock-up image processing

Benchmark Running time
Manual C-like code 0.650 µs
Miniboxing with functions 0.705 µs
Miniboxing without functions 3.080 µs
Generic 13.409 µs

Table 5.3 – Mapping a 1K Framian vector.
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Benchmark Generic Miniboxed Miniboxed
some all

advisories advisories
heeded heeded

1st run 4192 ms 3082 ms 1346 ms
2nd run 4957 ms 2998 ms 1187 ms
3rd run 4755 ms 3017 ms 1178 ms
4th run 3969 ms 2535 ms 1094 ms
5th run 4073 ms 2615 ms 1163 ms

Table 5.4 – Speedups based on performance advisories, PNWScala

library by as much as 4x [18]. The presentation was recorded and the performance numbers

are included in Table 5.4 for quick reference.

Tuple accessors

have been tested by implementing a tuple sorting benchmark using a generic quicksort

algorithm. Table 5.5 shows the results for sorting 1 million tuples based on their first element.

We used different transformations for the generic quicksort algorithm: first, we benchmarked

the erased generics performance, which, as expected, were slow. Surprisingly, the miniboxed

version without tuple support was even worse, 7% slower than erased generics. Then, adding

tuple accessor support to the miniboxing transformation improved the performance by 2x,

making it comparable to the original specialization transformation and to the monomorphic

(non-generic, hand specialized) version of the quicksort algorithm.

5.6 Related Work

The most significant related work lies in the area of run-time profilers which can offer feedback

at the language level. We would like to point the work of St-Amour on optimization feedback

[119] and feature-based profiling [120]. Profiling has existed for a long time at lower levels, such

as at the Java Virtual Machine level, with profilers such as YourKit [31] or the Java VisualVM

[29] or the x86 assembly, with processor hardware counters.

Transformation Running time
Generic 684.4 ms
Miniboxed (no tuple support) 726.8 ms
Miniboxed (with tuple support) 323.2 ms
Specialized 322.5 ms
Monomorphic 318.1 ms

Table 5.5 – Sorting 1M tuples using quicksort.
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The area of opportunistic optimizations has seen an enormous growth thanks to dynamic

languages such as JavaScript, Python and Ruby, which require shape analysis and optimistic

assumptions on the object format to maximize execution speed. We would like to highlight the

work of Mozilla on their *Monkey JavaScript VMs [57], Google’s V8 JavaScript VM and the PyPy

Python virtual machine [41, 42]. While this is just a short list of highlights, the Truffle compiler

[147, 148] is now a general approach to writing interpreters that make optimistic assumptions,

allowing maximum performance to be achieved by partially evaluating the interpreter for

the program at hand, essentially obtaining a compiled program thanks to the first Futamura

projection [56].

In the area of data representation, this work assumes familiarity with specialization [53] and

miniboxing. The program transformation which enables the functions to be transformed into

miniboxed functions is thoroughly discussed in Chapter 4. There has been previous work on

miniboxing Scala collections [1, 60, 126] and on unifying specialization and reified types [124].

We have also seen a revived interest in specialization in the Java community, thanks to project

Valhalla, which aims at providing specialization and value class support at the virtual machine

level [63, 111]. In the Java 8 Micro Edition functions are also represented differently [102].

5.7 Conclusion

This chapter shows several approaches to allowing different generics compilations schemes to

interoperate without incurring performance regressions:

• Harmonizing the generics compilation scheme thanks to actionable performance advi-

sories;

• Bridging the gap between library constructs that use different generics compilation

schemes, specifically:

– The accessor approach;

– The replacement approach;

– The advisory-based approach.

The implementation results are validated using the miniboxing plugin, which automates the

approaches described, showing performance improvements between 2x and 4x.
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5.8 Appendix: Miniboxing Advisories Example

In this appendix we show an example of using miniboxing advisories to improve program

performance. The running example is:

1 /** In-place quicksort */

2 def quicksort[T](array: Array[T])(implicit ev: Ordering[T]): Unit = {

3 import Ordering.Implicits._

4

5 /** The recursive quicksort procedure */

6 def quick(start: Int, finish: Int): Unit =

7 if (finish - start > 1) {

8 val pivot = array((start + finish) / 2)

9 var left = start

10 var right = finish

11 while (left < right) {

12 while (array(left) < pivot)

13 left += 1

14 while (array(right) > pivot)

15 right -= 1

16 if (left <= right) {

17 val tmp: T = array(left)

18 array(left) = array(right)

19 array(right) = tmp

20 left += 1

21 right -= 1

22 }

23 }

24 quick(start, right)

25 quick(left, finish)

26 } else
27 ()

28

29 quick(0, array.length - 1)

30 }

31

32 /** Timing */

33 def timed(f: => Unit): Unit = {

34 val start = System.currentTimeMillis

35 f

36 val finish = System.currentTimeMillis

37 println(s"Computation took ${finish-start} milliseconds.")

38 }

39

40 // Entry point:

41 val arr = Array.range(5e7.toInt, 0, -1)

42 timed(quicksort(arr))

The quicksort method is generic, so we can expect it would be slow on sorting a 50 million

element array. Running the example in vanilla Scala, we get:
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1 $ scala quick.scala

2 Computation took 4868 milliseconds.

Now, running it with the miniboxing plugin reveales the first performance advisory and

approximately the same timing:

1 $ mb-scala quick.scala

2 quick.scala:43: warning: Method quicksort would benefit from miniboxing

type parameter T, since it is instantiated by a primitive type.

3 timed(quicksort(arr))

4 ^

5 one warning found

6 Computation took 4827 milliseconds.

To address the advisory, we add the @miniboxed annotation to the quicksort method:

1 def quicksort[@miniboxed T](array: Array[T])(implicit ev: Ordering[T]):

Unit = ...

Running the example again produces the following output:

1 $ mb-scala quick.scala

2 quick.scala:9: warning: Use MbArray instead of Array to eliminate the need

for ClassTags and benefit from seamless interoperability with the

miniboxing specialization. For more details about MbArrays, please check

the following link: http://scala-miniboxing.org/arrays.html

3 val pivot = array((start + finish) / 2)

4 ^

5 one warning found

6 Computation took 8072 milliseconds.

We have another performance advisory and the running time degraded. Indeed, this is

expected, as we are paying the price of interoperation between generics compilation schemes.

To address this advisory, we need to update the quicksort signature:

1 def quicksort[@miniboxed T](array: MbArray[T])(implicit ev: Ordering[T]):

Unit = ...

And adapt its argument:

1 val arr = MbArray.clone(Array.range(5e7.toInt, 0, -1))

2 timed(quicksort(arr))

Running once more, the output is yet again updated:
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1 $ mb-scala quick.scala

2 quick.scala:3: warning: Upgrade from trait Ordering[T] to class

MiniboxedOrdering[T] to benefit from miniboxing specialization:

3 def quicksort[@miniboxed T](array: MbArray[T])(implicit ev: Ordering[T]):

Unit = {

4 ^

5 one warning found

6 Computation took 7586 milliseconds.

Addressing the last peformance advisory requires updating the signature of quicksort and

its initial import:

1 def quicksort[@miniboxed T](array: MbArray[T])(implicit ev:

MiniboxedOrdering[T]): Unit = {

2 import MiniboxedOrdering.Implicits._

3 ...

4 }

With this change, we can run again:

1 $ mb-scala quick.scala

2 Computation took 1780 milliseconds.

The final run does not show any more performance advisories. And, indeed, the quicksort

method is now 2.7× faster than the original erased version. This is how performance advisories

can guide a programmer into improving performance even without being an expert of the

code base.
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6 Conclusion

The miniboxing transformation, which improves the interaction between generics and primi-

tive types in the Scala programming language serves as the main motivation and technical

artifact of the thesis. However, it took important side research to turn the idea of using long

integers to store primitive types into a complete and reliable generics compilation scheme.

Late Data Layout grew out of the problem of scaling the code transformation in miniboxing to

cover all abstract syntax tree patterns in the Scala compiler. Yet, it turned out to be a more

general mechanism, supporting other important transformations as well.

The Data-Centric Metaprogramming approach started as transformation meant to integrate

miniboxing with the functional aspects of Scala, but turned out to be a more general framework

for programmers to express their own data representation transformations.

In retrospect, we’re amazed at how many results came out of trying to solve a seemingly simple

problem: reducing the amount of bytecode generated by specialization. Also, we are pleasantly

surprised by the synergies between the different components that make up the miniboxing

compilation scheme:

• The miniboxed data encoding (top left tile) is more transparent and reliable when the

transformation issues performance advisories (bottom left tile);

• Performance advisories (bottom left tile) are toothless compiler warnings if they are

not backed by the support for interoperating with specialization. This support, which

handles functions, tuples, arrays and type classes shares the scoped nature with the

Data-Centric Metaprogramming approach (bottom right tile);

• The Data-Centric Metaprogramming approach (bottom right tile), despite its very ambi-

tious goals, only needs a slightly improved version of the Late Data Layout mechanism

(top right tile) to perform the program transformation;

• Late Data Layout (top right tile) forms the backbone of the miniboxing transformation,

transforming duplicated code to use the miniboxed data encoding (top left tile);
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In the introduction (Chapter 1), we have seen the two very different types of data representa-

tion transformations:

(1) Using compatible, drop-in replacements (miniboxing);

(2) Using incompatible replacements and introducing conversions where necessary

(Late Data Layout and Data-Centric Metaprogramming).

From this perspective, miniboxing fine-tunes the compatibility layer introduced by special-

ization, introducing an interface at the top of the hierarchy and proposing performance

advisories, which make the compatibility layer transparent. Thus, miniboxing can be seen as

a compatibility layer added on top of an incompatible transformation, from type parameters

to long integers. Realizing this inspires future work in the area.

6.1 Future Work

Since miniboxing proposes a compatibility layer over an incompatible transformation, an

interesting research question is whether the miniboxing scheme could be used to allow Data-

Centric Metaprogramming transformations inside generics. Indeed, initial research by Dmitry

Petrashko indicates this may be the case. Furthermore, such a result would allow separating

miniboxing into its two fundamental components: the generics compatibility layer and the

data representation transformation, achieved using Data-Centric Metaprogramming.

Regarding the Late Data Layout mechanism, it would be very useful to devise a complete

formalization, proving the optimality of the coercion push-down property. In [136] we provide

a definition of the transformation starting from the simply typed lambda calculus with Nat,

Bool and Unit. However, this initial work only defines the transformation but does not

proceed further to proving its properties. Since the LDL mechanism acts as the backbone of

miniboxing, value class inlining and unboxing primitive types in the Scala compile backend, a

formal proof of its properties would be highly desirable.

Figure 6.1 – Late Data Layout transformation composition

Still within the realm of the Late Data Layout mechanism, an interesting question is what are

the conditions that would allow several transformation steps to compose into one, as shown

in Figure 6.1. And, even more interesting, in which cases the middle Long representation

needs to be conserved? Answering these questions could open the door to more extensive data

representation transformations, which are currently only accessible via manually-specified

Data-Centric Metaprogramming description objects. Which brings us to the next topic.
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One of the drawbacks of Data-Centric Metaprogramming is that programmers can break

semantics by defining bypass methods whose code does not perform an equivalent operation.

An interesting direction would be to use symbolic execution to check the equivalence of the

class method and the bypass method, eliminating semantics-changing transformations.

Another way to break program semantics is by defining a transformation that assumes the

transformed scope is pure (i.e. does not have side effects), but to apply it to a scope that

invalidates the constraints. To prevent such cases, it would be useful to allow transformation

developers to express the constraints in the description objects and check whether each scope

satisfies its corresponding constraints.

6.2 Impact

The data representation transformations in this thesis have been implemented as a Scala

compiler plugins and have been documented on their respective websites [9, 14, 16]. It has

been presented at several developer conferences:

• Spark Summit Europe 2015, Amsterdam, The Netherlands

• PNWScala 2014, Portland, OR, United States

• ScalaDays 2014, Berlin, Germany and 2015, San Francisco, CA, United States

• Devoxx UK 2015, London, United Kingdom

The miniboxing transformation will be part of the new incarnation of the Scala compiler

(code name dotty). Furthermore, with the recent work on OpenJDK performance extensions

(Project Valhalla[63–65]), which include specialization and value class inlining, there has been

an ongoing communication between our team and the Oracle architects designing Valhalla.

In all, the miniboxing plugin has 1110 commits from 9 contributors (other than the author) to

which we are very grateful.

6.3 Lessons Learned

There are three lessons we derived from this thesis and hope others can use as well:

Solve real problems then turn the solutions into research. This is a suggestion given by

Matei Zaharia, the creator of Spark, during a visit to EPFL in 2013. What the author subjectively

understood is that the first step towards good research is focusing on a real problem and

solving it. Then, research stems from analyzing the tradeoffs offered by the solution, whether

it can be generalized and what are the other design choices possible. The work described

in this thesis started the real problem of scaling specialization by reducing the amount of

bytecode generated. And, indeed, solving this problem produced an avalanche of interesting

research questions, which ultimately led to this thesis.
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Digging deeper uncovers more insights. Once a problem has been solved, a natural question

is how to transform it into research. Fortunately digging deeper, asking questions like “Why

is it so?” and looking for synergies between different approaches can reveal non-obvious

insights, which can later form the basis of research contributions. Late Data Layout stemmed

from an intuition that other problems may be solved with the same approach as well, so the

questions asked were: “What other problems?” and “Why?”.

Productizing research. This is a lesson learned from the “PhD Grind” book of Philip Guo: it

is not enough to come up with a good idea and publish it – the idea should be tested in the

real world, as a product. The miniboxing transformation was developed with this in mind,

aiming for a product that developers can use in practice. Much of the energy has gone into

stabilization, handling corner cases and generally the making the transformation useful. While

some of the work was purely technical and did not lead to research questions, there were also

many cases where a technical limitation led to asking questions that produced valid research

contributions.
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A Presentation Posters

The following pages show the posters for the main projects included in the thesis:

MINIBOXING: Almost-free Bytecode Specialization (OOPSLA’13)

Vlad Ureche and Cristian Talau and Martin Odersky
École polytechnique fédérale de Lausanne, Switzerland

{first.last}@epfl.ch scala-miniboxing.org

1 Problem

Generics on the Java Virtual Machine are erased, and this
leads to inefficient code:

def identity[T](t: T): T = t
identity(3)

Source Code

def identity(t: Object): Object = t
unbox(identity(box(3)))

Erased Code

Boxing (storing values as heap objects) affects performance:
• indirect access to values
• large heap footprint
• more garbage collection cycles

Load-time bytecode specialization (like .NET) is not possible
for two reasons:

• the bytecode does not contain generic type information
• the Java Virtual Machine does not carry reified generics

Naive specialization is not a solution, as it produces 10n vari-
ants of the code, where n is the number of type parameters:

def identity(t: Object): Object = t
def identity(t: Unit): Unit = t
def identity(t: Boolean): Boolean = t
def identity(t: Char): Char = t
...

Specialized Code

2 Tagged Union

Tagged union can help reduce the specialized variant count:

def identity(t: Tagged): Tagged = t
identity(Tagged(INT, 3))

Equivalent Code with Tagged Union

But this has two problems:
• tags need to be carried with values (including in arrays)
• dipatching on tags takes time and prevents optimizations:

(t: Tagged).toString

Source Code

t.tag match {
case INT => t.value.toInt.toString

}

Equivalent Code

3 Miniboxing

Miniboxing resolves the two problems in tagged union:

Carrying tags: Since Scala and Java have static type sys-
tems, miniboxing can attach tags to code instead of values:

def identity[T](T_Tag: Tag, t: Long): Long = t
identity(INT, 3)

Equivalent Code with Miniboxing

Dispatching cost: Miniboxing specializes the code using a
three-phase load-time transform:

1 creating copies of the class with tags set statically

2 constant propagation on the bytecode:

INT match {
case INT => t.value.toInt.toString

}

Equivalent Code

3 dead code elimination on the bytecode:

INT match {
case INT => t.value.toInt.toString

}

Equivalent Code

4 Benchmarks

Performance is on-par with naive specialization (array buffer
reverse microbenchmark):

generic

miniboxing

naive specialization

monomorphic

 0  1  2  3  4  5  6
Time (milliseconds)

 

20.4 ms

Code size increases by 20% and is 5x less than naive spe-
cialization (on a 12KLOC numeric abstractions library):

spire generic

spire miniboxed

spire specialized

 0  2  4  6  8  10  12  14  16

Bytecode size (MB)

 

5 Resources

• Official website: scala-miniboxing.org
• OOPSLA’13 paper: doi>10.1145/2509136.2509537

Late Data Layout: Unifying Data Representation Transformations (OOPSLA’14)

Vlad Ureche Eugene Burmako Martin Odersky
École polytechnique fédérale de Lausanne, Switzerland

{first.last}@epfl.ch scala-ldl.org

1 Data Representation Problem

Data takes various representations when interacting with dif-
ferent language features. For example, the value 5 in:

val a: Int = 5
val b: Any = 5

Source Code

is compiled to two different representations:

val a: int = 5 // unboxed: int
val b: Object = new Integer(5) // boxed: Integer

Low-level Bytecode

Scala abstracts over the boxed and unboxed representations
by exposing a single Int type. This simplifies the language
but complicates the compiler, which must:

• choose the representation of each value and

• introduce coercions such as boxing and unboxing

We will further explore how this is implemented in a compiler.

Other language features abstract over data representations
as well, requiring similar transformations:
• value classes: inline C-like structures vs boxed objects
• miniboxing: long integer encoding vs boxed values
• staging: immediate 5 vs next-stage values 2 + 3

2 Syntax-Driven Transformation

Int→ int The unboxed representation is more efficient, so
values are unboxed on a case by case basis, if possible.

Int→ Integer After unboxing occurs, all remaining values
of type Int can be converted to Integer, since the semantics
of Int correspond to the runtime behavior of Integer.

val c: Int = ... // e.g.: List[Int](1,2,3).head
val d: Int = c
println(d.toString)

Source Code

When unboxing a value, such as c or d, coercions are intro-
duced to maintain representation consistency:

val c: int = unbox(...) // unboxing the rhs of c
val d: Int = box(c) // boxing all references
println(d.toString)

Transformed Code (Step 1: unboxing c)

val c: int = unbox(...)
val d: int = unbox(box(c)) // unboxing the rhs of d
println(box(d).toString) // boxing all references

Transformed Code (Step 2: unboxing d)

Syntax-driven transformations produce redundant coercions,
which slow down execution, for example in the definition of d.

For simple cases, peephole optimizations can eliminate the re-
dundant coercions. Yet, as shown in the paper, they do not
scale to more complex cases. A better approach is necessary.

3 Type-Driven LDL Transformation

Instead of using syntax-based rules, Late Data Layout (LDL)
injects representation information in the types. It then inserts
coercions when types (and thus representations) don’t match:

Step 1 Inject annotations that track the representation:

val c: @unboxed Int = ...
val d: @unboxed Int = c
println(d.toString)

Inject phase

Step 2 Coerce only when representations do not match:

// expected @unboxed Int, found Int⇒ add coercion:
val c: @unboxed Int = unbox(...)
// expected @unboxed Int, found @unboxed Int⇒ ok:
val d: @unboxed Int = c
// expected Int, found @unboxed Int⇒ add coercion:
print(box(d).toString)

Coerce phase

The expected type propagation (part of local type inference)
tracks the required representation of each expression, allowing
coercions to be introduced only when necessary.

Step 3 Commit to the final representation, by replacing an-
notated types by their target representations:

val c: int = unbox(...)
val d: int = c // optimal!
println(box(d).toString)

Commit phase

The Late Data Layout transformation has three properties:

• consistency , guaranteed by the type system

• selectivity , thanks to individual value annotation

• optimality , by virtue of expected type propagation

4 Benchmarks

Performance gains For the three Scala plugins we developed:

• value class inlining transformation, up to 2x
• miniboxing generics, speedups of up to to 22x
• staging FFT calculations, speedups of up to 59x

Development time The LDL transformation took 2 months to
develop for the miniboxing plugin, and was subsequently used
to implement the other two plugins from scratch:

• value class plugin: 2 developer-weeks of coding
• staging plugin: 1 developer-week of coding

5 Resources

• Official website: scala-ldl.org
• OOPSLA’14 paper: doi>10.1145/2660193.2660197
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1 Data Representation Problem

In high-level languages, such as Scala, developers write their
data structures using generic components from the library:

class Vector[+A] extends Sequence[A] with ... {
.....
}

Library Class

Library components are freely mixed with custom data struc-
tures. For example, with objects storing sensor readings:

case class SensorReading(timestamp: Int,
.........................sensor: Int,
.........................value: Double)

Source Code

Programmers appreciate the ability to mix data structures, as
it increases productivity. Yet, without realizing, they give up
performance, as the mixed data structures have suboptimal
memory representations.

In our example, traversing a Vector[SensorReading] object
requires a pointer dereference for each element:

Most programmers can immediately give a better layout:

But, currently, there is no way for them to modify the data rep-
resentation, as it is fixed by the compiler.

2 Challenges

Optimizing the data representation is difficult:

Productivity Transforming the code by hand is an option, but
it is tedious, error prone and harms long-term maintenance.

Context dependency The best layout for a piece of data de-
pends on how it’s going to be manipulated and where it’s going
to be stored. Only the programmer has this information.

Open world assumption New code, which is not aware of
the optimized representation, can loaded at any time, thus in-
troducing inconsistencies. Contrarily, most DSLs assume a
closed world: only the predefined data structures can be used
in the program.

Combined, these three problems make optimizing the data
representation very difficult.

3 Data-centric Optimizations

Data-centric Optimizations overcome the challenges:

Productivity Our technique extends the Scala compiler to al-
low transforming the data representation as part of the compi-
lation pipeline, based on type system information. Thus, pro-
grammers can freely mix and match their data structures.

Context dependency Since the programmer is in the unique
position of deciding the best data layout, we allow them to de-
fine it directly in Scala, without any special API:

class RowVector(timestamps: Array[Int],
................sensors: Array[Int],
................values: Array[Double])

Optimized Data Structure

and to instruct the compiler how to use it:

object RowOpt extends Transformation { ... }

Transformation Description Object

Open world assumption We can enclose a scope where the
transformation occurs. Inside, the code uses the optimized
representation, while outside, as soon as the value leaks, it is
converted to the original encoding:

transform(RowOpt) {
..def avgTemp(reads: Vector[...]): Double = ...
}

Source Code

4 Composability

Transformation scopes can compose (communicate using the
optimized data layout) across class boundaries and even
across separate compilation. If instructed, the compiler can
warn when expensive data transformations are necessary:

warning: When calling method avgTemp, the argument
‘data’ needs to be converted to the ‘RowVector’
representation, which may incur some overhead:
......avgTemp(data)
..............ˆ

By wrapping the code shown by the warning in the
transform(RowOpt){...} scope, the slowdown is avoided, as
both the caller and callee will use the optimized layout.

5 Benchmarks

Vector[...]

RowVector

 0  5  10  15  20  25  30  35

Time (milliseconds)

 

Time to average the temperature in a vector of 5 million measurements

More benchmarks, showing speedups of up to 20x are shown
on the project website: scala-ildl.org
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Appendix A. Presentation Posters

MINIBOXING: Almost-free Bytecode Specialization (OOPSLA’13)
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1 Problem

Generics on the Java Virtual Machine are erased, and this
leads to inefficient code:

def identity[T](t: T): T = t
identity(3)

Source Code

def identity(t: Object): Object = t
unbox(identity(box(3)))

Erased Code

Boxing (storing values as heap objects) affects performance:
• indirect access to values
• large heap footprint
• more garbage collection cycles

Load-time bytecode specialization (like .NET) is not possible
for two reasons:

• the bytecode does not contain generic type information
• the Java Virtual Machine does not carry reified generics

Naive specialization is not a solution, as it produces 10n vari-
ants of the code, where n is the number of type parameters:

def identity(t: Object): Object = t
def identity(t: Unit): Unit = t
def identity(t: Boolean): Boolean = t
def identity(t: Char): Char = t
...

Specialized Code

2 Tagged Union

Tagged union can help reduce the specialized variant count:

def identity(t: Tagged): Tagged = t
identity(Tagged(INT, 3))

Equivalent Code with Tagged Union

But this has two problems:
• tags need to be carried with values (including in arrays)
• dipatching on tags takes time and prevents optimizations:

(t: Tagged).toString

Source Code

t.tag match {
case INT => t.value.toInt.toString

}

Equivalent Code

3 Miniboxing

Miniboxing resolves the two problems in tagged union:

Carrying tags: Since Scala and Java have static type sys-
tems, miniboxing can attach tags to code instead of values:

def identity[T](T_Tag: Tag, t: Long): Long = t
identity(INT, 3)

Equivalent Code with Miniboxing

Dispatching cost: Miniboxing specializes the code using a
three-phase load-time transform:

1 creating copies of the class with tags set statically

2 constant propagation on the bytecode:

INT match {
case INT => t.value.toInt.toString

}

Equivalent Code

3 dead code elimination on the bytecode:

INT match {
case INT => t.value.toInt.toString

}

Equivalent Code

4 Benchmarks

Performance is on-par with naive specialization (array buffer
reverse microbenchmark):

generic

miniboxing

naive specialization

monomorphic

 0  1  2  3  4  5  6
Time (milliseconds)

 

20.4 ms

Code size increases by 20% and is 5x less than naive spe-
cialization (on a 12KLOC numeric abstractions library):

spire generic

spire miniboxed

spire specialized

 0  2  4  6  8  10  12  14  16

Bytecode size (MB)

 

5 Resources

• Official website: scala-miniboxing.org
• OOPSLA’13 paper: doi>10.1145/2509136.2509537

Figure A.1 – Miniboxing Poster
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1 Data Representation Problem

Data takes various representations when interacting with dif-
ferent language features. For example, the value 5 in:

val a: Int = 5
val b: Any = 5

Source Code

is compiled to two different representations:

val a: int = 5 // unboxed: int
val b: Object = new Integer(5) // boxed: Integer

Low-level Bytecode

Scala abstracts over the boxed and unboxed representations
by exposing a single Int type. This simplifies the language
but complicates the compiler, which must:

• choose the representation of each value and

• introduce coercions such as boxing and unboxing

We will further explore how this is implemented in a compiler.

Other language features abstract over data representations
as well, requiring similar transformations:
• value classes: inline C-like structures vs boxed objects
• miniboxing: long integer encoding vs boxed values
• staging: immediate 5 vs next-stage values 2 + 3

2 Syntax-Driven Transformation

Int→ int The unboxed representation is more efficient, so
values are unboxed on a case by case basis, if possible.

Int→ Integer After unboxing occurs, all remaining values
of type Int can be converted to Integer, since the semantics
of Int correspond to the runtime behavior of Integer.

val c: Int = ... // e.g.: List[Int](1,2,3).head
val d: Int = c
println(d.toString)

Source Code

When unboxing a value, such as c or d, coercions are intro-
duced to maintain representation consistency:

val c: int = unbox(...) // unboxing the rhs of c
val d: Int = box(c) // boxing all references
println(d.toString)

Transformed Code (Step 1: unboxing c)

val c: int = unbox(...)
val d: int = unbox(box(c)) // unboxing the rhs of d
println(box(d).toString) // boxing all references

Transformed Code (Step 2: unboxing d)

Syntax-driven transformations produce redundant coercions,
which slow down execution, for example in the definition of d.

For simple cases, peephole optimizations can eliminate the re-
dundant coercions. Yet, as shown in the paper, they do not
scale to more complex cases. A better approach is necessary.

3 Type-Driven LDL Transformation

Instead of using syntax-based rules, Late Data Layout (LDL)
injects representation information in the types. It then inserts
coercions when types (and thus representations) don’t match:

Step 1 Inject annotations that track the representation:

val c: @unboxed Int = ...
val d: @unboxed Int = c
println(d.toString)

Inject phase

Step 2 Coerce only when representations do not match:

// expected @unboxed Int, found Int⇒ add coercion:
val c: @unboxed Int = unbox(...)
// expected @unboxed Int, found @unboxed Int⇒ ok:
val d: @unboxed Int = c
// expected Int, found @unboxed Int⇒ add coercion:
print(box(d).toString)

Coerce phase

The expected type propagation (part of local type inference)
tracks the required representation of each expression, allowing
coercions to be introduced only when necessary.

Step 3 Commit to the final representation, by replacing an-
notated types by their target representations:

val c: int = unbox(...)
val d: int = c // optimal!
println(box(d).toString)

Commit phase

The Late Data Layout transformation has three properties:

• consistency , guaranteed by the type system

• selectivity , thanks to individual value annotation

• optimality , by virtue of expected type propagation

4 Benchmarks

Performance gains For the three Scala plugins we developed:

• value class inlining transformation, up to 2x
• miniboxing generics, speedups of up to to 22x
• staging FFT calculations, speedups of up to 59x

Development time The LDL transformation took 2 months to
develop for the miniboxing plugin, and was subsequently used
to implement the other two plugins from scratch:

• value class plugin: 2 developer-weeks of coding
• staging plugin: 1 developer-week of coding

5 Resources

• Official website: scala-ldl.org
• OOPSLA’14 paper: doi>10.1145/2660193.2660197

Figure A.2 – Late Data Layout Poster
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1 Data Representation Problem

In high-level languages, such as Scala, developers write their
data structures using generic components from the library:

class Vector[+A] extends Sequence[A] with ... {
.....
}

Library Class

Library components are freely mixed with custom data struc-
tures. For example, with objects storing sensor readings:

case class SensorReading(timestamp: Int,
.........................sensor: Int,
.........................value: Double)

Source Code

Programmers appreciate the ability to mix data structures, as
it increases productivity. Yet, without realizing, they give up
performance, as the mixed data structures have suboptimal
memory representations.

In our example, traversing a Vector[SensorReading] object
requires a pointer dereference for each element:

Most programmers can immediately give a better layout:

But, currently, there is no way for them to modify the data rep-
resentation, as it is fixed by the compiler.

2 Challenges

Optimizing the data representation is difficult:

Productivity Transforming the code by hand is an option, but
it is tedious, error prone and harms long-term maintenance.

Context dependency The best layout for a piece of data de-
pends on how it’s going to be manipulated and where it’s going
to be stored. Only the programmer has this information.

Open world assumption New code, which is not aware of
the optimized representation, can loaded at any time, thus in-
troducing inconsistencies. Contrarily, most DSLs assume a
closed world: only the predefined data structures can be used
in the program.

Combined, these three problems make optimizing the data
representation very difficult.

3 Data-centric Optimizations

Data-centric Optimizations overcome the challenges:

Productivity Our technique extends the Scala compiler to al-
low transforming the data representation as part of the compi-
lation pipeline, based on type system information. Thus, pro-
grammers can freely mix and match their data structures.

Context dependency Since the programmer is in the unique
position of deciding the best data layout, we allow them to de-
fine it directly in Scala, without any special API:

class RowVector(timestamps: Array[Int],
................sensors: Array[Int],
................values: Array[Double])

Optimized Data Structure

and to instruct the compiler how to use it:

object RowOpt extends Transformation { ... }

Transformation Description Object

Open world assumption We can enclose a scope where the
transformation occurs. Inside, the code uses the optimized
representation, while outside, as soon as the value leaks, it is
converted to the original encoding:

transform(RowOpt) {
..def avgTemp(reads: Vector[...]): Double = ...
}

Source Code

4 Composability

Transformation scopes can compose (communicate using the
optimized data layout) across class boundaries and even
across separate compilation. If instructed, the compiler can
warn when expensive data transformations are necessary:

warning: When calling method avgTemp, the argument
‘data’ needs to be converted to the ‘RowVector’
representation, which may incur some overhead:
......avgTemp(data)
..............ˆ

By wrapping the code shown by the warning in the
transform(RowOpt){...} scope, the slowdown is avoided, as
both the caller and callee will use the optimized layout.

5 Benchmarks

Vector[...]

RowVector

 0  5  10  15  20  25  30  35
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Time to average the temperature in a vector of 5 million measurements

More benchmarks, showing speedups of up to 20x are shown
on the project website: scala-ildl.org

Figure A.3 – Data-Centric Metaprogramming Poster
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187


	Title
	Acknowledgements
	Abstract
	Table of Contents
	List of figures
	List of tables
	Introduction
	Thesis Outline
	The Miniboxing Data Representation (Chapter 2)
	Late Data Layout (Chapter 3)
	Data-Centric Metaprogramming (Chapter 4)
	Scaling Miniboxing To Scala (Chapter 5)

	Execution Pipeline
	High-level Goals
	Implicit Representation Choice
	Compile-time vs Refactoring-time
	Object Oriented Paradigm
	Side Effects
	Managed Heap
	Reflection
	Compile-Time Transformation
	Open World Assumption and Separate Compilation
	Binary Compatibility

	Contributions
	Publications

	Miniboxing
	Introduction
	Specialization in Scala
	Class Specialization
	Method Specialization
	Opportunistic Tree Transformation
	Specialization Compatibility
	Limitations of Specialization

	Miniboxing Encoding
	Miniboxing in Scala

	Miniboxing Transformation
	Inheritance
	Miniboxing Specifics
	Calling the Runtime Support

	Miniboxing Bulk Storage Optimization
	HotSpot Execution
	Benchmark
	Type Byte Switching
	Dispatching

	Miniboxing Load-time Optimization
	Miniboxing Load-time Rewiring
	Efficient Instantiation

	Evaluation
	Implementation
	Benchmarking Infrastructure
	Benchmark Targets
	Benchmark Results
	Interpreter Benchmarks
	Bytecode Size
	Load-time Specialization Overhead
	Extending to Other Virtual Machines
	Evaluation Remarks

	Related Work
	Conclusions
	Appendix: Miniboxing Transformation Corner Cases
	Type Bytes in Traits
	Overriding
	Inner classes
	Binary Compatibility


	Late Data Layout
	Introduction
	Data Representation Transformations
	Naive Transformations
	Eager (Syntax-driven) Transformations
	Peephole Optimization For Eager Transformations
	Type-driven Transformations

	Object-Oriented Data Representation
	Subtyping
	Virtual Method Calls
	Selectivity

	Late Data Layout
	Overview
	The Inject Phase
	The Coerce Phase
	The Commit Phase

	Transformation Properties
	Consistency
	Selectivity
	Coercion Push-down

	Validation and Evaluation
	Scala Compiler Plug-ins
	Case Study 1: Value Classes
	Case Study 2: Miniboxing
	Case Study 3: Staging

	Related Work
	Conclusion

	Data-centric Metaprogramming
	Introduction
	Motivation and Overview
	Motivating Example
	Automating the Transformation
	A Naive Transformation

	Ad hoc Data Representation Transformation
	Transformation Description Objects
	Transformation Scopes and Composability
	Separate Compilation
	Optimizing Method Invocations
	Interaction with Other Language Features

	Implementation
	Benchmarks
	Related Work
	Conclusion
	Appendix: Full Transformation Listing

	Scaling Miniboxing to Scala
	Introduction
	Compilation Schemes for Generics
	Erasure
	Specialization
	Miniboxing
	Class Transformation in Miniboxing
	Interoperating with Erased Generics

	Performance Advisories
	Performance Advisories Overview
	Unification: Intuition
	Unification: Formalization
	Unification: Implementation

	Interoperating with Existing Libraries
	The Interoperation Problem
	Eliminating the Interoperation Overhead
	Tuple Accessors
	Functions
	Arrays

	Benchmarks
	Related Work
	Conclusion
	Appendix: Miniboxing Advisories Example

	Conclusion
	Future Work
	Impact
	Lessons Learned

	Presentation Posters
	Bibliography
	Curriculum Vitae



