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Abstract
Fatigue is the third cause for damage of steel structures, while it ranks as first cause for dam-

age of steel bridges. In fatigue analysis of steel bridges the consideration of welded joints is

demanded. Traditional fatigue analysis of welded joints under variable amplitude loadings is

based on the nominal stress approach, wherein constant amplitude (CA) characteristic S-N

curves are used in combination with modified Miner’s linear damage accumulation rule. CA

characteristic S-N curves, which related the nominal applied stress range, S, to the p−quantile

of fatigue life, N , are obtained from fatigue tests at constant stress amplitudes.

In current standards CA characteristic S-N curves are estimated by fitting a linear regression

to the experimental failure data points; this approach has several limitations: 1) Run-out test

results are neglected; 2) A constant amplitude fatigue limit (CAFL) is somewhat arbitrarily

fixed at a given number of cycles; 3) CA characteristic S-N curves are based on fatigue scatter

at 2 ·106 cycles, resulting in lack of accuracy in high-cycle fatigue (HCF) region (N > 5 ·106).

Furthermore, use of modified Miner’s rule is also affected by limitations: 1) The S-N curve

reduced slope, m2, used for stress range cycles below the CAFL, has not been sufficiently

justified by means of variable amplitude (VA) fatigue test results; 2) Assuming the critical

value of damage sum, Dc , equal to unity could lead to inaccurate consideration of load history

effects. Limitations mentioned above may substantially affect the accuracy of results when

the combination of CA characteristic S-N curves with modified Miner’s rule is used in fatigue

assessment of existing bridges as well as in fatigue design of new ones.

Many authors proposed to overcome the limitations related to the CA S-N curves by using

Maximum Likelihood (ML) method to fit a random CAFL non-linear model to experimental

data points (failures and run-outs). Nevertheless, this approach does not give explicit method

to compute p− quantile S-N curve from ML estimate of model parameters. Furthermore, since

the fitted model is non-linear, the direct comparison with current standards is not straightfor-

ward. Concerning the limitations related to use of modified Miner’s rule, many research works

were carried out to investigate on the damage effect of stress range cycles below the CAFL as

well as on the choice of the critical value of damage sum. However, these works only provide

general trends and do not present a rigorous statistical approach which allows to overcome
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Abstract

shortcomings of modified Miner’s rule.

This thesis provides a rigorous probabilistic approach for estimation of: 1) Characteristic S-N

curves for CA and VA fatigue loadings; and 2) Critical damage sum parameter, used in Miner’s

rule. The new probabilistic approach also includes: 1) A new framework for fatigue reliability

assessment of existing bridges; and 2) A new framework for re-calibration of fatigue design

partial safety factors. The novel contributions of the presented approach consists in: 1) Using

Monte-Carlo Simulations (MCS) method for determining true CA characteristic S-N curve,

after having estimated CA S-N model parameters with ML method; 2) Using a new scheme

which combines MCS and ML methods and uses VA experimental results to estimate the VA

S-N curve reduced slope as well as the critical damage sum random parameter; 3) Giving more

insight into realistic bridge fatigue reliability indexes, by defining a new framework which

computes probability of fatigue failure event as joint probability of CAFL exceeding event and

critical damage accumulation event; and 4) Improving the confidence in fatigue design of new

bridges, by revising Eurocode formats for fatigue design of structures and associated partial

safety factors.

The application to three study cases of ML-MCS approach for estimation of CA S-N curves and

the comparison with current standards, allowed for identifying inaccurate definition of fatigue

strength in current standards, especially in high cycle fatigue (HCF) region. Moreover, the

application to two study cases of ML-MCS approach for estimation of m2 and Dc parameters

and the comparison with current standards, revealed an inadequate definition of damage

accumulation mechanism in application of Miner’s rule using current standards. The applica-

tion of reliability analysis framework to the Venoge bridge study case showed the inaccuracy

of Eurocode-based assessment of fatigue reliability index, during the 100 year-design life of

the bridge. The issue related to the importance of the choice of target reliability index was also

addressed for this study case. The revision of Eurocode formats for fatigue design of structures

for two fatigue sensitive details, explained the inexactness of hypothesis of considering the

same partial resistance factors for all verification formats and showed that Eurocode design

format based on CAFL is highly unsafe.

Key words: fatigue reliability, S-N curves, steel bridges, Monte-Carlo Simulations, Maximum

Likelihood, reliability index, partial safety factors
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Résumé
Pour les structures en acier, la fatigue se trouve être la troisième cause principale d’endomma-

gement ; elle se classifie même comme la première cause d’endommagement des ponts en

acier. Lors de l’analyse à la fatigue des ponts en acier, il est demandé d’effectuer la vérification

des détails soudés. L’approche traditionnelle de l’analyse à la fatigue des assemblages soudés

est celle de la contrainte nominale, laquelle utilise les courbes S-N caractéristiques à ampli-

tude constante en combinaison de la règle de cumul linéaire des dommages selon la loi de

Miner modifiée. Les courbes S-N caractéristiques, qui décrivent la relation entre la différence

de contrainte nominale appliquée, S, et le quantile p de la durée de vie en nombre de cycles,

N , sont obtenues à partir d’essais de fatigue à amplitude constante.

Dans les normes, les courbes S-N sont obtenues en ajustant une régression linéaire sur les

points expérimentaux de rupture ; cette approche est affectée par plusieurs limitations : 1) Les

points de non-rupture sont négligés ; 2) Une limite de fatigue à amplitude constante (CAFL)

est fixée arbitrairement à un certain nombre de cycles ; 3) Les courbes S-N caractéristiques

sont basées sur la dispersion de la durée de vie à 2 · 106 cycles, en résulte un manque de

précision dans la région à grand nombre de cycles. De plus, l’utilisation de la règle de Miner

modifiée est également affectée par les limitations suivantes : 1) L’utilisation de la courbe

S-N avec une pente réduite, m2, pour les cycles de différences de contraintes inferieurs à la

CAFL n’a pas été suffisamment justifiée à l’aide de résultats expérimentaux sous charges à

amplitude variable ; 2) L’hypothèse d’une valeur critique du cumul des dommages, Dc , égale

à 1.0 pourrait amener à une considération inexacte des effets liés à l’histoire des charges. Les

limitations mentionnées ci-dessus peuvent affecter sensiblement la précision des résultats

lorsque la combinaison des courbes S-N caractéristiques avec la règle de Miner modifiée est

utilisée pour l’évaluation à la fatigue des ponts existants ainsi que pour le dimensionnement à

la fatigue des nouveaux ponts.

Différents auteurs ont proposé de surmonter les limitations liées aux courbes S-N à amplitude

constante en utilisant la méthode "Maximum Likelihood" (ML) pour ajuster un modèle non

linéaire avec CAFL aléatoire aux données expérimentales (ruptures et non-ruptures). Néan-

moins, cette approche ne donne pas de méthode explicite pour calculer les quantiles p de
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la courbe S-N à partir des estimations ML des paramètres du modèle. En outre, puisque le

modèle ajusté n’est pas linéaire, la comparaison avec les normes existantes ne s’effectue pas

directement. Concernant les limitations liées à l’utilisation de la règle de Miner modifiée,

de nombreux travaux de recherche ont été effectués pour étudier l’effet des cycles situés

au-dessous de la CAFL sur le processus d’endommagement. Cependant, ces travaux ne four-

nissent que des tendances générales et ne présentent pas une approche statistique rigoureuse

permettant de surmonter les limitations de la loi de Miner modifiée.

Cette thèse propose une approche probabiliste rigoureuse pour l’estimation : 1) Des courbes

S-N caractéristiques pour des charges de fatigue à amplitude constante et variable ; 2) De la

valeur critique du cumul de dommage (règle de Miner). La nouvelle approche probabiliste

comprend également : 1) Une nouvelle méthodologie pour l’estimation de la fiabilité en fa-

tigue des ponts existants ; 2) Une nouvelle méthodologie pour la re-calibration des facteurs de

sécurité partiels en fatigue. Les contributions originales de cette approche sont : 1) Utiliser

des Simulations de Monte-Carlo (MCS) pour déterminer la vraie courbe S-N caractéristique à

amplitude constante après avoir estimé les paramètres du modèle avec la méthode ML ; 2)

Utiliser un nouveau schéma qui combine les méthodes MCS et ML et qui utilise les données

expérimentales à amplitude variable pour estimer la pente réduite de la courbe S-N, m2, et la

valeur critique de cumul de dommage, Dc ; 3) Apporter un éclairage sur les indices de fiabilité

des ponts, en définissant une nouvelle méthodologie qui permet de calculer la probabilité de

rupture par fatigue comme probabilité conjointe de l’événement de dépassement de la CAFL

et de l’événement d’accumulation de dommage critique ; 4) Améliorer la confiance dans le

dimensionnement en fatigue des nouveaux ponts, en révisant les formats de vérification des

normes Eurocodes pour les structures et les facteurs de sécurité partiels associés à la fatigue.

L’application à trois cas d’études de l’approche ML-MCS pour l’estimation des courbes S-N à

amplitude constante et la comparaison avec les normes actuelles a permis d’identifier une

définition inexacte de la résistance en fatigue, en particulier dans la zone à grand nombre de

cycles. En outre, l’application à deux cas d’études de l’approche ML-MCS pour l’estimation

des paramètres m2 et Dc et la comparaison avec les normes actuelles a révélé une définition

insuffisante du mécanisme d’accumulation de dommage dans l’application de la règle de Mi-

ner. L’application de la méthodologie de fiabilité au cas d’étude du pont de la Venoge a montré

l’inexactitude des normes Eurocodes dans l’evaluation de l’indice de fiabilité en fatigue, pour

une durée de vie nominale de 100 ans. La question liée à l’importance du choix de la valeur

cible de l’indice de fiabilité s’est également posée pour ce cas d’étude. La révision des formats

des normes Eurocodes pour deux détails sensibles à la fatigue, a montré que l’hypothèse de

considérer les mêmes facteurs partiels de résistance pour tous les formats de vérification est

inexacte et aussi que le format pour un dimensionnement en fatigue basé sur la CAFL n’est
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pas du tout du côté de la sécurité.

Mots clefs : fiabilité en fatigue, courbes S-N, ponts en acier, Simulations de Monte-Carlo,

Maximum Likelihood, indice de fiabilité, facteurs partiels de sécurité
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Sommario
La fatica é la terza causa di danno delle strutture in acciaio mentre si colloca al primo posto

nella classifica delle cause di danno dei ponti in acciao. L’analisi a fatica dei ponti in acciaio

richiede la verifica delle giunzioni saldate. L’approccio tradizionale di verifica a fatica delle

giunzioni saldate é quello della tensione nominale, che consiste nell’utilizzare le curve carat-

teristiche S-N per carichi ad ampiezza costante insieme alla regola di cumulo lineare del

danno, secondo la regola di Miner modificata. Le curve S-N, che descrivono la relazione tra la

differenza nominale di tensione applicata, S, e il quantile p della vita a fatica in numero di

cicli, N , sono ottenute mediante prove sperimentali a fatica effettuate con carichi ad ampiezza

costante.

Nelle norme attuali le curve caratteristiche S-N sono ottenute mediante regressione lineare

sull’insieme dei punti sperimentali di rottura. Quest’approccio é caratterizzato da diversi

limiti: 1) I punti di non-rottura non sono presi in considerazione; 2) Il limite di fatica ad

ampiezza costante (CAFL) viene fissato arbitrariamente ad un determinato numero di cicli; 3)

Le curve S-N caratteristiche vengono calcolate sulla base della dispersione della vita a fatica

a 2 milioni di cicli, con conseguente difetto di precisione nella zona ad alto numero di cicli.

Inoltre la regola di Miner modificata à caratterizzata dai seguenti limiti: 1) L’utilizzo della curva

S-N con una pendenza ridotta, m2, per cicli con differenza di tensione inferiore alla CAFL, non

é stato sufficientemente giustificato mediante l’uso di risultati sperimentali; 2) L’utilizzo di un

valore critico del danno accumulato uguale a 1.0 potrebbe portare ad una valutazione inesatta

degli effetti legati alla storia dei carichi. I limiti menzionati sopra influenzano fortemente

l’accuratezza dei risultati allorché le curve S-N caratteristiche sono utilizzate insieme alla

regola di Miner per la verifica a fatica di ponti esistenti o per la progettazione a fatica di nuovi

ponti.

Diversi autori hanno proposto di risolvere i problemi legati all’utilizzo delle curve S-N proposte

nelle norme, utilizzando il metodo di Massima Verosimiglianza per effettuare il fitting di un

modello lineare con limite di fatica aleatorio su un insieme completo di punti sperimentali

(che include sia punti di rottura che di non-rottura). Tuttavia quest’approccio non fornisce un

metodo esplicito per calcolare i quantili p della vita a fatica a partire dalle stime di massima
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verosimiglianza dei parametri del modello S-N. Inoltre, poiché il modello S-N di regressione

non é lineare, non é possibile effettuare un confronto diretto con le curve S-N delle norme

attuali. Riguardo le limitazioni legate all’utilizzo della regola di Miner modificata, esistono

numerosi studi di ricerca focalizzati sull’effetto dei cicli con differenza di tensione inferiore

al limite di fatica sul cumulo di danno. Tuttavia questi studi danno solo delle indicazioni

qualitative e non forniscono un approccio statistico rigoroso che permetta di superare le

limitazioni legate all’utilizzo della regola di Miner modificata.

Questa tesi propone un nuovo metodo probabilistico che permette di stimare: 1) Le curve

caratteristiche S-N per carichi di fatica ad ampiezza costante e variabile; 2) Il valore critico del

danno accumulato da utilizzare nella regola di Miner. Il nuovo metodo comprende anche: 1)

Una nuova metodologia per la verifica a fatica dei ponti esistenti; 2) Un nuova metodologia

per la ricalibrazione dei fattori parziali di sicurezza a fatica. Il contributo originale di questa

tesi consiste nei seguenti punti: 1) Utilizzo del metodo Monte Carlo per la stima delle curve

caratteristiche S-N dopo aver determinato i parametri del modello S-N mediante il metodo di

Massima Verosimiglianza; 2) Utilizzo di un nuovo schema che combina il metodo Monte Carlo

e il metodo di Massima Verosimiglianza e che utilizza i risultati sperimentali delle prove a

fatica effettuate con carichi ad ampiezza variabile, per stimare la pendenza ridotta della curva

S-N e il valore critico del danno accumulato; 3) Definizione di una nuova metodologia che

permette di calcolare la probabilita di rottura a fatica come probabilità congiunta di eccedenza

del limite di fatica e del cumulo critico di danno, migliorando l’accuratezza della stima degli

indici di affidabilità dei ponti; 4) Miglioramento dell’affidabilità nella progettazione a fatica

dei nuovi ponti mediante la revisione delle norme europee e dei fattori parziali di sicurezza

associati alla fatica.

L’applicazione del nuovo metodo per la stima delle curve caratteristiche S-N a tre casi di studio

e il confronto con le norme attuali ha svelato una definizione inaccurata della resistenza

a fatica, in particolare nella zona ad alto numero di cicli. Inoltre l’applicazione del nuovo

metodo per la stima dei parametri della regola di Miner a due casi di studio ed il confronto con

le norme attuali ha rivelato una definizione insufficiente del meccanismo di cumulo del danno

nell’applicazione della regola di Miner. L’applicazione della metodologia per la valutazione dei

ponti esistenti al caso del ponte sulla Venoge ha mostrato l’inesattezza delle norme europee

nel calcolo dell’indice di affidabilità a fatica, nel corso della durata di vita nominale di 100

anni. Inoltre la questione legata alla scelta del valore di target dell’indice di affidabilità é stata

analizzata per lo stesso caso di studio. La revisione dei format delle norme europee per la

progettazione a fatica, per due dettagli tipici, ha mostrato che l’ipotesi di considerare gli stessi

fattori parziali di sicurezza per tutti i format di verifica é inesatta e che nelle norme europee

attuali il format di progettazione a fatica basato sul limite di fatica risulta fortemente rischioso.
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Parole chiave: affidabilità strutturale a fatica, curve S-N, ponti in acciaio, metodo Monte Carlo,

metodo di Massima Verosimiglianza, indice di affidabilità, fattori parziali di sicurezza
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1 Introduction

1.1 Background: fatigue of welded joints

Fatigue is defined as a mechanism of failure of a structural member due to the formation and

growth of cracks under the effect of repeated stresses [33].

First studies on fatigue date back to the second half of 19th century, when Wöhler published

the results of his fatigue tests on railway axles [80]. Studies on welded joints started only after

the second World War, when welding started to become a major production process.

Fatigue cracks appear near the regions where the local stress is much higher than the nominal

stress; these regions are called stress concentrators. When the stress concentrators lead to

fatigue cracking they are called crack initiators.

Fatigue can be classified according to: 1) Type of crack initiators: holes, notches, material struc-

ture discontinuities, welds; 2) Form in which fatigue occurs: mechanical, thermo-mechanical,

corrosion, creep, fretting, rolling contact [72]; and 3) Duration: low-cycle, high-cycle. Fatigue

verification of road steel bridges under the long term effect of traffic asks for consideration of

high-cycle mechanical fatigue of welded joints.

The prevention of fatigue failure requires designing fatigue sensitive structure with a sufficient

fatigue strength. However, fatigue strength is not a constant material property, like limit of

elasticity for example. For an assigned detail geometry the fatigue strength can be calculated

by using linear elastic fracture mechanics (LEFM) [79]. Use of LEFM includes several assump-

tions on the cracking process, which could largely affect the final results.

For this reason, the fatigue verification of structures subjected to variable amplitude (VA)

loadings is generally performed by using constant amplitude (CA) S-N curves (which relate the

nominal applied stress range, S, to the number of cycles to failure, N ), in combination with a

cycle-counting algorithm and a damage accumulation rule. The fatigue verification problems

can be simplified, by keeping all the stress range cycles below the constant amplitude fatigue
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Chapter 1. Introduction

limit (CAFL): in this case only the combination of CA S-N curves with a cycle-counting algo-

rithm is needed. However, this type of fatigue verification is over-conservative and may lead to

un-necessary heavy structures (in case of fatigue design of new structures), or to un-necessary

and expensive inspections (in case of fatigue assessment of existing structures).

1.1.1 CA S-N curves

CA S-N curves are estimated by means of CA experimental fatigue tests. Due to the randomness

of fatigue life, statistical evaluation of experimental results is needed. In order to estimate the

median S-N curve the experimental failure points are generally fitted with following linear

regression:

log(N ) =C +m · log(S) , for S > CAFL (1.1)

where C and m are material constantsi.

Characteristic S-N curve is then estimated by translating the median S-N curve proportionally

to the fatigue life scatter at 2 ·106 cycles.

LEFM can be used to show the validity of Equation 1.1.

The fatigue failure process can be divided in three phases: 1) Crack initiation; 2) Stable crack

propagation; and 3) Unstable crack propagation, which is very limited in time. The stress field

near the crack tip can be expressed by using the stress intensity factor:

K = Mk ·Sn ·�πa (1.2)

where Sn is the nominal stress, Mk is the geometrical correction factor, and a is the crack size.

In 1963 Paris and Erdogan [57] proposed to relate the stress intensity range to the crack

propagation rate according to the idea that fatigue crack propagation phenomenon must

depend on the stress field around the crack tip:

da

dN
=C1 (ΔK )−m (1.3)

where C1 is a material constants and ΔK is the difference between the stress intensity factor at

the upper and lower limit stresses of the loading cycle. In welded joints, the crack initiation

phase is almost non existent (fatigue cracks usually initiate at weld toe, where sharp defects can

be regarded as small cracks) and the entire fatigue life can be taken by the stable propagation

phase. Under this assumption, the Paris Law (Equation 1.3) can be applied to all fatigue life of

iContrary to common practice, in this thesis negative m is used, in order to have correct definition of S-N curve
in analytic geometry
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1.1. Background: fatigue of welded joints

welded joints; thus inserting Equation 1.2 in Equation 1.3, gives:∫a2

a1

da(
Mk

�
(πa)

)m =C1 ·S−m ·N (1.4)

where S is the nominal stress range.

Equation 1.4 confirms that, for a given type of joint and constant values of a1 and a2, the

relationship between S and N is linear in the log(S-N) plane:

S−m ·N = constant (1.5)

1.1.2 Cycle counting methods

Cycle counting methods allow breaking down a complex load history in simple load cycles,

which can be easily applied to CA S-N curves for fatigue evaluation. A realistic counting algo-

rithm should take in account all the stress strain closed hysteresis loops, which are contained

in the loading history.

In 1974 Endo et al. [22] proposed the rain-flow method. Its name originates from the fact that

the stress history is expressed by using rain-flow on a pagoda roof while the stress ranges are

counted by the ranges of the rain-flow. This method allows to count all the closed hysteresis

loops and it is by far the most largely used cycle counting algorithm. Various other methods

have been also proposed (peak method [1], range method [1], range pair method [65]) but

they are affected by the limitation of giving inaccurate evaluation of closed hysteresis loops.

1.1.3 Damage accumulation

Damage accumulation rules are used in combination with a fatigue load spectrum and a CA

S-N curve, in order to assess fatigue life of a critical detail. The most widely used damage

accumulation rule is the Miner’s linear rule [53], which predicts the number of cycles to fatigue

failure by assuming that the damage caused by one stress range cycle of VA loading is the same

as the one caused by the same stress range in CA loading:

ntot∑
i=1

ni

Ni
= 1 (1.6)

where ni is the number of cycles corresponding to the stress range Si and Ni is the number of

cycles to failure corresponding to the stress range Si , according to the CA S-N curve.

If the CA S-N curve has been estimated for a fully reversed CA loading, then the mean VA stress

has to be corrected; the modified Goodman law [28] is conventionally used for this purpose.
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N

S

m2 = 2m1 + 1

m2 = m1

m2 = βm1

CAFL

CA S−N curve
Extrapolated Miner
Haibach
Corten−Dolan

Figure 1.1: VA S-N curves

The main shortcomings of the Miner’s rule are: 1) The fatigue damage given by cycles below

the CAFL is not considered; 2) The effects related to VA load history on fatigue damage are not

considered as well; these effects are all related to the crack closure mechanism [20].

Many modifications of Miner’s rule have been proposed in order to overcome its first short-

coming [43] (see Figure 1.1). The most largely used rule is the Haibach’s rule [36], which

considers a S-N curve with a reduced slope, m2 = 2m1 +1 below the CAFL. This rule gives a

good estimation of fatigue life when the percentage of stress range cycles below CAFL is large.

The second shortcoming of Miner’s rule is still an unclear point. In most cases the Miner’s rule

(Equation 1.6) is not valid because load sequence effects cause significant deviation from the

CA crack propagation rate, resulting in a value of the critical damage sum at failure, Dc , which

is not equal to unity. Many authors have analysed the influence of load sequence on Miner’s

rule in welded joints, but without providing a rigorous method for its modification. This topic

is discussed more in details in the Introduction of Chapter 3.
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1.2 Problem statement

Reliable fatigue verification of road steel bridges and in particular of welded joints, requires re-

alistic assessment of fatigue resistance S-N curves as well as realistic consideration of damage

accumulation.

In current standards [24], [40], [2], characteristic CA S-N curves are determined by fitting a lin-

ear regression to experimental failure points, disregarding run-outs and somewhat arbitrarily

fixing the CAFL at a given number of cycles. Moreover, the fatigue life scatter in the high cycle

fatigue (HCF) region (N > 5 ·106) is not modeled properly. CA characteristic S-N curves are

conventionally used in combination with modified Miner’s rule, which results in un-realistic

consideration of load history effects.

Limitations mentioned above may heavily affect the accuracy of results when the combination

of characteristic CA S-N curves with modified Miner’s rule (Miner’s rule with Haibach’s modifi-

cation) is used in fatigue design of new bridges or in fatigue assessment of existing bridges.

Linear regression analysis and modified Miner’s rule do not provide accurate definition of the

stochastic VA S-N model (which includes probability distributions of S-N curve parameters

and of critical damage sum parameters). This limitation can lead to inaccurate computation

of reliability indexes when fatigue reliability analysis of existing bridges is carried out for: 1)

Assessment of the remaining fatigue life; 2) Planning of inspections; and 3) Planning of repair

interventions.

In structural codes the fatigue design is carried out by using design equations which compare

resistance and loading terms. In design equations the uncertainty on loading and resistance

terms is considered in a semi-probabilistic model, further simplified, by introducing partial

safety factors. Limitations related to VA S-N model may lead to inaccurate calibration of

fatigue partial safety factors, resulting in inaccurate design of new bridges.

Based on the discussion above it is clear that a rigorous statistical approach is needed for

estimation of stochastic VA S-N models from experimental CA and VA fatigue test results.

Advances in VA S-N model estimation will give more insight into realistic fatigue reliability

indexes and into reliable calibration of partial safety factors for fatigue design.
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1.3 Objectives

The main aim of this study is to provide a novel probabilistic approach which allows to re-

define both S-N curves and critical damage sum parameter, by using experimental CA and VA

fatigue test results.

The objectives are as follows:

• To provide a new probabilistic approach for estimation of CA S-N curve random param-

eters and for assessment of true p-quantiles of CA S-N curves;

• To provide a new probabilistic approach for estimation of VA S-N stochastic model

parameters;

• To provide a new framework for fatigue reliability assessment of existing bridges, in

which the probability of having fatigue failure is computed as joint probability of having

critical damage accumulation and CAFL exceedance;

• To provide a new framework for calibration of partial safety factors for fatigue design.

1.4 Structure of the thesis

The structure of this thesis is shown in Figure 1.2, which also illustrates the relationships

between topics. The state of art of each topic is presented at beginning of the related Chapter.
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1. Introduction
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Figure 1.2: Structure of the thesis
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2 S-N curves for constant amplitude

loadings

2.1 Introduction

Traditional fatigue analysis of welded components under VA loadings is based on the nominal

stress approach, where the verification can be based on CAFL or on damage accumulation.

Within the two verifications above, the choice of CA fatigue strength curve is of primary

importance.

Fatigue strength of welded components is expressed in terms of characteristic S-N curves,

which give the fatigue life, N , at each stress range, S, for a certain survival probability, Ps

(typically 95%), on the basis of a certain confidence level on the S-N curve parameters (typically

75%). S-N curves are based on experimental tests; however, due to the inherent randomness

in the fatigue life, a statistical treatment of experimental data-sets is required.

Median S-N curvei (Ps = 50%) in current Eurocode standards [29] is derived by fitting a linear

regression which has a slope of m1 =−3 to the failure data, using a least squares (LS) analysis

procedure. Characteristic S-N curve is then derived by translating the median S-N curve on

the lower 5% prediction bound, at 2 million cycles; the CAFL is arbitrarily assumed at 5 million

cyclesii. The linear regression used disregards run-out data and arbitrarily fixes the CAFL at 5

million cycles, which is unrealistic and neglects important information from experimental

observations. Further, to deduce the characteristic S-N curve, one shifts the median curve

and thus assumes the fatigue data-set to be homoscedastic. The limitation of LS analysis

procedure, connected to run-outs omission in estimation of S-N curves, may be overcome by

using Maximum Likelihood (ML) method.

iMedian is preferred here instead of Mean, as different probability distributions than Normal will be used to
represent fatigue life randomness

iiThis value has been originally taken as a compromise between 2 ·106, proven to be too low in some studies,
and 107, seen as too conservative even if shown in some studies
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Chapter 2. S-N curves for constant amplitude loadings

In [70], Spindel and Haibach used ML method to estimate S-N curves for a generic fatigue

data-set containing both failures and run-outs. CAFL was not included in the model and it

was assumed at 2 million cycles.

In [55], Nelson used ML method to include run-outs in S-N curve estimation of a nickel

base super-alloy; Nelson modeled the mean and the standard deviation of the fatigue life as

functions of the stress range but the CAFL was not included in the model.

In [56] Nelson proposed several models which included the CAFL.

In [58] Pascual et al. proposed a 5-parameter random fatigue limit (RFL) model that fitted a

non-linear S-N curve with a random CAFL to a complete fatigue data-set, using ML method.

Median S-N curve and standard deviation parameters expressed the randomness in the fatigue

life, while the randomness in the CAFL was expressed by the location and the scale parameters

of a generic location-scale probability family. Median and characteristic S-N curves with

profile likelihood ratio (PLR)-based confidence bounds were generated using a ML approach.

In [45], Lassen et al. fitted RFL model from Pascual to two experimental data-sets of a plate

with fillet welded attachments. Lassen et al. observed that: 1) The RFL method-based 90%

confidence interval of the median of CAFL distribution did not include the Eurocode CAFL

(median value); 2) The RFL method-based 90% confidence interval of the median of CAFL

included the BS5400 CAFL (median value) and the RFL model-based 0.025 quantile S-N curve

was in good agreement with BS5400 F-class S-N curve for stress ranges higher than 150MPa;

3) At stress ranges lower than 150 MPa the non linear RFL model-based 0.025 quantile S-N

curve predicted fatigue lives that were up to 10 times longer than the predictions made by the

F-class S-N curve. Confidence level of 0.025 quantile S-N curve was not indicated.

In Part 3 of the JCSS PMC [41], a ML-based approach is recommended for the estimation of

SN-curves parameters: a linear S-N model is fitted to both failure and run-out experimental

points and uncertainty related to the parameter fit is estimated by using the Hessian of the

log-Likelihood function. It is not specified if the CAFL has to be considered as a random

variable whose parameters are included in the model parameter vector or if it has to be

considered as a deterministic value which is arbitrarily assumed at a fixed number of cycles.

Recommended approach also does not specify how to relate the uncertainty on the parameter

fit to the uncertainty on the fatigue life quantiles.

The existence of the CAFL is still an object of dispute; Sonsino [68] proposes a CA bi-linear S-N

curve where stress range cycles below the knee point are accounted with a slope m′
1 =−22.

The knee point is arbitrarily fixed at N = 107. The slope m′
1 =−22 is also arbitrarily fixed in

order to have 10% constant stress range decrease with respect to the log(N ) axis for each order

of magnitude. The lack of the experimental results in the HCF region and the related high

scatter of fatigue life in this region does not allow to provide experimental validation to the CA

bi-linear S-N model. For this reason the choice of a CA S-N model including random CAFL
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seems to be the most realistic choice allowing for correct interpretation of experimental results

in HCF region.

The RFL model proposed by Pascual, allows to overcome limitations of current Eurocode

approach but it does not give explicit method to derive the true p− quantile S-N curve from ML

estimate of CA S-N stochastic model parameters. Furthermore, the RFL model-based median

S-N curve is not linear and direct comparison with current standards is not straightforward.

In this Chapter a novel approach, based on ML method and on Monte-Carlo Simulations

(MCS) method, is proposed for estimation of median and characteristic S-N curves under

CA fatigue loadings. A linear S-N model is fitted to a complete fatigue experimental data-set,

using ML method. CAFL is modeled as a random variable whose parameters are included in

the CA S-N model parameter vector. The covariance matrix of the model parameter vector is

estimated by inverting the observed Fisher information matrix. The true 0.05 quantile S-N

curve (corresponding to a probability of failure, P f = 5%) is estimated by using MCS method.

The novel contribution of this approach is summarized in following points:

• Linear S-N model with random CAFL is fitted directly to experimental data;

• p-quantiles of S-N curve are estimated using MCS method. MCS-based p-quantiles

correspond to the true (100 ·p%) probability of failure and not to the nominal (100 ·p%)

probability of failure with a α-confidence level (as for the case of RFL model);

• Linearization of ML-MCS-based characteristic S-N curves allows to make direct com-

parison with current standards.

The ML-MCS approach which is presented in this work was implemented in ����������	


and �����
��
�� modules of Matlab [49] Toolbox TB1 (see Appendix B).

The Chapter is organized as follows:

• in Section 2.2 the statistical analysis procedure for estimation of characteristic S-N

curves, based on the Eurocode 3 background documentation, is recalled;

• in Section 2.3 the ML-MCS approach for estimation of characteristic S-N curves is

presented;

• in Section 2.4 the application of the ML-MCS approach on three study cases is presented;

• in Section 2.5 results of analysis of considered study cases are presented;

• in Section 2.6 results are discussed.
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Chapter 2. S-N curves for constant amplitude loadings

2.2 Eurocode statistical approach for estimation of S-N curves

In this Section an overview is given of the statistical estimation of characteristic S-N curves,

according to Eurocode 3 commentary document [29].

The median S-N curve is estimated by carrying out a LS fit analysis on the experimental data-

set (xi , yi )|i=1,...,n f ai l , where xi is the base 10 logarithm of the applied nominal stress range,

yi is the base 10 logarithm of the observed number of cycles to failure, and n f ai l is the total

number of failed specimens (see Figure 2.1 (a)). Observed results having a fatigue life at failure

higher than 5 ·106 cycles are considered as run-outs and hence they are not included in the

analysis.

The equation of the median S-N curve is the following:

log(N ) = m0LS +m1LS · log(S) (2.1)

where m0LS and m1LS are the LS estimators of m0 and m1.

The LS estimator of the log-strength at 2 ·106 cycles is indicated as xcLS (see Figure 2.1 (a)).

By putting N = 2 ·106 in the Equation 2.1, it follows:

log(2 ·106) = m0LS +m1LS · xcLS (2.2)

The 95% hyperbolic lower prediction boundiii of Y
(
xcLS

)
is defined as follows (see Figure 2.1

(b)):

Yc = log(2 ·106)+ t.05,n f ai l−2 ·S
√√√√1+ 1

n f ai l
+
(
xcLS − x̄

)2

Sxx
(2.3)

where:

• t.05,n f ai l−2 is the inverse of Student’s t cdf for probability equal to 5% and (n f ai l − 2)

degrees of freedom;

• S is the sample standard deviation;

• x̄ =
(∑n f ai l

i=1 xi

)
/n f ai l ;

• Sxx =
(∑n f ai l

i=1 (xi − x̄)2
)
.

iiisee Section A.4 in Appendix A
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By inserting Equation 2.2 in Equation 2.3, it follows:

Yc = m0LS +m1LS · xcLS + t.05,n f ai l−2 ·S
√√√√1+ 1

n f ai l
+
(
xcLS − x̄

)2

Sxx
(2.4)

The characteristic S-N curve is determined by translating the median S-N curve in the point

(xc ,Yc ), as shown in Figure 2.1 (c).

The equation of the characteristic S-N curve is the following:

log(N ) = Yc −m1LS · xcLS +m1LS · log(S), N ≤ 5 ·106 (2.5)

The CAFL is assumed to start at 5 ·106 cycles (see Figure 2.1 (d)).

By inserting the Equation 2.4 in Equation 2.5, the characteristic S-N curve may be written as:

log(N ) = m0LS + t.05,n f ai l−2 ·S
√√√√1+ 1

n f ai l
+
(
xcLS − x̄

)2

Sxx
+m1LS · log(S), N ≤ 5 ·106 (2.6)

The characteristic value of fatigue resistance at 2 ·106 cycles can be determined by putting

N = 2 ·106 in Equation 2.6:

xc =
log(2 ·106)−m0LS − t.05,n f ai l−2 ·S

√√√√1+ 1

n f ai l
+
(
xcLS − x̄

)2

Sxx

m1LS

(2.7)

In the Eurocode 3 commentary document [29], the characteristic value of fatigue resistance at

2 ·106 cycles, xc , is erroneously indicated as 0.95 lower confidence bound: in fact it has to be

considered as 0.95 lower prediction bound due to the term 1 in the square root of Equation 2.7.

For comparison, in IIW recommendations [40] the characteristic S-N curve is obtained by

translating the median S-N curve at the 0.05 quantile of the Y normal distribution, by using

the lower bound of the 0.75 two-sided confidence interval of E (Y ) and the upper bound of the

0.75 two-sided confidence interval of standard deviation. The median S-N curve is obtained

by carrying out a LS analysis of experimental failure points. The CAFL is assumed to start at

107 cycles. The difference between the confidence interval concept and the prediction interval

concept is discussed more widely in Appendix A.
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Figure 2.1: Eurocode statistical approach for estimation of S-N curves

2.3 New probabilistic approach

2.3.1 CA S-N stochastic model

The CA S-N stochastic model describes the relationship between the nominal applied stress

range, S, and the number of cycles to failure, N , under CA loadings (see Figure 2.2 ):

Y = m0 +m1X

H(X −V )
+ε(0,exp(σ)) (2.8)

where:

• Y is the natural logarithmiv of the number of cycles, N ;

• X is the natural logarithm of the nominal applied stress range, S;

ivNatural logarithms are preferred since they are mathematically less heavy to manipulate
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N

S
N (m0 +m1 · (ln(S)), exp(σ))

N (μV , exp(σV ))

Figure 2.2: Median CA S-N curve with model parameters (case of V =N )

• m0 is the intercept of the S-N curve in the log(S-N) plane;

• m1 is the slope of the S-N curve;

• H(·) is the unit step function;

• V is the natural logarithm of the CAFL;

• ε is the error term, which is assumed to be normally distributed with mean equal to 0

and standard deviation equal to exp(σ).

Y |V is a random variable following a Normal distribution, with location and scale parameters

which are respectively:

μY |V = m0 +m1X

H(X −V )
(2.9)

σY |V = exp(σ) (2.10)

V is a random variable following a Normal or an Extreme Value (EV) distribution with location

parameter equal to μV and scale parameter equal to exp(σV ). If V has a Normal distribution
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with parameters μV and exp(σV ), then the CAFL has a log-Normal distribution with param-

eters μV and exp(σV ); instead if V has an EV distribution with parameters μV and exp(σV ),

then the CAFL has a Weibull distribution with parameters a = exp(μV ) and b = 1/exp(σV ).

The probability density function (pdf) of V is given by:

fV (v,μV ,σV ) = 1

exp(σV )
φV

(
v −μV

exp(σV )

)
(2.11)

where φV (·) is either the standardized Normal pdf or the standardized EV pdf. Conditioned on

a fixed value of V ≤ x, Y |V has a conditional pdf given by:

fY |V (m0,m1,σ; y, x, v) = 1

exp(σ)
φY |V

⎛⎜⎜⎝ y −
[

m0 +m1x

H(x − v)

]
exp(σ)

⎞⎟⎟⎠ (2.12)

where φY |V is either the standardized normal pdf:

φ(z) =
exp

(
−1

2
z2
)

�
2π

(2.13)

or the standardized EV pdf:

φ(z) = exp(z) ·exp(−exp(z)) (2.14)

The marginal pdf of Y is given by:

fY (θ; y, x) =
x∫

−∞

1

exp(σ+σV )
φY |V

⎛⎜⎜⎝ y −
[

m0 +m1x

H(x − v)

]
exp(σ)

⎞⎟⎟⎠φV

(
v −μV

exp(σV )

)
dv (2.15)

where θ is the model parameter vector. fY expresses the probability to have a failure at Y = y ,

for an applied log-stress range equal to exp(x).

Conditioned on a fixed value of V ≤ x, Y |V has a conditional cdf given by:

FY |V (m0,m1,σ; y, x, v) =ΦY |V

⎛⎜⎜⎝ y −
[

m0 +m1x

H(x − v)

]
exp(σ)

⎞⎟⎟⎠ (2.16)

where ΦY |V is either the standardized normal cdf or the standardized EV cdf.
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The marginal cdf of Y is given by

FY (θ; y, x) =
x∫

−∞

1

exp(σV )
ΦY |V

⎛⎜⎜⎝ y −
[

m0 +m1x

H(x − v)

]
exp(σ)

⎞⎟⎟⎠φV

(
v −μV

exp(σV )

)
dv (2.17)

and expresses the probability to have a failure for Y ≤ y , for an applied log-stress range equal

to exp(x). 1−FY expresses the probability to have a failure for Y > y and then to have a run-out

at Y = y . Since there are no closed forms of the marginal pdf and of the marginal cdf of Y , they

have to be evaluated numerically.

2.3.2 ML estimation of model parameters

The sample Likelihood for the CA S-N model is the resulting product of the marginal pdfs at

failure data points and marginal cdfs at run-out data points. Considering the experimental

data-set (xi , yi )|i=1,...,ntot , the sample Likelihood is defined as follows:

L(θ) =
ntot∏
i=1

(
fY
(
θ; yi , xi

))δi ·(1−FY
(
θ; yi , xi

))1−δi for δi =
⎧⎨⎩0 if yi is a run-out

1 if yi is a failure
(2.18)

The sample Likelihood, L(θ), expresses the probability of observing
(
y1, . . . , yntot

)
, at log-stress

ranges
(
exp(x1), . . . ,exp(xntot )

)
for a given model parameter vector, θ. The ML estimate θ̂ of θ

is the model parameter vector which maximizes the sample Likelihood, L(θ).

Generally it is easier to work with the negative sample log-Likelihood:

nLL(θ) =−
n f∑

i=1
ln
(

fY
(
θ; yi , xi

))− nr∑
i=1

ln
(
1−FY

(
θ; yi , xi

))
with

⎧⎨⎩n f : nb. of failures

nr : nb. of run-outs
(2.19)

Then the ML estimate θ̂ of θ is the model parameter vector which minimizes the negative

sample log-Likelihood, nLL(θ).

2.3.3 MCS estimation of p-quantile S-N curve

Under some regularity conditions, ML estimators have asymptotic normality property [52]: as

the sample size increases, the distribution of ML estimators tends to the Normal distribution

with mean equal to the true parameter vector being estimated and covariance matrix equal to

the inverse of the observed Fisher Information matrix, I (θ̂).

The Fisher information matrix, I (θ), is the symmetrical matrix which contains following
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entries:

I (θ) =− ∂2

∂θi∂θ j
L(θ) (2.20)

The observed Fisher information matrixv, I (θ̂), is the Fisher information matrix evaluated at

the ML estimate, θ̂.

The estimator of the asymptotic covariance matrix is then:

ρ = Cov
(
θ
)= [I (θ̂)

]−1
(2.21)

Hence under the hypothesis of asymptotic normality of ML estimators, the model parameter

vector, θ, is multivariate Normal with mean equal to the ML estimate, θ̂, and covariance matrix

equal to the inverse of the observed Fisher information matrix (Equation 2.21).

In this work the following MCS scheme was designed in order to compute the p-quantile,

yp (x̃), of the fatigue log-life, at the log-stress range, exp(x̃):

1. The p-value is chosen, with P t
f = p.

2. The parameter ηsam (sample size, typically 1 ·105) is chosen.

3. The sample θi |i=1...ηsam is generated from the multivariate normal distribution N

(
θ̂,ρ

)
;

then, y
(
θi , x̃

) |i=1...ηsam , v
(
θi

) |i=1...ηsam are sampled by using the sampled θi |i=1...ηsam .

The epistemic uncertainty of S-N model parameters is taken into account in the θi |i=1...ηsam

sampling, while the aleatory uncertainty of the CAFL and the aleatory uncertainty of the

fatigue life are taken into account in the y(θi , x̃)|i=1...ηsam , v
(
θi

) |i=1...ηsam sampling.

4. For each element of the sample, the probability P fi

(
yp (x̃)

)
is computed:

P fi

(
yp (x̃)

)=
⎧⎨⎩0 if y

(
θi , x̃

)≥ yp (x̃) or v
(
θi

)≥ x̃

1 if y
(
θi , x̃

)< yp (x̃) and v
(
θi

)< x̃

5. Objective function, O
(
yp (x̃)

)
, is built:

O
(
yp (x̃)

)= [(∑ηsam

i=1 P fi

(
yp (x̃)

))
ηsam

−P t
f

]2

vThe observed Fisher information matrix is computed in ����������	
 module of Matlab Toolbox TB1 by
using the built-in function ������
�
���, where 
 is the scalar likelihood function and � is the ML estimate of
model parameter vector
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6. p-quantile of the fatigue log-life, at stress range exp(x̃),is computed by minimizing the

objective function, O
(
yp (x̃)

)
:

ŷp (x̃) = argmin
yp (x̃)

(
O (yp (x̃))

)
The 0.05 quantile S-N curve, obtained with the scheme above, represents ML-based character-

istic CA S-N curve. Since ML-based characteristic S-N curve is non-linear (see Figure 2.3), a

linearization scheme is proposed here for direct comparison with characteristic S-N curves

from standards:

1. A straight line with slope equal to m̂1 (ML estimate of m1 parameter) and passing

through the true 0.05 quantile of the fatigue life at the maximum tested stress range, is

drawn;

2. The line above is intersected with the horizontal line representing the true 0.05 quantile

of the CAFL distribution.

The ML-MCS-based linearized characteristic S-N curve is shown in Figure 2.3.

N

S

ln(N) = a.05 +m1 · ln(S)

ln(N) = m0 +m1 · ln(S)

exp(v.05)

exp(μV )

Median curve
True 0.05 quantile curve
Linearized 0.05 quantile curve

Figure 2.3: ML-MCS-based median, 0.05 quantile and linearized 0.05 quantile S-N curves
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2.3.4 Mean stress effect

In the presented ML-MCS approach the effect of mean stress on fatigue strength is not explic-

itly taken into account by S-N model parameters (see Equation 2.8). The motivation for this

choice is given below.

In welded joints, tensile residual stresses are introduced during the cooling process after the

welding; these tensile stresses increase the mean stress and they can shorten the associated

fatigue life [46]. Under the fatigue loading, a big part of residual stresses quickly relaxes

(usually at first application of the maximum stress) [11, 64, 42], although the remaining part

is still significant until the end of fatigue life [11, 50]. CA fatigue tests on longitudinal and

transverse attachments from Maddox [47], Gurney [34, 35], Sonsino et al. [69], Rörup et al.

[63, 62] and Polezhayeva [59] have shown that in as-welded specimens, the compressive part

of stress range cycles with stress ratio −1 ≤ R ≤ 0 does not have significant beneficial effect on

associated fatigue life, due to the unrelaxed tensile residual stresses. These results supported

the choice of not explicitly including the mean stress effect into the S-N stochastic model;

minor additional scatter in fatigue life, caused by the above discussed means stress effect, is

taken into account by the model error term, ε(0,exp(σ)).

For R →−∞ (fully compressive cycles) the beneficial effect of the compressive part of stress

range cycles is significant [47, 63, 62, 59] and should be taken into account in the formulation

of the S-N model; this case was not considered in this study.

2.4 Study cases

The CA S-N stochastic model was fitted to two different fatigue data-sets:

1. From fatigue testing of end-welded cover plate beams, under CA loading (see Section

2.4.1);

2. From fatigue testing of welded in-plane gussets, under CA loading (see Section 2.4.2).

These data-sets are reported, with some differences/errors, in the Commentary to Eurocode 3

[29].
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2.4. Study cases

2.4.1 Cover plate

CA experimental data-set for cover plate detail is made of 26 data points from testing of end-

welded cover plate beams at CA stress ranges between 27.6 and 55.2MPa [27] (see Table 2.1).

The thickness of the beam flange, t f , is 9.78mm, while the thickness of the cover-plate, tc

ranges between 13.1mm and 14.3mm (see Figure 2.4); the detail is classified as FAT50 (with

CAFL=37MPa) according to EN1993-1-9 [29] and IIW recommendations [40] (with CAFL=29

MPa), and as FAT56 (with CAFL=31MPa) according to AASHTO bridge design specifications

[2].

Cover plate with size effect correction

Since the detail considered for CA experimental data-set (FAT50 according to EN1993-1-9) has

not the same classification as the detail considered for VA experimental data-set (see Section

3.3, t f = tc = 25.4mm, FAT45 according to EN1993-1-9), the observed stress ranges, Si , are

reduced by a factor (45/50=0.9) for size effect to be consistent with the VA experimental data-

set detail classification. It is noted that the detail is classified as FAT50 (with CAFL=29MPa)

according to IIW recommendations [40], where the influence of tc and t f is not taken into

account, and as FAT40 (with CAFL=18MPa) according to AASHTO bridge design specifications

[2], where the influence of tc and t f is stronger than in Eurocode standards.

2.4.2 In-plane gusset

CA experimental data-set for in-plane gusset (see Table 2.2 and Figure 2.5) is made of:

• 6 data points from testing of in-plane welded gussets with attachment length, L = 100

mm at CA stress ranges between 80 and 160MPa [39];

• 1 data points from testing of in-plane welded gussets with attachment length, L = 150

mm at CA stress range equal to 50MPa (ICOM tests, [8]);

• 10 data points from testing of in-plane welded gussets with attachment length, L = 100

mm at CA stress ranges between 55 and 140MPa [44];

• 12 data points from testing of in-plane welded gussets with attachment length, L = 100

mm at CA stress ranges between 33 and 100MPa [6].

For L≤150mm, the detail is classified as FAT40 (with CAFL=31MPa) according to EN1993-1-9

[29], as FAT50 (with CAFL=29MPa) according to IIW recommendations [40], and as FAT56

(with CAFL=31MPa) according to AASHTO bridge design specifications [2].
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Figure 2.4: Cover plate detail

w

L

t

x

y

z

y

x

Figure 2.5: In-plane gusset detail
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2.4. Study cases

Test series S [MPa] N δi failure location

Fisher (1977)

27.6 100000000 0 -
27.6 100000000 0 -
27.6 100000000 0 -
27.6 100000000 0 -
31.7 100000000 0 -
31.7 100000000 0 -
31.7 100000000 0 -
31.7 100000000 0 -
32.4 34930000 1 weld toe
32.4 37714000 1 weld toe
34.5 16613000 1 weld toe
34.5 32506000 1 weld toe
34.5 8451000 1 weld toe
34.5 47293000 1 weld toe
34.5 89314000 0 -
34.5 89314000 0 -
41.4 11418000 1 weld toe
41.4 12158000 1 weld toe
41.4 4327000 1 weld toe
41.4 12158000 1 weld toe
41.4 100000000 0 -
41.4 100000000 0 -
55.2 2334000 1 weld toe
55.2 5006000 1 weld toe
55.2 4235000 1 weld toe
55.2 1351300 1 weld toe

Table 2.1: Cover plate, CA experimental data-set. δi is a binary variable which is equal to 1 for
a failure and to 0 for a run-out
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Chapter 2. S-N curves for constant amplitude loadings

Test series S [MPa] N δi failure location

Hirt (1975)
L=100mm

80 1922000 1 weld toe
80 1810000 1 weld toe

120 514000 1 weld toe
120 361000 1 weld toe
160 210000 1 weld toe
160 199000 1 weld toe

ICOM (2015), L=150mm 50 3800000 1 weld toe

Kondo (2002)
L=100mm

140 528000 1 weld toe
140 252000 1 weld toe
140 272000 1 weld toe
100 826000 1 weld toe

80 1409000 1 weld toe
80 1431000 1 weld toe
60 21620000 0 -
60 5492000 1 weld toe
60 5144000 1 weld toe
55 4049000 1 weld toe

Bae (2004)
L=150mm

100 387000 1 weld toe
100 561000 1 weld toe
100 721000 1 weld toe
100 787000 1 weld toe

66 1000000 1 weld toe
66 1430000 1 weld toe
66 1710000 1 weld toe
66 1730000 1 weld toe
33 13430000 0 -
33 16600000 0 -
33 18630000 0 -
33 23420000 0 -

Table 2.2: In-plane gusset, CA experimental data-set. δi is a binary variable which is equal to 1
for a failure and to 0 for a run-out
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2.5. Results

2.5 Results

The ML estimate and the standard deviation of the CA S-N model vector parameters are shown

in:

• Table 2.3 for the cover plate data-set;

• Table 2.5 for the cover plate data-set with size effect correction;

• Table 2.7 for the in-plane gusset data-set.

The value of the negative log-Likelihood at the ML estimate is also shown in the Tables above.

In all three data-sets the case (V =N ) gives a better fit in terms of sample log-Likelihood, with

respect to the case (V = EV). The difference in the sample log-Likelihood is trivial but in any

case does not support the case (V = EV) to the detriment of the conventional case (V =N ).

The size effect correction in the cover plate data-set has small influence on ML estimate of the

intercept of the S-N curve, m̂0 (which drops from 29.02 to 28.66, for the case V =N ), while

it has quite significant influence on ML estimate of the location parameter of the log-CAFL

distribution, μV (which drops from 3.56 to 3.45, for the case V =N ).

The correlation coefficients ci j = ρi j /
�
ρi iρ j j of the CA S-N model are shown in:

• Table 2.4 for the cover plate data-set;

• Table 2.6 for the cover plate data-set with size effect correction;

• Table 2.8 for the in-plane gusset data-set.

where the covariance coefficients ρi j are calculated by inverting the observed Fisher matrix,

as explained in Section 2.3.3.

For all three data-sets, the correlation coefficient cm0m1 is equal to -1.00, which indicates

a perfect negative linear dependency between the intercept of the S-N curve, m0, and the

slope of the S-N curve, m1. For the cover plate data-set and for the cover plate data-set with

size effect correction, the correlation coefficient cμV σV is equal to -0.03, which indicates that

there is no linear correlation between the location parameter and the scale parameter of the

log-CAFL probability distribution. For the in-plane gusset data-set, the correlation coefficient

cμV σV is equal to -0.62, which indicates a moderate negative linear dependency between

the location parameter and the scale parameter of the log-CAFL distribution. For all three

data-sets, there is no linear correlation between: 1) The S-N curve variance parameter, σ, and

all other parameters; and 2) The S-N curve parameters m0, m1 and the log-CAFL parameters

μV , σV .
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Chapter 2. S-N curves for constant amplitude loadings

Parameter ML estimate
V =N

ML estimate
V = EV

MLE St.Dev. MLE St.Dev.
m0 29.017 2.935 29.138 3.002
m1 -3.416 0.786 -3.448 0.804
σ -0.544 0.197 -0.540 0.199

μV 3.556 0.0577 3.646 0.0679
σV -1.623 0.408 -1.592 0.440

ˆnLL 24.47 24.74

Table 2.3: Cover plate, CA S-N model parameters

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −1.00 0.07 −0.05 0.06
... 1.00 −0.07 0.05 −0.06
...

... 1.00 −0.04 0.04
...

...
... 1.00 −0.03

...
...

...
... 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 2.4: Cover plate, CA S-N model corr. matrix, (V =N ) case

Parameter ML estimate
V =N

ML estimate
V = EV

MLE St.Dev. MLE St.Dev.
m0 28.657 2.852 28.775 2.920
m1 -3.416 0.786 -3.448 0.804
σ -0.544 0.197 -0.540 0.199

μV 3.451 0.0577 3.540 0.0679
σV -1.623 0.408 -1.592 0.440

ˆnLL 24.47 24.74

Table 2.5: Cover plate with size effect correction, CA S-N model parameters

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −1.00 0.07 −0.05 0.06
... 1.00 −0.07 0.05 −0.06
...

... 1.00 −0.04 0.04
...

...
... 1.00 −0.03

...
...

...
... 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 2.6: Cover plate with size effect correction, CA S-N model corr. matrix, (V =N ) case
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Parameter ML estimate
V =N

ML estimate
V = EV

MLE St.Dev. MLE St.Dev.
m0 25.770 0.945 25.804 0.954
m1 -2.666 0.209 -2.674 0.211
σ -1.048 0.144 -1.048 0.144

μV 3.864 0.127 3.966 0.104
σV -1.667 0.498 -1.712 0.590

ˆnLL 12.34 13.52

Table 2.7: In-plane gusset, CA S-N model parameters

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −1.00 0.00 −0.06 0.06
... 1.00 −0.00 0.05 −0.06
...

... 1.00 −0.00 0.00
...

...
... 1.00 −0.62

...
...

...
... 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 2.8: In-plane gusset, CA S-N model correlation matrix, (V =N ) case

2.5.1 S-N curves – Cover plate

Figure 2.6 shows the ML-MCS-based median S-N curve and ML-MCS-based 0.05 quantile

linearized S-N curve, for the cover plate data-set. The non-linear 0.05 quantile S-N curve was

computed using the MCS scheme presented in Section 2.3.3, with ηsam = 1·105; the non-linear

0.05 quantile S-N curve was then linearized as explained in Section 2.3.3: the detail is classified

as FAT51, with CAFL=24MPa and knee point at 27 ·106 cycles. Figure 2.8 shows the median

S-N curve and the characteristic S-N curve based on the statistical method recommended

in Commentary to Eurocode 3 (see Section 2.2), for the cover plate data-set: the detail is

classified as FAT47 with CAFL=36MPa assumed to start at 5 ·106 cyclesvi. The comparison of

the ML-MCS-based 0.05 quantile linearized S-N curve with the characteristic S-N curves from

standards, for the cover plate data-set (see Figure 2.10), gives the following information:

• The Commentary to Eurocode3-based S-N curve and the EN1993-1-9 FAT50 S-N curve

are almost coincident;

• The estimation of the fatigue strength in the finite life (FL) region (N<5 ·106), according

viThe difference between the S-N curve based on Commentary to Eurocode 3 and the S-N curve based on
Eurocode 3 is that the first one is obtained by applying the Eurocode statistical approach to the experimental
data-sets considered in this thesis, while the latter one is the S-N curve corresponding to the FAT classification of
the considered detail and which is not related to the experimental data-set considered in this thesis
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Chapter 2. S-N curves for constant amplitude loadings

to EN1993-1-9 FAT50 and the IIW FAT50 S-N curves, is slightly over-conservative with

respect to the ML-MCS S-N curve: the probability of failure is slightly lower than 5%;

• The estimation of the fatigue strength in the FL region (N<5 ·106), according to AASHTO

FAT56 S-N curve, is slightly under-conservative with respect to the ML-MCS S-N curve:

the probability of failure is slightly higher than 5%;

• The estimation of the CAFL, according to EN3 FAT 50 S-N curve, is highly unsafe: 6

failures point lie below the EN3-based CAFL and the probability of exceeding the EN3-

based CAFL is considerably lower than 95%;

• The estimation of the CAFL, according to IIW FAT50 and the AASHTO FAT56 S-N curves,

is slightly under-conservative with respect to the ML-MCS S-N curve: the probability of

exceeding the IIW-based and the AASHTO-based CAFL is lower than 95%.

Figure 2.7 shows the ML-MCS-based median S-N curve and the ML-MCS-based 0.05 quantile

linearized S-N curve, for the cover plate data-set with size effect correction. Due to the reduc-

tion of the nominal applied stress ranges, the detail drops from FAT51 to FAT46 and the CAFL

drops from 24MPa to 21MPa; the position of the knee point is not affected by the reduction

of the nominal applied stress ranges. The same reduction is observed in Commentary to

Eurocode 3 document-based characteristic S-N curve (see Figure 2.9). The comparison of the

ML-MCS-based 0.05 quantile linearized S-N curves with the characteristic S-N curves from

standards, for the cover plate data-set with size effect correction (see Figure 2.11), gives the

following information:

• The EN3 Commentary doc.-based and the EN3 FAT 50 characteristic S-N curves are

almost coincident;

• The estimation of the fatigue strength in the FL region (N<5 ·106), according to EN3 FAT

45 S-N curves, is slightly over-conservative with respect to the ML-MCS S-N curve: the

probability of failure is slightly lower than 5%;

• The estimation of the fatigue strength in the FL region (N<5 ·106), according to IIW FAT

50 characteristic S-N curves, is slightly under-conservative with respect to the ML-MCS

S-N curve: the probability of failure is slightly higher than 5%;

• The estimation of the fatigue strength in the FL region (N<5 ·106), according to AASHTO

FAT40 S-N curve, is considerably over-conservative with respect to the ML-MCS S-N

curve: the probability of failure is considerably lower than 5%;
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• The estimation of the CAFL, according to EN3 FAT 45 S-N curve, is highly unsafe: 6

failures point lie below the EN3-based CAFL and the probability of exceeding the EN3-

based CAFL is considerably lower than 95%;

• The estimation of the CAFL, according to IIW FAT 50 S-N curve, is slightly unsafe: 2

failures point lie below the EN3-based CAFL and the probability of exceeding the IIW-

based CAFL is slightly lower than 95%;

• The estimation of the CAFL, according to AASHTO FAT40 S-N curve, is over-conservative

with respect to the ML-MCS S-N curve: the probability of exceeding the AASHTO-based

CAFL is higher than 95%.

2.5.2 S-N curves – In-plane gusset

Figure 2.12 shows the ML-MCS-based median S-N curve and ML-MCS-based 0.05 quantile

linearized S-N curve, for the in-plane gusset data-set: the detail is classified as FAT54, with

CAFL=30MPa and knee point at 9.8 ·106 cycles. Figure 2.13 shows the median S-N curve and

the characteristic S-N curve based on the statistic method recommended in EN3 Commentary

document (see Section 2.2), for the in-plane gusset data-set: the detail is classified as FAT53

with CAFL=38MPa assumed to start at 5 ·106 cycles. The comparison of the ML-MCS-based

0.05 quantile linearized S-N curve with the characteristic S-N curves from standards, for the

in-plane gusset data-set (see Figure 2.14), gives the following information:

• The EN3 FAT40 S-N curve is more conservative than the EN3 Commentary doc.-based

S-N curve (FAT53);

• The IIW FAT50 S-N curve, the AASHTO FAT56 S-N curve and the ML-MCS-based S-N

curve are almost coincident in the FL region (N<5 ·106 cycles);

• The estimation of the fatigue strength in the FL region (N<5 ·106), according to EN3 FAT

40 S-N curve , is over-conservative with respect to the ML-MCS-based S-N curve: the

probability of failure is lower than 5%;

• The AASHTO FAT56 S-N curve, the IIW FAT50 S-N curve and ML-MCS-based S-N curve,

give very similar estimation of the CAFL;

• The estimation of the CAFL, according to EN3 Commentary doc.-based S-N curves, is

under-conservative with respect to the ML-MCS S-N curve, however no failure points

exist to confirm this.
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Figure 2.6: Cover plate, ML-MCS-based S-N curves
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Figure 2.7: Cover plate with size effect correction, ML-MCS-based S-N curves
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Figure 2.8: Cover plate, Comment. to Eurocode3-based S-N curves
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Figure 2.9: Cover plate with size effect correction, Comment. to Eurocode3-based S-N curves
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Figure 2.10: Cover plate, characteristic S-N curves
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Figure 2.11: Cover plate, with size effect correction, characteristic S-N curves
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Figure 2.12: In-plane gusset, ML-MCS-based S-N curves
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Figure 2.13: In-plane gusset, Comment. to Eurocode3-based S-N curves
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Figure 2.14: In-plane gusset, characteristic S-N curves

It is remarked that the MCS scheme used for estimation of characteristic S-N curves takes into

account both: 1) The epistemic uncertainty of S-N model parameters; and 2) The aleatory

uncertainty of the CAFL and of the fatigue life.

In order to assess the influence of the aleatory uncertainty following analysis was carried out,

by considering the cover-plate and the in-plane gusset data-sets:

1. 106 S-N curves were sampled by only considering the epistemic uncertainty of S-N

model parameters; two vectors of size (106×1) were created by taking from each sampled

curve the CAFL and the number of cycle N∗ corresponding to the fatigue strength at

2 ·106 cycles according to the median S-N curve (S = 69.9MPa for the cover-plate, while

S = 68.3MPa for the in-plane gusset). These vectors were fitted with two log-Normal

distributions (CAFL and N∗ log-Normal distributions);

2. Step 1 was repeated by considering both the epistemic uncertainty of S-N model param-

eters and the aleatory uncertainty of the fatigue life and of the CAFL;

3. Log-Normal distributions of the CAFL and of N∗ estimated at Step 1 were compared

to log-Normal distributions of the CAFL and of N∗ estimated at Step 2, in terms of the

coefficient of variation.
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2.5. Results

For the cover-plate, Figure 2.15 shows that: 1) The coefficient of variation of the N∗ = N (S =
69.9MPa) distribution significantly increases from 0.46 to 0.86, by taking into account both

the epistemic uncertainty of S-N model parameters and the aleatory uncertainty of the fatigue

life, with respect to the case where only the epistemic uncertainty of S-N model parameters is

considered; and 2) The coefficient of variation of the CAFL distribution notably increases from

0.06 to 0.24, by taking into account both the epistemic uncertainty of S-N model parameters

and the aleatory uncertainty of the CAFL, with respect to the case where only the epistemic

uncertainty of S-N model parameters is considered. For the in-plane gusset, Figure 2.16

confirms the strong influence of the aleatory uncertainty of the fatigue life and of the aleatory

uncertainty of the CAFL, respectively on the N∗ = N (S = 68.3MPa) distribution (the coefficient

of variation increases from 0.09 to 0.38) and on the CAFL distribution (the coefficient of

variation increases from 0.13 to 0.28).
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Figure 2.15: Influence of the aleatory uncertainty of the fatigue life and of the CAFL, cover-plate
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Figure 2.16: Influence of the aleatory uncertainty of the fatigue life and of the CAFL, in-plane
gusset
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2.6 Conclusions and discussion

In this Chapter a new approach for estimation of CA S-N curves of welded components

was presented, with application to three study cases. The new approach was implemented

in the Matlab Toolbox TB1 (see Appendix B) allowing for ML fitting of linear S-N model to

experimental fatigue data-sets and MCS estimation of true p-quantile S-N curves. The ML-

MCS approach-based characteristic S-N curves were linearized for direct comparison with

current standards.

The conclusions from this Chapter are as follows:

• The statistical method for evaluation of fatigue S-N curves recommended by Commen-

tary to Eurocode 3 document [29] is affected by several limitationsvii: 1) The median

S-N curve is estimated by fitting a linear regression to failure data and disregarding

run-out data, resulting in loss of information; 2) The characteristic curve is estimated by

assuming the fatigue data-set as homoscedastic and by considering the fatigue scatter

at 2 ·106 cycles as representative of fatigue scatter at all number of cycles; and 3) The

CAFL is arbitrarily assumed to start at 5 ·106 cycles. The ML-MCS approach presented

here overcomes these limitations by using run-out data for ML estimation of S-N model,

and by including the CAFL and the fatigue scatter in the stochastic model;

• The RFL model proposed by Pascual [58] allows to overcome limitations of Eurocode

3 approach but does not give straightforward method for estimating characteristic

S-N curves; the ML-MCS approach presented here allows for computation of true p-

quantiles of fatigue life and direct estimation of characteristic S-N curves. Moreover

the RFL fitting model is not linear and direct comparison with current standards is not

straightforward as for ML-MCS-based S-N curves;

• The estimates of CA S-N stochastic model for all considered data-sets show that the

choice of modeling the CAFL as a log-Normal random variable maximizes the sample

Likelihood information (see Tables 2.3 and 2.7). In order to make the cover-plate CA

data-set consistent with the VA cover plate data-set (used for estimation of VA S-N

stochastic model, see Section 3.3), a size effect correction was applied to the cover-plate

data-set; also for the cover plate data-set with size correction the choice of modeling the

CAFL as a log-normal random variable maximizes the sample Likelihood information

(see Table 2.5);

viiThe statistical procedures for evaluating S-N curves, recommended in other standards (IIW, AAHSTO), show
minor differences with respect to Eurocode recommendations and they are affected by the same limitations.
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• The CA S-N model correlation matrix for all considered data-sets shows that there is

a perfect negative linear correlation between the intercept and the slope of the S-N

curve in the log-S-N plane, while it is realistic to assume that the parameters of the CAFL

distribution are independent from the parameters of the S-N curve (see Tables 2.4, 2.6

and 2.8);

• The ML-MCS characteristic S-N curves for all considered data-sets were linearized

for direct comparison with current standards. Eurocode 1993-1-9 standards, AASHTO

bridge design specifications and IIW recommendations provide estimation of fatigue

strength in the FL region (N<5 ·106 cycles) which is similar to the estimation based on

ML-MCS approach (see Figures 2.10, 2.11 and 2.14).

A larger difference can be observed in the HCF region: for the cover plate data-set, all

standards provide unsafe estimation of the CAFL and of the knee point (see Figure 2.10);

for the cover plate with size effect correction data-set both Eurocode and AASHTO-based

S-N curves provide unsafe estimation of the CAFL and of the knee point (with significant

amount of experimental failure points lying below the CAFL), while the AASHTO-based

S-N curve provides over-conservative estimation of the CAFL (see Figure 2.11); for the

in-plane gussets all standards provide very similar estimation of CAFL (see Figure 2.14);

• The assumption of having the knee point at a number of cycles which increases as the

fatigue strength at 2 million cycles decreases (as assumed in AASHTO specifications)

seems to be confirmed by estimated ML-MCS S-N curves (cover plate with size effect

correction has FAT= 46 and knee point at 2.7 · 107 cycles, while the in-plane gusset

has FAT= 54 and knee point at 9.8 · 106 cycles). This has to be confirmed by further

experimental results.

The findings listed above suggest that the limitations included in the current standards could

lead to unsafe estimation of fatigue strength, especially in the HCF region. The approach

presented in this Chapter constitutes a powerful tool which can be used to re-define current

standard S-N curves and relative FAT categories. It has to be noted that use of experimental

fatigue data-sets containing significant information in the region between 5·106 and 108 cycles

will reduce the uncertainty on estimation of the CAFL and of the knee point and it will improve

the confidence in estimated S-N curves.
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3 S-N curves for variable amplitude

loadings

3.1 Introduction

Welded joints in road bridges are subjected to VA fatigue loading histories. The fatigue design

of new bridges and the fatigue assessment of existing bridges are based on CA S-N curves,

used in combination with Miner’s rule. CA S-N curves are based on fatigue data from CA

experimental tests. According to Miner’s rule, following condition has to be verified for fatigue

verification:

ntot∑
i=1

ni

Ni
≤ Dc (3.1)

where:

• ni is the number of cycles corresponding to the applied nominal stress range, Si ;

• ntot is the total number of stress range cycles;

• Ni is the number of cycles to failure corresponding to Si ;

• Dc is the critical value of the damage sum.

The first critical aspect in using Miner’s rule is how to consider the influence on the fatigue

damage of the stress range cycles below the CAFL. In Eurocode standards [24] and in IIW

recommendations [40], the CA characteristic S-N curve is bent at the CAFL position from the

slope m1 =−3 to the slope m2 =−5; a cut-off limit is fixed at 108 cycles. The use of the reduced

(flatter) slope m2 = −5 has been proposed by Haibach [36], by assuming a continuously

decreasing of the fatigue limit as a function of the linear accumulated damage [37].

According to the Haibach’s hypothesis, the standard format of Miner’s rule verification (see
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Chapter 3. S-N curves for variable amplitude loadings

Equation 3.1) is replaced by:

ntot1∑
i=1

ni

Ni
+

ntot2∑
j=1

n j

N j
≤ Dc (3.2)

where:

• ni is the number of cycles corresponding to the applied nominal stress range, Si , with

Si ≥CAFL;

• n j is the number of cycles corresponding to the applied nominal stress range, S j , with

S j <CAFL;

• ntot1 and ntot2 are respectively the total number of stress range cycles above and below

the CAFL;

• Ni is the number of cycles to failure corresponding to Si ;

• N j is the number of cycles to failure corresponding to S j .

In AASHTO bridge design specifications [2] the CA S-N curve is extrapolated below the CAFL

with no slope change, but a variable amplitude fatigue limit (VAFL) is set at CAFL/2, which

is another way of dealing with all stress ranges lower than CAFL contribute less to fatigue

damage.

Up to now, the use of the second slope m2 has not been sufficiently justified by means of VA

fatigue test results; at present the influence of the stress range cycles below the CAFL, on the

fatigue damage, is still under debate.

Fisher et al. [26] performed fatigue tests of eight large beams with longitudinal attachments

and welded cover plates, using different Rayleigh loading spectra with a CAFLi exceedance

rate ranging from 0.1% and 12%. They found that if any of the stress ranges in the loading

spectrum exceeded the CAFL, then all cycles contribute to fatigue damage and the one-slope

extrapolated S-N curve should be used.

Marquis [48] performed fatigue test of non-load carrying carbon and stainless steel fillet welds,

at R=-1, using three different concave upwards truncated spectra. He found that the use

of the Miner’s rule in combination with a bent S-N curve was unsafe, while the use of the

extrapolated one-slope S-N curve gave conservative estimate of fatigue damage.

Gurney [33] proposed an alternative approach to assess the influence of small stress range

cycles on fatigue damage. VA experimental results were analysed in terms of number of blocks

to failure. With different test specimens, the minimum damaging stress range was found by

iCAFL of the characteristic curve of studied detail, according to AASHTO specifications [2]
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gradually decreasing the lowest stress range of loading spectra and checking the effect on the

number of blocks to failure: if the lowest stress range didn’t damage then an increase of blocks

to failure was expected. Concave upward spectra having constant relative fatigue damage,(
Sm1

i ·ni /Smax ·1.0
)
, were used in this type of investigation. The results obtained for as-welded

specimens tested with 4 different concave upward spectra, with a peak range at R=0, showed

that stress range cycles down to 10MPa were fully damaging (suggesting the use of one-slope

extrapolated S-N curve).

Zhang and Maddox [81] published results of an investigation of fatigue damage in welded joints

under VA loading spectra. Two types of fillet welded connections were tested: 1) longitudinal

non-load-carrying in-plane gusset; and 2) longitudinal non-load-carrying fillet welded joint.

A concave up stress spectrum, having a relative fatigue damage,
(
Sm1

i ·ni /Smax ·1.0
)
, that

increases with decreasing stress ranges, was used in order to make the results of VA tests more

sensitive to small stress ranges. The VA test results were analysed using Miner’s rule with three

different S-N curves: 1) S-N curve with no-slope change: 2) S-N curve with slope change at

the CAFL (at 107 cycles, according to BS standards); 3) S-N curve with cut-off at the CAFL.

Comparison of number of block to failures and damage sums for spectra having different

minimum stress ranges, allowed authors to conclude that stress ranges well below the CAFL

were fully damaging.

Albrecht et al. [3] reported experimental CA and VA fatigue test results for 192 specimens from

different types of welded joints; VA spectra were proportional to real truck traffic histograms

which were recorded on several U.S. bridges. VA results were plotted in the CA log(S-N) plane

in terms of the RMC stress range of the spectrum
(
Seq = (∑ni /ntot ·S3

i

) 1
3

)
. They found that:

1) VA and CA fatigue test data correlate well in the FL region; 2) When the maximum stress

range of the VA spectrum is equal to the CAFL, the equivalent VA stress range is equal to

the VA fatigue limit (VAFL in AASHTO bridge design specifications); 3) When the percentage

of VA stress range cycles below the CAFL increases, the CA S-N curve gradually bends and

approaches the VAFL; and 4) Since the position of the VAFL depends on the type of loading

spectrum it is not possible to establish a unique formulation for the VAFL; for loading spectra

similar to the truck traffic proportional spectrum, it is safe to fix the VAFL at 50% of the CAFL.

In conclusion, studies presented above provide support to the use of one-slope S-N curve for

fatigue analysis under VA loadings.

The second critical aspect in using Miner’s rule is related to the choice of the critical value of

the damage sum, Dc .

Miner and Palmgreen [53] settled Dc to 1.0 by assuming that the fatigue damage corresponding

to each stress cycle of a VA loading sequence is the same as that due to the same stress cycle

under CA loading sequence. However, many studies have shown that the stress cycles of a VA
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loading sequences could be more damaging than the same stress cycles under CA loading,

with the result that the Miner’s rule can be unsafe in some cases.

In their investigation, Zhang and Maddox [81] considered three types of loading sequences:

A) Constant maximum stress; B) Constant mean stress; and C) Constant minimum stress. In

order to evaluate the accuracy of Miner’s rule by eliminating influence of mean stress, CA

S-N curves were assessed by mean of CA experimental tests at constant maximum stress

(same condition as the sequence A). Results for both details showed a strong dependence of

the damage sum at failure,
∑

n/N , to the loading sequence: the Miner’s rule was highly non

conservative for all tests under sequence A (
∑

n/N ≤ 0.4), slightly non conservative for tests

under sequence B (
∑

n/N ≤ 0.8), and conservative for tests under sequence C (
∑

n/N ≥ 1.3).

Results of fatigue VA tests on 3 types of welded connections (longitudinal non load carrying

fillet welds [67, 26, 78, 10, 4, 9], welded cover plates [67], transverse non load carrying fillet

welds [30, 9]), under random and block loading spectra, were re-analysed by Gurney [33]. The

analysis gave following results: 1) For the longitudinal non-load carrying fillet weld, tested

under Rayleigh and Laplace random loading spectra,
∑

n/N (computed using BS F mean

curve) ranged from 0.14 to 2.89 with a mean of 0.63; 2) For the longitudinal non-load carrying

fillet weld, tested under block loading spectra,
∑

n/N (computed using BS F mean curve)

ranged from 0.71 to 3.65 with a mean of 1.04; 3) For the welded cover plate beams, tested

under Rayleigh spectra,
∑

n/N (computed using BS G mean curve) ranged from 0.53 to 6.69

with a mean of 1.23; 4) For the transverse non-load carrying fillet weld, tested under block

loading spectra,
∑

n/N (computed using BS F mean curve) ranged from 0.91 to 12.08 with

a mean of 2.50. Results show that the damage sum at failure is highly variable and shall be

treated as a random variable.

In his block program investigation, Gurney [33] observed a strong influence of the form of

the loading spectrum on the value of damage sum at failure: wide band loading was more

damaging than narrow band loadingii. This effect was more significant at R=-1.0 than at R=0.

Gurney also observed that the block program investigation gave values of
∑

n/N considerably

more optimistic than other fatigue test program involving other types of spectra. Gurney

analysed also the influence of loading spectrum parameters on the fatigue strength of as-

welded specimens which were tested at constant stress ratio, R. He found that: 1) For concave

upwards spectra (see Figure 3.1 (a)),
∑

n/N did not depend on the shape parameter k iii; 2)

For concave downwards spectra (see Figure 3.1 (b)) having block length smaller than 1000

iiAccording to [33] the most reliable method to define spectrum characteristics, in particular the bandwidth, is
the Markov transition matrix, which has starting stress levels as row entries and finishing stress levels as column
entries: for narrow band loadings all non zero entries are located close to the diagonal, while for wide band
loadings non zero entries might be located anywhere. As often loading rates and ramp length are correlated, many
authors consider that narrow band loadings correspond to narrow frequency loading histories

iiiThe shape parameter, k, characterizes the concavity of the loading spectrum (see Figure 3.1). The spectrum is
concave upward for k > 1 and concave downward for k < 1
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Figure 3.1: Exceedance diagrams for Weibull spectrum with k shape factor. (a) Concave
upward spectrum; (b) Concave downward spectrum

cycles,
∑

n/N increased with k to a peak and then decreased; instead for concave downwards

spectra having block length bigger than 16250 cycles,
∑

n/N increased monotonically with k;

3) For concave downwards spectra,
∑

n/N increased with the block length; and 4) The clipping

ratioiv had little influence on
∑

n/N .

Albrecht at al. [5] reviewed previous studies on VA amplitude fatigue in both finite life region

and high cycle fatigue region. They proposed a simplified non-linear S-N model which

approaches gradually the VAFL, for the fatigue assessment of steel bridges. They observed

that the sequence of the blocks of the stress range spectrum, the spectrum size, the spectrum

bandwidth and the minimum stress range did not have significant effect on
∑

n/N .

The investigations listed above give an indication of influence of different VA loading spectrum

parameters on the fatigue strength of analysed welded connections; however, these works

only provide general trends and do not present a rigorous statistical approach which allows

to make inference about the reduce slope, m2, and the critical damage sum, Dc . Moreover,

they are affected by two substantial limitations: 1) The CA S-N curves used with Miner’s rule

have inaccurate definition of CAFL and of fatigue life scatter (especially in HCF region); 2)

The approach used in these studies is qualitative and does not allow to formally characterize

the randomness in the S-N curve variables and in the critical damage sum variable. In this

Chapter a ML-MCS approach is proposed for estimation of: 1) Characteristic S-N curve

under VA fatigue loadings; and 2) Critical value of damage sum at failure, Dc . The critical

ivThe clipping ratio is the ratio between the maximum stress range and the r.m.s. of the process(
Smax /

√∑
(Si )2/n

)
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damage sum is modeled as a random variable whose parameters are included in the VA S-N

model parameter vector. The slope of the characteristic S-N curve and the parameters of Dc

distributions are estimated by using novel scheme which combines ML and MCS techniques

by using the CA S-N stochastic model and the experimental data-set from VA fatigue tests. The

novel contribution of this approach is summarized in following points:

• The slope of the S-N curve below the CAFL, m2 and the critical damage sum Dc are

validated by using VA experimental results;

• The effect of the stress range cycles below the CAFL is not arbitrarily assumed but it’s

represented by the estimated m2 and Dc ;

• Load sequence, stress ratio, spectrum shape, loading bandwidth and block length effects

are represented in the variability of the Dc random variable.

The ML-MCS approach for estimation of VA S-N curves is implemented in ���������	 and

��
���
	�
 modules of Matlab Toolbox TB1 (see Appendix B).

The Chapter is organized as follows:

• in Section 3.2.1 the ML-MCS approach for estimation of VA S-N curves is presented;

• in Section 3.3 the application of the ML-MCS approach on two study cases is presented;

• in Section 3.4 results of analysis of two considered study cases are presented;

• in Section 3.5 results are discussed.

3.2 New probabilistic approach

The VA S-N stochastic model is defined by the S-N curve under VA loadings (Equation 3.3) and

by the fatigue failure condition (Equation 3.4):

Y =
{

m0 +m1X +ε
(
0,exp(σ)

)
, for X >V

m0 +V Δm + (m1 −Δm)X +ε
(
0,exp(σ)

)
, for X ≤V

(3.3)

ntot∑
i=1

ni

exp(Y (xi ))
= Dc

(
μD ,σD

)
, if max(xi ) >V (3.4)

where:
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3.2. New probabilistic approach

• m0 and m1 are the intercept and the slope of the S-N curve, which are defined in the CA

S-N stochastic model;

• ε
(
0,exp(σ)

)
is the error term, which is defined in the CA S-N stochastic model;

• V (μV ,σV ) is the natural logarithm of the CAFL, which is defined in the CA S-N stochastic

model;

• Δm = m1 −m2, where m2 is the slope of the S-N curve below the CAFL;

• Dc
(
μD ,σD

)
is the critical damage sum.

Dc is a random variable following a log-Normal (conventional choice) or a Weibull distribution

with location parameter equal to μD and scale parameter equal to σD .

The VA S-N stochastic model is defined by the model parameter vector Θ= (θ,μD ,σD )|Δm and

by the covariance matrix Σ(Θ).

3.2.1 ML-MCS estimation of VA S-N stochastic model

The VA S-N stochastic model is estimated with a novel ML-MCS scheme, using experimental

VA fatigue results.

Let denote the VA fatigue data-set as follows:

(
�t , yt

) |t=1...nt s (3.5)

where �t is the t th stress range spectrum, yt is the natural logarithm of number cycles to the

end of the t th test and nt s is the total number of tests.

The damage, dt , associated with the t th test, is:

dt
(
θ,Δm

)= ntot1∑
i1=1

ni

exp(Y (m0,m1,σ; xi ))
+

ntot2∑
i2=1

n j

exp
(
Y (m0,m1,σ,V (μV ,σV ),Δm; x j )

) (3.6)

where ntot1 and ntot2 are respectively the number of stress range cycles above the CAFL and

below the CAFL in the spectrum �t .

The fatigue failure condition is:

dt
(
θ,Δm

)= Dc
(
μD ,σD

)
(3.7)

where the critical damage sum, Dc , is a random variable following a log-Normal or a Weibull

distribution, with parameters μD and σD .

Following ML-MCS scheme is used to estimate the parameters of VA S-N stochastic model:
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1. The experimental VA fatigue data-set is re-simulated ηr es time. The re-simulated experi-

mental data-set is:

(
�t , yt

) |t=1,...,nt s ·ηr es

2. One vector θ̃k is sampled from the CA S-N stochastic model

[
θ,ρ

]
; then, one S-N curve

is sampled by using the sampled θ̃k . The epistemic uncertainty of S-N model parameters

is taken into account in the θ̃k sampling, while the aleatory uncertainty of the CAFL

and the aleatory uncertainty of the fatigue life are taken into account in the S-N curve

sampling.

For a given value of parameter Δm̃ the negative log-Likelihood of the re-simulated

sample is computed as follows:

nLLk
(
μDk ,σDk

) |Δm̃ =−
ηr es∑
j=1

[
n f∑

t=1
ln
(

fD
(
μDk ,σDk ,Δm̃;dt

))+ nr∑
t=1

ln
(
1−FD

(
μDk ,σDk ,Δm̃;dt

))]

where n f is the number of failures, nr is the number of run-outs, fD is the pdf of the

random variable Dc and FD is the cdf of the random variable Dc .

3. ML estimates of parameters μD and σD are computed by minimizing the negative

log-Likelihood of the re-simulated sample:

(
μ̂D , σ̂D

)
k = arg min

μDk
,σDk

(
nLLk (μDk ,σDk )|Δm̃

)

4. Steps 1-3 are iterated ηi ter times.

The G matrix and the L vector are built:

G = [(
θ
)

k (μ̂D )k (σ̂D )k
]∣∣
Δm̃ for k = 1, . . . ,ηi ter

L = [(
ˆnLL
)

k

]∣∣
Δm̃ for k = 1, . . . ,ηi ter

5. Under the assumption of asymptotic normality of ML estimatorsv μ̂D , σ̂D , ˆnLL, it is

observed that: 1) The matrix G contains ni ter realizations of the multivariate Normal

random variable
(
θ, μ̂D , σ̂D

)
; and 2) The vector L contains ηi ter realizations of the Nor-

mal random variable ˆnLL.

For a given value of parameter Δm̃, the VA S-N model parameter vector, Θ, and the

covariance matrix, Σ(Θ)are computed as follows:

vThis hypothesis is verified by using probability plots

46



3.2. New probabilistic approach

Θ (Δm̃) = E
[
G
]∣∣∣

Δm̃

Σ (Δm̃) = E

[(
G −E

(
G
))
·
(
G −E

(
G
))T

]∣∣∣∣
Δm̃

The mean of the ˆnLL distribution is indicated as ˆnLL.

6. Steps 1-5 are repeated for different values of Δm̃. The ML estimate of the parameter Δm

is chosen as the value which minimizes the mean of the ˆnLL distributionvi:

Δm̂ = argmin
Δm̃

(
ˆnLL(Δm̃)

)
The ML estimate of the VA S-N model parameter vector and the covariance matrix are:

Θ̂=Θ (Δm̂)

Σ=Σ (Δm̂)

N

S

y = a05+ m̂1x y = ar
05 + m̂1x

m2

m2

v05

m1 m1

r

pdf

ddc,.5 1.0

Figure 3.2: ML-MCS-based VA characteristic S-N curve and re-scaled VA characteristic S-N
curve

viThe choice of computing different Θ(Δm̃) vectors by assuming different values of Δm̃ (steps 1-5) and then to

proceed in searching for the value Δm̂ which minimizes ˆnLL(Δm̂) (step 6) was made because the initial choice of
including Δm in the model parameter vector did not work in terms of numerical optimization
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A sensitivity study is performed in order to determine the parameters ηi ter and ηr es that have

to be used in the ML-MCS scheme described above. Since the ˆnLL is not a deterministic

parameter, the minimum search algorithm includes a Box-plot test to ensure that ˆnLL (Δm̂) is

lower than ˆnLL (Δm̂ ±1) at 5% significance level. The ML-MCS based characteristic S-N curve

is defined as follows:

y.05 =
{

a.05 +m̂1x, for x > v.05

a.05 + v.05Δm̂ + (m̂1 −Δm̂)x, for x ≤ v.05
(3.8)

The characteristic S-N curve in Equation 3.8 has to be used in combination with following

damage accumulation rule:

ntot∑
i=1

ni

exp(y.05 (xi ))
≤ dc,.5, with dc,.5 = F−1

D

(
0.5,μD ,σD

)
(3.9)

where F−1
D is the inverse of the cdf of the critical damage, Dc .

The ML-MCS-based VA characteristic S-N curve has to be re-scaled for direct comparison with

VA characteristic S-N curves from the standards, which consider dc,.5 = 1.0.

The ML-MCS-based re-scaled VA characteristic S-N curve (see Figure 3.2) is defined as follows:

yr
.05 =

{
a.05 − ln

(
1/dc,.5

)+m̂1x, for x > v.05

a.05 − ln
(
1/dc,.5

)+ v.05Δm̂ + (m̂1 −Δm̂)x, for x ≤ v.05
(3.10)

Three cases are considered for the cut-off stress range, Sco : 1) No cut-off stress range; 2)

Cut-off stress range at 14.6 MPa, which corresponds to the cut-off stress range of the lowest

FAT category in EN 1993-1-9; 3) Cut-off stress range at 50% of the CAFL, according to [76].
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3.3 Study cases

The ML-MCS approach was applied on the two fatigue data-sets analysed in Chapter 2.

3.3.1 Cover Plate

VA experimental data-set for cover plate detail is made of 32 data points (see Table 3.1) from

testing of end-welded cover plate beam, under 5 different wide-band Rayleigh-type stress

range spectra with a block length ranging between 1001 and 10001 cycles [26]. The thickness

of the beam flange and of the cover plate is 25.4mm: the detail is classified as FAT45 according

to EN1993-1-9 [29], as FAT50 according to IIW recommendations [40], and as FAT40 (with

CAFL=18MPa) according to AASHTO bridge design specifications [2]. The CA S-N stochastic

model estimated by using the cover plate CA data-set with size effect correction is used for

ML-MCS estimation of VA S-N stochastic model.

3.3.2 In-plane gusset

VA experimental data-set for in-plane gusset detail is made of 21 data points (see Table 3.2)

from testing of welded in-plane gussets, under 9 different three-blocks stress range spectra

with a block length ranging between 800 and 152 ·103 cycles and constant relative damage(
Sm1

i ·ni /Smax
)

(ICOM tests, [8]). The attachment length, L, is equal to 150mm: the detail is

classified as FAT40 according to EN1993-1-9 [29], as FAT50 according to IIW recommendations

[40], and as FAT56 (with CAFL=31MPa) according to AASHTO bridge design specifications [2].
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Si [MPa] ni

8 170
9 73 1200

10 170 3600
11 190 1200 1600
12 237 1700 1300
13 3500 800
14 207 73 1300 900
15 800 200
16 146 600 100
17 190 300 60
18 83 200 60
19 40 237 100 10
20 60
21 16 40
22 207 20
23 5 10
25 2 146
26 1 670
27 600
28 83
29 1 300
30 40 200
31 1
32 100
33 16
34 60
35 40
36 5
37 20
38 2 10
51 1
58 1

nfail ·106 →

> 107.2 120 > 104 > 109 34.7
> 107.2 120 > 104 > 109 > 34.7
> 107.2 > 120 > 104 > 109 > 34.7
> 107.2 > 120 104 > 109 > 34.7
> 107.2 120 34.7
> 107.2 120 > 34.7
> 107.2 > 120 32
> 107.2 > 120 > 34.7

Table 3.1: Cover plate, VA experimental data-set. The column Si represents the stress ranges of
the loading spectrum. The columns ni represent the number of cycles associated to the stress
ranges of the first column; each column of ni represents a different spectrum. In the lower
part of the table, the number of cycles to failure, nfail, are presented; the values which are
presented in the same column were obtained under the same loading spectrum. The symbol
> is used to indicate a run-out
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Si [MPa] ni

30 3700 29600 15200 6400 152 ·103

40 2700 1560 12500 6400 2700 64 ·103 64 ·103

50 3278 1383 800 33 ·103

60 3701 1896 800 800
70
80 1562 800 800 8 ·103 8 ·103

90
100 800 800

nfail ·106 →
1.11 1.61 4.61 > 40.0 6.78 13.2 9.52 3.17 15.08
1.18 2.43 4.73 10.4 9.64 9.15 > 22.1 3.65

14.0 16.1 3.67
> 29.6

Table 3.2: In-plane gusset, VA experimental data-set. The column Si represents the stress
ranges of the loading spectrum. The columns ni represent the number of cycles associated
to the stress ranges of the first column; each column of ni represents a different spectrum.
In the lower part of the table, the number of cycles to failure, nfail, are presented; the values
which are presented in the same column were obtained under the same loading spectrum.
The symbol > is used to indicate a run-out
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Chapter 3. S-N curves for variable amplitude loadings

3.4 Results

VA S-N models were estimated for the two analysed VA data-sets, using the ML-MCS scheme
presented in Section 3.2.1. Three cut-off cases (No cut-off, Sco =14.6MPa, Sco = 0.5·CAFL) and
two critical damage sum distributions (Dc = logN , Dc =W ) were considered.
In order to choose the sampling parameters ni ter , ηr es of ML-MCS scheme, a sensitivity study
was carried out, using cover plate VA data-set with combination No cut-off / Dc = W . For

ni ter = [100,1000,2000,5000], ηr es = [10,50,100,200], and Δm =Δm̂ = 8, the parameter ˆnLL

was sampled 16 times and Δ ˆnLL = ( ˆnLLmax / ˆnLLmi n −1) was computed. Table 3.3 shows that
for ηi ter = 5000 and ηr es = 100, then Δ ˆnLL is lower than 0.2%: for a negative log-Likelihood
equal to 1000, the variation in n̂LL is close to unity, which ensures an accurate ML estimation
of the Δm parameter for a Δm step equal to 1. The combination ηi ter = 5000,ηr es = 100 was
chosen for the estimation of VA S-N models.
The ML estimates of parameters μD ,σD , Δm and the value of the negative log-Likelihood
at ML estimates, for the cover-plate data-set, are shown in Table 3.4. The combination no
cut-off / Dc =W gives the best fit in terms of negative log-Likelihood. Between the two cut-off
cases, the case Sco =14.6MPa gives the best fit in terms of negative log-Likelihood. Table 3.5
shows that for the cover plate data-set there is a strong negative linear correlation between the
parameters of the critical damage sum, Dc , and that there is no linear correlation between the
parameters of the S-N curve and the parameters of the critical damage sum, Dc .

ηres

η
i
t
e
r

Δ ˆ
nLL

10 50 100 200

100

1000

2000

5000
>.1%

>.2%

>.5%

>1%

>2%

>5%

Table 3.3: Sensitivity study on ML-MCS scheme parameters, Cover plate, no cut-off / Dc =W
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3.4. Results

Cut-off case / Dc m̂o m̂1 σ̂ μ̂V σ̂V μ̂D σ̂D Δm̂ ˆnLL

no cut-off /
logN

28.65 -3.42 -0.54 3.45 -1.62

0.50 1.46 7 1431
W 1.70 1.40 8 1183

14.6MPa /
logN 0.50 0.87 4 1339

W 1.75 1.61 7 1190

0.5·CAFL /
logN 0.59 1.24 6 1482

W 2.13 1.28 8 1324

Table 3.4: Cover plate, VA S-N curve parameters

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −1.00 0.08 −0.05 0.06 −0.03 0.01
... 1.00 −0.07 0.05 −0.06 0.02 0.01
...

... 1.00 −0.04 0.04 0.02 0.00
...

...
... 1.00 −0.03 −0.00 −0.01

...
...

...
... 1.00 0.03 −0.00

...
...

...
...

... 1.00 −0.71
...

...
...

...
...

... 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 3.5: Cover plate, VA S-N model correlation matrix, no cut-off / Dc =W

Cut-off case / Dc m̂o m̂1 σ̂ μ̂V σ̂V μ̂D σ̂D Δm̂ ˆnLL

no cut-off /
logN

25.77 -2.67 -1.05 3.86 -1.67

-0.31 0.60 5 1009
W 1.00 1.48 5 1343

14.6MPa /
logN -0.30 0.60 5 1009

W 1.00 1.48 5 1343

0.5·CAFL /
logN -0.26 0.61 5 1117

W 1.07 1.40 5 1486

Table 3.6: In-plane gusset, VA S-N curve parameters

c =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 −1.00 0.00 −0.05 0.06 −0.01 0.01
... 1.00 −0.00 0.05 −0.06 0.00 0.00
...

... 1.00 −0.01 0.01 0.01 0.02
...

...
... 1.00 −0.62 −0.08 −0.02

...
...

...
... 1.00 0.04 0.02

...
...

...
...

... 1.00 0.37
...

...
...

...
...

... 1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Table 3.7: In-plane gusset, VA S-N model correlation matrix, no cut-off / Dc = logN
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Chapter 3. S-N curves for variable amplitude loadings

The ML estimates of parameters μD ,σD , Δm and the value of the negative log-Likelihood at

ML estimates, for the in-plane gusset data-set, are shown in Table 3.6. The combination (no

cut-off/Dc = logN ) gives the best fit in terms of negative log-Likelihood. Between the two

cut-off cases, the case Sco = 14.6MPa gives the best fit in terms of negative log-Likelihood.

Table 3.7 shows that for the in-plane gusset data-set there is a weak negative linear correlation

between the parameters of the critical damage sum, Dc , and there is no linear correlation

between the parameters of the S-N curve and the parameters of the critical damage sum, Dc .

The assumption of asymptotic normality of μ̂D , σ̂D , ˆnLL estimators (see step 5 of the ML-MCS

approach in Section 3.2.1) is verified by: 1) Comparing the ηi ter sampled value of μ̂D , σ̂D , ˆnLL

with theoretical normal pdf; and 2) Producing probability plots for the ηi ter sampled value

of μ̂D , σ̂D , ˆnLL. Density plots in Figures 3.3, 3.5, 3.7, 3.9, 3.11, 3.13 and probability plots in

Figures 3.4, 3.6, 3.8, 3.10, 3.12, 3.14 support the hypothesis of asymptotic normality of the

multivariate vector (μ̂D , σ̂D , ˆnLL) for both the cover-plate data-set and the in-plane gusset

data-set.

For the cover plate data-set and no cut-off case, the graph ˆnLL−Δm shows that Dc =W gives

the best fit in terms of Likelihood (see Figure 3.15). The ML estimate of the slope range, Δm̂,

was estimated by producing notched box plots at the four Δm values which gave the four

minimum values of ˆnLL. Figure 3.16 shows that box-plot notches at Δm = 8 and Δm = 9

overlap, indicating that n̂LL(Δm = 9) is not significantly lower than n̂LL(Δm = 8) at the 5%

significance level: Δm̂ = 8 is conservatively taken as ML estimate of the slope range.

For the in-plane gusset data-set and no cut-off case , the graph ˆnLL −Δm shows that Dc =
logN gives the best fit in terms of Likelihood (see Figure 3.17). Figure 3.18 shows that box-plot

notches at Δm = 4 and Δm = 5 do not overlap, indicating that ˆnLL(Δm = 5) is significantly

lower than ˆnLL(Δm = 4) at the 5% significance level: Δm̂ = 5 is taken as ML estimate of the

slope range.
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Figure 3.3: Cover plate, pdf of VA neg. log-Likelihood, no cut-off / Dc =W
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Figure 3.4: Cover plate, Probability plot of VA neg. log-Likelihood, no cut-off / Dc =W
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Figure 3.5: In-plane gusset, pdf of VA neg. log-Likelihood, no cut-off / Dc = logN
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Figure 3.6: In-plane gusset, Probability plot of VA neg. log-Likelihood, no cut-off / Dc = logN
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Figure 3.7: Cover plate, pdf of the parameter μD , no cut-off / Dc =W
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Figure 3.8: Cover plate, Probability plot of the parameter μD , no cut-off / Dc =W

57



Chapter 3. S-N curves for variable amplitude loadings

−0.4 −0.35 −0.3 −0.25 −0.2
0

2

4

6

8

10

12

14

μD

pd
f

Sampled
Normal pdf

Figure 3.9: In-plane gusset, pdf of the parameter μD , no cut-off / Dc = logN
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Figure 3.10: In-plane gusset, Probabiltiy plot of the parameter μD , no cut-off / Dc = logN
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Figure 3.11: Cover plate, pdf of the parameter σD , no cut-off / Dc =W
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Figure 3.12: Cover plate, Probability plot of the parameter σD , no cut-off / Dc =W
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Figure 3.13: In-plane gusset, pdf of the parameter σD , no cut-off / Dc = logN
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Figure 3.14: In-plane gusset, Probability plot of the parameter σD , no cut-off / Dc = logN
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Figure 3.15: Cover plate, negative log-Likelihood plot, no cut-off
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Figure 3.16: Cover plate, negative log-Likelihood notched box plot, no cut-off / Dc =W
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Figure 3.17: In-plane gusset, negative log-Likelihood plot, no cut-off
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Figure 3.18: In-plane gusset, negative log-Likelihood notched box plot, no cut-off / Dc = logN
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3.4. Results

Tables 3.8 and 3.9 show the Dc pdfs, corresponding to the six cut-off / Dc distribution com-

binations, for the cover-plate data-set and the in-plane gusset data-set respectively. The

ML-MCS-based Dc distribution is compared to the conventional logN (0,0.3) damage distri-

bution (red shaded pdf); for each combination, the median value of the ML-MCS-based Dc

distribution is also shown.

no cut-off

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

Dc

pd
f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

Dc

pd
f

cut-off=14.6MPa

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

Dc

pd
f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

Dc

pd
f

cut-off=0.5·CAFL

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

Dc

pd
f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

Dc

pd
f

Dc = logN
(
μD ,σD

)
Dc =W

(
μD ,σD

)

dc,.5 = 1.65 dc,.5 = 1.31

dc,.5 = 1.65 dc,.5 = 1.39

dc,.5 = 1.80 dc,.5 = 1.60

Table 3.8: Cover plate, Dc distributions. Shaded red pdf is the pdf of logN (0,0.3) distrib.
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no cut-off
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f

Dc = logN
(
μD ,σD

)
Dc =W

(
μD ,σD

)

dc,.5 = 0.74 dc,.5 = 0.78

dc,.5 = 0.74 dc,.5 = 0.78

dc,.5 = 0.77 dc,.5 = 0.82

Table 3.9: In-plane gusset, Dc distributions. Shaded red pdf is the pdf of logN (0,0.3) distrib.

Figure 3.19 shows the ML-MCS-based VA characteristic S-N curve for the cover-plate data-set.

The combination no cut-off / Dc =W , which gave the best ML fit of VA test results, was chosen.

The slope m2 is equal to -11.4 and the median value of the critical damage sum, dc,.5, is equal

to 1.31. The ML-MCS-based VA S-N curve was re-scaled according to Equation 3.10 for direct

comparison with standard VA S-N curves; the comparison in Figure 3.20 gives the following

information:

• The AASHTO FAT40 S-N curve is over-conservative with respect to the ML-MCS S-N

curve at all stress range levels;
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• The EN3 FAT45 S-N curve is slightly over-conservative with respect to the ML-MCS S-N

curve at stress ranges between 18MPa (cut-off) and 21MPa (CAFL), and at stress ranges

higher than 25MPa;

• The IIW FAT50 and the EN3 FAT45 S-N curves are unsafe below 18MPa (cut-off).

Figure 3.21 shows the ML-MCS-based VA characteristic S-N curve for the in-plane gusset

data-set. The combination no cut-off / Dc = logN , which gave the best ML fit of VA test

results, was chosen. The slope m2 is equal to -7.7 and the median value of the critical damage

sum, dc,.5, is equal to 0.74. The comparison of ML-MCS based re-scaled VA S-N curve with

standard VA S-N curves (see Figure 3.22) gives following information:

• The AASHTO FAT56 S-N curve is considerably over-conservative with respect to the

ML-MCS S-N curve at stress ranges between 15MPa (cut-off) and 27MPa;

• The EN3 FAT40 S-N curve is considerably over-conservative with respect to the ML-MCS

S-N curve at stress ranges higher than 15MPa (cut-off);

• The AASHTO FAT56 and the EN3 FAT40 S-N curves are unsafe below 15MPa (cut-off);

• The IIW FAT50 S-N curve is unsafe at stress ranges lower than 17MPa (cut-off).
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Figure 3.19: Cover plate, MCS-ML characteristic VA S-N curve, no cut-off / Dc =W
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Figure 3.20: Cover plate, characteristic VA S-N curves, no cut-off / Dc =W
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Figure 3.21: In-plane gusset, MCS-ML characteristic VA S-N curve, no cut-off / Dc = logN
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Figure 3.22: In-plane gusset, characteristic VA S-N curves
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Cover plate
FAT [MPa] CAFL [MPa] m1 m2

ML-MCS 46 21.5 -3.4 -11.4
Eurocode 45 33.2 -3.0 -5.0
IIW 50 29.2 -3.0 -5.0
AASHTO 40 - -3.0 -

In-plane gusset
FAT [MPa] CAFL [MPa] m1 m2

ML-MCS 54 29.8 -2.7 -7.7
Eurocode 40 29.5 -3.0 -5.0
IIW 50 29.2 -3.0 -5.0
AASHTO 56 - -3.0 -

Table 3.10: Characteristic VA S-N curves

The ML-MCS-based S-N model provides the best fit of VA experimental points (both failures

and run-outs); it is recalled here that each VA experimental point (�t ,nt ) is transformed in

damage sum, by mean of the VA S-N curve. In Figures 3.20 and 3.22 the re-scaled ML-MCS

characteristic VA S-N curves for cover-plate and in-plane gusset data-sets are compared to VA

characteristic S-N curves from standards.

In order to offer to reader another simple way to compare the ML-MCS VA S-N model to VA

S-N models from standards, the experimental failure points of both studied data-sets were

transformed in damage sums by using ML-MCS characteristic VA S-N curve and characteristic

S-N curves from standards (see Table 3.10). Results are compared in Figure 3.23: white

"bubbles" represent the damage sum at failure with the size of the bubble being proportional

to the frequency of observation, and red circles represent the mean observed damage sum, d̄ .

Figure 3.23 shows that ML-MCS and IIW models give the most realistic estimates of critical

damage sum (d̄ < 2.5), while Eurocode and AASHTO models give over-conservative estimates

of damage sum (d̄ > 3.4).

It is noted that the "bubble diagram" represents only a fast and simple way to compare different

VA S-N models since run-out observations are not considered as well as the variability of VA

S-N model parameters. In order to perform a rigorous comparison of different VA S-N models,

the ML-MCS scheme presented in Section 3.2.1 should be used.

Disqualification of outliers

When observing failure damage sums for the cover-plate data-set (see first column of Table

3.11), it is evident that the lowest damage sum (third spectrum in Table 3.1, failure at 104 ·106

cycles) lies an abnormal distance from other damage sum values. In order to assess whether

this value can be classified as an outlier, the box-plot method was applied to observed failure
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Figure 3.23: Bubble diagram, characteristic damage sums

log-damage sums. Results of the analysis are shown in Table 3.11: since the lowest failure log-

damage sum (-2.60) exceeds the lower outer fence (Fl o), it can be classified as extreme outlier.

The cover-plate VA data-set was re-analysed by neglecting the failure point corresponding to

the classified outlier: the ML estimates of parameters of Dc distribution and the ML estimate

of slope change, Δ̂m are shown in Table 3.12. The new ML-MCS-based Dc distribution, with

outlier disqualification, is compared to the original ML-MCS-based Dc distribution (without

outlier disqualification), in Figure 3.24.
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Table 3.11: Cover plate, outlier disqualification
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Outlier disqualification Cut-off case Dc μ̂D σ̂D Δm̂ n̂LL
no no cut-off W 1.70 1.40 8 1183
yes no cut-off logN 0.27 0.58 6 934

Table 3.12: Cover plate, outlier disqualification: models comparison
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← 1.31

Figure 3.24: Cover plate, Dc distribution with outlier disqualification

3.5 Conclusions and discussion

In this Chapter a new approach was proposed for estimation of VA S-N models of welded

joints. The new approach allows to estimate both the VA S-N curve and the critical value of

damage sum, which are used in Miner’s equation, when the fatigue life of a welded joint under

the effect of VA loading is computed. The novel contribution of this approach consists in

re-simulating VA experimental fatigue tests and in estimating the S-N curve second slope, m2,

and the critical damage sum, Dc , with ML method. The new approach was implemented in

the Matlab Toolbox TB1 (see Appendix B).

The conclusions from this Chapter are as follows:

• There are two critical aspects which are related to the use of Miner’s rule in fatigue

assessment of welded components under VA loadings: 1) The choice of the S-N curve
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slope, m2, below the CAFL; and 2) The choice of the critical value of damage sum,

Dc . The ML-MCS approach presented here allows to estimate the S-N curve second

slope,m2, and the critical damage sum, Dc , on the basis of experimental VA results

(including both failures and run-outs), by using the ML-MCS CA S-N stochastic model

and without need for any arbitrary assumption;

• The estimates of VA S-N stochastic model for both cover plate and in-plane gusset

data-sets (see Tables 3.4 and 3.6) show that the VA S-N curve without stress range cut-off

maximizes the Likelihood information: the cases of cut-off at 14.6MPa (lowest Eurocode

FAT detail) and cut-off at 0.5·CAFL are not supported by VA experimental results;

• Density plots and probability plots (see Figures 3.4 to 3.14) support the hypothesis of

asymptotic normality of estimators μ̂D , σ̂D (parameters of critical damage distribution,

Dc ) and of ˆnLL (sampled negative Log-Likelihood), for both cover plate and in-plane

gusset data-sets;

• For the cover plate data-set, the graph ˆnLL −Δm shows that Dc = W with Δm̂ = 8

gives the best fit in terms of Likelihood (see Figure 3.16). However the re-analysis of

experimental data using the box-plot method allowed to classify one failure points as

a extreme outlier: for the cover plate data-set with outlier disqualification, the graph

ˆnLL−Δm shows that Dc = logN with Δm̂ = 6 gives the best fit in terms of Likelihood

(see Table 3.12). The disqualification of the outlier point does not affect the median

value of Dc distribution (which remains equal to 1.31).

For the in-plane gusset data-set, the graph ˆnLL−Δm shows that Dc = logN with Δm̂ = 5

gives the best fit in terms of Likelihood (see Figure 3.18);

• The VA S-N model correlation matrix shows that there is no linear correlation between

the parameters of the S-N curve and the parameters of the Dc distribution, for both

cover plate and in-plane gusset data-sets (see Tables 3.5 and 3.7). This seems to indicate

that the location and the scale parameter of Dc are influenced only by the characteristics

of loading history and not by the fatigue strength of the studied detail. Further analysis

of different fatigue details is needed to confirm this indication;

• For the cover plate data-set, where experimental results were obtained under wide-band

Rayleigh type stress range spectra having short block lengths, the median value of Dc

is equal to 1.31, while for the in-plane gusset study case, where experimental results

were obtained under 3-blocks spectra with stress ranges cycling down from constant

maximum stress (no over-loads which could retardate the crack opening), the median

value of Dc is equal to 0.74. This seems to indicate that there is a strong influence of
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Chapter 3. S-N curves for variable amplitude loadings

loading characteristics and in particular of load sequence on the critical damage sum

distribution, which is coherent with results from [81] and [33];

• The slope range Δm = m1 −m2 is equal to 6 for the cover-plate, while it is equal to 5 for

the in-plane gusset: this confirms the existence of a second slope m2 (in disagreement

with results from [26], [48], [81] and [3]) and it seems to indicate that the influence of

the loading characteristics on the second slope m2 is small;

• Re-scaling of ML-MCS characteristic VA S-N curve at Dc = 1 allowed for direct com-

parison of ML-MCS-based VA S-N curves with standard VA S-N curves, showing that

S-N curve from AASHTO specification is highly over-conservative for the cover plate

data-set at all stress ranges (see Figure 3.20), and that all standard S-N curves (Eurocode,

IIW, AASHTO) are slightly over-conservative at stress ranges lower than 30 MPa, for the

in-plane gusset data-set (see Figure 3.22);

• ML fit provides support to Dc =W and to Dc = logN respectively for the cover-plate

data-set and for the in-plane gusset data-set. This difference is due to the "weakness" of

the cover-plate experimental data-set: the disqualification of one extreme outlier of the

cover-plate data-set and the re-estimation of the critical damage sum distribution leads

to Dc = logN ;

• The "bubble" diagram, representing the characteristic damage sums for both considered

data-sets, confirm that the ML-MCS approach gives the most realistic estimates of

critical damage sum, together with IIW (see Figure 3.23).

The findings listed above suggest that the ML-MCS approach defined in this Chapter consti-

tutes a powerful tool for re-definition of second slope,m2, and of critical damage sum ,Dc .

The proposed approach was applied on two VA experimental data-sets and validated by using

diagnostic plots, Likelihood plots and "bubble" plot.
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4 Fatigue reliability assessment of exist-

ing bridges

4.1 Introduction

In fatigue life assessment of steel bridges the reliable consideration of extreme loads which

lie near the CAFL is of primary importance. In order to accomplish this requirement, three

problems need to be adequately solved:

1. Reliable definition of the CAFL and of its variability;

2. Reliable definition of the damage accumulation rule, especially for stress range cycles

below the CAFL;

3. Reliable consideration of extreme loads which lie near the CAFL.

The ML-MCS approach, presented in Chapters 2 and 3, provides a solution to problems 1) and

2).

Weigh-In-Motion (WIM) technology provides a powerful tool to face problem 3). Prior to

recent years, probabilistic approaches were used to extrapolate short period of recorded data

to long return periods (i.e. one recorded week extrapolated to 120 years) [7, 16]; however

recent improvements in WIM technology allows to use recorded traffic data of one or more

years.i

Chen et al. [14] proposed a new reliability framework for estimation of fatigue life of suspen-

sion bridges under the long-term effect of railway, highway and wind loading. The limit state

function was defined by using the daily sum of m-power stress ranges, which were computed

by using probabilistic model of railway, highway and wind loading; WIM measurements were

iM. Treacy has shown in his PhD thesis [75] that at least 6 months of record are needed to reliably extrapolate
extreme traffic value
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Chapter 4. Fatigue reliability assessment of existing bridges

used to characterize highway traffic loading history. The fatigue failure probability at fatigue

critical locations was based on the critical fatigue damage accumulation event; the CAFL

exceedance event was not included in the analysis. The critical value of the damage sum, Dc ,

was modeled by logN (0,0.3) distribution, and S-N curves were defined according to British

standards [74]. The framework was applied on the Tsing Ma suspension bridge in Hong Kong.

Guo et al. [32] developed a new approach, integrating WIM data and probabilistic finite ele-

ment (FE) analysis, for fatigue assessment of steel bridges. The limit state function was based

on the critical damage accumulation event, while the CAFL exceedance event was not included

in the analysis. S-N curves were defined according to AASHTO bridge design specifications [2]

and Dc was modeled by logN (0,0.3) distribution. The approach was applied on the Throgs

Neck suspension bridge, connecting the Throgs Neck section of the Bronx in New York city

with the Bay Terrace section of Queens.

In both approaches, adopting conventional assumption for definition of S-N curves and of Dc

and modeling the CAFL as deterministic value, may yield inaccurate insight into reliability

index values and undo the beneficial effect of accurate modeling of the traffic loads as well as

of the bridge structure.

D’Angelo et al. [18] provided a fatigue-life reliability assessment of the Venoge highway bridge,

on the highway A1 in Switzerland. WIM measurement-based traffic simulation was used to

get realistic traffic loading history. The fatigue failure probability at two critical locations

was based on the CAFL exceedance event, where the random CAFL was defined according

to EN1993-1-9 [24]. Since the analysis was based only on the CAFL exceedance event, the

results could be largely over-conservative. Again, adopting conventional assumption for the

definition of S-N curves may yield inaccurate insight into reliability index values.

Sudret et al [71], [31] proposed a probabilistic approach for fatigue life assessment of struc-

tures subjected to thermal fatigue. This approach incorporated all kinds of uncertainties

affecting the thermal fatigue behavior such as those related to the fatigue strength, to the

thermo-mechanical model and to the thermal loading. The proposed probabilistic frame-

work provides an effective tool for computing probability of fatigue failure as function of

the expected design life and for estimating the importance of random variables in response

sensitivity. Nevertheless, this approach has following limitations when applied to the case of

fatigue assessment of road bridges: 1) The critical value of the damage sum at failure, Dc is

assumed to be equal to 1.0. This assumption does not allow to take into account the deviation

effects related to loading history; 2) The accumulated damage is computed with a one-slope

S-N curve having an asymptotic endurance limit, SD ; the critical point related to the influence

on the fatigue damage of stress range cycles below the CAFL, which is of primary importance in

mechanical fatigue evaluation of welded joints, is not addressed; 3) In modelling the random

number of cycles to failure (ln(N ) =λ(S)+σ(S)ξ(ω), where ξ(ω) is a standard Normal random
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4.2. New framework for fatigue reliability analysis

variable), the aleatory uncertainty of the fatigue limit is not taken into account: the ML-MCS

approach presented in this thesis shows that the consideration of aleatory uncertainty of the

CAFL is essential for computing quantiles of fatigue life (see Section 2.3.3).

In this Chapter a novel framework for fatigue reliability assessment of steel bridges under the

long-term effect of traffic loading, is presented. WIM measurements are used to characterize

traffic loading history. The fatigue reliability framework takes in account both the CAFL

exceedance event and the critical damage accumulation event: failure probability and related

reliability index are computed by estimating the joint failure probability of these two events.

The S-N curves and the critical damage sum, Dc , are defined according to the ML-MCS

approach, which has been presented in Chapters 2 and 3 .

The reliability framework which is presented in this Chapter was implemented in the Matlab

Toolbox TB2 (see Appendix B). The Matlab Toolbox TB2 was validated using the structural

reliability analysis software STRUREL [61].

The Chapter is organized as follows:

• In Section 4.2 the new framework for fatigue reliability analysis is presented;

• In Section 4.3 the fatigue reliability analysis framework is applied to the Venoge bridge

study case;

• In Section 4.4 results of the fatigue reliability analysis of the Venoge bridge are presented

and compared to Eurocode standards;

• In Section 4.5 results are discussed.

4.2 New framework for fatigue reliability analysis

In this Section the framework for the fatigue reliability analysis of road bridges under the

long-term effect of traffic loading, is presented.

Welded joints in road bridges are subjected to VA fatigue loadings; hence fatigue life assessment

is done by using linear damage accumulation rule (Miner’s rule [53]):

Dd =∑
i

ni

exp(Y (m0,m1,σ,V ;Si ))
+∑

j

n j

exp(Y (m0,m1,m2,σ,V ;S j ))
≤ Dc (4.1)

where:

• Dd is the total accumulated damage;
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Chapter 4. Fatigue reliability assessment of existing bridges

• V is the natural logarithm of the CAFL;

• ni is the i-cycle of the loading spectrum, which has nominal stress range Si above the

CAFL;

• n j is the j-cycle of the loading spectrum, which has the nominal stress range S j below

the CAFL;

• m1 is the slope of the S-N curve for a nominal stress range above the CAFL;

• m2 = m1 −Δm is the slope of the S-N curve for a nominal stress range below the CAFL

and it allows to take in account the gradual exceedance of the propagation threshold by

lower stress ranges as the crack length increases;

• m0 is the log-intercept of S-N curve having a slope equal to m1;

• Dc is the critical value of the accumulated damage.

The variables listed above are defined in the S-N model.

The validity of Eq. 4.1 is conditioned to the fact that there is at least one cycle of the loading

spectrum which exceeds the CAFL:

Smax ≥ exp(V ) (4.2)

where Smax is the maximum stress range of the loading spectrum.

Therefore the assessment of the fatigue failure probability of considered critical details asks

for consideration of two events:

• E1: Critical damage accumulation

• E2: CAFL exceedance

To have fatigue failure, both events E1 and E2 must happen. From the definition of conditional

probability:

P f = P (E1 ∩E2) = P (E1|E2)P (E2) = P (E∗
1 )P (E2) (4.3)

where E∗
1 = E1|E2 represents critical damage accumulation conditioned to CAFL exceedance;

definition of limit state equations related to E∗
1 and E2 is discussed below.
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4.2. New framework for fatigue reliability analysis

Event E∗
1 : critical damage accumulation conditioned to CAFL exceedance

Following from Equation 4.1, the limit state equation related to the conditioned event E∗
1 may

be written as:

g1(X 1) = Dc−
∑

i

ni

exp(Y (m0,m1,σ,V (μV ,σV );Si ))
−∑

j

n j

exp(Y (m0,m1,σ,V (μV ,σV ),m2;S j ))

(4.4)

The failure event E∗
1 may be described in the following way:

E∗
1 = {g1(X 1) ≤ 0} (4.5)

where X 1 is the vector of basic random variables
(
Y
(
m0,m1,m2,σ,V (μV ,σV )

)
,Dc (μD ,σD )

)
.

It is noted that both the epistemic uncertainty of model parameters and the aleatory uncer-

tainty of the CAFL, of the fatigue life and of the critical damage sum, are taken into account.

Having defined the failure event E∗
1 , the probability of failure P (E∗

1 ) = P (E1 ∩E2)/P (E2) may

be defined as follows:

P (E∗
1 ) =

∫
g1(X 1)≤0

fX 1
(x1)d x1 (4.6)

where fX 1
(x1) is the pdf of X 1. The related reliability index is:

β1 =−Φ−1(P (E∗
1 )) (4.7)

Since the limit state function g1(X 1) is non linear in the basic random variables X 1, the β1

index has to be computed using linearization approaches (First order reliability method,

FORM, or Second order reliability form, SORM) or MCS technique.

Event E2: CAFL exceedance

The limit state equation related to the event E2 is defined as follows:

g2(X 2) = exp(V )− zp (4.8)

where where X 2 is the vector of basic random variables (zp ,V (μV ,σV )), with zp indicating the

p-return level of maximum stress range.

It is noted that both the epistemic uncertainty of S-N model parameters (μV ,σV ) and the

aleatory uncertainty of the CAFL are taken into account.
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Chapter 4. Fatigue reliability assessment of existing bridges

In analogy with β1, the reliability index related to the event E2 is:

β2 =−Φ−1(P (E2)) =−Φ−1
(∫

g2(x2)≤0
fX 2

(x2)d x2

)
(4.9)

where fX 2
(x2) is the pdf of X 2. The reliability problem may be solved again using linearization

approaches or MCS technique.

4.3 Study case

The framework presented in Section 4.2 was applied to the Venoge bridge, located on the A1

Swiss motorway between Lausanne and Geneva (see Figure 4.1). The Venoge bridge consists

of two identical independent bridges (one for each direction) with a 219 meter length divided

in four spans (see Figure 4.2). Each bridge was constructed in 1961 with two girders and then

enlarged in 1995 to four girders (see Figure 4.3). Due to the slow lane (heavy traffic) location

only the enlarged bridge section is considered in this study (see Figure 4.3).

The welded cover plate (see Figure 4.4) on the left lower flange, at the first mid span (Section A

in Figure 4.2), was identified as the fatigue critical location. Two year-traffic induced stress

history was generated using WIM measurements and a 3-dimensional finite element (FE)

model of the bridge. The stress response influence line at the fatigue critical location was

characterized with a refined three-dimensional (3-D) FE model which takes into account the

effective transverse load repartition, the cracking of the concrete slab and the elastic stiffness

of stud connectors; the FE model was calibrated and validated using experimental load-vs-

strain results from bridge static tests [13]. MSC/Nastran [54] was used for the analysis. For the

sake of brevity the reader is referred to [17] for complete information on the calibration of FE

model of the bridge.

Figure 4.1: The Venoge bridge, Ecublens (Switzerland)
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Venoge

52m 55m 60m 52m

A

⇐Lausanne-Geneva
Geneva-Lausanne⇒

Jura↑

Lake↓

Figure 4.2: In-plane view and elevation of the Venoge bridge

Old bridge, 1961 New bridge, 1995

Figure 4.3: Lane configuration on the Venoge bridge

Figure 4.4: The critical detail: welded cover plate
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Figure 4.5: Influence line for nominal stress Sn at the critical section, 1 ton crossing axle

The influence line for the nominal stress Sn , at the critical section A, is shown in Figure 4.5.

The bridge fatigue failure probability, during the 100-year design life, was computed by solving

the reliability problem of Equation 4.3 at the critical location.

4.3.1 Traffic analysis

WIM recorded data of the Denges station (only 1km away from the bridge) over a 2 year period

(1.01.2006 - 31.12.2007) were considered in order to reconstruct the time-history of bridge

crossing heavy vehicles. Direction Lausanne-Geneva was analysed due to the unavailability of

complete data for the opposite direction. WIM devices can capture static vehicle axle weights,

which allow for characterization of traffic demand in terms of:

• time of passage

• vehicle speed

• number of axles

• gross total weight

• axles weight

• inter-axles distance
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A code which reads recorded WIM data, classifies vehicles according to GR03-EUR13 classifi-

cation [51] and produces the 2-year history of bridge crossing was implemented in the module

����������	
��� of Matlab Toolbox TB2 (see Appendix B). Only heavy vehicles with gross

total weight (GTW ) higher than 10 tons were considered herein and in fatigue calculation

because lighter vehicles give a negligible contribution to the bridge fatigue damage [66].

Figure 4.6 shows that there is not a significant evolution of heavy traffic from the observed

period (2006-2007) to year 2013, both in terms of observed/classified vehicles and of observed

crossing axles. Figure 4.7 shows the comparison between the empirical pdf of GTWs for the

observed period 2006-2007, and the empirical pdf of GTWs for the year 2013, confirming that

there is not significant evolution from the observed period (2006-2007) to year 2013.

For the considered study case, the influence length of the critical detail is higher than 52m:

the load dynamic amplification factor, φd , is set equal to 1.0, according to Brühwilher et al.

[12] which recommended to use φd = 1.0 for influence lengths longer than 40m.
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Figure 4.6: Heavy traffic observations (GT W > 10 tons)
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Figure 4.7: Empirical pdf of observed yearly GTWs

4.3.2 Fatigue resistance models

Two different S-N models were considered for the fatigue reliability analysis of the Venoge

bridge:

1. ML-MCS-based VA S-N model for the cover-plate data-set with outlier disqualification,

defined in Section 3.4;

2. Eurocode FAT45 S-N curve, with conventional hypothesis for critical damage Dc .

In the ML-MCS-based S-N model, the CA S-N curve is represented by a multivariate Normal

vector, whose parameters are defined in Tables 3.4 and 3.5, while the critical value of damage

sum, Dc , is a Log-Normal random variable, whose parameters are defined in Table 3.12.

In the Eurocode-based S-N model, the slopes and the CAFL of the CA S-N curve are determin-

istic values and the only source of fatigue scatter is represented by the Normal random variable

m0, which is defined according to [73]ii; the critical value of damage sum, Dc , is a log-Normal

iiThe location and the scale parameters of the m0 Normal distribution are computed as follows:

μm0 = ln(FATmed ) = ln
(
10log10(F AT )+2·sR

)
, with sR = 0.033

σm0 = 0.5 · (μm0 − ln(2 ·106)−3 · ln(FAT)
)
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random variable with mean equal to 0 and standard deviation equal to 0.3, according to JCSS

PMC [41].

Values of S-N curve parameters and of Dc parameters are resumed in Table 4.1.

WIM traffic data
WIM traffic data

&
FE model of bridge

WIM traffic data

ML-MCS
S-N model

Eurocode 1993-1-9
S-N model

Θ : [Θ̂,Σ]

Dc = logN (0.27,0.58)

m1 =−3, m2 =−5

CAFL = 33.1 MPa

m0 =N (26.39,0.23)

Dc = logN (0,0.3)

β

β

Table 4.1: Scheme for calculation of β reliability index

4.3.3 Resolution of reliability problem P(E∗
1 )

ML-MCS S-N model

The limit state equation related to the event E∗
1 has been formulated in Equation 4.4.

The S-N model variables
(
m0,m1,m2,σ,V (μV ,σV ),Dc (μD ,σD )

)
are defined in the ML-MCS

VA S-N stochastic model for cover plate data-set with outlier disqualification (see Tables 3.4,

3.5 and 3.12).

In order to compute the weekly loading spectra, (Si ,ni )w |w=1,...,104, the following scheme was

followed:

1. The stress history at the critical section, Sn(t ), was obtained by using the crossing axle

time history, A (t), and the influence line shown in Figure 4.5;

2. The 2-year stress history Sn(t ) was divided in 104 weekly blocks, Sn,w (t )|w=1,...,104

3. From each block the stress range spectrum (Si ,ni )w |w=1,...,104 was computed using a

rain-flow algorithm [22].

This scheme has been implemented in the module ����������	
��� of Matlab Toolbox TB2

(see Appendix B).
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The probability of failure P (E∗
1 ) was computed by using MCS method:

P (E∗
1 ) =

∫
g1(X 1)≤0

fX 1
(x1)d x1 =

ηF

η
(4.10)

where η is the number of simulations performed and ηF is the number of failuresiii. During

each simulation, one value of the limit state function g1(X 1) (see Equation 4.4) is computed,

by sampling a value of the multivariate Normal vector,
(
m0,m1,m2,σ,μV ,σV ,μD ,σD

)
iv, and

by taking ny ·52 stress range spectra, (Si ,ni )w , where ny is the design life in years.

For high values of β the proposed MCS scheme would require a number of simulations too

high (the estimation of β= 6 requires 1011 simulations): in this case the limit state function g1

is re-written as follows:

g1(X 1) = Dc −Dd (4.11)

and the probability of failure P (E∗
1 ) is computed with FORM, after having characterized the

random variable Dd with MCS (using 105 simulationsv).

The MCS resolution scheme proposed in this section has been implemented in the����������	�

and ��
�����
� modules of Matlab Toolbox TB2 (see Appendix B).

Eurocode S-N model

As discussed in Section 4.3.2, in the Eurocode S-N model, the only source of the fatigue

scatter is represented by the normal random variable m0. In this case the simplified approach

proposed by Chen et al. [14] is used for computing P (E∗
1 ); the approach is presented below.

The 104 weekly loading spectra (Si ,ni )w |w=1,...,104 were computed by using the same scheme

as previously presented for the ML-MCS S-N model. Then the weekly sum of m-power stress

ranges was computed as:

rwk =
∑

i
ni (si )−m1 + 1

0.74FATm1−m2

∑
j

n j (s j )−m2 for (k = 1, . . . ,104) (4.12)

Within the assumption that the weekly sum of m-power stress ranges is a Normal random

variable with location parameter μRw and scale parameter σRw , the observed sample rwk was

used to make inference about the distribution parameters. Under the assumption of no-traffic

iiiIf MCS is asked to estimate a probability in the order of 10−y , then approximately 10y+2 simulations are
necessary to achieve an estimate with a coefficient of variance in the order of 10%

ivAt each simulation a different S-N curve and a different value of critical damage sum is considered, by taking
into account the aleatory uncertainty of the S-N curve, of the CAFL and of the critical damage sum. The epistemic
uncertainty of model parameters is also taken into account in repeated sampling of the multivariate Normal vector

vIt was observed that 106 simulations give the same values of Dd distribution parameters as with 105 simulations
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growth, the sum of m-power stress ranges over ny year design life is:

Rd =
ny ·52∑
k=1

Rwk (4.13)

Location parameter μRd and scale parameter σRd were computed by making use of the central

limit theorem [77]:

μRd = ny ·52 ·μRw

σRd = √
ny ·52 ·σRw

(4.14)

The limit state equation g1 was then re-written in function of the Rd random variable:

g1(Rd ,m0,Dc ) = Dc − Rd

exp(m0)
= Dc −Dd (4.15)

Since g1 is a non-linear function of Normal random variables Rd ,m0,Dc , the probability of

failure P (E∗
1 ) was computed by using FORM with Hasofer-Lind approach [38].

4.3.4 Resolution of reliability problem P(E2)

The limit state equation related to the event E2 has been formulated in Equation 4.8.

In order to characterize the random variable zp (return level of maximum stress range), the

stress history was analysed by following the classical extreme value (EV) theory approach.

EV theory approach for estimation of maximum stress range return levels zp

The observed stress history was divided in 104 weekly blocks. Each weekly stress history block

was transformed in a stress range weekly spectrum by using the rain-flow algorithm. From

each weekly spectrum the maximum stress range, smax,w , was extracted.

Within the assumption of constant pattern of variation, the observed smax,w can be mod-

eled as independent observations from a GEV family distribution; the cdf of the GEV family

distribution is defined as follows:

G(z) = exp

{
−
[

1+ξ

(
z −τ

φ

)] −1
ξ

}
= Pr {Smax ≤ z} (4.16)

where τ is the location parameter, φ is the scale parameter, and ξ is the shape parameter.

The estimates of the extreme quantiles of the weekly maximum stress ranges were computed
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by inverting the cdf of the GEV family distribution (see Equation 4.16):

zp =G(z)−1 =
{

τ− φ
ξ

{
1− [− ln(1−p)

]−ξ} for ξ �= 0

τ−φ ln
{− ln(1−p)

}
for ξ= 0

(4.17)

with zp representing the return level for the stress range, which is exceeded one time every p

weeks. The plot zp −p is called return level plot.

The pdf of the GEV family distribution is defined as follows:

g (z) = 1

φ
t (z)ξ+1 exp(−t (z)) (4.18)

where

t (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1+ξ

z −τ

φ

) −1
ξ

for ξ �= 0

exp

(
−z −μ

φ

)
for ξ= 0

Under the assumption that observed maximum stress ranges are independent random vari-

ables which follow a GEV distribution, the negative log-Likelihood function is defined as the

sum of − ln(g (zi )) over the 104 week observed period.

From Equation 4.18 it follows:

nLL(τ,φ,ξ) = 104ln(φ)+
(
1+ 1

ξ

) 104∑
i=1

ln

[
1+ξ

(
zi −τ

φ

)]
+

104∑
i=1

[
1+ξ

(
zi −τ

φ

)] −1
ξ

, for ξ �= 0

(4.19)

provided that 1+ξ
(

zi−τ
φ

)
> 0, for i = 1. . .104.

Or:

nLL(τ,φ,ξ) = 104ln(φ)+
104∑
i=1

zi −τ

φ
+

104∑
i=1

exp

[
−
(

zi −τ

φ

)]
, for ξ= 0 (4.20)

The ML estimate of GEV model parameters,
(
τ̂, φ̂, ξ̂

)
, was obtained by minimizing the negative

log-Likelihood function (see Equations 4.19 and 4.20); since no analytical solution is available

a numerical solution is needed for minimizing the negative log-Likelihood function.

In most cases ξ>−0.5 (the case ξ≤−0.5 is rarely encountered since it corresponds to distri-

butions with a very short bounded upper tail) and the vector
(
τ̂, φ̂, ξ̂

)
follows a multivariate

normal distribution with mean equal to
(
τ,φ,ξ

)
and covariance matrix equal to the inverse of

the observed Fisher information matrix, I (
(
τ,φ,ξ

)
[19].

The assumption of approximate normality of ML estimators was verified and the variance of
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4.3. Study case

the return level, Var(zp ), was computed using the Δ method:

Var(zp ) =
[
∂zp

∂τ
,
∂zp

∂φ
,
∂zp

∂ξ

]T

·Cov(τ,φ,ξ) ·
[
∂zp

∂τ
,
∂zp

∂φ
,
∂zp

∂ξ

]
(4.21)

where Cov(τ,φ,ξ) is the covariance matrix of the vector (τ̂, φ̂, ξ̂).

The validity of the extrapolation of stress range return levels, zp , can be assessed using follow-

ing diagnostic plots:

• Probability plot, which compares the empirical cumulative distribution function, Ge (zi ) =
i /(104+1), and the fitted distribution function, G(zi ) (see Equation 4.16); deviation

from diagonal indicates inaccuracy of the GEV fitting. Since for increasing i both Ge (zi )

and G(zi ) tend to unity, the probability plot is not very useful for large values of p, which

is the zone of greatest interest in extreme value assessment problems;

• Quantile plot, which consists of points
[(

G−1(i /(104+1)), zi
)

, i = 1, . . . ,104
]
; deviation

from the diagonal indicates inaccuracy of the GEV fitting;

• Comparison of the pdf of the fitted GEV distribution with histogram of data. This plot is

less useful then the probability and the quantile plots since the form of histogram varies

with the choice of intervals.

It has to be noticed that the approach presented above is valid if:

1. The series smax,w is stationary: this assumption is realistic for the Venoge study case

and can be verified by checking the diagram of observed maximum stress ranges;

2. The series smax,w is time-independent: this hypothesis is unrealistic for practical appli-

cations. Therefore in practical applications, provided that long-range dependence at

extreme levels is weak, then smax,w follow the same distributional limit laws as those of

independent series [15]. This means that smax,w may be fitted with GEV family distribu-

tion, provided that long-range dependence is eliminated; the GEV model parameters

themselves are different from those that would have been obtained by considering an

independent series, but since the parameters of the GEV family distribution have to be

estimated anyway, this is not relevant.

ML estimation of GEV parameters, validation of zp extrapolation by means of diagnostic plots

and computation of Var(zp ) were implemented in the module ����������	� of the Matlab

Toolbox TB2 (see Appendix B).
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ML-MCS S-N model

The random variable V (μV ,σV ) was defined in the ML-MCS VA S-N stochastic model for cover

plate data-set with outlier disqualification (see Tables 3.4 and 3.5).

Once the random variables V and zp of the limit state equation g2 (see Equation 4.8) were

defined, the probability of failure P (E2) was computed with FORM. The FORM resolution

scheme for computation of P (E2) was implemented in the module ���������� of Matlab

Toolbox TB2 (see Appendix B).

Eurocode S-N model

According to the Eurocode S-N model, the CAFL is a deterministic value, which is determined

by cutting the characteristic S-N curve at 5 · 106 cycles. In order to perform a reliability

analysis on the failure event E2, the CAFL of the median S-N curve, exp(μV ), was computed by

assuming a fatigue log-life standard deviation equal to 0.033 [73] (as for the computation of

parameters of m0, see Table 4.1) and the standard deviation, σV , was determined by assuming

a two-standard deviation difference between the mean and the characteristic value of the

CAFL distribution:

V =N (3.65,0.08) (4.22)

The probability of failure P (E2) was computed again with FORM.

4.4 Results

4.4.1 Event E∗
1 : Critical damage accumulation

Eurocode S-N model

Observed weekly sum of m-power stress ranges and fitted normal distribution are plotted in

Figure 4.8. The probability plot of observed weekly sums is shown in Figure 4.9.

The parameters of the Normal distribution Rw are:

μ̂Rw = 2.35 ·106

σ̂Rw = 6.01 ·105
(4.23)
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4.4. Results

The parameters of the Normal distribution Rd , over the design life, are:

μ̂Rd = 1.22 ·108 ·ny

σ̂Rd = 4.33 ·106 ·�ny
(4.24)

for ny = 1, . . . ,100.

The coefficient of variation of Rw is equal to 0.256, while the coefficient of variation of Rd

ranges from 0.256 (at beginning of design life) to 0.003 (at the end of design life). At the end of

design life almost all randomness of accumulated damage is considered in the variable m0

(see Equation 4.15).

After having defined all random variables in the limit state function g1 (see Equation 4.15), the

reliability index β1 =−Φ−1(P (E∗
1 )) was computed over the design life of the bridge, by using

FORM (see Table 4.2). The results obtained by using FORM were checked by using SORM

(see again Table 4.2): the difference in β1 computation is negligible and use of SORM is not

justified.

It is recalled here that P (E∗
1 ) represents the probability of having critical damage accumulation

(E1), given that CAFL has been exceeded (E2).

ML-MCS S-N model

The 104 weekly stress range spectra were generated by following the scheme presented in

Section 4.3.3 (ML-MCS S-N model). The reliability index β1 = −Φ−1(P (E∗
1 )) was computed

over the design life of the bridge, by using MCS (see Equation 4.10). Values of ML-MCS-based

reliability index β1 are compared to values of Eurocode-based reliability index β1 in Table 4.3.

Years FORM SORM Difference
25 12.028 12.030 <0.01%
50 10.196 10.190 <0.01%
75 9.124 9.122 <0.01%

100 8.363 8.361 <0.01%

Table 4.2: Calculation of β1: Eurocode S-N model

Years Eurocode ML-MCS
25 12.03 11.03
50 10.20 9.86
75 9.12 9.17

100 8.36 8.68

Table 4.3: Calculation of β1: Eurocode vs ML-MCS
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Figure 4.8: Observed weekly sum of m-power stress ranges
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Figure 4.9: Probability plot of observed weekly sum of m-power stress ranges
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Figure 4.10: Observed weekly maximum stress ranges

4.4.2 Event E2: CAFL exceedance

The observed weekly maximum stress ranges, smax,w , over the period 2006-2007, are shown

in Figure 4.10: the assumption of constant pattern of variation, which allows to model the

observed smax,w as independent observations from a GEV family distribution, is supported.

Fit of GEV distributions family to observed smax,w leads to the ML estimate:

(μ̂, σ̂, ξ̂) = (32.08,2.88,−0.37) (4.25)

Cov
(
μ̂, σ̂, ξ̂

)=
⎡⎢⎢⎣

1.7 ·10−3 5.3 ·10−3 4.3 ·10−3

. . . 4.1 ·10−2 −1.2 ·10−2

. . . . . . 9.2 ·10−2

⎤⎥⎥⎦ (4.26)

Since the shape factor, ξ, is higher than -0.5, the hypothesis of asymptotic normality of ML

estimators is supported.

Figure 4.11 represents ẑp against observed values (empirical return levels). The probability

and quantile plots for assessing the accuracy of the GEV model fitted to the observed data
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Figure 4.11: Return level plot of the weekly maximum stress range

Years Eurocode ML-MCS
25 -0.15 -0.94
50 -0.16 -0.94
75 -0.17 -0.94

100 -0.17 -0.94

Table 4.4: Calculation of β2: Eurocode vs ML-MCS

are shown in Figures 4.12 and 4.13. After having defined zp random variable in limit state

function g2 (see Equation 4.8), the reliability index β2 =−Φ−1(P (E2)) was computed over the

design life of the bridge, by using FORM for both Eurocode S-N model and ML-MCS S-N

model.

Computed values of reliability index β2 are presented in Table 4.4.

92



4.4. Results

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Empirical CDF

M
od

el
 C

D
F

Figure 4.12: Probability plot of zp
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Figure 4.13: Quantile plot of zp
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Figure 4.14: Evolution of reliability index β over the design life

4.4.3 Event E1 ∩E2: fatigue failure

According to Equation 4.3, the probability of fatigue failure is given by the product of probabil-

ities P (E∗
1 ) and P (E2); the fatigue reliability index β=−Φ−1(P (E∗

1 ·E2)) was computed using

results of Sections 4.4.1 and 4.4.2.

The evolution of the fatigue reliability index β over the 100 year design life is shown in Figure

4.14, both for the Eurocode S-N model and the ML-MCS S-N model. Following reliability

indexes are also plotted in Figure 4.14 for direct comparison:

• βt EN1990, based on an annual failure probability equal to 1.3 ·10−6, corresponding to

a β annual equal to 4.7 (Reliability class RC2, assuming independency, [23] Annex C,

Chapter C6);

• βt JCSS, based on an annual failure probability equal to 1.3 ·10−5, corresponding to a β

annual equal to 4.2 (Normal relative cost of safety measure and moderate consequence

of failure, assuming independency [41]).
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4.4. Results

S-N model 25y. 50 y. 75 y. 100 y.
EN 1993-1-9 12.03 10.20 9.12 8.36
ML-MCS† 11.03 9.86 9.17 8.68

ML-MCS† traffic growth 1 10.97 8.36 5.53 2.67
ML-MCS† traffic growth 2 11.35 7.44 3.53 1.76

Eurocode1990 3.99 3.83 3.73 3.65
JCSS, PMC 3.40 3.21 3.09 3.00

(†) S-N model with disqualification of outliers

Table 4.5: Calculation of β reliability index

Virtual traffic growth scenarios

In order to assess the impact of future traffic evolution on the fatigue analysis, the effect of

increasing the weekly accumulated fatigue damage was studied (i.e. this effect could be caused

by a change in repartition of vehicle classes or a change in axle weight distribution for a specific

class). Two virtual scenarios were considered (see Figure 4.15): 1) Weekly accumulated damage,

Dw , having a 7% yearly increment of the median value, dw,0.5; and 2) Weekly accumulated

damage, Dw , having a 500% discontinuous increment after 25 and 50 years of the median

value, dw,0.5, as well as a 3% yearly increment of the median value, dw,0.5, starting from the first

discontinuous increment. Furthermore, for both scenarios, it was assumed that the weekly

accumulated damage, Dw , is constant for the first 20 years (from 1995 to now).

It is noted that the considered virtual traffic evolution scenarios take into account only an

increase in number of vehicles and not in truck loads; this cause a change in P (E∗
1 ), while P (E2)

is not affected by the traffic evolution scenarios. The choice of considering only a change in

P (E∗
1 ) is due to the fact that, for the considered Venoge study case, the ML-MCS-based P (E2)

is constantly higher than 80% over the bridge design life (see Table 4.4) and a change in P (E2)

would not have a significant effect on the global probability of failure P (E∗
1 ) ·P (E2).

The evolution of the ML-MCS S-N model-based fatigue reliability index β over the 100 year-

design life, for the two traffic growth scenarios, is shown in Figure 4.16. Figures 4.17 and

4.18 show the histograms and the density maps of sampled (dd ,dc ), respectively for no traffic

growth and traffic growth scenario 2 (for t=100 years). The MCS plot of sampled (dd ,dc ) is

plotted with the limit state function g1 = Dc −Dd in Figures 4.19 and 4.20, respectively for no

traffic growth and traffic growth scenario 2 (for t=100 years).

Table 4.5 shows all computed reliability indexes β and provides a comparison with target

reliability indexes from Eurocode 1990 and JCSS PMC.
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Figure 4.15: Weekly damage growth: Scenarios 1 and 2
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Figure 4.16: Evolution of reliability index β over the design life, considering traffic growth
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Figure 4.18: MCS data histogram and density map for t=100 years. Traffic growth scenario 2
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4.5 Conclusions and discussion

In this Chapter a new framework for fatigue reliability assessment of existing road bridges was

presented, with application to Venoge bridge, a bridge part of the A1 Swiss Motorway.

A two year-continuous registration of WIM data and FE analysis were combined to compute

the time-stress response at one fatigue critical location (welded cover plate, classified as FAT

45 in Eurocode standards [24]). The probability of failure, P f , of the fatigue critical detail and

related reliability index, β, were computed for a 100 year-design life. The failure probability P f

was computed as the product of P (E1|E2) (probability of having critical damage accumulation

conditioned on CAFL exceedance) and P (E2) (probability of CAFL exceedance). Two different

S-N models were used to define fatigue strength of the critical detail: 1) Eurocode S-N model;

and 2) ML-MCS S-N model (see Chapter 3).

Assessment of P (E1|E2) and P (E2) asks respectively for the definition of limit state function g1

and g2.

Concerning the Eurocode S-N model-based limit state function g1 (see Equation 4.15), the

random variables m0 (log-intercept of S-N curve above the CAFL) and Dc (critical damage

sum at failure), were defined according to [73] and [41]. The random variable Rd , representing

the loading term of the limit state equation, was defined by fitting a Normal distribution Rw

(weekly sum of m-power stress ranges) to 104 weekly observations and then applying central

limit theorem in order to switch from Sw parameters to Sd parameters. The density plot (see

Figure 4.8) and the probability plot (see Figure 4.9) provide support to the fitted Normal model.

Concerning the ML-MCS S-N model-based limit state function g1 (see Equation 4.11), the

random S-N model multi-variate vector (including both S-N curve parameters and Dc random

variable) was defined according to the results presented in Section 3.4.

Concerning the limit state function g2 (see Equation 4.8), the random variable V was defined

according to [73], for the Eurocode S-N model-based approach, and according to the results

presented in Section 3.4, for the ML-MCS S-N model-based approach. The maximum stress

range return level, zp , representing the loading term of the limit state function, was defined by

fitting a GEV family distribution to 104 weekly maximum stress ranges and then computing

quantiles of the fitted distribution. Following three diagnostic plots provide support to the

fitted GEV model: 1) The return level plot (see Figure 4.11); 2) The probability plot (see Figure

4.12); and 3) The quantile plot (see Figure 4.13).

Failure probability P (E1) and reliability index β1 were computed by using FORM with Hasofer-

Lind approach, for the Eurocode S-N model-based approach, and by using a MCS scheme,

for the ML-MCS S-N model-based approach. Comparison of the Eurocode-based β1 and

the ML-MCS-based β1 are shown in Table 4.3: for the first 75 years the Eurocode approach

is under-conservative with respect to ML-MCS approach, while for the last 25 years the
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Eurocode approach becomes over-conservative. This difference is due to the combination of

three effects: 1) Different values of S-N curve intercept (see Figure 3.20); 2) Different position

of CAFL (see again Figure 3.20); and 3) Approximation of Eurocode approach which uses the

characteristic value of CAFL for computing m-power stress ranges (instead of considering

CAFL as a random variable).

Failure probability P (E2) and related reliability index β2 were computed for both S-N model

approaches by using FORM with Hasofer-Lind approach. Comparison of Eurocode S-N model-

based β2 and ML-MCS S-N model-based β2 are shown in Table 4.4: the Eurocode approach

is highly unsafe with respect to ML-MCS approach due to the highly under-conservative

estimation of CAFL (see Section 2.5). The probability of CAFL exceedance, P (E2), after 25

years, is equal to 56% according to Eurocode approach, while the ML-MCS approach gives

P (E2) = 83%, which means that ML-MCS approach indicates the CAFL is closely to be surely

exceeded after 25 years.

Figure 4.14 shows the evolution of the reliability index β=−Φ−1(Φ(−β1)·Φ(−β2)) over the 100-

year design life: for both Eurocode and ML-MCS S-N model-based approaches, the reliability

index is greater than βt EN1990 and βt JCSS over whole bridge design life.

In order to assess the impact of future traffic evolution on the fatigue analysis, two very

aggressive virtual traffic growth scenario were considered, the first one having a 7% yearly

increment of the median value of weekly accumulated damage and the second one having a 3%

yearly increment of the median value of weekly accumulated damage with two discontinuous

500% increments after 25 and 50 years. Figure 4.16 shows the evolution of the reliability index

β over the 100 year-design life for the two traffic growth scenarios, based on the ML-MCS

S-N model. The histograms and the density maps of sampled (dd ,dc ) in the ML-MCS S-N

model-based β calculation are shown in Figure 4.17, for no-traffic growth, and in Figure 4.18,

for the traffic growth scenario 2: the median of sampled dd values increases from 0.007 (no

traffic growth) to 0.4 (traffic growth), logically resulting in a significant reduction of β1. This

reduction can be observed also in Figures 4.19 and 4.20, where β1 is proportional to the

distance from the median of sampled (dd ,dc ) to the limit state function (border between

failure domain and no failure domain). The reduction of β1 causes a decrease of β, that can be

observed in Table 4.5.

Figure 4.16 reveals the importance of the choice of target reliability index:

• For the traffic growth scenario 1, the ML-MCS S-N model-based β becomes lower than

βt EN1990 after 92 years, while it becomes lower than βt JCSS after 97 years;

• For the traffic growth scenario 2, the ML-MCS S-N model-based β becomes lower than

βt EN1990 after 73 years, while it becomes lower than βt JCSS after 81 years.
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From the two points above it follows that the limit date, at which an inspection of the critical

detail would be recommended, is postponed by 5 years for the traffic growth scenario 1 and

by 8 years for the traffic growth scenario 2, when adopting JCSS PMC-based target reliability

index instead of the Eurocode1990-based target reliability index.

In conclusion, the reliability analysis framework set up in this Chapter constitutes a powerful

tool to perform fatigue reliability analyses of road bridges using WIM-based realistic char-

acterization of traffic loadings. The use of ML-MCS-based S-N model gives more realistic

characterization of the fatigue strength with respect to the standard approach and allows to

improve the confidence in fatigue reliability analysis.

The considered Venoge bridge study case uses 2006-2007 WIM data and is based on stationary

load sequences; however any additional WIM data-set can be used to update estimated model

and to take in account possible future traffic growth (non-stationary loading sequences):

in this case probability distributions having time-dependent parameters (Dd (μD (t),σD (t)),

zp (τ(t ),φ(t ),ξ(t ))) have to be used for reliability analysis.
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5 Calibration of fatigue partial safety

factors

5.1 Introduction

The safety and serviceability issues in structural design are addressed in structural codes by

defining design equations which compare load effects and resistance. Due to the uncertain

nature of load and resistance terms, these are modeled as random variables. Characteristic

values of random variables and partial safety factors are introduced in order to achieve a target

reliability level. The process of choosing design format, characteristic values, partial safety

factors and target reliability level, by using some reliability methods, is called code calibration.

The problem of reliability based code calibration has been addressed by many authors, [21],

[60], [25] and it has also been implemented in Eurocode 1990 [23].

The typical design equation for the verification of a structural component (see Eurocode 1990)

is:

G = zRc

γM
− (γF 1Ec1 + . . .+γF nEcn

)= 0 (5.1)

where:

• Rc is the characteristic value of resistance;

• z is the design factor;

• γM is the partial safety factor for resistance;

• Eci is the characteristic value of the i th action effect;

• γF i is the partial safety factor for the i th action effect.
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Application of partial safety factors together with characteristic values of resistance and loading

effects ensures a certain level of reliability for the designed structural component.

According to the design Equation 5.1 a reliability analysis can be made with the following limit

state equation:

g = zR − (E1 + . . .+En) = 0 (5.2)

For a given probabilistic model of the basis random variables R and Ei , and for an assigned

value of target failure probability, the optimal design ẑ can be computed, which corresponds

to the required level of target reliability. Having determined the optimal design ẑ, the corre-

sponding design point (Rd ,Edi ) can be computed and the partial safety factors can be derived

as follows:

γM = Rc

Rd
(5.3)

γF i = Edi

Eci
(5.4)

The relation between design values, characteristic values and partial safety factors is illustrated

in Figure 5.1, for the simple case of only one action effect.

Resolution of the code calibration problem asks for: 1) Determination of target reliability level;

and 2) Calibration of partial safety factors.

The choice of target reliability level is generally based on an economic decision theory ap-

proach; this issue is not addressed in this study.

The calibration of partial safety factors is a decision problem, in which partial safety factors are

decision variables which are calibrated by maximizing an objective function. Faber et al.[25]

proposed a practical approach for calibration of partial safety fators, in which the objective

function is formulated as follows:

W (γ) =
L∑

j=1
w j ·

(
β j (γ)−βt

)
(5.5)

where:

• L is the number of load cases;

• w j are the importance factors of different design load cases;

• βt is the target reliability index.
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Partial safety factors γ are computed by minimizing the objective function in Equation 5.5, in

which the reliability index is computed by solving the limit state equation (see Equation 5.2 ),

having determined the optimal design factor ẑ from the design equation (see Equation 5.1).

It is noted that when partial safety factors are calibrated from Equation 5.5 they are not

independent and in the case with one resistance factor and one loading factor only the

product of them can be calculated.

General limit state Equation 5.2 and general design Equation 5.1 can be easily adapted to the

fatigue design case.

In Eurocode standards, three verification schemes are proposed for fatigue design under VA

loadings (see A.6 of EN-1993-1-9 [24]):

1. Verification scheme based on CAFL;

2. Verification scheme based on CA equivalent stress range at 2 ·106 cycles;

3. Verification scheme based on accumulated damage.
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Figure 5.1: Relation between characteristic values, design values and partial safety factors
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Verification scheme 1: based on CAFL

The fatigue design based on CAFL exceedance has to meet the following criterion:

γF f ·Smaxc ≤
CAFL

γM f
(5.6)

where:

• CAFL is the characteristic value of the fatigue limit;

• Smaxc is the characteristic value of maximum loading stress range;

• γF f is the loading partial safety factor, which is set to 1.0;

• γM f is the resistance partial safety factor.

Verification scheme 2: based on CA equivalent stress range

The fatigue design based on CA equivalent stress range has to meet the following criterion:

γF f ·SE ,2 ≤ Sc

γM f
(5.7)

where:

• SE ,2 is the equivalent stress range, reported at 2 ·106 cycles, which is computed by using

Fatigue Load Model (FLM) 3 and λ damage equivalent factors;

• Sc is the characteristic fatigue strength at 2 ·106 cycles (FAT).

Verification scheme 3: based on damage accumulation

The fatigue design based on damage accumulation has to meet the following criterion:

Dd =
Ntot∑

i

ni

Ni
≤ 1.0 (5.8)

where:

• ni is the number of cycles corresponding to the design loading stress range γF f ·Si ;

• Ni is the number of cycles to failure obtained from the factored Sc
γM f

−N curve.
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Design method
Consequence of failure

Low consequence High consequence
Damage tolerant 1.00 1.15

Safe life 1.15 1.35

Table 5.1: Recommended values for γM f , by assuming γF f = 1 (Table 3.1 of [24])

The definition of the partial resistance factor γM f in EN 1993-1-9 (Section 1.4, pp. 9, [24])

is ambiguous because γM f is strictly defined for fatigue strength at 2 ·106 cycles (therefore

relevant only for verification scheme 2), but it is generically applied for fatigue strengths at

any number of cycles (verification schemes 1 and 3).

Recommended values of partial factor γM f are presented in Table 5.1. Proof of calibration

of these values is not available and the real reliability level, β, corresponding to the values

recommended in Table 5.1 is still under debate.

In this Chapter a new framework for calibration of fatigue partial safety factors is presented.

The three different fatigue limit state (FLS) equations are formulated for direct comparison

with the three fatigue design verification schemes proposed in Eurocode 1993-1-9. The VA S-N

model used in this framework is defined using the new ML-MCS approach, which is presented

in Chapters 2 and 3. The target reliability indexes for FLS are based on the recommendations

of JCSS [41]. The Chapter is organized as follows:

• In Section 5.2 the new framework for calibration of fatigue partial safety factors using

ML-MCS S-N model is presented;

• In section 5.3 an application of the framework to two typical bridge fatigue sensitive

welded joints is considered;

• in Section 5.4 results of analyses of the two considered study cases are presented. A

practical example, showing the impact of the choice of design S-N curves on fatigue

design of a road bridge, is also given;

• in Section 5.5 results are discussed and comparison with partial safety factor values

recommended in Eurocode 1993-1-9 is made.

5.2 New framework for partial safety factor calibration

In this section a new framework for calibration of fatigue partial safety factors using ML-MCS

S-N model is presented. The framework includes the three verification schemes which have

been presented in Section 5.1. One different limit state function is formulated for each of

verification schemes.
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Partial safety factors are calibrated for the three different design verification schemes, by using

following general objective function (which is valid for all three verifications):

W (γF f ,γM f ) =
L∑

j=1
w j ·

(
β j (γF f ,γM f )−βt

)2 (5.9)

where:

• γF f is the partial safety factor for fatigue loading;

• γM f is the partial safety factor for fatigue resistance;

• L is the number of load cases;

• w j are the load case importance factors;

• β j are the computed reliability indexes, for j = 1, . . . ,L;

• βt = −Φ−1
(
[Φ(4.2)]100

) = 3.00, is the target reliability index for a 100 year reference

periodi;

The reliability indexes β j are computed by solving the limit state equation for different load

cases ( j = 1, . . . ,L), after having determined the optimal design, ẑ, as solution of the design

equation. Formulation of limit state and design equations for the three considered verification

cases is discussed in following three subsections.

5.2.1 Verification scheme 1: based on CAFL

The design equation, for the generic load case j , is formulated as follows:

G j = z j · CAFL

γM f
−γF f ·Smaxc , j (5.10)

where z j is the design factor and Smaxc , j is the characteristic value of the maximum stress

range, Smax, j . The geometrical interpretation of the resistance partial safety factor γM f is

illustrated in Figure 5.2. Smax is modeled as a Gumbel random variable, G1(μG1 ,σG1 ), having

coefficient of variation equal to:

cvG1
= 1.28

(
σG1 /μG1

)
0.58

(
σG1 /μG1

)+1
(5.11)

ibased on β
1y.
t = 4.2 [41], assuming independency
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Figure 5.2: Resistance partial safety factor, verification schemes 1 and 2

In order to take into account both the effects of position and dispersion of loading term, 20

load cases are built by considering all possible combinations of the following values of μG1

and cvG1
:

μG1 = (
exp(v.05), . . .Δ . . . ,exp(μV )

)
with Δ= (exp(μV )−exp(v.05)

)
/4 (5.12)

cvG1
= (0.20,0.27,0.33,0.40) (5.13)

The optimal design, ẑ j , for the load case j , is computed by solving the design Equation 5.10,

G j = 0, for assigned values of partial safety factors.

The reliability index β j is then computed by solving the following limit state equationii:

g j = ẑ j ·exp(V )−Smax, j (5.14)

iiIt is noted that both the epistemic uncertainty of the model parameters and the aleatory randomness of the
CAFL are taken into account in the definition of the fatigue limit state function
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Figure 5.3: Resistance partial safety factor, verification scheme 3

Fatigue partial safety factors are calibrated by minimizing following objective function:

W (γ) =
20∑

j=1
w j ·

(
β j (γ)−3.00

)2 (5.15)

where w j = 1 for j = 1, . . . ,20, since all load cases have the same importance.

It is noted that when γF f and γM f are determined with Equations 5.10, 5.14, and 5.15, they

are not independent and only the product γF f ·γM f is determined.

5.2.2 Verification scheme 2: based on CA equivalent stress range

The design equation, for the generic load case j , is formulated as follows:

G j = z j · Sc

γM f
−γF f ·SE ,2c , j (5.16)

where z j is the design factor, Sc is the characteristic value of fatigue strength at 2 ·106 cycles,

and SE ,2c , j is the characteristic value of equivalent stress range at 2 ·106 cycles, SE ,2, j .

The geometrical interpretation of the resistance partial safety factor is illustrated in Figure 5.2.
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SE ,2 is modeled as a log-Normal random variableiii, logN2(μN2 ,σN2 ), having coefficient of

variation equal to:

cvN2
=
√

exp(σ2
N2

)−1 (5.17)

In order to take into account both the effects of position and dispersion of loading term, 20

load cases are built by considering all possible combinations of following values of μN2 and

cvN2
:

μN2 = (3.40,3.57,3.75,3.92,4.10) (5.18)

cvN2
= (0.10,0.13,0.17,0.20) (5.19)

The optimal design, ẑ j , for the load case j , is computed by solving the design Equation 5.16,

G j = 0, for assigned values of partial safety factors.

The reliability index β j is then computed by solving the following limit state equationiv:

g j = ẑ j ·S−SE ,2, j (5.20)

Fatigue partial safety factors are calibrated by minimizing the following objective function:

W (γ) =
20∑

j=1
w j ·

(
β j (γ)−3.00

)2 (5.21)

where w j = 1 for j = 1, . . . ,20, since all load cases have the same importance.

It is noted again that when γF f and γM f are determined with Equations 5.16, 5.20, and 5.21,

they are not independent and only the product γF f ·γM f is determined.

iiiModeling the logarithm of the equivalent stress range as a Normal random variable allows for consideration of
the variability on the maximum stress range obtained from fatigue load model as well as of the variabilities on
different λ factors

ivIt is noted that both the epistemic uncertainty of the model parameters and the aleatory randomness of the
fatigue life are taken into account in the definition of the fatigue limit state function

111



Chapter 5. Calibration of fatigue partial safety factors

5.2.3 Verification scheme 3: based on damage accumulation

The design equation, for the generic load case j , is formulated as follows:

G j = dc,.5−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞∫

CAFL
γM f

ntotc, j ·
s ·γF f

2λ2
R

exp

(
− (s ·γF f )2

2λ2
R

)
z j ·Nc (s)

(γM f )−m1

ds +

CAFL
γM f∫

0

ntotc, j ·
s ·γF f

2λ2
R

exp

(
− (s ·γF f )2

2λ2
R

)
z j ·Nc (s)

(γM f )−m2

ds

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(5.22)

where z j is the design factor, dc,.5 is the characteristic value of the critical damage, ntotc, j is the

characteristic value of the total number of cycles and λR is the scale parameter of the Rayleigh

loading spectrum.

The geometrical interpretation of the resistance partial safety factor is illustrated in Figure 5.3.

ntot is modeled as a Gumbel random variable, G3(108,σG3 ), having a coefficient of variation

cvG3
.

In order to take into account both the effects of uncertainty on loading spectrum stress ranges

and uncertainty on total number of cycles, 32 load cases are built by considering all possible

combinations of the following values of λR and cvG3
:

λR : ς= (0.05,0.08,0.11, . . . ,0.25) (5.23)

cvG3
= (0.20,0.27,0.33,0.40) (5.24)

where ς is the percentage of stress range cycles exceeding the characteristic value of the CAFL

(see Figure 5.4). Rayleigh distribution was chosen to model the loading spectrum since this

probability distribution provides a quite accurate characterization of the upper tail of the

spectrum, with only one distribution parameter.

The optimal design, ẑ j , for the load case j , is computed by solving the design Equation 5.22,

G j = 0, for assigned values of partial safety factors. The reliability index β j is then computed

by solving the following limit state equationv:

g j = Dc −

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞∫

exp(V )

ntot j ·
s

λ2
R

exp

(
− s2

2λ2
R

)
ẑ j ·N (s)

ds +

exp(V )∫
0

ntot j ·
s

λ2
R

exp

(
− s2

2λ2
R

)
ẑ j ·Nc (s)

ds

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.25)

vIt is noted that both the epistemic uncertainty of the model parameters and the aleatory randomness of the
CAFL, of the fatigue life and of the critical damage sum, are taken into account in the definition of the fatigue limit
state function
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Figure 5.4: Rayleigh loading spectra, cover plate

Fatigue partial safety factors are calibrated by minimizing the following objective function:

W (γ) =
32∑

j=1
w j ·

(
β j (γ)−3.00

)2 (5.26)

where w j = 1 for j = 1, . . . ,32, since all load cases have the same importance.

As for the previous two verification schemes, it is noted here that when γF f and γM f are deter-

mined with Equations 5.22, 5.25, and 5.26, they are not independent and only a combination

of them is determined.

The framework presented in this Section was implemented in the Matlab Toolbox TB3 (see

Appendix B). The Matlab Toolbox TB3 was validated using the structural reliability analysis

software STRUREL [61].
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Y |V N
(
μY |V ,exp(σ)

)
N

(
μY |V ,exp(σ)

)
V N

(
μV ,exp(σV )

)
N

(
μV ,exp(σV )

)
m0 N (28.66,2.85) N (25.77,0.95)

m1 N (−3.42,0.79) N (−2.67,0.21)

σ N (−0.54,0.20) N (−1.05,0.14)

μV N ( 3.45,0.06) N ( 3.86,0.13)

σV N (−1.62,0.41) N (−1.67,0.50)

Δm 6 5

Dc logN (0.27,0.58) logN (−0.31,0.60)

dc,0.5 1.31 0.74

CAFL 21MPa 30MPa

a05 27.58 25.14

Table 5.2: VA S-N model parameters

5.3 Study cases

The framework built in Section 5.2 was applied to the two fatigue sensitive details already

studied in Chapters 2 and 3: 1) Welded cover plate; and 2) Welded in-plane gusset. The VA S-N

stochastic model of the two considered details is given in Section 3.4.

The parameters of VA S-N curves are resumed in Table 5.2 for the convenience of the reader. It

is recalled that the cover plate detail and the in-plane gusset detail were classified respectively

as FAT45 and FAT50 in Eurocode 1993-1-9.

Verification scheme 1: based on CAFL

In Section 5.2.1 the procedure for calibrating fatigue partial safety factors for verification

scheme 1 was presented. It was noted that only the product of γM f ·γF f could be computed,

since the resistance and load partial safety factors were not independent.

Moreover it is possible to set the load partial safety factor equal to 1.0 by proper choice of the

return period of the characteristic value of the maximum stress range, ρSmax .
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The resistance partial safety factor γ̂M f and the return period ρ̂Smax , corresponding to γF f = 1,

were computed using the following scheme:

1. The resistance partial safety factor γ̂M f = γM f (γF f = 1) was computed by minimizing

the objective Equation 5.15, where the reliability indexes β j were computed by setting

Smax, j = Smaxc , j in Equation 5.14;

2. The γ-characteristic return period plot (see Figure 5.5), which relates the product γM f ·
γF f to the return period of the characteristic value of the maximum stress range, ρSmax ,

was produced by minimizing the objective Equation 5.15, where the reliability indexes

β j were computed by considering ρSmax = (250,500, . . . ,2000) in Equation 5.14;

3. The return period ρ̂Smax was computed by intersecting the γ-characteristic return period

plot with the straight line γF f = 1 (see again Figure 5.5).

γ M
f⋅γ

Ff

ρ, characteristic return period

← ρ̂ (γ
Ff

=1)

γ
Ff

>1

γ
Ff

<1

Figure 5.5: Illustration of γ – characteristic return period plot
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Verification scheme 2: based on CA equivalent stress range

In Section 5.2.2 the procedure for calibrating fatigue partial safety factors for verification

scheme 2 was presented. Also for this verification scheme, it was noted that only the product

of γM f ·γF f could be computed, since the resistance and loading safety factors were not

independent.

Moreover, as for the verification scheme 1, a three step-scheme was set in order to compute

the resistance partial safety factor γ̂M f and the return period ρ̂SE ,2 , corresponding to γF f = 1.

The scheme is the same as the one used for the verification scheme 1, except for objective

Equation 5.21 and limit state Equation 5.20 which were used in place of respectively objective

Equation 5.15 and limit state Equation 5.14.

Verification scheme 3: based on damage accumulation

In Section 5.2.3 the procedure for calibrating fatigue partial safety factors for verification

scheme 3 was presented. Also for this verification scheme, it was noted that only a combination

of γM f ·γF f could be computed, since the resistance and loading safety factors were not

independent.

Moreover, as for the verification schemes 1 and 2, a three step-scheme was set in order to

compute the resistance partial safety factor γ̂M f and the return period ρ̂SNtot
, corresponding

to γF f = 1. The scheme is the same as the one used for the verification scheme 1, except for

objective Equation 5.26 and limit state Equation 5.25 which were used in place of respectively

objective Equation 5.15 and limit state Equation 5.14.
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1

Smax ≤ CAFL

γM f

γ̂M f = 1.80

ρ̂Smax = 750 years

Smax ≤ CAFL

γM f

γ̂M f = 2.27

ρ̂Smax = 500 years

2

SE ,2 ≤ Sc

γM f

γ̂M f = 1.33

ρ̂SE ,2 = 750 years

SE ,2 ≤ Sc

γM f

γ̂M f = 1.26

ρ̂SE ,2 = 1000 years

3

ntot∑
i

ni

N (γM f )
≤ 1.31

γ̂M f = 1.37

ρ̂ntot = 500 years

ntot∑
i

ni

N (γM f )
≤ 0.74

γ̂M f = 1.45

ρ̂ntot = 500 years

Table 5.3: Resistance partial safety factors and related characteristic return periods (γF f = 1.0)

5.4 Results

The resistance partial safety factor, γ̂M f , and the characteristic return period, ρ̂, which allow

to set γF f = 1, are shown in Table 5.3, for the three verification schemes.

An example of the graphical determination of the characteristic return period is given in

Figure 5.6, for the cover plate, verification scheme 1. For each verification scheme, the fatigue

verification criterion is also presented in Table 5.3. It has to be noted that for the verification

scheme 3 (damage accumulation), the computed resistance partial safety factors refer to the

characteristic VA S-N curve determined at Dc = dc,.5 �= 1, and the critical damage used in the

fatigue verification criterion is dc,.5 �= 1. For this reason results for verification scheme 3 can

not be directly compared to Eurocode standards, in which dc,.5 = 1.0.

In Table 5.4, results for verification schemes 1 and 2 are compared to Eurocode standards in

terms of design value of CAFL and of design value of fatigue strength at 2 ·106 cycles. Since

crack formation in the considered details could rapidly lead to structural failure, the case Safe

life, High consequences is chosen in Table 3.1 of EN 1993-1-9 (γM f = 1.35).
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Results for verification scheme 3 are compared to Eurocode standards in terms of design VA

S-N curves, in Figures 5.7 and 5.8. In order to make direct comparison with Eurocode design

S-N curves, the ML-MCS design S-N curves were re-scaled at dc,.5 = 1.0 (see Equation 3.10).
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Figure 5.6: Return level plot, cover plate, verification scheme 1

ML-MCS Eurocode ML-MCS Eurocode

1
CAFL [MPa] 21 33 31 29

CAFLd [MPa] 12 24 14 21

2
Sc [MPa] 46 45 53 40

Sc,d [MPa] 35 33 42 30

Table 5.4: Comparison of design values for verification schemes 1 and 2
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Figure 5.7: Comparison of VA design S-N curves for verification scheme 3, cover plate
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Figure 5.8: Comparison of VA design S-N curves for verification scheme 3, in-plane gusset
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5.4.1 Example of fatigue design based on verification scheme 3

In this section a practical example of fatigue design of a road bridge using damage accumula-

tion criterion (verification scheme 3) is given. This example allows to evaluate the impact of

the choice of design S-N curves on the computed fatigue life.

The Venoge bridge, which was studied in Section 4.3, is considered again in this example.

Two critical details are considered:

1. Welded cover-plate, on the lower flange of the enlargement left bridge at the first mid-

span;

2. In-plane welded gusset, on the lower flange of the enlargement left bridge at the first

mid-span. This detail does not exist in reality and is considered for academic purpose

only.

In order to define the stress range loading spectrum, a Rayleigh probability distribution is

fitted to observed stress ranges at the critical section in the year 2006. The Rayleigh stress

range spectrum, having scale parameter equal to 5.3, is shown in Figure 5.9 (a).

The design value of allowed number of cycles, nd , is computed, for the two considered critical

details, using following equation:

nd = dc,.5∫∞

0

fS(s)

N (s)
ds

(5.27)

where:

• dc,.5 is the characteristic value of critical damage sum. When ML-MCS approach is used,

dc,.5 is equal to 1.31 for the cover plate detail and it is equal to 0.74 for the in-plane gusset

detail; when Eurocode approach is used dc,.5 is equal to 1.0 for both critical details;

• fS(s) is the Rayleigh loading stress range spectrum;

• N (s) is the endurance obtained from the factored Sc
γM f

−N curve. When ML-MCS ap-

proach is used γM f is equal to 1.16 for the cover plate details and it is equal to 1.35 for

the in-plane gusset detail (see Table 5.3); when Eurocode approach is used γM f is equal

to 1.35 for both critical details.
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Figure 5.9: Loading model: (a) Stress range spectrum; (b) Traffic composition according to
2006 WIM measurements

The design value of allowed number of vehicles, nveh , can be computed as follows:

nveh = nd

6∑
i=2

i ·pi

(5.28)

where:

• i is the number of vehicle axles;

• pi is the percentage of vehicles having i axles, according to Figure 5.9 (b).

The comparison between the ML-MCS-based design value of nveh and the Eurocode-based

design value of nveh is presented in Figure 5.10 for the two considered details.

For the cover-plate detail the ML-MCS approach provides slightly higher estimate of design

value of nveh with respect to the Eurocode approach. However, both approaches predict a

fatigue design life higher than 100 years, for a traffic volume, nveh/year ≤ 2 ·106.

For the in-plane gusset detail the ML-MCS approach provides considerably lower estimate of

design value of nveh with respect to the Eurocode approach. Figure 5.11 shows the relationship

between the design life in years and the number of crossing vehicles per year, nveh/year ,

when the in-plane gusset is considered as the critical detail: it is noted that for nveh/year =
1.56 ·106, the Eurocode gives a design life equal to 100 years, which is about 60% of the design

life predicted with ML-MCS approach. For nveh/year = 0.4 ·106 (which is the traffic volume

measured by WIM on Venoge bridge in 2013, see Figure 4.6) the predicted design life increases

from 390 years (Eurocode) to 710 years (ML-MCS).
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Figure 5.10: Comparison of design values of nveh for verification scheme 3
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Figure 5.11: Relationship between design fatigue life and traffic volume, in-plane gusset
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5.5 Conclusions and discussion

This Chapter presented a new framework for calibration of partial safety factors used in fatigue

design of steel bridges.

The presented framework improves consistency in achieving target levels of safety by:

• Defining one different design equation for each of three design verification criteria

proposed in Eurocode standards; this allows to distinguish three different resistance

partial safety factors, γM f , to be used in: 1) Fatigue design based on CAFL; 2) Fatigue

design based on CA equivalent stress range at 2 ·106 cycles; and 3) Fatigue design based

on accumulated damage;

• Defining a method to assess which is the characteristic return period of the load effect

which allows to set γF f = 1.0 in the design equation;

• Using ML-MCS-based S-N curves, which results in a more realistic consideration of the

CAFL and of the fatigue strength in HCF region;

• Using ML-MCS-based VA S-N models, which results in a more realistic consideration of

damage accumulation.

The study cases considered in this Chapter show that:

• Calibration of partial safety factors for verification scheme 1 (based on CAFL) gives

higher values of γ̂M f with respect to the verification scheme 2 (based on equivalent

stress range at 2 ·106 cycles), for both details (see Table 5.3) . This is probably due to the

higher fatigue life scatter in the HCF region with respect to the scatter in the finite life

region;

• The γ̂M f for the verification scheme 1 is considerably higher for the in-plane gusset

(γ̂M f = 2.27) with respect to the cover plate (γ̂M f = 1.80). This is probably due to the

more dispersed CAFL distribution of the in-plane gusset detail with respect to the cover

plate detail (see Figures 2.7 and 2.12);

• For all verification schemes the return period of characteristic load effect, ρ̂, ranges

between 500 and 1000 years (see Table 5.3);

• Eurocode standards give unsafe estimate of the design value of the CAFL, for both

considered details (see Table 5.4). For the in-plane gusset detail this is due to the unsafe

Eurocode-based calibration of resistance partial factor (see Tables 5.1 and 5.3), while
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for the cover-plate gusset this is both due to the unsafe Eurocode-based calibration of

resistance partial factor (see again Tables 5.1 and 5.3) as well as to the unsafe Eurocode-

based estimate of the characteristic value of the CAFL (see Section 2.6);

• Eurocode standards and ML-MCS approach give similar values of γ̂M f for the verifi-

cation scheme 2 (see Tables 5.1 and 5.3). The considerable difference on the design

fatigue strength at 2 ·106 cycles (see Table 5.4), for the in-plane gusset detail, is due to

the over-conservative Eurocode-based estimate of the characteristic fatigue strength

(see Section 2.6);

• Figure 5.7 shows that the Eurocode-based VA design S-N curve of the cover-plate detail is

over-conservative with respect to the ML-MCS-based S-N curve for stress ranges higher

than 19MPa, while it becomes slightly under-conservative for stress ranges lower than

19MPa. Figure 5.8 shows that the Eurocode-based VA design S-N curve of the in-plane

gusset detail is over-conservative with respect to the ML-MCS based S-N curve, at all

stress ranges.

It is noted that the verification scheme 1 is the first mandatory step to carry out in fatigue

design of new bridges (see Figure 5.12): considered study cases show that verification scheme

1 including Eurocode-based design value of CAFL is highly un-safe.

In order to show the impact of the choice of design S-N curves on the fatigue design of a

road bridge, fatigue life was computed for the Venoge bridge, by considering both Eurocode-

based design S-N curves and ML-MCS-based design S-N curves. Results show that, for the

critical in-plane gusset detail, Eurocode standards give a prediction of the allowed number

of crossing vehicles (156 ·106) which is considerably lower than the value predicted by the

ML-MCS approach (251 ·106). For a traffic volume of � 1.5 ·106 heavy vehicles per year, the

design life increases from 100 years (Eurocode) to 160 years (ML-MCS).

The reliability framework for calibration of fatigue partial safety factors, set up in this paper

and applied to two fatigue-sensitive details, constitutes a powerful tool that can be used to

revise the Eurocode basis for fatigue design of structures. The three Eurocode formats for

fatigue design and associated partial safety factors can be revised by considering different

fatigue sensitive details and by further differentiating between: 1) Verification based on CAFL

exceedance; 2) Verification based on equivalent stress range at 2 ·106 cycles, using lambda

factors; and 3) Verification based on damage accumulation.
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Verification 1

Smax ≥ CAFL

γM f

Smax < CAFL

γM f
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spectrum known?

No
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Verification 2
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γM f

Verification 3

ntot∑
i

ni

Ni ,d
≥ dc,.5

ntot∑
i
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< dc,.5

�

�

�

�

�

Figure 5.12: Fatigue design verification chart
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6 Conclusions

The main target of this thesis is to provide a rigorous and reliable probabilistic approach for

estimation of CA and VA fatigue S-N curves of welded joints.

A new method for estimation of CA S-N curves is provided, which gives more insight into

realistic estimation of the CAFL and of the knee point. The novel idea of using MCS method

for computing p quantiles of fatigue life provides characteristic S-N curves which give more

reliable estimation of the fatigue life scatter in the HCF region with respect to existing stan-

dards. The re-definition of the CAFL and of the knee point in current standards is of primary

importance since today, among in-service road steel bridges in Europe, there is a considerable

amount of aged structures which operate in HCF region.

A new method is also provided for re-definition of m2 and Dc variables in Miner’s rule. The

novel idea of re-simulating VA fatigue experimental tests and of using ML method to estimate

the VA S-N stochastic model parameters gives experimental support to the choice of m2 and

Dc and allows to verify the conventional assumptions on Miner’s rule variables which are

made in current standards.

The ML-MCS approach for estimation of CA and VA S-N curves was integrated in the new

reliability analysis framework for fatigue assessment of existing bridges. In the new framework

the probability of fatigue failure is defined by taking into account both damage accumulation

and CAFL exceedance critical events. The re-definition of the fatigue limit state function and

the use of ML-MCS based S-N curves improves the confidence in computed fatigue reliability

indexes.

The ML-MCS probabilistic approach for estimation of S-N curves was also integrated in the

new framework for re-calibration of fatigue design partial safety factors. The new framework

allows for re-visiting the Eurocode basis for fatigue design of new bridges and for re-calibrating

the related partial safety factors, by further differentiating between the three design formats:
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1) Based on CAFL; 2) Based on equivalent stress range at 2 ·106 cycles; 3) Based on damage

accumulation.

6.1 General conclusions

In accordance with the objectives stated in Section 1.3, the main conclusions of this thesis are

summarized as follows:

• The ML-MCS approach proposed in this thesis for estimation of CA S-N curves consti-

tutes a powerful tool for re-definition of standard CA S-N curves of welded joints. Use of

ML method allows to use run-out data for estimation of S-N curves. The novel idea of

using MCS technique to estimate true p-quantiles of fatigue life gives more insight into

realistic estimation of CAFL and knee point position.

According to considered study cases, arbitrarily fixing the CAFL at fixed number of

cycles lead to an un-safe assumption which could be extremely dangerous for fatigue

verifications based on CAFL.

It is recalled that the effectiveness of the proposed ML-MCS approach is conditioned

to the use of experimental CA data-sets which have significant information in the HCF

region. This issue is addressed in Section 6.2;

• The ML-MCS approach proposed in this thesis for estimation of VA S-N models con-

stitutes a powerful tool for re-defining the second slope of S-N curves, m2, as well as

the critical value of the damage sum used in Miner’s rule, Dc . The novel idea of re-

simulating experimental VA fatigue tests and to estimate m2 and Dc with ML method

allows to: 1) Give experimental support to the amount of the reduction of S-N curve

slope, Δm = m1−m2; 2) Give experimental support to the choice of probability distribu-

tion of Dc .

The considered study cases show that the ML-MCS approach gives the most realistic

estimation of failure damage sum with respect to existing standards.

It is also noted that there is strong influence of load sequence on Dc probability distribu-

tion; it follows that realistic load histories should be used for producing VA experimental

results, when the proposed ML-MCS approach is used for re-definition of m2 and Dc in

current standards;

• The reliability analysis framework set up in this thesis allows for performing fatigue

reliability assessment of existing road steel bridges using WIM-based characterization

of traffic load history. Use of ML-MCS-based S-N curves improves the confidence in

fatigue reliability analysis. The novel contribution of the proposed framework consists
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in computing the failure probability as joint probability of: 1) The CAFL exceedance

event; and 2) The critical damage accumulation event.

The considered Venoge bridge study case shows the inaccuracy of Eurocode approach in

assessment of reliability index during the 100 year-design life of the bridge. Additional

study with consideration of two virtual traffic evolution scenarios reveals the importance

of the choice of target reliability indexes, which can lead to a shift of the inspection delay

of several years;

• The new framework set up in this thesis for calibration of fatigue partial safety factors

allows for revising the Eurocode basis for fatigue design of new bridges. Use of ML-MCS-

based VA S-N models gives more insights into realistic consideration of fatigue strength

in HCF region as well as damage accumulation mechanism. New method is proposed to

define the characteristic return period of load effect which allows to set the load partial

factor, γF f equal to unity in the design equation. Revision of resistance partial safety

factor, γM f , can be performed by differentiating between three verification schemes: 1)

Based on CAFL exceedance; 2) Based on equivalent stress range at 2 ·106 cycles, using

lambda factors; and 3) Based on damage accumulation.

Considered study cases do not support the Eurocode assumption of considering the

same γM f for all three verification schemes. Eurocode standards give highly unsafe

estimate of design CAFL, for both study cases: fatigue design based on verification

scheme 1, using Eurocode-based γM f , could be highly dangerous.

It is recalled here that the verification scheme 1 is the first mandatory step in fatigue

design of new bridges, which can be followed by schemes 2 or 3 according to the choice

of the engineer (see Figure 5.12).

More detailed discussion on specific results of each Chapter as well as numerical results of

considered study cases are presented at the end of each Chapter.

6.2 Future works

The results of this thesis provide a strong foundation for future work in fatigue verification

of road steel bridges. The thesis has shown that there is a need of more CA and VA fatigue

experimental results in the HCF region. Four areas of future work have been identified as

follows:

• Re-definition of CA S-N curves in Eurocode standards;

• Re-definition of Miner’s rule in Eurocode standards;
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• Revision of Eurocode formats for fatigue design and re-calibration of associated partial

safety factors;

• Inclusion of the bi-linear CA S-N model without CAFL into the ML-MCS approach.

The following Section proposes future work in these four areas.

Re-definition of CA S-N curves in Eurocode standards

In order to re-define CA S-N curves of welded joints in Eurocode standards, a fatigue test

program should be carried out according to following steps:

1. Choice of details to include in the re-definition of Eurocode standards (i.e. longitudinal

attachment, transversal attachment, cover plate, T-joint, . . . );

2. CA fatigue testing of selected details. It is recommended to use stress ranges varying

from 1.5 ·FATEN to 0.5 ·CAFLEN, where FATEN and CAFLEN are respectively the FAT and

the CAFL of tested details, according to EN 1993-1-9. A minimum number of three data

points is required for each stress range level. Experimental tests in which N = 108 will be

reached without failure will be classified as run-outs. Use of the scheme recommended

above will ensure to have significant CA experimental results in the HCF region;

3. Estimation of CA S-N stochastic models as well as characteristic S-N curves of considered

details, using ML-MCS approach. Matlab Toolbox TB1 (see Appendix B) should be used.

Re-definition of Miner’s rule in Eurocode standards

Once the CA S-N stochastic model has been estimated for the selected details, a VA fatigue test

program needs to be carried out in order to re-define S-N curve second slope, m2, and critical

damage, Dc . Following steps should be followed:

1. VA fatigue testing of selected details. Due to the strong influence of load history on the

critical damage sum Dc , it is recommended to use realistic loading spectra for VA tests;

one possibility would be to repeatedly apply real road bridge recorded load histories to

to the tested specimens.

It is recommended to use a number of cycles, ñtot , for each loading spectrum, such that:
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smax∫
exp(μ̂V )

ñtot · f̃S(s)

N (s)
ds ≤ 3.0 (6.1)

where f̃S(s) is the loading spectrum, smax is the maximum stress range of the loading

spectrum, μ̂V is the ML estimate of median value of log-CAFL and N (s) is the number

of cycles to failure according to median CA S-N curvei. Experimental tests in which

ntot will be reached without failure will be classified as run-outs. Use of the scheme

recommended above will ensure to have significant VA experimental results in the HCF

region.

It is recommended to use stress range loading spectra which have ς varying from 0.5 to

0.05,where ς is the percentage of stress range cycles exceeding the characteristic value

of the ML-MCS based CAFL. A minimum number of five different load spectra should

be used and a minimum number of three data points is required for each stress range

loading spectrum;

2. Estimation of VA S-N stochastic models of considered details, which include m2 =
(m1 −Δm) and Dc , using ML-MCS approach. Matlab Toolbox TB1 (see Appendix B)

should be used.

Revision of Eurocode formats for fatigue design and re-calibration of associated partial

safety factors

Once the CA and VA S-N stochastic models of selected details have been estimated, the three

Eurocode formats for fatigue design can be revised using the framework developed in Chapter

5. Matlab Toolbox TB3 (see Appendix B) should be used to re-calibrate partial resistance

factors associated to the three verification formats.

A further improvement may be introduced in the developed framework, by considering realis-

tic loading spectra instead of simple Rayleigh loading spectra.

Inclusion of the bi-linear CA S-N model without CAFL into the ML-MCS approach

The ML-MCS approach presented in this work is based on linear CA S-N curve having random

CAFL. The existence of CAFL is still a topic for debate; Sonsino [68] suggests that CAFL does

iAccording to results presented in Chapter 3, dc = 3.0 is higher than the 0.9 quantile of Dc distribution for
both cover-plate and in-plane gusset study cases: the choice of dc = 3.0 in Equation 6.1 will then ensure to have a
significant run-out if the experimental test ends without a failure after ñtot cycles
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not exist and that stress range cycles below the knee point should be accounted with a slope

m′
1 = −22. The knee point is arbitrarily fixed at 107 cycles; due to the lack of experimental

results in the HCF region, m′
1 =−22 is arbitrarily chosen in order to have a 10% constant stress

range decrease with respect to the log(N ) axis. The ML-MCS approach presented in this thesis

can be adapted to a bi-linear S-N model having a slope m′
1 =−22 for stress range cycles below

the knee point.
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N (m0 +m1 · (ln(S)), exp(σ))

N (m0 + μXk
(22 + m1)− 22X, 22 · exp(σXk

))

N

S

Figure 6.1: Bi-linear S-N curve without CAFL

The bi-linear model should be defined as follows:

Y =
{

m0 +m1X +ε
(
0,exp(σ)

)
, for X > Xk

m0 +μXk (22+m1)−22X +ε
(
0,22 ·exp(σXk )

)
, for X ≤ Xk

(6.2)

where μK and exp(σK ) are respectively the location and the scale parameters of the Xk random

variable, which represents the natural logarithm of the stress range at the knee point (see

Figure 6.1).

Thereafter, the model parameter vector, θ, relative to the S-N model with random CAFL, should

be transformed as follows:

θ = (m0,m1,σ,μV ,σV ) → θ = (m0,m1,σ,μXk ,σXk ) (6.3)

As for the case of the S-N model with CAFL, the ML-MCS approach has the advantage of

estimating the knee point instead of arbitrarily assuming its position.

Future work is required for: 1) Implementing the CA bi-linear S-N model into the ML-MCS ap-

proach; and 2) Validating it with experimental data-sets which contain significant information

in the HCF region.
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Appendix A. Confidence and prediction bounds for fatigue S-N curves

A.1 Confidence intervals

In parameter inference, an interval estimator is a rule which specifies the method that we

have to use to compute the bounds of the interval which will contain the target parameter.

Ideally, the interval will have two properties: 1) It will contain the target parameter, θ; 2) It will

be relatively narrow. The bounds of the interval are computed from the sample measurements

and will vary randomly from sample to sample; hence, the location and the length of the

interval is a random quantity and we can not be certain that the target parameter, θ, will fall

into the interval computed from one single sample. Interval estimators are commonly called

confidence intervals; the probability that that θ will fall into a random confidence interval is

called confidence level. The confidence level gives the fraction of time, in repeated sampling,

that the computed confidence intervals will contain θ.

Let θl and θu denote the random lower and upper confidence interval bounds, respectively

for the parameter, θ.

Then, if:

P (θl ≤ θ ≤ θu) = 1−α (A.1)

the probability (1−α) is the confidence level associated with the confidence interval [θl ,θu].

A.2 Large sample confidence intervals

A.2.1 Confidence interval for the mean

Let (Y1, ...,Yn) be a random sample of size n from a normal distributions with mean, μ and

standard deviation, σ.

Then the sample mean:

Y = 1

n

n∑
i=1

Yi (A.2)

is normally distributed with mean, μY and standard deviation, σY =σ/
�

n.

Then the random variable:

Z = Y −μY

σY

= Y −μ

σ/
�

n
(A.3)

has a standardized normal distribution, with:

P

(
Y + z α

2

σ�
n
≤μ≤ Y + z 1−α

2

σ�
n

)
= 1−α (A.4)
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tα/2 t1−α/2

1 − α

pd
f

Figure A.1: Student’s T probability density function

The (1−α) ·100% confidence interval for μ is:(
Y + z α

2

σ�
n

,Y + z 1−α
2

σ�
n

)
(A.5)

If the parameter σ is unknown we can substitute σ for the sample standard deviation, σ̂:

σ̂= 1

n −1

n∑
i=1

(Yi −Y )2 (A.6)

In this case the random variable:

T = Y −μ

σ̂/
�

n
(A.7)

has a Student’s T distribution (see Figure A.1) with n degrees of freedom and the (1−α) ·100%

confidence interval for μ is:(
Y + t α

2

σ̂�
n

,Y + t 1−α
2

σ̂�
n

)
(A.8)
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A.2.2 Confidence interval for the standard deviation

Let (Y1, ...,Yn) be a random sample of size n from a normal distribution with mean, μ, and

standard deviation, σ.

Then the random variable:

(n −1)σ̂2

σ2 = 1

σ2

n∑
i=1

(Yi −Y )2 (A.9)

has a Chi-squared distribution with n −1 degrees of freedom (see Figure A.2). The (1−α)100%

confidence interval for σ is:⎛⎝ (n −1)σ̂2

χ2
1− α

2 ,n−1

,
(n −1)σ̂2

χ2
α
2 ,n−1

⎞⎠ (A.10)

The central limit theorem

The results given in Section A.2 are valid if (Y1, ...,Yn) is a random sample of size n from a Nor-

mal distribution; what happens if random variables (Y1, ...,Yn) are not normally distributed?

We can invoke the central limit theorem (see [77], p. 370). Let (Y1, ...,Yn) be independent and

identically distributed random variables, with E(Yi ) =μ, and Var(Yi ) =σ2.

If we define the random variable:

Y ∗ = Y −μ
σ�
n

(A.11)

the distribution function of Y ∗ converges to the standard Normal distribution as n → ∞
(usually n > 30 is accepted). In that case results shown in Section A.2 remain valid.

A.3 Confidence intervals of S-N curves - IIW approach

S-N curves are estimated using experimental results from CA fatigue experimental tests. Each

experimental test is represented by a couple (xi = ln(Si ), yi = ln(Ni )), where Si is the nominal

applied stress range and Ni is the number of cycles until the failure (or run-out if the test

has been stopped without failure). Within the assumption that the logarithm of number of

cycles Y (X ) is a Normal random variable, then each experimental result yi (xi ) can be seen as

a realization of the Normal random variable Y (X ).

The information contained in the experimental dataset can be used to make inferences about

the random variable Y (X ) from which the sample is taken. The Normal random variable Y (X )

is defined by the location parameter, μY , and by the scale parameter, σY .
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χ2

α/2 χ2

1−α/2

1 − α

pd
f

Figure A.2: Chi-squared probability density function

According to IIW recommendations [40] the linear model:

Y (x) = m0 +m1x +ε(0,σ) (A.12)

represents the response function traced by Y over the experimental region of interest.

The sample mean:

ŷ(x) = m̂0 +m̂1x (A.13)

is a point estimator of μY (x) and can be computed using a least-squares (LS) approach: the

sum of differences between the observed yi and the predicted (m̂0+m̂1xi ) is minimized. Only

the failure points are considered.

The LS unbiased estimators of model parameters are:

m̂1 =
n ·

n∑
i=1

(
xi · yi

)− n∑
i=1

xi ·
n∑

i=1
yi

n ·
n∑

i=1
(xi )2 −

(
n∑

i=1
xi

)2 (A.14)

m̂0 = y −m̂1x (A.15)
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The sample standard deviation:

σ̂=
√

1

n −2

n∑
i=1

(
yi − ŷ(xi )

)2 (A.16)

is an unbiased point estimator of σY and is independent of both m̂0 and m̂1, under the

assumption of normality of error term, ε(0,σ) (see p.582 in [77]).

As shown in Section A.2.1, the 75% two-side confidence interval for μY (x) is:(
ŷ(x)+ t.125,n−2

σ̂�
n

, ŷ(x)+ t.875,n−2
σ̂�
n

)
(A.17)

Note that Student’s T distribution with n−2 degrees of freedom is used since the mean function

is defined using two independent parameters, m0, and m1.

As shown in Section A.2.1, the 75% two-side confidence interval for σ2
Y is:

(
(n −2)σ̂2

χ2
.875,n−2

,
(n −2)σ̂2

χ2
.125,n−2

)
(A.18)

Note that the Chi-squared distribution with n −2 degrees of freedom is used.

According to IIW recommendations the characteristic S-N curve is obtained by translating the

median S-N curve (coincident with mean S-N curve) at the .05 quantile of the Y (x) Normal

distribution, by using the lower bound of the 75% two-side confidence interval of μY (x) and

the upper bound of the 75% two-side confidence interval of σY .

The equation of the characteristic S-N curve is then:

y = m̂0 +
(

t.125,n−2�
n

+−1.645

√
n −2

χ2
.125,n−2

)
· σ̂+m̂1x (A.19)

The issue of the estimation of the CAFL position is not addressed.
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A.4 Prediction intervals

Let’s consider the linear model expressed by the Equation A.12. In the previous section we

discussed the method to estimate confidence intervals for μY and σY .

Now we discuss a different problem: the distribution of the random variable Y (x) =N (m0 +
m1x,σ) being known, we want to predict the particular response Y (x) that we will observe if

the experiment is run at some time in the future; we are interested in predicting the value of

Y when x = x∗, called Y ∗. It is possible to show (proof is omitted in this document) that the

interval:⎛⎜⎜⎜⎝m̂0 +m̂1x∗ + t α
2 ,n−2σ̂ ·

√√√√√1+ 1

n
+ (x∗ −x)2

n∑
i=1

(xi −x)2
,m̂0 +m̂1x∗ + t 1−α

2 ,n−2σ̂ ·
√√√√√1+ 1

n
+ (x∗ −x)2

n∑
i=1

(xi −x)2

⎞⎟⎟⎟⎠
(A.20)

in repeated sampling will contain the actual value of Y ∗ with probability 1−α. Equation A.20

represents a 100 · (1−α)% hyperbolic prediction interval for Y ∗.

A.5 Prediction intervals of S-N curves - Eurocode approach

Statistical method for assessment of mean S-N curve, that is discussed in section A.3, is used

again in Commentary to Eurocode 3 document [29].

The characteristic S-N curve is then obtained by translating the median S-N curve at the 5%

lower hyperbolic prediction bound of Y , in correspondence of N = 2 ·106 cycles:

m̂0 +m̂1xcLS + t.05,n−2 · σ̂ ·
√√√√√1+ 1

n
+ (xcLS −x)2

n∑
i=1

(xi −x)2
(A.21)

where xcLS is the LS estimate of log-strength at 2 ·106 cycles.

The equation of the characteristic S-N curve is then:

y = m̂0 + t.05,n−2 · σ̂ ·
√√√√√1+ 1

n
+ (xcLS −x)2

n∑
i=1

(xi −x)2
+m̂1x (A.22)
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A.6 Discussion

Two different statistical methods for assessment of characteristic S-N curves are recommended

from IIW and Eurocode. According to the Commentary to Eurocode 3 Part 1-9, the character-

istic S-N curve is obtained by translating the median S-N curve at the .05 lower hyperbolic

prediction bound of Y , in correspondence of N = 2 · 106 cycles; instead according to IIW

recommendations the characteristic S-N curve is obtained by translating the median S-N

curve at .05 quantile of the Y (x) Normal distribution, by using the lower bound of the 75%

confidence interval of μY (x) and the upper bound of the 75% confidence interval of σY .

If we compare characteristic values Yc,IIW and Yc,EN3 at a reference log-stress range, x∗, we

have:

• Yc,IIW is the .05 quantile of the Normal distribution Ỹ (x∗) with parameters μY ,l and σY ,u ,

where μY ,l is the lower bound of the 75% confidence interval for μY (that is the interval

which in repeated sampling will contain the actual value of μY with probability 75%)

and σY ,u is the upper bound of the 75% confidence interval for σY (that is the interval

which in repeated sampling will contain the actual value of σY with probability equal to

75%);

• Yc,EN3 is the lower bound of the 95% prediction interval for Y (x∗); it represents the lower

bound of the interval that will contain the value Y (x∗) with probability equal to 95%, if

the experiment at x = x∗ is run at some time in the future.

Following numerical example shows the difference between the IIW-based statistical approach

and the Eurocode-based statistical approach in estimation of the characteristic strength at

2 ·106 cycles.

S [MPa] N [MPa] x = log(S) y = log(N ) x · y x2 y2 (x −x)2

108 1077000 2.0334 6.0322 12.2661 4.1348 36.388 0.0486
108 800000 2.0334 5.9031 12.0035 4.1348 34.8465 0.0486
139 597000 2.1430 5.7760 12.3780 4.5925 33.3619 0.0123
139 537000 2.1430 5.7300 12.2794 4.5925 32.8326 0.0123
202 204000 2.3054 5.3096 12.2406 5.3146 28.1922 0.0027
202 188000 2.3054 5.2742 12.1588 5.3146 27.8167 0.0027
202 107000 2.3054 5.0294 11.5945 5.3146 25.2947 0.0027
265 79000 2.4232 4.8976 11.8682 5.8721 23.9868 0.0287
265 70000 2.4232 4.8451 11.7409 5.8721 23.4750 0.0287
265 42000 2.4232 4.6231 11.2033 5.8721 21.3744 0.0287

Sum → 22.5387 53.4204 119.7331 51.0149 287.5684 0.2158

Table A.1: Numerical table
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A.6.1 Numerical example

Fatigue test results from the numerical example in Section 5.3 of Commentary to Eurocode 3

Part 1-9 (p.122 in [29]) are considered; the experimental stress ranges, S, and number of cycles

to failure, N , are presented in the first two columns of Table A.1.

The S-N curve parameters and the sums of square deviations are computed by using numerical

results presented in Table A.1:

m̂1 =
n ·

n∑
i=1

(
xi · yi

)− n∑
i=1

xi ·
n∑

i=1
yi

n ·
n∑

i=1
(xi )2 −

(
n∑

i=1
xi

)2 = 10 ·119.7331−22.5387 ·53.4204

10 ·51.0149−22.53872 =−3.102

m̂0 = y −m̂1x = 12.334

Sxx =
n∑

i=1
x2

i −

(
n∑

i=1
xi

)2

n
= 51.0149− 22.53872

10
= 0.216

Sy y =
n∑

i=1
y2

i −

(
n∑

i=1
yi

)2

n
= 287.5684− 53.42042

10
= 2.194

Sx y =
n∑

i=1
xi · yi −

n∑
i=1

yi ·
n∑

i=1
yi

n
= 119.7331− 22.5387 ·53.4204

10
=−0.669

where n = 10 is the sample size.

The logarithm of the stress range at 2 ·106 cycles, on the mean regression line, is:

xcLS =
log(2 ·106)−m̂0

m̂1
= log(2 ·106)−12.334

−3.102
= 1.945

The sample standard deviation is:

σ̂ =
√

Sy y −m̂1 ·Sx y

n −2
=
√

2.194+3.102 · (−0.669)

8
= 0.1214
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Appendix A. Confidence and prediction bounds for fatigue S-N curves

IIW approach

By using t.125,8 =−1.240 and χ2
.125,8 = 3.797 in Equation A.19, the characteristic S-N curve for

the considered data-set is obtained:

y = m̂0 +
(

t.125,n−2�
n

−1.645

√
8

χ2
.125,8

)
· σ̂+m̂1x = 12.334−0.338−3.102 · x

The characteristic value of the logarithm of the stress range at 2 ·106 cycles is:

xc = log(2 ·106)−12.334+0.338

−3.102
= 1.836

It follows:

Sc = 10xc = 68.53 MPa

Eurocode approach

By using t.05,8 = −1.860 in Equation A.22, the characteristic S-N curve for the considered

data-set is obtained:

y = m̂0 + t.05,n−2 · σ̂ ·
√√√√√1+ 1

n
+ (xcLS −x)2

n∑
i=1

(xi −x)2
+m̂1x = 12.334−0.280−3.102 · x

The characteristic value of the logarithm of the stress range at 2 ·106 cycles is:

xc = log(2 ·106)−12.334+0.280

−3.102
= 1.854

It follows:

Sc = 10xc = 71.50 MPa

In this case Eurocode approach gives slightly higher estimate of the characteristic strength at

2 ·106 cycles, with respect to IIW approach (+ 4.4%).
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B Matlab Toolboxes
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Appendix B. Matlab Toolboxes

B.1 Toolbox TB1

CAestimation

CAdataset:(
xi , yi ,δi

)
θ̂ , ρ CAquantiles

θ̂ , ρ ,

m.05 ,

CAFL.05

CAmodel:

θ̂ , ρ , m.05 , CAFL.05

m.05 ,

CAFL.05
θ̂ , ρ

VAsamgener

nLLi |Δm̃ ,

μDi |Δm̃ ,

σDi |Δm̃

VApostproc

Θ̂ ,

Σ ,

Δm̂

VAmodel:

Θ̂ , Σ , m.05 , CAFL.05

nLLi |Δm̃ ,

μDi |Δm̃ ,

σDi |Δm̃

Θ̂ ,

Σ ,

Δm̂

VApostproc-NOtbox

VAdataset:(
�i , yi ,δi

)

ln(CAFL) =
⎧⎨⎩N

EV

cut−off =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.5 ·CAFL

14.6 MPa

no

D =
⎧⎨⎩LogN

Wbl

Legend:

Workspace

Module

User’s choice

This Toolbox is available for download at: ����������	
�������
��	�
������
���������������
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B.2. Toolbox TB2

B.2 Toolbox TB2

WIMdataset +

Influence line

TrafficAnalysis

T

Trafficdata

A

Axledata

(Si ,ni )w

Weeklydata

(Si ,ni )w

E2definition

E1definition

(
τ̂, φ̂, ξ̂

)
Cov

(
τ̂, φ̂, ξ̂

)

Dd

RelAnalysis

(
τ̂, φ̂, ξ̂

)
Cov

(
τ̂, φ̂, ξ̂

) β2

E2betacalc

Dd β1

E1betacalc

β1,β2

β
Betacalc

CAFL distribution:

μ̂V , σ̂V , C (μV ,σV )

S-N model:

Θ̂, Σ(Θ)

Legend:

Workspace

Module

User’s choice

This Toolbox is available for download at: ����������	
�������
��	�
������
���������������
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Appendix B. Matlab Toolboxes

B.3 Toolbox TB3

Choice of the

verification scheme:

1/2/3

S-N model:

Θ, Σ, a.05, v.05

GAMMAsearchDES

γ̂M f

GAMMAsearch

PSF:

γ̂M f , ρ̂

γ M
f⋅γ

Ff

ρ

γFf=1

ρ̂, γ̂M f

Legend:

Workspace

Module

User’s choice

This Toolbox is available for download at: ����������	
�������
��	�
������
���������������

148



Bibliography

[1] ASTM Standard E1049, 2001. In R F Allen, N C Baldimi, E L Gutman, E Keefe, C M

Leinweber, V A Mayer, P A McGee, K A Peters, T J Sandler, A Whealen, and R F Wilhelm,

editors, Annual Book of ASTM Standards, pages 739–748. ASTM, Lausanne, 2001.

[2] AASHTO. AASHTO LFRD Bridge Design Specifications Customary U.S. Units, 2012.

[3] P Albrecht, H Lu, K Jung, H J Liu, and J G Cheng. Long life variabl-amplitude fatigue

strength of welded steel bridge details. Technical report, Federal Highway Administration,

Lausanne, 1994.

[4] P Albrecht and K Yamada. Simulation of service fatigue loads for short span highway

bridges. In ASTM STP 671, Lausanne, 1979.

[5] Pedro Albrecht and Akhrawat Lenwari. Variable-Amplitude Fatigue Strength of Struc-

tural Steel Bridge Details: Review and Simplified Model. Journal of Bridge Engineering,

14(4):226–237, 2009.

[6] Doobyong Bae. Experimental study on fatigue strength of in-plane welded gusset joints.

KSCE Journal of Civil Engineering, 8(1):89–93, 2004.

[7] S F Bailey. Basic principles and load models for the structural safety evaluation of existing

road bridges. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1996.

[8] Claudio Baptista. Multiaxial Fatigue In Welded Steel Bridge Analysis. DRAFT November

2015. PhD thesis, Lausanne, 2015.

[9] D Benoit, H P Lieurade, and M Truchon. Fatigue behaviour under programmed loading

of welded cruciform and butt joints in steel E355. ECSC Report 6210. Technical report,

Lausanne, 1977.

[10] S Berge. Residual stress and stress interaction in fatigue testing of welded joints. Report

SK/R55. Technical report, University of Trondheim, Lausanne, 1981.

149



Bibliography

[11] J Bogren and L Lopez Martinez. Spectrum fatigue testing and residual stress measure-

ments on non-load carrying fillet welded test specimens. In A.F. Blom, editor, Proceedings

of the Nordic Conference on Fatigue, Lausanne, 1993. EMAS.

[12] E Brühwiler and Jean-Paul Lebet. Updating of traffic loads on existing bridges. In IABSE,

editor, Codes in Structural Engineering Developments and Needs for International Practice,

Lausanne, 2010.

[13] O Burdet. Pont sur la Venoge ( VD ) côté Jura , après la solidarisation, Rapport d’essai de

charge statique. Technical Report Vd, EPFL, IBAP, Lausanne, 1997.

[14] Z. W. Chen, Y. L. Xu, and X. M. Wang. SHMS-Based Fatigue Reliability Analysis of Multi-

loading Suspension Bridges. Journal of Structural Engineering, 138(3):299–307, 2012.

[15] Stuart G. Coles. An introduction to Statistical Modeling of Extreme Values. Lausanne,

2001.

[16] C Crespo-Minguillón and JR Casas. A comprehensive traffic load model for bridge safety

checking. Structural Safety, 19(4):339–359, 1997.

[17] L D’Angelo. Calibration of Finite Element Model of Venoge Bridge. EPFL-REPORT-210514.

Technical report, EPFL, Lausanne, 2013.

[18] L D D’Angelo, A Nussbaumer, M Fénart, and A Dumont. Fatigue life assessment of

existing motorway bridge. In A Zigoni, editor, Proceedings of 5th International Conference

on Structural Engineering, Mechanics and Computation, Cape Town, September 2-5, 2013,

volume 5, pages 757–761, Lausanne, 2013.

[19] T de Oliveira. Threshold methods for sample extremes. Reidel Dordrecht, Lausanne, 1984.

[20] Elber W. Fatigue Crack Closure Under Cyclic Tension. Engineering Fracture Mechanics,

2(1):37–45, 1970.

[21] B Ellingwood, James G MacGregor, T V Galambos, and C A Cornell. Load Factors and

Load Combinations. Journal of the Structural Division, 108(5):978–997, 1982.

[22] T Endo, K Mitsunaga, K Takahashi, K Kobayashi, and M Matsuishi. Damage evaluation of

metals for random or varying loading: three aspects of rain flow method. In Proceedings

of Symposium on Mechanical Behaviors of Materials, pages 371–380, Lausanne, 1974.

[23] European Committee for Standardization. Eurocode EN 1990 - Basis of structural design,

2001.

150



Bibliography

[24] European Committee for Standardization. Eurocode 3: Design of steel structures - Part

1-9: Fatigue, 2005.

[25] M H Faber and J D Sø rensen. Applications of Statistics and Probability in Civil Engineer-

ing. In A Der Kiureghian, S Madanat, and J M Pestana, editors, Proceedings of the 9th

International Conference on Applications of Statistics and Probability in Civil Engineering,

pages 927–935, Lausanne, 2003. Millpress.

[26] John W Fisher, A Nussbaumer, Peter B Keating, and B T Yen. Resistance of Welded

Details Under Variable Amplitude Long-Life Fatigue Loading. Technical report, National

Cooperative Highway Research Program, Lausanne, 1993.

[27] John W Fisher and Robert E Slockbower. Fatigue resistance of full scale cover-plated

beams. Technical report, Fritz Engineering Laboratory, Lausanne, 1977.

[28] N E Frost, K J Marsh, and L P Pook. Metal fatigue. Dover, Lausanne, 1999.

[29] Sedlacek G, A Hobbacher, A Nussbaumer, J Stotzel, and D Schafer. Commentary to

Eurocode 3. Part 1-9 - Fatigue, 2014.

[30] E Gassner. Endurance stresses and fatigue life of a mild steel weld under different types

of load spectra. Welding Research Abroad, 11(4):23–477, 1965.

[31] Z Guédé, B Sudret, and M Lemaire. Life-time reliability based assessment of structures

submitted to thermal fatigue. International Journal of Fatigue, 29(7):1359–1373, 2007.

[32] Tong Guo, Dan M. Frangopol, and Yuwen Chen. Fatigue reliability assessment of steel

bridge details integrating weigh-in-motion data and probabilistic finite element analysis.

Computers and Structures, 112-113:245–257, 2012.

[33] Tim Gurney. Fatigue of welded structures. Cambridge University Press, Lausanne, 2nd

edition, 1979.

[34] Tim Gurney. Fatigue tests on fillet welded joints under variable amplitude loading. TWI

Research Report, No. 293/1985. Technical report, Lausanne, 1985.

[35] Tim Gurney. Fatigue tests on fillet welded joints in steel under simulated wide band type

loading. TWI Reasearch Report, No. 365/1988. Technical report, Lausanne, 1988.

[36] E Haibach. Modifizierte lineare Schadensakkumulations-Hypothese zur Berücksichtigung

des Dauerfestigkeitsabfalls mit fortschreitender Schädigung. , Juli 1970, TM Nr. 50/70.

Laboratorium für Betriebsfestigkeit, Lausanne, 1970.

151



Bibliography

[37] E Haibach. The allowable stresses under variable amplitude loading of welded joints. In

The Welding Institute, editor, Proceedings of the conference on fatigueof welded structures,

pages 328–346, Lausanne, 1971.

[38] A M Hasofer and N C Lind. An exact and invariant first order reliability format. Journal of

the Engineering Mechanics Division ASCE, 100:111–121, 1974.

[39] Hirt and M Crisinel. La resistance à la fatigue des poutres en âme pleine composées-

soudées. Technical report, Ècole Polytechnique Fédérale de Lausanne, Lausanne, 1975.

[40] A Hobbacher. IIW document IIW-xxxx-13 Recommendations for fatigue design of welded

joints and components, 2013.

[41] Joint Committee Structural Safety. JCSS Probabilistic Model Code: Resistance Models,

2013.

[42] W. S. Kim and I. Lotsberg. Fatigue Test Data for Welded Connections in Ship-Shaped

Structures. Journal of Offshore Mechanics and Arctic Engineering, 127(4):359, 2005.

[43] A Kondo. Fatigue under Variable Amplitude Loading. In R O Ritchie and Y Murakami,

editors, Comprehensive Structural Integrity, chapter 4.10, pages 253–278. Lausanne, 2003.

[44] A Kondo and K Yamada. Variable amplitude fatigue tests of in-plane gussets in long life

region. Journal of Structural Engineering, 48A, 2002.

[45] T Lassen, Ph Darcis, and N Recho. Fatigue Behavior of Welded Joints Part 1 — Statistical

Methods for. Supplement to the Welding Journal, (December):183–187, 2005.

[46] T Lassen and N Recho. Fatigue Life Analyses of Welded Structures. Wiley-ISTE, Lausanne,

2006.

[47] S J Maddox. Influence of Tensile Residual Stresses on the Fatigue Behavior of Welded

Joints in Steel. ASTM STP 776, pages 63–96, 1982.

[48] G Marquis. Long life spectrum fatigue of carbon and stainless steel. Fatigue & Fracture of

Engineering Materials and Structures, 19(6):739–753, 1996.

[49] MATLAB. version R2014a. The Mathworks Inc., Lausanne, 2010.

[50] R C McClung. A literature survey on the stability and significance of residual stresses

during fatigue. Fatigue & Fracture of Engineering Materials and Structures, 30(3):173–205,

2007.

152



Bibliography

[51] Thierry Meystre and Manfred A Hirt. Evaluation de ponts routiers existants avec un

modèle de charge de trafic actualisé, Mandat de recherche AGB 2002/005, 2006.

[52] Russell B Millar. Maximum Likelihood Estimation and Inference: With Examples in R,

SAS ans ADMB. Lausanne, 2011.

[53] M A Miner. Cumulative damage in fatigue. Journal of Applied Mechanics, 12:159–164,

1945.

[54] MSC Software. MSC Nastran Quick Reference Guide, 2012.

[55] Wayne Nelson. Fitting of Fatigue Curves with Nonconstant Standard Deviation to Data

with Runouts. Journal of Testing and Evaluation, 12:69–77, 1984.

[56] Wayne Nelson. Accelerate Testing: Statistical Models, Test Plans, and Data Analyses.

Lausanne, 1990.

[57] P Paris and F Erdogan. A critical analysis of crack propagation laws. Journal of Basic

Engineering, 85:528–534, 1960.

[58] Francis G Pascual and William Q Meeker. Estimating Fatigue Curves With the Random

Fatigue-Limit Model. Technometrics, 1999.

[59] H Polezhayeva. Fatigue testing on welded panels. MPD/10/05, 2010.

[60] M K Ravindra and T V Galambos. Load and Resistance Factor Design for Steel. Journal of

the Structural Division, 104(9):1337–1353, 1978.

[61] Reliability Consulting Programs (RCP). STRUREL, a Structural Reliability Analysis

Program-System, COMREL & SYSREL: Users Manual, 2004.

[62] J. Rörup and Fricke. Mean compressive stresses - Experimental and theoretical investi-

gations ito their influence on the fatigue strength of welded structures. The Journal of

Strain Analysis for Engineering Design, 40(1):631–642, 2005.

[63] J. Rörup and H Petershagen. The effect of compression mean stresses on the fatigue

strength of welded structures. Welding in the World, 44(5):20–25, 2000.

[64] C Sanger, R McDonald, and P Kurath. Prediction of Welding Residual Stresses and Redis-

tribution/Relaxation due to Cyclic Loading. In SAE 2006 World Congress and Exhibition,

Lausanne, 2005.

[65] J Schijve. The analysis of random load-time histories with relation to fatigue tests and life

calculations. In W Barrois and E L Ripley, editors, Fatigue of aircraft structures, page 115.

Pergamon, Lausanne, 1966.

153



Bibliography

[66] C G Schilling. Variable amplitude load fatigue, Task A - Literature Review. Volume I. Traffic

loading and bridge response. Interim report, 1990.

[67] C G Schilling, K Klippenstein, J M Barsom, and G T Blake. Fatigue of welded steel bridge

members under variable amplitude loadings, NCHRP Final Report 12. Technical report,

Lausanne, 1975.

[68] C Sonsino. Course of SN-curves especially in the high-cycle fatigue regime with regard

to component design and safety. International Journal of Fatigue, 29(12):2246–2258,

December 2007.

[69] C Sonsino, S J Maddox, and A Hobbacher. Fatigue life assessment of welded joints under

variable amplitude loading. State of the present knowledge and recommendations for

fatigue design regulations. In IIW International Conference on Technical Trends and

Future Prospectives of Welding Technology for Transportation, Land, Sea, Air and Space

2004. Osaka, Japan, pages 84–99, Lausanne, 2004.

[70] J Spindel and E Haibach. The method of maximum likelihood applied to the statistical

analysis of fatigue data. International Journal of Fatigue, 1(April):81–88, 1979.

[71] B Sudret and Z Guede. Probabilistic assessment of thermal fatigue in nuclear components.

Nuclear Engineering and Design, 235(17-19):1819–1835, 2005.

[72] S Suresh. Fatigue of Materials. Cambridge University Press, Lausanne, 2004.

[73] Technical European Convention for Constructional Steelwork - TC6. Recommendations

for the fatigue design of steel structures, 1985.

[74] The British Standards Institution. BS7608:1993 Code of practice for fatigue design and

assessment of steel structures, 1993.

[75] Mark Anthony Treacy. The use of monitored data in the verification of structural and

fatigue safety of existing post-tensioned concrete highway bridges. PhD thesis, Lausanne,

2014.

[76] M Vormwald and T Seeger. Consideration of fatigue damage below the endurance limit in

life predictions for variable amplitude loadings. In Proceedings of the Fourth International

Conference on Fatigue and Fatigue Thresholds, pages 517–523, Lausanne.

[77] Dennis D Wackerly, William Mendenhall, and Richard L Scheaffer. Mathematical Statis-

tics, with Application. Thomson, Lausanne, 7th edition.

154



Bibliography

[78] Welding Institute. Fatigue performance of welded high strength steels: a compendium of

reports from a sponsored research programme. Report series. Welding Institute, Lausanne,

1974.

[79] C H Whang. Introduction to fracture mechanics. DSTO Aeronautical and Maritime

Research Laboratory, Lausanne, 1996.

[80] A Wöhler. Theorie rechteckiger eiserner Brückenbalken mit Gitterwänden und mit

Blechwänden. Zeitschrift für Bauwesen, 5:121–166, 1855.

[81] Y Zhang and S Maddox. Investigation of fatigue damage to welded joints under variable

amplitude loading spectra. International Journal of Fatigue, 31(1):138–152, 2009.

155





Luca D’Angelo | MSc
Passage F.-L. Bocion 4 – 1007, Lausanne, Switzerland

� +41 (0) 78 6486135 • � luca.dangelo@outlook.com
� https://ch.linkedin.com/in/lucadangelo83

Work Experience
EPFL, ICOM Lausanne, Switzerland
PhD Candidate 02/2012–12/2015
Thesis: Probabilistic approach for fatigue evaluation of welded connections with focus on road steel bridges
Sky Aircraft Base Aérienne de Chambley, Onville, France
Stress Engineeer 03/2010–01/2012
SKYLANDER SK105 program (new twin turboprop light skyaircraft)
DTU, MEKANIK Kgs. Lyngby, Denmark
Research Assistant 09/2008-02/2010
Micro alloyed high strength net shape components
IMAST Technological district Naples, Italy
Training course 04/2008–08/2008
Polymers and composite materials

Education
Phd in Civil Engineering Lausanne, Switzerland
EPFL, ICOM 02/2012–12/2015
Thesis: Probabilistic approach for fatigue evaluation of welded connections with focus on road steel bridges
MSc in Aerospace and Astronautic Engineering Naples, Italy
University Federico II, Summa cum Laude 11/2005–01/2008
Thesis: High fidelity structural analysis of aircraft engine and wind turbine blades
Exchange student, Erasmus project Glasgow, Scotland
Aerospace Dept., University of Glasgow 01/2007–06/2007
BSc in Aerospace Engineering Naples, Italy
University Federico II, Summa cum Laude 11/2002–11/2005
Thesis: New method for prediction and calculation of fracture mechanism

PhD Thesis
Title: Probabilistic approach for fatigue evaluation of welded connections with focus on road steel
bridges
Supervisor: Prof. Alain Nussbaumer
Description: Re-definition of fatigue resistance S-N curves using Maximum Likelihood method and
Monte-Carlo Simulations approach. New framework for fatigue reliability assessment of road bridges
under the long-term effect of traffic. Calibration of fatigue partial safety factors for fatigue design.

157



Languages
Italian: Mother tongue
English: Full professional proficiency
French: Full professional proficiency

Technical skills
� Structural reliability analysis
� Probabilistic models
� Risk assessment
� Finite element analysis
� Numerical analysis
� Simulations

Softwares
� Matlab
� MSC Nastran, Patran
� Abaqus
� R, C++
� MS Office package
� LaTeX

Honors and awards
� EDCE Mobility award, EPFL, Lausanne (Switzerland), November 2013
� PIROS Industrial fellowship, IMAST technological district, Naples (Italy), April 2008
� Top degree in MSc, January 2008
� Top degree in BSc, November 2005

References
Prof. Alain Nussbaumer
Director of Steel Structures Laboratory (ICOM)
EPFL, Lausanne, Switzerland
� alain.nussbaumer@epfl.ch

Prof. Michael Havbro Faber
Head of Civil Engineering Dept.
DTU, Kgs. Lyngby, Denmark
� mihf@byg.dtu.dk

Joseph Bartholomé
Head of structures
SONACA, Gosselies, Belgium
� jbartholome@skynet.be

Maurice Elkaim
Technical Director
GECI Systems, Paris, France
� maurice.elkaim@geci.net

Prof. Niels Skat Tiedje
Associate Professor
DTU, Kgs. Lyngby, Denmark
� nsti@mek.dtu.dk

Prof. Leonardo Lecce
Full Professor
University Federico II, Naples, Italy
� leonardo.lecce@unina.it

158



Journal Publications
D’Angelo, L. and A. Nussbaumer (2015). “Reliability based fatigue assessment of existing motorway

bridge”. In: Structural Safety 57, pp. 35–42.
Pasquier, R., L. D’Angelo, J.-A. Goulet, C. Acevedo, A. Nussbaumer, and I.F.C. Smith (2015). “Mea-

surement, data interpretation and uncertainty propagation for fatigue assessments of structures”.
In: Journal of Bridge Engineering xx, pp. xx–xx.

Conference Publications
D’Angelo, L., M. H. Faber, and A. Nussbaumer (2015). “Calibration of partial safety factors for

fatigue design of steel bridges”. In: 12th International Conference on Applications of Statistics
and Probability in Civil Engineering (ICASP12).

D’Angelo, L., M. Rocha, A. Nussbaumer, and E. Brühwiler (2014). “S-N-P Fatigue Curves us-
ing Maximum Likelihood”. In: 7th European Conference on Steel and Composite Structures
(EUROSTEEL).

D’Angelo, L., A. Nussbaumer, M.-A. Fénart, and A.-G. Dumont (2013). “Fatigue Life Assessment of
Existing Motorway Bridge”. In: 5th International Conference on Structural Engineering, Mechanics
and Computation (SEMC).

159


