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Abstract

During the past decade, graphene — a monolayer of carbon atoms — has attracted enormous

interest for its use in nanoelectronic device applications. The absence of bandgap, however,

has stalled its use both in logic (inability to turn off) and radio frequency (poor power gain)

applications. Graphene nanoelectronic devices based on alternative and complementary

approaches, which yet exploit its fundamental properties rather than trying to change them,

are needed for realistic applications. The work in this thesis proposes two such alternative

approaches for graphene’s application.

The first approach examines the use of graphene as a membrane of radio frequency (RF)

nanoelectromechanical systems (NEMS) capacitive switches. Owing to its extreme thinness

and exceptional mechanical properties, the use of graphene in RF NEMS switches could enable

lower actuation voltages and faster switching. To evaluate its electromagnetic performance, a

framework for the full-wave simulation of graphene-based RF NEMS switch is developed for

the first time. A rigorous modeling approach for graphene NEMS switch taking into account

both its frequency-dependent conductivity, and the variation of conductivity in the up- and

down-state is presented. Our results show that RF NEMS switches based on graphene with

lower sheet resistivity values can deliver superior isolation and reduced losses at micro and

millimeter wave frequencies, and their isolation can also be tuned with bias voltage. An

attempt is also made to characterize the fabricated switches.

The second approach deals with the negative differential resistance (NDR) phenomenon

in planar graphene solid-state devices. The key advantage of planar graphene-based NDR

devices is their ability to exhibit NDR at higher current levels, thanks to its high mobility

and saturation velocity. The observation of NDR is reported in the output characteristics

of graphene field effect transistors for various channel lengths and dielectric thicknesses at

room temperature. The transistors are fabricated using chemical vapor deposition graphene

with a top gate oxide down to 2.5 nm of equivalent oxide thickness. To understand the NDR

phenomenon in graphene transistors, we perform extensive theoretical studies based on drift-

diffusion model. This understanding allows us to design a novel graphene circuit which shows

enhanced NDR characteristics and is more relevant for applications. Finally, the potential of

this graphene NDR circuit is evaluated for RF reflection amplifiers application.

Key words: Graphene, Nanoelectromechanical systems (NEMS) , RF NEMS (MEMS) switch,

microwave, millimeter waves, negative differential resistance (NDR), field effect transistor,
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negative differential conductance (NDC), GFET.
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Résumé
Au cours de la dernière décennie, le graphène — une monocouche d’atomes de carbone —

a attiré un grand intérêt pour son utilisation dans des applications de dispositifs nanoélec-

troniques. Cependant, l’absence de bande interdite a entravé son utilisation à la fois dans

des applications de logique (incapacité à s’éteindre) et de radiofréquence (gain de puissance

faible). Des dispositifs nanoélectroniques de graphène basés sur des approches alternatives

et complémentaires, qui exploitent ses propriétés fondamentales plutôt que d’essayer de les

changer, sont nécessaires pour des applications réalistes. Le travail de cette thèse propose

deux de ces approches alternatives pour des applications du graphène.

La première approche examine l’utilisation du graphène comme une membrane de com-

mutateurs capacitifs de systèmes nanoélectromécaniques (NEMS) radiofréquences (RF). En

raison de sa minceur extrême et de ses propriétés mécaniques exceptionnelles, l’utilisation du

graphène dans les commutateurs RF NEMS pourrait permettre des tensions d’actionnement

inférieures et une commutation plus rapide. Pour évaluer son rendement électromagnétique,

un cadre pour la « simulation d’onde complète » de l’interrupteur RF NEMS à base sur le gra-

phène a été développé pour la première fois. Une modélisation rigoureuse des commutateurs

NEMS de graphène est effectuée en tenant compte à la fois de sa conductivité dépendante

de la fréquence, et de la variation de conductivité dans les états haut et bas. Nos résultats

montrent que le graphène avec une résistivité de surface inférieure peut fournir une isolation

supérieure et des pertes réduites dans la plage de fréquences des micro-ondes et des ondes

millimétriques, aussi l’isolation peut également être réglée avec la tension de polarisation.

Une tentative de caractérisation des interrupteurs fabriqués est également menée.

La seconde approche traite du phénomène de résistance différentielle négative (RDN) dans les

dispositifs semi-conducteurs planaires en graphène. Le principal avantage des dispositifs pla-

naires RDN à base de graphène est leur capacité à présenter une RDN à des niveaux de courant

plus élevés, grâce à la grande mobilité et à la vitesse de saturation du matériau. L’observation

de la RDN est rapportée dans les caractéristiques de sortie des transistors à effet de champ

en graphène pour différentes longueurs de canal et épaisseurs de diélectrique à température

ambiante. Les transistors sont fabriqués en utilisant un dépôt chimique en phase vapeur

de graphène avec un oxyde de la grille supérieure allant jusqu’à 2.5 nm d’épaisseur d’oxyde

équivalente. Pour comprendre le phénomène RDN dans les transistors de graphène, nous

effectuons des études théoriques approfondies basées sur le modèle de dérive-diffusion. Cette

compréhension nous permet de concevoir de nouveaux circuits de graphène qui montrent

des caractéristiques supérieures de RDN et sont plus pertinents pour des applications. Enfin,
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la RDN de ce circuit de graphène est évaluée pour l’application des amplificateurs à réflexion.

Mots clefs : graphène, nanoélectromécaniques systèmes (NEMS), RF NEMS (MEMS) commu-

tateur, micro-ondes, des ondes millimétriques, résistance différentielle négative, Transistor à

effet de champ, conductance différentielle négative, GFET.
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1 Introduction

1.1 The Need of Alternative Device Principles and New Materials

We are all well aware of the remarkable progress in silicon integrated circuit technology over

the past several decades. This progress has been largely driven by technology innovations

that have enabled the scaling of the metal-oxide-semiconductor field-effect transistor (MOS-

FET) into smaller dimensions, thereby leading to both higher speed and device density [1, 2].

In the recent past, however, it has become more and more difficult to achieve the required

performance improvements when scaling the silicon MOSFET. This realization has spurred

an intense search for alternative technologies, an effort that involves searching for both new

device principles and materials — popularly known as the More-than-Moore domain. The

new device principles include areas such as analog/RF (radio frequency), nanoelectrome-

chanical systems (NEMS), actuators, sensors, etc. whose primary purpose is to enhance the

functionality of integrated circuits (ICs) by complementing the digital electronics components.

Whereas the sub-domain of new material search aims to replace or complement the existing

materials used in the devices with new materials so as to enhance the overall performance of

the device.

Carbon-based materials are of great interest for use in nanoelectronic applications. In past,

much attention was paid to carbon nanotubes (CNTs) owing to their fascinating electrical and

mechanical properties. However, their imprecise positioning on the target substrate is one

of its major disadvantage, which impede their introduction into the standard CMOS process

where more than 1 billion devices need to be connected [3].

Since last 10 years, graphene — a two-dimensional carbon-based material — has attracted

intense research for use in nanoelectronic applications. It has remarkably unique mechanical

(Young’s modulus up to 1 TPa) [4], electrical (electron mobility up to 200,000 cm2/Vs for

suspended graphene) [5] and thermal (thermal conductivity up to 5000 W/mK) [6] properties.

This motivates research that investigates its use in wide range of applications including

nanoelectronics, photonics, electrochemical etc.
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Talking of its electronic properties, graphene is a zero band gap material with high carrier mo-

bility. Because of the absence of band gap, the use of large-area graphene was not considered

for digital electronics. Although, significant efforts have been made to induce a band gap in

graphene including narrowing it to make nano ribbons, still these methods lack practicality

[7]. Being a high mobility material, graphene was extensively considered for radio frequency

applications because in these applications graphene transistor is used as an amplifier which

need not be turned off. In the last decade, intensive work for graphene’s use in RF transistors

was carried out targeting mainly the cut-off frequency ( fT ) which is one of the metric for

accessing the performance of RF transistors [8, 9, 10, 11, 12, 13, 14]; the highest fT of 427 GHz

was demonstrated by [15]. For use in practical RF circuits, however, a good power gain is

equally important which is evaluated by the parameter: maximum frequency of oscillation

fM AX . Since graphene has no band gap, it suffers from poor fM AX as this parameter depends

on the ability to have a good current saturation — a phenomenon more favourable in materials

with band gap [16].

Thus, it was concluded that amplifiers and switches may not be the best application for

graphene as it does not have the band gap [3, 17, 16, 18]; the focus thus shifted to other

two-dimensional materials with band gap [19, 20, 21, 17, 3]. Nonetheless, unconventional

approaches to realize switches and amplifiers also exist and is the main goal of this thesis.

The first approach concerns with nanoelectromechanical switch using graphene which offer

unique advantages over conventional solid-state switches such as reduced leakage currents

and power consumption, and improved ON/OFF ratios. The second approach deals with

negative differential resistance phenomenon in graphene transistors and circuits which can be

exploited to realize numerous applications such as amplifiers, oscillators, switches, memory

etc.

1.2 Overview of Graphene Research

Graphene is the name given to individual sheets of carbon atoms arranged in a two-dimensional

(2-D) honeycomb lattice. It is a fundamental building block for a range of familiar carbon

materials such as three-dimensional (3D) graphite, one-dimensional (1D) carbon nanotubes,

and zero-dimensional (0D) fullerene as shown in Fig. 1.1 [22]. Theoretically, graphene has

been studied since 1947 [23], and its preparation and isolation was thought to be an impossible

goal for many decades. In 2004-05, group of papers by Novoselov et al. [24], Zhang et al. [25],

and Berger et al. [26] demonstrated — for the first time — the isolation of graphene and the

occurrence of the field effect in their samples. These papers ignited tremendous interest in

research community to develop nanoelectronic applications for graphene.

In 2007, the experiments in successfully fabricating suspended graphene [27, 28], considerably

increased the attention on this material in the field of nanoelectromechanical systems (NEMS).

Thus far, the research on graphene-based NEMS has focused mainly on resonators [28, 29, 30,

31, 32, 33, 34, 35], and some on sensors [36, 37] and DC switches [38, 39, 40, 41, 42].
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Figure 1.1: Graphene: a 2-D building block for sp2 carbon allotropes of every other dimention-
ality: from 0D buckyball, to 1D nanotube, upto 3D graphite. Adapted from [22].
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For the case of graphene solid-state devices, as discussed in the previous section, the use of

graphene as amplifiers based on the conventional approach (exploiting its transconductance)

was intensely researched in the last decade but is less accessed now owing to its poor power

gain. A new class of alternative RF nanoelectronic devices — such as frequency multipliers

[43, 44], mixers [45], digital modulators [46, 47] — which exploits the amplipolarity of graphene,

have also been explored in recent past. Infrared photodetectors [48, 49, 50] are another class

of alternative graphene solid-state devices that shows superior performance than its silicon

counterpart today.

1.3 Graphene Properties Relevant for Nanoelectromechanical De-

vices

1.3.1 Mechanical Properties

The mechanical properties of any solid depend on the strength of its inter-atomic bonds.

The strong carbon–carbon sp2 bonds in graphene enable it with ultra-high intrinsic strength

which exceeds any other material [22]. The bulk graphite material itself is highly anisotropic

material. The in-plane Young’s modulus of graphite is 920 GPa and the Poisson’s ratio is

0.16 [41]. The mechanical properties of both monolayer and multilayer graphene have been

investigated experimentally and theoretically. The first experimental study of elastic properties

and strength of graphene has been done by Lee et al. [4]. In this study, a graphene membrane

was deposited on the array of trenches in SiO2 and the mechanical measurements were

performed by loading the diamond-coated tip of the atomic force microscopy on graphene; a

very high Young’s modulus of ∼1.0 TPa and the ultimate breaking strength of ∼130 GPa was

reported. Gomez-Navarro et al. reported a Young’s modulus of 0.25 ± 0.15 TPa for a chemically

reduced monolayer graphene oxide beam by AFM nanoindentation [51].

1.3.2 Thermal Properties

Bulk graphite has a basal thermal conductivity of 1000 W m−1 K−1, providing a basis for the

high thermal conductivity of graphene sheet. Theoretically, the intrinsic thermal conductivity

of graphene has been found to be isotropic and calculated to be of value 2200 W m−1 K−1

at 300 K, independent of the number of the layers [52]. Balandin et al. [6] investigated the

thermal conductivity in a suspended monolayer graphene performed with the help of confocal

micro-Raman spectroscopy. The measured room temperature thermal conductivity was up to

5300 W m−1 K−1, which was extracted for a monolayer graphene from the dependence of the

Raman G peak frequency on the excitation laser power.
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1.3.3 Other Properties

Graphene has the greatest advantage of being a chemically stable material [53]. In particular,

since graphene is stable in air at room temperature and remains intact following exposure

to all but the most caustic chemicals, it can be straightforwardly exfoliated from graphite

via mechanical/chemical methods in an array of commonly available solvents. Following

exfoliation, the chemical stability of graphene implies that it can be further subjected to sub-

sequent processing and characterization with minimal precautions. Consequently, graphene

can be subjected to most of the wet chemicals used in the standard CMOS processes, making

it compatible with silicon-based devices.

Another benefit of graphene is its substrate independence. For instance, graphene can be syn-

thesized by the most widely used chemical vapor deposition (CVD) process where graphene

is first grown elsewhere on metal in the furnace, dispersed in wet etchant to remove under-

lying metal, and then transferred onto any substrate of choice, while keeping its structure

and transport properties intact [3]. This allows the highest degree of flexibility in terms of

fabricating devices based on suspended or non-suspended graphene on almost any substrate

in any pre-defined location.

1.4 Graphene Properties Relevant for Solid-State Devices

1.4.1 Graphene Bandstructure

To understand the physics of graphene-based devices, it is essential to understand its energy

band structure — depicted by energy-momentum relationship — which describes those ranges

of energy that an electron within the solid may have and ranges of energy that it may not have.

The honeycomb structure of graphene containing two atoms per unit cell, as shown in Fig. 1.2a,

leads to a unique band structure (Fig. 1.2b); this band structure was first calculated by Walace

in 1947 using the tight-binding approach [23]. Since much of the fundamental interest lies in

understanding the electron transport at low energies, the band structure can be simplified to

two cones with the upper cone (conduction band) touching the lower cone (valence band) at

the so called Dirac point [54], having no energy gap in between (Fig. 1.2c). This is the most

important aspect of graphene’s band structure; that is, it has a linear energy-momentum

relationship given by

E =±ħvF k =±ħvF

√
kx

2 +ky
2 (1.1)

where E is the energy, k is the wave vector and vF is the Fermi velocity. The velocity, v(k), of an

electron in graphene is given by the slope of the E(k) curve: v(k)=1/ħdE/dK = vF ; which has

a constant value of vF = 1×106 m/s. Graphene is thus a zero band gap semiconductor with

a linear, rather than quadratic (as in case of silicon), energy dispersion relationship for both

electrons and holes in conduction and valence band, respectively. Further, the position of the

Fermi level, EF , determines the nature of the doping and the transport carrier. For undoped
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graphene, EF lies at the intersection of two cones at EF = 0 (Dirac point); and for n-doped

(p-doped) graphene, EF lies in the upper (lower) cone (Fig. 1.2c).

1.4.2 Density of States

Before we can calculate the carrier density in graphene, we have to know its density of states

(DOS), D(E), which tells us the number of states per interval of energy at each energy that are

available to be occupied and it depends on the E(k) relationship. The standard procedure

for calculating DOS is to consider a constant energy surface of the E(k) diagram, which is the

kX −kY plane as shown in Fig. 1.3a. Then, we need to calculate the number of states, N(k),

encompassed in the shaded ring (between k and k + dk), which can be written as

N (k)dk = 2πkdk

(2π/Lx )(2π/Ly )
× gs × gv . (1.2)

The numerator of the first part of right-hand side is the area of the shaded ring (Fig. 1.3a).

The denominator is the space each state takes up in the kX - kY plane; which is computed by

assuming a rectangular box of size Lx , Ly with periodic boundary conditions such that each

states takes up the space of 2 π/Lx and 2 π/Ly [56]. The second part of the right-hand is the

spin degeneracy, gs , which is gs =2 for graphene. The third part is the valley degeneracy, gv ,

which is gv = 2 for graphene. Using the dispersion relation Eq. 1.1, we can convert N(k) into

N(E), which tells us the total number of states having an energy less than E. The derivative of

this function gives us the DOS, which is normalized to area (Lx ×Ly ) and energy:

D(E) = 2|E |
π(ħvF )2 . (1.3)

Thus, the DOS, as plotted in Fig. 1.3b, increases linearly with energy above and below the Dirac

point.

1.4.3 Carrier Density

At this point, we have just calculated the DOS for graphene. In either case, whether for

the electron or the hole, the above DOS expression simply tell us the density of available

states. They say nothing about whether or not such states are occupied. For this, we need the

probability function f(E) — known as the Fermi-Dirac distribution function — which tells us

whether an electron or hole is occupied in a given state with an energy E. The Fermi-Dirac

distribution function can be written as

f (EF ) = 1

1+e(E−EF )/kB T
(1.4)

where kB is the Boltzmann’s constant and T is the temperature in Kelvin. Through this, we

can determine the net carrier density, n = ne −nh , where ne stands for filled states for E > 0,

and nh stands for empty states with E < 0. The net carrier density n at Fermi energy EF , for
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(b)                                            (c)

EF (p-doped)
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Figure 1.2: (a) Hexagonal honeycomb lattice of graphene. (b) Graphene band structure.
Adapted from [55]. (c) Simplified graphene band structure at low energies.
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kx D(E)

ky E

k
EF

(a) (b)

D(E) |E| 

Figure 1.3: (a) Constant-energy described by kx and ky for electrons in 2-dimension, and (b)
Density of states (DOS) as a function of energy (E).

non-zero T, can then be calculated as

n =
∫ ∞

0
D(E) f (EF )dE −

∫ 0

−∞
D(E)(1− f (EF ))dE . (1.5)

This equation can be simplified for zero kelvin temperature (T = 0 K) and can be written as

(details of the derivation can be found in ref [57, 58]):

n(EF ) = si g n(EF )
EF

2

π(ħvF )2 . (1.6)

Interestingly, graphene behaves like a strong degenerate semiconductor under most condi-

tions. A typical trait of degenerate semiconductors is that its carrier density does not change

with temperature. Therefore, the approximation at T = 0 K (Eq. 1.6) works fairly well for T =

300 K [57].

1.5 Thesis Outline

This thesis investigates two main approaches for alternative device concepts for graphene’s

application: Nanoelectromechanical RF switches based on suspended graphene (Chapter 2);

and negative differential resistance devices based on non-suspended graphene (Chapters 3, 4

and 5).

Chapter 2 discusses graphene based RF nanoelectromechanical shunt switches. The chapter

starts by introducing the operation principle of RF NEMS switches and the main motivation

behind using graphene in these switches. The RF performance of graphene NEMS shunt

switch is evaluated via detailed modeling, design and simulation. Various mechanisms which
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limit the performance of graphene NEMS switches are also discussed. At the end of this

chapter, the preliminary measurements results of the fabricated devices are also presented

and analysed.

In Chapter 3, graphene solid-state devices, which are not suspended, are presented. This

chapter talks about two main topics: device physics and technology of graphene transistors.

This serves as the solid basis for next two chapters. In the device physics part, the drift-

diffusion model of graphene transistors and the approach for graphene circuit-simulation is

presented. In the technology part, first, the common approaches for synthesizing monolayer

graphene is reviewed, and particularly the large-scale CVD method, which is used to fabricate

devices in this work, is described. Then, various techniques used to fabricate graphene

transistors in this PhD work are described, and finally, its low-field DC measurements are

presented.

Chapter 4 discusses the negative differential resistance (NDR) phenomenon in graphene

solid-state devices which include single GFET 1, and circuit based on three GFETs 2. First,

the NDR phenomenon in fabricated single graphene transistor is discussed. A mechanism

to understand the NDR phenomenon in graphene transistors is also presented via modeling.

This understanding enables us to design circuit based on graphene which show enhanced

NDR performances. Thus, the other half of the chapter is dedicated to this novel circuit

consisting of three graphene transistors.

Chapter 5 presents the application of NDR devices in RF reflection amplifiers. The perfor-

mance potential of both 1-GFET and 3-GFET circuit as reflection amplifiers is evaluated via

DC and RF modeling. Also, an experimental evidence of reflection amplification in 3-GFET

circuit by measuring it in 1-port configuration is presented.

Chapter 6 provides the overall summary of this work. Several original contributions are

highlighted and suggestions for the future research directions are offered.

1In this thesis, the terms “1-GFET”, “single-GFET”, and “1-transistor graphene FET” are used interchangeably.
Each refer to single GFET.

2The terms “3-GFET NDR circuit”, “three-GFET NDR circuit”, “3-transistor graphene circuit” and “GNDR circuit”
are also used interchangeably. Each refer to the circuit comprising of three GFETs exhibiting NDR.
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2 Graphene Nanoelectromechanical
Microwave Shunt Switch

In this chapter we discuss graphene-based RF NEMS shunt switches. In Section 2.1, we in-

troduce the basic operation principle of RF MEMS/NEMS switches and discuss the main

motivation behind using graphene in these switches. In Section 2.2, we outline the spe-

cific properties of graphene relevant for RF MEMS/NEMS. To access the RF performance of

graphene NEMS shunt switches, it is important to accurately design and model them. Thus,

the next two sections (Section 2.3, 2.4) are dedicated to modeling, design and simulation. An

attempt is also made to characterize the fabricated NEMS shunt devices based on multilayer

graphene; thus, in Section 2.6 we present in detail the fabrication and characterization of this

switch. Finally, Section 2.7 summarizes this chapter.

2.1 Introduction

A radio frequency (RF) microelectromechanical systems (MEMS) switches are micromachined

devices which use a mechanical movement to achieve switching between on- and off-states.

The forces required for a mechanical movement can be obtained using electrostatic [59],

electrothermal [60], magnetostatic [61], and electromagnetic designs [62]. Particularly, electro-

static force is widely used as it provides almost zero power consumption and has the highest

compatibility with standard CMOS process. Compared with conventional semiconductor

devices, MEMS switches offer great advantages such as zero leakage, higher isolation, zero

insertion losses, and robustness under harsh environments, which makes them suitable can-

didate for a variety of applications from mobile communication to advanced radar systems.

There are two main types of RF MEMS/NEMS switches: the series metal-metal switches [63]

and shunt capacitive switches [64]. In this work, we focus on shunt capacitive switches. The

shunt capacitive switches are very suitable for high-frequency (>10 GHz) applications because

of its capacitive coupling nature. The capacitive coupling nature avoids the use of metal-metal

contact (as in the case of series switches) which gives rise to large contact resistance, thereby

impeding the high frequency operation due to high losses [65]. Fig. 2.1 shows the schematic of

RF shunt capacitive switch. The switch consists of a conductive membrane suspended over
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the central conductor of a coplanar waveguide (CPW) and fixed to the ground conductor of

the CPW. The central and ground conductors are high-conductivity metals (such as gold) on

the low loss substrate (such as high resistivity silicon). A dielectric layer is used to dc isolate

the switch from the CPW center conductor.

The operation principle of the shunt switch can be understood by its equivalent circuit model

as shown in Fig. 2.1c,d. It can be modeled by two short sections of transmission line in series

and a lumped CLR components in the shunt branch. The impedance in the shunt branch can

be written as

ZP = RP + jωLP + 1

jωCP
(2.1)

where ω is the angular frequency, RP and LP are respectively the resistance and inductance of

the membrane, and CP is the capacitance which is dominated by a low air-gap capacitance in

the up-state and a high dielectric capacitance in the down-state position. When the membrane

is in up-state position, the shunt impedance is high due to low value of up-state capacitance.

As a result, the electromagnetic field propagates almost unattenuated from port 1 to port 2,

leading to a full transmission (| S21 |2 ≈ 1). This represents the ON-state of the switch. When a

dc voltage is applied across the membrane and the central conductor with the RF signal, the

electrostatic force causes the membrane to snap down on the dielectric surface, forming a low-

impedance mainly capacitive RF path to the ground. Hence, the field is strongly suppressed,

leading to blocked transmission ((| S21 |2 ≈ 0)). This represents the OFF-state of the switch.

In state-of-the-art RF MEMS shunt switches, metallic membranes are employed which are

several micrometers thick. These MEMS switches suffer from a trade-off between high fre-

quency performance and actuation voltage. Typical MEMS actuation voltage (>10 V) are

higher than the operational voltages of current integrated circuits (ICs) technology. Therefore,

as the available voltage supply for various ICs technology based applications are limited, the

actuation voltage of the RF MEMS switches must be reduced.

With regards to the electrostatic actuation, the pull-in voltage of RF MEMS shunt switch is

given as [64]

Vpul l−i n =
√

8k

27ε0W w
g0

3, (2.2)

where k is the effective spring constant of the membrane, W is the CPW center conductor

width, w is the membrane’s width and g0 is the height of the suspended membrane above the

dielectric layer (Fig. 2.1a). According to continuum mechanics, the effective spring constant

of the doubly clamped membrane with load applied at the center of the membrane and under

axial tension, is given by [51, 66]

k = 32Ew(t/L)3 +17T /L, (2.3)
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Figure 2.1: Schematic of RF capacitive shunt Switch in up-state (a) and down-state (b) and its
corresponding equivalent circuit models (c,d).

where E is Young’s modulus, T is the tension in the beam and t and L are the thickness

and length of the membrane, respectively. Reducing k via reduction in the thickness of the

membrane t (Eq. 2.3), will allow us to reduce the pull-in voltage (Eq. 2.2). Using graphene, as

the material for membranes in RF MEMS switches, can be of great benefit here as one can

exploit its ultra low thinness to reduce the pull-in voltage.

Furthermore, graphene-based MEMS also have an edge over carbon nanotube-based MEMS

[67, 68] in terms of the ease of fabrication and higher compatibility with the device geometry.

Moreover, graphene-based RF MEMS switches, which are suitable for monolithic integration

with graphene RF nanoelectronics, are extremely promising as components for future all-

graphene transceivers [69]. In literature, the terminology NEMS (nanoelectromechanical)

instead of MEMS is generally associated with graphene mechanical devices. The field of NEMS

seeks to explore the behaviour and potential of mechanical devices whose dimensions are

deep into the sub-micrometer regime [70].

2.2 Graphene as a membrane of the RF NEMS shunt switch

The main motivation behind using graphene as a membrane of the switch is to lower down

the actuation voltages as discussed in the previous section. However, there are some more

fundamental requirements which the material of membrane must fulfil. Let us closely examine

Eq. 2.1, which is the most important equation for the understanding of RF shunt switches. For
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Table 2.1: Specifications for the state of the art materials for the membrane of the RF MEMS
shunt switch.

Membrane Conductivity Resistivity Young’s Coefficient
Modulus of thermal expansion

Al 36.9 × 106 S/m 2.7 × 10−8Ωm 69 GPa 23.1 ppm/◦C
Au 44.2 × 106 S/m 2.3 × 10−8Ωm 83 GPa 14.2 ppm/◦C
Ni 14.3 × 106 S/m 7 × 10−8Ωm 207 GPa 13.4 ppm/◦C
Mo 20 × 106 S/m 5 × 10−8Ωm 329 GPa 4.8 ppm/◦C

a good RF MEMS shunt switch, ZP should be high in the up-state and low in the down-state.

If RP is high, ZP will be high both in up- and down-states, as this value is usually constant

in both positions. As ZP is mainly dominated by CP in the up-state, the component RP has

negligible effect. In the down-state position, a high value of RP has the following detrimental

effects: (1) It increases ZP in the down-state, leading to the poor isolation; and (2) it increases

the losses of the switch which is proportional to the RP value of the membrane, as discussed

later. Therefore, for a good RF MEMS/NEMS shunt switch, it is crucial to have RP as low as

possible or in other words, the conductivity of the membrane should be as high as possible.

Beyond the requirements of high conductivity, the ideal suspended membrane of RF MEM-

S/NEMS switch should have the following features: (1) High Young’s modulus for good me-

chanical properties; this translates into reduced switching time for the switch [59]. (2) High

thermal conductivity for the good reliability of the switch. 3) Low thermal expansion coeffi-

cient (close to underlying substrate); this is to reduce the rate of change in actuation voltage

over temperature. 3) Ease of fabrication and compatibility with Si CMOS process. Almost all

state of the art RF MEMS switches are fabricated out of metals such as aluminium (Al), gold

(Au) which have high bulk conductivities (Table. 2.1). But metals generally have a thermal

expansion coefficient which is usually much higher than that of commonly available substrate

materials; thus they have poor performance over broad temperature ranges. Refractory metals

— such as molybdenum — have low thermal expansion coefficient and have also been utilized

as the membrane for RF MEMS switches [71]. These materials show a stable operation over

broad temperature range, however, they have low bulk conductivities leading to high RF losses

and poor isolation. Unfortunately, material satisfying all the requirements for an ideal RF

MEMS/NEMS switch does not exist, and device engineers must always live with trade-off.

How does graphene meet these requirements?

The properties which make graphene an attractive candidate for the membrane of RF NEMS

switches are as follows:

1. Monolayer graphene (single layer of carbon atom) and multilayer graphene (few layers

of carbon atom) are expected to give low values of actuation voltages because of their

atomic thickness’s, as discussed in Section 2.1.
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Table 2.2: Sheet resistivity of graphene.

Reference Sheet resistivity Doping Layers

[75] 54Ω/ä Aucl3-doping layer by layer 4
[76] 99Ω/ä HNO3 layer by layer 8
[80, 79, 81] 280Ω/ä No doping Graphene films
[74] 30Ω/ä HNO3 4

2. Suspended membrane of the NEMS switch needs to offer faster switching speed. Graphene’s

high Young’s modulus and extremely low mass could enable ultra-fast switching speeds

in NEMS switches [28]. The Young’s modulus of graphene have been investigated in

many works; the reported values varied in the range 250–1500 GPa. Sanchez et al. [72]

reported a Young’s modulus of 1.5 GPa for multilayer graphene sheets suspended over

trenches in silicon oxide.

3. Thermal conductivity of the suspended membrane determines the reliability of the

NEMS switch. Joule heating between the contacts in NEM switches often lead to the

damage of the contact area; this can be reduced by using a material of high thermal

conductivity. Carbon materials such as graphite, diamond, CNTs are known to have

a high thermal conductivity. Bulk graphite has a basal thermal conductivity as high

as 1000 W/mK, providing a foundation for the high thermal conductivity of graphene

sheet. A high thermal conductivity of 5300 W/mK in a suspended single-layer graphene

measured at room temperature was reported in [6].

4. One serious drawback of graphene has been its higher sheet resistivity. To reduce the

sheet resistivity, several methods are employed. The methods include: i) using more

number of layers of graphene, i.e. multilayer graphene [73]; ii) chemical doping of

graphene [74]; and iii) combination of methods (i) and (ii) [75, 76]. Table. 2.2 lists the

lowest sheet resistivity obtained with these methods.

5. One of major disadvantages of carbon nanotube (CNT) based NEMS process has been

the unconventional method used for CNT growth [67, 77, 68]. This method involves a

high temperature growth of nanotubes followed by the horizontal alignment of nan-

otubes by liquid-induced flip down method. In addition, this method requires an extra

mask step to define the catalyst for nanotube growth. The CVD growth of graphene is

also a high temperature process, but thanks to the PMMA transfer method [78] which

permits the growth to be done off the wafer. The other advantages of using graphene is

the possibility to obtain larger areas of graphene by CVD methods [79]. Graphene can

be patterned using standard photolithographic techniques and oxygen plasma etch;

and thus allows the membrane to be etched in desired widths and lengths.
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Figure 2.2: Schematic of graphene based RF NEMS switch in (a) up- and (b) down-state.

2.3 Design of Graphene based capacitive shunt switch

The use of graphene as a suspended membrane of RF NEMS shunt switch was also proposed

in ref [82] but no details about fundamental issues such as the value of graphene conductivity

used for the electromagnetic simulation or the equivalent circuit parameters of the shunt

switch, were provided. Herein, we will evaluate the RF performance of graphene NEMS switch

via a detailed design and modeling. Both monolayer and multilayer graphene are considered

for the design. Unlike metal membrane switches where the conductivity of the membrane

remains the same both in up- and down-states. The case of graphene is different. The fact

that graphene’s conductivity can be tuned via electric field effect [83], we need to consider

its conductivity variation in up- and down-states. We will show that graphene’s conductivity

variation due to electric field effect has a limited yet beneficial impact on the performance of

the switch.

2.3.1 Working Principle

Fig. 2.2 schematically shows the proposed graphene-based RF NEMS device. The switch

consists of a graphene membrane having a conductivity (σup ) suspended over the central
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Figure 2.3: Equivalent circuit model of Graphene-based NEMS capacitive switch.

conductor of a coplanar waveguide (CPW) and fixed to the ground conductor of the CPW. The

central and ground conductors are high-conductivity metals (such as gold) on the low loss

substrate (such as high resistivity silicon). A dielectric layer is used to dc isolate the switch from

the CPW center conductor. When a dc voltage is applied across the membrane and the central

conductor with the RF signal, the electrostatic force causes the membrane to snap down on

the dielectric surface, forming a low-impedance mainly capacitive RF path to the ground. In

this situation, a part of the graphene membrane directly above the dielectric layer (Region 2

in Fig. 2.2b) experiences a perpendicular electric field from the bottom electrode. Since the

conductivity of atomically-thin carbon films such as graphene [83] can be tuned by applying

a transverse electric field via a gated structure, the conductivity of graphene membrane in

Region 2 (σdown) will be higher than the initial conductivity (σup ). The membrane in regions

1 and 3 does not experience any field effect and therefore the conductivities in these regions

can be approximated to have the same value as in up-state (σup ).

2.3.2 Equivalent Circuit Model

Fig. 2.3 shows the equivalent circuit model of the graphene RF NEMS shunt switch. In the

circuit model of metal membrane MEMS, the capacitance (CP ) is the only variable component.

However in the present case, RP is also a variable component due to the variable resistivity

behaviour of the graphene membrane in up- and down-state positions. 4 LS and 4 RS

are corrective series elements in order to keep the length of the discontinuity to zero in the

modeling. This choice of zero-length (dr e f =0) for the extraction procedure is arbitrary but

fully rigorous, namely just a choice of reference planes [84, 85].

In regard to the mechanical actuation of the switch, the pull-in voltage Vpul l−i n (Eq. 2.2) is

already discussed in Section 2.1. Another important mechanical figure of merit for the RF
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NEMS switch is switching time which can be approximated as [59, 39]

ts = 3.67
Vpul l−i n

VSω0
, (2.4)

where VS ≈ 1.3Vpul l i n is the optimum applied bias at which the switching time is usually

calculated [39], and ω0 is the angular resonant frequency which can be calculated as ω0 =√
k

me f f
(me f f = 0.735Lw tρ [28], where ρ is the mass density).

2.4 Modeling

2.4.1 Frequency Dependent Conductivity

The complex conductivity of graphene can be computed using Kubo’s formula [86]. This

formula takes into account graphene intraband and interband contributions. However, since

the operation of the device is far below the THz regime, the interband contributions are

negligible and graphene conductivity can be represented as [87]

σ(ω,EF ,Γ,T ) ≈ − j
q2

e kB T

πħ2(ω− jΓ)

( |EF |
kB T

+2ln(e−|EF |/(kB T ) +1)

)
, (2.5)

where Γ is the phenomenological scattering rate (inverse of the relaxation time τ, Γ = τ−1) , T =
300 K is the temperature, ħ is the reduced Planck’s constant, kB is Boltzmann’s constant and EF

is the chemical potential (or Fermi energy). In order to compute the conductivity of graphene

membrane in up- and down-state position, it is essential to determine the parameters Γ and

EF as they can take different values in these two positions.

2.4.2 Conductivities in Up- and Down-state positions

Recalling from Eq. 1.6, the relation between the chemical potential EF and the hole (electron)

carrier density nh (ne ) of monolayer graphene can be written as

ne −nh = si g n(EF )
1

π

( |EF |
ħvF

)2

, (2.6)

While for multilayer graphene, the relationship is given by [88]

ne −nh = 2m∗EF

πħ2 , (2.7)

where m∗ is the effective mass of multilayer graphene. m∗ ≈ 0.052me (for 3,4 layers) [89], me

being the effective mass of the electron.

Let us now consider the up-state position of the switch, where graphene membrane has

an initial hole (electron) carrier density nh up (ne up ). In this case, the chemical potential,
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EF up Mono in the up-state position for monolayer graphene (from Eq. 2.6) can be written as

EF up Mono = si g n(ne up −nh up )ħvF

√
|ne up −nh up |π. (2.8)

Similarly, the chemical potential EF up Mul ti in the up-state position for the multilayer graphene

(from Eq. 2.7) can be expressed as

EF up Mul ti =
πħ2

2m∗ (ne up −nh up ). (2.9)

We now consider the down-state position of the switch, which is achieved by applying a dc

voltage Vbi as between the central conductor and ground. The resulting electrostatic forces

pull the membrane towards the center conductor, and the voltage at which electrostatic forces

overwhelm the restoring force is known as the pull-in voltage Vpul l−i n . At this voltage or

greater (|Vbi as | ≥ |Vpul l−i n |), the membrane is in direct contact with the bottom dielectric

layer. In this position, a part of the membrane in region 2 (Fig. 2.2b) experiences the field

effect from the central conductor. To compute the carrier density in this region, the charge

balance relationship [88] is employed, which is given as

Vbi as −VDi r ac = q(ne down −nh down)

Cox
, (2.10)

where q is the elementary charge, nh down (ne down) is hole (electron) carrier density in the

down-state position, Cox is the capacitance of the dielectric between the central conductor

and the membrane in down-state position, which is given by Cox = εr ε0
td

, where εr is the relative

permittivity of the dielectric, ε0 is vacuum permittivity and td is the thickness of the dielectric,

and VDi r ac is the bias voltage at the Dirac point. It has a non-zero value for the pre-doped

graphene and its magnitude also depends upon the dielectric constant and thickness of the

supporting substrate. For the initial hole (electron) carrier density of nh up (ne up ), the VDi r ac

can be calculated as [90] VDi r ac =−q(ne up −nh up ))/Cox . Thus from Eq. 2.10, the down-state

carrier density can be expressed as

ne down −nh down = Cox

q
Vbi as +ne up −nh up . (2.11)

As a result, the chemical potential in the down-state for monolayer graphene, EF dn Mono

(Eq. 2.12), and for multilayer graphene, EF dn Mul ti (Eq. 2.13), can be expressed as:
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EF down Mono =si g n(
Cox

q
Vbi as +ne up −nh up )ħvF

×
√

|Cox

q
Vbi as +ne up −nh up |π, (2.12)

EF down Mul ti =
πħ2

2m∗ (
Cox

q
Vbi as +ne up −nh up ). (2.13)

Note that we have ignored the effect of quantum capacitance [91] in our model because its

impact is negligible for the values of Vbi as and the thickness of dielectric applicable for RF

NEMS switches [85].

In addition to chemical potential, the scattering rate Γmay also take a different value in the

down-state position of the switch due to the remote polar phonon scattering from the bottom

dielectric. However, for the highly doped graphene sample, the contribution due to remote

polar phonon scattering rate is usually small [88] and can be ignored [92].

2.5 Simulation, Results and Discussion

The lateral dimensions of the graphene RF NEMS switch considered for the simulation are

shown in Fig. 2.4. The suspended graphene membrane is L = 20 µm long and w = 30 µm

wide, and is suspended at a height g0 = 300 nm. These dimensions are chosen to be the same

as the experimentally implemented DC NEMS switch by Kim et al [39], where no attempt

was made to investigate the microwave properties in a CPW configuration. Furthermore, a

wide central conductor width (W = 15 µm) below the membrane is used. This is to achieve

a maximum field effect of the membrane in the down state. The substrate is high resistivity

silicon (10 kΩ-cm), and the ground and central conductor are treated as perfect conductors

for the full-wave simulation (as losses in the metals are negligible with respect to graphene

membrane).

A thin dielectric layer (td = 20 nm) over the central conductor is considered to achieve a

high capacitance ratio of the switch. A high-κ dielectric HfO2 is chosen as a material for the

dielectric layer for two main reasons. First, high-κ dielectrics — such as HfO2 — are known to

reduce the impurity scattering [93, 94] in graphene. Second, its higher dielectric constant (εr

= 25) and a low loss tangent (tanδ=0.0098) [95], lead to a better switch performance at high

frequency. Furthermore, it is noted that the maximum Vbi as which can be applied without

causing dielectric breakdown of HfO2 is 0.85 V/nm × td [96]. In this case, for td = 20 nm,
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Figure 2.4: Top view with specifications of lateral dimensions used for the simulation.

the maximum Vbi as which can be applied is 17 V; this is much larger than the maximum

voltage needed for actuation as shown later. The full-wave simulation of graphene-based

RF NEMS switch is performed using Ansys HFSS. In the full-wave simulation, the graphene

membrane is modeled as an infinitesimally thin sheet characterized by frequency ω and bias

Vbi as dependent surface conductivity according to Eq. 2.5. In the up-state, a conductivity

σup (ω, Vbi as) is assigned to the whole membrane. In the down-state, a membrane is divided

into three regions, as shown in Fig. 2.2b. In regions 1 and 3, σup (ω, Vbi as) is assigned and in

region 2, σdown(ω, Vbi as). The proposed model is used to compute σup and σdown . Using

the sheet resistivity and carrier density data provided in ref [74], we extract the rest of the

parameters based on our model required to compute the conductivities. It is noted that the

model presented in Section 2.4 is generalized; that is, it can be applied to any sheet resistivity

value of monolayer and multilayer graphene, and is not limited to the example shown in this

paper. Table. 2.3 summarizes the extracted model parameters used for the simulation. Low

pull-in voltages < 2 V based on the analytical expressions, are closer to the experimentally

demonstrated values [39]. Switching time of 0.24-0.43 µs have been obtained which is an

order of magnitude below the typical values (2-50 µs) for state of the art MEMS switches [59].

It should be noted that we have not considered the effect of contact resistance which exists

between graphene and ground conductor in our simulation as its effect is almost negligible at

higher frequencies [85].

An example of typical frequency-dependent surface impedance (= 1/σ) of graphene based on

Eq. 2.5 is shown in Fig. 2.5 both for monolayer and multilayer graphene. At a given frequency,

the application of Vbi as allows to increase EF , thus reducing the surface resistance. Note

that at Vbi as = +Vpul l−i n , the surface resistance is higher (conductivity is lower) than that

at −Vpul l−i n because the considered sample is initially p-doped. From the RF point of view,

having a higher conductivity for a given bias voltage in the down-state is beneficial as this

translates to a higher isolation. From the electrostatic actuation point of view, the polarity

of bias applied does not matter, i.e., applying either positive or negative Vpul l−i n will both
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Table 2.3: Extracted parameters from the model.

Monolayer Multilayer
1/σup (Ω/ä) 125 30 [74]
Doping p-doped p-doped [74]
Layers 1 4 [74]
nh up (cm−2) 9.43 × 1012 4 × 1013 [74]
ne up (cm−2) 0 0 [74]
τ (ps) 0.186 0.309 [74]
EF up (eV) 0.365 0.92 Eq. 2.8,2.9
|Vpul l−i n | (V) 0.3 1.4 Eq. 2.2 (monolayer: [E = 0.8 TPa, t ∼ 0.34 nm, T = 13 nN] [28];

multilayer: [E = 0.8 TPa, t ∼ 2 nm, T = 300nN] [66])
ts (µs) 0.43 0.24 Eq. 2.4 (ρ = 2200 kgm−3 [28])
EF down (eV) 0.451 0.344 Eq. 2.12, 2.13
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Figure 2.5: Surface impedance vs frequency of (a) monolayer graphene and (b) multilayer
graphene using the parameters in Table 2.3. The case Vbi as = 0 and Vbi as 6= 0 corresponds
to the up-state surface impedance (1/σup ) and down-state surface impedances (1/σdown)
respectively.

actuate the switch. Therefore, given the choice of sign of the bias voltage, if the sample is

initially p-doped (n-doped), it will be beneficial to apply a negative (or positive) pull-in voltage

for a better RF performance [85].

There is also a weak inductive reactance contribution to the surface impedance which was also

observed in experiments conducted for sheet characterization of graphene at the microwaves

and mm-wave [97, 54].

The scattering parameters (S-parameters) of the switch are then computed in the frequency

range from 1 GHz to 60 GHz. Fig. 2.6a shows the S-parameters in the up-state position of

the switch. The insertion loss is 0.01-0.3 dB and 0.01-0.2 dB for monolayer and multilayer

graphene respectively. The S-parameters in the down-state position are shown in Figs. 2.6b

and 2.6c. The isolation of >10 dB for monolayer and >20 dB for multilayer graphene is

22



2.5. Simulation, Results and Discussion

10 20 30 40 50 60
−3

−2

−1

0

S
12

 (
dB

)
Frequency (GHz)

 

 

10 20 30 40 50 60
−50

−40

−30

−20

−10

10 20 30 40 50 60

−40

−20

S
11

 (
dB

)Monolayer
Multilayer

(a)

10 20 30 40 50 60

−10

0

S
12

 (
dB

)

Frequency (GHz)

 

 

10 20 30 40 50 60
−6

−4

−2

10 20 30 40 50 60
−6

−4

−2

10 20 30 40 50 60
−6

−4

−2

10 20 30 40 50 60
−6

−4

−2

S
11

 (
dB

)
V

bias
 = − 0.3 V

= − 2 V
= − 4 V
= − 7 V

(b)

10 20 30 40 50 60
−25

−20

−15

−10

−5

0

S
12

 (
dB

)

Frequency (GHz)

 

 

10 20 30 40 50 60
−5

−4

−3

−2

−1

0

10 20 30 40 50 60
−5

−4

−3

−2

−1

0

10 20 30 40 50 60
−5

−4

−3

−2

−1

0

10 20 30 40 50 60
−5

−4

−3

−2

−1

0

S
11

 (
dB

)

V
bias

 = − 1.4 V

= − 2 V
= − 4 V
= − 7 V

(c)

Figure 2.6: S-parameters of RF-NEMS switch shown in Fig. 2.4 in (a) up-state both for mono-
layer and multilayer graphene, (b) down-state for monolayer graphene, and (c) down-state for
multilayer graphene.

obtained. The multilayer graphene switch offers a superior isolation as compared to the

monolayer because of the lower surface resistance of the multilayer graphene. The isolation

can further be improved by increasing the bias voltage (Vbi as). This is due to the reduced

resistance of the membrane with increasing Vbi as .

It is noted that, in the down-state, changing Vbi as should have a negligible impact on the shunt

capacitance. Strictly speaking, the total down-state capacitance is the parallel combination

of quantum capacitance CQ and the dielectric capacitance COX . CQ is proportional to the

carrier density in graphene [91], which can be tuned by Vbi as in the down-state. Therefore,

the total capacitance, CQ || COX , will be the function of Vbi as ; that is, the total capacitance will

be affected after |Vbi as | ≥ |Vpul l−i n | through the quantum capacitance. The contribution of

CQ , however, is dominant only when: (1) the dielectric is very thin; and (2) when the graphene

considered has a very low carrier density. For graphene NEMS switches, a highly conductive

graphene is desirable which usually has a high carrier density (through chemical doping),

thereby leading to high CQ . A high value of CQ , in a parallel combination with COX , makes

its contribution to the total capacitance insignificant (CQ || COX ≈ COX ). Therefore, changing
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Figure 2.7: Comparison of loss vs S-parameters in the Up-state position. The reference planes
are 20 µm from the edge of NEMS switch (width of membrane = 30 µm).

Table 2.4: T-Model Circuit parameter extraction from simulated S-parameters.

Parameter@ 1-60GHz Parallel ZP Series ZS

Vbi as (V) CP (fF) RP (Ω) 4LS (pH) 4RS (Ω)
Up Monolayer 0 16.38 19.8 -1.08 0.08

Multilayer 0 16.05 7.11 -1.035 0.09
Down Monolayer -0.3 4410 8.57 -1.09 0.1

-2 4530 7.77 -1 0.09
-4 4510 7.51 -1.1 0.1
-7 4570 7.06 -1.02 0.09

Multilayer -1.4 4630 2.16 -1 0.15
-2 4530 2.17 -1.16 0.16
-4 4590 1.95 -1.03 0.16
-7 4620 1.76 -1.01 0.16

Vbi as will have a negligible impact on the shunt capacitance of this device [85].

The lower insertion loss and isolation obtained for monolayer graphene as compared to

multilayer, and the subsequent improvement in isolation with increasing Vbi as , can be better

understood by observing the contribution of thermal losses to the S-parameters. By energy

conservation, the loss of a two-port network is simply derived from the S-parameters as loss =

1−|S11|2 −|S12|2. The up-state position corresponds to the on-state of the switch, where S12 =

0 dB would be obtained for an ideal switch. As can be seen from Fig. 2.7a the decrease in S12 is

not solely due to the increase in the reflected power because of mismatch, but is also due to

thermal loss in the switch. By comparing the different curves, it is easily seen that the better

performance of the multilayer implementation is related to reduced losses rather than smaller

mismatch. The similar argument applies for the superior performance of multilayer graphene

in down-state position because of its reduces losses.
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Figure 2.8: Comparison of S-parameters reconstructed from the T-circuit Model and simulated
from HFSS in (a) up-state for both monolayer and multilayer graphene (b) down-state for
monolayer graphene (c) down-state for multilayer graphene. For the sake of clarity in graph,
down-state S-parameters are shown only for two bias voltages, Vbi as =− 2 V and Vbi as =− 7 V.

Finally, the equivalent circuit parameters are extracted (Table. 2.4) from the S-parameters

based on the T-circuit model shown in 2.3. We observe that the shunt impedance is well

modeled by a capacitance (CP ) in series with resistance (RP ) alone. Indeed, there is obviously

an inductive component linked with the current flowing through the membrane. However,

its contribution is small and can be neglected, which can be inferred from the fact that the S-

parameters reconstructed from the extracted parameters (RP and CP alone) in Table 2.4 agrees

well with the HFSS full wave simulations as shown in Fig. 2.8. Furthermore, it can be seen

from Table 2.4 that the extracted up-state capacitance [16.05-16.38 fF] is slightly higher than

the parallel plate up-state capacitance[ ε0wW

g0+ td
εr

=13.23 fF]. This is expected as a result of some

contribution of fringing field capacitance. The extracted down-state capacitance[4.41-4.62

pF] from Table 2.4 is also in good agreement with the parallel plate down-state capacitance

[ εr ε0
td

wW =4.9 pF].

The simulation results demonstrated that graphene can be used for RF NEMS switches in

applications where low-actuation voltage and fast switching are required, at the cost of larger

electromagnetic losses when compared to metal-based RF-MEMS. It was shown that multi-
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layer graphene can deliver superior isolation and reduced losses at microwave and mm-wave

frequency, and isolation can also be tuned with the bias voltage. Nevertheless, monolayer

graphene with low sheet resistivity value can also be considered in applications where even

lower actuation voltage is required.

2.6 Device Fabrication, Characterization and Discussion

2.6.1 Device Fabrication

The CVD grown multilayer graphene provided by AIXTRON is used as a membrane of the RF

NEMS switch. Fig. 2.9a shows the process flow used to fabricate the device [98]. High resistivity

silicon (525 µm thick) with resistivity > 10kΩcm is used as a substrate. 500 nm of low-pressure

CVD (LPCVD) Si3N4 is first deposited on the substrate. The central conductor made of Cr/Pt

(10 nm/200 nm) is fabricated by photo-lithography and liftoff. The dielectric employed for the

shunt switch is atomic layer-deposited (ALD) 30-nm-thick HfO2. Further, 800 nm of SiO2 (LTO)

is deposited by LPCVD as sacrificial layer corresponding to an effective gap of 300 nm. Next,

large-area multilayer graphene (∼ 1 cm2) is deposited by wet transfer method using PMMA

as transfer polymer. The deposited graphene are investigated on certain areas by atomic

force microscopy and Raman spectroscopy, and the average number of graphene layers are

found to be 2-5 [98]. Then, the membranes are lithographically patterned and etched using

oxygen plasma (1 min). The ground planes (top contacts) made up of Cr/Pt is then defined

by photo-lithography and liftoff. The devices are then annealed at 200 0C in N2 ambient to

improve the contacts. Finally, the membrane is released by etching away SiO2 (LTO) in the

buffered oxide etch, followed by critical point drying in order to avoid membrane stiction.

Fig. 2.9b,c shows the scanning electron micrograph (SEM) of the fabricated device.

2.6.2 Device Characterization and Discussion

The measurements are carried out in ultra-high vacuum at room temperature. The setup for

the device measurement is shown in Fig. 2.10. The scattering parameters are measured up to

frequency 6 GHz using an Agilent E8361A PNA microwave network analyzer and standard GSG

probes. Short-open-load-thru (SOLT) calibration is performed setting the reference planes at

the probe tips. The DC bias for electrostatic actuation of NEMS switch is applied through the

bias-tee as shown in Fig. 2.10. The representative NEMS devices are fabricated on the CPW

structure with a 70 µm central conductor width and 10 µm gap between central conductor

and ground planes. The width W of the membrane is 60 µm.

The measured scattering parameters for a CPW (unloaded) with dimensions 10/70/10 µm,

and the NEMS device on the CPW structure of same size (loaded), are shown in Fig. 2.11. As

expected, the resistive loading of graphene membrane decreases the transmission amplitude

|S21| (in dB) and increases reflection amplitude |S11| relative to the unloaded device. As the

Vbi as increases, |S21| of the loaded device decreases due to electrostatic actuation of the switch

26



2.6. Device Fabrication, Characterization and Discussion

Si

Si3N4

(i) (ii)

Si

Si3N4

Si

Si3N4

Si

Si3N4

Multilayer graphene

SiO2

HfO2Cr/Pt

Cr/Pt

(iii) (iv)

(v) (vi)

Cr/Pt

Cr/Pt

Si3N4

Multilayer graphene

(a)                                                               (c)

(b)
Si

Si3N4

Si

Si3N4

Figure 2.9: Fabrication process of the graphene RF NEMS.

Port 1 Port 2

VNA

DC power 

supply

Bias tee

DUT
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Figure 2.11: Measured S-parameters of graphene RF NEMS shunt switches.

in the up-state. As the Vbi as increases from 6 to 7 V, sudden decrease in |S21| is observed which

indicates the possible pull-in of the switch, and the membrane can now be considered in the

down-state position. The further increase of Vbi as decreases the |S21| (improves the isolation).

This improvement in isolation with Vbi as may be explained by the following effects: (1) The

increase in contact area owing to the electrostatic actuation. (2) The reduction in the resistivity

of the graphene membrane due to electric field effect [99] as explained in Section 2.5. The

pull-out of the switch was not observed; and the measurements were not found repeatable,

that is, the number of cycle was limited to 1. The possible cause may be due to the breaking of

membrane in a single operation due to stiction.

The equivalent circuit parameters of the measured switch, as extracted from the T-circuit

model (Fig. 2.3), are shown in Table. 2.5. To extract the intrinsic parameters of the switch,

mainly the shunt components, the following deembedding procedure is performed: (1) The

measured S-parameters of the loaded (Sloaded ) and unloaded (Sunloaded ) are first converted to

Z-parameters (Sloaded → Zloaded , Sunloaded → Zunloaded ); (2) the intrinsic shunt impedance

ZP−N E MS is then calculated as:

ZP−N E MS =
(

1

Z12−l oaded
− 1

Z12−unloaded

)−1

; (2.14)

and (3) the capacitance CN E MS and the resistance RN E MS of the membrane can thus be

respectively approximated as, CN E MS = Im
(
1/ZP−N E MS

)
/ω, and RN E MS = Re

(
1/ZP−N E MS

)
.

This deembedding procedure is fairly accurate and also verified with full-wave simulations.

The extracted capacitance and the resistance as function of Vbi as are plotted in Fig. 2.12. From

the extracted CN E MS values, the capacitance ratio is estimated to be 4.3. This value is closer to

the capacitance ratio obtained for CNT based NEMS (∼ 4) [67], but very low when compared

to state of the art metal membrane switches (∼ 80) [100].
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Table 2.5: Extracted equivalent circuit model parameters.

RS (Ω) LS (pH) RP (Ω) CP (fF)

unloaded 5.3 760 244.8
loaded at 0 V 4.7 620 256 1807

loaded at 15 V 4.8 760 240 5441
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Figure 2.12: Extracted shunt capacitance CN E MS and resistance RN E MS as a function of Vbi as .

As regards to the up-state capacitance, for the designed air-gap of g0 = 300 nm, its theoret-

ical value is 123 fF (= ε0wW /(g0 + td /εr )). However, the experimentally extracted value is

much higher: CN E MS(Vbi as = 0) = 1560 fF. Recalculating the effective gap (g0−e f f ) from the

experimentally observed up-state capacitance value, we obtain a gap of 22 nm (g0−e f f =
ε0wW /CN E MS − td /εr ). This implies that the membrane may be partially sagged in the initial

up-state position as depicted in Fig. 2.13a and might be the possible cause of high insertion

losses in the up-state.

Turning now to the down-state position, the capacitance, considering the effect of contact

area, can be expressed as a function of Vbi as : CN E MS−Down(Vbi as) = m(Vbi as).ε0wW /(g0 + td
εr

)

where we define a parameter m which depicts the fraction of total contact area in the down-

state. From the experimental value in Fig. 2.12a, the effective contact area m in percentage is

calculated and plotted in Fig. 2.13b. As expected, an increase in the effective area with Vbi as is

observed due to electrostatic actuation. This increase in the contact area is one of the reasons

responsible for the improvement in isolation with increase in Vbi as (Fig. 2.11a).

Further, the extracted resistance of the membrane RN E MS , as shown in Fig. 2.12b, decreases

with Vbi as after the pull-in. This decrease in resistance, although limited, might also be

responsible in part for the increase in isolation with Vbi as . From the RN E MS value, one can

extract the sheet resistivity of membrane as ρN E MS = 2RN E MS w/(l/2). The extracted value

is found to be in the range 640-680 Ω/ä which is closer to the value of 605.7 Ω/ä obtained
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Figure 2.13: (a) Situation of the membrane in the up-state position, (b) The effective area, m
in percentage versus Vbi as in the down-state position.

through test-structures measurements of non-suspended multilayer graphene (see Appendix

A).

To understand the low isolation observed for the fabricated NEMS switch, we perform full-

wave simulation using the observed sheet resistance value of graphene, and using the dimen-

sions same as our experimental device. Fig. 2.14 compares the isolation of shunt switch with

state-of-the-art metal, gold, as a membrane; and graphene (different sheet resistivity values) as

a membrane. As can be seen clearly, the real performance killer is the high sheet resistivity of

graphene membrane which results in higher switch losses as discussed in Section 2.5. For use

in applications, an isolation > 10 dB is mandatory which can be achieved with experimentally

reported sheet resistivity of 30Ω/ä [74]. To obtain performances close to state of the art, one

must use a highly conductive graphene with sheet resistivity value of atleast 1Ω/ä.

With the advancement in chemical doping and using more number of layers, a high conductive

graphene can be obtained as previously discussed in Section 2.2. Cautions should however be

made as using more number of layers: (i) would increase the membrane’s thickness, thereby

increasing the pull-in voltage (Eq. 2.2); (ii) will make the membrane stiffer, i.e. reduced Young’s

modulus, which will increase the switching time of the switch (Eq. 2.4).

2.7 Summary

In this chapter, we evaluated the performance of NEMS shunt switch based on graphene

via rigorous modeling, simulation and design. An attempt is also made to characterize the

fabricated devices based on multilayer graphene. We were able to report the following original
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Gold

600 Ω/

100 Ω/

30 Ω/

1 Ω/

Figure 2.14: Simulated isolation of the shunt switch with different resistivity values of the
graphene membrane and with metal (gold: bulk conductivity as shown in Table. 2.1 is used) as
a membrane. The dimensions of the switch are same as the experimental device in Fig. 2.11.
In the simulation, we consider 100 percent contact area of the membrane with the dielectric
in the down-state.

contributions:

• A framework for the full-wave simulation of graphene-based RF NEMS shunt switch

— taking into account the frequency- and bias-dependent conductivity of graphene —

is developed for the first time. Simulations of a coplanar waveguide double-clamped

graphene membrane capacitive switch, using realistic values of graphene conductivity,

predict an isolation of 10 dB for monolayer and 20 dB for multilayer graphene over the

frequency band from 1 GHz to 60 GHz.

• A unique conductivity variation of the membrane owing to the electric field effect

of graphene is proposed for the first time (in the category of NEMS switches) and it

was shown to have beneficial yet limited impact on the RF performance of the switch.

This effect was also observed in experiments done by our group and by the recent

experiments done by Li et al. [101, 102] on graphene-based RF NEMS shunt switches.

• The characterization and detailed analysis of graphene NEMS switch fabricated in our

lab [98] was performed. The pull-in voltage of 7 V was reported for the fabricated

device. We have also measured the RF performance of the device up to frequency 6

GHz. Insertion loss of −1.95 dB and isolation of −2.6 dB was reported. The limited

RF performance of the switch was due to the high sheet resistivity of the multilayer

graphene sample used for the experiments; the extracted sheet resistivity of 600Ω/ä was

also validated with the separate non-suspended multilayer graphene sheet resistivity

measurements (Appendix A).

The simulation results have shown that graphene can be a good candidate for the membrane of

RF NEMS switches in applications where low actuation voltage and fast switching are required.

It is also demonstrated that while monolayer graphene results in quite high switch losses at
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high frequency, the use of multilayer graphene, can considerably reduce the switch losses and

improve RF performance. Experimentally, although, the obtained RF performances pales in

comparison with state of the art switches, it should not be concluded that graphene is not a

promising material for RF NEMS shunt switches as this was merely the very first attempt to

fabricate these devices. Further optimization in fabrication process, and the use of graphene

with low sheet resistivity will significantly improve the performance.
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3 Graphene Solid-State Device Physics
and Technology

In contrast to the previous chapter where we talked about suspended graphene, herein we will

discuss graphene solid-state devices (which are not suspended). In particular, we focus on field

effect transistors based on monolayer graphene. Broadly, this chapter talks about two main

aspects: device physics (Section 3.1) and technology (Section 3.2-3.4) of graphene field effect

transistors (GFETs). The main aim of this chapter is to set the foundation for next two chapters

where we discuss the negative differential resistance phenomenon in GFET and GFET based

circuits, and its applications. Section 3.1 focuses on the drift-diffusion model of GFETs and the

circuit-simulation approach. In Section 3.2, common approaches for synthesizing monolayer

graphene is reviewed; specifically, the large-scale chemical vapor deposition method — which

was used to fabricate devices in this work — is discussed. Section 3.3 presents different tech-

niques to fabricate GFETs, and finally, Section 3.4 discusses the low-field DC measurements of

the fabricated devices.

3.1 Graphene Device Physics

3.1.1 Drift-Diffusion Model

In this section, we present the drift-diffusion model for top-gated GFETs [103, 104, 105]. The

drift-diffusion model provides the insight into the carrier transport at low and high-fields,

allows the understanding of I-V characteristics, and enables the use of computer-aided design

software to stimulate circuits.

Fig. 3.1a shows the schematic of a typical GFET. The GFET consists of a gate electrode; a large

area graphene channel through which charge carriers, electrons or holes, flow from source to

the drain; and a dielectric separating the gate from the channel. Source and drain electrodes

are connected to the intrinsic channel through an un-gated graphene region having a finite

series resistance. Thus, the intrinsic GFET experiences voltages which are different from the
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Figure 3.1: (a) Schematic of top-gated GFET. (b) Equivalent capacitive divider circuit model.

applied voltages and can be written as

VGSi =VGS −RS IDS (3.1)

VDSi =VDS − (RS +RD )IDS (3.2)

where VGS and VDS are the applied gate-source and drain-source voltage, respectively. The

subscript i refers to the intrinsic voltages. RS (RD ) is the source (drain) series resistance which

includes both the access resistance of the un-gated region and the metal-graphene contact

resistance. IDS is the drain-source current.

The SiO2 acts as the backgate dielectric and the Si wafer acts as backgate. By applying a

constant backgate voltage, the conductivity of the channel and the un-gated graphene region

can be adjusted. For the purpose of simplicity, the modeling presented below assumes a

constant value of VBG , that is: the access resistance (which can be modulated by VBG ) is

considered as a constant parameter; and the carrier density of the channel is considered only

the function of top-gate voltage (which can also be the function of VBG ). Readers who are

interested for modeling where combined effects both from top-and back-gate voltages are

considered, can refer to [106].

An important quantity in designing nanoscale top-gated transistors is the quantum capaci-

tance [91]. In contrast to conventional parallel plate capacitance model where one can model

the total gate capacitance between the top gate and the conducting graphene layer as the
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3.1. Graphene Device Physics

top-gate oxide capacitance, there exists the so-called quantum capacitance which also needs

to be taken into account for low-dimensional systems in general (Fig. 3.1b). The quantum

capacitance CQ describes the response of the charge inside the channel to the conduction

and valence band movement. Using the definition CQ = qdnS/dΦS whereΦS is the surface

potential across CQ , one obtains for monolayer graphene [91]:

CQ = 2q2kT

πħvF
2 ln

[
2

(
1+cosh

qΦS

kT

)]
. (3.3)

For qΦS À kT , the above equation can be reduced to [91]

CQ = 2q3|ΦS |
πħvF

2 . (3.4)

The surface potentialΦS can be calculated from the capacitance divider circuit as shown in

Fig. 3.1b

ΦS(x) = CTG

CTG +CQ (ΦS)

(
VGSi−e f f −V (x)

)
(3.5)

where VGSi−e f f is the effective internal gate-source voltage which is given by VGSi−e f f =
VGSi −VDi r ac−GS , where VDi r ac−GS is the top-gate Dirac point voltage. V (x) is the voltage drop

in graphene channel which is V (x) = 0 at x = 0 and V (x) = VDSi at x = L.

The drain current IDS flowing in an intrinsic GFET is given by [107, 103]

IDS = q
W

L

∫ L

0
n(x)vdr i f t d x (3.6)

where W and L are width and length of the channel, respectively; n(x) is the carrier density

at a position x in the channel; and vdr i f t is the drift velocity. The carrier density n(x) can be

more accurately written as

n(x) = n0 +
∣∣∣∣− (

1

2q
)CQΦS(x)

∣∣∣∣ (3.7)

where n0 is the residual carrier density. Since the quantities CQ andΦS depend on each other,

they need to be solved self-consistently for the final estimation of n(x).

The drift velocity vdr i f t is given by [107, 108, 109]

vdr i f t =
µE(

1+
(
µE
vsat

)γ)1/γ
, (3.8)

where µ is the low-field mobility, E is the transverse electric field, γ is the fitting parameter,

and vsat is the saturation velocity of carriers. The saturation velocity of graphene is mainly

governed by the remote interfacial phonon scattering [107] from the bottom dielectric. In
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Figure 3.2: Small-signal equivalent circuit of GFET.

this scattering mechanism, the saturation velocity vsat is dependent on the carrier-density of

graphene and can be written as

vsat (x) = ħΩ
ħpπn(x)

, (3.9)

where ħΩ is the optical phonon energy of the bottom dielectric.

3.1.2 Small-Signal and RF Model

The key use of graphene transistor, because of its high carrier mobility and transconductance,

is in small signal amplifier and other radio frequency devices. To characterize the GFETs

for that purpose, the small-signal model as shown in Fig. 3.2 is used. The intrinsic GFET is

described by the transconductance (gm), the drain-source conductance (gDS), the gate-source

capacitance (CGS), the gate-drain capacitance (CGD ), and the series resistances RS and RD .

The transconductance is defined as the change in drain current caused by the small change in

gate-source voltage as

gm = d IDS

dVGSi

∣∣∣∣
VDS

. (3.10)

The drain-source conductance (also referred as differential conductance) is defined as the
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Table 3.1: Dimensions and parameters of modeled GFET.

Parameters Values

L (µm) 0.44
W (µm) 3.4

Top-gate oxide 8.5-nm-thick Boron nitride (εr = 4)
VDi r ac−GS (V) −0.07
µ (cm2/(Vs)) 10000

n0 (cm−2) 2.2× 1011

γ 2
ħΩ (meV) 56
RS ,RD (Ω) 0

change in drain current caused by the small change in drain-source voltage as

gDS = d IDS

dVDSi

∣∣∣∣
VGS

. (3.11)

The gate-source and the gate-drain capacitances are given by the expressions:

CGS = dQC H

dVGSi

∣∣∣∣
VDS

, (3.12)

CGD = dQC H

dVDSi

∣∣∣∣
VGS

, (3.13)

where QC H is the total charge in the channel which in general can be calculated by QC H =
W

∫ L
0 n(x)d x. More accurately, these capacitances can be calculated using the analytical

expressions proposed by Zebrev et. al [110]; the analytical expressions are given as

CGS =W LCC H

[
F (s)+ 1

2

(
− dF (s)

d s

)(
s

(
dVDS A

dVGSi

)
−1

)]
, (3.14)

CGD = W LCC H

2

(
− dF (s)

d s

)
, (3.15)

where CC H is the channel capacitance given as CC H = CT GCQ /(CT G +CQ ), VDS A is given as

VDS A = 2q[n(x = 0)−n0]/CC H , s is a dimensionless parameter which is defined as VDSi /VDS A ,

and the dimensionless F (s) function is given as

f (s) =


1
2 [1+ (1− s)s(coth s −1)] : s ≤ 1

1
4

[
(1+coth s)(1−e−2)− e s−2−e−s (1−2(1−s)s)

sinh s

]
: s > 1.

(3.16)
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Figure 3.3: Modeled output characteristics of GFET in Table. 3.1 and its validation with
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Figure 3.4: (a) Modeled transconductance gm and (b) differential conductance gDS as a
function of VSD of GFET in Table. 3.1.

3.1.3 Model Validation and Circuit Simulation Approach

To validate the model against experimental data, we used the GFET from ref [111]. Table. 3.1

summerizes the GFET dimensions and parameters used for the simulation. Fig. 3.3 shows

the modeled output characteristics for this transistor, showing excellent agreement with the

experimental data. The output characteristics of typical top-gated GFET has three region

of operation: (I) linear region, (II) semi-saturation region, and (III) 2nd linear region [111].

Although, for aggressively scaled top-gated oxide GFETs, a negative differential resistance

region can also be observed; this region is discussed in great detail in the next chapter.

The small signal transconductance gm and the differential conductance gDS from the validated

model are plotted in Fig. 3.4. The small signal capacitances as calculated from the Eq. 3.14,

3.15 are shown in Fig. 3.5.
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Figure 3.5: (a) Modeled gate-source capacitance CGS and (b) drain-source CGD as a function
of VSD of GFET in Table. 3.1.
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Figure 3.6: Model implementation in Agilent ADS for circuit level simulation.

To this end, we have calculated the intrinsic small-signal parameters. The model is then im-

plemented in Agilent Advanced Design System (ADS) for full circuit level simulation. Parasitic

components such as series resistances and the underlap capacitances can also be added as

shown in Fig. 3.6. To implement the model in Agilent ADS, the intrinsic components are

represented by admittance parameters [Y ]. It is convenient to use the admittance parameters

here because the small signal model (Fig. 3.2) exhibits a π topology. These parameters are

Y =
(

Y11Y12

Y21Y22

)
=

(
jω(CGS +CGD ) − jωCGD

gm − jωCGD gDS + jωCGD

)
. (3.17)

The admittance parameter [Y ] is transformed to scattering parameter [S]. Next, in Agilent

ADS, an ‘S2P block’ is created, to which [S] parameter file is passed. Parasitic resistances such

as gate resistance (RG ), RS and RD and parasitic capacitances CGS−ext , CGD−ext can be added

39



Chapter 3. Graphene Solid-State Device Physics and Technology

in the simulator to take into account for the extrinsic effects. The implementation in Agilent

ADS enables scattering parameter, DC, transient and other measurements.

3.2 Graphene Synthesis

The synthesis methods of graphene include mechanical exfoliation, liquid phase exfoliation,

epitaxial growth on SiC substrate, chemical vapor deposition, chemical reduction of graphene

oxide, opening of CNTs. Depending on the intended application, there are advantages and

disadvantages of each methods. For electronic devices applications, three major methods are

used as described below:

3.2.1 Mechanical Exfoliation

Although the first mechanical exfoliation of graphene (∼15 layers) was carried out in 1960 by

Fernandez-Moran [112], it was Geim’s group that firstly discovered the monolayer graphene by

mechanical exfoliation in 2005 [113]. This method involves placing small fakes of high-quality

carbon such as highly orientated pyrolytic graphite (HOPG) on the adhesive side of the tape

and then transferred to the substrate. Peeling the tape off the substrate leaves small areas of

irregularly shaped graphene, usually of the order of µm dimensions. The electronic quality of

the resulting graphene is very high, with carrier mobilities up to 200,000 cm2V−1s−1. However,

this method suffers from major disadvantages such as poor yields, size limitation, difficulty in

controlling flake location. Thus the application of this method is limited mainly to laboratory

research, studying transport behaviour or as a reference for benchmarking other synthesis

methods of graphene.

3.2.2 Epitaxial Growth on SiC

The synthesis of monolayer graphene by thermal decomposition of SiC has been proposed

as a practical route for the synthesis of wafer-size graphene for nanoelectronic applications

[26, 114, 12]. The major advantage of this technique is that insulating SiC substrate can be

used so that the transfer to another substrate is not required. In this method, graphene is

directly grown on SiC substrate by heating at about 1300 0C in ultra-high-vacuum. Under

such conditions, the silicon atoms on top sublimate and graphene is formed on the surface.

The quality of graphene is highly influenced by the surface terminations which is either Si or

carbon. On Si-terminated face, the graphene domain is in the range of 30-100 nm, whereas

on carbon-terminated face, the domain size is ∼ 200 nm. The electronic quality of graphene

produced by this method is lower than graphene by mechanical exfolation method; carrier

mobilities up to 10,000 cm2V−1s−1 have been demonstrated with this method [115]. Like

other synthesis methods, this method has also has its share of limitations such as: the large-

scale structural quality is limited at present by the lack of continuity and uniformity of the

grown film [116]; the substrate SiC itself is not a CMOS compatible substrate, consequently
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Figure 3.7: SEM image of as-grown graphene on Cu foils. The scale bar is 3 µm.

limiting its use in many applications; and the thermal resistance (frequently called as Kapitza

resistance) associated with graphene-SiC is significantly larger than that of graphene-SiO2

interface which should be kept low for many electronic applications [16].

3.2.3 Chemical vapor deposition

Chemical vapor deposition is the most widely used synthesis approach for graphene [117]. The

graphene used for the fabrication of devices in the later part of this chapter and in subsequent

chapters are obtained using this technique. The major advantage of this technique is the

possibility to obtain large-area uniform films of graphene; the production of square metres of

graphene has already been achieved. These films have also been transferred onto 300-mm

Si wafers on which state-of-the-art devices have been demonstrated [118]. In addition, its

high throughput, low cost and CMOS compatibility makes it the most flexible and versatile

technique for graphene synthesis. This method involves two major steps: (1) The growth

of graphene by CVD on metal such as copper or nickel; and (2) the transfer from the metal

support to the substrate of interest.

A. Growth

In typical CVD process, the metallic substrate is exposed to one or more volatile precursors,

which react and decompose on the substrate surface to produce the desired deposit. Fre-

quently, volatile by-products are also produced, which are removed by gas flow through the

reaction chamber. The production of graphene using CVD process was first reported in 2008-

09, using Ni and Cu substrates [119, 120, 79, 80, 121]. In this work, we will focus on Cu, as the

CVD graphene used to fabricate devices in this work is grown on Cu [122].

The graphene films were grown on 25 µm thick Cu foil (99.98 % from Sigma Aldrich) in a

horizontal tubular furnace. Initially, Cu foil was first annealed at 1000 0C for 30 minutes

in 3 Torr of H2 with the chamber being closed by a valve. Then a mixture of H2/CH4 was

introduced into the system to initiate the graphene growth. After a continuous graphene
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layer was formed on Cu foil, the system was cooled down to room temperature. Fig. 3.7

shows the SEM image of Cu foil with the graphene film. The image contains useful legends

indicating the key elements of typical graphene growth. There are Cu grain boundaries

since the processed foils are polycrystalline. The growth of graphene also occurred at the

grain boundaries [123, 124]. The as-grown graphene exhibits wrinkles which are attributed

to differences in the thermal expansion coefficients between graphene and Cu. Owing to

impurities in the Cu foil composition, some white particles came out at its surface along the

process. They have been identified as metallic ones (Si, Al or Fe). The light grey background

is the monolayer graphene film. The darker areas are multilayer patches typical for CVD

graphene and are unavoidable at such growth pressure and growth time. The Cu steps appear

due to the competitions of two events. First, when graphene starts to grow, some Cu areas

are covered by the carbon and therefore the sublimation of the Cu in that area is suppressed

which interrupts the desorption of the carbon species and reduces the Cu foil thickness which

happens at a rate of about 4 µm/h at 1000 0C [125]. Second, the uncovered Cu areas close to

the edge of the graphene grains are still etched by the Cu sublimation and there the graphene

keeps growing.

B. Transfer

To make electronic devices with graphene, we need to remove the underlying metal substrate

from graphene and transfer graphene onto desired insulating substrate. A schematic diagram

of transfer process is shown in Fig. 3.8. Graphene/Cu sample was first spin coated (4000 rpm, 1

min) by a thin layer of polymethyl methacrylate (PMMA) and then baked at 120 0C to evaporate

the solvent. The Cu was then etched away by floating the PMMA/graphene/Cu sample in

0.05 g/ml ammonium persulfate ((N H4)2S2O8) solution for 4 hours. The PMMA/graphene

film was washed with 1 M HCl and deionized water for several times. Before the transfer of

PMMA/graphene, the target substrate (Si/SiO2) was cleaned by oxygen plasma to improve the

hydrophilicity of the substrate. The PMMA/graphene film was then placed on the 200 mm

Si/SiO2 substrate, positioned and dried. The PMMA coating was removed with acetone and the

substrate was rinsed with isopropanol. To minimize the typical PMMA resist residue problem

associated with CVD graphene transfer, the sample was annealed 200 0C in N2 ambient.

The quality of graphene after the transfer was characterized using micro-Raman mapping as

shown in Fig. 3.9. Micro-Raman mapping was performed on the area where GFET were to be

fabricated. An area of 30×30 µm2 of the sample was mapped using a 1 µm wide laser spot.

A full Raman spectrum was recorded every micrometer: each square of the map represents

a Raman signal as depicted in Fig. 3.9a-f. The blue spot on the map exhibits a 2D/G band

ratio of 2.2-3 and a 2D band full width at half maximum (FWHM) of 32-37 cm−1, typical for

monolayer graphene as shown in Fig. 3.9g. While the green spot exhibits a 2D/G band ratio of

0.7 and a 2D band FWHM of 55 cm−1, typical for multilayers graphene as shown in Fig. 3.9i.

In order to observe the average film type in terms of its thickness and quality (defect) in this

area, we extracted the mean spectrum (from the 900 Raman spectra) as shown in Fig. 3.9h.
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Spin coat      PMMA

Figure 3.8: Schematic diagram of the graphene transfer process.

The mean spectrum — although has no physical meaning — provides a good way to gauge the

global film characteristics. It exhibits a 2D/G band ratio of 2.5 and a 2D band FWHM of 36

cm−1, which are typical hallmarks of monolayer graphene. Therefore, we can conclude that

the as-grown film is a high quality monolayer graphene.

3.3 Device Fabrication

3.3.1 Top-gate GFET

The top-gate configuration is the most widely used approach to fabricate GFETs [126, 107,

127, 9, 128, 129]. The main advantage of this configuration lies in the fact that graphene is

deposited on a clean substrate (as this is the very first step of the process flow), which results

in a better quality graphene. The electronic quality of graphene mainly the carrier mobility

is highly affected by the surface roughness of dielectric on which it is sitting [130]. Various

dielectric substrates for fabricating top-gated GFETs are reported in literature namely Si/SiO2

[126, 107, 127, 9, 128, 129], sapphire [131], glass [15], SiC [10]. The most common dielectric is

Si/SiO2 with either 90 or 300 nm-thick SiO2; the main reason is the ease of visual identification

of graphene on this thickness of dielectric [132]. The devices discussed in the next chapters

are fabricated using the top-gating approach using either 90 or 300 nm-thick SiO2/Si.

The process flow schematic of top-gated GFET is shown in Fig. 3.10. The devices were made

on 100-mm Si substrate. SiO2 dielectric with either 300 nm or 90 nm thickness was grown

on the substrate. An approximate 1 cm× 1 cm area of CVD graphene, as described in the last

section, was transferred and positioned on the substrate. Graphene was then patterned using

electron beam lithography and subsequent oxygen plasma etch. The optical micrograph after

the etching is shown in Fig. 3.11. The source and drain electrodes made of Ti/Pd/Au (1 nm/20

nm/40 nm thick) were fabricated by second electron beam lithography and liftoff. The use of 1

nm Ti is for good adhesion of electrode with graphene. As Ti deposited is only 1 nm, the main
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Figure 3.9: Micro-Raman mapping of graphene grown by CVD on SiO2/Si. Raman maps of
the intensity ratio of the 2D band to the G band (a) , of the D band to the G band (b), of the
2D band (c) and G band (d) full-width at half maximum, of the 2D band (e) and G band (f)
positions. The numbers above the maps are their average values. (g) Raman spectrum of the
blue spot corresponding to monolayer area. (h) Mean spectrum of the 900 spectra recorded to
build the maps. (i) Raman spectrum of the green spot corresponding to a multilayers area. All
maps have been measured over a 30×30 µm2 area with a 1 µm resolution. The excitation laser
wavelength is 532 nm.
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Figure 3.10: Schematic of process flow for fabricating top-gated GFETs.
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Figure 3.11: Optical micrograph of etched graphene on Si/SiO2.
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Figure 3.12: SEM image of fabricated top-gated GFET.

chemistry between graphene and electrode is dictated by graphene-Pd. Among all graphene-

metal contacts, graphene-Pd contacts are known to give the lowest contact resistance [133].

The next step is to form the top-gate oxide on graphene. We used high-κ dielectric materials,

such as Al2O3 and HfO2, which were deposited via atomic layer deposition (ALD). The direct

deposition of high-κ dielectric material on graphene using H2O-based ALD, however, is not

possible because of the hydrophobic nature of graphene basal plane [134]. Thus, prior to the

oxide deposition, nucleation sites on inert surface of graphene [128] are created intentionally.

For this purpose, a seed layer of Al (∼ 1.5 nm) was deposited on graphene using e-beam

evaporation and was later thermally oxidized (120 ◦C, 6 hours). Then, either a 5-nm-thick

HfO2 or a 15-nm-thick Al2O3 layer was deposited via ALD. Finally, the metal stack Ti/Au (20

nm/40 nm) was deposited as top-gate electrode. The SEM image of the completed device is

shown in Fig. 3.12.

3.3.2 Embedded-gate GFET

One major issue with top-gate configuration is the use of seed layer for top gating of graphene

transistors as discussed in the previous section. The use of seed layer — an avoidable step due

to the inert nature of graphene surface — leads to problems such as unintentional doping,

clustering effects and the inability to scale the dielectric thickness [135]. To avoid this problem,

the straight-forward solution would be to make the gate oxide before graphene deposition.

The FET made with this configuration is commonly known as embedded gate or buried gate

transistors.

The electronic quality of graphene on the substrate depends on the planarity and cleanliness

of the substrate surface. Most of the embedded FET based on graphene uses chemical me-

chanical polishing (CMP) as a technique to make embedded gates [136, 137, 138, 14, 139].

However, the use of CMP may lead to problems such as dishing in the embedded gates and

dirty substrate for graphene deposition as discussed later. Herein, we fabricate embedded
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Figure 3.13: Schematic of process flow for fabricating embedded-gate GFETs.

graphene FET without the use of CMP [140, 141]. In addition to achieving a highly planar

and clean surface, this technique enables quicker fabrication process with fewer lithography

steps. Furthermore, this technique can also be used for fabricating transistors based on any

two-dimensional channel material that can be transferred such as MoS2 [17].

The embedded metal gate GFETs were fabricated using the flow shown in Fig. 3.13 (we refer

this process as CMP-free process.). High resistivity 100-mm silicon wafer with 1 µm thick

thermal SiO2 was used as a starting material. First, a PMMA 495K (70 nm)/PMMA 950K (140

nm) bilayer was spun and baked on the wafer. Thereafter, electron beam lithography was

carried out to define gate electrodes. Next, plasma etching with a mixture of CHF3 and SF6 for

25 seconds was used to remove ∼ 60 nm of SiO2. The plasma etching also removed ∼100 nm

of resist leaving PMMA 495K (70 nm)/PMMA 950K (40 nm) bilayer for liftoff. Finally, (10-nm

Ti/50-nm Au) was deposited using ebeam evaporation and then liftoff. Fig. 3.14a shows the

SEM image after the completion of embedded gate step.

To compare, we also fabricated embedded gates using conventional damascene process

utilizing CMP with copper on another wafer (we refer this process as CMP process); the SEM

image of the embedded Cu gate with CMP is shown in Fig. 3.14b. Our CMP-free process offers

several advantages as compared to the CMP process for the definition of embedded gates.

First, as shown in Fig. 3.14c-d, our CMP-free process gives a highly planar surface as compared

to the CMP process where huge dishing in Cu is usually observed after CMP. Second, the

CMP process leaves significant amount of resist residues from the slurry on copper which is

usually difficult to clean. In our CMP-free process, there is no such problem of resist residues.
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Figure 3.14: (a) SEM image after step d of CMP-free process (Fig. 3.13). (b) SEM image of
planerized embedded copper in SiO2 after CMP process. (c) Surface topography of a. (d)
Surface topography of b.

Finally, the use of gold in CMP-free process allows the writing of alignment markers in the

same mask level as embedded gate level, saving one extra masking step. The higher atomic

weight contrast of gold with silicon render gold markers automatically detectable by electron

beam lithography system. On the other hand, embedded Cu was not detected automatically

because of its low atomic weight contrast with silicon.

The fabrication of our CMP-free process continued with the ALD of 20 nm HfO2. The contact

pad to the gate was lithographically patterned and etched open using the argon based ion

beam etching. CVD grown graphene was transferred to the embedded gate substrate by typical

wet etching (Section 3.2.3). Graphene was patterned with a third lithography step and reactive

ion etching in oxygen plasma. The device was completed by evaporating Ti/Pd/Au (1 nm/20

nm/40 nm) source and drain electrodes to contact the graphene. Fig. 3.15 shows the SEM

image of a finished device.
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Figure 3.15: SEM image of fabricated embedded-gate GFET.

3.4 Low-Field Measurements

3.4.1 Graphene on Si/SiO2 without top-gating

Herein, we present measurements of monolayer graphene on Si/SiO2 (295-nm-thick SiO2),

without any top-gating. The graphene was biased through the back-gated silicon substrate.

The measurements were performed after the step (d) of Fig. 3.10. The DC characteristics were

measured with an HP 4145B Semiconductor Parameter Analyser. All the measurements were

carried out in room temperature in vacuum.

Fig. 3.16a shows the transfer characteristics of device with channel length of L = 3µm and width

of W = 5 µm. The device exhibits the ambipolar behaviour typical for monolayer graphene.

The Dirac point voltage VDi r ac−BG , defined as the minimum point of current conduction [54],

was reached at ∼ 80 V indicating strong p-doping. We also extracted the contact resistance of

the graphene-metal contact — which in this case graphene-Pd — through the separate array

of graphene transistors as shown in Fig. 3.16c. Though the transfer length method (TLM),

we extracted the back bias-dependent contact resistance RC as shown in Fig. 3.16d. The

dependency of back bias voltage VBG on RC is due to the doping of graphene below the metal

and is consistent with other reports [133, 142, 143] showing the similar trend.

The carrier density n induced by the back gate voltage VBG was estimated from n =CBG (VBG −
VDi r ac−BG ) where CBG is the back gate capacitance which can be approximated as CBG =

11.6 nFcm−2 (for a SiO2 layer of 295 nm thickness and relative dielectric constant of 3.9,

measured by ellipsometer). The sheet resistivity ρ of graphene was then deduced as ρ =
(VDS/IDS −2RC W )W /L and was plotted in Fig. 3.17a. Finally, the drude model was employed

to estimate the mobility of device µ= (qnρ)−1. Fig. 3.17b shows the extracted mobility versus

carrier concentration of the measured device.
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Figure 3.17: (a) Sheet resistivity ρ; and (b) carrier mobility µ as a function of VBG .
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3.4.2 Top-gate GFET

The top-gated geometry, whose measurements are presented in this section, is shown in

Fig. 3.18a. The top-gate dielectric is 5-nm-thick HfO2 which was deposited after the thin

seed layer of oxidized Al(∼ 1.5 nm) as discussed in Section 3.3.1. Fig. 3.18b shows the transfer

characteristic of a device with L = 1 µm and W = 20 µm. The device is a typical ambipolar

FET as manifested by the “V” shape of the transfer curve. Fig. 3.18c shows the corresponding

transconductance gm of the device which is defined as gm = d IDS/dVGS . To extract carrier

mobility from transfer characteristics, the oxide capacitance of the top-gate stack must be

obtained first.

In the dual-gated GFET configuration, the carriers in the graphene channel can be controlled

both by top gate bias VGS and back gate bias VBG . Specifically, top-gate voltage Dirac point,

VDi r ac−GS , can be shifted via VBG as shown inFig. 3.19a. This shift in VDi r ac−GS is linearly

proportional to the change in VBG as shown in Fig. 3.19b; and their ratio is — in fact — related

to the back-gate capacitance CBG and top-gate capacitance CT G as |4VBG /4VDi r ac−GS | =
CTG /CBG [129, 127, 144]. Thus, from the known CT G ∼ 38.3 nFcm−2 (90 nm SiO2, relative

dielectric constant of 3.9) and |4VBG /4VDi r ac−GS | = 39.2 ( Fig. 3.19b), CTG is estimated to

be 1.5 µFcm−2. This corresponds to an equivalent oxide thickness (EOT) of 2.3 nm.

The carrier mobilities for electron and hole branches are then extracted based on the model

proposed by Kim et al. [128]; this model assumes a carrier concentration independent mo-

bility. It should, however, be noted as a caveat that this model overestimates the mobility by

overcompensating series resistance [145]. Nonetheless, given the fact that majority of groups

reported mobility using this model [129, 146, 147, 148, 149, 150, 144, 151, 152, 153, 154, 155],

we compute mobilities based on this model itself as this will serve as way to compare mobilities

with other reports. The total resistance RT OT in the GFET is given as

RT OT = RS +RD + L

W

1

qµ
√

n0
2 +n2

. (3.18)

In the above equation, RT OT is calculated as RT OT = VDS/IDS and carrier density n can be

calculated using the equation [103]

n =
∣∣∣∣− 1

2q
CQΦS

∣∣∣∣, (3.19)

where the quantum capacitance CQ and the surface potentialΦS are calculated using

CQ = 2q3|ΦS |
πħvF

2 , (3.20)

ΦS = CTG

CT G +CQ

(
VGS −VDi r ac−GS

)
. (3.21)
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Figure 3.18: (a) Schematic of a top-gated GFET. (b) Transfer characteristics at VBG = 0V ; and
(c) its corresponding transconductance.

Note that the above equations are for top-gated GFET without back-gating as we are mainly

interested to calculate the carrier density at VBG = 0. Since the quantities CQ andΦS depend

on each other, they are solved self-consistently for the final estimation of n as shown in

Fig. 3.20a. Using the estimated n and Eq. 3.18, carrier mobilities are calculated — separately

for electron and hole branches — by fitting the total resistance to the experimental data as

shown in Fig. 3.20b. The hole and electron mobilities of the device are estimated to be 2894

cm2/(Vs) and 3505 cm2/(Vs), respectively; whereas, the minimum carrier density n0 is found

to be approximately ∼ 6.5 ×1011 in both the branches.

3.4.3 Embedded-gate GFET

Fig. 3.21a shows the schematic of embedded gate structure whose fabrication was discussed

in Section 3.3.2. The embedded gate dielectric used in this case is 20 nm ALD HfO2. Fig. 3.21b

shows the transfer characteristic of a device with L = 1 µm and W = 10 µm. The Dirac

point was reached at −0.8 V, indicating the n-doping in these devices. Fig. 3.21c shows

the corresponding transconductance. The embedded oxide capacitance of 0.6 µFcm−2 was

estimated from separate capacitance-voltage measurements. The carrier density was then
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Figure 3.19: (a) Transfer characteristics of a 1 µm long and 20 µm wide GFET. The bottom-gate
is swept between -20 V to 20 V in 10 V steps at VDS = 10 mV; and (b) VDi r ac−GS as a function of
VBG . The inverse of the slope |4VBG /4VDi r ac−GS | ∼ 39.2 has been obtained from a linear fit
with an adequate R-squared value of 0.99.

calculated using the method discussed in the last section. Using the model [128], the hole

and electron mobilities were found to be 760 and 2111 cm2V−1s−1, respectively (Fig. 3.22).

Interestingly, the extracted mobility for electron branch is higher, although, the extrinsic

transconductance is higher for hole branch as can be observed from Fig. 3.21b. This is because

the model used to extract mobility in Fig. 3.22 assumes higher series resistance in electron

branch, which compensates for higher mobility value. The carrier mobilities in GFET can also

be extracted from the peak-transconductance method [156]. The mobilities are calculated as

µF E = (L/W ).gm−peak /(COX .VDS) where COX is the embedded oxide capacitance and gm−peak

is the maximum transconductance of the device in each branch. Using this method, the

hole and electron mobilities — including the series resistance — are found to be 200 and 50

cm2V−1s−1, respectively.

Compared to top-gated GFET, two direct observations can be found in the electrical character-

istics of embedded gate GFET: (1) The overall mobilities values are lower. (2) The asymmetry

between electron and hole conduction is higher. We believe that the main reason affecting the

quality of graphene in the case of embbedded-gate GFET may be due to the slight gap between

Au and SiO2, as can be seen in Fig. 3.14a, which may have occurred due to the undercut profile

expected from the bilayer resist. This gap might have led graphene to be suspended and

possibly to break partly in subsequent process steps.

3.5 Summary

In summary, we introduced the essential device physics of GFETs; particularly, the drift-

diffusion model of GFET was recalled which was also validated against the experimental

data. We discussed the approach to simulate GFET and GFET based circuit in Agilent ADS
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Figure 3.20: (a) Carrier density n; and (b) total resistance RT OT =VDS/IDS as a function of VGS

of a GFET from Fig. 3.18b. The blue curve shows the experimental data; the green curve shows
the excellent theoretical model fitting for hole and electron branches.

which also takes into account various parasitic effects. The graphene synthesis approach was

reviewed with the emphasis on CVD approach which was used for fabrication of devices in

this PhD work. Further, we presented two techniques to fabricate GFETs: top-gated GFET

and embedded-gate GFET. Compared to top-gated GFET, the embedded-gate GFET exhibited

lower mobility, and higher asymmetry between electron and hole conduction. Thus, in the

later chapters for NDR devices, we use top-gated GFET device and circuits based on them.

This chapter includes the following original contributions:

• The drift diffusion model for the calculation of the dc and small-signal behaviour of

GFETs has been recalled. Most importantly, we have included a correct modeling of

the quantum capacitance and the carrier density, and have developed a framework for

circuit simulation of GFETs which will be utilized in the next two chapters.

• Transfer of CVD-derived graphene has been carried out using wet chemical approach

onto SiO2/Si and embedded gate SiO2/Si samples. Large-area graphene samples of sizes

upto ∼1.5 cm were transferred on 100 mm silicon wafer.

• Full fabrication of graphene devices (top-gated GFET and embedded-gate GFET) —

from transfer of graphene to full circuit fabrication — has been performed in 100 mm

fabrication facility.

• The embedded-gate GFET has been fabricated without the use of CMP. Compared to

the CMP process, embedded gate transistors fabricated using our technique showed

planar and clean surface for graphene deposition.

• Low field measurements of devices (top-gated GFET and embedded-gate GFET) have

been performed. Various electrical parameters — such as carrier mobilities and contact

resistances — have been extracted from the measurements; carrier mobilities exceeding

3000 cm2/(Vs) have been obtained for top-gated GFETs.
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Figure 3.21: (a) Schematic of a embedded-gated GFET. (b) Transfer characteristics of the
embedded gate GFET; and (c) corresponding transconductance.
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4 Negative Differential Resistance in
Graphene Solid-State Devices

In this chapter, we discuss the negative differential resistance (NDR) in graphene solid-state

devices which include single GFET, and circuit based on three GFETs. Before moving on to NDR

based on graphene, in Section 4.1, we introduce the NDR phenomenon and its classification

in general accompanied by the essential figures of merit to evaluate an NDR technology; and

review recent research on NDR devices based on two-dimensional materials. In Section 4.2,

we discuss the NDR in single GFET which include: rigorous experimental work with single

GFET, whose channel lengths range between 200 nm and 5 µm and which conditionally show

NDR; mechanism behind NDR in single GFETs; and the dependence of the NDR on the oxide

thickness. In Section 4.3, we present a novel circuit consisting of three GFETs which shows

enhanced NDR characteristics as compared to single GFET. Finally, we summarize our findings

and conclude in Section 4.4.

4.1 Introduction

4.1.1 Negative Differential Resistance Phenomenon

Negative differential resistance (NDR) or negative differential conductance (NDC) is a phe-

nomenon in which an increase in the applied voltage across the device’s terminals results in a

decrease in electric current through it for a certain applied bias range (Fig. 4.1). This appears

to be in contrast to the Ohm’s law, which states that the current increases proportionally to the

the applied voltage. However, NDR phenomenon is not an analogue of Ohm’s law; that is, it

does not have a constant negative resistance over a arbitrarily wide range of voltage. In fact,

NDR occurs over only in a limited portion of their voltage range; and in that limited portion,

the ratio of a change in voltage to the resulting change in current dV /d I is negative. Besides,

the devices in which this phenomenon occur are simply non-linear.

NDR phenomenon was first discovered in 1918 by Albert Hull at General Electric [157]; he

discovered this phenomenon in vacuum tubes technology. Motivated by this discovery, many

vacuum tube NDR devices have since then reported [158, 159, 160, 161]. Later, the invention of
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Figure 4.1: (a) I −V characteristics of voltage-controlled N-shaped NDR device, and (b)
current-controlled S-shaped NDR device. (c) d I /dV of (a).
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solid-state transistors in 1948 triggered the search of NDR phenomenon in solid-state devices.

It was not until 1958 before the the first solid-state NDR device, called the tunnel diode, was

invented by Esaki [162]. For this discovery, Esaki was also awarded with Nobel Prize in Physics.

Since then NDR has been observed in plethora of solid-state devices, and caused by several

different mechanisms. The main impetus behind NDR’s research over the years has been in its

potential to be used in various RF and digital applications.

The most obvious RF application of NDR is the oscillator. In fact, Albert Hull, the inventor

of NDR, first exploited this phenomenon to make electronic oscillator, known as dynatron

oscillator [157]. As such many design approaches exist to make NDR oscillator. The simplest

oscillator consists of an NDR device and a capacitor-inductor component [163, 164]. Another

widely used application is reflection amplifiers which has the advantage of keeping power

gain over broad frequency range [165, 163]. This application is discussed in the next chapter.

NDR phenomenon can also be exploited in various digital applications. As NDR devices

produce oscillation between two states, it is possible to hold either state for some finite

time to function as digital latches and memories [166]. It is also possible to construct the

non-Boolean logic architecture exploiting NDR phenomenon using the principles of the non-

linear networks [167]. Further, as certain NDR devices — such as GaAs based quantum well

heterostructures [168] — manifest multiple NDR regions, they can be utilized to produce

multiple-valued logics. This may result in highly dense devices and fewer circuit elements

than prior generations of transistor-transistor logic (TTL), emitter-coupled logic (ECL), or

CMOS logic. Multi-peak NDR devices also find applications in multiple-valued memories

[169]. In addition, several other possible applications of NDR include mixers [170], multipliers

[171], analog-to-digital converters [172], and binary- and ternary-adder circuits [173].

Broadly, NDR can be classified into two categories: voltage-controlled and current-controlled

devices. In general, the voltage-controlled devices — such as tunnel diode [162], Gunn diode

[174] — have N-shaped NDR (Fig. 4.1a), and the current-controlled — such as gas discharge

tubes [175], IMPATT diode [176] — have S-shaped NDR (Fig. 4.1b). The NDR presented in this

work is voltage-controlled N-shaped NDR.

4.1.2 Figures of Merit

To access the performance of NDR, specifically for the case of voltage-controlled N-shaped

NDR devices (Fig. 4.1a), the following figures of merit (FOM) must be considered:

Peak-to-valley-current-ratio (PVCR) PVCR is defined as the ratio of peak current i1 (onset

of NDR) to the valley current i2 (end of NDR) (Fig. 4.1a). For digital logic applications, a

PVCR usually need not be more than 5 to 10 [177]. For large-scale memories, though,

minimization of standby power consumption is critical and demands as high a PVCR as

possible. A high PVCR is also needed for microwave oscillator applications.

Peak current density Peak current density is i1 (Fig. 4.1a). High peak current density is
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required in: (a) digital applications for NDR switches; (b) microwave applications for

high speed and/or high power microwave oscillators [177].

Voltage range Voltage range is v2 − v1 (Fig. 4.1a). A wider voltage range is crucial for a good

1-dB compression point [178], an important performance metric for amplifiers.

NDC level The NDC level is defined as the maximum value of negative d I /dV value (or the

mi n(d I /dV )) (Fig. 4.1c). The high NDC level is beneficial for the broadband reflection

amplifier applications. Typically, the gain and bandwidth of amplifier depends upon

how close is the negative resistance to the terminating impedance (usually 50Ω). Higher

the NDC level, lower will be the negative resistance (closer to 50Ω), which eliminates

the need of matching networks, and hence the reflection amplifiers with high gain over

a broad frequency range can be demonstrated [179, 180].

Although widely reported, the FOM PVCR alone is not sufficient for evaluating an NDR tech-

nology. For usability in wide range of applications, a good NDR device — in addition to having

a satisfactory PVCR — should also posses acceptable values of other FOMs such as voltage

range, peak current density. For instance, room-temperature PVCR of 144 was demonstrated

in resonant tunnel diode in ref [181]. However, although the PVCR value was very high, the

voltage range over which it was valid was extremely small < 0.03 V. Let us imagine if this tech-

nology is used in reflection amplifier application. In RF amplifiers, a standard RF power level

of −17 dBm is generally used which corresponds to a peak to peak voltage of 0.09 V (−0.045

to 0.045 V) in a 50 Ω system. Thus, if the NDR is only valid in a small region 0.03 V, and the

voltage varies in this wide region of 0.09 V, then this NDR will be diminished (average value will

be positive), and such technology will be impractical. Hence, a wide voltage range is equally

important FOM for practical applications, which is neglected many times.

4.1.3 Negative Differential Resistance Based on 2-D Materials

Recently, there has been a great deal of interest in NDR devices using 2-D materials. In last

4 years, two types of NDR devices are being explored extensively in literature: (1) Planar

transistors based on 2-D material such as mono- or bi-layer graphene, where current flows

along the 2-D sheet parallel to the substrate surface [182, 167, 183, 184, 185, 186, 187, 188, 189]

(Fig. 4.2a); and (2) vertical heterostructure transistors where current flows normal to the

substrate surface [190, 191, 192, 193, 166, 194, 195, 196] (Fig. 4.2b). In the later case, the current

at which NDR occurs is rather low ∼ nA as the mechanism for current flow in these devices is

tunneling. In the former case, particularly for graphene, the NDR occurs at high current levels

∼ mA, as they take advantage of high mobility and saturation velocity of graphene. Thus, the

planar graphene transistors are very interesting in various applications where high current

density is required, and are presented in the this chapter.
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233

Planar structure                               Vertical heterostructure

(a)                                 (b)

Figure 4.2: (a) Planar transistor based on graphene. (b) Vertical heterostructure transistor
(adapted from [191]).

4.2 Negative Differential Resistance in Graphene Transistors

In this section, we report the observation of NDR in the output characteristics of monolayer

graphene field effect transistor [184]. The ability to modulate the concentration of charge

carriers via the electrostatic gate and the carrier-dependent saturation velocity at high fields

are some of the unique properties of graphene. The NDR, as described in this section, stems

from these effects.

4.2.1 Room-temperature high-field electrical measurements

Herein, we present NDR behavior under certain biasing conditions in GFETs fabricated using

graphene grown by the CVD process (see Section 3.2.3). The GFETs, which are used in this

work, employ a thin layer (∼5 nm) of HfO2 as a top gate dielectric, unless otherwise stated. A

simplified sketch of the fabricated GFET is shown in Fig. 4.3a; the details of fabrication are

described in Section 3.3.1. Fig. 4.3b shows the scanning electron micrograph (SEM) image of a

well aligned device with gate length 500 nm and with 50 nm of ungated region between the gate

and the source/drain. Short ungated regions and large widths reduce the series resistance. This

is crucial for achieving measurable NDR, as discussed later. We present the room temperature

measurement results of a similar device with a width of 30µm. Measurements were carried out

at room temperature using a HP 4145B Semiconductor Parameter Analyzer. Fig. 4.3c shows

the device transfer characteristics at different back gate voltages VBG . Using the procedure

discussed in Section 3.4.2, the top gate equivalent oxide thickness (EOT) of 2.5 nm is estimated.

Using the model [128], the hole and electron mobilities of the device are found to be 3525

cm2/(V s) and 3082 cm2/(V s), respectively (see Section 3.4.2 for detailed procedure).

Fig. 4.4a shows the output characteristics of the representative 500 nm gate length device.

Under the bias VBG = −40 V, VGS = −1.5 V and VSD > 1.5 V, we see a change in the monotony of

drain current, resulting in NDR. Fig. 4.4b shows the corresponding differential conductance

gDS( = d ISD /dVSD ) confirming the NDR region for VSD > 1.5 V. As can be seen, the NDR is
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Figure 4.3: (a) Schematic of a GFET on Si/SiO2 substrate, (b) top view SEM with 400 nm scale
bar, c) transfer characteristics of a 500 nm long and 30 µm wide GFET. The bottom-gate is
swept between −40 V to 40 V in 10 V steps at VDS = 100 mV, and (d) total resistance of the same
GFET under VDS = 10 mV, VBG = 0 V, and extracted mobilities of electrons and holes. The blue
curve shows the experimental data; the green curve shows the excellent theoretical model
fitting for hole and electron branches.
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(a) (b)

(c) (d)

Figure 4.4: (a) Drain current (ISD ) as a function of source-drain voltage (VSD ) of a GFET with
gate length L = 500 nm and width W = 30 µm at different top gate and back gate biases, (b)
corresponding differential conductances (gDS) as a function of VSD , (c) transfer characteristics
of the same GFET at different drain biases for VBG = −40 V, and (d) ISD as a function of VSD

obtained from the transfer characteristics for VGS = −1.5 V.
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(b) corresponding differential conductance.

observed at VBG = −40 V and not at VBG = 0 V. This is mainly due to the lower series resistance

at VBG = −40 V than at VBG = 0 V. The lower series resistance for VBG = −40 V as compared

to VBG = 0 V is evident from the saturating current characteristics at high top gate voltages

in the hole branch (Fig. 4.3c). A characteristic signature of NDR is reflected in its transfer

characteristics at VBG = −40 V shown in Fig. 4.4c. As source-drain voltage VSD increases, the

Dirac point shifts in the negative direction, ultimately leading to crossing of transfer curves in

the hole branch. From the constant top gate voltage slice (VGS = − 1.5 V), the drain current is

plotted for different VSD in Fig. 4.4d showing the NDR characteristics.

Next we discuss the biasing conditions for achieving NDR. The GFET needs to be biased

at a high |VGS−e f f |, and then the drain voltage should be swept so that the total number of

carriers in the channel decreases. The local carrier density at a position x in the channel can

be approximately expressed as n(x) = |CT G−T OT (VGS−e f f –V (x))/q| where CTG−T OT is the total

top-gate oxide capacitance and V (x) is the potential in the channel which is zero at x = 0 and

equal to VDS at x = L. Therefore, to decrease n(x), VDS should be swept negatively (positively)

if VGS−e f f is negative (positive). As illustrated in Fig. 4.4a, when the device was biased in

negative VGS−e f f , NDR was observed for negative drain voltages. However, when VGS−e f f was

positive, no NDR was observed for negative values of VDS (Fig. 4.5a). This is because of the

increase in the number of carriers in channel as VDS increases negatively. This increase results

in increasing gDS (Fig. 4.5b) which goes against the NDR phenomenon.

Fig. 4.6 shows the output characteristics of several graphene devices with gate lengths from

200 nm to 5 µm, all exhibiting NDR. The NDR characteristics obtained for these devices were

stable after repeating the measurements several times. Most of the devices showed NDR in

the hole branch due to the higher hole mobility of the samples. However, Fig. 4.6f shows the

NDR obtained, also, for positive VGS−e f f and positive drain voltages (electron branch) which
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is yet another possible biasing condition to achieve NDR.

4.2.2 Mechanism

The mechanism behind NDR in GFETs has been discussed in ref [182] in which the explanation

was mainly based on the evolution of charge carrier distribution in the channel. The key

problem with this explanation, however, is that it does not take into account velocity saturation,

which plays an important role in the high field transport of graphene. The drain current flowing

in a transistor is the product of charge and velocity. Therefore, to explain any non-linearity in

current characteristics, one must take both these quantities into account. In this subsection,

we originally explain and demonstrate with systematic simulations that the main mechanism

behind NDR is associated with the competition between the charge and velocity in the GFET.

To explain the mechanism behind the NDR phenomenon observed in our experiments, we

use a standard drift diffusion model which was presented in Section 3.1. As can be seen from

Eq. 3.6, the drain current depends on the carrier density and the drift velocity. We believe that

NDR phenomena occur due to the competition between these two quantities. As drain voltage

increases, the following happens: (1) The total number of carriers in the channel decreases if

the GFET is biased appropriately as discussed previously, and (2) the drift velocity increases

owing to the electric field increase. Effect 1 favors the NDR phenomenon, whereas effect 2

opposes it. At high drain voltages, however, vdr i f t saturates to vsat which may further favor

the NDR phenomena to occur. This effect is explained in the simulated characteristics below.

Fig. 4.7a shows the simulated output characteristics for a 500 nm long device with parameters:

EOT = 2.5 nm, ħΩ = 60 meV, µ0 = 2000 cm2/(V s), n0 = 2.2 × 1011 cm−2 and VDi r ac−GS = 0 V.

The green curve with VGS = −0.5 V, shows only positive values of gDS , whereas the red curve

with VGS = −1 V exhibits NDR starting from VSD = 0.86 V until VSD = 1.12 V. We now focus on

the contribution of effect 1 on the curves with NDR (red) and without NDR (green). A good

indicator of total number of carriers in the channel is the average carrier density, defined as

< n > = 1/L
∫ L

0 n(x)d x and shown in Fig. 4.7b. As expected, the total carriers in the channel

decreases initially with the drain voltage. For instance, the decrease in carriers for the red

curve happens until VSD = 1.45 V and then it increases again. It is interesting to note that the

rate of decrease of carriers is the same for both red and green curves; however, the NDR was

only seen for red curve. Therefore, it is also important to consider effect 2 which is about

vdr i f t . As shown in Fig. 4.7c, vdr i f t initially increases due to electric field increase but then

saturates to vsat . Interestingly, we see that vdr i f t for the red curve is smaller than that of the

green curve mainly around the range where NDR is observed. This can be explained by the

carrier density dependent vsat (∝ 1/n). At high VGS = −1 V, there are more carriers in the

channel than at VGS = −0.5 V which means lower vsat (∝ 1/n) and hence lower vdr i f t value

for VGS = −1 V. This is the main reason for the NDR to occur, that is, reduced drift velocity

due to carrier density-dependent vsat or, in other words, the lowering of the effective carrier

mobility.

66



4.2. Negative Differential Resistance in Graphene Transistors

0 0.5 1 1.5
0

0.5

1

 

 

0 0.5 1 1.5

-0.1

0

0.2

0.4

0 0.5 1 1.5

0

0 0.5 1 1.5

0

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

0 0.5 1 1.5
0

1

2

3
x 10

5

 

 

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

0 0.5 1 1.5
0

0.5

1

 

 

0 0.5 1 1.5

-0.1

0

0.2

0.4

0 0.5 1 1.5

0

0 0.5 1 1.5

0

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

0 0.5 1 1.5
0

1

2

3
x 10

5

 

 

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

I SD
 (m

A
/µ

m
)

g D
S 

(m
S/

µ
m

)

<n
> 

(c
m

-2
)

VSD (V) VSD (V)

(a)                                                                                        (b)

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
x 10

5

V
SD

 (V)

 

 

0 0.5 1 1.5
800

1000

1200

1400

1600

1800

2000

0 0.5 1 1.5
800

1000

1200

1400

1600

1800

2000

V
GS

 = -1 V

V
GS

 = -0.5 V

VGS = −1 V

VGS = −0.5 V

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
x 10

5

V
SD

 (V)

 

 

0 0.5 1 1.5
800

1000

1200

1400

1600

1800

2000

0 0.5 1 1.5
800

1000

1200

1400

1600

1800

2000

V
GS

 = -1 V

V
GS

 = -0.5 V

VGS = −1 V

VGS = −0.5 V

Dirac point

0 0.5 1 1.5
0

0.5

1

 

 

0 0.5 1 1.5

-0.1

0

0.2

0.4

0 0.5 1 1.5

0

0 0.5 1 1.5

0

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

0 0.5 1 1.5
0

1

2

3
x 10

5

 

 

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

0 0.5 1 1.5
0

0.5

1

 

 

0 0.5 1 1.5

-0.1

0

0.2

0.4

0 0.5 1 1.5

0

0 0.5 1 1.5

0

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 

0 0.5 1 1.5
0

1

2

3
x 10

5

 

 

0 0.5 1 1.5
0

1

2

3

4
x 10

12

 

 holes
holes + 

electrons

Dirac point

Onset NDR End NDR 

Max |gDS|

VSD 

g D
S

I SD
VSD (V) VSD (V)

v d
ri

ft
 (m

/s
)

n
 (

cm
-2

)

At Drain 

end

At middle of 

channel

VGS = −1 V

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3
x 10

5

V
SD

 (V)

 

 

0 0.5 1 1.5
800

1000

1200

1400

1600

1800

2000

0 0.5 1 1.5
800

1000

1200

1400

1600

1800

2000

V
GS

 = -1 V

V
GS

 = -0.5 V

VGS = −1 V

VGS = −0.5 V

(c)                                                             (d)                                  (e)

0

Figure 4.7: (a) Simulated drain current ISD (solid line) as a function of source-drain voltage
VSD for VGS = −1 V (red) and VGS = −0.5 V (green) and corresponding gDS (dotted line) as
a function of VSD . The gate length L is 500 nm and EOT is = 2.5 nm; (b) simulated average
carrier density in the channel, < n >, as a function of VSD for VGS = −1 V (red) and VGS = −0.5
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to the hole-dominated channel and the red shaded portion corresponds to the region when
both electron and holes are present in the channel.
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Further, it is interesting to note that the onset of NDR takes place in the unipolar region and

before the Dirac point enters the channel. The Dirac point enters the channel when the drain

voltage VSD = 1 V (Fig. 4.7d), whereas the NDR starts at VSD = 0.86 V (Fig. 4.7a). This is the

another key indication that reduced vdr i f t is indeed the cause of NDR and not the change

of carrier types [182]. In fact, it is observed that when the Dirac point enters the channel,

the magnitude of NDR reaches its maximum (maximum negative gDS point at VSD = 1 V as

shown in Fig. 4.7a). This can be explained by focusing on the red curve in Fig. 4.7b. After

VSD = 1 V, electrons enter the channel (Dirac point highlighted in Fig. 4.7b). However, the

decrease in the total number of carriers continues beyond VSD = 1 V. This decrease in total

carriers in the channel is solely attributed to electrons (minority carriers in channel) replacing

holes (majority carriers in channel) with lower carrier density. Interestingly, this decrease is

slower than the decrease observed below VSD = 1 V (from 0 to 1 V) as can be seen clearly in

Fig. 4.7b. This slower decrease is the cause of decrease in magnitude of negative gDS after

the Dirac point enters the channel. In addition, the NDR region continues until VSD = 1.12 V

and not until the Dirac point reaches the middle of the channel [182] which happens at much

higher VSD > 1.5 V (Fig. 4.7d). In summary, the relation between the position of the Dirac point

entering the channel and the NDR region is illustrated in Fig. 4.7e.

Though the interplay between carrier density and drift velocity in GFETs is the main cause of

NDR, other high field effects such as self-heating can also favor NDR [188]. Self heating effects

nevertheless play minimal role in GFETs of shorter channel lengths (< 500 nm) or in GFETs

which are fabricated on thin supporting insulators [197]. Under similar biasing conditions

discussed in the last section, we observed NDR (i) in devices with shorter channel lengths

(Fig. 4.6), and (ii) in devices fabricated on thin supporting insulator (black curve in Fig. 4.11b

shows NDR in GFET fabricated on 90 nm SiO2/Si).

4.2.3 Top-Gate Oxide Thickness Dependence

Here we demonstrate the dependence of the NDR phenomena on the top-gate dielectric thick-

ness. Han et al. [183] rightly pointed out that as EOT scales down, the drop of carrier density

versus drain voltage increases; that is, the fast drop in carrier density helps the saturation

phenomena to occur. This can also be correlated to the NDR phenomena. Fig. 4.8a shows the

simulated average carrier density < n > normalized to its value at VSD = 0 V as a function of

VSD for different thicknesses of EOT. Clearly, as EOT increases, the rate of drop in the carrier

density versus VSD decreases and this does not favor the NDR phenomena. However, NDR

may still be observed for higher EOTs with the help of reducing the vdr i f t (effect 2), that is,

either by applying a high gate voltage or if the samples have a lower vsat value. As it can be

seen in Fig. 4.8b, NDR was experimentally observed for a device with larger EOT ∼ 12 nm (15

nm Al2O3) and with lateral dimensions the same as our central geometry (L = 500 nm, W =

30 µm). A comparison of results of the two EOTs reveals two expected points. First, the NDR

for EOT = 12 nm occurs at higher gate voltage as compared with the NDR for EOT = 2.5 nm as

shown in Fig. 4.8b. Second, the magnitude of maximum negative gDS is lower for the higher

68



4.2. Negative Differential Resistance in Graphene Transistors

0 0.5 1 1.5
0.4

0.6

0.8

1

V
SD

 (V)

n
(

V
S

D
)/
n
(

V
S

D
=

 0
 V

)

 

 

EOT = 2.5 nm

EOT = 7 nm

EOT = 12 nm

0 1 2
0

0.2

0.4

0.6

V
SD

 (V)

I S
D

 (
m

A
/

m
)

0 1 2
-0.4

-0.2

0

0.2

0.4

0.6

V
SD

 (V)

g
D

S
 (

m
S

/
m

)

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

0.8

I S
D

 (
m

A
/


m

)

V
SD

 (V)

0 0.5 1 1.5 2

-0.0693

0

0.2641

0.5281

0 0.5 1 1.5 2

-0.285

0

0.2889

0.5778

g
D

S
 (

m
S

/


m
)

EOT = 2.5 nm

VGS = −1.5 V

VGS-EFF=−2.25 V

EOT = 12 nm

EOT = 12 nm

EOT = 2.5 nm

Thinner EOT

(a)

(b)                                                                          (c)

VGS = −2 V

VGS-EFF=−2.6 V

Figure 4.8: (a) Simulated average carrier density < n > normalized to it value at VSD = 0 V as
a function of VSD for 500 nm GFET with EOT 2.5, 7, and 12 nm at VGS = −1 V. (b) Measured
ISD versus VSD for two EOTs with gate length L = 500 nm and W = 30 µm at bias voltages VBG

= −40 V. The VDi r ac−GS (at VBG = −40 V) values for EOT = 2.5 nm and EOT = 12 nm were 0.75
and 0.6 V, respectively. (c) Corresponding measured gDS versus VSD characteristics.

69



Chapter 4. Negative Differential Resistance in Graphene Solid-State Devices

EOT, as can be seen in Fig. 4.8c, which is also in accordance with the higher relative decrease

of the average carrier density of the channel for the smaller EOTs as shown in Fig. 4.8a.

4.3 Negative Differential Resistance in 3-Transistor Graphene Cir-

cuit

Although the NDR in the output characteristics of single GFET (1-GFET) — as discussed in

the previous section — occurs at high current density, thanks to the high current carrying

capability of graphene, the PVCR and the NDC level are quite low which may not be high

enough for applications. In this section we propose a novel graphene NDR (GNDR 1) circuit

consisting of three GFETs, which includes a two GFET inverter connected in a feedback loop

with the main GFET in which the NDR is realized. The proposed circuit shows significant

performance improvement over NDR based on 1-GFET; it shows stronger NDR, higher PVCR,

wider voltage range over which NDR is valid, and higher tunability, as compared to that of

1-GFETs. NDR based on circuit topologies, involving more than one transistor, have also been

reported in past for Si-based devices [198].

4.3.1 Operation Principle

Fig. 4.9 illustrates our proposed 3-GFET circuit and its operating principle exploiting some

unique properties of GFETs. Let us consider a GFET FET1, as shown in Fig. 4.9a. The necessary

condition to achieve NDR in GFET is to bias it in such a way so that the total number of

carriers in the channel decreases as drain-source voltage (VDS) increases (Section 4.2.1). This

can be achieved by biasing the GFET at some constant high effective gate voltage (VGS−e f f ),

and sweeping VDS positively (if VGS−e f f is positive) or negatively (if VGS−e f f is negative). The

ability to achieve a good NDR depends on how fast the carriers are depleted in the channel.

We have shown in Fig. 4.8a that the carriers are depleted faster by the applied drain voltages in

devices with aggressively scaled oxide thickness. Now one may ask: “For given oxide thickness,

how the carriers can be depleted faster?” This can be achieved if VGS is also made to vary when

VDS is increasing. Fig. 4.9b shows the average carrier density versus the drain voltage for both

a constant and a varying value of the gate bias. To achieve an NDR effect in practice, a GFET

inverter is connected between the drain and the gate terminals of FET1 as depicted in Fig. 4.9c.

The inverter consists of FET2 and FET3. The complementary nature between the GFET pairs

is uniquely achieved by the drain bias-induced splitting between the Dirac point voltages of

FET2 and FET3, and not by any technological doping of graphene[199, 200, 201].

1The terms “GNDR circuit”, “3-GFET NDR circuit”, “three-GFET NDR circuit”, and “3-transistor graphene circuit”
are used interchangeably. All refer to the circuit comprising of three GFETs exhibiting NDR.
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Figure 4.10: (a) Transfer characteristics of FET1 at VBG = 0 V. (b) Output IDS versus VDS

for FET1. (c) Output ISD versus VSD for FET1. Right axis of b, c shows their corresponding
differential conductances. (d) Resistance versus VI N for different values of VDD . (e) The Dirac
point splitting between FET2 and FET3 as function of VDD . (f) VOU T and gain of the inverter
block as function of VI N for different VDD . (g) I I N and d II N /dVI N versus VI N for different
VDD . (h) I I N and d II N /dVI N versus VI N for different values of VBG at VDD = 3 V. (i) Negative
I I N and d II N /dVI N versus negative VI N for different values of VBG at VDD = −3 V.
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4.3.2 Measurement Results

The GFETs utilizes CVD graphene which was transferred on 90 nm SiO2/Si substrate. The

process flow to fabricate GFET circuits is described in Section 3.3.1. The optical image of

the proposed circuit is shown in Fig. 4.9d. The transistor FET1 is 1 µm long and 20 µm wide,

while FET2 and FET3 are 1 µm long and 10 µm wide. The devices employ 5 nm of ALD HfO2

(with thin layer of oxidized Al), as a top gate dielectric, unless otherwise stated. The top-gate

equivalent oxide thickness (EOT) is evaluated to be approximately 2.3 nm, and the mobility of

3505 cm2V−1s−1 for electrons and 2894 cm2V−1s−1 for holes are estimated (Fig. 3.20b). All the

measurements are carried out at 300 K.

The transfer characteristics of the FET1, measured independently, is shown in Fig. 4.10a.

The device exhibits the expected ambipolar behavior. The output characteristics of FET1 at

constant value of VGS , for both electron-dominated (positive VDS and positive VGS−e f f ) and

hole-dominated (negative VDS and negative VGS−e f f ) branches, exhibits no NDR behavior as

shown in Fig. 4.10b and 4.10c, respectively. We now characterize the full circuit by connecting

the FET1 to the inverter block. The operation principle of the inverter block is based on

the work by ref[199] where the complementary configuration between the GFET pairs was

achieved through potential superposition effect from the drain bias. The resistance of the tran-

sistors FET2 and FET3 are, respectively given as, R2 = (VDD −VOU T )/IDD and R3 =VOU T /IDD ,

where VDD is the supply voltage of the inverter block, IDD is the current flowing in the inverter

block and VOU T is the output voltage of the inverter block as depicted in Fig. 4.9c. Fig. 4.10d

shows these measured resistances versus VI N for different values of VDD . As VDD increases,

the splitting between the Dirac point voltages of FET2 and FET3 increases (Fig. 4.10e). At VDD

= 3 V, a high gain (∼2) is then achieved within the region of Dirac point splitting (Fig. 4.10f). As

a result in this region, VOU T (=VDD R3/(R2 +R3)), which also acts as the gate voltage of FET1,

decreases from 2.1 V to 1.3 V. This decrease in the gate voltage of FET1, as its drain voltage

increases, results in the faster decrease of the total carriers in the channel, which favors NDR.

Consequently, NDR is observed in the output characteristics of FET1 (I I N versus VI N ) for VDD

= 3 V as shown in Fig. 4.10g. This figure also shows the corresponding differential conductance,

d II N /dVI N showing negative values for VDD = 3 V, confirming the NDR behavior.

Fig. 4.10h shows the tuning ability of back gate bias voltage (VBG ) to modulate the NDR

characteristics. As VBG varies from 0 to −20 V, the gain of the inverter block increases which

improves the NDC level; that is, the magnitude of maximum negative d II N /dVI N increases.

Fig. 4.10i shows the similar performances obtained for the hole-dominated branch (negative

VI N and VDD = −3 V), which is another way to decrease the carriers in the channel [184]. The

PVCR value of 1.21 and NDC level of 0.43 mS/µm is obtained for this device. The highest

achieved PVCR of value 2.2 and NDC level of value 2.1 mS/µm has been obtained for a different

device with dimensions (400 nm long FET1, 500 nm long FET2 and FET3, EOT ∼ 12 nm), as

shown in Fig. 4.11a, using the proposed operation of 3-GFET NDR circuit.

We now demonstrate that our proposed circuit can also be used to enhance NDR in the GFETs
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which already show NDR in their output characteristics. The black curve in Fig. 4.11b shows

the NDR obtained in the output characteristics of one such GFET (L = 3 µm, W = 19 µm)

at a constant VGS = −1.5 V. When operated in the 3-GFET NDR circuit configuration, the

same device shows much stronger NDR (Red curve): the PVCR is improved from 1.03 to 1.37;

whereas the NDC level is increased from 59.5 µS/µm to 579 µS/µm, an increase by almost an

order of magnitude. Fig. 4.11c shows the ability of the terminal VDD to tune NDR; changing

VDD from −3 V to −4 V more than doubles (×2.3) the NDC level (from 305 µS/µm to 686

µS/µm).

4.3.3 Discussion

Table. 4.1 compares essential FOMs obtained for 3-GFET NDR circuit with some other reported

NDR technologies. Despite its increased area of implementation (requiring 3 transistors),

3-GFET NDR circuit comes with several unique advantages. For instance, the peak current

density achieved in this work is > 1 mA/µm; this is much higher than that obtained using

recent vertical heterostructure transistors[190, 191, 166]. In addition, the 3-GFET NDR circuit

offers wide voltage range operation over which NDR is valid, up to 0.6 V achieved in this

work. A wider voltage range is crucial for a good 1-dB compression point [178], an important

performance metric for amplifiers.

Furthermore, there is a much room for performance improvement in the proposed circuit. As

the NDR performance of 3-GFET NDR circuit is directly related to the gain of the inverter block,

improving the gain would improve the overall NDR performance. Scaling the oxide thickness,

reducing the series resistance, and cascading inverter blocks can be some of the techniques
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Table 4.1: Comparison of FOMs for NDR technologies at 300 K.

Technology PVCR Voltage Peak
range (V) current density

Esaki diode [202] 16 0.38 92 µA/µm2

Resonant tunnel diode [181] 144 0.03 1 µA/µm2

Si/SiGe tunnel diode [203] 5.2 0.3 2.8 µA/µm2

Molecular junction [204] 1.5 0.3 0.16 µA/µm2

Graphene-BN tunnel FET [190] 1.38 0.32 0.153 µA/µm2

1-GFET (Section 4.2 [184]) 1.07 0.45 0.7 mA/µm
3-GFET (This section [186]) 2.2 0.6 1.01 mA/µm

for improving the gain [200] and consequently for enhancing the NDR performances. It is

also worth mentioning that our 3-GFET NDR circuit, once encapsulated in a package, acts

just like any other three-terminal NDR device. The third terminal VDD can be regarded as the

terminal which provides the tuning ability to NDR. The ability of VDD to tune the NDC level in

3-GFET NDR circuit (up to ×2.3) is much higher than the tunability provided by gate terminal

in 1-GFET NDR [182].

As previously mentioned, NDR based on circuit topologies has also been demonstrated in past

by silicon MOSFETs. The difference graphene brings here is in its potential to exhibit NDR at

current levels higher than silicon, because of its higher mobility and saturation velocity. Addi-

tionally, for the first time, such topologies that produce NDR are introduced in an all-graphene

embodiment, exploiting its unique advantages such as the capability to offer inverters with

two identical devices by drain bias-induced Dirac point splitting effect. This allows fabricating

inverters without any doping steps. Our experimental work moves along the direction which

demonstrates that similar mature silicon based circuits and technologies can be introduced

to graphene, and possibly can be done for other two-dimensional materials such as MoS2,

phosphorene [17], which keep the advantage of having higher bandgap similar to silicon.

4.4 Summary

In this chapter, we explored experimentally and theoretically the potential of graphene in NDR

devices. It has the clear advantage of exhibiting NDR at high current levels as compared to any

other technologies, thanks to its high mobility and saturation velocity. We first reported the

room-temperature observation of NDR in top-gated GFET under of various gate lengths and

dielectric thickness’s. The mechanism behind NDR was also explained in detail using the stan-

dard drift diffusion model. The main conclusion is that the NDR occurs due to the competition

between two core quantities in GFET: the total number of carriers in the channel and their

drift velocity. Further, it was analysed with simulations and demonstrated experimentally that

lower EOTs provide a higher NDR level. Next, we demonstrated a novel 3-GFET circuit show-

ing enhanced NDR at room-temperature. The NDR characteristics was also highly tunable

with voltage. The 3-GFET circuit was fabricated from wafer-scale CVD monolayer graphene
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and included an inverter which was realized without any external technological doping step.

Therefore, the proposed approach also enables the integration of such graphene NDR devices

with silicon-based circuits in future. The successful demonstration of NDR using large area

graphene grown from CVD opens up an alternative route in the field of graphene research

particularly for its utilization in key applications such as oscillators, amplifiers, memories, and

fast switches.

This chapter includes the following original contributions:

• We demonstrated experimentally the observation of NDR in dual-gated GFETs at room

temperature for various channel lengths, scaling down from 5 µm to 200 nm.

• We originally explained and demonstrated with systematic simulations that the onset of

NDR occurs in the unipolar region itself and that the main mechanism behind NDR is

associated with the competition between the specific field dependence of carrier density

and the drift velocity in GFET.

• We demonstrated experimentally and theoretically the dependence of the NDR level on

the oxide thickness. To the best of our knowledge this is the first work that studies this.

• We proposed and experimentally demonstrated a novel circuit based on GFETs showing

excellent NDR characteristics at room temperature. The circuit showed negative differ-

ential conductance (2.1 mS/µm) that is almost an order of magnitude better than NDR

based on 1-GFET. This conductance level was uniquely tunable (×2.3) with the supply

voltage as well as with the back bias voltage. It also exhibited improved peak-to-valley

current ratio (PVCR) (2.2) and wide voltage range (0.6 V) over which NDR is valid.
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5 Reflection Amplifiers based on
Graphene Negative Differential Re-
sistance Solid-State Devices

In this chapter, we begin with an overview of reflection amplifiers including its theory of

operation (Section 5.1-5.2). Next we consider the use of planar graphene solid-state devices,

which was discussed in the last chapter, in reflection amplifier application. We present the

rigorous simulation of 1-port reflection amplifier based on 1-GFET and 3-GFET circuit in

Section 5.3 and 5.4, respectively. We also present the RF measurements of 3-GET graphene

circuit in Section 5.5; this serves as an experimental evidence that the reflection amplification

occurs in proposed 3-GET graphene circuit. Finally, we summarize the results in 5.6.

5.1 Introduction: Reflection Amplifiers

The basic problem of the small-signal microwave transistor amplifiers — such as FET amplifier

which exploits its transconductance for amplification — arise at higher frequencies when the

gains are substantially reduced. As a result, they require multiple amplification stages; for

example, reception of RF signals at 100 GHz requires a 20-dB gain amplifier which consists

of more than 4 amplification stages [205]. Multi-stage amplifier consisting of more than 4

stages suffers from higher noise, are bigger in size, and are expensive than the single-stage

counterpart [205, 206]. Reflection-type amplifiers based on NDR devices provide means to

overcome these problems specially for amplifiers with input signals of a very low level.

Because of their broadband amplification capabilities and low-noise properties, many NDR

devices — such as Gunn and Impatt diodes, pseudomorphic MODFET’s, silicon bipolar

transistors, superlattice structures [207, 180, 165, 208] — have been utilized in reflection

amplifiers over the years. Reflection amplifiers are used in radar applications [209, 210] and

in low cost RFID sensors operating at millimetre-wave frequencies where the sensors can be

physically very compact. They also have the application in the construction of retro-directive

arrays based on bi-directional amplifiers [211].
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5.2 Theory of Operation

The operating principle of reflection-type NDR amplifier is illustrated in Fig. 5.1. When a two

terminal NDR device is operated in CPW configuration and biased in the NDR region, the real

part of complex impedance ZOU T seen across its terminal is negative. Under these conditions,

if the terminating impedance ZL is properly adjusted, the magnitude of reflection coefficient

S11 is greater than unity and the circuit becomes an amplifier with a gain of

S11 = ZOU T −ZL

ZOU T +ZL
. (5.1)

In other words, the NDR device sends back an amplified signal — which is the reflected wave

— back to the incident power source. Thus, in a practical amplifiers, a circulator [212] is used

to separate incident and reflected waves; the schematic diagram including the circulator is

shown in Fig. 5.2. The matching network (or transforming network) is an optional component

which can be included to give the required gain and bandwidth characteristics. In this chapter,

we will discuss reflection amplifiers without the use of circulator.

Coming back to Eq. 5.1, for reflection amplification, the magnitude of the real part of ZOU T

should be kept greater than the terminating impedance ZL . The condition for stability can

thus be written as

|Re(ZOU T )| > ZL (5.2)

5.3 Simulation of 1-GFET NDR Reflection amplifier

Fig. 5.3 shows the equivalent circuit diagram of reflection amplifier based on 1-GFET. The NDR

characteristics of GFET has been discussed in great detail in Section 4.2. Since GFET is a three-

terminal device, it can be implemented in the two-port coplanar waveguide configuration.

The NDR is seen in its port 1 (drain-source) while the port 2 (gate-source) is terminated with

source impedance ZS . The method of simulating the GFET circuit in Agilent ADS is elucidated

in Section 3.1. The Z-parameters of the GFETs are first calculated including the parasitic

effects. The output impedance seen into the drain terminals can thus be written as

ZOU T = Z11 − Z12Z21

Z12 +ZS
. (5.3)

The reflection gain can then be calculated from Eq. 5.1. Using the calibrated model presented

in Section 3.1 and the parameters of simulation in Table. 5.1, the output characteristics

showing NDR are plotted in Fig. 5.4a for the GFET with dimensions L = 1 µm, W = 10 µm.

The full circuit, as shown in Fig. 5.3, is then simulated taking into account the parasitic series

resistances and capacitances (Table. 5.1). The gate-source port is terminated with ZS = 50Ω,

which is just an arbitrary choice.

When this GFET is biased at the voltage corresponding to maximum negative intrinsic gDS ,
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Figure 5.3: Schematic equivalent circuit diagram of reflection amplifier based on 1-GFET.

Table 5.1: Dimensions and parameters for 1-GFET-reflection amplifier.

L (µm) 1
W (µm) 10

EOT (nm) 3
VDi r ac−GS (V) 0
µ (cm2/(Vs)) 2000

n0 (cm−2) 2× 1011

γ 1
ħΩ (meV) 59
RS ,RD (Ω) 300Ωµm / W (in µm)

the real part of output impedance ZOU T seen into GFET is negative as shown in Fig. 5.4b.

As a result, the reflection gain is seen in the simulated S11 characteristics (Fig. 5.4c). The

observed gain is close to 0.3 dB and the cut-off frequency is 5 GHz. Both these parameters

are dependent on quantities: The NDC level (maximum negative gDS), and the lateral and

vertical dimensions. The closer is the value of NDC to the terminating impedance (ZL = 50

Ω), the higher is the gain and the frequency of operation. On other hand, smaller lateral

dimensions (L and W ) and higher vertical dimensions (oxide thickness), leads to reduced

capacitances allowing the higher frequency operation. Scaling, however, must be done with

caution as various trade-off exists: (1) Scaling channel widths does not necessarily warrant a

high frequency operation as reducing it may lead to increased contact resistances which can

completely diminish the NDR effect needed for reflection amplification; and (2) increasing

the oxide thickness leads to a poor NDR or no NDR (Section 4.2.3). This effect is expounded in

the next section.
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Figure 5.4: (a) Simulated output characteristics of intrinsic GFET showing NDR characteristics.
(b) Simulated real part of ZOU T , and (c) simulated reflection gain as a function of frequency.

5.4 Simulation of 3-GFET NDR Reflection amplifier

Fig. 5.5a shows the equivalent circuit diagram of reflection amplifier based on 3-GFET circuit.

The corresponding small-signal model is shown in Fig. 5.5b. Herein, the NDR is realized

across the terminals — VI N and ground. The terminal VI N is connected to the gate terminal of

transistors FET2 and FET3, therefore, their gate capacitances and series resistances must be

taken into account as shown in the small-signal model (Fig. 5.5b). A circuit compatible model

for GFET, as discussed in Section 3.1, is used to model both DC and RF performance of the

circuit which includes the effect of parasitics.

The parameters used for simulation are shown in Table. 5.2. In the simulation, all the three

transistors in the circuit are assumed to be identical. Fig. 5.6a shows the simulated resistances

of FET2 and FET3 as a function of negative VI N for different VDD . At VDD =−2 V, the Dirac

splitting leads to sufficient gain in the inverter block (Fig. 5.6b) which consequently results in

the NDR characteristics in FET1 as shown in Fig. 5.6c. The simulated DC characteristics are
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Figure 5.5: (a) Equivalent circuit diagram of 3-GFET NDR circuit based reflection amplifier. (b)
Corresponding small-signal model.
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Table 5.2: Dimensions and parameters for 3-GFET reflection amplifier.

L (µm) 1
W (µm) 10

EOT (nm) 3
VDi r ac−GS (V) 0
µ (cm2/(Vs)) 2000

n0 (cm−2) 2× 1011

γ 1
ħΩ (meV) 59

RS ,RD ,RS−F ET 1,RD−F ET 2, (Ω) 300Ωµm / W (in µm)

similar to those observed experimentally (Fig. 4.10).

The circuit is then biased in the NDR region corresponding to d II N−i /dVI N−i =− 8 mS. Under

these conditions, the real part of ZOU T is negative as shown in Fig. 5.6d. The biasing also

satisfies the condition of stability for reflection amplifier (Eq. 5.2), therefore, the reflection

gain is observed as shown in Fig. 5.6e. Varying the bias point in the NDR region allows the

tuning of gain (4 dB to 14 dB) as well as the frequency band (from 13 GHz to 70 GHz) as shown

in Fig. 5.6f. The tuning by varying the biases in the NDR region occurs due to the change in the

NDC level which modifies the output impedance; the closer is the value of output impedance

to the terminating impedance (ZL = 50Ω) (Eq. 5.1), the higher is the gain and the frequency of

operation.

Further, the frequency response of the circuit is also dependent on the gate capacitances of

FET2 and FET3; thus, reducing these capacitances by scaling of channel lengths and widths of

the device would allow us to go higher in frequency. Fig. 5.7 shows that broadband reflection

gain exceeding 300 GHz frequency can be obtained for scaled geometries with L = 0.2 µm and

W = 5 µm.

5.5 Measurements of 3-GFET NDR Reflection amplifier

The optical micrograph of the measured 3-GFET NDR circuit is shown in Fig. 5.8. Herein, the

connection between FET1 and inverter block (FET2 and FET3) is done via external wiring. One

port RF measurements are carried out with the RF probe connected to the output terminal of

FET1, in which NDR is realized. The gate terminal of FET1 is ac open-circuited (not terminated

with any load). The measured device has dimensions: FET1 is 1 µm long and 20 µm wide,

while FET2 and FET3 are 1 µm long and 10 µm wide.

The reflection coefficient S11 was measured using a vector network analyzer terminated

with ZL = 50 Ω and calibrated with short-open-load-through calibration. Fig. 5.9a shows

the NDR characteristics for VDD = −3 V, which are preserved with a negligible change when

swept with RF power of −17 dBm (Vpp ∼ 0.09V ) switched on. Fig. 5.9b displays the reflection
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Figure 5.6: (a) Simulated resistances of FET2 and FET3 versus negative VI N−i . (b) Simulated
negative VOU T versus negative VI N−i of the inverter. Right axis shows the corresponding gain.
(c) Simulated negative I I N−i (right axis) and corresponding differential conductance (right
axis) versus negative VI N−i . (d) Simulated S11 versus frequency when the device is biased at
different points in the NDR region.
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Figure 5.10: Measured S11 versus frequency for the devices: (a) FET1 (L = 1 µm, W = 20 µm),
and FET2, FET3 (L = 1 µm, W = 10 µm); (b) FET1 (L = 400 nm, W = 20 µm), and FET2, FET3 (L =
3 µm, W = 9.5 µm); (c) FET1 (L = 500 nm, W = 9.5 µm), and FET2, FET3 (L = 1 µm, W = 10 µm).

coefficient S11 versus frequency and shows the effect of VI N bias on S11. The magnitude of

S11 is larger than 0 dB (representing gain) only when the device is biased within the NDR

region. A maximum low-frequency gain of approximately 5 dB is seen with the unity gain

frequency of 336 KHz. The observed low frequency roll-off is predominantly due to the high

parasitic capacitance arising from the external wiring connections done to form the 3-GFET

NDR circuit. Fig. 5.9c-d shows the extracted admittance and impedance parameters versus

frequency. The real part of ZOU T is negative for the bias values having the reflection gain.

Fig. 5.10 shows the reflection gain measured for 3 more devices. The gain is uniquely tunable

by varying VI N in the NDR region as can be seen in Fig. 5.9b and 5.10.

To understand the intrinsic performance of the measured device, it is important to isolate the

effect of parasitics. In this case, however, it is difficult to calculate the exact contribution from

parasitics as off-chip connections are involved in the setup. As an alternative approach, we

simulated the device having dimensions and biasing conditions same as the measured device

and still taking into account the unavoidable parasitics arising from the layout such as series

resistances and underlap capacitances. In this way, we can predict the intrinsic performance

of the measured device as if the whole circuit was realized on chip; that is, if the effect of

off-chip cable parasitics were removed. Fig. 5.11 shows that the reflection gain of up to 8.9

GHz can be obtained if the same device of Fig. 5.9 is realized on chip.

5.6 Summary

In summary, we evaluated the performance potential of reflection amplifier based on 1-GFET

transistor and 3-GFET circuit. The main conclusion is that the gain of reflection amplifier

depends mainly on the NDC level; higher the NDC level, lower the output impedance (closer

to 50Ω), and higher the gain. In general the NDC level is much higher for 3-GFET circuit as
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Figure 5.11: Predicted S11 versus frequency under ideal conditions. Red line shows the
performance of the measured device (Fig. 5.9). Blue line predicts intrinsic device performance
as if the effect of cable parasitics are removed.

compared to 1-GFET; therefore, 3-GFET NDR device is more attractive for reflection amplifier

application. It was shown that broadband amplification above 300 GHz should be possible for

scaled 3-GFET circuits. In addition, both the gain and frequency of operation can be tuned by

varying the bias in the NDR region. Finally, we provided experimental evidence of reflection

gain in 3-GFET reflection amplifiers.

This chapter includes the following original contributions:

• We explored the performance potential of both 1-GFET transistor and 3-GFET circuit as

reflection amplifiers, via drift-diffusion and the proposed RF model.

• 3-GFET circuit can deliver superior RF performance wherein the broadband amplifica-

tion exceeding 300 GHz should be possible.

• The RF characterization of 3-GFET circuit was performed in one-port configuration. The

evidence of reflection amplification up to 330 KHz with low-frequency gain of ∼5 dB was

reported. The observed low frequency roll-off was mainly due to external connections

done to connect the GFETs.
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6 Conclusion and Perspective

In this chapter, we present the summary of this work, followed by some perspective for future

research.

6.1 Conclusion

In this dissertation, we presented systematic work on graphene-based RF NEMS and NDR

solid-state devices.

In the first part of the dissertation, we presented the modeling, simulation and characterization

of graphene RF NEMS devices. There are several original contributions of this work:

• A methodology for the full-wave simulation of graphene-based RF NEMS switch was

developed for the first time. A rigorous modeling of the switch taking into account the

frequency-dependent conductivity and the variation of conductivity in the up- and

down-states of the switch was carried out to predict the electromagnetic performance

of the switch. In addition, an equivalent circuit model for the graphene-based RF

NEMS switch was proposed and its parameters were also extracted. The modeling and

simulation approach presented in this work is remarkably rigorous as compared to the

previously proposed approach [82], where no details about fundamental issues — such

as the value of graphene conductivity used for the electromagnetic simulation and the

equivalent circuit parameters of the shunt switch — were provided.

• A unique conductivity variation effect was shown to have beneficial yet limited impact

on the RF performance of the switch. This effect was also observed in experiments done

by our group and by the recent experiments done by Li et al. [101, 102] on graphene-

based RF NEMS shunt switches.

• The high sheet resistivity of graphene membrane is really the performance killer for

graphene-based RF NEMS switches. Based on the available values of sheet resistivity

data in literature, we showed that while monolayer graphene (higher sheet resistivity

in general) results in quite high switch losses at high frequency, the use of multilayer
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graphene (lower sheet resistivity) can considerably reduce the switch losses and improve

RF performance.

• An attempt is also made to characterize the fabricated RF NEMS devices based on multi-

layer graphene. The sheet resistivity of the multilayer graphene used as a membrane

was rather high ∼600Ω/ä. As a result, the measured devices possessed an insertion loss

of −1.95 dB and isolation of −2.6 dB at 6 GHz. The pull-in voltage of 7 V was reported

for the fabricated device. Although the obtained RF performances pales in compari-

son with state-of-the-art switches, it should not be concluded that graphene is not a

promising material for RF NEMS shunt switches as this was merely the very first attempt

to fabricate these devices. Further optimization in fabrication process, and the use of

graphene with low sheet resistivity will significantly improve the performance.

The second part of dissertation deals with negative differential devices based on solid-state

graphene devices. Following are the original contributions of this work:

• We described the drift-diffusion model for the GFET, with the intention for using this

model for circuit simulation. Various intrinsic and extrinsic parameters of the small-

signal model were accurately derived and calculated based on the models available in

recent literature.

• We discussed two techniques to fabricate GFETs: top-gated GFET and embedded-

gate GFET; complete fabrication of graphene devices from transfer of graphene to

full circuit fabrication has been performed in 100 mm fabrication facility. The low-

field measurements of the devices fabricated with each of these approaches were also

presented. For NDR devices, we used top-gated GFET design because for them, the

mobilities, and the symmetry between hole and electron conduction were found to be

higher as compared to embedded-gate design.

• We reported the observation of NDR in the output characteristics of top-gated GFET

for various gate lengths and dielectric thickness’s under certain biasing conditions. The

mechanism behind NDR was also explained in detail using the standard drift diffusion

model. The main conclusion is that NDR behaviour occurs due to the competition

between two core quantities of the GFET: the total number of carriers in the channel

and their drift velocity. Further, it was analysed with simulations and demonstrated

experimentally that lower EOTs provide a higher NDR level.

• We proposed and experimentally demonstrated a novel circuit based on three GFETs

which shows enhanced NDR performance at room temperature. The proposed circuit

showed an NDC level of 2.1 mS/µm that was almost an order of magnitude better than

NDC based on 1-GFET. Also, this NDC level was uniquely tunable (×2.3) with the supply

voltage as well as with the back bias voltage. It also exhibited improved PVCR (2.2)

and wide voltage range (0.6 V) over which NDR is valid. In comparison to other NDR

technologies, the graphene based solid-state NDR has a very high peak-current-density

of the order of 1 mA/µm, which offers unique opportunities for designing circuits for

applications requiring high current drive.

• Finally, we assessed the potential of both 1-GFET transistor and 3-GFET circuit as
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reflection amplifiers, via drift-diffusion and the proposed RF model. In general the

NDC level is much higher for 3-GFET NDR compared to 1-GFET; therefore, 3-GFET

NDR device is more attractive for reflection amplifier application. It was shown that

broadband amplification above 300 GHz should be possible for scaled 3-GFET circuits.

Furthermore, both the gain and frequency of operation can be highly modulated by

varying the bias in the NDR region. In addition, we provided experimental evidence of

reflection amplification in 3-GFET reflection amplifiers.

6.2 Perspective

In their review article, Novoselov et al. [115] rightly summarized the current state of affairs:

“Graphene will be of even greater interest for industrial applications when mass-produced

graphene has the same outstanding performance as the best samples obtained in research

laboratories.” Truly, the large-scale production of high-quality graphene is the most desirable

challenge to accomplish before its widespread application. This aspect is particularly relevant

in the context of this thesis as we utilized mass-production friendly CVD-derived graphene for

fabrication of both NEMS and solid-state NDR devices. Compared to exfoliated graphene, CVD

graphene exhibits lower mobility, greater impurity doping, and higher asymmetry between

electron and hole conduction. For NEMS application, improvement in the mobility would

result in low sheet resistivity; a low sheet resistivity graphene membrane is highly desirable

for improving the RF performance of the NEMS switch. For NDR devices, improvement in

the quality of graphene would improve the NDR performance of both 1-GFET and 3-GFET

devices.

In the category of suspended graphene devices, the research, in the past decade, has been

mainly focused on graphene-based resonators and less on RF switches. In part because the

fabrication of RF NEMS switches is relatively more challenging as it requires the formation of

central conductor (embedded central conductor design) prior to the membrane deposition

and release step, and in part due to the sense of pessimism that graphene can never compete

with metal membrane switches in terms of their RF performance because of its high resistivity.

Such a comparison with metal membrane switch, however, is unfair. Graphene (thickness of

few nanometres) is compared to metal membrane whose thickness is in micrometre scale. The

fair comparison would be to compare them at the same thicknesses (such that they exhibit

same levels of low actuation voltages); that is, thinning down the current state-of-the-art metal

membrane to the comparable thickness of graphene. The question then would be: Will they

retain the same low sheet resistivity as their bulk form? This is highly improbable as bulk

metals when thinned down show altogether different transport properties; become brittle;

and their isolation from the bulk to their 2-D counterpart is itself an enormous technological

challenge. Therefore, the future research should be to access existing 2-D materials which

exhibits thinness in nanometre scale (for lower actuation voltages) and yet show lower sheet

resistivity (for respectable RF performance). Currently, graphene seems to hold that promise as

it is one of the first two-dimensional material to be isolated in its mono- and multi-layer form.
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The lowest sheet resistivity of 30Ω/ä was demonstrated by Bae et al. [74]; such samples of low

sheet resistivities remain to be accessed experimentally for RF NEMS switches. A recent report

by Li et al. [101, 102] have refuelled the interest in the field of graphene RF NEMS switches;

this work demonstrated a RF switch exhibiting pull-in voltage of less than 1 V, and a very high

isolation of −30 dB and a rather high insertion loss of −6 dB. The outstanding RF performance

(mainly the isolation) achieved in this work is because of the use of single-crystalline graphene

with very high mobility, and thus possibly exhibiting very low sheet resistivity (value of sheet

resistivity not specified in this work). Furthermore, the recently discovered two-dimensional

materials [17, 213], also, remain to be explored for its use in RF NEMS switches.

Turning now to the graphene solid-state NDR devices, the NDR in single-GFET is manifested

at rather low PVCR values. Although, 3-GFET circuit offers direct solution to improve the

NDR performance, the NDR in single-GFET can also be improved by combination of several

factors. For instance, a high performance single-GFET NDR device would be a GFET which

uses a channel material of high mobility graphene (> 10,000 cm2/(V s)), a top-gate dielectric of

ultra-low EOT (< 1 nm), short un-gated regions with minimal series resistances (< 100Ωµm),

and which are deposited on the dielectric material of lower optical phonon energy (ħΩ< 40

meV) such as boron nitride.

Owing to its excellent NDR characteristics and the ability to exhibit NDR at higher current

levels, 3-GFET NDR graphene circuit are very interesting for various applications. In addition

to the refection amplifier application as demonstrated in this work, the other interesting

applications are oscillators [214, 191], multipliers [171], mixers, analog-to-digital converters

[172], and binary- and ternary-adder circuits [173]. Furthermore, as the improvement in

the gain of inverter block in the 3-GFET NDR circuit results in the improvement in its NDR

performance, the use of recently discovered two-dimensional materials, which because of

their band-gap holds the ability to exhibit higher voltage gains [215, 216], in the proposed

NDR circuit may improve the NDR performance significantly.
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A Multi-Layer Graphene Characteriza-
tion

In this appendix, we describe the sheet resistance extraction of multilayer graphene from

the high-frequency scattering parameter measurements. The CVD-derived non-suspended

multilayer graphene is integrated into coplanar waveguide structures for high frequency

measurements as shown in Fig. A.1. The following test structures are measured:

1. Graphene shunt structure: CPW structure with multilayer graphene (Fig. A.1a).

2. Thru structure: CPW structure without multilayer graphene (Fig. A.1b).

The measured S-parameters of both the structures are shown in Fig. A.2. The extracted equiv-

alent circuit model is represented in Fig. A.3. Full-wave simulation as well as the modeled

S-parameters reconstructed from the extracted circuit model gives excellent fit to measure-

ments (Fig. A.4).

From the extracted circuit model, the shunt resistance RMul ti is 129.8 Ω (Fig. A.4). This

(a) (b)

Graphene shunt thru

Figure A.1: (a) Multilayer graphene integrated in coplanar waveguide structure (referred as
graphene shunt). (b) Coplanar waveguide without multilayer graphene (referred as thru).
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Appendix A. Multi-Layer Graphene Characterization
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Figure A.2: Measured S12 (a) and S11 (b) of thru and graphene shunt structures.

Rmulti =129.8 Ω 𝐶 = 157.9 𝑓𝐹

𝑅𝑠 = 2.7 Ω𝑅𝑠 =2.7 Ω𝐿𝑠 = 414 pH 𝐿𝑠 = 414 pH

Figure A.3: Extracted circuit model of non-suspended multilayer graphene.

resistance value is related to the sheet resistivity ρMul ti as

RMul ti =
1

2
ρMul ti

GC PW

wC PW
(A.1)

where GC PW is the CPW gap, that is, the distance between signal and ground; and wC PW is the

width of graphene. Thus for the calculated RMul ti = 129.8Ω, we obtain the sheet resistance

ρMul ti = 605.7Ω/ä.
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