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Abstract
Folding of the earth’s crust, wrinkling of the skin, rippling of fruits, vegetables and leaves are

all examples of natural structures that can have periodic buckling. Periodic buckling is also

present in engineering structures such as compressed lattices, cylinders, thin films, stretchable

electronics, tissues, etc., and the question is to understand how wave propagation is affected

by such media.

These structures possess geometrical nonlinearities and intrinsic dispersive sources, two

conditions which are necessary to the formation of stable, nonlinear waves called solitary

waves. These waves are particular since dispersive effects are balanced by nonlinear ones,

such that the wave characteristics remain constant during the propagation, without any decay

or modification in the shape. It is the goal of this thesis to demonstrate that solitary waves can

propagate in periodic buckled structures.

This manuscript focuses specifically on periodically buckled beams that require either guided

or pinned supports for stability purposes. Buckling is initially considered statically and investi-

gations are made on stability, role played by imperfections, shape of the deflection, etc. Linear

dispersion is analyzed employing the semi-analytical dispersion equation, a new method

that relates the frequency explicitly to the propagation constant of the acoustic branch. This

allows the quantification of the different dispersive sources and it is found that in addition to

periodicity, transverse inertial and coupling effects are playing a dominant role. Modeling the

system by a mass-spring chain that accounts for additional dispersive sources, homogeniza-

tion and asymptotic procedures lead to the double-dispersion Boussinesq equation. Varying

the pre-compression level and the support type, the main result of this thesis is to show that

four different waves are possible, namely compressive supersonic, rarefaction (tension) su-

personic, compressive subsonic and rarefaction subsonic solitary waves. For high-amplitude

waves, models based on strongly-nonlinear PDEs as the one modeling wave propagation

in granular media (Hertz power law) are more appropriate and adaptation of existing work

is done. Analytical model results are then compared to finite-element simulations of the

structure and experiments, and are found in excellent agreement.

In this thesis, in addition to the semi-analytical dispersion equation, two other new methods

are proposed. For periodic structures by translation with additional glide symmetries (e.g.

buckled beams), Bloch theorem is revisited and allows the use of a smaller unit cell. Advantages

are dispersion curves easier to interpret and computational cost reduced. Finally, the last

contribution of this thesis is the use of NURBS-based isogeometric analysis (IGA) to solve the

extensible-elastica problem requiring at least C 1-continuous basis functions, which was not
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possible before with classical finite-element methods. The formulation is found efficient to

solve dynamic problems involving slender beams as buckling.

Keywords: Nonlinear periodic buckled beam, Rarefaction/compressive and supersonic/

subsonic solitary wave, Experiment, Bloch theorem with glide symmetry, Isogeometric analysis

of extensible-elastica
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Résumé
Le plissage de la croûte terrestre, les rides de la peau, la forme ondulée des fruits, légumes

ou feuilles sont des exemples de structures naturelles qui possèdent un flambage périodique.

Le flambage périodique est également présent dans les structures manufacturées comme

les treillis compressés, les cylindres comprimés, les couches minces refroidies, l’électronique

extensible, les tissus étirés, etc., et la question est de savoir comment la propagation d’ondes

est affectée par de tels milieux.

Les structures flambées périodiquement possèdent des non-linéarités géométriques et des

sources de dispersion intrinsèques, deux conditions nécessaires à la formation d’ondes non-

linéaires et stables dites ondes solitaires. Ces ondes sont particulières dans la mesure où les

effets dispersifs sont compensés par ceux non-linéaires, de telle sorte que la forme d’onde

reste inchangée durant la propagation. L’objectif est ici de démontrer que les ondes solitaires

peuvent se propager dans des structures flambées périodiquement.

Cette thèse se concentre spécifiquement sur les poutres périodiquement flambées qui exigent

d’être supportées, à des fins de stabilité. Le flambage est initialement considéré en statique

et l’analyse se concentre sur la stabilité, le rôle joué par les imperfections, et la forme de la

déflection. La dispersion linéaire est ensuite analysée en utilisant l’équation de la disper-

sion semi-analytique, un nouveau procédé qui associe de manière explicite la fréquence à

la constante de propagation dans la branche acoustique, permettant la quantification des

differentes sources dispersives. Il en résulte qu’en supplément de la dispersion induite par

la périodicité, les effets inertiels transversaux et ceux de couplages jouent un rôle prépondé-

rant. En modélisant la structure par un système masse-ressort prenant en compte les sources

dispersives additionnelles, l’homogénéisation et l’utilisation d’une procédure asymptotique

conduisent à l’équation doublement dispersive de Boussinesq. En faisant varier le niveau

de flambage et le type de support, le résultat principal de cette thèse est de montrer que

quatre ondes solitaires différentes sont possibles, à savoir l’onde en compression/tension et

subsonique/supersonique. Les modèles analytiques sont ensuite comparés à des simulations

par éléments finis puis testés expérimentalement, et les résultats se trouvent être en excellent

accord.

Dans ce mémoire, en plus de l’équation de la dispersion semi-analytique, deux nouveaux

procédés sont proposés. Pour les structures périodiques par réflexion glissée, le théorème

de Bloch est revisité, permettant l’utilisation d’une cellule plus petite. Enfin, la dernière

contribution de cette thèse est l’utilisation de l’analyse isogéométrique (IGA) pour résoudre

la formulation “extensible-elastica”. Cette dernière nécessite l’utilisation de fonctions de
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bases ayant pour continuité minimum C 1, propriété que ne possède pas les éléments finis

classiques. La formulation se trouve être efficace et appropriée pour résoudre des problèmes

de dynamiques impliquant des poutres minces comme généralement rencontrés dans les

problèmes de flambages.

Mots clefs : Poutre flambée périodique non-linéaire et dispersive, ondes solitaires en traction/

compression et supersonique/subsonique, validation expérimentale, théorème de Bloch avec

symétries par réflexion glissée, analyse isogéométrique d’“elastica” extensible
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1 Introduction

Periodic buckled structures (e.g. in Fig. 1.1) possess geometrical nonlinearities and intrinsic

dispersive sources, both conditions necessary to host stationary, nonlinear waves called

solitary waves.

Figure 1.1: Periodic buckled beam structures investigated in this thesis.

Tsunamis are water waves created after displacement of underwater terrains, and are infa-

mous for being associated with large disasters. What makes them dangerous is that they are

solitary waves, waves that keep their amplitudes while propagating instead of being spread by

dispersion. Consider now plate tectonics where subduction creates highly compressed zones

on which the earth’s crust can buckle (fold). If this buckling is also periodic (see Fig. 1.2a),

the conditions are met for earthquake waves to act also as dangerous solitary waves but wave

propagation into periodic buckled structures has not been investigated yet. Another question

arising from wave propagation in periodic media is how wrinkled airway, esophagus, skin, etc.

(see Fig. 1.2c-f) does affect ultrasonic waves used in medical imaging? Periodic buckling is not

restricted to natural phenomena (Fig. 1.2) and is found in engineering structures too (Fig. 1.3).

For engineers, the capability of a structure to host solitary waves can be undesired (e.g. in

noise absorbers) or used as a tool to cancel dispersion or nonlinearity effects (e.g. optical

fibers).

It is the goal the present thesis to investigate wave propagation and especially solitary waves

in periodic buckled beams (Fig. 1.1), work that can be then used as a starting point to study

more complex periodic buckled structures (Figs. 1.2 and 1.3). The remainder of this chapter is

devoted to the state of the art of periodic buckled structures, followed by an introduction on

1



Chapter 1. Introduction

a) b)

g) h)

c) e) f )d)

Figure 1.2: Natural periodic buckled structures: view of the mountain from La Paute (France)
(a) and layers of quartz inside metamorphic rocks from the Jotun Nappe (Norway) (b). Both
structures fold repeatedly due to compressive stresses. Bovine esophagus (c), porcine airway
(d), elephant skin (e), and human skin (f) with wrinkles induced by the growth or the slimming
of some tissues bound to some other inelastic ones. Pumpkin (g) and cabbage (h) where
buckling stresses induce preferential growing directions. Photos kindly supplied by Pierre
Thomas (a) and Haakon Fossen (b), reprinted from [Li et al., 2011a] with permission (c-d), and
under CC0 license (e-h).

solitary waves and concluded by an overview of the work present in this manuscript.

1.1 Periodic buckled structures

From a mechanical point of view, buckling is a static instability caused by a bifurcation be-

tween a compressive to a laterally deformed state [Bazant et al., 1993]. Buckling occurs in

slender structures where bending deformations are dominant, and result in large nonlinear

geometrical deformations. Buckling is often awkwardly associated to failure due to the impor-

tant stresses on thick post-buckled structures, but to have failure, material plasticity has to be

considered as well. In this thesis, only geometrical (physical) nonlinearities are considered

within the linear elastic limit of the material.

2



1.1. Periodic buckled structures

Stretching

Stretching

5 mm

a) b)

c) d) e)

f ) g)

i) j)

l)k) m)

h)

Figure 1.3: Engineered periodic buckled structures: beam compressed and constrained be-
tween two walls [Domokos et al., 1997](a), rubber slab bound to a thin metal plate and bent
[Lignon et al., 2013] (b), stiff PDMS film bound to a thick soft PDMS foundation and com-
pressed [Brau et al., 2010] (c), electrical strips periodically clamped to a prestressed PDMS
which is then released [Sun et al., 2006] (d), gold film welded to a PDMS substrate which is
then cooled down [Chen and Hutchinson, 2004] (e), bent pipe [Mahadevan et al., 2004] (f),
compressed triangular cellular [Kang et al., 2014] (g), compressed cylinder [Bisagni, 2000] (h),
stretched and twisted strips [Chopin and Kudrolli, 2013] (i), stretched fabric [Takei et al., 2011]
(j), underpressured spherical structure [Krieger, 2012] (k), local pressure applied on an inflated
membrane [Vella et al., 2011] (l), and elastic plate stamped into a spherical mold [Hure et al.,
2012] (m). All figures are reprinted with permission from respective references.

The classical example of buckling is the column that is compressed axially until a critical

3



Chapter 1. Introduction

Figure 1.4: Pinned-pinned column buckling.

load where deformations become transversal (bending deformations), as shown in Fig. 1.4.

Column buckling was historically the first stability problem to be solved in 1953 [Timoshenko,

1983], but only small deflections were considered. To describe large nonlinear deformations,

elastica curves are required. Elastica curves were first studied by James Bernoulli in 1691,

but the complete mathematical treatment is attributed to Euler in 1744 [Euler, 1744] who

introduced the different families of elastica which are shown in Fig. 1.5 (see [Levien, 2008]

for a complete mathematical history of the elastica). What is particularly interesting from

these mathematical solutions is that they are all periodic. However, once elastica curves are

considered as physical beams with non-null cross-sections, overlapping in two dimensions is

not possible, and only solutions belonging to Figs. 1.5f-h remain physically possible, but are

not stable. It is the reason why in this thesis, guided or pinned supports are added, as shown

in Fig. 1.1.

As an alternative to the use of pinned and guided supports (Fig. 1.1), stable periodic buckled

beams can be obtained by compressing a beam between two walls [Domokos et al., 1997]

(Fig. 1.3a). The walls constrain large transverse displacements and force higher order buckling

modes. However, high-pressure contacts between the walls and the strip induce important

frictions that drastically change the dynamic behavior. Note that in [Thompson et al., 2012],

straight walls are replaced by cylinders, but it involves buckling in torsion.

Like walls, elastic foundations can be used for stability purposes. For example, when a thin stiff

layer is bound to a soft large layer and is compressed, stable periodic buckling of the thin layer

is obtained [Brau et al., 2010] (Fig. 1.3c). The same phenomenon happens in the opposite way

when a stiff layer is bound to an initially stretched substrate which is then released [Sun et al.,

2006, Vella et al., 2009]. Note that in Fig. 1.3d [Sun et al., 2006], the metal strips are only locally

clamped to control the buckling pattern and the resulting structure is used as a stretchable

electronic device. As an alternative to force/displacement control, periodic buckling can also

result from cooling down a thin film clamped to a substrate of different thermal-expansion

coefficient [Chen and Hutchinson, 2004, Genzer and Groenewold, 2006] (Fig. 1.3e).
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1.1. Periodic buckled structures

Circle

Syntractrix

Lemnoid

Rectangular elastica

Straight line

a)

b)

d)

e)

f)

g)

h)

i)

c)

Figure 1.5: Elastica families.

The beam compressed between two walls and the beam clamped to an elastic substrate induce

either dissipation (contact-friction or internal absorption of the material composing the

elastic foundation) or secondary path for wave propagation. These differ from self-supported

structures for which no link with the foundation exists except at extremities. For example

when a rubber slab is bound to a thin metal plate, bending of the plate induces compression of

the rubber that delaminates and buckles periodically [Lignon et al., 2013] (Fig. 1.3b). Bending

induces buckling of the metal plate and is a global buckling mode, whereas buckling of the

rubber is a local mode. Coexistence of local and global buckling modes also happen similarly

in buckling of pipes [Mahadevan et al., 2004] (Fig. 1.3f) and more generally in structures which

have macro-structures as sandwiches [Bazant et al., 1993, Le Grognec and Sad Saoud, 2015,

Sad Saoud and Le Grognec, 2014]. An original beam system hosting also local/global buckling

modes is composed of two pinned beams linked together by a slider, such that in compression,

local high-order buckling mode can be obtained [Zaccaria et al., 2011].

In order to prevent the global buckling mode and only have local periodic buckling, one

possibility is to increase the size in the transversal direction resulting to two-dimensional

lattices [Kang et al., 2014, Haghpanah et al., 2014, Shan et al., 2014] (Fig. 1.3g). Alternatively,

the use of a third dimension might help the structure to be self-supported with local buckling

modes. This is the case of the compressed cylinders shown in Fig. 1.3h and investigated in

[Bisagni, 2000, Vaziri, 2007, Seffen and Stott, 2014, Xiong et al., 2014].
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Chapter 1. Introduction

Up to this point and except for the case of stresses induced by thermal drifts, buckling is

obtained after the application of a compressive force at the structure extremities. However,

buckling also occurs for structures under tension, and result in naturally stable systems.

This is the case of the helical strip (helicoid) that buckles periodically at its centroid under

torsion and tension. Indeed, stretching of the helicoid induces longitudinal compressive

stresses responsible for the buckling pattern [Chopin and Kudrolli, 2013, Chopin et al., 2014,

Korte et al., 2010] (Fig. 1.3i). Similarly, stretching of fabrics or plates generates buckling

perpendicularly to the strip due to Poisson contraction [Audoly and Pomeau, 2010, Takei et al.,

2011] (Fig. 1.3j). Another original way to get periodic buckling is by putting a conducting

rod into a magnetic field [Valverde and van der Heijden, 2010, Guo et al., 2014] and find

applications to electrodynamic space tethers.

In addition to structures where periodicity is by translation, cylindrical and spherical buckling

patterns also exist and are found for example in underpressured spherical structures [Krieger,

2012, Shim et al., 2012, Li et al., 2011b] (Fig. 1.3k), inflated membranes on which is applied a

local force [Vella et al., 2011] (Fig. 1.3l), elastic plates stamped into a spherical molds (Fig. 1.3m)

[Hure et al., 2012], circular metal sheets under transversal loading [Davidovitch et al., 2011] or

elastic sheet on a liquid drop [King et al., 2012, Grason and Davidovitch, 2013].

Among natural stable buckling phenomena, in addition to the aforementioned mountain

folding (Fig. 1.2a), at a smaller scale, stiff layers of quartz coated into soft metamorphic rocks

buckle periodically under compression, as shown in Fig. 1.2b [Hobbs and Ord, 2012]. Living

organisms with pipes, skins, etc. also wrinkle periodically as shown in Figs. 1.2c-f, and these

phenomena are induced by the growth or the slimming of some tissues bound to some other

inelastic ones. Periodic patterns can also be observed in fruits and vegetables with thin leaves

or skins. Indeed, for leaves, as growth process induce internal stresses, the cheapest way to

reduce the energy elastically is by bending deformations which might result in buckling with

fractal patterns [Sharon et al., 2002, Audoly and Pomeau, 2010, Li et al., 2012] (Fig. 1.2c). In

spheroidal fruits/vegetables, the anisotropy resulting from fiber orientations induce stress-

driven periodic buckling and various buckling patterns exist [Yin et al., 2008, Li et al., 2011b]

(Fig. 1.2d).

The common point between all the aforementioned examples is periodic buckling. Moreover,

buckling induces geometrical (physical) nonlinearities and periodicity induces dispersion,

two phenomena necessary to the formation of solitary waves.

1.2 Solitary waves

History

Modeled by a partial differential equation (PDE), wave propagation was first studied in the

linear case and solutions are well known today even in the presence of diffusion and dispersion

(attenuation in time and space respectively). In the presence of dispersion, different frequency
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1.2. Solitary waves

components of a wave packet travel with different group velocity and consequences are

the spreading of the wave envelope on both time and space, as shown in Fig. 1.6a. A more

challenging problem is posed by nonlinearity which in general leads to amplitude-dependent

behavior; shock waves, chaos or discontinuities (Fig. 1.6b). Some analytical solutions to

nonlinear PDEs such as the Hopf or the Burgers equations exist but there is no general solution

method [Whitham, 1974]. When nonlinearity and dispersion are both present, solitary waves

may propagate and these are the kind of waves investigated in this thesis (Fig. 1.6c). A solitary

wave is defined by a wave conserving its properties (speed and shape), and in contrast to linear

waves, these properties depend on the wave amplitude [Whitham, 1974, Remoissenet, 1995,

Ablowitz, 2011, Porubov, 2003, Samsonov and Maugin, 2001, Ablowitz and Segur, 1981].

a)

b)

c)

Figure 1.6: Effects of dispersion (a), nonlinearity (b) and both dispersion/nonlinearity (c) on
wave propagation. The resulting wave of (c) is a solitary wave.

Solitary waves were first reported by John Scott Russell in 1834 [Dembitzer, 1965] who observed

a wave traveling up a canal with a constant speed and shape for two miles (waves know now

as tidal bore). In 1871, Boussinesq [Boussinesq, 1872] wrote equations including dispersion

and nonlinearity. Analytical solutions in the form of solitary waves were found in 1895 by

Korteweg and de Vries [Korteweg and de Vries, 1895] giving their name to the KdV equation.

Later, in 1955, an unexpected discovery was made by Fermi, Pasta and Ulam (FPU) [Fermi

et al., 1955] who were studying the repartition of thermal energy in a lattice ring. Instead of

thermal equilibrium, quasiperiodic oscillations were found. Zabusky and Kruskal [Zabusky

and Kruskal, 1965] later showed that the lattice ring used by FPU was in fact an infinite periodic

chain of masses and nonlinear springs described by a KdV equation. Dispersion came from

lattice periodicity and this opened the way for solitary wave studies in a large range of domains

with periodic pattern as electrical networks [Ricketts and Ham, 2010], optical fibers [Hasegawa,

1998] etc. In [Remoissenet, 1995], a summary of many examples for various physical domains

are given.

If in addition, solitary waves keep their properties even when interacting with other solitary

waves, they are called solitons from the definition of Zabusky and Kruskal [Zabusky and

Kruskal, 1965]. Specifically in physics literature, solitary waves are referred to solitons, even if

these waves do not collide elastically, but in the present thesis, the distinction between these

two terms is kept.
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Chapter 1. Introduction

Nonlinear PDEs, which are exactly integrable in the sense of the inverse scattering (IST)

methods [Ablowitz and Segur, 1981], possess an infinite number of soliton solutions, given

the initial conditions. Indeed, superposition (collision) of two solitons results to a new soliton

such that by repeating this operation an infinite number of times, it is possible to construct an

infinite number of solutions. Examples of equations admitting soliton solutions are the Sine-

Gordon, the Klein-Gordon, the nonlinear Schrödinger (NLS) and the Boussinesq equations.

At the contrary, nonlinear PDEs which are not exactly integrable as the double-dispersive

Boussinesq equation only admit single solitary solutions, and collision between two solitary

waves results to small radiation (tail or front) [Bogolubsky, 1977, Soerensen, 1984].

Aside from this distinction, nonlinear PDEs admitting solitary waves also admit periodic

solutions (cnoidal solutions) but in the present thesis, the focus is on localized solutions that

are usually written under hyperbolic functions. Among localized nonlinear waves, breathers

which are oscillatory solutions are also solutions of nonlinear PDEs [Ablowitz and Segur, 1981]

but they are not investigated here since they are most often non-propagative.

While solitary waves are found to describe various physical phenomena, we focus here on the

field of mechanics.

Solitary waves in the field of mechanics

Periodic mechanical systems are often described by discrete systems and the simplest one

consists of a mass-spring chain. The momentum equation describing the displacement U of

the i th mass is given by

Üi = F {Ui−1 −Ui }−F {Ui −Ui+1}, (1.1)

where (̈ ) is the double derivation with respect to time and F {∆U } is the nonlinear load-

displacement relation. In the case of the FPU chain, this relation reads

F {∆U } = k0∆U +FN {∆U }, (1.2)

where k0 ∈ R is the linear stiffness coefficient and FN {∆U } is a purely nonlinear function.

Assuming k0∆U À FN {∆U }, homogenization of Eq. (1.1) under the long-wave assumption

leads to the Boussinesq equation which can be further recast into the KdV equation. On the

contrary, if k0∆U ¿ FN {∆U }, the PDE resulting from Eq. (1.1) is refereed as strongly-nonlinear

because no direct linear solution exist. These equations are used to describe for example wave

propagation in granular media where the contact between two particles is given by the Hertz

power law (FN {∆U } = kN∆U n , with {kN ,n} ∈R) [Nesterenko, 2001, Sen et al., 2008, Theocharis

et al., 2013].

In addition to the mass-spring chain in translation, the pendulum chain with torsional springs

has been also investigated and the Sine-Gordon soliton is obtained [Scott, 1969, Remoissenet,

1995, Munteanu and Donescu, 2004].
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1.3. Organization of the work

While Eq. (1.1) only accounts for one-dimensional effects, more complex lattices are inves-

tigated in [Maugin, 1999, Khusnutdinova et al., 2009, Porubov and Berinskii, 2014] leading

to systems of coupled equations. In addition to lattices, tensegrity structures have also been

investigated in [Fraternali et al., 2012, 2014]. Recently, solitary waves have also been obtained

analytically into origami-based metamaterials [Yasuda et al., 2015] and experimentally into

woodpile periodic structures [Kim et al., 2015].

In all the aforementioned examples, while the systems are discrete, dispersion is induced by

periodicity and nonlinearity arises from large geometrical deformations. However, in solid

mechanics, solitary waves have been observed in continuous materials as well, with material

nonlinearities modeled by the standard continuum theory incorporating characteristic lengths

[Maugin, 1999, Destrade and Saccomandi, 2008], or having reduced dimensions as plates and

rods [Coleman et al., 1995, Champneys et al., 1997, Samsonov and Maugin, 2001, Porubov,

2003, Munteanu and Donescu, 2004, Porubov and Maugin, 2005, Duričković et al., 2009,

Khusnutdinova and Tranter, 2015, Samsonov et al., 2015].

Buckled beams are dispersive media and are particularly interesting since at least three length

scales are present: periodicity, beam thickness and beam curvature. Combined to the fact that

buckling is also geometrically nonlinear, both ingredients necessary for the structure to host

solitary waves are present, and it is the goal of this thesis to characterize the wave properties.

1.3 Organization of the work

This thesis investigates wave propagation in periodic buckled beams and the framework is the

following. Chapter 2 gives an overview of the static beam buckling, investigating the problem

formulation, the stability, and the role played by imperfections. Using the extensible-elastica

theory, a new approximated equation describing the load-displacement relation between

beam extremities is developed and has the advantage compared to existing models to be valid

for post-buckled regimes, where bending deformations are dominant, and for weakly-buckled

states, where deformations are mainly governed by axial strains and imperfections. Moreover,

this relation is valid for both support types (guided and pinned) since their behavior is identical

once normalized.

In Chapter 3, linear dispersion is analyzed employing Bloch theorem which is particularly

useful for complex periodic structures. While these results are numerical, a novel method has

been developed in this thesis to obtain a semi-analytical dispersion equation of the acoustic

branch, relating explicitly the frequency to the propagation constant. Using the fact that

buckled beams possess also glide axial-reflection symmetries, Bloch theorem is revisited,

reducing the unit cell to half of the translational periodicity, decreasing the computation

cost and allowing for an easier representation and interpretation of results. Influence of the

support type, pre-compression level, stress, curvature, dissipation, and added mass/stiffness

on dispersion and wavemodes are also investigated. In addition to periodicity, additional

sources of dispersion are found and are transverse inertial effects in the case of the guided-
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Chapter 1. Introduction

supported beam, and also coupling effects in the case of the pinned-supported beam. These

additional dispersion sources are quantified numerically in terms of the pre-compression level

and the support type, and are included in a fourth-order PDE describing linear-dispersive

waves.

Chapter 4 is devoted to the derivation of different models describing nonlinear wave propaga-

tion in buckled beams including all dispersive sources, and results are compared to numerical

finite-element (FE) simulations of the structure. For small amplitude waves, the double-

dispersion Boussinesq equation correctly describes wave propagation, whereas for large

amplitude waves, models based on strongly nonlinear PDEs such as the one describing gran-

ular media are more appropriate. By varying the level of pre-compression and the support

type, the structure is found to hold four different wave types, namely compressive supersonic,

rarefaction supersonic, compressive subsonic and rarefaction subsonic solitary waves. In

Chapter 5, experiments on weakly-buckled guided-supported beams are conducted to validate

analytical models and numerical simulations.

Finally, Chapter 6 propose a solution to the use of the exact extensible-elastica formulation in

FE methods. Indeed, the Galerking method applied to the extensible-elastica problem involves

second order derivatives for which at least C 1-continuous basis functions are required whereas

classical FE methods are maximum C 0-continuous through the geometry. NURBS-based

isogeometric analysis (IGA) is proposed here, which has the advantage of requiring a limited

number of degrees of freedom. After the validation of the discretization by convergence

analyses, the formulation is found efficient to solve dynamic problems involving slender

beams as buckling.
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2 Periodic Buckled Beams: Kinematics
And Stability

2.1 Introduction

The objective of this thesis is to study wave propagation in periodic buckled beams and static

buckling is investigated first. Specifically, the aim is to describe the nonlinear relation between

the load and the displacement of the structure extremities, which will be used in the next

chapters as an effective constitutive behavior. In this thesis, concerning the beam kinematics,

two main assumptions are made: (i) the beam and its deformations remain in the plane (i.e.

no torsion) and (ii) the beam is assumed sufficiently slender such that shear deformations

are neglected. Since buckling involves finite displacements/rotations and axial deformations

before the critical load, the beam theory which is going to be used is the extensible-elastica.

The column-buckling problem admits an infinite number of modes, and stability is investi-

gated using the energy method from which, it is found that above the critical load, only the

first buckling mode is stable. Since high-order modes are required to obtain a periodic pat-

tern, stability is ensured by the use of additional pinned or guided supports. Influence of the

presence of initial geometrical imperfections on the equilibrium path (bifurcation diagram)

and the load-displacement relation are also explored.

2.2 Review of some two-dimensional beam formulations

Beams are structural elements described by cross-section profiles and material parameters. In

the plane, they are capable of hosting load primarily by resisting bending but can also carry

axial and shear deformations. The simplest beam formulation is the Euler–Bernoulli theory

that assumes that the cross section remains planar and normal to the tangent of the elastic axis

(line that passes through the elastic center) after deformations, corresponding to the shear-free

assumption. To account for shear deformations, Timoshenko theory has been introduced and

completes the Euler–Bernoulli formulation. However, these aforementioned theories are only

valid for small deformations and cannot account for finite rotations, as encountered in post-

buckled beams [Wriggers, 2008]. The geometrically-exact beam formulation, firstly introduced
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Chapter 2. Periodic Buckled Beams: Kinematics And Stability

by Reissner [Reissner, 1972], addresses this problem since the term exact refers to the fact that

the strain follows directly from geometrical considerations, without approximation.

Since beam buckling involves axial deformations before the critical buckling load and mainly

bending deformations after, two regimes investigated in this thesis, shear deformations are

neglected here. This is especially true since only slender beams are considered. The shear-free

geometrically-exact beam formulation is also known as the extensible-elastica [Magnusson

et al., 2001] and is introduced next.

2.3 Extensible-elastica: kinematics and constitutive law

In the initial configuration of the beam, r0 is the position vector of a beam material point;

e0,i , i = 1,2 is an orthonormal basis vector such that e0,1 represents the normal direction of

the cross-section and θ0 the orientation angle. s0 indicates the curvilinear coordinate of the

beam with l0 its total length. Correspondingly, r , ei , θ, and s represent the position vector,

the orthonormal basis vectors, the rotation, and the curvilinear coordinate in the current

configuration of the beam, respectively. These quantities are shown in Fig. 2.1 and are defined

as

r0 =
{
r0,x , r0,y

}T , r = {
rx , ry

}T ,

e0,1 = {cosθ0, sinθ0}T , e1 = {cosθ, sinθ}T ,

e0,2 = {−sinθ0, cosθ0}T , e2 = {−sinθ, cosθ}T ,

(2.1)

where r0 = r0(s0), r = r (s) = r0+u, e0,i = e0,i (s0), ei = ei (s), θ0 = θ0(s0), θ = θ(s) and u = u(s) =
{ux uy }T is the displacement vector.

r0

θ0
θ

e0,2

e0,1
e2 e1

x

y

r

Figure 2.1: Beam kinematics: initial (dashed lines) and current configuration (full lines).

The strain relation proposed by Reissner [Reissner, 1972] for a plane beam initially free of
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2.3. Extensible-elastica: kinematics and constitutive law

shear and unstretched is

ε= drx

d s0
cosθ+ dry

d s0
sinθ−1, (2.2a)

γ= dry

d s0
cosθ− drx

d s0
sinθ, (2.2b)

κ= dθ

d s0
− dθ0

d s0
, (2.2c)

where ε is the axial strain, γ the shear strain, and κ the curvature. Neglecting shear (γ= 0),

Eq. (2.2) becomes a system of two independent equations with three unknowns, such that

combining Eqs. (2.2a) and (2.2b), it is possible to write the following equalities:

sinθ = 1

(ε+1)

dry

d s0
, (2.3a)

cosθ = 1

(ε+1)

drx

d s0
, (2.3b)

ε+1 =
√(

drx

d s0

)2

+
(

dry

d s0

)2

. (2.3c)

By assuming that the strain is finite but small, even for large displacements, it is possible to

describe material behavior by Hooke’s law. The constitutive law between the forces (internal

axial force Nε and bending moment Nκ) and the strain components after the integration over

the beam cross section reads [Wriggers, 2008, Reissner, 1972, Irschik and Gerstmayr, 2009]{
Nε

Nκ

}
=

[
E A 0

0 E Iz

]{
ε

κ

}
, (2.4)

where E is the Young modulus, and A and Iz are respectively the area and moment of inertia

of the beam.

The weak formulation of the equilibrium equation is obtained from the principle of virtual

work and is expressed in terms of the current configuration:

l0∫
0

(Nεδε+Nκδκ)d s0 −
l0∫

0

(
f Tδu +mδθ

)
d s0 −

[
F Tδu +Mδθ

]l0

0 = 0, (2.5)

where f and F are respectively the distributed and boundary-force vectors, whereas the

distributed and boundary moments are indicated respectively by m and M . The variational

strain and moment are given by

δε= 1

cosθ

dδrx

d s0
+ (ε+1)tanθδθ, (2.6a)

δκ= dδθ

d s0
. (2.6b)
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Chapter 2. Periodic Buckled Beams: Kinematics And Stability

In order to proceed further, the geometry and boundary conditions of the problem are

required.

2.4 Pinned-pinned column buckling

P, ∆U
L-∆U

x
y

θL
θL

Figure 2.2: Pinned-pinned column buckling.

Consider a pinned-pinned column (straight beam) subject to a compressive axial load with

constant material and geometrical properties along the length and with the initial beam

length and extremity angles respectively denoted by L and θL (see Fig. 2.2). Noting that there

is neither distributed force nor moment, and that the moment is free at extremities, the weak

formulation of the beam (Eq. (2.5)) can be recast as [Magnusson et al., 2001]

L∫
0

(
Nε

1

cosθ

dδrx

d s0
+Nε(ε+1)tanθδθ+Nκ

dδθ

d s0

)
d s0 + [Pδrx ]L

0 = 0, (2.7)

where P is the applied force such that F =−P . Integrating by parts the term proportional to

the moment and recasting the boundary term under integral form, the two following equalities

are obtained:

Nε =−P cosθ, (2.8a)

d Nκ

d s0
+ (ε+1)P sinθ = 0, (2.8b)

which can be recast using Eqs. (2.2) and (2.4) as

d 2θ

d s2
0

+ P

E Iz
sinθ− P 2

E AE Iz
cosθ sinθ = 0. (2.9)

While Eq. (2.9) describes local equilibrium of the problem, the boundary conditions are given

by

θ|s0=0 = θ|s0=L = θL and
dθ

d s0

∣∣∣∣
s0=0

= dθ

d s0

∣∣∣∣
s0=L

= 0. (2.10)

Before deriving the shape of the buckled beam, it is necessary to define the critical load at

which buckling occurs.
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2.4. Pinned-pinned column buckling

2.4.1 Critical load

When compressed, the beam remains straight and deformations are purely axial until the

load reaches a critical value for which a bifurcation occurs. In order to find this critical load

denoted Pc , the beam is considered just after the bifurcation such that θ→ 0 and linearization

of Eq. (2.9) reads [Magnusson et al., 2001]

d 2θ

d s2
0

+
(

Pc

PE

(π
L

)2
−

(
Pc

PE

)2 (
π2

λL

)2)
θ = 0, (2.11)

where

PE = E Iz

(π
L

)2
(2.12)

is the critical Euler load and

λ= L

√
A

Iz
(2.13)

is the slenderness parameter of the beam. The eigenvalue problem Eq. (2.11), with the bound-

ary conditions Eq. (2.10), admits eigenfunctions given by

θn = an cos
(nπs0

L

)
, (2.14)

where an ∈R and n ∈N+. Plugging Eq. (2.14) into Eq. (2.11),(
Pc

PE

)2

− Pc

PE

λ2

π2 +n2λ
2

π2 = 0, (2.15)

for which the solution is

Pc

PE
= λ2

2π2 ±
√

λ4

4π4 −n2λ
2

π2 . (2.16)

In this thesis, since beams are assumed slender, only the minus case in Eq. (2.16) is considered

next and refer to [Magnusson et al., 2001] for thick beams. Using Taylor series,

Pc

PE
= n2 +n4π

2

λ2 +O

(
n6π

4

λ4

)
, (2.17)

and the first contribution of the extensibility is to increase the Euler critical load. Now that the

critical load is defined, the load-displacement relation can be derived.
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Chapter 2. Periodic Buckled Beams: Kinematics And Stability

2.4.2 Load-displacement relation

Using the equation describing local equilibrium of the problem (Eq. (2.9)), the aim is to

describe the axial load-displacement relation between beam extremities. Multiplying Eq. (2.9)

by dθ
d s0

and integrating using the boundary condition θ{s0 = 0} = θL reads [Magnusson et al.,

2001]

dθ

d s0
= 2π

L

√
P

PE

√
(1−P A)

(
q2 − sin2 θ

2

)
+P A

(
q4 − sin4 θ

2

)
, (2.18)

where

q = sin
θL

2
and P A = P

E A
= π2P

λ2PE
. (2.19)

Considering only the first buckling mode (n = 1), the angle at the beam extremity is found

solving the integral

L =
L∫

0

d s0 = 2

0∫
θL

d s0

dθ
dθ, (2.20)

which can be recast in terms of complete elliptical integrals of the first kind [Magnusson et al.,

2001]:√
P

PE
= 2

π

1√
1−P A +2P A q2

K {c} P > Pc , (2.21)

where

c = q2 1+P A q2

1−P A +2P A q2 . (2.22)

The displacement in terms of θL is

∆U =−
L∫

0

(
drx

d s0
− dr0,x

d s0

)
d s0 = L−2

0∫
θL

(
drx

d s0
− dr0,x

d s0

)
d s0

dθ
dθ, (2.23)

which can be written in terms of complete elliptical integrals of the first (K {c}) and second

(E {c}) kinds [Magnusson et al., 2001]

∆U

L
= 2

π

√
PE

P

√
1−P A +2P 2

A

((
1+ 1

1−P A +2P 2
A

)
K {c}−2E {c}

)

= 2−P A +2P 2
A −2(1−P A +2P 2

A)
E {c}

K {c}
P > Pc .

(2.24)
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2.4. Pinned-pinned column buckling

Eqs. (2.21) and (2.24) form a system of two independent equations with the three unknowns c ,

P and ∆U , and the goal is to recast this system into an expression of P in terms of ∆U only.

While this work can be done easily numerically by fixing c and solving for P first and then ∆U ,

in order to get an analytical expression, series expansions are employed.

2.4.3 Analytical load-displacement equation assuming inextensibility

Neglecting axial deformations (P A = 0), the system of Eqs. (2.24) and (2.21) simplifies to

χ= 2−2
E {c}

K {c}
P > Pc , (2.25a)

P

PE
=

(
2

π
K {c}

)2

P > Pc , (2.25b)

where χ= ∆U
L . This system of two dependent equations is reduced to one after substitution of

the variable c:

P

PE
= F {c} =G

{
χ
}

P > Pc , (2.26)

where F {c} and G
{
χ
}

are functions that depend only on c and χ, respectively. G
{
χ
}

can be

found exactly only numerically and the aim is to find an analytical approximation using a

Taylor expansion of F {c} with respect to the derivativeχ around the equilibrium pointχ= c = 0

such that

F {c} =F {0}+
(

dF {c}

dc

dc

dχ

)∣∣∣∣
c→0

χ+ 1

2

(
d 2F {c}

dc2

(
dc

dχ

)2

+ dF {c}

dc

d 2c

dχ2

)∣∣∣∣
c→0

χ2

+ 1

6

(
d 3F {c}

dc3

(
dc

dχ

)3

+3
d 2F {c}

dc2

dc

dχ

d 2c

dχ2 + dF {c}

dc

d 3c

dχ3

)∣∣∣∣
c→0

χ3

+ 1
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(
d 4F {c}

dc4

(
dc

dχ

)4

+6
d 3F {c}

dc3

dc

dχ

d 2c

dχ2

+d 2F {c}

dc2

(
3

(
d 2c

dχ2

)2

+4
dc

dχ

d 3c

dχ3

)
+ dF {c}

dc

d 4c

dχ4

)∣∣∣∣∣
c→0

χ4 +O
(
χ5) P > Pc ,

(2.27)

where d p+1c
dχp+1 (p ∈N+) is computed using Eq. (2.25a) and

d p+1c

dχp+1 =
(

dχ

dc

)−1 d

dc

(
d p c

dχp

)
. (2.28)

The derivatives of the first and second elliptical integrals are:

dK {c}

dc
= E {c}

c(1− c2)
− K {c}

c
and

dE {c}

dc
= E {c}−K {c}

c
. (2.29)
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Chapter 2. Periodic Buckled Beams: Kinematics And Stability

Finally, using F {c} = ( 2
πK {c}

)2
in Eq. (2.27) gives

P

PE
= 1+ 1

2
χ+ 9

32
χ2 + 21

128
χ3 + 795

8192
χ4 +O

(
χ5) P > Pc . (2.30)

However, the convergence of this series is not optimum and an alternative to a polynomial can

be found noting that E {c}+K {c} =π+O
(
c4

)
, such that plugged into Eq. (2.25), an analytical

approximation for the load-displacement relation reads

P

PE
=

(
1

1− 1
4χ

)2

P > Pc . (2.31)

This equation motivates to look for an equation such that the denominator of Eq. (2.31) is the

polynomial series, and using F {c} = π
2K {c} in Eq. (2.27), one get

P

PE
=

(
1

1− 1
4χ− 3

64χ
2 − 1

64χ
3 − 101

16384χ
4 +O

(
χ5

))2

P > Pc . (2.32)

As shown in Fig. 2.3, for the same order of truncation, Eq. (2.32) gives better results than

Eq. (2.30) compared to the exact solution of the elastica solved numerically (Eq. (2.26)).
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Figure 2.3: Normalized load-displacement curve from the inextensible-elastica in full black
(Eq. (2.26)) and its approximations with Eq. (2.31) in dotted line, Eq. (2.32) in dashed light-gray
line, and Eq. (2.30) in dashed dark-gray lines.

For the extensible case, Taylor expansions can be also employed and approximated equations

of the load-displacement relation are presented in Appendix A. However, as it will be shown

next, extensibility is only playing a role for really small deformations where imperfections are

also present and have to be taken into account. But before introducing imperfections, stability

is investigated first.
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2.5. Stability and bifurcation

2.5 Stability and bifurcation

As shown in the derivation of the critical load, the solution of the buckling problem is not

unique and an infinite number of modes exist. In order to investigate their stability, at least

two different methods exist: the dynamic stability analysis for which Lyapunov criterion

is used, and the energy method, valid uniquely for conservative systems and consisting in

analyzing the sign of the second variation of the potential energy [Bazant et al., 1993]. Since

in the considered buckling problem, applied forces are conservative (no follower forces), the

energy method is used and has the advantage of not requiring the introduction of inertia. The

potential energy Π of the extensible-elastica for a prismatic beam is given by [Magnusson

et al., 2001]

Π= 1

2
E Iz

L∫
0

κ2d s0 + 1

2
E A

L∫
0

ε2d s0 +P rx |s0=L , (2.33)

where

rx |s0=L =
L∫

0

du

d s0
d s0 =

L∫
0

(ε+1)cosθd s0. (2.34)

Then Eq. (2.33) reads

Π= 1

2
E Iz

L∫
0

(
dθ

d s0

)2

d s0 − P 2

2E A

L∫
0

cos2θd s0 +P

L∫
0

cosθd s0. (2.35)

The second variation of the potential energy is given by

δ2Π= E Iz

L∫
0

(
dδθ

d s0

)2

d s0 + P 2

E A

L∫
0

(
cos2θ− sin2θ

)
(δθ)2d s0 −P

L∫
0

cosθ(δθ)2d s0. (2.36)

In order to analyze analytically the sign of δ2Π, Eq. (2.36) is linearized assuming θ small:

δ2Π= E Iz

L∫
0

(
dδθ

d s0

)2

d s0 + P 2

E A

L∫
0

(δθ)2d s0 −P

L∫
0

(δθ)2d s0. (2.37)

Assuming θ of the form of Eq. (2.14), Eq. (2.37) reads

δ2Π=
(
E Iz

(nπ

L

)2
+ P 2

E A
−P

)
L

2
(δan)2. (2.38)

Noting that solving δ2Π = 0 gets back to Eq. (2.15), the straight beam is stable only when

δ2Π> 0 meaning that P < Pc {n} (Eq. (2.16)) whatever n and so P < Pc {n = 1}. To summarize,

the straight beam is only stable under the critical load.
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Chapter 2. Periodic Buckled Beams: Kinematics And Stability

While the stability analysis of the straight beam configuration is complete, stability of the

different buckling modes is now investigated. Mode 1 is the buckling mode requiring the

minimum energy (Pc {n = 1} < Pc {n > 1}) and it is expected to be the only one which is stable.

Since the energy analysis of the extensible-elastica for θ finite is complex analytically, the

structure is discretized using finite elements (FE) and the second variation of the potential

energy is given by

δΠ2 =δU T KTδU , (2.39)

where U is the nodal displacement vector, δU T its transpose, KT = K + dK
dU U is the tangent

stiffness matrix, and K the stiffness matrix at equilibrium. The system is stable if KT is positive

definite, meaning that the real part of its eigenvalues is positive. The bifurcation diagram with

the stability information is shown in Fig. 2.4 and as expected, only the first mode is stable

above the critical load.
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2

4

6

8

10

P/
P c

χ

Figure 2.4: Pinned-pinned column buckling: bifurcation diagram. Stable and unstable paths
respectively in full and dashed lines for the fourth first buckling modes.

Note that if the beam is initially perfectly straight, FE simulations do not follow the stable

equilibrium path and the beam remains straight after the critical load. In order to follow

alternative paths (first stable buckling mode or higher-order unstable ones), there are at least

two possibilities. Add local forces to “help” the beam into a special direction, or add initial

geometrical imperfections as it is investigated next.

2.6 Effects of geometrical imperfections

As shown previously, post-buckling of slender beams is mainly governed by bending de-

formations. For small compression, axial deformations have to be considered as well and

modifications in the load-displacement curve are shown in Fig. 2.5. However, these results are

valid only if the beam is perfectly straight without imperfections and with boundary conditions

without play. If small imperfections are present, the load-displacement curve around the
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2.6. Effects of geometrical imperfections

critical load which was originally a sharp angle in the case of the perfect column becomes a

smooth transition between the axial and bending branches, as shown in Fig. 2.5. It is the goal

here to update the nonlinear load-displacement relation to include geometrical imperfection

effects.
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P/

P c

10-3χ

Figure 2.5: Normalized load-displacement curves for small compression: role of the exten-
sibility and initial geometrical imperfections. Exact solution from inextensible-elastica in
light-gray line, from extensible-elastica in dark-gray line, and from FE including geometrical
imperfections in black line. λ= 520 and w0 = 10−2.

For example, for a beam initially slightly curved with a constant curvature radius R0, integra-

tion of the extensible-elastica Eq. (2.9) brings about an extra integration constant such that

Eq. (2.18) becomes:

dθ

d s0
= 2π

L

√
P

PE

√
E Iz

4R2
0P 2

+ (1−P A)

(
q2 − sin2 θ

2

)
+e

(
q4 − sin4 θ

2

)
. (2.40)

However, for the load-displacement relation, contrary to Eq. (2.18), the additional term in

Eq. (2.40) makes impossible the transformation of Eq. (2.40) into a system of complete elliptical

integrals and only a complex equation involving incomplete elliptical integrals can be obtained

(see handbook on elliptical integrals [Byrd and Friedman, 1971]).

An alternative to the constant curvature can be a beam with an initial deformation such that

w = w0 sin
( s0π

L

)
, (2.41)

where w is the transverse displacement of the beam and w0 is the transverse displacement at

midspan. An approximated solution for the load-displacement relation under small deforma-

tions is given in [Bazant et al., 1993] and reads

P

PE
=

1− 1√
1+ 4

q2
0

(χ−P A)

(
1− q2

0

16
− χ−P A

4

)−2

, (2.42)
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Chapter 2. Periodic Buckled Beams: Kinematics And Stability

where q0 = πw0/L and P A = P/(E A). Noting that q2
0 /16 ¿ 1 (small imperfection) and that

P A/4 ¿ 1 (small extensibility), the second term of Eq. (2.42) can be further simplified into(
1−χ/4

)−2. Noting that this term is identical to Eq. (2.31), describing large deformation of

the P {∆U } curve, the first part of Eq. (2.42) describes imperfections and axial deformations.

Moreover, instead of using Eq. (2.31) as the second part of Eq. (2.42),
(
1−χ/4

)−2 can be

replaced by a better approximation like Eq. (2.32), such that an expression accounting for

small and large compressions reads

P

PE
=

1− 1√
1+ 4

q2
0

(χ−P A)

(
1− 1

4
χ− 3

64
χ2 − 1

64
χ3 − 101

16384
χ4

)−2

. (2.43)

First and second parts as well as the full Eq. (2.43) are plotted in Fig. 2.6 and compared to

FE simulations. As expected, for small deformations, one can consider only the first part of

Eq. (2.43) whereas for large buckling levels, the second part of Eq. (2.43) is sufficient.
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Figure 2.6: Normalized load-displacement curves for small (a) and large (b) deformations
including initial imperfections and extensibility with the exact solution in full line. Full, first
term and second term of Eq. (2.43) respectively in dashed, dotted and star lines. λ= 520 and
w0 = 10−2.

The advantage of using small imperfections in FE method is to avoid the implementation of

branch-switching methods [Huang and Atluri, 1995] to follow the stable equilibrium path.

This is possible thanks to the transition between branches which becomes smooth with the

introduction of imperfections (Fig. 2.5).

As shown in Fig. 2.7 where the influence of the imperfection size on the load-displacement

curve is given, only the region around the critical load is affected for small imperfections.

However if imperfections are too large, the nonlinear behavior of the load-displacement

relation is almost lost. Note also that the load-displacement curves possess two different

aspects which are going to be interesting for wave propagation investigation; indeed, there

are inversion points in the curvature of the load-displacement curves, such that P ′′{χ} < 0
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2.7. Periodic buckled beam with supports

before these points and P ′′{χ} > 0 after, where ( )′′ denotes the second derivative with respect

to χ = ∆U /L (see Fig. 2.7). This can be explained with Eq. (2.43) where its first and second

terms dominate respectively for regions of P ′′{χ} < 0 and P ′′{χ} > 0.

 

 

0 0.1 0.2 0.3 0.4 0.5 0.60

0.2

0.4

0.6

0.8

1

1.2

1.4

P/
P c

0.7 χ

L
w0

Figure 2.7: Normalized load-displacement curves for different levels of initial geometrical
imperfections such that λ= 520 and w0/L = {

10−3, 10−2, 10−1, 100
}

, respectively from dark to
light gray. The circles are inversion points of the curvature.

2.7 Periodic buckled beam with supports

In this thesis, periodic buckled structures are of interest. However, although the introduction

of specific imperfections can provide high-order, periodic buckled modes, these modes are

unstable. In order to make them stable, additional pinned supports are placed at each wave-

length, as shown in Fig. 2.8a. For the sake of clarity, in this thesis, thanks to the self-similarity

of the load-deformation relation between one and several wavelengths, the length between

two consecutive supports is defined as L and n = 1, instead of considering L the total length of

the full structure, and n 6= 1 (Fig. 2.8a).

An alternative to pinned supports is the use of guided supports as shown in the Fig. 2.8a-

b. Moreover, buckled beam with pinned and guided supports possess the same geometry

(Fig. 2.8c) and the same normalized load-displacement relation [Bazant et al., 1993]. In order

to generalize the previous equations to both support types, the Euler critical load (Eq. (2.12))

is redefined as

PE = E Iz

(
π

Le f f

)2

, (2.44)

where Le f f = L and Le f f = L/2, respectively in the case of pinned and guided supports, with

L the original distance between two constitutive supports. Note that χ = ∆U /L remains

unchanged.

While the two support types provide the same dimensionless nonlinear load-displacement
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Figure 2.8: Pinned (a) and guided (b) buckled beam with 4 periods, and similitude in their
geometries (c).

behavior as far as the static response, the same is not true for the dynamic response, specifically

in terms of dispersion.

2.8 Conclusions

In the present chapter, starting from the extensible-elastica theory, a closed-form solution for

the pinned-pinned buckled beam problem in terms of complete elliptical integrals is derived.

Assuming inextensibility, which is valid for large deformations, a Taylor series of the load

in terms of the axial displacements is derived (Eq. (2.32)). For small levels of compression,

initial geometrical imperfections and axial deformations play a dominant role such that

an additional equation describing the load-displacement behavior is given (Eq. (2.42)). By

combining the two aforementioned equations, an equation describing the full buckling range

is found (Eq. (2.43)), and results are validated with comparison with FE simulations.

It is also demonstrated using the energy method that above the critical buckling load, only

the first buckling mode is stable. However, to follow this stable path, it is necessary to add

initial imperfections and it is shown that the imperfections have to remain small for the load-

displacement behavior to be nonlinear. Additionally, since high-order modes are not stable,

the stability is ensured by including additional pinned or guided supports. Moreover, both

support types possess the same-scaled load-displacement relation.

The dispersive characteristics of wave propagation in buckled beams are discussed next.
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3 Dispersion Of Periodic Buckled
Beams

Sections 3.3 to 3.4 and 3.5.3 are mainly reprinted from [Maurin and Spadoni, 2014a] with

authorization of the publisher.

3.1 Introduction

Linear waves are called dispersive, if the relation between the phase speed and the frequency is

nonlinear. Indeed, because the different wave frequency components propagate with different

speeds, the wave spreads and its amplitude decays in time, while the total energy remains

constant. In mechanics, dispersion occurs in every system where a length scale is present as in

periodic structures, materials with microstructure, or continuous media with one dimension

smaller than the others such as beams or plates.

Buckled beams are also a dispersive medium and are particularly interesting since at least

three length scales are present: periodicity, beam thickness (bending waves) and curvature

(displacement coupling). While dispersion induced by periodicity can be analyzed in the

long-wave approximation by a chain of masses and linear springs, dispersion arising from the

beam thickness and the curvature is more complex to model because the buckled beam is not

uniformly curved or stressed. In this thesis, restriction is made to the long-wave approximation,

focusing only on the acoustic branch of the dispersion, far from resonant frequencies.

In the present chapter, dispersion is analyzed employing Bloch theorem, which is particularly

useful for complex periodic structures. It consists on the discretization of a periodic unit cell,

and after applying periodic boundary conditions, an eigenvalue system is obtained from which

the dispersion curves are extracted. While these results are numerical, a novel method has

been developed in this thesis to obtain a semi-analytical dispersion equation of the acoustic

branch, relating explicitly the frequency to the propagation constant. Using the fact that

buckled beams possess glide axial-reflection symmetries, Bloch theorem is also revisited in

this chapter by reducing the unit cell to half of the translational periodicity and updating the

boundary conditions. The advantages are to decrease the computation cost and this allow an
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Chapter 3. Dispersion Of Periodic Buckled Beams

easier interpretation of results.

This chapter is organized as follows. After reviewing different sources of dispersion in Sec. 3.2,

the Bloch theorem accounting for glide-reflection symmetries is presented in Sec. 3.3 from

which, semi-analytical dispersion relations are derived (Sec. 3.4). Influence of the support type,

pre-compression level, stress, curvature, dissipation, and added mass/stiffness on dispersion

and wavemodes are presented in Sec. 3.5, followed by the derivation of a fourth-order partial

derivative equation (PDE) describing linear-dispersive waves in buckled beams.

3.2 Typical sources of dispersion

Before analyzing the dispersion of buckled beams with the Bloch theorem, some typical

dispersion sources are reviewed here for continuous and discrete systems.

3.2.1 Dispersion of continuous structures

Buckled beams are complex structures involving non-constant curvature and stress, such that

the exact analysis of dispersion characteristic is not possible analytically. In this section, the

typical dispersion sources of simplified beam models are presented, and the frequency and

the wavenumber are denoted by ω and κ, respectively. The material and geometric properties

are considered constant along the length such that A and Iz are the cross-sectional area and

area-moment of inertia, respectively. The material is assumed to be linear elastic and defined

by Young modulus E and density ρ.

The propagation of bending waves in a compressed straight beam is [Doyle, 1997]

ω2 =− F

ρA
κ2 + E Iz

ρA
κ4, (3.1)

where F is the axial compressive force, and the term proportional to κ4 denotes bending-

induced dispersion. Note that the dispersion is such that high frequencies propagate faster

than lower ones, a behavior that is referred next as supersonic with respect to the long-

wavelength, as shown in Fig. 3.1. In the absence of prestress (F = 0), the wave is purely

dispersive whereas F 6= 0 adds a linear component to the wave. Additionally, if the beam is in

compression (F > 0), a frequency cut-off is present [Doyle, 1997].

While Eq. (3.1) is applied to a straight beam, curvature effects can be investigated through

the analysis of an infinite inextensible helix of constant radius R. For the tangential u and the
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3.2. Typical sources of dispersion

radial v displacements of the beam, governing equations are [Doyle, 1997]

E A
d2u

ds2 + 1

R2

(
E Iz

d2u

ds2 −E AR
dv

ds
+E Iz R

d3v

ds3

)
= ρA

d2u

dt 2 , (3.2a)

E Iz
d4v

ds4 + 1

R2

(
E Av −E AR

du

ds
+E Iz R

d3u

ds3

)
=−ρA

d2v

dt 2 , (3.2b)

where s is the curvilinear coordinate. For harmonic motion, the combination of these two

equations leads to the dispersion relation

κ6 −
(
κ2

a +
2

R2

)
κ4 −

(
κ4

b +
κ2

a

R2 − 1

R4

)
κ2 +

(
κ2

a −
1

R2

)
κ4

b = 0, (3.3)

where κ4
b = ρAω2/E Iz and κ2

a = ρAω2/E A. Note that in Eq. (3.3), the term proportional to ω4

does not have a direct physical meaning but results from displacement couplings. Bending

waves and coupling effects are typical dispersion terms that will be encountered in buckled

beams.

0

ω

κ

Figure 3.1: Supersonic (star line) and subsonic (dotted line) dispersion behavior, compared to
non-dispersive behavior (dashed line).

3.2.2 Dispersion of discrete structures

After analyzing continuous beams where dispersion arises from the thickness and the curva-

ture, periodic discrete structures, which also possess intrinsic length scales, are investigated

here. The three different mass-spring systems shown in Fig. 3.2, which can be used as approxi-

mated models of buckled beams, are considered.

Simple chain of masses and springs

The simplest discrete periodic structure is the chain of masses and springs in series showed in

Fig. 3.2a. Its dispersion equation is derived from the linear momentum equation of the nth
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Figure 3.2: Simple mass-spring chain (a) accounting for transverse-inertial effects (b) or
stiffness coupling effects (c).

particle, given by

mün = P {∆UR }−P {∆UL}, (3.4)

where un denotes the displacement of the nth particle of mass m, and (̈ ) the second derivative

with respect to time t . ∆UR =∆U0+un+1−un and ∆UL =∆U0+un −un−1 are respectively the

variation of the length on the right and left sides, where∆U0 is the initial relative displacement

between two consecutive masses due to pre-compression, and P {∆U } the load-displacement

relation. If P {∆U } is linear, Eq. (3.4) can be recast into the linear momentum equation

ün = C 2
0

L2
0

(un−1 +un+1 −2un) , (3.5)

where L0 is the distance between two consecutive masses, C0 is the linear velocity for long

wavelengths given by

C 2
0 = P ′{∆U0}L2

0

m
, (3.6)

and P ′{∆U0} = k is the linear stiffness of the spring in the case of Fig. 3.2a. Assuming plane

harmonic waves, a solution of the form un = ue i (εn−ωt ) where ε= kL0 is the phase constant,

gives the dispersion relation

ω2 = 4C 2
0

L2
0

sin2
( ε

2

)
. (3.7)

For small wave number, Eq. (3.7) can be recast into polynomial form using Taylor expansion:(
ω

ω0

)2

= ε2 − 1

12
ε4 +O (ε6), (3.8)
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3.2. Typical sources of dispersion

where ω0 = C0/L0. This expansion allows the decomposition of the dispersion equation in

several terms. The first term gives the long-wavelength phase velocity and the second term,

proportional to ε4, describes dispersion due to periodicity. Note that contrary to bending waves

(Eq. (3.1)), the dispersion is here negative such that the phase speed (slope of the dispersion

curve) decreases with increasing frequency, and is referred next as subsonic dispersion type

(Fig. 3.1) .

Chain of masses and springs accounting for transverse-inertial effects

A more realistic model of the buckled beam is the mass-spring chain with an additional mass

m2, linked to the masses m1 with rigid connectors of length d , as shown in Fig. 3.2b. From

Fig. 3.2b, the coordinates Xp and Yp linearized around the equilibrium point are given in

terms of un and un−1, and reads

Xp −X0 = un +un−1

2
, (3.9a)

Yp −Y0 =
√

d 2 −
(

L0 +un −un−1

2

)2

'
√

d 2 −
(

L0

2

)2

− L0 (un −un−1)

4

√
d 2 −

(
L0
2

)2
, (3.9b)

where X0 and Y0 are constants. The particle acceleration is given by

üp = Ẍp = ün + ün−1

2
, (3.10a)

v̈p = Ÿp =−pα (ün − ün−1)

2
, (3.10b)

where α=
((

2d
L0

)2 −1

)−1

> 0 is a dimensionless parameter that depends on pre-compression.

Note also that tan−1θ =p
α. The momentum equation of the pth mass is (Fig. 3.2b)

(Fr,p −Fl ,p )cosθ = m2üp , (3.11a)

−(Fr,p +Fl ,p )sinθ = m2v̈p . (3.11b)

Combining the momentum equations of the pth and p+1th masses, the momentum equation

of the nth mass yields

ünm1 =k(−2un +un+1 +un−1)+Fl ,p+1 cosθ−Fr,p cosθ

=k(−2un +un+1 +un−1)− m2

4
((2ün + ün+1 + ün−1)+α (2ün − ün+1 − ün−1)) .

(3.12)

Considering plane-harmonic waves with un = ue i (εn−ωt ), Eq. (3.12) can be recast into the

dispersion relation:

ω2 = 4k

m
sin2 ε

2
+ (1−α)

4m2

m
ω2 sin2 ε

2
, (3.13)
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Chapter 3. Dispersion Of Periodic Buckled Beams

where m = m1 +m2. Using Taylor expansion, Eq. (3.13) reads(
ω

ω0

)2

= ε2 − 1

12
ε4 + (1−α)

m2

m

(
ω

ω0

)2

ε2 +O

((
ω

ω0

)2

ε̂4
)
+O

(
ε̂6) . (3.14)

While the term proportional to ε4 is the dispersive term induced by the periodicity and is

identical to Eq. (3.8), the one proportional to ω2ε2 results from transverse-inertial effects.

Since 0 <α<∞, note that 1−α is negative for d < L0/
p

2 (masses m1 and m2 almost aligned)

and positive otherwise. It means that the total dispersion (−1/12+ (1−α)m2/m) can be either

negative or positive, such that the dispersion behavior can change from subsonic to supersonic

type (Fig. 3.1), and it shows the importance of the role played by transverse-inertial effects.

Finally, Fig. 3.2b is only a simplified model of the buckled beam, which gives the advantage to

explain physical mechanisms resulting in dispersion, without quantifying them.

Chain of masses and springs accounting for stiffness coupling effects

The model presented in Fig. 3.2b is a-posteriori a good model of the guided-supported buckled

beams, but is not appropriate for the pinned-support configuration since rotation cannot be

transmitted to neighboring masses. In order to capture this effect, a new mass-spring system

is proposed in Fig. 3.2c. Note that for the sake of clarity, the transverse masses are not included

here. In addition to the different forces shown in Fig. 3.2c, a moment equal to kθθn is applied

to each mass. Conservation of axial (un) and angular (θn) momentum equations are given by

mün = k(−2un +un+1 +un−1)−k2d (θn+1 −θn−1) , (3.15a)

Iθθ̈n =−k2d (un+1 −un−1)+k2d 2 (−2θn +θn+1 +θn−1)−kθθn , (3.15b)

where k = k1 +k2. Assuming plane-harmonic waves with un/u = θn/θ = e i (εn−ωt ), the system

(3.15) can be recast as[
2k(1−cosε)−ω2m i 2k2d sinε

i 2k2d sinε 2k2d 2(1−cosε)+kθ−ω2Iθ

]{
u

θ

}
= 0. (3.16)

The nontrivial solution of this system leads to the dispersion relation

ω2 = 4kkθ+16k2
2d 2

mkθ
sin2 ε

2
+ 16k1k2d 2

mkθ
sin4 ε

2
− 4kIθ+4k2d 2m

mkθ
sin2 ε

2
ω2 + Iθ

kθ
ω4, (3.17)

which is recast using Taylor expansion as

ω2 =kkθ+4k2
2d 2

mkθ
ε2 +

(
− 1

12

kkθ+4k2
2d 2

mkθ
+ k1k2d 2

mkθ

)
ε4 − 4kIθ+4k2d 2m

mkθ
ε2ω2 + Iθ

kθ
ω4

+O

((
ω

ω0

)4

ε̂2
)
+O

((
ω

ω0

)2

ε̂4
)
+O

(
ε̂6) .

(3.18)
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3.3. Bloch theorem

The first comment arising from Eq. (3.18) is that contrary to Eq. (3.14), in addition to periodicity-

induced dispersion, ε4 also depends on dispersion resulting from stiffness coupling between

rotations and axial displacements. Moreover, Eq. (3.18) possess additional dispersion terms

(ω2κ2 and ω4) similar to those encountered in Eq. (3.3), which highlights the notion of cou-

pling (ω4 is non-Newtonian and results from the combination of two momentum equations).

Finally, this model, as the previous one with transverse masses, provides dispersion equations

for which physical mechanisms are identified without being quantified. In order to obtain nu-

merical values of the mass and stiffness coefficients, the semi-analytical dispersion equation,

derived from the Bloch theorem, is developed next.

3.3 Bloch theorem

?
dL

dI dR

nn-1 n+1
fL fR

? ?

Figure 3.3: The unit cell in a periodic structure with end displacements and loads.

Linear wave propagation in periodic structures can be investigated through the analysis of

a unit cell (Fig. 3.3) and the application of Bloch theorem [Phani et al., 2006, Spadoni et al.,

2009, Brillouin, 1946]. The motion of a linear periodic domain resulting from uniaxial wave

propagation may be expressed as follows:

dn = e−µnd0, (3.19)

where dn denotes the displacement vector (multiple displacement components are possible)

of cell n within the periodic assembly, and d0 is the displacement vector within the reference

cell. The propagation constant µ is a complex number (µ= δ+ iε) where the real part and the

imaginary part represent respectively the attenuation and phase constants (i=p−1). Given

the periodicity, the propagation constant µ is equal to the wave number κ multiplied by the

spatial period 2L0 (Fig. 3.4) such that µ = 2L0κ, δ = 2L0Re(κ), and ε = 2L0Im(κ). Eq. (3.19)

however is only valid for linear fields, while interest is in wave propagation of finite amplitude

in buckled structures. We proceed here to justify the conditions of Eq. (3.19).

The discretized equations of motion from finite elements (FE), given for the nodal displace-

ment vector D defined by D = D0 +d , with D0 the displacement at the equilibrium point

(buckled configuration) are [Cook and Malkus, 2002]

M(D)D̈ +K(D)D = F . (3.20)

M and K are respectively the mass and stiffness matrices of one unit cell, while F is the
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Chapter 3. Dispersion Of Periodic Buckled Beams

nodal-force vector. Eq. (3.20) can be linearized about the equilibrium D0, leading to

K(D)D ' K(D0)D0 + ∂K(D)D

∂D

∣∣∣∣
D0

d = K(D0)D0 +KT (D0)d ,

M(D) ' M(D0),

(3.21)

where

KT (D0) = K(D0)+D0
∂K(D)

∂D

∣∣∣∣
D0

is the tangent stiffness matrix. Substituting Eq. (3.21) into Eq. (3.20) and using the relation

F = K(D0)D0 + f leads to the linearized governing equation witch is only valid for small d :

M(D0)d̈ +KT (D0)d = f , (3.22)

where d and f are the displacement and forces around the equilibrium defined by d =
{d T

L d T
I d T

R }T and f = { f T
L f T

I f T
R }T . The subscripts ( )L , ( )I and ( )R respectively denote

the left, internal and right displacements/forces of a unit cell. Assuming harmonic motion,

Eq. (3.22) gives

D(ω)d = f , (3.23)

where D(ω) = KT (D0)−ω2M(D0) is the dynamic stiffness matrix. For the sake of clarity, the

subscript T in KT is going to be omitted next.

a) b)
x

y

dUR=dUR

dθRdVR

dUL

dθLdVL

2L0

dUR

dθRdVR

dθRdVR

L0

dUL

dθLdVL
~

~

~ ~
~

~
^

^ ^

Figure 3.4: Unit cell in full line in terms of the classical Bloch theorem (a) and the reduced
version taking into account glide reflection (b).

The unit cell showed in Fig. 3.4a reproduces the infinite structure by translation symmetry.

The same unit cell however has intrinsic glide-reflection symmetry (axial-reflection coupled

to translation). Glide-reflection can be exploited and the unit cell of Fig. 3.4b is used instead,

where transverse displacement and rotation degrees of freedom (dof) of the right side are

opposite to those of the left side. To differentiate the different variables defined for the half

period and the full period, the superscripts (̂ ) and (̃ ) denote the reduced and the full unit cell,

respectively.

Using the full period (Fig. 3.4a) and imposing periodicity conditions on the generalized dis-
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3.3. Bloch theorem

placement and equilibrium conditions on the generalized forces yields{
dL

fL

}
= e−µ̃

{
d̃R

− f̃R

}
, (3.24)

where µ̃= 2L0Im(κ). The equivalent relation for the half period (Fig. 3.4b) is{
dL

fL

}
= e−µ̂

{
d̂R

− f̂R

}
= e−µ̂

[
Rx 0

0 Rx

]{
d̃R

− f̃R

}
, (3.25)

where 0 is the zero matrix, µ̂= L0Im(κ) = µ̃/2, and Rx is a orthogonal (R−1
x = RT

x ) change of

basis matrix from d̃R to d̂R (Fig. 3.4b). Since our system is conservative and time-symmetric,

Eq. (3.25) or its inverse is equivalent. For a structure corresponding to Fig. 3.4b with no

supports, the change of basis is an axial reflection about x such that:

Rx =

1 0 0

0 −1 0

0 0 −1

 . (3.26)

The modifications due the fact that the period used is half of the translational periodicity

are explained in Sec. 3.3.3. Before proceeding further, the direct and inverse methods of the

reduced Bloch theorem including the matrix Rx have to be introduced.

3.3.1 Direct method

Using Eq. (3.25), d̃ = {d T
L d T

I d̃ T
R }T can be expressed in terms of a reduced displacement vector

d (r ) = {d T
L d T

I }T :

d̃ = Âd (r ), (3.27)

where

Â =

 In 0

0 Ip

RT
x eµ̂ 0

 , (3.28)

and I the identity matrix of size defined by subscripts; n is the number of dofs at one boundary

and p is the number of internal dofs. Substituting Eq. (3.27) into Eq. (3.23) and multiplying

both sides by ÂH where H denotes the conjugate transpose gives

D̂(r )(ω, µ̂)d (r ) = f (r ), (3.29)

where D̂(r )(ω, µ̂) = ÂH D̂(ω)Â, f (r ) = ÂH f̃ (r ), f̃ = { f T
L f T

I f̃ T
R }T , and f (r ) = { f T

L f T
I }T . In the

case of a propagating wave without attenuation, µ̂= iε̂ is purely imaginary and if no internal
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Chapter 3. Dispersion Of Periodic Buckled Beams

forces exist ( f I = 0),

D̂(r )(ω, µ̂)d (r ) = 0. (3.30)

Given the periodicity of the medium, ε̂=Im(µ̂) ∈ [−π, π], and associated values of ω are found

by solving the eigenvalue problem of Eq. (3.30).

3.3.2 Inverse method

Instead of fixing the wave number and looking for the associated frequency, one can fix the

frequency and compute the propagation constant µ̂ for 1D problems [Romeo and Paolone,

2007]. This technique has been extended to 2D problems for portions of the irreducible

Brillouin zone [Spadoni et al., 2009], and more recently for the entire first Brillouin zone [Collet

et al., 2011, Farzbod and Leamy, 2011]. With µ̂ in hand, the propagation and attenuation

constants are obtained. The inverse method is used as a starting point to develop semi-

analytical dispersion relations.

Eq. (3.23) can be expanded as follows:D̂LL D̂LI D̂LR

D̂I L D̂I I D̂I R

D̂RL D̂RI D̂RR




dL

dI

d̃R

=


fL

f I

f̃R

 . (3.31)

In absence of internal forces, Eq. (3.31) can be recast as a new reduced dynamic stiffness:

D̂(ω)

{
dL

d̃R

}
=

[
D̂LL D̂LR

D̂RL D̂RR

]{
dL

d̃R

}
=

{
fL

f̃R

}
, (3.32)

with ({X ,Y } ∈ {L,R})

D̂X Y = D̂X Y − D̂X I D̂−1
I I D̂I Y . (3.33)

Eq. (3.32) can be rearranged to define a relation between opposite sides of the unit cell:{
d̃R

− f̃R

}
= T̂

{
dL

fL

}
, (3.34)

where the transfer matrix T̂ is

T̂ =
[

−D̂−1
LRD̂LL D̂−1

LR

D̂RRD̂−1
LRD̂LL − D̂RL −D̂RRD̂−1

LR

]
. (3.35)

Combining Eqs. (3.25) and (3.34) gives

[
[I2 ⊗Rx ] T̂ − I2neµ̂

]{
dL

fL

}
= 0, (3.36)
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3.3. Bloch theorem

where ⊗ is the Kronecker product. Eq. (3.36) is an eigenvalue problem which gives 2n complex

conjugate eigenvalues eµ̂ corresponding to frequency ω.

3.3.3 Reduced Bloch method

Bloch theorem is applicable to systems with translational symmetry and allows analyzing a

single unit cell, in our case the cell of Fig. 3.5a with periodicity 2L0. This unit cell however has

internal glide-reflection symmetry, and can be further simplified as in Fig. 3.5b with period L0.

This reduces computational cost and produces band structures that are easier to interpret. The

phase constant for the full unit cell is ε̃= 2L0Im(κ), whereas when the period in the reduced

Bloch theorem is L0, ε̂= L0Im(κ). The period of the reduced cell in the wavenumber space is

then π, while it is 2π for the full unit cell, as shown in Figs. 3.5c-d.

The band structure for the full unit cell (Fig. 3.5c) gives dispersion curves belonging to the

interval ε̃ = [−π π]. However, ε̃ is not restricted to this interval and the full dispersion is

obtained by shifting the curves in full line by 2qπ (q ∈ N) resulting in the dashed lines in

Fig. 3.5c [Brillouin, 1946]. Dashed lines however do not provide any additional information

given the periodicity of the dispersion relations. In the dispersion from the reduced Bloch

version (Fig. 3.5d), the interval is still ε̂= [−π π] but the period is π. This mean than when full

lines are shifted by the period qπ, new roots appear in the interval ε̂= [−π π] (dashed line).

Taking into account these new roots, one recovers the dispersion using the full periodicity

(Fig. 3.5c) using ε̂= ε̃/2. Analysis taking advantage of internal glide-reflection symmetries are

refereed next as the reduced Bloch method.

0 ε

ω

� 2�-�-2�

a)

ω

0 ε�/2 �-�/2-� ^

2L0 L0b)

d)c)

+Symmetry

~ ε= 2
~

Figure 3.5: Repercussions of glide symmetry on dispersion relations. Full (a) and reduced (b)
unit cells with respective band structures (c) and (d). Full lines denote the solution in the first
Brillouin zone, while dashed lines denote solutions in the second Brillouin zone.

As a side note, but not presented in this manuscript, Bloch theorem has been generalized

also to screw symmetric structures [Maurin, 2015] where the general proof is demonstrated.

In addition to the aforementioned advantages, the revisited Bloch method is applicable to

structures as the Boerdijk-Coxeter helix that does not possess purely-translational symmetries

for which the classical method is not applicable.
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Chapter 3. Dispersion Of Periodic Buckled Beams

3.4 Semi-analytical dispersion relations

The semi-analytical dispersion equation can be derived for both the classical and reduced

Bloch theorem so for the sake of clarity, the notations (̂ ) and (̃ ) are omitted in this section.

The methods in Sec. 3.3 are easily evaluated with a FE discretization of a representative cell

to obtain ω-κ curves, but no analytical equation is obtained. We intend to connect certain

features of the band structure to specific deformation mechanisms and physical phenomena.

In order to achieve this, the method proposed by Mead in [Mead, 1975a,b, Singh and Dhoopar,

1979] is extended to waves in beams with periodic boundary conditions (e.g. railway tracks).

For straight beams, Mead employs analytical receptance functions of a single periodic element,

explicitly expressed as a function of ω, which are used to link the nodal displacement to

the nodal forces of the element extremities. The propagation constant is introduced using

Eq. (3.25). However, in the present structure, the mass and the stiffness matrices are found

only numerical, given the curvature are not constant. Noting that the receptance matrix is the

inverse of the reduced dynamic stiffness matrix D(ω) (Eq. (3.32)), the same method can be

used, except that in our case, the coefficients DX Y do not contain ω explicitly.

By linearizing receptance-function components DX Y (Eq. (3.33)), one can obtain explicit

expressions in terms of ω. For low frequency, one can write:

D−1
I I = (KI I −ω2MI I )−1 ' K−1

I I +ω2K−1
I I MI I K−1

I I . (3.37)

Then using a lumped mass matrix (MX Y = 0 if X 6= Y ), the coefficients of D(ω) from Eq. (3.33)

are expressed explicitly in terms of ω as:

DX Y 'KX Y −ω2MX Y . (3.38)

The effective stiffness KX Y and mass MX Y matrix components are defined by:

KX Y = KX Y −KX I K−1
I I KI Y ,

MX Y = MX Y +KX I K−1
I I MI I K−1

I I KI Y .
(3.39)

Substituting Eq. (3.25) into Eq. (3.32) and given that Rx is orthogonal gives[
DLL DLR

DRL DRR

]{
dL

eµRT
x dL

}
=

{
fL

−eµRT
x fL

}
. (3.40)

Finally, the solution of this system is

det
[
DLL +RxDRR RT

x +eµDLR RT
x +e−µRxDRL

]= 0. (3.41)

Plugging Eq. (3.38) into Eq. (3.41), the semi-analytical dispersion relation is found by comput-
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3.4. Semi-analytical dispersion relations

ing the determinant of this new n ×n matrix. The following expression is obtained:

n∑
i=0

n∑
j=−n

ci , j ω
2i eµ j = 0, (3.42)

where ci , j are numerical coefficients given by the components of the stiffness and mass matrix

only. Since the propagation of linear-elastic waves in periodic structures is symmetric in the

wave number argument, the dispersion relation Eq. (3.42) has to be invariant with respect

to ±µ leading to the equality ci , j = ci ,− j . Note also that c0,0 = 0 if the beam is not supported

on elastic foundations (i.e. ω → 0 as ε → 0). The term semi-analytical is employed here

to indicate that µ and ω are related explicitly, but the coefficients ci , j are numerical. An

important remark is that the semi-analytical solution only approximates the acoustic branch

of the dispersion relation and is not valid for optical branches. This is because Eq. (3.37)

assumes small frequencies. This method can be used for any 1D periodic structure as long as

the number of boundary dofs is small.

3.4.1 Semi-analytical relations including transverse-reflection symmetry

a)

c)

b)

Figure 3.6: Shape of the beam after buckling with guided (a), pinned (b) and free (no) (c)
supports. Geometry of the beam with pinned and free supports is identical although the
configuration without supports is unstressed.

Semi-analytical dispersion relations can be further simplified using the fact that the reduced

cell also possesses reflection symmetry about y , as shown in Fig. 3.7. Therefore, the left and

right terms of the stiffness and mass matrices are linked by the following relations:

K̂LL = RT
y K̂RR Ry ,

K̂LR = RT
y K̂RLRy ,

K̂LI = RT
y K̂RI ,

K̂I L = K̂I R Ry ,

M̂LL = RT
y M̂RR Ry .

(3.43)
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Chapter 3. Dispersion Of Periodic Buckled Beams

The reflection matrix Ry about y is given by

Ry =

−1 0 0

0 1 0

0 0 −1

 . (3.44)

Plugging Eq. (3.43) into Eq. (3.38) leads to

D̂LL = RT
y D̂RR Ry ,

D̂LR = RT
y D̂LR Ry .

(3.45)

+= x

y

Figure 3.7: Additional symmetries of buckled beams: the half period possesses a reflection in
the y direction also.

For guided (n = 1, dU ), pinned (n = 2, dU , dθ) and free supports (n = 3, dU , dV , dθ) (Figs. 3.6

and 3.4), Eq. (3.42) is developed using Eq. (3.45). In order to further simplify Eq. (3.42),

attenuation is neglected, that is δ̂= 0. The semi-analytical equations for each kind of support

are shown below.

Guided supports

D̂LR cosε+ D̂LL = 0. (3.46)

Pin supports

(D̂2
LR12 − D̂LR11D̂LR22)cos2 ε+

(D̂LR11D̂LL22 − D̂LR22D̂LL11)cosε+
(D̂LL11D̂LL22 − D̂2

LR12) = 0,

(3.47)

where the notation DX Y i j is the abbreviation for DX Y (i , j ) (i ∈ {1, . . . ,n}, j ∈ {1, . . . ,n}).

Free supports

A0(ω)+ A1(ω)cosε+ A2(ω)cos2 ε+ A3(ω)cos3 ε, (3.48)

38



3.4. Semi-analytical dispersion relations

where:

A0(ω) = D̂LL11D̂LL22D̂LL33 +2D̂LL12D̂LR13D̂LR23

− D̂LL11D̂
2
LR23 − D̂LL33D̂

2
LL12 − D̂LL22D̂

2
LR13,

A1(ω) =−D̂LL11D̂LL22D̂LR33 − D̂LL11D̂LL33D̂LR22 + D̂LL22D̂LL33D̂LR11

+ D̂LR33D̂
2
LL12 − D̂LR11D̂

2
LR23 + D̂LR22D̂

2
LR13

+2D̂LR12
(
D̂LL12D̂LL33 − D̂LR13D̂LR23

)
,

A2(ω) = D̂LL11
(
D̂LR22D̂LR33 + D̂2

LR23

)− D̂LL22
(
D̂LR11D̂LR33 − D̂2

LR13

)
− D̂LL33

(
D̂LR11D̂LR22 + D̂2

LR12

)−2D̂LL12
(
D̂LR12D̂LR33 + D̂LR13D̂LR23

)
,

A3(ω) = D̂LR11D̂LR22D̂LR33 +2D̂LR12D̂LR13D̂LR23

+ D̂LR11D̂
2
LR23 + D̂LR33D̂

2
LR12 − D̂LR22D̂

2
LR13.

Note that if one uses the full translational period as the unit cell, equivalent equations can be

derived replacing Eq. (3.43) by K̃LL = RT
x RT

y K̃RR Ry Rx , K̃LR = RT
x RT

y K̃RLRy Rx , K̃LI = RT
x RT

y K̃RI ,

K̃I L = K̃I R Ry Rx , and M̃LL = RT
x RT

y M̃RR Ry Rx .

3.4.2 Polynomial expression of the semi-analytical equation

Assuming small phase constant, Eqs. (3.42), (3.46), (3.47) or (3.48) can be expanded in Taylor

series up to order ε2m , and rewritten as a polynomial:

n∑
i=0

m∑
j=0

ā2i ,2 j ω
2i ε2 j +O (ε2m+1) = 0, (3.49)

In the present case, ā00 = 0 (KLR11 =−KLL11 since there is no elastic foundation). Defining

ω0 by

ω0 = C0

L0
, (3.50)

it is possible to further simplify Eq. (3.49):

(
ω

ω0

)2

=
n∑

i=2

(
a2i ,0

(
ω

ω0

)2i
)
+

n∑
i=0

m∑
j=1

(
a2i ,2 j

(
ω

ω0

)2i

ε2 j

)
+O

(
ε2m+1) , (3.51)

with

a2i ,2 j =−ω
2i−2
0

ā2,0
ā2i ,2 j . (3.52)

Eq. (3.51) now has explicit terms in ω and ε, and it is particularly useful to analyze the physical

meaning of coefficients a2i ,2 j as done next for the guided and pinned-support case.
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Chapter 3. Dispersion Of Periodic Buckled Beams

3.4.3 Semi-analytical dispersion equation of buckled beams

Guided supports

Substituting the coefficients of Eq. (3.38) into Eq. (3.46), and using trigonometric identities

gives

ω2 = K̂LL11 +K̂LR11

M̂Tot11
−2

K̂LR11

M̂Tot11
sin2

(
ε̂

2

)
+ 2M̂LR11

M̂Tot11
ω2 sin2

(
ε̂

2

)
, (3.53)

which can be recast using the equality K̂LL11 =−K̂LR11 (unit cell not linked to the ground)

ω2 = K̂Tot11

M̂Tot11
sin2

(
ε̂

2

)
+ 2M̂LR11

M̂Tot11
ω2 sin2

(
ε̂

2

)
, (3.54)

where K̂Tot11 = 2K̂LL11 and M̂Tot11 = M̂LL11 +M̂LR11. Note that this equation is similar to

Eq. (3.13) describing wave dispersion in a mass-spring system accounting for transverse-

inertial effects (Fig. 3.2b). Actually it can be used to find the numerical values of the spring

stiffness and the two masses using the relation K̂LL11 = 2k, M̂LL11 = m1 + (1+α)m2/2 and

M̂LR11 = (1−α)m2/2. Eq. (3.54) can also be recast in the form of Eq. (3.51) using Taylor

expansion:(
ω

ω0

)2

= a0,2ε̂
2 +a0,4ε̂

4 +a2,2

(
ω

ω0

)2

ε̂2 +O

((
ω

ω0

)2

ε̂4
)
+O

(
ε̂6) , (3.55)

with the non-dimensional terms a0,2 = K̂Tot11

4ω2
0M̂Tot11

= 1, a0,4 =− 1
12 a0,2 =− 1

12 , and a2,2 = M̂LR11

2M̂Tot11
.

From the analogy with the mass-spring system, the terms a0,4 and a2,2 describe dispersion

due to periodicity and transverse-inertial effects, respectively. As a side note, a2,2 is equivalent

to the rotary-inertia term in the Rayleigh-beam formulation [Ghosh, 1984].

Pinned supports

Plugging the coefficients of Eq. (3.38) into Eq. (3.47) and using the equality K̂LL11 =−K̂LR11,

Eq. (3.47) reads

ω2 =
(
K̂Tot11

M̂Tot11
− 4K̂ 2

LR12

M̂Tot11K̂Tot22

)
sin2

(
ε̂

2

)
+4

K̂LL11K̂LR22 +K̂ 2
LR12

M̂Tot11K̂Tot22
sin4

(
ε̂

2

)

+
(

2M̂LR11

M̂Tot11
− 2K̂LR22

K̂Tot22
+ 8K̂LR12M̂LR12 −K̂Tot11M̂Tot22

M̂Tot11K̂Tot22

)
ω2 sin2

(
ε̂

2

)

+ M̂Tot22

K̂Tot22
ω4 +O

((
ω

ω0

)4

ε̂2
)
+O

((
ω

ω0

)2

ε̂4
)
+O

(
ε̂6) ,

(3.56)

where K̂Tot11 = 2K̂LL11, M̂Tot11 = M̂LL11 +M̂LR11, K̂Tot22 = K̂LL22 − K̂LR22 and M̂Tot22 =
M̂LL22 − M̂LR22. Note that neglecting the transverse-inertial effects (M̂LR11 = M̂LR22 = 0),
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3.5. Dispersion of buckled beams

Eq. (3.56) turns out to be equivalent to Eq. (3.17) using the equalities K̂LL11 = 2(k1 + k2),

K̂LR12 = 2k2d , K̂LR22 = 2k2d 2, K̂LL22 = kθ +2k2d 2, M̂Tot11 = m, and M̂Tot22 = Iθ. Similarly

to the guided-support case, the semi-analytical dispersion equation can be used to find the

mass and stiffness values of the mass-spring problem of Fig. 3.2c. Conversely, Fig. 3.2c can

be used to describe the physical mechanisms of the semi-analytical dispersion equation

coefficients. Eq. (3.56) can be also recast in the form of Eq. (3.51) using Taylor series with the

first coefficients a2i ,2 j ({i , j } ∈N) given by

a0,2 = 1

ω2
0

(
K̂Tot11

4M̂Tot11
− K̂ 2

LR12

M̂Tot11K̂Tot22

)
= 1,

a0,4 =− 1

12
a0,2 +

K̂LL11K̂LR22 +K̂ 2
LR12

4ω2
0M̂Tot11K̂Tot22

=− 1

12
+ K̂LL11K̂LR22 +K̂ 2

LR12

K̂Tot11K̂Tot22 −4K̂ 2
LR12

,

a2,2 = M̂LR11

2M̂Tot11
− K̂LR22

2K̂Tot22
+ 8K̂LR12M̂LR12 −K̂Tot11M̂Tot22

4M̂Tot11K̂Tot22
,

a4,0 = M̂Tot22

K̂Tot22
ω2

0 =
M̂Tot22

M̂Tot11

(
K̂Tot11

4K̂Tot22
− K̂ 2

LR12

K̂ 2
Tot22

)
.

(3.57)

As done for the guided and pinned-support configurations, Eq. (3.48) modeling dispersion

in the free-support beam can be also recast in terms of a Taylor expansion. However, the

resulting series is much more complex to analyze and restriction is made in the next part to

qualitative observations. The free-support configuration is anyway unstable and is only going

to be used to show the influence of the supports on dispersion curves.

3.5 Dispersion of buckled beams

In Chapter 2, it is shown that buckled deformations normalized by the critical load are

parametrized only in terms of the slenderness parameter λ and the initial imperfection w0.

Moreover, if 1/λ and w0 are sufficiently small, the buckling behavior is only changed for small

pre-compression levels (χ0 =∆U0/L < 0.1), and in order to remain within this assumption, as

the previous chapter, λ= 520 and w0 = 10−3.

While this normalization holds for the load-displacement relation, the same procedure can

be applied to the linear speed C0. Indeed, from the semi-analytical dispersion equation

(Eqs. (3.54) and (3.56)), the linear speed is defined by

C 2
0,G = K̂Tot11

4M̂Tot11
L2

0 and C 2
0,P =

(
K̂Tot11

4M̂Tot11
− K̂ 2

LR12

M̂Tot11K̂Tot22

)
L2

0, (3.58)

for respectively guided and pinned supports, and each effective stiffness term is proportional

to the first derivative of P {∆U }. Defining the normalizing linear speed C ′
0 using Eq. (3.6) with
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Chapter 3. Dispersion Of Periodic Buckled Beams

P {∆U } derived from elastica (Eq. (2.30)), one reads

C
′2
0 = C 2

0 {∆U0}
∣∣
∆U0→0 =

P ′{∆U0}L2
0

m

∣∣∣∣∣
∆U0→0

= 1

2

E Izπ
2

ρAL2
e f f

, (3.59)

where Le f f = L and Le f f = L/2, respectively in the case of the pinned and guided supports

(Eq. (2.44)). L and L0 are respectively the distance between two constitutive supports before

and after applying the pre-compression.

The normalized linear speed is plotted in Fig. 3.8 and is found identical whatever the support

configuration, in agreement with self-similarities between these two geometries (Fig. 2.8c).

The linear speed is found decreased when pre-compression increases, with an important

change in the curvature for χ0 ≈ 0.02. Indeed, for this compression level, the initial imperfec-

tion creates a smooth but fast transition between axial and bending deformations, for which

different mechanisms and so wave speeds operate. This explains why C0 does not converge to

C ′
0 when χ0 → 0.

0 0.2 0.4 0.6 0.80

0.5

1

1.5

2

χ0

C
0/

C
’ 0

Figure 3.8: Normalized long-wavelength linear velocity C0 in terms of the pre-compression χ0,
and valid for both support types.

The power of Fig. 3.8 is that it is valid whatever the support configuration, material property

and cross-section profile, as long as initial imperfections and the inverse of the slenderness

of the beam remain small, or the pre-compression is large. Moreover, from the equality

C0,G /C ′
0,G =C0,P /C ′

0,P , one get C0,P =C0,G /2. While this is true for the linear speed, it is shown

next that the dispersion depends on the support type, even when normalized by

ω′
0 =

C ′
0

L
. (3.60)
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3.5. Dispersion of buckled beams

3.5.1 Dispersion relation from Bloch theorem

While the goal of this thesis is to investigate nonlinear waves of finite amplitude, linearized

analysis of the dispersion is justified a-posteriori by comparisons to results of a 2D, discrete

Fourier transform. The dispersion is evaluated numerically with the Matlab function FFT2

applied to the nodal displacement history recorded from numerical nonlinear FE simulations,

resulting from impulsive boundary (see Chapter 4 for the FE model).
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Figure 3.9: Dispersion relation for two different configurations with pinned supports: (a)
pre-compression level is χ0 = 0.1, (b) unstressed configuration with identical geometry as
a buckled beam with χ0 = 0.8 (χ0 = U0/L). Linearized dispersion relation computed with
the reduced Bloch method (Sec. 3.3.3) in white-dashed lines, and via 2D, discrete Fourier
transform of the nodal displacement history recorded from FE simulations in grayscale.

Numerical dispersion relations obtained from the reduced Bloch method are superposed to

the amplitude spectrum showing excellent agreement (Fig. 3.9). This justifies the analyses

proposed in this chapter whereby dispersion is described by linearized models. Note that for

Fig. 3.9 and all the figures that follow, the dispersion is reported for the wavenumber space as

shown in Fig. 3.5d and frequency normalized by Eq. (3.60).

Influence of support type on dispersion

Dispersion relations for unstressed buckled beams with the three-support types (Fig. 3.6)

are given in Fig. 3.10. By unstressed, the beam is considered buckled until the desire level

of compression is reached, and then, the final geometry is modeled with new unstressed

elements. This procedure has the advantage to decouple the effects of prestress and curvature,

as it will be shown next, while in the present case, it allows the obtaining of dispersion curves

from the free-support configuration, which is originally unstable.

In the guided-support case (Fig. 3.10a), the phase velocity decreases with frequency. This

tendency is similar to the periodicity effects, but when compared to the equation describing

dispersion due to periodicity alone (Eq. (3.7)), the two models agree only at low frequencies.

Indeed, as shown in the semi-analytical dispersion equation (Eq. (3.54)), Eq. (3.7) does not

account for transverse-inertial effects and explains this difference. For the pinned-support

configuration, dispersion curves show that the phase velocity increases with frequency, a

characteristic of bending waves. However, as it will be discussed in Sec. 3.5.3, the analyze

of the wavemodes indicates that bending waves cannot propagate in the presence of the
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Chapter 3. Dispersion Of Periodic Buckled Beams

supports. In the free-support case, two propagation constants ε̂ exist for a given frequency in

the acoustic branch. Low values of ε̂ are well described by periodicity effects, while for values

near π, dispersion is due to bending. Moreover, the second branch matches Eq. (3.1) which is

derived for a straight beam and this is explained by the fact that in Fig. 3.10, pre-compression

is small. Note that these results are similar to the one obtained in [Trainiti et al., 2015] where

free-supported undulated beam are investigated. Finally, note from Fig. 3.10 that classical

axial waves with constant phase velocity are not found, and it can be explained by the presence

of dispersion induced by the curvature.
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Fig. 3.16a

Fig. 3.16b

Fig. 3.16c

Fig. 3.16b

Figure 3.10: Influence of the support type on dispersion relations for guided (dark), pinned
(dark gray), and free (light gray) supports, and for pre-compression χ0 = 0.1 which is then
unstressed. Direct reduced-Bloch-theorem dispersion in solid lines, semi-analytical dispersion
in dashed lines (Eqs. (3.46), (3.47), and (3.48)), periodicity-induced dispersion (Eq. (3.7)) in
dotted line, and bending-induced dispersion (Eq. (3.1)) in star line.

Influence of internal stress on dispersion

To show the influence of the stress independently of the curvature, unstressed and stressed

dispersion relations are shown in Fig. 3.11 for the case of the guided and pinned supports

(free-support configuration not shown since unstable if stressed). It is found that increasing

prestress decreases the phase speed, which is a softening effect, in agreement with the results

reported in [Bigoni et al., 2008, Gei et al., 2009].

Influence of dissipation on dispersion and evanescent modes

So far, only dispersion relations obtained with the direct method (δ̂= 0) are discussed. How-

ever, additional evanescent modes (δ̂ 6= 0) exist and are investigated using the inverse method.

In Fig. 3.12, the phase and attenuation constants are given for the stressed configurations,

limiting the analyze to guided and pinned supports. In the guided-support case (Fig. 3.12a-b),
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Figure 3.11: Influence of internal stress on dispersion relations for guided (a) and pinned
(b) supports, and for pre-compression level χ0 = 0.1 (black) which is then unstressed (gray).
Direct reduced-Bloch-theorem dispersion in solid lines, semi-analytical dispersion in dashed
lines (Eqs. (3.46) and (3.47)), and periodicity-induced dispersion (Eq. (3.7)) in dotted lines.

all wavemodes belonging to the acoustic branch are not attenuated (δ̂ = 0) under the first

band gap (ω/ω′
0 ≈ 2). Then, for each band gap, an evanescent mode is present. In the pinned-

support case, both propagating and evanescent modes are present at low frequency, whereas

the two propagating modes are evanescent inside the band gaps (Fig. 3.12c-d).

The power of the inverse method of the Bloch theorem is that dissipation can be accounted

for, simply by updating the dynamic stiffness matrix (Eq. (3.23)) with D(ω) = K+ iωC−ω2M,

where C is the damping matrix. In the present case, C models axial frictions of the supports,

such that C is the zero matrix except for CLL11 = CRR11 =µ, where µ is the coefficient of friction

arbitrary chosen as µ= 0.5. As shown with the gray lines of Fig. 3.12, dissipation has for effect

to convert both non-attenuated and evanescent modes in hybrid, attenuated modes, meaning

that the wavenumber has both a real and imaginary part; purely propagating waves and band

gaps do not exist in presence of dissipation.

Influence of support added-stiffness on dispersion

Additional dispersion effects of linear springs linking the different support to the ground are

investigated and two configurations are considered: axial or rotary springs, with respectively

stiffness denoted kSuppor t and kθ,Suppor t . In the case of axial springs, the dispersion relation

is shown in Fig. 3.13 for both guided and pinned supports, and frequency is normalized by the

updated Eq. (3.60) such that

ω
′2
0 = 1

2

E Izπ
2

mLL2
e f f

+ 1

2

kSuppor t

mL
, (3.61)

where m = ρAL. For both support types, when kSuppor t 6= 0, a low frequency cut-off is present

(dark-gray lines of Fig. 3.13). Indeed, from Eq. (3.39), noting that kSuppor t is contained only

into the diagonal axial external dof (K̂LL11 only), Eq. (3.55) is no longer valid and one should
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Figure 3.12: Influence of dissipation on dispersion relations for guided (a and b) and pinned
(c and d) supports, with χ0 = 0.1 obtained from inverse reduced-Bloch-theorem dispersion.
Imaginary (a and c) and real (b and d) part of the propagation constant.

consider instead Eq. (3.53), which has been derived before the introduction of the assumption

K̂LL11 =−K̂LR11. From Eq. (3.53), the frequency cut-off is

ω2
∣∣
κ=0 =

K̂LL11 +K̂LR11

M̂Tot11
= kSuppor t

M̂Tot11
, (3.62)

and is verified numerically.

Considering now the pinned-support configuration with rotary springs, when the stiffness

kθ,Suppor t increases, it is expected to get back to the guided-support configuration and indeed,

as shown with the light-gray curve of Fig. 3.13b, the dispersion behavior is similar to the dark

curve of Fig. 3.13a; the difference in amplitude is explained by the fact that ω
′2
0 depends on the

support configuration. Moreover, these results can be also founded from the semi-analytical

dispersion relation since for K̂Tot22 → ∞, Eq. (3.54) is identical to Eq. (3.56) (kθ,Suppor t is

contained only into K̂Tot22). Note also that from Eq. (3.57), increasing kθ,Suppor t increases

asymptotically ω0 and so also the linear speed C0 until ω2
0 = K̂Tot11/4M̂Tot11. While influence
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Figure 3.13: Influence of support added-stiffness on dispersion relations for guided (a) and
pinned (b) supports with χ0 = 0.1. Configuration without added stiffness in dark, with ax-
ial added stiffness (kSuppor t = E Izπ

2/(10mLL2
e f f )) in dark gray and with rotary added stiff-

ness (kθ,Suppor t →∞) in light gray. Direct reduced-Bloch-theorem dispersion in solid lines,
semi-analytical dispersion in dashed lines (Eqs. (3.46), and (3.47)), and periodicity-induced
dispersion (Eq. (3.7)) in dotted lines.

of added stiffness has been addressed here, the same investigations are conducted on added

mass.

Influence of support added-mass on dispersion

Up to this point, the buckled beam has been considered without taking into account the

mass of the supports. However, experimentally, the support mass is two orders of magni-

tude larger than the mass of a beam portion, and plays an important role in the disper-

sion. In the case of the guided supports (Fig. 3.14a), the added mass mSuppor t increases

the dispersion such that its curve reaches asymptotically Eq. (3.1) when mSuppor t → ∞.

Indeed, from the semi-analytical dispersion equation, knowing that mSuppor t is only con-

tained into M̂LL11, increasing mSuppor t will only decrease the effect of transverse-inertial

effects (a2,2 = M̂LR11/(2M̂Tot11)). Note that Fig. 3.14 is normalized using Eq. (3.61) and

m = ρAL+mSuppor t .

For the pinned-support case, it is assumed the rotary inertia to be proportional to the mass of

the support such that

ISuppor t = r mSuppor t , (3.63)

where r is for example, in the case of a full cylinder of radius R : r = R2/2. Noting that mSuppor t

and ISuppor t are contained only respectively into M̂LL11 and M̂LL22 (Eq. (3.39)), the total
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Figure 3.14: Influence of support added-mass on dispersion relations for guided (a) and pinned
(b and c) supports withχ0 = 0.1. Configuration without added mass in dark (a and b), with axial
added mass (mSuppor t →∞) in dark gray (a and b) and rotary added mass (r →∞) in light
gray (c). Direct reduced-Bloch-theorem dispersion in solid lines, semi-analytical dispersion in
dashed lines (Eqs. (3.46), and (3.47)), and periodicity-induced dispersion (Eq. (3.7)) in dotted
lines.

dimensionless dispersion (a4 = a0,4 +a2,2 +a4,0) using Eq. (3.57) reads

a4 = M̂LR11

2M̂Tot11
+ 2K̂LR12M̂LR12

M̂Tot11K̂Tot22
− M̂Tot22K̂

2
LR12

M̂Tot11K̂
2

Tot22

+C te

≈ M̂LR11

2mSuppor t
+ 2K̂LR12M̂LR12

mSuppor t K̂Tot22
− r

K̂ 2
LR12

K̂ 2
Tot22

+C te,

(3.64)

where C te is a constant that does not depend on either mSuppor t or r , and the approximation

is valid for mSuppor t À ρAL. Now, for a fix value of r , increasing mSuppor t converges to a

"bounded" solution (see Fig. 3.14b). Alternatively, for a fix value of mSuppor t , increasing r

decrease the phase speed (a4) such that when r →∞, the dispersion curve converges to zero.

While this last observation is verified numerically but not shown here, results are instead
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3.5. Dispersion of buckled beams

found convergent when normalized by the frequency

ω2
I =

K̂LL22

2ISuppor t s
. (3.65)

Indeed, as shown in Fig. 3.14c, a frequency threshold is present for ω/ω2
I = 1 meaning that

when the rotary inertia is extremely large, the rotary masses are acting as resonators.

3.5.2 Semi-analytical dispersion equation coefficients and pre-compression

While semi-analytical models are proposed in Eqs. (3.46), (3.47), and (3.48), numerical evalua-

tions are in excellent agreement with exact dispersion relations (Figs. 3.10, 3.11, 3.13, and 3.14)

and the two models expectedly diverge at high frequencies resulting from the small-frequency

approximation of Eq. (3.37).

The advantage arising from these semi-analytical equations is that instead of investigating

dispersion curves which are given for a specific pre-compression, the semi-analytical disper-

sion coefficients, which predict the dispersion behavior, can be directly plotted in terms of the

pre-compression χ0, as shown in Fig. 3.15.
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Figure 3.15: Coefficients a2i ,2 j of Eq. (3.51) in terms of the initial compressive strain χ0 for
guided (a) and pinned (b) supports. Configuration without added mass in dark and with axial
added mass (mSuppor t →∞ and r = 0) in gray.

For the guided-support case (Fig. 3.15a), a0,2 = 1 and a0,4 =−1/12 in agreement with Eq. (3.55).

Concerning a2,2, a2,2 →−∞ asymptotically for χ→ 0, becomes greater than zero for χ≈ 0.1,

and converges asymptotically to a finite positive value for χ0 large. a2,2 is in agreement with

the description of (1−α) from the mass spring model of Fig. 3.2b (Sec. 3.2.2).

For the pinned-support case (Fig. 3.15b), the trend of a2,2 is similar to the guided-support

configuration whereas a4,0 is not constant anymore. Indeed, as shown in Eq. (3.57), a0,4 is

composed now of two terms; the dispersive one due to periodicity (−1/12) and an additional
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dominating one arising from stiffness coupling. Concerning a4,0, it is found not significant

with respect to the other dispersive terms.

In addition to a0,4, a2,2 and a4,0, the total dimensionless dispersion a4 = a0,4 + a2,2 + a4,0

is plotted and gives directly the acoustic properties of the medium (Fig. 3.1). For guided

supports with small and moderated pre-compression, a4 < 0 whereas a4 > 0 for χ0 > 0.5.

On the contrary, in the pinned-support case, a4 > 0 only for strongly-compressed beam

(χ0 > 0.8). In other words, the guided supports lead to dispersion of supersonic type for small

pre-compression compared to subsonic dispersion for large buckling levels. Conversely, for

the pinned-support configuration, dispersion is subsonic and supersonic for respectively

small and large pre-compression.

Concerning the effects of support added-mass, the semi-analytical coefficients for mSuppor t →
∞ and r = 0 are plotted in gray lines in Fig. 3.15, and the global trend is found unchanged.

The effect of additional mass is to decrease a2,2 in the guided-support case, whereas it is the

opposite effect in the case of pinned supports, as already described in Sec. 3.5.1.

Finally, Fig. 3.15 gives the dispersion behavior for the guided and pinned-support configu-

rations for any pre-compression level, material property and cross-section profile, as long

as initial imperfections and the inverse of the slenderness of the beam remain small or the

pre-compression is large. Moreover, concerning the added mass, any configuration with r

small can be considered since it will be bounded between the curves of mSuppor t = 0 and

mSuppor t →∞.

Up to this point, it has been shown that semi-analytical dispersion relations provide an

equation for which the frequency and the wavenumber are explicitly linked and where the

coefficients are found using FE. Moreover, the use of mass-spring systems allows physical

interpretation of these coefficients and Fig. 3.15 gives good approximations of their values.

Wavemodes corresponding to Figs. 3.10-3.14 are discussed next.

3.5.3 Wavemodes

The deformed shapes of propagating wavemodes for the three different configurations are

given by the eigenvectors of Eq. (3.36). These modes can be classified in three groups only,

shown in Fig. 3.16. In Fig. 3.10 it is also indicated the occurrence of each wavemodes. As a first

remark based on geometric considerations, weakly-compressed beams deform mainly in the

transverse direction (Fig. 3.16b) whereas strongly-buckled beams deform mainly in the axial

direction (Fig. 3.16a). Results are similar regardless of the support type or the state of stress.

This means that wavemodes are only dependent on the buckled geometry, determined by the

pre-compression. Indeed, in the case of strongly-buckled beams, the top of the beam is already

at its maximum with respect to the range of possible deformations in transverse direction;

therefore, deformation in this direction is small. Considering strongly-compressed beams

as a waveguide, propagating modes can be classified as axial (Figs. 3.16a,d) and barreling

50



3.6. From dispersion equation to linear wave equation

(Figs. 3.16b,e) types. In the case of unsupported configurations only, a bending wavemode

(Figs. 3.16c,f) characterizes propagation for ε̂ > π/2. This finding is in agreement with the

discussion in Sec. 3.5.1, where dispersion is found to be described by Eq. (3.1).
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Figure 3.16: Propagating wavemodes for configurations with pinned supports (a, b, ε̂= 0.4) and
no supports (c, ε̂= 3). Weak (a, c, χ0 = 0.1) and strong (b, χ0 = 0.8) pre-compression. Deformed
configurations (full line) are superposed to undeformed ones (dashed lines). Equivalent-
waveguide modes described as axial (d), barreling (e), and bending (f) modes.

3.6 From dispersion equation to linear wave equation

Assuming harmonic waves (u = e i (κx−ωt )), a partial differential equation (PDE) is looked for

whose dispersion relation corresponds to the semi-analytical dispersion relation Eq. (3.51),

and for linear waves, the unique solution is [Whitham, 1974]

ut t =C 2
0 uxx −a0,4L2

0C 2
0 uxxxx −a2,2L2

0uxxt t −a4,0
L2

0

C 2
0

ut t t t . (3.66)

A review of such linear waves with different dispersive terms can be found in [Berezovski et al.,

2011]. In the next chapter, Eq. (3.66) will be the starting point to investigate nonlinear waves.

3.7 Conclusions

In this chapter, both direct and indirect-Bloch methods with FE are used to compute dispersion

relations with guided, pinned, and free supports. Starting from the indirect method of the

Bloch theorem, a novel method is derived to obtain an analytical approximated equation

of the dispersion relation in the acoustic branch: the semi-analytical dispersion relation.

Moreover, simplified mass-spring models are proposed to describe physical mechanisms of

the dispersion relations.
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Chapter 3. Dispersion Of Periodic Buckled Beams

Dispersion analyses show that the initial curvature (pre-compression level) plays an important

role in the behavior of the dispersion. Indeed, in the case of the guided supports, for small

pre-compression levels, the phase speed decrease for increasing frequency whereas for strong

pre-compression levels, the phase speed increase with frequency. For pinned supports, the

opposite is true.

Concerning the analysis of the waveguide modes, they are found also mainly dependent to the

curvature. For low pre-compression levels, symmetric barreling modes are present whereas

axial modes dominate for large curvatures. In addition, in the free-support configuration,

bending modes exist at small pre-compression levels only. Added mass and stiffness can

be used as tuning tools to modify the dispersion relation characteristics. While axial added

stiffness creates a threshold in the dispersion relation, increasing the rotary stiffness changes

the dispersion behavior from supersonic to subsonic type, leading to the guided-support

configuration in the asymptote. Added mass decreases the transverse-inertial effects by

increasing the periodicity-induced dispersion in the guided-support case, whereas pinned

supports provide opposite effects. Concerning the rotary inertia, its increase, relative to the

added mass, decreases the phase speed such that for extremely large values, particles are

acting as resonators and no propagation is possible at the resonance frequency.

Since only the case of added mass is going to be considered in the next chapter, a really

important point is that Fig. 3.15 gives dispersion estimation for any configuration, whatever the

support type, level of compression, and mass of the support. The only restriction that applies

at small pre-compression level for which, the slenderness parameter and the imperfection

amplitude have to be respectively large and small. This means that the wave-speed behavior

(supersonic or subsonic) can be directly obtained from Fig. 3.15 and will be useful in the next

chapter to determine the soliton type. This work leads to the derivation of linear homogenized-

continuum models, nonlinear ones are investigated in the next chapter.
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4 Nonlinear Wave Propagation In Buck-
led Beam: Models And Simulations

4.1 Introduction

In the two previous chapters, it has been shown that buckled beams possess a geometrically-

nonlinear load-deformation behavior and intrinsic dispersion sources, two characteristics

necessary to stationary waves forming. It is the goal of the present chapter to derive nonlinear

wave models and validate them by comparison to numerical finite-element (FE) simulations

of the structure.

One of the simplest nonlinear dispersive equations, modeling in particular wave propagation

in discrete systems, is the Boussinesq equation given by:

ξt̄ t̄ = ξx̄ x̄ + 1

12
ξx̄ x̄ x̄ x̄ + 1

2
(ξ2)x̄ x̄ , (4.1)

where ξ is the strain and x̄ and t̄ are respectively the dimensional space and time variables.

However, as it will be shown in Sec. 4.3, the dispersion is not correctly captured with the simple

Boussinesq equation and one should instead consider the double-dispersion Boussinesq

equation

ξt̄ t̄ = ξx̄ x̄ −a0,4ξx̄ x̄ x̄ x̄ −a2,2ξx̄ x̄ t̄ t̄ +
1

2
(ξ2)x̄ x̄ , (4.2)

where a0,4 and a2,2 are two dimensionless constants modeling dispersion. For a2,2 = 0, Eq. (4.2)

is the bad Boussinesq equation (bad refers to the ill-posed dispersion relation of this equation

when linearized) whereas for a0,4 = 0, Eq. (4.2) is the improved (or regularized) long-wave

Boussinesq equation [Christov et al., 2007]. The full Eq. (4.2) is the double-dispersion equation

which is found when describing waves in microstructure solids [Engelbrecht et al., 2011,

Delsanto, 2006, Berezovski et al., 2013], in rods [Samsonov and Maugin, 2001, Porubov, 2003,

Christov et al., 2007], or in the Cauchy problem [Wang and Chen, 2006, Liu and Xu, 2008, Erbay

et al., 2015, Kutev et al., 2014].

For nonlinear wave propagation with large amplitude or small pre-compression, the gener-
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Chapter 4. Nonlinear Wave Propagation In Buckled Beam: Models And Simulations

alized Boussinesq equation based on local approximations of the load-displacement curve

by a second-degree polynomial is no longer valid. To this end, a model based on power law

nonlinearities similar to the one used for wave propagation in pre-compressed granular media

[Nesterenko, 2001] is proposed in Sec. 4.4.2. Existing solution techniques are extended to

account for the additional dispersion sources and for the case of a power law with a negative

power coefficient. In addition to the power law nonlinearity, a method based on the exact

load-displacement curve is also derived. Finally, numerical FE simulations are then used to

validate the homogenized models in Sec. 4.5. Discussions and conclusions follow.

4.2 Geometric, material and FE properties

Before investigating nonlinear wave propagation, the different properties used in this chapter

are introduced here. Values of the different parameters correspond to the physical ones used

in experiments (see Chapter 5). The beam has a rectangular cross section of area A = bt

and area-moment of inertia Iz = bt 3/12 where t = 0.4 mm and b = 12.7 mm. The material is

steel assumed to be linear and elastic with E = 190 GPa and ρ = 7600 Kg m−3. The interspace

between two consecutive supports is initially L = 60 mm and the mass of one support is

mSuppor t = 24 g. The initial imperfection (see Fig. 4.2b) is chosen as w0/L = 10−3.

For numerical simulations, the selected beam formulation is the co-rotational model [Bat-

tini, 2002] which is limited to small strain (linear elastic material) but applicable to finite

displacements and rotations. Since the beam is assumed slender, this formulation neglects

shear. A super-convergent beam formulation is discussed in Chapter 6, but given the need

to use Lagrange multipliers to enforce boundary conditions, co-rotational formulation is

preferred here for simplicity. Each wavelength is composed of 30 or 8 elements and a total

of p = 300 or p = 1200 wavelengths are used for respectively the guided and pinned-support

configurations. Simulations are divided into two steps; the first one in load control where the

structure is statically buckled after applying the desired load for the pre-compression, and a

second one, in displacement control, where a dynamic pulse is generated at the left boundary.

Both static and dynamic simulations are divided into 5000 steps (in the static case this is

done to ensure resolution in the load-displacement curve) and the convergence criterion for

the Newton-Raphson scheme [Cook and Malkus, 2002] is defined by ‖Ri‖∞/‖R0‖∞ < 10−5 or

‖Ri‖∞ < 10−10 where R0 is the residual due to the external forces and Ri is the residual at the

i th convergence iteration (see Chapter 6). For the time integration scheme, the generalized-α

method is used and can be second-order accurate in time and unconditionally stable for

linear problems [Chung and Hulbert, 1993]. Details on the implementation and the choice of

parameters can be found in [Raknes et al., 2013], and in the present thesis, the high-frequency

dissipation parameter is chosen as ρ∞ = 0.9.
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4.3. Wave propagation described by the simple Boussinesq model

4.3 Wave propagation described by the simple Boussinesq model

4.3.1 From the simple mass-spring chain to the Boussinesq equation

An idealized model for periodic buckled beam is constructed as a chain of masses and non-

linear springs like that shown in Fig. 4.1. Beam segments are replaced by discrete masses

m = ρAL+mSuppor t and nonlinear springs defined by nonlinear load-deformation relation

P {∆U } (see Chapter 2) such that dynamic deformations between supports are neglected.
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Figure 4.1: Guided (only axial displacement allowed) (a) and pinned (both axial displacement
and rotation free) (b) support configurations composed of p = 4 cells and modeled by a
discrete chain of masses and nonlinear springs (c), and long-wavelength homogenization (d).

Conservation of linear momentum for particle of the nth requires:

ün = 1

m
(P {∆U0 −un +un−1}−P {∆U0 −un+1 +un}) , (4.3)

where (̈ ) denotes differentiation in time, un is the displacement of nth mass about its equi-

librium, ∆U0 is the initial displacement due to static compression, and the nonlinear load-

displacement relation P {∆U } already analyzed in Chapter 2 is recalled in Fig. 4.2. Assuming

the dynamic wave small with respect to the pre-compression (∆un = un −un+1 ¿∆U0), Taylor

expansion of P {∆U } reads:

P {∆U } = P {∆U0}+P ′{∆U0}(∆U −∆U0)+ 1

2
P ′′{∆U0}(∆U −∆U0)2 +O

(
u3) , (4.4)

such that the momentum equation (4.3) can be recast as

ün = P ′{∆U0}

m
(un−1 +un+1 −2un)+ P ′′{∆U0}

2m
(un−1 +un+1 −2un)(un−1 −un+1). (4.5)

Finite differences in Eq. (4.5) are replaced by an equivalent continuous displacement ũ(x, t ) as
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Figure 4.2: Load-displacement P {∆U } relation in black lines obtained numerically from FE,
and normalized by the critical Euler buckling load PE (Eq. (2.44)). The figure is plotted in
terms of the large (a) and small (b) buckling level χ0 =∆U0/L. Approximation of the P {∆U }
curve at χ0 = 0.6 (a) and χ0 = 5×10−3 (see inset for details) (b) by a polynomial of degree two
(Eq. (4.4)) in dark gray and by a power law (Eq. (4.27)) in light gray.

un+1 −un−1 = 2L0ũx +O
(
L3

0

)
,

un−1 +un+1 −2un = L2
0ũxx +

L4
0

12
ũxxxx +O

(
L6

0

)
,

(4.6)

where L0 = L−∆U0, and subscripts of ũ(x, t ) indicate partial derivatives. Substituting Eq. (4.6)

into Eq. (4.5), neglecting terms higher than order O
(
L4

0

)
, and dropping the notation (̃ ) for

conciseness, one obtains

ut t =C 2
0 uxx +2C0γuxxxx −σuxx ux , (4.7)

where

C 2
0 = P ′(∆U0)L2

0

m
, σ= P ′′(∆U0)L3

0

m
and γ= C0L2

0

24
, (4.8)

are respectively the coefficient of linear speed, nonlinearity, and periodicity-induced dis-

persion. Note that at a first approximation, for moderated buckling levels, using Eq. (2.31),

C 2
0 = PE L2

0/
(
2mLδ3

0

)
and σ= 3PE L3

0/
(
8mL2δ4

0

)
where δ0 = 1− ∆U0

4L .

Eq. (4.7) can be recast in terms of total compressive strain ξ = −Ux = −ux −χ0 given in the

initially deformed configuration (χ0 =∆U0/L is the initial strain):

ξt t =C 2
0ξxx +2C0γξxxxx + σ

2
(ξ2)xx . (4.9)

Eq. (4.9) is the Boussinesq equation [Ablowitz, 2011] and admits the solitary-wave solutions
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4.3. Wave propagation described by the simple Boussinesq model

called solitons:

∆ξ=∆ξmsech2 {
Λ−1(x −V t )

}
, (4.10)

where ∆ξ = ξ−χ0, ∆ξm = ξm −χ0 and ξm is the maximum strain. Note that the dynamic

wave amplitude ∆ξm can be positive (compressive soliton) or negative (tensile or rarefaction

soliton) such that sgn(∆ξm) = sgn(γ)sgn(σ) and is a very important characteristic that will be

revisited in the following sections. The soliton phase speed V is:

V =
√

C 2
0 +σ∆ξm/3, (4.11)

which is supersonic for γ> 0, the case of pure periodicity dispersion, and is subsonic for γ< 0.

The characteristic widthΛ is

Λ=
√

24C0γ/(σ∆ξm), (4.12)

and is linked to the width at half maximum Λ1/2 by the relation Λ1/2 = 2cosh−1 {p
2
}
Λ ≈

1.7627Λ.

As a side note, assuming a2
0,4 ¿ 1, σ̄2 ¿ 1 and σ̄∼ a0,4, Eq. (4.9) can be simplified, following

[Kunin, 1982], into the Korteweg–de Vries (KdV) equation:

ξt +C0ξx +γξxxx + σ

2C0
ξξx = 0. (4.13)

Eq. (4.13) also admits the soliton solution Eq. (4.10) and differs only by the definition of the

speed (V =C0 +σ∆ξm/(6C0)) [Maurin and Spadoni, 2014b].

In order to validate the Boussinesq model, results are next compared to FE simulations of the

structure.

4.3.2 Comparison between the simple Boussinesq model and FE simulations

Numerical simulations are performed using the parameters given in Sec. 4.2 imposing the

dynamic displacement on the left extremity of the beam ULe f t (Fig. 4.1), obtained after inte-

grating Eq. (4.10) in space such that:

ULe f t =∆ξmΛ
(
tanh

{
Λ−1V (t0 − t )

}+1
)+p∆U0, (4.14)

where t0 is chosen arbitrarily as t0 = 5Λ/V . The total time of the dynamic simulation is given

by t f = p L / V .

Numerical comparisons are performed for the pinned-supported weakly (χ0 = 0.1) and

strongly (χ0 = 0.9) buckled beam, and propagating waves are shown in Fig. 4.3. Note that for

χ0 ≥ 0.1, P ′{∆U0} > 0.
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Figure 4.3: Snapshots at times multiple of ti = 3/20t f of the maximum strain wave ∆ξm vs
support number (p) for weakly pinned-supported (χ0 = 0.1) (a) and strongly (χ0 = 0.9) (b)
buckled beam obtained by numerical FE simulations of the structure.

For the case of the strongly-buckled beam, the wave propagates keeping it shape and speed

whereas for the case of the weakly-buckled configuration, the propagation does not stabilize.

Moreover, while periodicity-induced dispersion results to the creation of a tail (if not balanced),

in the present case, a front is permanently created which is contrary to the simple mass-spring

model presented in Fig. 4.1c (see Fig. 3.1). Indeed, as discussed in Chapter 3, the sign of the

dispersive term is dominated by coupling effects which are neglected here. In order to improve

the current model, it is necessary to include the dispersion analysis derived in the previous

chapter to the nonlinear model.

4.4 Solitary waves including mass and stiffness coupling

4.4.1 The double-dispersion Boussinesq model

In the previous chapter, it has been shown assuming harmonic waves (u = ume i (κx−ωt )) that

the unique PDE having for dispersion relation Eq. (3.51) is Eq. (3.66) which is here recast in

terms of the strain ξ:

ξt t =C 2
0ξxx −a(1)

0,4L2
0C 2

0ξxxxx −a(1)
2,2L2

0ξxxt t −a(1)
4,0

L2
0

C 2
0

ξt t t t , (4.15)

where the superscripts ( )(1) refer to the coefficients derived in Chapter. 3 (Eq. (3.57)). For

the guided-support configuration (a(1)
4,0 = 0), since the supports allow only axial translations,

there is no displacement coupling at the support location (see Fig. 3.2a). In order to include

nonlinearities, the nonlinear term from Eq. (4.9) is added to Eq. (4.15) describing axial waves
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such that Eq. (4.15) becomes the double-dispersion Boussinesq equation:

ξt t =C 2
0ξxx −a(1)

0,4L2
0C 2

0ξxxxx −a(1)
2,2L2

0ξxxt t + σ

2
(ξ2)xx . (4.16)

In the case of pinned supports, both axial displacement U and rotation θ are allowed at the

support location, so that Eq. (4.15) is the result of two coupled PDEs. Since the nonlinear term

cannot simply be added to Eq. (4.15) as done for the guided-support case, it is the goal here to

find the two coupled original PDEs (momentum equations).

Combining Eqs. (3.32) and (3.25), one gets:[
D11 D12

D12 D22

]{
Um

θm

}
= 0. (4.17)

where Um and θm are respectively the amplitude of the harmonic axial strain and rotation

waves such that U =Ume i (κx−ωt ) and θ = θme i (κx−ωt ), and

D11 =DLL11 +DLR11 coshL0κ

=KLL11(1−coshL0κ)−MTot11ω
2 −MLR11(coshL0κ−1)ω2,

D12 =iDLR12 sinhL0κ

=i
(
KLR12 −MLR12ω

2)sinhL0κ,

D22 =DLL22 −DLR22 coshL0κ

=KTot22 +KLR22(1−coshL0κ)−MTot22ω
2 +MLR22(coshL0κ−1)ω2.

Eq. (4.17) results from a system of two linear harmonic coupled equations given by:

Ut̄ t̄ =Ux̄ x̄ − 1

12
Ux̄ x̄ x̄ x̄ + MLR11

2MTot11
Ux̄ x̄ t̄ t̄ +2

KLR12

KLL11
θx̄ − MLR12

MTot11
θx̄ t̄ t̄ −

KLR12

3KLL11
θx̄ x̄ x̄ ,

(4.18a)

θ =− KLR12

KTot22
Ux̄ + KLR12

6KTot22
Ux̄ x̄ x̄ +

C 2
0

L2
0

MLR12

KTot22
Ux̄ t̄ t̄ −

KLR22

2KTot22
θx̄ x̄ +

C 2
0

L2
0

MTot22

KTot22
θt̄ t̄ ,

(4.18b)

where x̄ = x/L0 and t̄ = tC0,G /L0 are respectively the dimensional space and time and high-

order terms of Eq. (4.18b) have been neglected. Eqs. (4.18a) and (4.18b) are respectively the

momentum equations describing axial deformations and rotations. The exact solution of this

system, up to order four is Eq. (4.15). However, instead of working with Eq. (4.15), the axial

nonlinear term is added to the axial momentum equation and the new system of coupled
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PDEs given in terms of the strain (ξ=−Ux ) and rotation θ reads:

ξt̄ t̄ = ξx̄ x̄ − 1

12
ξx̄ x̄ x̄ x̄ + MLR11

2MTot11
ξx̄ x̄ t̄ t̄ +

1

L0

(
2
KLR12

KLL11
θx̄ x̄ − MLR12

MTot11
θx̄ x̄ t̄ t̄ −

KLR12

3KLL11
θx̄ x̄ x̄ x̄

)
,

(4.19a)

θ

L0
=− KLR12

KTot22
ξ+ KLR12

6KTot22
ξx̄ x̄ +

C 2
0,G

L2
0

MLR12

KTot22
ξt̄ t̄ −

1

L0

(
KLR22

2KTot22
θx̄ x̄ −

C 2
0,G

L2
0

MTot22

KTot22
θt̄ t̄

)
.

(4.19b)

Similarly to the asymptotic procedure used in [Delsanto, 2006, Berezovski et al., 2013], under

the long-wave assumption, as a first approximation, on get from Eq. (4.19b):

θ

L0
= KLR12

KTot22
ξ, (4.20)

such that Eq. (4.19b) can be recast as

θ

L0
= KLR12

KTot22
ξ−

(
1

6

KLR12

KTot22
+ 1

2

KLR12KLR22

K 2
Tot22

)
ξx̄ x̄−

C 2
0,G

L2
0

(
MLR12

KTot22
− KLR12MTot22

K 2
Tot22

)
ξt̄ t̄ . (4.21)

Plugging Eq. (4.21) into Eq. (4.19a), one get:

ξt t =C 2
0,Pξxx −a(2)

0,4L2
0C 2

0,Pξxxxx −a(2)
2,2L2

0ξxxt t + σ

2
(ξ2)xx , (4.22)

where the dimensionless dispersive constants are

a(2)
0,4 =− 1

12
+ KLL11KLR22 +K 2

LR12

KTot11KTot22 −4K 2
LR12

− KLR22

2KTot22
,

a(2)
2,2 =

1

2

MLR11

MTot11
+2

MLR12K
2

LR12

MTot11KTot22
− MTot22K

2
LR12

MTot11K
2

Tot22

.

(4.23)

Because Eq. (4.22) is different than Eq. (4.15), the dispersion is not exactly captured. However,

note that the total dimensionless dispersion a4 = a(2)
0,4 + a(2)

2,2 = a(1)
0,4 + a(1)

2,2 + a(1)
4,0 remains un-

changed. For a sake of clarity, the simplified notation is used next; for the guided-support case,

a0,4 = a(1)
0,4 and a2,2 = a(1)

2,2, whereas for the pinned-support case, a0,4 = a(2)
0,4 and a2,2 = a(2)

2,2.

Eq. (4.22) is the double-dispersion Boussinesq equation which also describes axial waves in

straight rods [Porubov, 2003, Samsonov and Maugin, 2001, Christov et al., 2007]. It is not

exactly integrable in the sense of the inverse scattering transform [Soerensen, 1984] and its

solution is derived following the same procedure as for the Boussinesq equation [Remoissenet,

1995], with solution given by Eq. (4.10) but the dispersive term γ is now:

γ=− L2
0

2C0

(
a0,4C 2

0 +a2,2V 2) . (4.24)
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For solitary waves in discrete media, an important characteristic is the wavelength at half

amplitude (Λ1/2) with respect to the period of the medium. Assuming small amplitude waves

(V ≈C0), the characteristic width (Eq. (4.12)) normalized by the distance between two supports

reads

Λ1/2

L0
= 1.7627Λ

L0
≈ 1.7627

√
−12C 2

0 a4

σ∆ξm
= 1.7627

√
−12P ′{χ0}a4

(1−χ0)P ′′{χ0}∆ξm
. (4.25)

Using the load displacement relation derived in Chapter 2 (Eq. (2.43)), in a first approximation,

P ′′{χ0}/P ′{χ0} is found dependent only to the strain χ0 and the initial imperfection (for small

buckling levels), but not on material neither on the cross-section properties. Moreover, from

Fig. 3.15, it is shown that a4 ≈ a4{χ0} (the role of mSuppor t on a4 can be neglected in a first

approximation) and is dimensionless. Finally, the ratioΛ1/2/L0 depends almost only on the

compression level χ0 and the wave amplitude.

In order to compare nonlinearity to dispersion, Eq. (4.22) is recast into a dimensionless form:

ξt̄ t̄ = ξx̄ x̄ +a0,4ξx̄ x̄ x̄ x̄ +a2,2ξx̄ x̄ t̄ t̄ + σ̄(ξ2)x̄ x̄ , (4.26)

with σ̄= σ
2C 2

0
, x̄ = x

L0
and t̄ = C0

L0
t . For both support types, the coefficients of the semi-analytical

dispersion equation (a0,4, a2,2, and a4) as well as the dimensionless nonlinear term σ̄ are

plotted in Fig. 4.4 in terms of the pre-compression χ0.

For the case of guided supports, the first comment due in Fig. 4.4a is that the main contribution

to the total dispersion (a4) is the transverse inertia (a2,2) for small buckling level and periodicity

(a0,4) otherwise. The sign of a4 is important in that it determines the wave speed in the case of

guided supports which is supersonic (a4 < 0). For the pinned-support configuration, the main

contribution to a4 is from a0,4 which accounts for both dispersion induced by periodicity

and coupling effects. However, since the dimensionless periodicity dispersion is −1/12 (see

Eq. (4.23)) and is really different from a0,4 (Fig. 4.4b), coupling effects are dominant. Noting

now that a4 is positive except for extremely large compression, subsonic and supersonic

solitary waves are respectively expected for χ0 > χγ and χ0 < χγ (see Table 4.1), where χγ ≈
0.85.

Concerning nonlinearity, its sign also influences the type of solitary wave since sgn(∆ξm) =
−sgn(a4)sgn(σ̄), where σ̄ is found negative for χ0 <χσ and positive for χ0 >χσ whatever the

support configuration (see Fig. 4.4), and χσ ≈ 0.081 is the level of pre-compression for which

there is an inflection in the load-displacement curve (Fig. 4.2).

Combining the sign of dispersive and nonlinear terms, four kinds of waves are possible: com-

pressive supersonic, compressive subsonic, rarefaction supersonic, and rarefaction subsonic

waves. What is particularly interesting with buckled beams is that varying the level of the

pre-compression and the support type, a configuration for each of the four different wave

types can be obtained, as shown in Table 4.1. Furthermore, with pinned supports, simply
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varying pre-compression gives three different wave types.

Table 4.1: Solitary waves characteristics in terms of the sign of the nonlinear σ̄ and dispersive
a4 terms (Fig. 4.4).

sgn(σ̄) sgn(a4) Shape behavior Speed behavior Configurations Symbol

+ − Compression Supersonic
Guided: χ0 >χσ ↗
Pinned: χ0 >χγ

− − Rarefaction Supersonic Guided: χ0 <χσ ↘
+ + Rarefaction Subsonic Pinned: χσ <χ0 <χγ ↙
− + Compression Subsonic Pinned: χ0 <χσ ↖
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a) b)

Figure 4.4: Dimensionless nonlinear and dispersive coefficients, in terms of the pre-
compressive strain χ0 for the guided (a) and pinned (b) support configurations. a0,2 = 1
in full, a0,4 in dashed, a2,2 in dashed-dotted, a4 in + dark, and σ̄ in full gray lines. See Table 4.1
for arrow notation.

However, the amplitude range ∆ξm for which solitary waves are expected is limited by two

phenomena. Indeed, the dynamic wave cannot cross the snapping point (χ0 = 0) or the

inflection point (χ0 =χσ) either in compression or in tension, since the static curve P {∆U0}

is not defined for χ0 < 0 and is linear for χ0 = χσ. The second constraint applies only for

a4 positive (pinned-support configuration with χ0 <χγ) and is such that the subsonic wave

speed has to remain real (see Eq. (4.11)). While the equations governing the constraints on

∆ξm are given in Table 4.2, numerical results are shown in Fig. 4.5.

To conclude, it has been shown here that updating dispersion by including mass and stiffness

coupling leads again to a solitary wave. The variety of wave types in buckled-beams is evident

in that four different waves (rarefaction/compression shapes and supersonic/subsonic speeds)

can be obtained changing only the support-type and the pre-compression level (Table 4.1).

The goal is next to investigate nonlinear wave propagation for large amplitude or small pre-

compression, where the Boussinesq model is not valid.
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4.4. Solitary waves including mass and stiffness coupling

Table 4.2: Constraints on the upper bound of the wave amplitude |∆ξm | given by the fact that
the dynamic wave cannot cross the snapping point (χ0 = 0) or the inflection point (χ0 =χσ)
and also limited by the fact that the subsonic speed cannot be imaginary.

Configuration P {∆U0} Speed real (Eq. (4.11))
Guided: χ0 <χσ |∆ξm | <χ0L/L0 Ø
Guided: χ0 >χσ Ø Ø
Pinned: χ0 <χσ |∆ξm | < (

χσ−χ0
)

L/L0 |∆ξm | < 3C 2
0 /σ

Pinned: χσ <χ0 <χγ |∆ξm | < (
χ0 −χσ

)
L/L0 |∆ξm | < 3C 2

0 /σ
Pinned: χ0 >χγ Ø Ø
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Figure 4.5: Maximum value of ∆ξm for the guided (a) and pinned-support (b) configurations
in terms of the pre-compression χ0 computed using the rules given in Table 4.2. Limitations
arising from the load-deformation behavior shown in black lines, and real speed in gray lines.
See Table 4.1 for arrow notation.

4.4.2 Strongly nonlinear models

For nonlinear waves with large amplitude or small pre-compression, the approximation of

the load-displacement P {∆U } by a second degree polynomial (Eq. (4.4)) is not accurate (see

Fig. 4.2) but is used in the derivation of the generalized Boussinesq model. In this section, it is

proposed the approximation of P {∆U } by a power law. Where a power law or polynomial are

not sufficient, P {∆U } is retained as a general function.

Nonlinearity described by power law

Wave propagation in nonlinear media where the nonlinearity can be described locally by a

power law

P {∆U } = a∆U n +b, (4.27)
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is quite common and arises for example in describing wave propagation in granular media

[Nesterenko, 2001, Sen et al., 2008] with n = 3/2 for spheres (Hertz law), and any n > 0 when

the contact surfaces are not elliptical (Hertz-like law [Sun et al., 2011]). Here, the coefficients

of Eq. (4.27) are given in terms of the local derivatives of the load-displacement such that

a = 1
m

P ′{∆U0}
nU n−1

0
, n = 1+∆U0

P ′′{∆U0}
P ′{∆U0} and b = P {∆U0}− a∆U n

0 , and note that sgn(n) = sgn(a).

Note also that as in Eq. (4.4), these coefficients refer up to the second derivative of P {∆U }.

Nesterenko [Nesterenko, 2001] shows that chains of masses and nonlinear springs (Fig. 4.1c,

0 0.2 0.4 0.6 0.8-1

0

1

2

3
n

χ0χn χσ

Figure 4.6: Power n of Eq. (4.27) in terms of the pre-compression χ0. Note that n > 1 for
χ0 >χσ, n < 0 for χ0 <χn and n ∈ [0 1] otherwise.

and Eq. (4.3)) with the load-displacement P {∆U } given by Eq. (4.27) are capable of hosting

solitary waves for n > 0. However, as shown in Fig. 4.6 where the power n is plotted in terms of

the pre-compression, for χ0 < χn = 8.8×10−3, n and a are both negative and mathematical

analyses for this case are not available. In this thesis, in addition to extending the work

in [Nesterenko, 2001] to the case of n < 0, we will also consider adding terms to account

for the additional dispersion sources. For the case of a buckled beam on guided supports

(a0,4 = −1/12) modeled by a chain of nonlinear springs and masses, with the nonlinearity

described by a power law, the momentum equation governing the nth particle is:

ün = a

m

(
(Ui−1 −Ui )n − (Ui −Ui+1)n)−L2

0a2,2Ui ,xxt t , (4.28)

where the first part of the right hand side accounts for nonlinearity and periodicity dispersion

whereas the last term accounts for dispersion due to transverse inertial effects. In the long

wave approximation, Eq. (4.28) can be homogenized into a strongly nonlinear wave equation

[Nesterenko, 2001]:

ξt t =C 2
n

(
ξn −a0,4L2

0
2n

n +1
ξ

n−1
2

(
ξ

n+1
2

)
xx

)
xx

−L2
0a2,2ξxxt t , (4.29)
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4.4. Solitary waves including mass and stiffness coupling

where C 2
n = a

m Ln+1
0 and ξ = −Ux . Using the regularization ξt t ≈ C 2

n (ξn)xx , Eq. (4.29) can be

recast in:

ξt t =C 2
n

(
ξn −a0,4L2

0
2n

n +1
ξ

n−1
2

(
ξ

n+1
2

)
xx

−a2,2L2
0(ξn)xx

)
xx

. (4.30)

Using the transformation

(ξn)xx = 2n

n +1
ξ

n−1
2

(
ξ

n+1
2

)
xx

+ n(n −1)

2
ξn−2ξ2

x , (4.31)

Eq. (4.30) can be rewritten into two different forms:

ξt t = C 2
n

(
ξn −a4L2

0
2n

n +1
ξ

n−1
2

(
ξ

n+1
2

)
xx

−a2,2L2
0

n(n −1)

2
ξn−2ξ2

x

)
xx

(4.32)

= C 2
n

(
ξn −a4L2

0

(
ξn)

xx +a0,4L2
0

n(n −1)

2
ξn−2ξ2

x

)
xx

. (4.33)

However, contrary to [Nesterenko, 2001], due to the additional term in a2,2, Eqs. (4.32) or (4.33)

cannot be recast exactly into potential form, and it is necessary to neglect the last terms of

these equations. Justification of this assumption will be given a posteriori by showing that

results from truncated forms of Eqs. (4.32) and (4.33) are similar. In addition, for |a4|À
∣∣a2,2

∣∣,
neglecting a2,2 in Eq. (4.33) leads to Eq. (4.32) without its last term. Similarly, the use of the

assumption |a4|À
∣∣a0,4

∣∣ in Eq. (4.32) leads to the truncated form of Eq. (4.33). Since the ratio∣∣a2,2/a0,4
∣∣ is large for weakly buckled beams and small otherwise (Fig. 4.4), both equations are

considered next.

Potential for Eq. (4.32)

Neglecting the last term of Eq. (4.32), this equation becomes identical to the one studied in

[Nesterenko, 2001], and for n > 1 and 0 < n < 1, respectively compressive and rarefaction

solitary waves are possible solutions. However, for n < 0, since a < 0, Cn =
√

a
m Ln+1

0 is purely

imaginary. Note that the long wave sound speed C0 = jCn
p

nξ
n−1

2
0 with j = sgn(n), remains

real (ξ0 =∆U0/L0 6=χ0 =∆U0/L). In order to recast Eq. (4.32) in form of a potential W {z} such

that

zxx =−dW {z}

d z
, (4.34)

Nesterenko uses the change of variables z = ξ n+1
2

(
Cn
V

) n+1
n−1

but with n < 0, z becomes a complex

number and the one-to-one relation between z and ξ is lost. In the present work, an update in
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the change of variables is proposed and reads:

z = ξ n+1
2

(
j

(
Cn

V

)2) n+1
2(n−1)

. (4.35)

In the case of stationary waves, z = z{x −V t } and using the boundary conditions

lim
x=±∞ξ= ξ0 and lim

x=±∞ξx = lim
x=±∞ξxx = 0, (4.36)

Eq. (4.32) can be rewritten in the form of a potential W {z}:

W {z} =− n +1

2na4L2
0

(
1

2
z2 − j

n +1

4
z

4
n+1 +C z

2
n+1

)
. (4.37)

Using the fact that zxx |ξ=ξ0
= 0, the constant C is

C = n +1

2

(
j z

2
n+1
0 − z

2n
n+1
0

)
, (4.38)

where z0 = z{ξ0}. In order to have localized stationary waves, the potential must have two

extremes and following the procedure in [Nesterenko, 2001], C has to comply with Table 4.3

which is validated numerically for the full range of compression levels (0 < χ0 < 0.9). The

Table 4.3: Constraints on C with N1 = n2−1
2 ( j n)n/(1−n) derived following [Nesterenko, 2001].

1 < n 0 < n < 1 −1 < n < 0 n <−1
0 <C < N1 N1 <C < 0 C < N1 N1 <C

shape of the solitary wave is obtained by recasting Eq. (4.34) into an elliptical integral

x =
∫ zm

z

d zp
2(W {z0}−W {z})

, (4.39)

which is solved numerically and zm = z{ξm} where ξm is the maximum strain. In order to

compare the wavelength of this solitary wave to simulations, the width of the wave at half of

its amplitude is used and reads:

Λ1/2 = 2
∫ zm

z0+zm
2

d zp
2(W {z0}−W {z})

. (4.40)

Using the fact that W {ξm} =W {ξ0}, the solitary wave speed is:

V = Cn

|ξm −ξ0|

(
2

nξn+1
0 +ξn+1

m − (n +1)ξn
0 ξm

n +1

)1/2

. (4.41)

66



4.4. Solitary waves including mass and stiffness coupling

Potential for Eq. (4.33)

The same procedure developed in Sec. 4.4.2 can be applied to Eq. (4.33) using the change of

variable:

z = ξn
(

j

(
Cn

V

)2) n
n−1

. (4.42)

Eq. (4.33) can be rewritten in potential form:

W {z} =− 1

a4L2
0

(
1

2
z2 − j

n

n +1
z

n+1
n +C z

)
, (4.43)

where the constant C = j z1/n
0 − z0 has to fulfill the conditions given in Table 4.4 which are

validated numerically for the compression level 0 <χ0 < 0.9. The shape of the solitary wave is

Table 4.4: Constraints on C with N2 = (n −1)( j n)n/(1−n).

1 < n 0 < n < 1 n < 0
0 <C < N2 C < N2 < 0 C < N2

given by Eq. (4.39) and the solitary wave speed is:

V =Cn
∣∣ξn

m −ξn
0

∣∣( n +1

2
(
ξn+1

0 +nξn+1
m − (n +1)ξ0ξ

n
m

))1/2

. (4.44)

For the sake of clarity, up to this point, we have restricted ourselves to the case of guided

supports (see Eq. (4.28)). Pinned-support configurations can be considered as well but the

z = z{ξ} relation is not invertible analytically anymore. As a consequence, it is not possible to

get analytical expressions for the potential or the phase speed, so that the simplicity of using

the power law approximation compared to the use of the general relation P {∆U } is lost, as it

will be shown in next section.

Nonlinearity described by general function

Instead of approximating the load-displacement relation by an analytical equation (second

degree polynomial Eq. (4.4) or power law Eq. (4.27)), in this section this relation is kept general.

The momentum equation of the nth particle of the chain is:

ün = 1

m
(P {Ui−1 −Ui }−P {Ui −Ui+1})−L2

0

(
aNoC0

0,4 C 2
0Ui ,xxxx +a2,2Ui ,xxt t

)
, (4.45)

where the first part of the right hand side accounts for nonlinearity and dispersion proportional

to the linear speed, whereas the following two terms account for the rest of the dispersion
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sources with

a0,4 = aC0
0,4 +aNoC0

0,4 , (4.46)

and aC0
0,4 =− 1

12 . aNoC0
0,4 is null for the case of the guided supports and defined by Eq. (4.4) for

the case of the pinned supports. This equation, in the case of dispersion induced purely by

periodicity (aNoC0
0,4 = a2,2 = 0), has been already analyzed in [Nesterenko, 2001] and following

the same procedure, Eq. (4.45) is homogenized into a nonlinear wave equation:

ξt t = 1

ρ0

(
P −aC0

0,4L2
0

p
P ′

(∫ ξ

ξ0

(P ′)1/2dξ

)
xx

)
xx

−L2
0

(
aNoC0

0,4 C 2
0ξxxxx +a2,2ξxxt t

)
, (4.47)

where ρ0 = m
L0

, P = P {L0ξ} and ( )′ denotes now the derivative with respect to ξ. Using the

equality C 2
0 = P ′

0
ρ0

where P0 = P {L0ξ}|ξ=ξ0
, the regularization method (ξt t ≈ Pxx /ρ0) leads to:

ξt t =
L2

0

ρ0

(
P

L2
0

−aC0
0,4

p
P ′

(∫ ξ

ξ0

(P ′)1/2dξ

)
xx

−a2,2Pxx −aNoC0
0,4 P ′

0ξxx

)
xx

. (4.48)

Note that using the change of variable ξ= ξ0 +∆ξ, expansion of Eq. (4.30) into series assuming

∆ξ small gives back the generalized Boussinesq equation (Eq. (4.22)). Using the transforma-

tions

Pxx =
p

P ′
(∫ ξ

ξ0

(P ′)1/2dξ

)
xx

+ P ′′

2
ξ2

x , (4.49)

and

ξxx =
p

P ′
(∫ ξ

ξ0

(P ′)−1/2dξ

)
xx

+ P ′′

2P ′ ξ
2
x , (4.50)

Eq. (4.48) can be recast into two different forms:

ξt t = L2
0

ρ0

(
P

L2
0

−
p

P ′
((

a2,2 +aC0
0,4

)∫ ξ

ξ0

(P ′)1/2dξ+aNoC0
0,4 P ′

0

∫ ξ

ξ0

(P ′)−1/2dξ

)
xx

−ξ2
x

(
a2,2

P ′′

2
+aNoC0

0,4

P ′
0P ′′

2P ′

))
xx

(4.51)

= L2
0

ρ0

(
P

L2
0

−
((

a2,2 +aC0
0,4

)
P +aNoC0

0,4 P ′
0ξ

)
xx

+a0,4
P ′′

2
ξ2

x

)
xx

. (4.52)

In order to recast these equations into potential form, the last term of Eqs. (4.51) or (4.52) has

to be neglected, as done in Sec. 4.4.2 and is justified a posteriori.

Using the variable transformation z =
(
a2,2 +aC0

0,4

)∫ ξ
ξ0

(P ′)1/2dξ+ aNoC0
0,4 P ′

0

∫ ξ
ξ0

(P ′)−1/2dξ for

Eq. (4.51) or z =
(
a2,2 +aC0

0,4

)
P + aNoC0

0,4 P ′
0ξ for Eq. (4.52), in the case of stationary waves

68



4.5. Results and discussion

z = z{x −V t }, and using the boundary conditions of Eq. (4.36),

dW {z}

d z
=− 1

L2
0F

(
V 2ρ0(ξ−ξ0)− (P −P0)

)
, (4.53)

where ξ= ξ{z} and F =p
P ′ or F = 1, respectively for Eq. (4.51) and Eq. (4.52). The speed is

derived using the equality W {ξm} =W {ξ0} and reads:

V 2 = 1

ρ0

zm∫
z0

P−P0
F d z

zm∫
z0

ξ−ξ0
F d z

, (4.54)

where z0 = z{ξ0}, zm = z{ξm}, and the shape of the solitary wave is obtained using Eq. (4.39).

Note that contrary to the case of the power-law nonlinearity (Sec. 4.4.2), even for the guided-

supports case (aNoC0
0,4 = 0), the relation z = z{ξ} is not invertible analytically meaning that the

expression of the speed can be obtained only using numerical integration (Eq. (4.54)). The

validity of these different models is investigated using FE simulations, which are introduced

next.

4.5 Results and discussion

4.5.1 Comparison of the Boussinesq model to FE simulations

Guided-supported beam

Snapshots of the strain wave propagating through the guided-support beam for several levels

of compression are shown in Fig. 4.7 where the input is either a compressive or a rarefaction

wave, depending on the compression level (Table 4.1). In Figs. 4.7c,f, the wave propagates

without any change in shape, in agreement with the stationary properties of solitary waves.

In Figs. 4.7a-d, a small tail is present and propagates more slowly than the main wave, in

agreement with the supersonic properties predicted by the Boussinesq model (Table 4.1). The

fact that the input does not lead directly to the asymptotic solution shows that the Boussinesq

model for such levels of compression is not accurate. This is particularly true in Fig. 4.7d

where the initial guess splits into two distinct waves.

Additionally, in order to check if stationary waves are indeed nonlinear, the dependency of

speed and wavelength on amplitude is shown in Fig. 4.8 in terms of the compression χ0 and

the dynamic-amplitude ∆ξm . Figs. 4.8a,b show that the speed indeed increases whereas the

wavelength decreases with the absolute amplitude, in agreement with the Boussinesq model.

However, for weakly-compressed beams or large wave amplitudes, the values of the speed

and wavelength extracted from FE simulations are not in agreement with the Boussinesq

equation (Eq. (4.9)). This is due to the fact that for certain conditions, approximation of the

load-displacement curve by a polynomial of degree two (Eq. (4.4)) is not accurate. Focusing
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Figure 4.7: Snapshots at times multiple of ti = 3/20t f of the strain wave propagating in the
guided-supported buckled beam with the pre-compression χ0 = 1×10−3 (a), χ0 = 5×10−3 (b),
χ0 = 10×10−3 (c), χ0 = 0.1 (d), χ0 = 0.5 (e) and χ0 = 0.9 (f), with dynamic input rarefaction
∆ξm = −1× 10−3 (a,b,c) and compressive ∆ξm = 0.3 (e,f,g) waves. See Table 4.1 for arrow
notation.

now on the wavelength, it is found that the characteristic width decreases when the dynamic

wave amplitude increases and that the FE results match the Boussinesq model (Figs. 4.8c,d).
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Figure 4.8: Normalized wave speed V /C0 (Eq. (4.11)) (a,b) and normalized width at half
amplitudeΛ1/2/L0 (Eq. (4.12)) (c,d) in terms of the pre-compression χ0 for the guided-support
configuration, computed from the Boussinesq equation (full lines) or from simulations (+)
with ∆ξm = −[0.5 1 5]× 10−3 (a,c) and ∆ξm = [0.1 0.2 0.3] (b,d) respectively from dark to
light gray. Note that no simulations were performed for the highest dynamic amplitude
(∆ξm = −5×10−3) and small buckling level (χ0 < 5×10−3) since the dynamic wave cannot
cross the snapping point (χ0 = 0), as shown in Fig. 4.5a. See Table 4.1 for arrow notation.

Pinned-supported beam

Simulations for wave propagation in pinned-support configurations using Eq. (4.14) as input

are performed for several levels of compression and snapshots of the strain are shown in

Fig. 4.9.

For χ0 < χσ (Fig. 4.9a-c), the input wave is compressive and a small front is present, in

agreement with subsonic properties of the pinned-support beam for such level of compression

(Table 4.1). This argument holds also for χσ < χ0 < χγ (Fig. 4.9d,e) where a front is present

too with a rarefaction wave. Finally, for χ0 > χγ (Fig. 4.9f), the input is in compression, but

contrary to Fig. 4.9a-c, a tail is present, in agreement with the supersonic properties of strongly

compressed pinned-support beams (Table 4.1).

71



Chapter 4. Nonlinear Wave Propagation In Buckled Beam: Models And Simulations

0 200 400 600 800 1000 n−0.2

−0.1

0

0.1

0.2

0.3

0.4

∆ξ

0 200 400 600 800 1000 n−0.2

−0.1

0

0.1

0.2

0.3

0.4

∆ξ

0 200 400 600 800 1000 n0

1

2

3

4

5

6

10
-3
∆ξ

0 200 400 600 800 1000 n−0.2

−0.1

0

0.1

0.2

0.3

0.4
∆ξ

0 200 400 600 800 1000 n0

1

2

3

4

5

6

10
-3
∆ξ

0 200 400 600 800 1000 n0

1

2

3

4

5

6

10
-3
∆ξ

e) f)

a) b)

c) d)

Figure 4.9: Snapshots at times multiple of ti = 3/20t f of the strain wave propagating in the
pinned-supported buckled beam with the pre-compression χ0 = 1×10−3 (a), χ0 = 5×10−3

(b), χ0 = 10×10−3 (c), χ0 = 0.3 (d), χ0 = 0.8 (e) and χ0 = 0.9 (f) with ∆ξm = 1×10−3 (a,b,c),
∆ξm =−0.3 (d,e) or ∆ξm = 0.3 (f). See Table 4.1 for arrow notation.

The time required to obtain the asymptotic solution is now investigated. For χ0 <χσ (Fig. 4.9a-

c), if a front is initially present, its separates quite readily from the main wave, in agreement

with the subsonic properties of the solitary wave model. Note now that the number of unit

cells compared to the guided-support configuration has been increased by a factor 4 due to the

fact that for a given compression ∆U0, the linear speed in the pinned-support configuration
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is 4 times smaller (C 2
0 = P ′{∆U0}L2

0/m and see P {∆U0} curve in Fig. 4.2). However, for χ0 >
χσ (Fig. 4.9d-f), despite this extension, the length of the beam is just enough to see the

beginning of the wave splitting but it is not immediately clear why the solitary wave takes

so long to reach its asymptotic characteristics. In particular, if the wave propagation in the

pinned configuration is compared to the one in the guided configuration for the same pre-

compression χ0 = 0.9 (Figs. 4.7f and 4.9f), this phenomenon is present only in the case of

pinned supports, whereas predicted wave behavior, nonlinearity, and wave amplitude are the

same. The dispersion is also almost the same for this level of compression (Fig. 4.4). Nonlinear

coupling between rotations and axial displacement, which is neglected, is weak so that any

perturbation would require a large time to separate from the asymptotic solution.

The solitary wave speed and wavelength are plotted in Fig. 4.10 and compared to the Boussi-

nesq solution. For χ0 > χγ, the speed increases with the amplitude such that propagating

waves are supersonic (Figs. 4.10b). On the contrary, for χ0 <χγ, the waves are subsonic since

the speed decreases when the amplitude increases (Figs. 4.10a,b). Finally, the computed

wavelength trend is in agreement with the Boussinesq model although values do not match

perfectly (Figs. 4.10c,d).

As before, although the trend of the wave speed and wavelength are in agreement with the

Boussinesq equation, numerical values are not perfectly recovered specifically when increasing

the amplitude for a fixed χ0 or decreasing χ0 for a fixed amplitude. Again this is explained

by the fact that the local approximation of the load-displacement relation by a polynomial

of degree two is not always appropriate. However, although the input does not correspond

directly to the asymptotic solution, the conclusion of this part is that compressive supersonic,

rarefaction supersonic, compressive subsonic and rarefaction subsonic solitary waves are

obtained.

Soliton collisions

Solitary waves that are insensitive to collisions, beyond a phase shift are termed solitons and

result from PDEs which are exactly integrable as the Boussinesq equation [Ablowitz, 2011].

However, the improved, the double-dispersive Boussinesq equations are only nearly integrable

PDEs, and numerical simulations of such PDEs show some radiation after wave collisions

[Bogolubsky, 1977, Soerensen, 1984]. Here, wave collision is obtained by exciting the left and

right boundary of the structure with waves such that URi g ht =−ULe f t (Eq. (4.14)). Snapshots

of these waves are shown in Fig. 4.11 for the four different wave types described in Table 4.1.

Solitary waves are found unchanged by collisions in Figs. 4.11a-c, whereas for Fig. 4.11d the

presence of a front before the collision discredits direct observations. However, for this last

example but not shown here, a single wave propagating in one direction only will give the same

wave as the one propagating in Fig. 4.11d after the collision. The fact that elastic collisions are

observed means either that the radiation is not perceptible or that the Boussinesq-type model

is not accurate to describe wave propagation in buckled structures for a certain support type

and pre-compression level.
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Figure 4.10: Normalized wave speed V /C0 (Eq. (4.11)) (a,b) and normalized width at half
amplitudeΛ1/2/L0 (Eq. (4.12)) (c,d) in terms of the pre-compression χ0 for the pinned-support
configuration, computed from the Boussinesq equation (full lines) or from simulations (+)
with ∆ξm = [0.5 1 5]× 10−3 (a,c) and |∆ξm | = [0.1 0.2 0.3] (b,d) respectively from dark to
light gray. Note that no simulations were performed for the highest dynamic amplitude
(∆ξm = 5× 10−3) and small buckling level (χ0 < 3× 10−3) since the wave speed cannot be
imaginary (Fig. 4.5b). See Table 4.1 for arrow notation.

4.5.2 Comparison of the strongly nonlinear models to FE simulations

The phase speed in terms of the dynamic amplitude for solitary waves with different levels of

compression is shown in Fig. 4.12. The speed V increases with amplitude, in agreement with

supersonic properties of buckled beams with guided supports.

Expectedly, Eq. (4.54) based on the general relation P {∆U } provides the best agreement with

FE results. Models based on the power law approximation (Eqs. (4.41) and (4.44)) are generally

acceptable except for moderated buckling levels, since P {∆U } is not well approximated in this

region (Fig. 4.2). For the Boussinesq model, the speed V is almost linear in∆ξm (∆ξm ¿ 3C 2
0 /σ)

and only the tangent at V =C0 is in agreement with FE results. For increasing ∆ξm , results

differ and this is explained again by the fact that the load-displacement relation cannot be

described by a second degree polynomial (Fig. 4.2). For strong pre-compression (Fig. 4.12f),
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Figure 4.11: Snapshots of the collision of supersonic rarefaction (a), supersonic compressive
(b), rarefaction subsonic (c) and compressive subsonic (d) strain waves given that the pre-
compression is χ0 = 5×10−3 (a,c), χ0 = 10×10−3 (b,d), and the dynamic amplitude is |∆ξm | =
1×10−3 (a,c) and [∆ξm] = 0.3 (b,d). Time of snapshots is in multiples of 0.1137s (a), 0.0736s
(b), 1.0403s (c) and 1.4613s (d) such that the fourth snapshot corresponds to the time with the
maximum amplitude. See Table 4.1 for arrow notation.

all models are in agreement with FE results. This is explained by the fact that for such level,

the dynamic amplitude of the wave relative to the pre-compression strain is small, justifying

Eq. (4.4) or Eq. (4.27). Finally, note that the two models based on the power law (Eq. (4.32)

and (4.33)) or the two models based on the general function (Eq. (4.51) and (4.52)) are similar

validating the assumption to neglect the last terms of Eqs. (4.32), (4.33), (4.51) and (4.52).

Since both models are similar, the ratio
∣∣a2,2/a0,4

∣∣ and so the choice of the model to use is not

significant. Results for the case of pinned supports are not given since they provide similar

conclusions.

Wavelength is less sensitive to ∆ξm (Fig. 4.13) compared to the speed (Fig. 4.12). Indeed, both

the Boussinesq and the power law models disagree with FE simulations only for the case of

χ0 = 0.1 (Fig. 4.13d), and this is explained by the fact that λ is mostly determined by C0.
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Figure 4.12: Normalized solitary wave speed V /C0 in terms of the wave amplitude |∆ξm | for
the guided-support configuration with pre-compression χ0 = 2×10−3 (a), χ0 = 6×10−3 (b),
χ0 = 10×10−3 (c), χ0 = 0.1 (d), χ0 = 0.5 (e) and χ0 = 0.9 (f). Results from FE simulations with
(+++), improved Boussinesq model Eq. (4.11) in full dark lines, power law with Eq. (4.32) in
dark-gray dotted lines, power law with Eq. (4.33) in light-gray dotted lines, general function
with Eq. (4.51) in dark-gray dashed lines and general function with Eq. (4.52) in light-gray
dashed lines. See Table 4.1 for arrow notation.

4.6 Conclusions

Wave propagation in buckled beams is investigated and it is found that depending on the pre-

compression and dynamic amplitude, various homogenized PDEs describe the propagation of
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Figure 4.13: Normalized solitary wavelength Λ1/2/L0 in terms of the wave amplitude |∆ξm |
for the guided-support configuration with pre-compression χ0 = 2×10−3 (a), χ0 = 6×10−3

(b), χ0 = 10×10−3 (c), χ0 = 0.1 (d), χ0 = 0.5 (e) and χ0 = 0.9 (f). Results from FE simulations
with (+++), improved Boussinesq model Eq. (4.11) in full dark lines, power law with Eq. (4.32) in
dark-gray dotted lines, power law with Eq. (4.33) in light-gray dotted lines, general function
with Eq. (4.51) in dark-gray dashed lines and general function with Eq. (4.52) in light-gray
dashed lines. See Table 4.1 for arrow notation.

stationary, non-linear waves. Where the load-deformation can be described by a polynomial

of degree two, the Boussinesq equation can be employed. Even though the fidelity of predicted

velocity and wavelength depend on appropriate representation of the load-displacement
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relation, the pre-compression level and support type furthermore determine dispersion char-

acteristics of the resulting medium. This leads to the double-dispersion Boussinesq equation,

from which it is shown that four types of solitary waves are possible. Namely combination

of subsonic, supersonic, compressive and rarefaction waves. Where power-law and general

load-displacement relations are required, strongly nonlinear PDEs results from homogeniza-

tion. Existing techniques are extended here for solitary-wave solutions based on equivalent

potentials. Finite element simulations validate analytical models. In conclusion, a qualitative

prediction for the type of propagating wave, its speed and shape, various forms of the Boussi-

nesq equation are the simplest model to implement and use. Homogenized PDEs based on

the exact load-displacement relation provide best results but require numerical integration.

For small buckling level and guided-supports, the model based on power law nonlinearities is

also a good alternative.
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5 Nonlinear Wave Propagation In Buck-
led Beam: Experiments

5.1 Introduction

In the previous chapter, it has been shown analytically and numerically that periodic buckled

beams host stationary nonlinear waves. Moreover, by varying the pre-compression level and

changing the support type, four different waves are possible, namely compressive supersonic,

rarefaction supersonic, compressive subsonic and rarefaction subsonic solitary waves. While

finite-element (FE) simulations of the structure have been performed validating the derived

models, the aim of the proposed chapter is to repeat this work experimentally.

Although the support type changes the speed behavior (supersonic or subsonic medium)

and the solitary wave type (compressive or rarefaction), in the present chapter, only guided

supports are investigated since they are easier to realize experimentally.

From material considerations, an experimental limitation is the maximum reachable buck-

ling level. While it has been shown that wave characteristics are also dependent on pre-

compression, experimentally, only small buckling levels can be tested for metallic structures.

Indeed, when the buckling is too high such that the material reaches its yield limit, plastic

hinges occur and the structure collapses [Ehrlich and Armero, 2004]. Hyperelastic materials

can be used to avoid plasticity [Bower, 2009], but are not investigated here.

This chapter is organized as follows: the experimental setup is presented and details on the

signal acquisition and synchronization are given in Sec. 5.2. Results are presented in Sec. 5.3,

investigating first static buckling and focusing then on the wave profile and its characteristics.

Discussion and conclusion follow.
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5.2 Experimental setup and signal acquisition

5.2.1 Experimental setup

A 2 m long continuous steel ribbon is periodically supported by 30 trolleys such that the

supports are of guided type (Fig. 5.1). The ribbon (reference number 162830.0500 from

Brütsch-Rüegger) is modeled as a beam and the following notation and numerical values

are used: the cross-section area is A (b = 12.7 mm ×t = 0.4 mm) and the area-moment of

inertia is Iz = bt 3/12; E = 190 GPa and ρ = 7600 Kg m−3 are respectively the measured Young

modulus and density. Each trolley (model SELB10 from Misumi) provides an additional mass

of 2.4×10−2 Kg and the free distance between them is 60 mm.

The experiment is divided into two parts; a static one, where the pre-compression is applied

and a dynamic one, where a wave is sent through the structure. The static load is applied with

a screw (model NSE5-SN from Nozag) at the left side and carried at the right side by a spring

(reference 8101-084928 from Kubo, with nominal rigidity of Kspring = 7.9 Nmm−1 and length

of Lspring = 41 mm). The load-displacement relation of one unit cell is then obtained after

averaging the displacement between the screw and the spring, measured via two identical

linear systems (S System LIN, 2 µm accurate, from Sylvac), and the force computed from the

spring compression.

To generate a wave at the right extremity, a shaker is used and is directly connected to the

spring (last trolley). The shaker model is LDS V 406M4 from Brüel & Kjær and has internal

axial stiffness KShaker = 12.3 Nmm−1. The shaker is connected after applying the static load

such that all the pre-compression is carried by the spring and not the shaker. Its displacement

is recorded by a LVDT (model WI/5mm-T and a signal conditioner MP55 from HBM).

The wave propagation throughout the structure was originally measured with accelerometers,

but due to the problem arising from time integration and low frequency noise, a laser which

give directly the speed is used instead (compact laser vibrometer CLV 2534 from Polytec). Since

the laser can record the speed at one point only, it is mounted on a positioning system (model

BiSlide by Velmex) which can move along the beam. Note that in order to do so, the experiment

is assumed reproducible.

5.2.2 Signal acquisition in LabView

In this thesis, all physical quantities measured experimentally are analogical. However, nowa-

days, analogical signals are no longer directly plotted analogically but they are stored and

post-processed under numerical form. This requires the use of digital to analog converter

(DAC) and the data acquisition system (DAQ) from National Instruments (NI) is used with the

NI PXIe-6368 and the NI PXIe-4492 cards plugged into the NI PXIe-1073 chassis. In addition,

the S System LIN Sylvac sensor integrates its own DAC and communicates with the computer

via a RS −232 serial standard.
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Figure 5.1: Experimental model (a) and full setup (b) with detailed views of the face (c), top
right (d), back center (e), and trolley (f).

While all signals are recorded and post-processed via LabView, some challenges have been

encountered to synchronize acquisition between the different signals and to establish the

RS −232 communication; it is the goal of this part to provide details and solutions to these

issues. For this part, it is assumed the reader to have basic knowledge in LabView and data

acquisitions.
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Figure 5.2: Isometric view with details area of the setup plan.

5.2.3 Synchronization of NI cards from different series via LabView

The displacement and speed measured via the LVDT and laser sensors are both analogical

voltage inputs which are acquired via the NI PXIe-6368 card. This card is also used to generate
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Figure 5.3: Face and top views of the setup plan.
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the analogical voltage sent to the shaker. On the contrary, the NI PXIe-4492 card is specific

to the acquisition of analogical signals from sensors which are power amplified and use the

integrated electronics piezo electric (IEPE) standard. This is the case of the accelerometers

and load cell which were used in the first experimental investigations.

LabView provides direct access to NI acquisition cards via DAQmx libraries, which allow

writing and read time signals. These operations are called tasks and three of them are defined:

• read voltage in the NI PXIe-6368 card (measured by LVDT and laser sensors).

• write voltage in the NI PXIe-6368 card (output signal sent to the shaker).

• read voltage in the NI PXIe-4492 card from IEPE sensors (accelerometers and load cell).

Note that a task can be multichannel (e.g. several accelerometers) and the synchronization

between its different channels is automatic.

The idea of synchronization between different tasks in LabView is to define a master and

slaves. The master triggering setting is defined first, recorded and used next as a triggering

source for slaves. The tasks are then started in the opposite order since the slaves have to be

ready before the master operates (see Figs. 5.4 and 5.5 for implementation details).

While the order of the operation is imposed by the error dataflow (Fig. 5.4), synchronization

between different tasks requires also the use of a common reference clock. If the different

tasks are on the same card, they share the same reference clock while the same is not true for

cards from different series (e.g. NI PXIe-6368 and NI PXIe-4492 cards). Instead of using the

card clocks, the NI PXIe-1073 chassis clock is used and is based on the communication bus

PCI. Moreover, the “e” of “PXIe” stands for express (100 MHz) which is 10 times faster than the

simple PCI version (10 MHz). However, although the internal clock of the NI PXIe-6368 card is

100 MHz and is in agreement with the card reference, the one from the NI PXIe-4492 is only

10 MHz. This means that RefClk.Src parameter have to be set to the minimum frequency (10

MHz) using the command PXI_Clk10 (see Fig. 5.5). This limitation is not problematic since

the sampling frequency is in the order of KHz.

5.2.4 Sylvac sensor and RS-232 communications in LabView

The S System LIN Sylvac sensor is different than classical sensors since the DAC is directly

integrated into the sensor and is plugged to the computer via the DB9 connector (also called

port COM) and use the serial communication standard RS −232.

LabView provides a library for serial communication called VISA and is working into three

steps: the first one consist one the initialization of the connection, given parameters as the

baud rate, the parity, the data bits, the termination character etc. which can be found in

Sylvac documentation and which are given in Fig. 5.6a. Once initialized, writing and reading
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Figure 5.4: LabView VI to read or write tasks. The synchronization operation order is given by
the error dataflow. Note also that for the output task, it is necessary to fill the buffer (write)
before starting the task. For a shake of clarity, the properties of “DAQmx Create Channel” as
max/min values, units, sensitivity etc., and the sampling properties of “DAQmx Read” have
been removed.

operations in hexadecimal with the sensors is possible such that the sensor always answer

to a single command at the time. Among all commands, the most important ones are the

string “SET” which reset the displacement to zero, and the string “?” which request the relative

displacement (Fig. 5.6b). Each time that the displacement is measured correctly, the answer

of the sensor is coded under 10 bytes. If the sensor is too far from the magnetic strip or the

displacement speed is too fast, the answer from the sensor is for example “ERROR” which

is different than 10 bytes and is used as an error detection (Fig. 5.6b). The last step of VISA

protocol consists in closing and cleaning the connection.

Finally, in order to plot continuously the displacement in time, the operation write and read is

repeated into a while loop (Fig. 5.6c). The frequency (around 20Hz) is limited by the sensor

which do not used buffer and it is the reason with the Sylvac sensor is used only for static

experiments whereas LVDT sensors are preferred for dynamic acquisitions. However, Sylvac

sensor operates in a much larger displacement range without any lost in the accuracy which

justify its use.

85



Chapter 5. Nonlinear Wave Propagation In Buckled Beam: Experiments

/PXI_Clk10

SyncType  (Master/Slave )
Sampling info

Task out

Error outError in

Task in

Task in

Task out

Error out

Error in

SyncType  
(Master/Slave )

Sample Clock
DAQmx Timing

RefClk.Src

Finite Samples

/.*
0

/PXI_Clk10

Fs
#s

DAQmx Trigger
SyncType Start 

Digital Edge

Slave

DAQmx Task
Channels

No Error 

Sampling info

Input tuptuOreggirt evals/retsam enifeDgnimit enifeDnoitceted ecnerefer QAD

/StartTrigger

ao|ai

 Master

Task in

Task out

Error out

Error in

SyncType  
(Master/Slave )

Sample Clock
DAQmx Timing

RefClk.Src

Finite Samples

/.*
0

Fs
#s

DAQmx Trigger
SyncType

DAQmx Task
Channels

No Error 

Sampling info

Figure 5.5: LabView VI to synchronize slave or master tasks. Note the use of a shift register as
global variable to store the master trigger source reference which is used next by slaves.

5.3 Experimental results

In this section, experimental results are given, starting from static considerations and then

analyzing wave propagation.

5.3.1 Static buckling pattern

When a beam with equispaced pinned supports is buckled, the buckling pattern alternates

between positive and negative transverse deformations and is explained by the fact that when

one trolley starts to turn, a moment in the opposite direction is created on the next trolley,

which turns in the opposite direction and so on. For the guided-support configuration, since

only axial displacements are allowed, the buckling is expected to be random, depending
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Figure 5.6: LabView VI to initialize (a), read and write (b), and display (c) the displacement
using the serial communication standard RS −232.

only on initial imperfections. If gravity is not negligible, the deformations are expected to be

unidirectional. However, as shown in Fig. 5.7a, the buckling direction is neither random nor

uniform, and alternates between up and down, similarly to the pinned-support case. This

distribution can be explained by the fact that the trolleys possess a small play in rotation, such

that a similar deformation mechanism as the pinned-support configuration occurs. Moreover,
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as shown in Fig. 5.7a, the buckling in the top direction is more significant in the bottom one,

which is opposite to gravity effects but is explained by the residual strain in the beam. Indeed,

the beam is originally received coiled in a curved box (Fig. 5.7b) and once placed on a flat

surface, the residual curvature is evident (Fig. 5.7c). Note that if the beam is flipped, the

preferred direction is also changed.

a)

b) c)

(++) (++)(-) (-) (-)

Figure 5.7: Beam alternating with up-down deformations due to small play in the trolley
allowing small rotation (a). Beam in its originally package (b) that possess some residual stress
after uncoiling since the extremities of the beam are not in contact with the flat surface (c). The
(++) indicates large positive deformations whereas (−) indicates small negative deformations.

Since the pre-buckling level is not homogeneous whereas the model assumes a periodic

pattern, the averaged value is used, as presented next for the load-displacement relation.

5.3.2 Static load-displacement relation

The load-displacement (P {∆U }) curve from experiments, averaged over the full beam, is given

in Fig. 5.8 and compared to the FE results. While results are in good agreement for the weakly-

buckled beam (Fig. 5.8a), the beam becomes plastic and collapses around χ0 = 0.05 (Fig. 5.8b).

For this reasons, only small strain is considered.

For the aforementioned parameters, small initial buckling (χ0 < 0.08) and guided supports,

supersonic waves are expected (see Chapter 4).

5.3.3 Wave input

A classical way to see if a structure can hold solitary waves is to excite it with a delta function

and observe if there is creation of a solitary train [Nesterenko, 2001]. However, the present

setup is limited to 30 trolleys which is not long enough to see the wave propagating and

splitting. In this work, it is proceeded in the opposite manner. The structure is excited with

a guessed solitary solution and the propagating wave is observed. If the resulting wave is

unchanged, solitary waves are obtained whereas if a front or a tail is present, the input guess is
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Figure 5.8: Normalized load displacement relation (P {∆U }/PC where PC = 4E Iπ2/L2) in terms
of the small (a) and large (b) buckling level χ0. Experiments in full lines (becoming plastic) and
FE (assuming linear elastic material) with ∗. FE results are given for an initial imperfection of
sinusoidal form and has its maximum transverse amplitude w0 = 10−3L such that using this
value, both curves in (a) overlaps.

not the correct one, and the measured wave is discarded. This operation is repeated iteratively

keeping the wave amplitude constant and varying only the period input, until no tail or front

is present.

However, this procedure is working only for displacement control whereas the shaker works

on force control. To work on displacement control, piezo-stack actuator would be a good

alternative, but no configuration for the desired displacement and dynamic range is available.

In order to use the shaker in displacement control, the proportional-integral-derivative (PID)

method has been implemented, but works only for slow dynamics, far from the desired

frequencies. Finally, the input is tuned by hand as follows.

Knowing that the shaker works in force control, its delivered force is of form:

FShaker = Me f f Ü +Ke f f U +FSol i ton{U }, (5.1)

where Me f f and Ke f f are effective mass and stiffness. Ke f f is defined easily and is such that:

Ke f f = KShaker +KSpring. (5.2)

Me f f involves however the mass of the different trolleys which do not constitute a rigid body

such that its determination analytically is too difficult. U and its derivatives in time are
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obtained from the strain solution (Eq. (4.10)) such that:

U =Um
(
tanh

{−tT −1}+1
)

,

U̇ =−UmT −1sech2 {−tT −1} ,

Ü =−2UmT −2sech2 {−tT −1} tanh
{−tT −1} ,

(5.3)

where Um =∆ξmΛ is the wave amplitude in displacement, and T =ΛV −1 its characteristic

width in time that is refereed next as period. FSol i ton(U ) is assumed proportional to the strain

wave that is also proportional to the wave-speed profile such that:

FSol i ton(U ) = Fe f f U̇ . (5.4)

Finally, for each combination of Um and T , the two unknowns Me f f and Fe f f have to be deter-

mined, and they are tuned manually by varying iteratively their values until the displacement

of the first trolley, measured by the LVDT sensor, correspond to the desired one.

5.3.4 Stationary wave profile

For a given initial compression, the initial input is parametrized by Um and T . However, for

solitary waves, given the amplitude Um , only one solution T result to a stationary wave. In

order to find these different combinations, a grid from the parameters {Um , T } is constructed

and experiments are run for each grid combination.

For a given Um , the corresponding value of T is found when the resulting wave propagates

maintaining it shape. For example, in Fig. 5.9a-c, the wave speed in time of the first 5 even

trolleys is shown for three different values of T , fixing χ0 and Um . In Fig. 5.9a, the period T

is initially too large and decreases while propagating, meaning that the input is not correct.

In Fig. 5.9c, the period seems to remain constant but a tail appears, which is contrary to

stationary waves. Finally, in Fig. 5.9b, the period is constant and there is a flat part before the

reflection meaning that there is no creation of tail and that the solution is approximatively

stationary.

Since variations of the period are hardly detectable due to limitation in the setup size, selection

of the corresponding period T is based on the tail behavior. Indeed, as shown in Fig. 5.9d,

where the 10th trolley speed Vp {t } is plotted for Um constant and several values of T , the

retained value of T corresponding to a stationary wave is the first one before the appearance

of a tail (see dotted line in Fig. 5.9d). As a general remark, front has not been observed in

this structure, in agreement with the dispersion characteristics of the weakly-buckled guided-

supported beam.

Once the combinations {Um , T } are determined, the wave profile at each trolley is recorded and

profiles are shown in Fig. 5.10a-c for three pre-compression levels. In Fig. 5.10d, FE simulations

of the structure using the same parameters as in Fig. 5.10b is given, and comparison shows
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Figure 5.9: Speed of the trolleys Vp in terms of the time t of the first 5 even trolleys, for
χ0 = 1.72×10−3, Um = 0.5 mm and T −1 = 70 s−1 (a), T −1 = 140 s−1 (b), and T −1 = 150 s−1 (c).
Speed at the 10th trolley for Um = 0.5 mm and T −1 = {70, 90, 110, 130, 150, 170, 190, 210, 230}
s−1, respectively from dark to light gray lines. The experiment resulting to stationary solution
is in dotted line (T −1 = 150 s−1).

some discrepancies. In order to carry out a quantitative comparison, the wave phase-speed

and its period are investigated next.

5.3.5 Phase speed

As shown in Chapter 4, for guided supports and a slightly-buckled beam, the medium is

supersonic meaning that nonlinear waves travel faster than linear ones and the phase-speed of

the former increases. It is this characteristic that is intended to demonstrate in this section. The

speed between each trolley is computed by measuring the time shift between two consecutive

trolleys, knowing the distance between them, and using the maximum amplitude of the signal

as reference. However, as shown in Fig. 5.11a, this speed is not constant and alternates between

high and low values. Indeed, it is possible to make a link between the buckling pattern and the

speed since when the beam is highly buckled, the slope of the load-displacement curve is low

corresponding to small speed, whereas it is the opposite for small pre-compression.

In order to analyze the influence of amplitude on wave speed, the average speed is used

and results are shown in Fig. 5.11b in terms of the amplitude for three pre-compression

levels. As expected, the phase-speed increases with amplitude and decreases with the initial
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Figure 5.10: Speed Vp of the 15th first trolleys in terms of the time t , for Um = 0.5× 10−3

and {χ0 = 1.14× 10−3, T −1 = 240 s−1} (a), {χ0 = 1.72× 10−3, T −1 = 150 s−1} (b) and {χ0 =
3.00×10−3, T −1 = 90 s−1} (c). FE simulations with the same input as (b) in (d).

compression. Considering measurement, results from Boussinesq model are recovered.

5.3.6 Period and wavelength

After the phase-speed, the selected input period T that leads to a stationary wave is compared

to the double-dispersion Boussinesq model in Fig. 5.12. It results that T increases with

pre-compression, in agreement with the Boussinesq-type model. However, concerning the

experimental values of the input period, T is found too large at small amplitude and too small

otherwise. Since the estimation of the phase-speed is found acceptable, an explanation of

the fact that the wavelength (or period) is badly predicted could be that all the dispersion

sources are not correctly captured. Indeed, the phase-speed (Eq. (4.11)) do not depends on

the dispersion, contrary to the wavelength and the period (Eq. (4.12)).

However, since numerical FE simulations are in agreement with the Boussinesq-type model,

the error may be on the experimental side. Indeed the phase-speed depends mainly on the

medium and is almost independent of the input, whereas it is the opposite for the period when
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Figure 5.11: Phase speed ∆V between the 15th first trolleys for χ0 = 1.72×10−3, T −1 = 150 s−1

and Um = 0.5 mm (a), and averaged phase-speed V in terms of the amplitude Um (b) for
χ0 = 1.14× 10−3 (light gray), χ0 = 1.72× 10−3 (dark gray) and χ0 = 3.00× 10−3 (dark), with
experimental data in full lines and Boussinesq model in dashed lines.

measured at the first trolleys. The fact that the input is badly selected can find an explanation

in its selection criterion. Indeed, for a given Um , the selected T is based on the tail creation

criterion and as it will be shown next, tails can result from heterogeneities.

In conclusion, in order to measure the period independently of the input, longer setup would

be required.
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Figure 5.12: Inverse of the period (T −1) in terms of the amplitude Um (b) for χ0 = 1.14×10−3

(light gray), χ0 = 1.72×10−3 (dark gray) and χ0 = 3.00×10−3 (dark), with experimental data in
full lines and Boussinesq model in dashed lines.
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5.3.7 Effects of heterogeneities

In Figs. 5.7a and 5.11a, it is shown that the buckling is not homogeneous and effects of

heterogeneities are investigated here. While the setup does not allow long-wave observations,

investigations are restricted here to numerical FE simulations with a uniformly distributed

random imperfections such that:

w0,p = w0 ±5%, (5.5)

where w0,p is the midspan transverse displacement of the pth beam portion. The buckled

beam is modeled with 100 supports and the propagating wave is shown in Fig. 5.13 and com-

pared to the homogenized structure (w0,p = w0, ∀p). In the presence of heterogeneities, the

global trend of the wave profile seems on average to remain unchanged, localized and station-

ary. Locally, however, effects of periodicity-defects are significant, as observed on the wave

amplitude. Note also the presence of a small tail uniquely in the presence of heterogeneities,

which confirm that the use of the tail-criterion to choose the selected input (Sec. 5.3.4) is

biased by heterogeneities.
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Figure 5.13: Strain wave propagating in a beam uniformly (a) and randomly (b) buckled
(Eq. (5.5)) in terms of the support number p and the time t for χ0 = 1.72×10−3 and Um =
0.5×10−3.

In order to carry out a quantitative comparison, the wave phase-speed and its period are given

in Fig. 5.14. The simulation is repeated 25 times with each time a new random distribution, and

in addition to the mean and the standard deviation, results are compared to the homogeneous

case. Concerning the evolution of the speed and period in terms of the support number,

they both converge asymptotically meaning that heterogeneities, which are local phenomena

do not play a role in the long-wave propagation, validating the use of homogenized models

here for the imperfect structure. In addition to this observation, the convergence rate of

the phase-speed (Fig. 5.13a) is much faster than the one of the period (Fig. 5.13b) and is

explained again by the fact that the phase-speed is weakly dependent on the input, whereas it

is the opposite for the period. This confirms why experimentally, the phase-speed is correctly

captured whereas this is not true for the wavelength (period).
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Figure 5.14: Wave speed V (a) and inverse of the period T −1 (b) in terms the support number
p for χ0 = 1.72×10−3 and Um = 0.5×10−3. Mean value and its standard deviation resulting
from 25 FE simulations with random imperfections (Eq. (5.5)) in full lines, compared to the FE
simulation without heterogeneities in dashed lines.

5.4 Conclusions

Wave propagation in guided-supported, weakly-buckled beams is investigated experimentally

and two characteristics predicted by the double-dispersion Boussinesq model are recovered:

(i) the medium is supersonic, meaning that the phase-speed increases with amplitude and

(ii) if the input is not stationary, there is creation of a tail but never a front. Moreover, the

phase-speed decreases with pre-compression and is in agreement with the predicted values.

While the wave profile seems stationary, due to limitations in the setup size, the reflected

wave appears after few supports and long-wave observations as the wavelength, period,

heterogeneity effects, friction-induced decay are not possible.
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6 Isogeometric Analysis Of Extensible-
Elastica

Sections 6.2 to 6.7 and 6.9 are mostly reprinted from [Maurin et al., 2015] with authorization of

the publisher.

6.1 Abstract

For beams undergoing large geometrical deformations, the geometrically-exact beam theory is

the most adapted formulation since the strain follows directly from geometrical considerations

without approximations. For slender beam structures, as often encountered in buckling

problems, shear deformations can be neglected preventing numerical shear-locking issues

and in Chapter 2 it has been shown that this formulation is refereed as the extensible-elastica.

If the extensible-elastica formulation is expressed in terms of displacements without rotation,

the kinematics involved in the weak form are described by second order derivatives. However

the spatial approximation of such high-order PDE cannot be approximated by the classical

C 0-continuous FE method in the standard Galerkin framework, and in this chapter, NURBS-

based isogeometric analysis (IGA) is proposed instead. This work is completed in Sec. 6.8 by a

comparison of the present formulation to the co-rotational beam formulation applied to the

problem of static and dynamic buckling.

6.2 Introduction

Finite deformation of slender structures are of interest for many problems ranging from

buckling of frames to curling of cables, for which linear beam theories based on infinitesimal

strain cannot be used. The geometrically-exact beam formulation, firstly introduced by

Reissner [Reissner, 1972, 1973], takes into account large nonlinear deformations of bending,

axial and shear type; the term exact refers to the fact that the strain follows directly from

geometrical considerations without approximations. The finite element (FE) formulation

introduced by Simo [Simo, 1985, Simo and Vu-Quoc, 1986] contributed to the popularity of this
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theory (see a more recent detailed implementation in [Wriggers, 2008]), and computational

aspects arising from new formulations are still of interest [Ghosh and Roy, 2009, Santos et al.,

2010, Češarek et al., 2012]. However, the formulation proposed by Simo requires, in addition

to the two degrees of freedom (dofs) corresponding to the components of the position vector,

the introduction of a third dof describing the local rotation, in order to enforce equilibrium. In

addition to increasing the computational cost in dynamic problems, rotary dofs lead to a non-

constant mass matrix restricting time-integration schemes to implicit ones [Romero, 2008].

The absolute-nodal-coordinate formulation (ANCF) [Shabana and Yakoub, 2001, Shabana,

2001, Gerstmayr and Shabana, 2006, Gerstmayr et al., 2008] has been developed to improve

these drawbacks even if it involves higher-order spatial operators.

For slender structures such as cables or rods, shear deformations can be neglected using the

Euler-Bernoulli assumption of beam cross-sections remaining normal to the elastic axis and

plane after deformation. This leads to the formulation of extensible-elastica, for which the

kinematics are often expressed in terms of trigonometric functions involving one displacement

component and the rotation of the cross section of the beam [Magnusson et al., 2001]. If

expressed in terms of both displacement components, the kinematics are mathematically

represented by high-order partial differential equations (PDEs), specifically a fourth order

spatial differential operator is involved. As consequence, in the weak formulation, the problem

involves second-order derivatives for which a numerically-approximated solution based on the

standard Galerkin method requires the use of at least globally C 1-continuous basis functions.

Conversely, when considering FE approximations based on Lagrangian polynomials which

are globally C 0-continuous in the computational domain, the use of mixed formulations

with auxiliary variables represents one of the most viable approaches. A similar problem

arises in linear beam theory, where the curvature, proportional to the moment, is given by

the second derivative of the transverse displacement. This problem is often solved by using

C 1-continuous cubic Hermite basis functions with the addition of an explicit dof physically

corresponding to the rotation [Reddy, 2004]. However, this approach cannot be used for the

rotation-free extensible-elastica, since second derivatives of displacements are not physically

meaningful quantities. In the literature, different techniques have been used to solve the

rotation-free extensible-elastica formulation. In [Saje, 1990], the Hu-Washizu variational

principle is employed for which the rotation is numerically approximated with the aim of

removing the second-order derivative. More recently, this problem has been solved by the

quaternion-based method [Zhao and Ren, 2012], and the weak-form quadrature element

method [Zhang and Zhong, 2013].

Isogeometric analysis (IGA), firstly introduced by Hughes et al. [Cottrell et al., 2009], aims at

filling the gap existing between computational mechanics for engineering applications and

computational geometry, specifically computer aided design (CAD) systems. The key feature

of IGA consists in generalizing the FE method by considering an isoparametric approach for

which the same basis functions used to represent the geometry are then used for the approxi-

mation of the unknown solution field of the PDEs. As a consequence, the representation of

the computational domain is encapsulated in the numerical approximation of the governing
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PDEs. Since non-uniform rational B-splines (NURBS) are especially used in CAD systems,

we will consider NURBS-based IGA for the approximation of the PDEs. A crucial property

of NURBS basis functions is the possibility to increase their degree of continuity through

the k-refinement procedure [Dedè and Santos, 2012]. The smoothness of the NURBS basis

functions leads in many cases to better accuracy and reduced computational cost compared

to the standard FE method [Cottrell et al., 2009]. In addition, in vibration analysis, IGA based

on smooth NURBS basis functions improves the representation of optical branches of the fre-

quency spectrum [Cottrell et al., 2006, Weeger et al., 2013]. In this chapter, we take advantage

of properties of the basis functions to solve the shear-free, high-order-formulation problem

in the standard Galerkin framework in a computational domain representing a beam with a

single NURBS patch. Even if we consider single NURBS patches, we remark that for multiple

NURBS patches (typical of problems with piece-wise continuous geometry), the rotation-free

extensible-elastica formulation cannot be directly used for which, rigid constrains or stiff

simplified elements (bending strip method [Raknes et al., 2013]) between patches need to be

added.

In the field of nonlinear isogeometric beams, available formulations in literature are based on

elastica [Dedè and Santos, 2012] and nonlinear Euler-Bernoulli [Weeger et al., 2013, Raknes

et al., 2013, Nagy et al., 2010] theories. Beam models including shear are proposed in [Beirão

da Veiga et al., 2012, Bouclier et al., 2012] for Timoshenko beams and in [Li et al., 2013] for

the third-order, shear-deformation theory (TSDT). For isogeometric nonlinear plates and

shells, we refer the reader to [Greco and Cuomo, 2013, 2014] for Kirchhoff-Love rods, to [Kiendl

et al., 2009, 2010, Benson et al., 2011] for Kirchhoff-Love shells, to [Benson et al., 2010, 2013]

for Reissner-Mindlin shells, and to [Echter et al., 2013] for modified Reissner-Mindlin shells

including variable thickness.

A isogeometric method for slender beams undergoing large deformations and free of shear

is proposed in [Raknes et al., 2013]. With respect to this work, our formulation differs in the

choice of the constitutive material model. In order to explain this difference, we recall that

Irschik and Gerstmayr [Irschik and Gerstmayr, 2009] presented an interpretation of the strain

measures and stress resultants of the extensible-elastica formulation in terms of nonlinear

continuum mechanics. A linear relation between the second Piola-Kirchhoff stress and the

Green-Lagrange strain, as given by the Saint Venant-Kirchhoff model, results in a nonlinear

relationship between stress resultants (axial force and moment) and strain (axial strain and

curvature), thus introducing a nonlinear material model. The former is the formulation

considered in [Raknes et al., 2013]. Conversely, in this chapter, we consider a linear constitutive

law between Biot Stress and Biot strain resulting in a linear material model. Indeed, the axial

force and moment are only a function of axial strain and curvature, respectively [Irschik and

Gerstmayr, 2009] (see [Humer, 2011] for a comparison with the Saint Venant-Kirchhoff model).

Such linear constitutive law at the beam level is a key feature of the extensible-elastica theory

[Magnusson et al., 2001], allowing closed-form solutions of simple nonlinear beam problems

with coupled axial and transverse displacements (the term closed-form refers to the fact that

solutions are expressed in terms of known functions such as elliptical integrals). Closed-form
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solutions of known problems provide an ideal setting to evaluate the numerical performance

of the IGA formulation, which we consider by using “patch tests". Static analytical solutions

for the extensible-elastica method have already been applied to buckling [Magnusson et al.,

2001, Humer, 2013], variable-length beams under concentrated/distributed forces [Humer,

2011, Humer and Irschik, 2011], and snap-through buckling [Chen and Tsao, 2013, 2014].

However, to the best of our knowledge, patch tests for initially-curved extensible-elastica have

not been considered yet; tests which are currently available differ in the constitutive laws

and strain-measurement [Pulngern et al., 2013, Gonzalez and LLorca, 2005]. In the present

chapter, we derive a new closed-form solution for a tip-loaded curved cantilever beam using

the extensible-elastica to expand available benchmark cases.

Closed-form solutions of patch tests for static beams are used to verify the convergence

orders of the errors under h-refinement associated to the IGA approximations using a-priori

error estimates [Bazilevs et al., 2006, Beirão da Veiga et al., 2011], including high-order PDEs

[Tagliabue et al., 2014, Auricchio et al., 2007]. Despite the fact that the error estimates are

derived for linear problems, the same convergence orders are often observed for nonlinear

PDEs also (see e.g. [Dedè and Santos, 2012]). Moreover, we remark that the considered

formulation is free of shear locking by design even for initially-curved structures [Ishaquddin

et al., 2013], but may exhibit membrane locking when beam elements possess very low aspect

ratio. This phenomenon is well known in FE formulations [Reddy, 2004, Ibrahimbegovic, 1995]

and has received renewed attention in the context of IGA for Timoshenko beam formulations,

using different locking-free methods: namely the collocation method [Beirão da Veiga et al.,

2012], the selective reduced integration, the reduced integration with hourglass mode control,

the B̄ strain projection, and the discrete-strain-gap (DSG) method [Bouclier et al., 2012].

Moreover, the IGA formulation can be conveniently used for the spatial approximation of

dynamic beam problems, as we illustrate by means of several numerical tests: the propagation

of solitons (nonlinear waves) in post-buckled beams [Maurin and Spadoni, 2014b,a], and

snap-through buckling of a pinned beam that is axially buckled before transverse loading

[Chen and Tsao, 2014].

This chapter is organized as follows. In Sec. 6.3, the rotation-free extensible-elastica formu-

lation is recalled and the different terms of the weak formulation and its linearization are

given; the isogeometric concept is applied to the present problem. Closed-form solutions for

different static beam problems are presented and derived in Sec. 6.4; then, the a-priori error

estimates are recalled in Sec. 6.5. In Sec. 6.6, static beam problems are solved, and convergence

order is numerically estimated and compared with the a-priori error estimates. In Sec. 6.7,

dynamic problems are solved. Conclusions follow.
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6.3. Rotation-free extensible-elastica formulation

6.3 Rotation-free extensible-elastica formulation

6.3.1 Strain measurement and constitutive law

The derivation of the rotation-free extensible-elastica formulation follows from the geomet-

rically exact beam theory including shear and is described in [Wriggers, 2008]. However,

contrarily to [Wriggers, 2008], the beam formulation is provided in the global coordinate frame

allowing initial deformations and is not rotated back to the local frame in order to compute

strain and stress resultants [Zhang and Zhong, 2013] (Fig. 6.1). Indeed, the rotation to a local

frame is not compatible with rotation-free formulations.

In the initial configuration of the beam, r0 ∈R2 is referred to as the position vector of a material

point of the beam; e0,i , i = 1,2 is an orthonormal basis vector of the Euclidean space R2 such

that e0,1 represents the normal direction of the cross-section and θ0 ∈R the orientation angle

of the initial configuration with respect to the reference configuration. We indicate with

s0 ∈R the arc-length parameter of the elastic axis of the beam (i.e. the curvilinear coordinate)

and with l0 its total length. Correspondingly, r , ei , θ and s represent the position vector,

the orthonormal basis vectors, the rotation, and the curvilinear coordinate in the current

configuration of the beam, respectively. These quantities are shown in Fig. 6.1 and are defined

as:

r0 =
{
r0,x , r0,y

}T , r = {
rx , ry

}T ,

e0,1 = {cosθ0, sinθ0}T , e1 = {cosθ, sinθ}T ,

e0,2 = {−sinθ0, cosθ0}T , e2 = {−sinθ, cosθ}T .

(6.1)

where r0 = r0(s0), r = r (s), e0,i = e0,i (s0), ei = ei (s), θ0 = θ0(s0), and θ = θ(s).

r0

θ0

θ e0,2
e0,1

e2

e1

x

y
r

Figure 6.1: Beam kinematics: reference (dotted lines), initial (dashed lines), and current
configuration (full lines).

The strain relation proposed by Reissner [Reissner, 1972] extended to global coordinates reads:
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ε= r ′
x cosθ+ r ′

y sinθ−
(
r ′

0,x cosθ0 + r ′
0,y sinθ0

)
,

γ= r ′
y cosθ− r ′

x sinθ−
(
r ′

0,y cosθ0 − r ′
0,x sinθ0

)
,

κ= θ′−θ′0.

(6.2)

where ε is the axial strain, γ the shear strain, and κ the curvature. The notation ( )′ denotes

the derivative with respect to the initial curvilinear coordinate s0 (Lagrange formulation). The

Euler-Bernoulli beam model assumes that the cross section remains planar and normal to

the tangent of the elastic axis of the beam after deformation, which corresponds to assuming

that the shear γ is identically zero. By substituting the rotations θ and θ0 in Eq. (6.2), the axial

strain ε and the curvature κ can be rewritten in terms of r0, r , and their derivatives 1:

ε= ‖r
′‖2 −‖r ′

0‖2,

κ= r ′′TΘr
′

‖r ′‖2
2

− r ′′T
0 Θr ′

0

‖r ′
0‖2

2

,
(6.3)

where ‖r ′‖2 =
√

r
′2
x + r

′2
y is the Euclidean norm andΘ is a 90◦ rotation matrix given by:

Θ=
[

0 −1

1 0

]
. (6.4)

By assuming that the strain is finite but small, even for large displacements, it is possible to

describe material behavior by Hooke’s law. By using the Young modulus E , the constitutive

law between the force and the strain after the integration over the cross section of the beam is

[Reissner, 1972, Wriggers, 2008, Irschik and Gerstmayr, 2009]:{
Nε

Nκ

}
=

[
E A 0

0 E Iz

]{
ε

κ

}
, (6.5)

where A and Iz are the area and moment of inertia of the beam, respectively; Nε and Nκ

indicate the internal axial force and bending moment, respectively. The constitutive law

Eq. (6.5) is equivalent in continuum mechanics to the linear relationship between the Biot’s

stress and strain. For an overview of alternative constitutive laws, see [Irschik and Gerstmayr,

2009].

6.3.2 The weak formulation

The weak formulation of the equilibrium equation is obtained from the principle of virtual

work and is expressed in terms of the current configuration r = r0 +u, where u = {ux uy }T

1r ′′TΘr
′

is sometimes expressed as a norm of a cross product ‖r
′ × r ′′‖2 (e.g. [Zhang and Zhong, 2013]);

however, in this convention, the sign is lost.
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is the displacement vector, and δu = δr the virtual displacements vector; f ∈R2 and F ∈R2

are the distributed and boundary forces vectors, respectively. The distributed and boundary

moments are indicated by m ∈R and M ∈R, respectively. Transverse and axial follower loads

are not taken into account in our formulation, but can be derived similarly to what is done for

the moment. By considering a dynamic problem, the weak formulation of the equilibrium

equation is given by [Wriggers, 2008]:

find u ∈ V : G(r (u))(δu) = 0 ∀δu ∈ V , ∀t ∈ (0, t f ), (6.6)

given suitable initial conditions at the time t = 0, with t f is the final time, and V ⊂ H 2(Ω) (Ω ∈
(0, l0)) a suitable subset of the Hilbert function space H 2(Ω) carrying the essential boundary

conditions and:

G(r (u))(δu) =
l0∫

0

(Nεδε+Nκδκ)d s0−
l0∫

0

((
f T +ρAüT )

δu +mδθ
)

d s0−
[
F Tδu +Mδθ

]l0

0 , (6.7)

for which

δε= Rε′δu′,

δκ= Rκ′δu′+Rκ′′δu′′,

δθ = Rθ′δu′,

(6.8)

where:

Rε′ := r
′T

‖r ′‖2
,

Rκ′ := r ′′TΘ
[‖r ′‖2

2I −2r ′r ′T ]
‖r ′‖4

2

,

Rθ′ := Rκ′′ = r ′TΘT

‖r ′‖2
2

,

(6.9)

with I the identity matrix andΘ the rotation matrix (Eq. (6.4)); ρ is the density, and (̈ ) denotes

the second derivative with respect to time. Since there are no rotation dofs in the current

formulation, we do not include rotary-inertia terms in Eq. (6.7), thus avoiding mass matrices

with possibly bad conditioning [Reddy, 2004]. Note also that in Eq. (6.7), we have omitted for

simplicity the explicit dependency of the unknown u on the time variable t . The equilibrium

equation (6.7) is nonlinear in the first argument, for which, in order to solve the problem,

the Newton-Raphson scheme is used [Reddy, 2004]. The linearization of the functional

G(r (u))(δu) reads:

DG(r (u))(δu,δv ) =
l0∫

0

(
(E A+Nε)δ̂ε+ (E Iz +Nκ)δ̂κ−mδ̂θ

)
d s0 −

[
M δ̂θ

]l0

0 (6.10)
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where:

δ̂ε= (δu′)T Gε′ε′δv ′,

δ̂κ= (δu′)T Gκ′κ′δv ′+ (δu′′)T Gκ′′κ′δv ′+ (δu′)T Gκ′κ′′δv ′′,

δ̂θ = (δu′)T Gθ′θ′δv ′,

(6.11)

and:

Gε′ε′ := ‖r ′‖2
2I − r ′r ′T

‖r ′‖3
2

,

Gκ′κ′ :=−2

[
r ′r ′′TΘ+ΘT r ′′r ′T ]‖r ′‖2

2 +
[‖r ′‖2

2I −4r ′r ′T ]
r ′′TΘr ′

‖r ′‖6
2

,

Gθ′θ′ :=Gκ′κ′′ =Gκ′′κ′ = Θ
[‖r ′‖2

2I −2r ′r ′T ]
‖r ′‖4

2

,

(6.12)

beingΘ
[‖r ′‖2

2I −2r ′r ′T ]
a symmetric matrix. Note that although the proposed formulation is

valid for large deformations, inertia term are independent of the deformed configuration so

no inertia terms appear in Eq. (6.10). The finite dimensional approximation of Eq. (6.6) reads:

find uh ∈ Vh : G(rh(uh))(δuh) = 0 ∀δuh ∈ Vh , ∀t ∈ (0, t f ), (6.13)

given suitable initial conditions at the time t = 0, and Vh is a finite dimensional subspace of V ,

such that Vh ⊂ V . We remark that the spatial approximation of problem (6.13) by means of the

standard Galerkin method requires basis functions which belong to the space V ⊂ H 2(Ω), a

requirement that is satisfied when considering globally C 1-continuous functions across the

mesh elements in the choice of the functions space Vh ⊂ V . Contrarily to classical FE methods,

NURBS-based IGA can be successfully used to match this requirement.

6.3.3 Isogeometric formulation

We consider the representation of the geometry of a curved beam by means of NURBS [Cottrell

et al., 2009]. We say that the geometry mapping r0 possesses a p-degree NURBS representation

when there exist n ∈N control points Bi ∈ R2, weights wi ∈ R, i = 1, . . . ,n, and a set of knots

Ξ= {0 = ξ1 ≤ . . . ≤ ξn+p+1 = 1} such that:

r0(ξ) =
n∑

i=1
Ri ,p (ξ)Bi , (6.14)

where Ri ,p (ξ) is the NURBS basis defined at ξ ∈ (0,1) by:

Ri ,p (ξ) = Ni ,p (ξ)wi
n∑

j=1
N j ,p (ξ)w j

, (6.15)
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with Ni ,p (ξ) the i -th B-spline basis function defined by the Cox-De Boor recursive formula

[Piegl and Tiller, 1997]:

Ni ,0(ξ) =
1 if ξi ≤ ξ< ξi+1,

0 otherwise,

Ni ,p (ξ) = ξ−ξi

ξi+p −ξi
Ni ,p−1(ξ)+ ξi+p+1 −ξ

ξi+p+1 −ξi+1
Ni+1,p−1(ξ), for p ≥ 1.

(6.16)

The use of weights wi for i = 1, . . . ,n allows the exact representation of conical sections. The so-

called knot vectorΞ defines a partition of the parameter domain (0, 1) similar to the classic FE

subdivision yielding the so-called mesh of the parametric domain. A non-uniform knot vector

and repeated knots are the key of the NURBS flexibility, allowing locally-refined, geometric

descriptions and reduced continuity of the basis functions. In particular, a knot of multiplicity

q such that 1 ≤ q ≤ p yield basis functions C p−q -continuous across the knot. In the present

chapter, for the purposes of the proposed formulation, at least globally C p−q basis functions

are used with 1 ≤ q ≤ p −1 for p ≥ 2.

For the sake of simplicity, the independent variable ξ is omitted in the rest of the chapter. The

first and second derivatives of NURBS basis functions are given by:

dRi ,p

dξ
= 1

W

(
d Ni ,p

dξ
wi −Ri ,p

dW

dξ

)
, (6.17)

d 2Ri ,p

dξ2 = 1

W

(
d 2Ni ,p

dξ2 wi −2
dRi ,p

dξ

dW

dξ
−Ri ,p

d 2W

dξ2

)
, (6.18)

where W =
n∑

j=1
N j ,p w j . Derivatives of NURBS basis functions with respect to the initial curvi-

linear coordinate s0 are:

R ′
i ,p = 1

‖J0‖2

dRi ,p

dξ
, (6.19)

R ′′
i ,p = 1

‖J0‖2
2

d 2Ri ,p

dξ2 − J T
0 H0

‖J0‖4
2

dRi ,p

dξ
, (6.20)

where H0 = d J0
dξ and the Jacobian J0 = dr0

dξ is such that:

s0 =
ξ∫

0

‖J0‖2dξ. (6.21)

The main idea of the isogeometric approach is to use the same basis functions that represented

105



Chapter 6. Isogeometric Analysis Of Extensible-Elastica

the geometry also for the approximation of displacement field as:

r =
n∑

i=1
Ri ,p (Bi +ui ), (6.22)

where ui is the discretized displacement for which in Eq. (6.13) we set

Vh = V ∩ span
{
Ri ,p , i = 1, . . . ,n

}
. Note that in dynamics, the control variables ui = ui (t) are

time dependent.

The integrals involves in the weak formulation (6.7) are involved in the parametric space using

the change of variable given in Eq. (6.21). Their evaluation can be done numerically by using

suitable Gauss-quadrature rules (more efficient quadrature rules can be eventually used for

NURBS-based IGA [Hughes et al., 2010]). For dynamic beam problems, the generalized-α

method is employed as the time integration scheme, which can be second-order accurate

and unconditionally stable in linear problems [Chung and Hulbert, 1993]. This method is

implemented in the form of a predictor-multicorrector algorithm [Hughes, 1987]. Specifically,

we consider the parameters used for the method as dependent on ρ∞ ∈ [0 1], which is the

high-frequency dissipation parameter. We refer the reader to [Raknes et al., 2013] for the

details of the method and choice of the parameters. Moreover it has been shown in [Espath

et al., 2013] that for dynamic problems solved with the generalized-α scheme, k-refinement

speeds up the convergence and improves energy conservation.

6.4 Set of static problems and exact/closed-form solutions

We consider a set of static extensible-elastica classical problems, found in the literature, for

which exact or closed-form solutions are known [Magnusson et al., 2001, Zhang and Zhong,

2013, Humer, 2013, Humer and Irschik, 2011]. In addition, we propose the closed-form

solution of a clamped extensible-elastica initially curved under a transverse tip load.

6.4.1 Test A: straight beam under pure-axial load with non-constant Young mod-
ulus

The first problem we propose is a cantilever beam stretched by an axial force P taken as

P = 3E A. All the properties of the beam are assumed constant except the Young modulus,

which is chosen as E(s0) = E/(1+0.5sin(2πs0/l0)), with l0 the length of the beam. The strain

equation (6.3) is pure-axial and becomes linear:

ε= r ′
x −1,

κ= 0,
(6.23)
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and the weak form (Eq. (6.7)) only involves first-order derivatives. The exact solution for the

displacement is:

ux (s0) = P

E A

(
s0 − 1

4π

(
cos

(
2πs0

l0

)
−1

))
,

uy (s0) = 0.
(6.24)

6.4.2 Tests B: straight and curved beams with pure-bending

We consider two similar problems where a clamped beam initially straight or curved is sub-

jected to a moment M applied at the tip (Fig. 6.2). This problem is of pure-bending type and

the curvature remains homogeneous along the beam [Zhang and Zhong, 2013]. In the first

problem (test B1), the initially-straight beam is bent until a quarter of a circle is obtained,

while for the second problem (test B2), the initially-curved beam is bent until a straight beam

is obtained. The applied moment to obtain the final configuration reads:

M =±E Iz

R0
=±πE Iz

2l0
, (6.25)

where the sign + and − indicate tests B1 and B2, respectively. The strain equation (6.3)

simplifies:

ε= 0,

κ= 1

R
− 1

R0
,

(6.26)

where R and R0 are the current and initial radius of the beam, respectively. Since κ is a constant

through the radius R, the weak formulation (6.7) involves only the first-order operator. The

displacement is given by:

ux (s0) =±
(

2l0

π
sin

(
πso

2l0

)
− s0

)
,

uy (s0) =±2l0

π
cos

(
πso

2l0

)
.

(6.27)

6.4.3 Test C: cantilever straight beam under transverse tip load

The cantilever straight beam under transverse tip load (Fig. 6.3) induces both axial and bending

components. The force applied at the extremity is chosen as P = 2E Iz /l 2
0 . By rewriting the

weak form in terms of θ gives with the extensible-elastica method [Humer and Irschik, 2011]:

dθ

d s0
=−

√
P

E Iz

√
(sinθ− sinθl )

(
2− P

E A
(sinθ+ sinθl )

)
, (6.28)
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 M  

M

a) b)

R
R0

Figure 6.2: Straight (test B1)(a) and quarter circle beam (test B2) (b); the moment M is applied
to obtain a quarter circle and a straight beam, respectively.

where θl , the angle at the tip of the beam, is determined by integration of:

l0 =
∫ l0

0
d s0 =

∫ θl

0

d s0

dθ
dθ. (6.29)

Similarly, the angle in the deformed (current) configuration θ is linked to the original curvilin-

ear coordinate s0 as:

s0 =
∫ s0

0
d s0 =

∫ θ

0

d s0

dθ
dθ. (6.30)

The displacement is given by:

ux (s0) =
∫ θ

0

(
cosθ+ P

E A
cosθ sinθ

)
d s0

dθ
dθ− s0,

uy (s0) =
∫ θ

0

(
sinθ+ P

E A
sin2θ

)
d s0

dθ
dθ.

(6.31)

Note that l0 and s0 are evaluated by means of numerical integration, alternatively, they can be

expressed in terms of incomplete elliptical integrals as in [Humer and Irschik, 2011].

P

x
-y

s
θ

θl

Figure 6.3: Test C: cantilever straight beam under transverse tip load.
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6.4.4 Test D: buckling of a pinned-roller beam

Beam buckling is another test involving axial and bending deformations (Fig. 6.4). The applied

load is taken as P = 1.4Pc where Pc , the critical load, is defined as:

Pc = π2E Iz

l 2
0

. (6.32)

In order to follow the stable path from the initial configuration without adding any initial

imperfections to the geometry, a second load P ′ (P ′ ¿ P ) is applied in the middle of the beam

until P ≤ Pc and removed afterwards. The analytical closed-form solution of this problem has

been derived using again the extensible-elastica equation and can be found in [Magnusson

et al., 2001, Humer, 2013].

P

P’

Figure 6.4: Test D: buckling of a pinned-roller beam.

6.4.5 Test E: clamped arc under a transversal tip load

A clamped, curved beam under concentrated load is used to test the formulation for curved

beams with axial and bending deformations (Fig. 6.5). By using the same method as [Magnus-

son et al., 2001, Humer, 2013] for beam buckling, or the straight beam under transverse loads

[Humer and Irschik, 2011], we derive the extensible-elastica equation for an initially-curved

beam. By inserting Eq. (6.3), expressed in terms of θ and r ′
x , into Eq. (6.7), and by using the

constitutive law (6.5), we obtain:

dθ

d s0
=

√
1

R2
0

+ 2P

E Iz
(cosθl −cosθ)+ P 2

E AE Iz

(
cos2θl −cos2θ

)
, (6.33)
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where the angles θl and θ in terms of l0 and s0 are found using Eqs. (6.29) and (6.30), respec-

tively. The displacement is given by:

ux (s0) =
∫ s0

0
r ′

x d s0 − r0,x

=
∫ θ

0

(
cosθ+ P

E A
cos2θ

)
d s0

dθ
dθ−R0 sinθ0,

uy (s0) =
∫ s0

0
r ′

y d s0 − r0,y

=
∫ θ

0

(
sinθ+ P

E A
cosθ sinθ

)
d s0

dθ
dθ−R0(1−cosθ0).

(6.34)

P

R0

P

s0

s

θl0

θ0

θ0

θl0

θl

θ

Figure 6.5: Test E: clamped arc under a transversal tip load.

6.5 A-priori error estimation: convergence order

Since the exact/closed-form solutions for the considered static problems are now detailed,

the efficiency of the IGA formulation can be verified by using a-priori error estimates under

h-refinement [Tagliabue et al., 2014]. We consider the convergence orders of the errors in

Hilbert spaces by ensuring that numerical quadrature errors in Eqs. (6.29) and (6.30) are

negligible compared to the approximation error of the Galerkin method. Similarly, we consider

a “sufficiently"-small tolerance for the convergence criterion of the Newton-Raphson method

used to solve the tangent problem associated to Eq. (6.13).

6.5.1 Error norms

Convergence plots of the curve under h-refinement are obtained by computing the approx-

imated solution and the exact ones. The standard error in norm L2 (L2(Ω) ≡ H 0(Ω)), where
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Ω= (0, l0), reads:

‖u −uh‖L2(Ω) =
 l0∫

0

(u −uh)2 d s0

1/2

. (6.35)

When considering high-order PDEs, namely of order 2m with m ≥ 1, the Hilbert norm for

σ≥ 1 is given by:

‖u −uh‖Hσ(Ω) =
‖u −uh‖2

H (σ−1)(Ω) +
l0∫

0

(
dσ

d sσ0
(u −uh)

)2

d s0

1/2

. (6.36)

6.5.2 A-priori error estimation

The a-priori error estimate in the norm Hσ for linear high-order elliptic PDEs provides the

convergence order of the errors under h-refinement; we refer the reader to [Tagliabue et al.,

2014] for the derivation. Specifically, the error in the Hilbert norm Hσ can be estimated as:

‖u −uh‖2
Hσ(Ω) ≤C hβ‖u‖H r (Ω), (6.37)

if u ∈ V ∩H r (Ω), where h is the characteristic mesh size of the elements, and C a constant

independent of u and h; β is the order of convergence defined as β= min{δ−σ,2(δ−m)} with

δ= min{r, p +1} and p the NURBS degree.

We remark that the a-priori error estimates have been derived for linear problems, which is

not the case of Eq. (6.7). However, in several instances, the convergence order of the error is

often achieved also for nonlinear problems as e.g. in [Dedè and Santos, 2012]. Therefore, we

will use the a-priori error estimate (Eq. (6.37)) for verification purposes.

6.6 Static numerical results and discussion

For all tests presented in Sec. 6.4, we assume that the beam has a square cross section (A = k2
0

and Iz = k4
0/12) of thickness k0 = 0.02 m, length l0 = 1 m, and Young modulus E = 200 GPa.

The stopping criterion for the solution of the nonlinear problem with the Newton-method

is defined by ‖R j‖2/‖R0‖2 < 10−8 where R j is the residual vector at the Newton iteration

j . Numerical quadrature is performed using p +1 Gauss-Legendre quadrature points per

element.

The geometry representing the beam in the initial configuration is h-refined starting from

a straight or a quarter circle and exactly represented by globally C 1-continuous NURBS

associated to the knot vector Ξ = {0,0,0,1,1,1}. The control points and weights for both

geometries are given in Table 6.1. Note that we arbitrarily expressed the straight beam in

terms of two parameters associated to the second control point: η (0 < η< 2) and wη (wη > 0),
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which are taken equal to 1 to yield a linearly geometrical map. This is the case for all tests with

initially-straight geometry (tests A, B1, C, and D), with the exception of test B∗
1 , defined from

test B1, for which η 6= 1 and/or wη 6= 1 are considered.

Table 6.1: Control points B = {Bx By }T and weights w of the straight (tests A, B1, B∗
1 , C and

D) and quarter of circle (tests B2 and E) geometries with globally C 1-continuous NURBS
corresponding to the knot vector Ξ= {0,0,0,1,1,1}.

Geometry Straigth Quarter of circle

Bx 0 l0
2 η l0 0 0 R0

By 0 0 0 0 R0 R0

w 1 wη 1 1 1p
2

1

6.6.1 Convergence orders

We verify by means of numerical tests that the convergence orders of the errors under

h−refinement are in agreement with expected theoretical ones. Plots of the errors vs. the mesh

size h are reported for each norm Hσ with 0 ≤σ≤ m for globally C p−q -continuous NURBS

basis of degree p ∈ {2,3,4}, and 1 ≤ q ≤ p −1. Theses plots are given in Figs. 6.6, 6.7 and 6.8 for

pure-axial (test A), pure-bending (tests B1, B2, and B∗
1 ) and mixed constraints (tests C, D, and

E), respectively.
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Figure 6.6: Error vs. mesh size h for test A in norms L2 (a) and H 1 (b). NURBS basis of
degree p ∈ {2,3,4} are represented by dotted, dashed, and full lines, respectively, and globally
C p−q -continuous basis functions with q ∈ {1,2,3} are represented by {◦,×,+}, respectively.

When the mesh size h is decreased, the error decreases linearly in the log-log scale for h

“sufficiently" small. The convergence order αX with X ∈ {A, B1, B2, B∗
1 , C, D, E} for the

different tests, is estimated by using the two last points of the convergence curves presented

in Figs. 6.6, 6.7 and 6.8, and are given in Table 6.2. The convergence order β of Eq. (6.37) is

evaluated by considering r ≥ p +1 since the exact/closed form solutions of the tests under

considerations are “sufficiently" smooth. The theoretical-convergence order β for m = 1 (β1)

and m = 2 (β2) are also given in Table 6.2 where 2m is the order of the differential spatial

operator in the strong form of the PDE.
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Figure 6.7: Error vs. mesh size h for tests B1 (a, b, c), B2 (d, e, f) and B∗
1 (g, h, i) in norms L2

(a, d, g), H 1 (b, e, h) and H 2 (c, f, i). NURBS basis of degree p ∈ {2,3,4} are represented by
dotted, dashed, and full lines, respectively, and globally C p−q -continuous basis functions
with q ∈ {1,2,3} are represented by {◦,×,+}, respectively.

By focusing on the case of pure-axial deformations (test A), the problem is a first-order, linear

problem (m = 1) and we deduce αA 'β1 from Table 6.2, in agreement with Eq. (6.37).

For problems in pure-bending (Sec. 6.4.2), we have shown that the exact weak form involves

only first-order operators. However, this is not the case for approximated solutions since

discretization leads to spurious axial terms and non-constant curvature. For tests B1 and B2,

the convergence orders are αB1 'αB2 'β2, except for curves in the norm L2 with NURBS of

degree p = 2. Indeed, the convergence orders are higher than expected (β2 = 2), being αB1 ' 4

and αB2 ' 3 yielding a convergence order higher than the expected one. For test B∗
1 , the results

are obtained for η= 1 and wη = 1p
2

but can be extended to any case with η 6= 1 and/or wη 6= 1.

We find that αB∗
1
'β2 even for p = 2 in the norm L2.

For the results where both axial and bending terms are activated (tests C, D, and E), we have

from Table 6.2 that αC 'αD 'αE 'β2.

In passing, we emphases that for a given NURBS basis degree p and a fixed mesh size h,

increasing the continuity increases the error. Indeed, for the same mesh size, smoother basis

113



Chapter 6. Isogeometric Analysis Of Extensible-Elastica

10-8

10-12
10-2

10-6

10-10
10-2

10-4

10-8
10-2h h h

a) b) c)

10-8

10-12
10-2

10-6

10-10
10-2

10-4

10-8
10-2h h h

d) e) f)

10-8

10-12
10-2

10-6

10-10
10-2

10-4

10-8
10-2h h h

g) h) i)

10-10

10-10

10-10 10-8

10-8

10-8

10-6

10-6

10-6

||u
-u

h||
H

1

||u
-u

h||
L2

||u
-u

h||
H

2

||u
-u

h||
H

1

||u
-u

h||
L2

||u
-u

h||
H

2

||u
-u

h||
H

1

||u
-u

h||
L2

||u
-u

h||
H

2

10-1 10-1

10-1 10-1 10-1

10-1

10-110-110-1

Figure 6.8: Error vs. mesh size h for tests C (a, b, c), D (d, e, f) and E (g, h, i) in norms L2

(a, d, g), H 1 (b, e, h) and H 2 (c, f, i). NURBS basis of degree p ∈ {2,3,4} are represented by
dotted, dashed, and full lines, respectively, and globally C p−q -continuous basis functions
with q ∈ {1,2,3} are represented by {◦,×,+}, respectively.

functions use less dofs than the basis with lower continuity, which have more degrees of

freedom to fit the solution.

6.6.2 Membrane locking

The formulation considered in this chapter is free of shear locking by design based on Euler-

Bernoulli-beam assumptions [Ishaquddin et al., 2013], but not of membrane locking. Mem-

brane locking is attributed to the inability of the basis functions to reproduce the inextensible

bending due to the appearance of spurious axial (membrane) terms that constitute the major

part of the strain energy. Indeed, in Eq. (6.3), the axial strain ε is composed of two terms of

different order which are integrated using the same Gauss rule, leading, in the case of pure-

bending, to the inability to satisfy exactly ε= 0. This is also the reason for which the discretized

weak form cannot be simplified to a first-order problem in the case of pure-bending. By
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6.6. Static numerical results and discussion

Table 6.2: Convergence order α for the different tests compared to the estimated convergence
orders β1 or β2 in norm Hσ, for globally C p−q -continuous NURBS basis of degree p.

Norm L2 H 1 H 2

p 2 3 4 2 3 4 2 3 4

C p−q C 1 C 1 C 2 C 1 C 2 C 3 C 1 C 1 C 2 C 1 C 2 C 3 C 1 C 1 C 2 C 1 C 2 C 3

β1 3 4 4 5 5 5 2 3 3 4 4 4

αA 3.01 3.99 4.00 5.01 4.99 4.99 2.00 2.99 3.00 4.01 4.00 4.00

β2 2 4 4 5 5 5 2 3 3 4 4 4 1 2 2 3 3 3

αB1 4.00 4.00 4.00 4.97 5.01 5.00 2.01 3.99 3.00 3.99 3.99 4.00 1.00 1.99 2.00 3.00 3.00 3.00

αB2 3.00 3.99 3.99 5.00 5.01 5.01 2.00 2.99 3.00 4.00 4.00 4.00 1.00 2.00 2.00 3.00 3.00 3.00

αB∗
1

2.04 3.99 4.04 5.01 4.99 5.04 2.03 2.98 3.00 3.99 3.98 4.00 1.00 1.98 2.00 3.98 3.00 3.00

αC 2.03 4.09 4.06 4.96 5.00 5.00 2.02 2.99 3.00 3.95 4.00 3.98 1.00 2.00 2.01 3.00 2.99 2.99

αD 2.09 4.03 4.03 4.99 4.96 5.05 2.08 2.96 3.00 3.96 3.97 4.00 1.00 1.96 2.00 2.97 2.99 3.01

αE 2.02 4.00 4.00 4.96 5.00 5.00 2.00 2.99 3.00 3.96 3.99 4.00 1.00 2.01 2.00 2.99 2.99 3.00

defining the slenderness parameter as:

λ=
√

Iz

Al 2
0

, (6.38)

the membrane-locking phenomenon is shown for test B2 in Fig. 6.9 by settingλ= k0/
(
l0
p

12
)=

0.001/
p

12 (k0 is now k0 = 0.001). This phenomenon does not occur for the test in Fig. 6.7d

where λ = 0.02/
p

12. Membrane locking appears when the slenderness is small since the

membrane and bending terms are proportional to k0 and k3
0 , respectively. Contrarily to the

Timoshenko beam [Beirão da Veiga et al., 2012, Bouclier et al., 2012], membrane locking

is present also for initially-straight beams since the constant terms of ε in Eq. (6.3) are not

zero. As shown in Fig. 6.9, the increased NURBS degree alleviates membrane locking as it

has been already observed in FE and IGA [Reddy, 2004, Bouclier et al., 2012, Ibrahimbegovic,

1995]. However, by increasing the degree p, the number of dofs and the computational cost

increases; we remark that for NURBS-based IGA, the dof number only moderately increases

when increasing p and the smoothness of the basis function (k-refinement). Alternative

methods completely free of locking are presented in [Beirão da Veiga et al., 2012, Bouclier

et al., 2012] in the framework of isogeometric Timoshenko beams.

Finally, even though shear-free assumptions are violated for large thickness ratio (for k0 ≈ 1

we have λ≈ 1/
p

12), we have analyzed convergence rates for such conditions. We find that

the computed convergence order is reduced with respect to the one expected for linear PDEs

(Eq. (6.37)). This phenomenon is not due to membrane locking but appears to be sensitive to

the NURBS basis global continuity, and deserves further investigations.
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12. The simulations for which membrane locking happens are
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6.7 Dynamic problems

We consider now two different dynamic beam problems.

6.7.1 Solitons propagating in post buckled beams

Post-buckled beams (Fig. 6.10a) possess a geometrically-nonlinear load-displacement rela-

tionship (P (∆U ); see Fig. 6.10c) and dispersion sources for which the phase velocity decreases

with frequency, such that these structures are capable of hosting solitons (nonlinear station-

ary waves) [Maurin and Spadoni, 2014b,a]. In [Maurin and Spadoni, 2014a] it is shown that

these conditions on the dispersion (phase speed decreases with frequency) are only valid for

some configurations depending on the buckling level, type of supports (necessary to ensure

the stability), and curvature. This is the case of the highly-buckled beam on roller supports

[Maurin and Spadoni, 2014b].

The numerical simulation of these beam problems is obtained by the application of two

distinct steps: a static one in load control, where the beam, with a large number of unit cells

(q), is buckled (Fig. 6.10a), and a dynamic one, in displacement control, where a pulse is sent

through the buckled structure (Fig. 6.10b). We define the axial displacement of the support

j by U j = ux (ξ j ) =
n∑

i=1
Ri (ξ j )ui ,x , where ξ j is the position of the pinned-support in the knot

vector. The strain ζ j at the support j is defined as the variation of the distance between two

supports, and taken positive in compression such that:

ζ j =
U j −U j+1

L0
= ∆U j

L0
, for j = 1, . . . , q −1, (6.39)
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Figure 6.10: (a, b) Schematic post buckled beam with q = 9 unit cells. (a) Initial (dashed line)
and post-buckled (solid line) configurations after applying the static load PS = P (∆U0). (b)
Displacement control U1(t ) (Eq. (6.41)) resulting in a propagating compressional wave (solid
line). (c) Nonlinear load displacement-relationship P (∆U0) with elastica solution [Maurin and
Spadoni, 2014b] (∗) and results obtained by a static simulation using the present formulation
(full line).

where L0 = L−∆U0 = L (1−ζ0), and L is the length between two supports before buckling;∆U0

and ζ0 are constant after the static buckling along the beam and are the relative displacement

between two consecutive supports and strain, respectively. By modeling the structure by

a series of alternating masses and nonlinear springs, and approximating locally the load-

displacement by a second order polynomial, it is shown in [Maurin and Spadoni, 2014b] that

the homogenization of the discrete system leads to the Boussinesq equation ([Remoissenet,

1995]) admitting a soliton as solution, reading:

∆ζ=∆ζm sech2 (
Λ−1(x −V t )

)
, (6.40)

where ∆ζ= ζ−ζ0 is the dynamic strain wave and ∆ζm its amplitude; in addition, V 2 =C 2
0 +

σ∆ζm/(3C0) is the soliton phase velocity and Λ= √
24C0γ/(σ∆ζm) its characteristic width,

where C 2
0 = P ′(∆U0)L2

0/m, σ = P ′′(∆U0)L3
0/m, γ = C0L2

0/24, and m = ρAL. The dynamic

displacement applied at the left extremity of the beam is obtained by integrating Eq. (6.40):

U1(t ) =∆ζm Λ
(
tanh

(
Λ−1V (t − t0)

)+1
)+q∆U0, (6.41)

where t0 is arbitrary chosen as t0 = 5ΛV −1. Note that in the present case, it is restricted to the

post-buckled beam compressed with a really strong pre-compression, such that contrary to

previous chapters, one can use the simple Boussinesq model instead of the double-dispersion

one (dispersion only resulting from periodicity when pre-compression is really large, see

Fig. 4.4).

In order to get buckling, instead of considering additional loads as done in Sec. 6.4.4, initial

imperfections in the configuration of the beam are used. The procedure used to construct the
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initial geometry with imperfections reads:

• build a straight beam with globally C 1-continuous NURBS basis of degree p = 2 as

defined in Table 6.1 with η= 1 and l0 = qL;

• h-refine the knot vector to get q equispaced mesh elements;

• modify the y coordinates of the q +1 control points such that:

B j ,y =
0 if j = {1, q +1},

(−1) j e otherwise,
(6.42)

where 0 < e ¿ L0 is the parameter characterizing the imperfection amount (Fig. 6.11a);

• perform order elevations and then additional knots insertions without repeating existing

knots (Figs. 6.11a, b) such that the NURBS basis remains globally C 1-continuous.

The applied boundary conditions are illustrated in Fig. 6.10a. However, since the NURBS basis

functions are globally C 1-continuous, the control points which are not at the extremities of

the beam do not lay on the geometry. For each support j = 2, . . . , q −1, the y displacement is

fixed by enforcing the condition:

ry (ξ j ) =
n∑

i=1
Ri (ξ j )(Bi ,y +ui ,y ) =

n∑
i=1

Ri (ξ j )ui ,y =C j u = 0, (6.43)

where the position of the support in the knot vector is given by ξ j = j /q and C j is a vector

which has for length the number of dofs, built from shape functions, and completed by zeros.

In order to enforce these conditions, q −1 Lagrange multipliers λ j [Wriggers and Nackenhorst,

2006] are introduced, thus resulting in a coupled system of two equations:

G(r (u))(δu)+
q−1∑
j=1

λ j C jδu = 0, (6.44)

q−1∑
j=1

C j uδλ j = 0. (6.45)

Eq. (6.44) represents the virtual work (see Eq. (6.7)) and Eq. (6.45) is the variation of the force

necessary to constrain the displacement of the supports along y .

For the numerical simulation, the following parameters are used: number of unit cells q = 150,

rectangular cross section of the beam width b0 = 12 mm and thickness k0 = 0.4 mm, L = 0.06

m, E = 200 GPa, and ρ = 8000 Kg m−3. The initial imperfection is e = 0.1 mm, the initial

buckling compression ∆U0/L = 0.8 (Fig. 6.10c), and the amplitude of the dynamic strain wave

∆ζm = 0.1. Each span (unit cell) is divided into ne /q = 14 mesh elements, and the degree

of the NURBS basis is p = 3, such that these parameters give a good approximation of the
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Figure 6.11: (a, b, c) Four first unit cells (a) before and (b, c) after the refinement, and (a, b)
before and (c) after the static buckling. Control points and knots locations are represented
by • and ×××, respectively. (d) Snapshots at time t = {0.07, 0.15, 0.22} s of the strain wave ∆ζ vs.
the support number j resulting from simulation (full lines), and compared with the analytical
soliton (Eq. (6.40)) (curves with ∗∗∗).

analytical elastica equation [Maurin and Spadoni, 2014b] (see Fig. 6.10c). In the static part,

the load is incrementally applied in 1000 steps, while in the dynamic part 1000 time steps

are used with a total integration time t f = qL0V and ρ∞ = 0.9. The resulting strain wave is

shown in Fig. 6.11. While propagating, the wave preserves its shape. Moreover, the strain wave

overlaps very well with the approximated analytical equation describing solitons (Eq. (6.40)).

This example shows that our formulation can be conveniently adapted to nonlinear wave

propagation problems in slender structures undergoing large dynamic deformations.

6.7.2 Dynamic snap-through buckling

We consider the snap-through buckling of a transversally-loaded arch, which is obtained from

the buckling of an initially straight beam (see Figs. 6.12a, b). This problem is particularly

interesting because it involves internal resonances [Nayfeh et al., 1999], and thus is good

candidate to demonstrate the robustness of the proposed methods. In particular, we are
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interested in the transient response of a buckled beam laterally loaded in its center by a step

load, as already studied in [Chen and Tsao, 2014], and we aim at reproducing the findings

of [Chen and Tsao, 2014]: the critical load is (i) smaller in dynamics than in statics and (ii)

it decreases with extensibility (the extensibility is inversely proportional to the slenderness

parameter λ defined in Eq. (6.38)). The construction of the initial geometry with the initial

imperfections follows the method presented in Sec. 6.7.1 with a single unit cell (q = 1). The

beam is divided into ne = 150 mesh elements and the degree of the NURBS basis is p = 3 with

NURBS basis functions which are C 2-continuous. The material and geometrical parameters

are the same as in Sec. 6.7.1 except the initial length of the beam defined by l0 =p
Iz /A/λ.

We choose λ = 0.01 and 0.02 to compare the influence of extensibility. The time step is

∆t = 0.001T , where T = l 2
0

√
ρA/E Iz , and ρ∞ = 0.9.
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Figure 6.12: (a) Straight beam (large dashes) statically buckled (small dashes) and (b) snap-
through its second (gray line) or third (black line) mode after the application of a load (Q)
along the y axis at the mid span. (c) Resulting load (QS) midpoint-displacement (ym) curve.
Points A and B are the static critical load of the second and third modes, respectively; the ( )+

and ( )− give the sign of the initial angle θ0. We set θ0 = 40◦ and λ= 0.01.

The static snapping critical load for the beam is obtained from the non-monotonic load-

displacement curve (Fig. 6.12c), computed using the arc-length method [Schweizerhof and

Wriggers, 1986]. If the beam is perfectly symmetric and the load is applied in its center,

the second mode (asymmetric) is not excited and the deformed beam “jumps" (point B in

Fig. 6.12c) directly to the third mode (symmetric); whereas, if asymmetric imperfections

are present (e.g. the load is not perfectly applied in the center), snapping occurs at point

A (see Fig. 6.12c) with deformation given by the second mode (Figs. 6.12a,b). Values of the

normalized critical load (QS/PC ) are reported in Table 6.3 where we can already conclude

that the critical load is smaller in dynamics than in statics, in agreement with [Chen and Tsao,

2014].

In Fig. 6.13a, the midpoint deflection history of the beam under a dynamic step load QD (t ) =
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Table 6.3: Nondimentional static critical load QS/Pc (Pc defined in Eq. (6.32)) for snapping
through the second and third bucking modes and for two different levels of beam slenderness
λ. Results are compared to [Chen and Tsao, 2014], if available.

λ 0.01 0.02

Mode 2 3.31 (3.31 [Chen and Tsao, 2014]) 3.21

Mode 3 4.92 4.65

H (t )QD is reported, where H (t ) is the Heaviside function and QD = 4Pc is chosen between the

static critical load (QS) of the second and third mode (see Table 6.3). Both configurations of

slenderness (λ) are considered. Although the dynamic load is smaller than the static critical

load, snapping occurs directly through the third mode for the most extensible beam (λ= 0.02)

(see deformed shapes in Fig. 6.13d) showing that the dynamic critical load is smaller than the

static one. Conversely, in the case λ= 0.01, the beam does not have enough energy to snap

directly through the excited mode (mode three). The beam starts oscillating (Fig. 6.13b), then

snaps through the second mode (Fig. 6.13c). For the same load QD (t), since only the most

extensible beam snaps directly through the third mode, dynamic critical load values become

smaller and smaller for increasing values of extensibility, in agreement with [Chen and Tsao,

2014].

Although we recover the same results, the point here is to compare both methods. Indeed, in

[Chen and Tsao, 2014], the extensible-elastica concept based on the same strain kinematics

and constitutive law is used, similarly to the proposed formulation. Solutions of the extensible-

elastica are presented in terms of rotation and axial displacements in [Chen and Tsao, 2014],

while we report in this chapter x and y-displacement components. Accordingly, the main

difference lies in discretization of the problem; finite differences associated to the second-

order Crank-Nicolson time integration scheme are used in [Chen and Tsao, 2014], whereas the

formulation presented here considers NURBS-based IGA with the second-order generalized-α

scheme. Even if direct comparisons of the results are not possible, since the smoothness of the

displacement field and rotation is ensured by the NURBS basis functions which are globally

C 1-continuous, a small number of mesh elements and time steps is required in the present

work, leading to significant gains in computational efforts.

6.8 Comparison to co-rotational beam formulation

The rotation-free extensible-elastica formulation allows large geometrical displacements,

rotations and strains, and the strain follows directly from geometrical considerations without

approximations. In the previous section, it has been shown that the extensible-elastica can be

solved numerically using NURBS-based IGA, but alternative approximated methods exist and

it is the goal here to compare their efficiency in terms of error and computational cost.
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Figure 6.13: Dynamic snap-through buckling of a beam with initial angle θ0 = 40◦, of slender-
ness λ= 0.01 (gray) and λ= 0.02 (black) laterally loaded in its center by a step load (QD /Pc = 4).
(a) Time history of the normalized center deflection ym/l0 and (b, c, d) snapshots of the de-
formed shape. For the less extensible case, the beam oscillates around its first mode (b) and
snaps through its second buckling mode after t/T ≈ 2 (c), whereas for the most extensible
case, the beam snaps directly to its third mode (d). Snapshots starts at time t/T = 0 (b, d) and
t/T = 2.2 (c) with a time step between each snapshots of ∆t/T = 0.04 (b), ∆t/T = 0.13 (c) and
∆t/T = 0.08 (d), and are represented in (a) by ∗, 4, and ◦, respectively. l0 = [0.0289, 0.0144]m,
PC = [197.3921, 789.5684]N and T = [5.8095, 1.4524]×10−4s for λ= [0.01, 0.02], respectively.

We focus here on the co-rotational beam that decomposes the motion into rigid body and pure

deformation [Battini, 2002, Borst et al., 2012]. Each element is rotated back to its local original

frame and this allows an artificial separation of the material and geometrical nonlinearities.

However, this limits the strain to small levels since geometrical deformations are not consid-

ered in the local frame. In counterpart, the resulting implementation into FE codes turns out

to be simplified and does not require the use of IGA. Moreover, small strain deformations

can be approximated by small-degree polynomial shape-function such that the minimum

of integration point per element is only one. Note however that as for classical FE beams, in

addition to the two dofs per node modeling the displacement, an additional one is required

for the rotation.

To sum up, the rotation-free formulation is more accurate than the co-rotational one, but is

much more complex to implement and requires loops over integration points. On the contrary,

in order to have results of the same accuracy, it is necessary to choose the co-rotational

formulation with a finer mesh, and added to the fact that it requires an extra dof per node

for the rotation, the total number of dofs in the co-rotational formulation is more important

than the one in the rotation-free formulation. This means that on one side, the formulation is

more complex (tangent stiffness complexed to build), whereas on the other side the problem

is larger (time inversion increased) and the question is which formulation is the fastest for a

given accuracy?

To answer to this question, the pinned-supported buckled beam analyzed in Sec. 6.7.1 is
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simulated using both IGA and co-rotational methods with several levels of discretization, and

the error in terms of the computation time is given in Fig. 6.14. Both computation times of the

static and dynamic simulations are shown, but the error is based only from the static solution

from which an exact solution exist (see Sec. 6.4).
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Figure 6.14: Error in norms L2 in terms of the computation time of the simulation in static
(a) and dynamic (b) of the pinned-support buckled beam with 50 supports. NURBS basis are
globally C p−1-continuous and are of degree p ∈ {1,2,3,4} represented from dark to light-gray
lines (p = 1 also in dashed lines is equivalent to classical FE). Note that these results are
computed using Matlab, considering sparse matrices and MEX-Files.

The first comment arising from Fig. 6.14 is that both static and dynamic simulations give

similar results. In terms of computational cost, the co-rotational formulation used as a first

approximation is found faster, whereas if high-resolution results are required, the rotation-free

formulation provides results more quickly.

Moreover, these plots are given using the Newton-Raphson algorithm to solve the nonlinear

problem. This means that at each load increment, i ≥ 1 Newton-Raphson iterations are run

involving i tangent stiffness matrix computations and i problem inversions. Alternatively (but

not implemented here), the modified Newton-Raphson algorithm considers j ≥ i problem

inversions whereas the tangent stiffness matrix is computed only once at the beginning of the

step but is not updated during the Newton-Raphson iterative process. Defining now N as the

number of dofs, the time to the problem inversion is proportional to N 3 whereas the one for

the matrix assembling is only proportional to N . It is clear that the modified Newton-Raphson

method will be more efficient with the rotation-free extensible-elastica formulations, whatever

the accuracy required.

6.9 Conclusions

Rotation-free extensible-elastica formulations involves fourth order spatial derivatives of

displacements that are not available in classical FE methods, and we propose the use of
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IGA based on NURBS with high-degree continuous basis functions for the finite-element

approximation. The performance of the discretized model has been verified by means of

a-priori error estimates based on several static test problems for which an analytical solution

is known. In addition to problems available in literature, a closed-form solution based on the

extensible-elastica theory for the initially-curved, clamped beam under transverse load is also

derived. We remark that the formulation under consideration may suffer from membrane

locking when elements have small thickness ratio. Another advantage is the reduced number

of degrees of freedom involved, since the formulation is rotation-free. The absence of the

rotary degree of freedom is of great interest in dynamics, leading to constant mass terms which

contain the computational cost and allowing the simulation of complex beam problems.

In addition, it is shown that the computational cost of the present formulation is smaller

than the co-rotational formulation, as soon as high-accuracy is required. The only reason

justifying why the co-rotational formulation has been preferred in previous chapters is that it

does not require the implementation of Lagrange multipliers, facilitating the manipulation of

the different vector quantities in Matlab.

124



7 Conclusions

7.1 Summary of the results

The research presented in this work investigates periodic buckled structures that possess

geometrical nonlinearities and intrinsic dispersive sources. The main finding is to show that

these structures host solitary waves.

More specifically, starting from the extensible-elastica, static stability and geometrical non-

linearities are investigated, and a new approximated equation describing the nonlinear load-

displacement behavior between extremities of a pinned or guided-supported buckled beam

with initial geometrical imperfections is derived. This equation is valid for post-buckled

regimes, where bending deformations are dominant and for weakly-buckled states, where

imperfections and axial deformations dominate. Moreover, this equation shows that the

second derivative of the load-displacement relation is negative for weakly pre-compression

levels (softening behavior), whereas it is positive otherwise (hardening behavior).

The linear dispersion is analyzed employing the semi-analytical dispersion equation, a newly

method that explicitly relates the frequency to the propagation constant of the acoustic branch.

This allows the identification and the numerical quantification of the different dispersion

sources and it is found that in addition to periodicity, transverse inertial effects are playing a

dominant role for small pre-compression levels. In the case of the pinned-supported configu-

ration, in addition to the aforementioned dispersion sources, stiffness coupling between rota-

tions and axial displacements are dominant. The main conclusion of the dispersion analysis

is that the dispersion behavior (sign of the total dispersion) changes with the pre-compression

level and the support type. While for the guided-supported beam, dispersion behavior is of

type supersonic whatever the pre-compression level, in the case of the pinned-supported

configuration, dispersion behavior is of type supersonic only for strong compression and it is

otherwise of type subsonic.

Modeling the system by a mass-spring chain and accounting for additional dispersion sources,

it is shown in Chapter 4 that homogenization of the discrete system and the use of asymptotic
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methods to couple momentum equations lead to the double-dispersion Boussinesq equation,

which admits solitary wave solutions. By combining the signs of the nonlinear and dispersive

terms, four different waves are possible, namely compressive supersonic, tensile supersonic,

compressive subsonic and tensile subsonic solitary waves. What is particularly interesting

with buckled beams is that by varying the pre-compression level and the support type, these

four wave types are present. Moreover, for the pinned-supported configuration, only varying

the pre-compression level changes the medium behavior from subsonic to supersonic.

The double-dispersion Boussinesq equation is derived by approximating the load-displacement

relation by a second order polynomial. However, for waves with large amplitudes or for small

levels of pre-compression, models based on strongly nonlinear PDEs are more appropriate

and the approximation of the load-displacement relation by a power law is proposed, as often

used in granular media. Alternatively, the load-displacement relation can be kept general (not

approximated by a function) but the results are not analytical and require the use of numerical

integrations. Both strong nonlinear PDEs are updated to account for additional dispersion

sources, and solitary solutions are found using the potential method. Analytical model results

are then compared to finite-element simulations of the structure and are found in excellent

agreement.

Experiments about the weakly-buckled guided-supported beam are also investigated. The

setup is a 2 m long beam which is buckled into 30 ripples. While the pre-compression is applied

on one side through a screw, dynamic pulses are sent at the other side through a shaker. It is

found that the medium is supersonic, meaning that the phase-speed increases with amplitude

and if the input is not stationary, there is creation of a tail but never a front, in agreement

with the supersonic properties expected. Moreover, the phase-speed is in agreement with the

predicted values and it is recovered that the speed decreases with pre-compression. While the

wave profile seems stationary, due to limitations in the setup size, the reflected wave appears

after few supports and long-wave observations as the wavelength, period, heterogeneity

effects, and friction-induced decay are not possible. These challenges are left open for future

works.

7.2 Novel methods developed in the thesis

The research presented in this thesis provides some novel methods applicable to structures

other than the periodically buckled beam:

• For complex periodic structures, dispersion curves can be obtained using the Bloch

theorem after the discretization of one periodic unit cell. However, this method provides

only numerical results. The semi-analytical dispersion equation has been developed

here to obtain analytical approximated expression of the dispersion curves. While the

wavenumber and the frequency are expressed explicitly, coefficients of the expression

are numerical and are expressed in terms of the dynamic stiffness matrix components.
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This method assumes the frequency to be small such that in general, only the acoustic

branch is well approximated. The semi-analytical dispersion relation can be applied to

any discretized periodic structures, as long as the number of degrees of freedom at the

boundary remains small.

• For periodic structures by translation with additional glide symmetries, dispersion

curves fold in the first Brillouin zone and the information is repeated. In this thesis, it is

shown that in such a case, the minimum unit cell to use is half of the one by translation

and changes into the Bloch theorem concern only boundary conditions which are

reflected. Advantages of the reduced unit cell are that the dispersion curves are easier to

interpret and computational costs/errors reduced.

As a side note, but not presented in this manuscript, Bloch theorem has been gen-

eralized also to screw symmetric structures [Maurin, 2015] where the general proof

is demonstrated. In addition to the aforementioned advantages, the revisited Bloch

method is applicable to structures as the Boerdijk-Coxeter helix that do not possess

purely-translational symmetries for which the classical method is not applicable.

• Finally, the last contribution concerns finite-element simulations of any slender planar-

beam structures under large geometrical nonlinear deformations and for which shear

deformations can be neglected. While for such elements the most appropriated formu-

lation is the extensible-elastica, Galerking method applied to this formulation involves

second order derivatives for which at least C 1-continuous basis functions are required,

whereas classical finite-element methods are maximum C 0-continuous through the

geometry. It is proposed in this thesis the use of NURBS-based isogeometric analysis

(IGA) that solves this issue, and allows the exact geometrical representation of curved

beams. Moreover, the proposed formulation is shear-looking free and has the advantage

to require a limited number of degrees of freedom, allowing efficient numerical solu-

tion of the discrete problem. Performances are validated using convergence of static

“patch-test” and dynamic problems.

7.3 Limitations of the present research and recommendations for

future work

In this thesis, assumptions have been made and limitations have been encountered. Possible

directions of further researches include the following.

7.3.1 High frequencies

Wave propagation in buckled beams has been investigated only under the long wave as-

sumption, neglecting any high-frequency phenomena. Indeed, to derive the semi-analytical

dispersion relation, linearization of the reduced dynamic stiffness with respect to the fre-

quency is necessary, limiting dispersion to the acoustic branch for which the wavelength is
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larger than a period. Since the solitary wavelengths are known to be much larger than the

lattice size, this assumption does not provide a limitation to the proposed work.

Nevertheless, numerical results of the Bloch theorem that account for high frequencies show

the presence of band gaps resulting from resonant modes. This means that buckled beam

at high frequency acts as a resonator, phenomenon already investigated for granular media

[Bonanomi et al., 2015]. Since these band gaps and more generally speaking the dispersion

curves depend on the buckling level, one could consider building an analytical filter with its

properties changing simply by varying the pre-compression level.

7.3.2 Limitation in the wave amplitude: the case of snapping

In Fig. 4.5, it has been shown that the amplitude of the nonlinear wave is limited by some

geometrical factors. For example, in the guided support configuration, the amplitude of

the rarefaction (tension) wave is limited by the fact that the total strain cannot be negative.

However, if an input wave with an amplitude higher than the limit given in Fig. 4.5a is sent,

once the strain reaches zero, the beam snaps to the opposite direction due to the transverse

inertia, as shown in Fig. 7.1.
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Figure 7.1: Structure snapping from one equilibrium state to the other one (a), such that the
interpolated strain wave resulting from this transition is a solitary wave (b). In (a), initial
geometry in dashed line and deformed geometry in full line. Parameters are exactly the same
than in Chapter 4 with guided supports. The wave is moving from the right to the left side.

This figure is interesting since it shows that buckled beams can jump from an equilibrium

configuration to the other one, and this transfer of energy takes the form of a solitary wave.

Moreover, the amplitude of snapping (amplitude of the wave) is imposed by the initial geome-

try which means that it is independent to the input (the only condition on the input is that

it should have enough energy to excite snapping of the first cell). Since the different models

present in this thesis are not valid for snapping, this problem remains open for future work.
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7.3.3 Experiments

Experiments have validated some characteristics of the expected waves such as the supersonic

properties of the weakly-buckled guided-supports beam, but some limitations arise on the

observation of long-wave propagation. Indeed, the setup size is 2 m long, but possesses only

30 periods, which turns out to be the order of the expected wavelength, meaning that reflection

happens before the wave get time to propagate. As shown in Chapter 4, the characteristic

wavelength normalized by the period of the medium depends only on the precompression

levels, whereas it is independent to the material and the cross-section properties (Eq. (4.25)).

In order to improve the setup, for additional research, a longer setup or a smaller periodicity

should be considered. Note that in order to consider a smaller periodicity, smaller supports

have to be considered as well.

Experimental investigations were limited to the case of the weakly-buckled beam. To consider

other regimes as large post-buckling level, different solutions exist: select a material with

higher Yield limits, choose a beam with thinner cross-section, increase the distance between

supports, etc. However, other considerations have to be taken into account as for example, if

a thinner cross-section is selected, the force of the strain wave will be weaker and effects of

dissipation forces at the support level might be dominant.

Finally, pinned-supported configurations have not been investigated here experimentally, and

the design of such a setup remains a challenging problem.

7.3.4 Dissipation and heterogeneity effects

While heterogeneity effects have been investigated in Chapter 5, this work has only been

done numerically. Updating the present analytical models to consider heterogeneities is a

challenging problem that requires future work. Similarly, dissipation induced by the support

frictions can be included in the proposed analytical models; A possibility to solve this issue is

to consider frictional forces as small perturbations such that the wave shape remain a solitary

waves that decays in time. The use of the multi-scale method allows the separation between

the solitary wave propagation and its decays, and an expression of the decay in terms of time

can be found [Ablowitz and Segur, 1981, Scott, 2003].

7.3.5 Application to more complex periodic structures

Finally, the most promising direction of research is the application of this work to other

more complex periodically buckled structures, like the one presented in the introduction

(Figs. 1.2 and 1.3). These problems involve 2D/3D wave directions, secondary path for wave

propagation, interactions between different materials, contacts, dissipations, heterogeneities

etc. Understanding how periodic wrinkles affect waves will considerably improve fields like

medical or earth-crust imaging, and the capabilities of a structure to host solitary waves can

be used for example in phonic transport as a tool to cancel dispersion or nonlinearity effects.
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A Load-Displacement Series Derived
From The Extensible-Elastica

In this appendix, an approximation of the load-displacement relation is derived starting from

the extensible-elastica theory. Knowing that χ = ∆U /L is a function in terms of P and q

(Eq. (2.24)), and that Eq. (2.21) links P to q , this system of two equations with three unknowns

can be recast somehow in the load displacement relation P {χ}, and the goal here is to look

for such approximated function. Expending P {χ} around the critical point P = Pc in a Taylor

series, one reads

P {χ} = Pc + ∂P

∂χ

∣∣∣∣
P→Pc

(
χ−χc

)+ 1

2

∂2P

∂χ2

∣∣∣∣
P→Pc

(
χ−χc

)2 +O
(
χ−χc

)3 , (A.1)

where P → Pc is equivalent to q → 0 and χc = Pc /E A. Since χ is expressed analytically in terms

of the two other variables, the derivatives of Eq. (A.1) are expressed in terms of their inverses

such that

∂ j+1P

∂χ j+1
=

(
∂χ

∂P

)−1 ∂

∂P

(
∂ j P

∂χ j

)
, (A.2)

where j ∈N+. Since χ{P, q}, the chain rule gives

∂ jχ

∂P j
= d

dP

(
∂ j−1χ

∂P j−1

)
+ d

d q

(
∂ j−1χ

∂P j−1

)
∂q

∂P
, (A.3)

where from Eq. (2.24),

∂0χ

∂P 0 =χ= 2−e +2eq2 −2(1−e +2eq2)
E {c}

K {c}
, (A.4)

and

c = q2 1+eq2

1−e +2eq2 . (A.5)
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Defining a new function P from Eq. (2.21) as,

P {P, q} = P

PE
− 4

π2

1

1−e +2eq2 K {c}2 = 0, (A.6)

in Eq. (A.3), ∂q
∂P reads

∂q

∂P
=−dP {P, q}

dP

(
dP {P, q}

d q

)−1

. (A.7)

The successive derivatives of ∂q
∂P are again given by the chain rule such that:

∂ j+1q

∂P j+1
= d

dP

(
∂ j q

∂P j

)
+ d

d q

(
∂ j q

∂P j

)
∂q

∂P
. (A.8)

Note that the derivatives of the first and second elliptical integrals with respect to their ar-

guments are given in Eq. (2.29). Mathematica is used to derive the successive derivatives of

Eq. (A.1) and to find their limits when P → Pc and q → 0. In addition to the expansion in χ, the

beam is assumed slender and expansion in 1
λ2 is also used. Finally, the approximation of the

load-displacement for a slender beam with small deformations is

P

PE
= 1+π

2

λ2 +2
π4

λ4 +
(

1

2
+ 1

4

π2

λ2 − 11

8

π4

λ4

)(
χ−χc

)+(
9

32
− 3

64

π2

λ2 − 39

32

π4

λ4

)(
χ−χc

)2+O
(
χ−χc

)3 .

(A.9)

As in the inextensible case, the convergence of Eq. (A.9) is not the best one, and a series which

a faster convergence is given by

P

PE
= 1(

1− 1
2
π2

λ2 − 5
2
π4

λ4 −
(

1
4 − 1

4
π2

λ2 − 37
32

π4

λ4

)(
χ−χc

)− (
3

64 − 3
32

π2

λ2 + 27
512

π4

λ4

)(
χ−χc

)2 +O
(
χ−χc

)3
)2 .

(A.10)

Note that when λ→∞ and χc → 0, results from inextensible beam are recovered (Eqs. (2.30)

and (2.32)).
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