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Abstract
Effective representation methods and proper signal priors are crucial in most signal processing

applications. In this thesis we focus on different structured models and we design appropriate

schemes that allow the discovery of low dimensional latent structures that characterize and

identify the signals.

Motivated by the highly non-linear structure of most datasets, we firstly investigate the prop-

erties and the geometry of manifolds. Manifolds are low dimensional, non-linear structures

embedded in a higher dimensional space. They are naturally employed to describe sets of

strongly related signals such as the images of an 3-D object captured from different viewpoints

or the images of objects belonging to the same category but having different appearances.

However, despite the direct link between signals and manifolds, the use of manifolds in ap-

plications is not straightforward due to their usually complex, non-analytic and non-linear

form. We propose a way to ‘disassemble’ a manifold into simpler, more flexible components

by approximating it with affine subspaces. Our objective is to discover a set of low dimensional

affine subspaces that can represent manifold data accurately while preserving the manifold’s

structure. To this end, we employ a greedy technique that iteratively merges manifold samples

into groups based on the difference of local tangents. We use our algorithm to approximate

synthetic and real manifolds and to demonstrate that it is competitive to state-of-the-art

techniques.

Then, we consider different signal models that are represented by structured sparse repre-

sentations. While sparsity has been one of the major drives in signal processing in the last

decade, structured sparsity, where the support defined by the signal components is considered

in addition to the number of elements, has also lately emerged as a way to enrich signal priors

towards more meaningful and accurate representations. In this thesis we propose a new spar-

sity model, where signals are essentially composed of a small number of structured molecules .

We define the molecules to be linear combinations of a small number of elementary functions

in a redundant dictionary. Our new multi-level model takes into account the energy distri-

bution of the significant signal components in addition to their support. It permits to define

typical visual patterns and recognize them in prototypical or deformed form, a quality that

is particularly useful in the reconstruction of noisy or incomplete images. We define a new

structural difference measure between molecules and their deformed versions, which is based

on their sparse codes. We create an algorithm for decomposing signals into molecules that can
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account for different deviations in the internal molecule structures, from small errors in the

coefficients to deviations on both the coefficients and the support of the molecule prototypes.

Our experiments verify the benefits of the new image model in various image restoration tasks.

They confirm that the development of proper models that extend the mere notion of sparsity

can be very useful for various inverse problems in imaging, especially if the original data is of

low quality. In addition, our model provides evidence of the extra power of richer signal priors

when equipped with similarity measures and flexible sparse coding.

Finally, we investigate the problem of learning molecule representations directly in the sparse

code domain. We constrain sparse codes to be linear combinations of a few, possibly de-

formed, molecules and we design an algorithm that can learn the structure from the codes

without transforming them back into the signal domain. To this end, we take advantage of

our structural difference which is based on the sparse codes and we devise a scheme for

representing the codes with molecules and learn the molecules at the same time. To illustrate

the effectiveness of our proposed algorithm we apply it to various synthetic and real datasets

and we compare the results with traditional sparse coding and dictionary learning techniques.

From the experiments, we verify the superior performance of our scheme in interpreting and

recognizing correctly the underlying structure.

In short, in this thesis we are interested in low-dimensional, structured models. Among the var-

ious choices, we focus on manifolds and sparse representations and we propose schemes that

enhance their structural properties and highlight their effectiveness in signal representations.

Keywords: manifolds, approximation, flats, low-dimensional, structure, sparsity, linear com-

binations, two-level, dictionaries, molecules, deformations, structure learning
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Résumé
La représentation des signaux représente un choix crucial pour de nombreuses applications

en traitement du signal. Dans cette thèse, nous nous concentrons sur différents modèles

structurés et nous proposons des algorithmes appropriés qui permettent la découverte de

structures latentes de basse dimension qui caractérisent et identifient les signaux.

Inspiré par la structure fortement non-linéaire de la plupart des signaux que l’on rencontre en

pratique, nous examinons tout d’abord les propriétés et la géométrie des variétés. Les variétés

sont des structures non-linéaires de basse dimension plongés dans un espace de dimension

supérieure. Ils sont naturellement utilisées pour décrire des ensembles de signaux fortement

liés comme les images d’un objet 3-D capturé à partir de différents points de vue ou les images

d’objets appartenant à la même catégorie, mais ayant des apparences différentes. Cependant,

malgré le lien direct entre les signaux et les variétés, l’utilisation de variétés dans les applica-

tions n’est pas simple en raison de leurs formes généralement complexe, non-analytique et

non-linéaire. Nous proposons un moyen à ‘démonter’ les variétés en composantes simples

en utilisant une approximation des variétés en sous-espaces affines. Notre objectif est de

découvrir un ensemble de sous-espaces affines de basse dimension qui peut représenter

les signaux dans la variété précisément tout en préservant la structure de la variété. Pour ce

faire, nous employons un algorithme glouton qui divise de manière itérative les multiples

échantillons de la variété en groupes sur la base de la différence des tangentes locales. Nous

utilisons notre algorithme pour approximer des variétés synthétiques et réelles et démontrons

experimentalement que notre méthode est compétitive avec l’état de l’art.

Ensuite, nous considérons différents modèles de signaux parcimonieux structurés. Alors que

la parcimonie a été l’une des grandes tendances en traitement des signaux dans la dernière

décennie, la parcimonie structurée, où le support défini par les composantes du signal est

considérée en plus du nombre d’éléments, est apparu récement, permettant ainsi d’avoir des

représentations plus significatives, interprétables et précises. Dans cette thèse, nous propo-

sons un nouveau modèle de parcimonie, où les signaux sont essentiellement composés d’un

petit nombre de molécules structurées. Nous définissons les molécules comme des combinai-

sons linéaires d’un petit nombre de fonctions élémentaires dans un dictionnaire redondant.

Notre nouveau modèle à niveaux multiples prend en compte la distribution d’énergie des com-

posantes importantes du signal, en plus de leurs supports. Il permet de définir des modèles

visuels typiques assez flexible pour inclure une forme prototypique ainsi que des déformations.
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Résumé

Notre modèle est particulièrement utile dans la reconstruction des images bruitées ou incom-

plètes. Nous définissons une nouvelle mesure de différence structurelle entre les molécules

et leurs versions déformées, qui est basée sur leurs représentations parcimonieuses. Nous

proposons un algorithme pour décomposer les signaux en molécules flexibles qui permettent

de tenir compte des différentes déviations dans les structures internes de la molécule, de

petites erreurs dans les coefficients à des déviations plus importantes au niveau des coeffi-

cients et du support des prototypes de molécules. Nos expériences permettent de vérifier les

avantages du nouveau modèle dans différentes tâches de restauration d’images. Cela confirme

que l’extension de la simple notion de parcimonie peut être très utile pour divers problèmes

inverses en imagerie, en particulier si les données d’origine sont de faible qualité. En outre,

notre modèle fournit une preuve de l’importance de la méthode de représentation quand elle

est équipée de mesures de similarités et représentation parcimonieuses flexibles.

Enfin, nous étudions le problème de l’apprentissage des représentations de molécules directe-

ment dans le domaine de représentations parcimonieuses. Nous limitons les représentations

parcimonieuses à des combinaisons linéaires de quelques molécules, possiblement défor-

mées, et nous proposons un algorithme qui peut apprendre la structure à partir des codes

parcimonieux sans avoir à les transformer de nouveau dans le domaine des signaux originaux.

Pour ce faire, nous profitons de notre mesure de différence structurelle entre les molécules et

leurs versions déformées qui est définie à l’aide des codes parcimonieux et nous proposons

un algorithme pour représenter les codes avec des molécules et apprendre les molécules en

même temps. Pour illustrer le bon fonctionnement de notre algorithme, nous l’appliquons à

divers ensembles de données synthétiques et réelles et nous comparons les résultats avec des

techniques d’apprentissage de dictionnaire et de représentation parcimonieuse. D’après les

expériences, nous vérifions la performance supérieure de notre algorithme dans l’interpréta-

tion et la reconnaissance de la structure sous-jacente.

En bref, dans cette thèse, nous nous sommes intéressés à des modèles à faibles dimensions et

structurés. Parmi les différents choix, nous nous concentrons sur les variétés et les représen-

tations parcimonieuses et nous proposons des algorithmes qui améliorent leurs propriétés

structurelles et mettent en valeur leurs efficacités dans les représentations des signaux.

Mots clefs : variétés, approximation, faible dimension, structure, parcimonie, combinaisons

linéaires, deux niveaux, dictionnaires, molécules, déformations, apprentissage de la structure.
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1 Introduction

1.1 Motivation

We live in a data-driven era: the abundance of sensing devices in combination with the

plethora of storage capabilities have resulted in a vast collection of high-dimensional data

being available in domains as diverse as engineering, astronomy, biology and economics. The

analysis of such datasets is often challenging due to the curse of dimensionality: as the signal

dimension increases the volume of the space increases fast, resulting in many traditional

methods of signal analysis like statistics or distance-based algorithms to fail. However, not all

is lost as the data usually exhibits some underlying structure of lower dimensionality. In such

cases, not all observed variables are important for understanding the underlying phenomena

of interest and the analysis could be significantly facilitated when the signals are transformed

into the right, low-dimensional representation.

However, discovering the right signal representation is not an easy task. The requirements are

usually many and not always very well defined: we need data representations that disentangle

the underlying explanatory factors while being concise and efficient, meaningful and easy to

compute. As a result there is a variety of models and methods that can be used each focusing

essentially on the application at hand. Possible data models include but are not limited to

linear ones, manifolds, graphical models, overcomplete dictionaries, bag-of-words, multi-

layer architectures, graphs. Moreover, there is a vast collection of features that can be used to

represent and analyze signals like SIFT [79], SURF [6], Haar-like features [118], edge detectors

[77] and the list goes on. Many of them, have been used with great success in applications

like signal restoration, data visualization, recognition, natural language processing as well as

multivariate analysis in social sciences and psychology. Some examples of such applications

are shown in Figure 1.1. In particular, in (a) we see the effect of manifold learning when

embedding high-dimensional head images to the 2D plane. As we can observe form the

resulting mapping, despite the dimensionality reduction, important aspects of the structure

of the original image set are preserved and highlighted, as the signals are placed according

to the up-down and left-right head pose. Additionally, in (b) we present an example of signal
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Chapter 1. Introduction

(a) (b)

Figure 1.1 – Examples of applications of different models to images. In (a) we have the set of
views of a 3-D head are embedded into a 2-D plane with the use of manifold learning. The
figures are taken from [108]. In (b) we present the denoising of a house image through sparse
coding.

denoising achieved by the sparse decomposition of the signal to an appropriate dictionary.

In this thesis, we concentrate on low dimensional structured models and their applications

for images. Among the various choices, we focus on two popular and promising models:

the manifolds and the sparse signal representations. These two model categories are of very

different nature. The manifolds are low dimensional, structured models that can easily express

complex variations in signals through their highly non-linear, and usually non-analytic form.

On the other hand, sparse representations have a simple, comprehensible linear form as

combinations of a few basic features in an dictionary. Although dictionaries can be learned

from signals, the resulting features are generally quite simple. As a result, the representations

are less structured and far away from modeling complex dependencies among different

components of the signals. In this thesis, in an attempt to discover the factors of variation
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1.2. Thesis outline

Figure 1.2 – Position of the sparse representation and manifold models on the plane defined by
the comprehensibility and structure properties. The horizontal axis expresses how structured
a model is and the vertical how comprehensible and simple it is. The sparse representations
are positioned in the upper right corner while the manifolds are placed in the lower left corner.
The red squares stand for the proposed models in our work, namely a sparsity model with
more structure and a simplified manifold model.

and the correlations among them, we target the weaknesses of each model separately namely

the non-analytic, incomprehensible manifold form and the unstructured form of sparse

representations. In particular, with manifolds we try to uncover novel and simple ways to

approximate their form while preserving the model’s structure. On the other side, with sparse

representations, we follow the opposite direction and we try to introduce more structure into

the model in an attempt to better model high level dependencies among the different signal

components. At the same time, we also try learn this structure directly from the sparse codes.

A diagram of the relative position of the models in terms of comprehensibility and structure

is shown in Figure 1.2. From the diagram we see that in our work we try to bridge the gap

between the two properties for both manifolds and sparse representations by working on the

property that is missing each time, namely structure for sparse codes and comprehensibility

for manifolds. A detailed description of the contents of this thesis follows in Section 1.2. Finally,

our contributions are highlighted in Section 1.3.

1.2 Thesis outline

The outline of the thesis is as follows. In Chapter 2 we review some popular low-dimensional

structure models for signals. We start with the simple case of linear models and its straightfor-

ward generalization to the union of subspaces model. Then, we discuss the more generic case

of manifolds that can be used to model signals with low-dimensional but non-linear structure.
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Next, we review the major advances in sparse and structured sparse signal representations as

well as dictionary learning and we conclude the chapter by a brief description of the recently

regenerated field of deep architectures.

In Chapter 3, we focus on manifolds. Motivated by their locally linear nature, we employ a set

of low dimensional affine models, the flats, to approximate the manifold data while preserving

the manifold structure. We model the underlying structure through the neighborhood graph

and we use the variance of the local tangents as a measure of linearity. Then, based on

elements from the constrained clustering theory, we propose a greedy scheme for partitioning

the data into groups that comply with the low dimensionality of the flats. We provide results

on both synthetic and real data that show the superior performance of our scheme compared

to other state-of-the-art manifold approximation techniques.

In Chapter 4, we combine elements of structured sparse coding and multilevel architectures

to propose a new, two-level, structure signal model. In an attempt to better model higher

level patterns, we define our structural elements, the molecules, to be linear combinations of

atoms from a redundant dictionary. To account for some of the variability of the patterns in

real scenarios, we introduce the concept of molecule realizations that permits the prototypes

to get signal dependent in slightly deformed versions. We investigate different options for the

molecule realizations and we design a novel structured sparse coding scheme adapted to our

molecule signal model. Finally, we illustrate the use of our framework with experiments in

various applications such as compressed sensing, inpainting and denoising where we observe

that our molecule-based representation allows for better reconstruction performance than

classical sparsity priors.

Moving to Chapter 5, we address the problem of learning the signal structure. We focus on

the signals’ sparse codes and we aim at uncovering structured representations for the codes

without transforming them back to the signal domain. We use the concepts introduced in the

previous chapter for the molecule prototypes and realizations to formulate the structure learn-

ing problem directly in the sparse code domain. To solve the learning problem, we propose

an alternating optimization algorithm that iterates between steps of code representation and

structure update. We test the performance of our scheme on learning the structure of various

datasets like synthetic, digit and object images. From our experiments we verify the superior

performance of our scheme compared to other existing learning techniques that are however

not designed explicitly for the sparse domain.

To conclude the thesis, in Chapter 6 we summarize our findings and we analyze possible

future directions and open questions. In particular, we highlight some connections between

the structure imposed by the flats in our manifold approximation scheme and the molecule

structure we propose for sparse codes. Moreover, we discuss alternative ways to compare

the molecule prototypes and the molecule realizations as well as the possibility to learn the

dictionary and the molecule structure simultaneously from the data. Finally, we also comment

on the possibility to extend the molecule structure model to more than two layers.
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1.3 Summary of contributions

In summary, the main contributions of this thesis are the following:

• We design a new manifold approximation scheme that guarantees the preservation of

the local linear structure of the manifold data. We highlight the importance of tangent

spaces in correctly identifying linear regions on manifolds and we provide theoretical

justification for our new clustering algorithm that gathers linear regions into a flat-band

approximation.

• We propose a new structured sparsity prior based on molecules that is more informative

than traditional approaches. Molecules take into account both the coefficients and

the support of the sparse codes and as a result enable the differentiation of structures

that share the same support but have distinct energy distributions in their components.

Additionally, we propose the new concept of molecule realizations that permits more

adaptation to signals, thus retaining some precious flexibility in the data representation.

• We provide a new structural difference measure for molecule prototypes and realizations

and we devise a sparse coding scheme that allows the decomposition of signals into

molecule realizations according to our novel structure model.

• Based on our new structure model, we formulate the problem of molecule learning

directly in the sparse code domain with minimal involvement of the underlying dictio-

nary. We design an efficient algorithm to learn the molecules from the sparse codes by

dividing the corresponding complex optimization problem into simpler sub-problems

that we carefully analyze and simplify to get an approximate, yet effective solution.
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2 State of the art

2.1 Overview

In signal processing and machine learning, the performance of most algorithms is heavily

dependent on the representation of the data. As a result, it is quite challenging to uncover the

representation that suits best an application. The quest for the best signal representation is of

course very old and the related literature is very broad and rich [87, 11, 91]. However, in this

thesis we are mostly interested in low-dimensional structured models for data. In other words,

we focus on models that assume the existence of a latent structure of lower dimensionality

than the original signal space. Very often, such a structure can be represented geometrically.

For example, in Figure 2.1 3-D signals exhibit different latent structures: in Figure 2.1a signals

fall on a 2-dimensional plane, in Figure 2.1b they come from a union of subspaces composed

from 2 planes and a line, in Figure 2.1c, they live on a 2-D manifold embedded in R3 and finally

in 2.1d signals can belong to any plane in the space.

In this chapter, we review the categories of models that are most closely related to the contents

of this thesis. In Section 2.2 we review the most popular linear models for data that are still

quite successful and insightful in some applications despite their simplicity. Then, in Section

2.3 we consider the more generic case of manifold models and we review the most popular

methods for handling data with such a latent structure. In Section 2.4 we present the case

of sparsity-based data models. We describe the major directions that have been studied in

the field of sparse and structured sparse signal priors as well as the algorithms for learning

the corresponding models from the data. Finally, in Section 2.5 we conclude the chapter

with a reference to deep architectures, i.e, the family of models composed of multiple similar

layers stacked one on top of the other. These representations have become a trend recently

a trend in representation learning and some of the proposed models, even though they are

not well understood, yet are quite successful in applications such as image recognition and

classification.
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(a) Linear model. (b) Union of subspaces. (c) Manifold. (d) 2-sparse.

Figure 2.1 – Geometric illustrations of various low-dimensional models.

2.2 Linear models

To start with, we examine the oldest and simplest model for the latent data structure namely

a low dimensional, linear or affine subspace. To be more specific, assuming x ∈ RN to be

the data vector, this model is described by x = A ∗b +µ, where A ∈ RN×K is a basis of the

underlying subspace and b,µ ∈RK are the coefficient vector of x and the offset of the subspace

respectively (0 for the linear case). Such an example in R2 is shown in Figure 2.1a. This is a

very standard model and there exist various techniques to uncover the model parameters A,µ

with the most popular of them being the Principal Component Analysis (PCA) [121]. When

treated as a generative model where b stands for the values of the latent, uncorrelated factors,

the problem is called factor analysis (FA) [49, 110] and it has been studied extensively as well.

A famous variant of FA is the independent component analysis (ICA) [57] where the factors are

further constrained to be independent. These methods have been quite successful in various

signal processing tasks like dimensionality reduction [21], blind source separation [9] and

multivariate analysis in social sciences [107] and in neuroscience [32].

However, limiting the latent structure to a single subspace is not always the appropriate choice

as it can happen that different parts of the data are correlated with different subsets of the

underlying factors e.g., video sequences where multiple objects are moving or face images of

different people under varying conditions. In such cases, the resulting data clusters around

more than one low dimensional subspace Si = {x ∈ RN : x = Ai ∗b +µi }, i = 1. . . p. Such an

example is shown in Figure 2.1b where the data comes from the union of two planes and a

line instead of a single plane as in the simple model above. The union of subspaces model is a

direct expansion of the linear model and it preserves its simple geometric interpretation while

extending its expressive power.

The problem of uncovering a set of appropriate subspaces for a data set X is called subspace

clustering or hybrid linear modeling. The objective is usually to cluster the data into groups

so that each group can be well represented by a low-dimensional affine space. A common

approach is to use an iterative scheme that alternates between a data segmentation step and a

subspace estimation step aiming at either minimizing the sum of reconstruction errors [25],

[129] or maximizing the likelihood of the data under a probabilistic model, like probabilistic
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PCA [15]. Alternatively, different kinds of algebro-geometric approaches have also been

proposed. An interesting formulation has been presented in [116], where the problem of

subspace clustering is transformed into a problem of fitting and manipulating polynomials.

Finally, another alternative is the use of spectral clustering, a technique that requires an affinity

matrix which summarizes the similarities between data. Then, the clustering of data into

subspaces is usually performed on the eigenvectors of the Laplacian of the affinity matrix. As

a result, the choice of the affinity is crucial for the success of the algorithm and is is the most

common point of differentiation among the various clustering schemes: in [126] the authors

employ the similarity of local tangent spaces, in [29] the polar curvature of subsets of data, in

[52] the conic affinity, and in [37, 103] the sparse representation of each data with respect to

the rest.

The most algorithms in the field assume that the number of subspaces and their dimensions

are known. While some algorithms can provide estimates for these quantities, like a multiscale

analysis of the growth rate of the local neighborhoods’ eigenvalues [28], these estimates usually

come with no theoretical guarantees. Moreover, the model cannot handle cases where the data

comes from low-dimensional non-linear subspaces. Nevertheless, the union of subspaces

model is a quite popular choice for signals with various applications like motion segmentation

[117], face clustering [52] and gene expression analysis [63]. A comprehensive survey on the

most popular methods, their applications as well as their limitations can be found in [115].

2.3 Manifold models

While the above models are quite successful when the underlying structure is linear, they fail

to properly model data that concentrates near low-dimensional non-linear surfaces instead of

linear subspaces, like in Figure 2.1c. In such cases, the data essentially belongs to a manifold

model of lower dimensionality embedded in the signal space. It is often the case that the un-

derlying structure of signals of a given family can be described adequately by such a manifold

model. For example, prominent examples of image manifolds are the images generated by

different views of the same three dimensional object [102, 44] or images of objects belonging

to the same category but having different appearances [72]. Some examples of such datasets

are shown in Figure 2.2. However, handling manifold models is very challenging as in most of

the interesting cases, the manifold’s analytic form is not known. In the rest of this section we

review the main tools for handling such manifolds.

2.3.1 Manifold approximation

To deal with cases of non-linear structures as opposed to linear ones the idea of principal

directions in PCA has been extended to that of principal curves and surfaces for manifold

models [50]. Conceptually, principal surfaces are surfaces that pass through the middle of the

data distribution. The functions employed to represent the surfaces are of great importance

and can take various forms. A common representation consists in expressing them as a
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(a) (b)

Figure 2.2 – Examples of images belonging to manifolds. In (a) we show the images of a 3D
object from the ALOI dataset [44] taken from different viewpoints. In (b) we have the images
of a face from VidTIMIT database [102] as the head performs a rotation to one side.

weighted sum of kernel functions at normally distributed locations in the latent space [16,

86, 43]. Alternatively, such low dimensional encodings of the data can be uncovered with

àutoencoders’ [51] which are neural net architectures with a small hidden representation layer

trained to minimize the reconstruction error. When regularized properly the autoencoders

encourage the hidden representations to lie on a low dimensional manifold. An example of

such a representation is the contractive autoencoder [95, 96] that penalizes the sensitivity of

the architecture to the input so that it ends up modeling an approximation function that locally

varies in only a few significant directions in the space. These directions could be considered

to be the ones tangent to the underlying manifold at this location.

From another perspective, manifolds are topological spaces that locally resemble an Euclidean

space. Therefore, although they might be extremely complicated structures, they have locally,

i.e., in the neighborhood of a point, the same characteristics as the usual Euclidean space.

Thus, taking into account the locally linear nature of manifolds, the approximating functions

can be affine models, each approximating a specific region of the manifold. The affine sub-

models can be used further to either devise a global parametrization in a lower dimensional

space by proper alignment like in [99, 19] or to approximate the manifold structure in the

original space like in [90, 120, 40]. The procedure for learning such models usually resides on

alternation between two steps: assigning the data to affine models under proper constraints

that express the manifold structure and then updating the affine spaces accordingly.

2.3.2 Manifold embedding

Instead of learning an explicit mapping or an approximating function, a direct embedding

of the data could be devised while preserving some important properties of the manifold

structure. Tools to achieve this goal are offered by the so called fields of manifold learning and

dimensionality reduction. Two pioneer works in the field are the Isomap [108] and the LLE
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algorithms [100]. In Isomap, a parametrization is found that preserves the geodesic distances

between the points while in LLE the focus is on preserving the local linear properties of neigh-

borhoods. Recently, in [37] the neighborhoods and weights have been automatically extracted

based on the sparse representations of the points instead of their euclidean geometry. Other

well known approaches that aim at preserving local properties of the points’ neighborhoods

are provided by the Laplacian Eigenmaps (LE) [8] and the Hessian Eigenmaps (HLLE) [34].

These methods have been extended to points lying on Riemmanian manifolds as well [45].

Overall, all these methods fall under the category of spectral dimensionality reduction [12] as

they are based on the eigenvalue decomposition of a matrix that encodes the local properties

to be preserved in the manifold model.

The manifold learning techniques have found various application like in visualization of

image sets [108, 100], tracking [76] and medical image analysis [104]. However, they suffer

from some important shortcomings. Since their target is to learn a data embedding and not a

mapping function, most of the techniques cannot easily handle out-of-sample data. Moreover,

they usually cannot handle properly closed or highly curved manifolds. A detailed list of the

most popular algorithms in the field can be found in [114] and [91], along with interesting

comments on their strengths and weaknesses.

2.4 Sparse models

Another popular model is the K -sparse signal representation. This model generalizes the

linear subspace model by considering again signals with only K < N non-zero coefficients

that are however not constrained to live on a specific K−dimensional subspace. In this way,

the model becomes much more expressive and yet it preserves the low dimensional nature of

signals. As in the linear case, sparse signals can be expressed as linear combinations of a set of

basis functions, i.e., x = A∗b where only K entries in b are non-zero. However, A is no longer

of dimension N ×K but of a dimension N ×L with L >= N , i.e., it is at least a basis of RN but it

can also be an overcomplete dictionary. Geometrically, that means that the set of K -sparse

signals in A consists of the union of all K -dimensional subspaces in RN spanned by vectors in

A. A subset of these subspaces with K = 2 in R3 is shown in Figure 2.1d.

Sparsity is a pretty intuitive prior that is also biologically plausible, as shown in the pioneer

work of Olshausen and Field [88] where it is suggested that sparsity could be a property

employed by the mammalian visual system for achieving efficient representations of natu-

ral images. Vast research efforts have been deployed in the last decades in order to design

algorithms that solve the hard problem of sparse decomposition of signals by effective approx-

imation [84, 112] or convex relaxation [111, 30]. In such sparse models however, the choice of

the underlying dictionary is also important in the success of the model. There exist various

predefined dictionaries like waveletes, curvelets and bandelets that are proven to be quite

successful in various applications [83]. However, the most recent trend in the field is to learn

an adaptive dictionary from the data. The corresponding formulation can be either proba-

11



Chapter 2. State of the art

(a) Sparsity (b) Group sparsity (c) Overlapping groups (d) Hierarchical

Figure 2.3 – Examples of priors on sparse models where the atoms are represented as graph
nodes and their dependencies with edges. In (a) we have the case of simple sparsity and all
atoms are represented as isolated nodes. A sparse code can be any vector with non-zeros in a
few of the atoms, like the one shown in (a). Then, in (b) we have the case of non-overlapping
groups: the atoms are separated into 3 cliques and the allowed sparse codes have either non-
zero entries for all atoms in each group or the whole group is zero. In (c), two of the groups
are overlapping: atom d2 belongs on both G1 and G2. Finally, in (d) we have a hierarchical
structure in which an atom is allowed to be non-zero in a sparse code iff all its anscestors are
non-zero as well.

bilistic [88, 75] or closer to a matrix factorization problem that is usually solved by alternation

between steps of sparse coding and dictionary update [38, 1, 73]. Additional constraints can

also be imposed like positivity of the sparse codes and the dictionary elements [53]. The sparse

model has found quite a few applications notably in compressed sensing [23] and signal and

video restoration tasks like denoising and inpainting [82, 92]. When the dictionary learning is

enriched with additional discriminative terms, the learned dictionaries can also be used for

classification and recognition [80, 56].

While sparsity is a simple and generic model, it is not always a sufficient prior to obtain good

signal reconstruction, especially if the original data measurements are compressed or inac-

curate. More effective signal models can therefore be built by considering the dependencies

between the dictionary elements that appear in the signal representation instead of their mere

number. In that spirit, group sparsity has been introduced as a way to enforce a pre-specified

structure in the sparse signal decomposition. In particular, the components of the dictionary

are partitioned into groups and the elements of each group are encouraged to appear simul-

taneously in the signal decomposition by an l1/ l2 regularization term [125]. Alternatively,

the atoms can also obey a predefined hierarchical structure [130]. Other approaches have

considered additional flexibility by constraining the signal decomposition to include elements

from overlapping groups of atoms [60, 55, 58]. The priors for structured sparsity can also be

considered in dictionary learning with interesting results like topographic or hierarchical dic-

tionaries [66, 61]. Such structured sparse models have been shown to improve the prediction

performance and the interpretability of the learned models when the imposed structure is

relevant [54]. They have been used successful in various applications like image restoration
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(a) Sparse (b) Topographic (c) Hierarchical

Figure 2.4 – Examples of dictionaries learned with different constraints for natural image
patches. In (a) we have the dictionary learned with traditional l1 sparse coding from [88]. In (b)
we have the topographic dictionary from [66]. During learning atoms are placed in a 2D grid
and separated into overlapping neighborhoods which serve as groups for the l1 − l2 penalty.
As a result similar atoms in the dictionary are encouraged to be spatially close in the 2D map.
Finally, in (c) we have the hierarchical dictionary from [61].

and topic modelling [60] as well as multi-task learning where they account for shared features

among tasks [78]. Some simple examples of the underlying relations between the atoms for

different cases of structure are shown in Figure 2.3. Moreover, in Figure 2.4, we show some

examples of dictionaries learned for natural image patches with different structure priors.

Although they have been quite successful, these structured priors cannot cover all forms of

structure in a dictionary as the form of the dependencies between the atoms is decided a

priori. To account for more generic cases of dependencies, some works describe the statistical

dependencies between the atoms in probabilistic form with graphical models. For example,

Markov Random Fiels (MRFs) are employed for modeling the underlying dependencies in

[89, 42, 26] . The resulting structure model is essentially a probability distribution function that

compares the different possible supports of atoms in the signal representation. Unfortunately,

these models tend to be highly parametric and hard to learn and; as a result they are less

popular in data analysis applications.

2.5 Multilevel architectures

To conclude our review on signal structures, we briefly discuss multilevel or, as they are more

often called, deep architectures [71]. In such cases, the structure of the model relies in its

depth: the model consists of a hierarchy of layers where each layer feeds its output to the

next one. The benefits of such architectures over the flat ones has been a subject of research

for a long time in the feature extraction and machine learning community. In some cases

these benefits have been validated experimentally [59]. The basic motivation is the possible

re-usability of the features in the hierarchy along with the potential progressive appearance of

more abstract features and disentangled factors at the higher levels.
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Among the most popular architectures are the deep autoencoders [51] and the convolutional

nets [67, 70, 74, 128]. The deep autoencoders on the one hand are neural nets with many

hidden, fully connected layers whose output target is the data input itself. The different hidden

layers successively transform the input into a hidden encoding which is then transformed

back to its original form at the output. The convolutional nets on the other hand consist

of a hierarchy of features that are convoluted with the input at each layer to produce the

corresponding feature maps. The features maps can be further processed with pooling and

contrast normalization operators before they serve as input to the next layer.

The training of these models consists in finding the weights or equivalently the features in each

layer and it can be a very complicated procedure. More importantly, it is not well understood

what the deep nets actually learn. Recently, there have been efforts to shed light on this matter

by trying to visualize the inputs that maximize the responses in each layer [127, 131] but

still the true behavior of deep nets remains a mystery. Nevertheless, deep nets have been

applied successfully in image recognition and classification [132, 67] achieving in many cases

state-of-the-art results. Finally, an alternative deep architecture, called invariant scattering

convolutional network [20], has recently emerged. It uses predefined wavelets as filters, and

therefore does not require any learning. Its performance on applications is still being evaluated

and the question ’to learn or not to learn’ the filters is still unanswered.

To sum up, in this chapter we have described some of the most popular models in representa-

tion learning that address the problem of uncovering the low-dimensional, latent structure of

signals. While very successful at times, most of them fail to provide representations that are

effective, meaningful and efficient at the same time. In the rest of this thesis, we will focus on

some specific models and we will present our ideas on how to remedy the aforementioned

issues.
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3 Manifold approximation

3.1 Introduction

In this chapter, we focus on manifold models and we try to address their lack of analytic

form by devising a manifold approximation scheme based on affine subspaces. Our objective

is to uncover a set of low dimensional affine subspaces that represent manifold data accu-

rately while preserving the manifold’s structure. We consider d-dimensional, differentiable

manifolds that are embedded into a higher dimensional Euclidean space, RN , N >> d . Intu-

itively, one can think of a d-dimensional manifold embedded into RN as the generalization

of a surface in N dimensions: it is a set of points that locally seem to live in Rd but that

macroscopically synthesize a structure living into RN .

Although manifolds are appealing for effective data representation, their unknown and usually

strongly non-linear structure makes their manipulation quite challenging. State-of-the-art

techniques in the field of manifold learning try to overcome this issue by inferring a global,

data-driven embedding scheme to map the manifold data from the original space to a low-

dimensional space. However, it is in general hard to compute a universal manifold representa-

tion that is accurate across all manifold areas. Therefore, it is often preferable to employ a set

of multiple, simpler structures to approximate locally and in the original space the manifold’s

geometry. An example of such an approximation for an 1D manifold is shown in Figure 3.1a,

where a set of lines approximates the spiral shape.

In this chapter, we employ affine subspaces (flats) to approximate generic manifolds. Such a

choice is motivated by the locally linear character of manifolds as well as the simplicity and

efficiency of flats for performing local computations, e.g., projections. Data representation

with affine models has received quite some attention lately as the popularity of state-of-the-art

techniques in subspace clustering has increased. However, these methods apply mainly to

cases where data is generated from different low dimensional subspaces that do not necessarily

form a manifold. Hence, they uncover a set of linear spaces that do not necessarily comply

with the manifold structure, such as the set of lines shown in Figure 3.1b.
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(a) (b)

Figure 3.1 – Manifold approximation illustration. On the left, we have an example of a valid
approximation by lines of a 1D manifold embedded into R2. The different colors represent the
different groups of samples, each approximated by a line. On the right, we have an example
where the approximation does not align well with the manifold structure, as a result of the
median k-flats algorithm [25].

Our objective is to compute a set of low dimensional flats that represent the data accurately

while preserving the geometry of the underlying manifold. To that end, we formulate the

manifold approximation problem as a constrained clustering problem for manifold samples

where the constraints are related to the underlying geometry. To represent the manifold

structure we use the neighborhood graph of the data samples and we relate the capability of a

set of points to be represented by a flat, with the variance of the tangents at these points. As it

will be shown in the following sections, this measure emerges naturally from the definition of

the local properties of a manifold. Other proposed measures in the literature are more ad-hoc

and rely more on the geodesic distances on the manifold as these are computed from the

neighborhood graph [120, 40].

Finally, to motivate the use of a greedy scheme for manifold approximation we borrow el-

ements of the constrained clustering theory. The partitioning in our scheme is done in a

bottom-up manner where each manifold sample is considered as a different group at the

beginning. Groups are then iteratively merged until their number reduces to the desired

value. We have tested our algorithm on both synthetic and real data where it gives a superior

performance compared to state-of-the-art manifold approximation techniques.

The rest of the chapter is organized as follows. In Section 3.2 we give some mathematical

definitions related to manifolds and tangent spaces, which are essential for the work presented

in the rest. In Section 3.3, we motivate the use of a greedy strategy with concepts from

constrained clustering theory and we present our novel problem formulation for the manifold

approximation. We present our approximation algorithm in detail in Section 3.4. In Section

3.5, we describe the experimental setup and the results of our experiments. Finally, in Section

3.6, we provide concluding remarks.
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3.2. Preliminaries

3.2 Preliminaries

In our manifold approximation method we use d-dimensional linear subspaces to approxi-

mate the distribution of the data. The linear subspaces as models form themselves a Rieman-

nian manifold as well, which is called the Grassmann manifold. The Grassmann manifold

is often referred to when signals are modeled with linear low-dimensional models [48, 120].

Among the various metrics for computing distances between linear subspaces [46], the most

natural one is the geodesic distance on the Grassmann manifold. This metric is computed

based on the angles between the subspaces. In the rest of this section, we will review some

basic definitions necessary for our method, along with the description of proper metrics.

First of all, a set M ⊆ RN is a d-dimensional differentiable manifold [105] iff ∀x ∈ M there

exist open sets V ∈RN with x ∈V and W ∈Rd as well as a one-to-one, differentiable function

f : W →RN with continuous inverse such that

f (W ) =M ∩V

f
′
(y) = D f (y), the Jacobian matrix of f , has rank d ,∀y ∈W (3.1)

The function f is called a coordinate system at x. Assuming that f (a) = x, the d-rank Ja-

cobian matrix D f (x) and the corresponding linear transformation f∗ : Rd
a → RN

x define a

d-dimensional subspace of RN
x , which is the tangent space of M at x denoted Mx . Instead

of working with a set of d-dimensional subspaces that are positioned at point x, it is more

convenient to translate all of them to the origin of RN . For simplicity in the rest of the paper,

Mx refers to the tangent space of x translated to the origin of RN .

After the shifting, the tangent spaces of M belong to the space of all d-dimensional linear

subspaces of RN ; this space is called the Grassmann manifold and it is denoted as GN ,d [36].

In GN ,d , the geodesic distance (arc length) between two subspaces is computed based on their

principal angles [122]. In particular, the principal angles 0 ≤ θ1 ≤ ·· · ≤ θd ≤ π

2
between two

tangents Mx and My are defined recursively by:

cosθk = max
uk∈Mx

max
vk∈My

uT
k vk

where uT
k uk = 1, vT

k vk = 1 and uT
k ui = 0, vT

k vi = 0, ∀i = 1, . . . ,k−1. Then, the geodesic distance

between Mx and My is defined as:

DT (Mx , My ) =
√√√√ d∑

i=1
θ2

i = ||θ||2 (3.2)

where θ = {θ1, . . . ,θd } is the vector of the principal angles of Mx and My .

Finally, we describe the notion of the mean tangent of a set of samples Ci . To define such

a quantity, we can use the generalization of the arithmetic mean to manifolds. To be more
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specific, the mean or center of a set C of points in the metric space S (with respect to a distance

D) has been given by Karcher in [64] as the element mC ∈ S that minimizes the sum of square

distances D’s to the points x in the set, i.e.,

mC = argmin
s∈S

∑
x∈C

D2(x, s) (3.3)

For a set Ci , where each sample x ∈Ci has a tangent space Mx . The mean tangent MCi can be

computed using the geodesic distance introduced in Eq. (3.2). Hence, Eq. (3.3) translates into:

MCi = argmin
M∈GN ,d

∑
x∈Ci

D2
T (Mx , MCi ) (3.4)

There are several methods that can be used to solve for MCi in Eq. (3.4). In this work, we have

used the algorithm based on singular value decomposition [27].

3.3 Manifold approximation problem

3.3.1 General framework

Equipped with the above definitions, we can now present our problem formulation. We

consider the problem of approximating a d-dimensional manifold M , embedded into RN ,

with a set of d-dimensional affine subspaces, which we call flats. The dimension d is an

external parameter in our problem; in practice it is either specific to the application at hand

or estimated a priori from the data. The manifold is represented by the set of samples X =
{xk ∈ RN ,k ∈ [1,n]} and the undirected and symmetric neighborhood graph GX = G(X ,E),

which represents the manifold’s geometry by connecting neighbor samples on the manifold.

Our objective is to uncover a partition of X into L clusters, CL (X ) = {Ci , i ∈ [1,L ]}, so that

each cluster can be well represented by a d-dimensional flat that respects the underlying

geometry of the manifold. The number of clusters L is also specific to the target application;

it could also be inferred from the data through an iterative procedure that stops when the

approximation error reaches a pre-defined threshold. In this paper, we simply consider that

the number of clusters is given as an external parameter to the algorithm.

3.3.2 Feasible partitions

In order for CL (X ) to be a partition of X , the involved clusters should not overlap and they

should cover the whole set X , i.e., C j ∩Ci = ;, ∀ i 6= j and ∪L
i=1Ci = X . There are many

different ways to partition a set into L clusters. However, not all possible partitions of X are

valid in our case since we are interested only in partitions that respect the underlying geometry

of the manifold. In particular, we would like to rule out the partitions whose clusters spread

over different regions of the manifold even if these clusters can be approximated well with
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flats as the flats do not comply with the local manifold structure. An example of such a bad

partitioning is illustrated in Figure 3.1b.

In order to check the compliance of a partition CL (X ) with the manifold’s shape we can use

the graph GX . Based on the above description, a sufficient condition for a partition to be valid

is to be composed of clusters with connected subgraphs. To be more specific, each cluster’s

subgraph is defined as GCi =GX (Ci ,Ei ) where Ei = {ai j ∈ E : xi , x j ∈Ci } is the set of edges in

E with both endpoints in Ci . Then, the subgraph GCi is connected if and only if there is a

connecting path in Ei for every pair of nodes in Ci .

The set of all partitions that fulfill this condition, i.e., the ‘good’ partitions, is called the

feasible set of order L and denoted by ΦL (X ). The corresponding feasibility predicate1,

ΦX (CL ) ≡ CL ∈ΦL (X ), is then defined as:

ΦX (CL ) = ∧
Ci∈CL

φ(Ci ), where φ(Ci ) =
true, if GCi is connected

false, if GCi is not connected,
(3.5)

where the symbol ∧ stands for logical addition.

In what follows, we are proposing a bottom-up approach to solve for the best partition CL .

Therefore, we need a rule that permits to merge clusters while preserving the feasibility of

the resulting partition. To this end, we define the fusibility predicate ψ(Ci ,C j ) that expresses

whether two clusters Ci and C j are ’related‘, i.e., they could be merged. It is closely related

with the feasibility predicate φ of Eq. (3.5) by the following property of binary heredity:

if Ci ,C j 6= ;, Ci ∩C j =;, φ(Ci )∧φ(C j ) and ψ(Ci ,C j ), then φ(Ci ∪C j ) (3.6)

This property means that the fusion of two ‘good’ and ‘related’ clusters should give a ‘good’

cluster. In our case, the ‘goodness’ of a cluster is defined in (3.5) and is related to the connec-

tivity of the clusters’ graph GC . Therefore, an appropriate choice for the ‘related’ predicate is

to make sure that the graph corresponding to the union of the two clusters is connected. A

sufficient condition consists in the presence of an edge between any sample in Ci and any

sample in C j . Therefore, the fusibility predicate becomes

ψ(Ci ,C j ) =
true, if Ci ,C j have an edge connecting them

false, otherwise.
(3.7)

3.3.3 Evaluation of feasible partitions

Equipped with the definition of feasible partitions and with a method to create new feasible

partitions from existing ones through merging fusible clusters, we now define a way to evaluate

the effectiveness of a feasible partition in capturing the manifold’s local geometry. We first

1The term ‘predicate’ is used to refer to boolean valued functions.
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need a criterion function P that is non-negative, distributive over the clusters in C and zero

for the case of single-element clusters, i.e.,

P (C) = ∑
Ci∈C

p(Ci ) with p(Ci ) ≥ 0 and p({x}) = 0, ∀x ∈X . (3.8)

The function p(Ci ), which represents the distribution of P over the clusters in a partition, has

to be non-negative for all clusters and zero for single-element clusters. In our case, the goal is

to uncover clusters that can be well-represented by d-dimensional flats; therefore the function

p should be measuring how well the points in the corresponding cluster can be represented

by a linear d-dimensional space.

From the definition of manifolds in Section 3.2, we can observe that the regions of the manifold

that can be well represented by linear d-dimensional spaces are the ones for which the function

f is linear. In such a case, we have the Jacobian matrices D f (a) = D f (b), ∀a,b ∈ W , which

means that the tangent spaces of all points x ∈M∩V coincide when they are seen as subspaces

in RN . Therefore, an appropriate measure of the linearity of a manifold region is the variability

of the tangent spaces in it. Hence, we introduce a variance-based criterion function p(Ci ) that

measures the variance of the tangents of the samples in a cluster Ci , i.e.,

p(Ci ) = ∑
x∈Ci

D2
T (MCi , Mx ) (3.9)

where MCi is the mean tangent over the tangents of the samples in Ci and DT is the geodesic

distance on the Grassman manifold given in Eq.(3.2) .

3.3.4 Problem formulation

We now formalize our manifold approximation objective as the problem of finding the feasible

partition C∗
L

(X ) that minimizes P , i.e.,

C∗
L (X ) = argmin

C∈ΦL (X )
P (C ) = argmin

C∈ΦL (X )

∑
Ci∈C

p(Ci ) (3.10)

where the criterion function p(Ci ) is given in (3.10) andΦL is defined in (3.5). The problem

of Eq. (3.10) can be solved with dynamic programming, i.e. by incrementally creating the

optimal partitions of different sizes starting with size 1 and exploring all possible ways to scale

up. To be more specific, from [4], the constrained clustering problem of Eq. (3.10) can be

expressed with the generalized Jensen equality [62]:

C∗
L (X ) =

{X }, L = 1

C∗
L−1(X \C∗)∪ {C∗}, L > 1

where (3.11)

C∗ = argmin
;⊂C⊂X

∃C∈ΦL−1(X \C ):C∪{C }∈ΦL
(X )

(P (X \C )+p(C )) (3.12)
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The symbol \ stands for set subtraction and ∪ for set addition. This is a dynamic programming

equation that may lead to polynomial time solutions under certain constraints, depending on

the characteristics of the clustering problem [5]. However, in the general case, this approach

gives rise to algorithms that have exponential time complexity. An alternative way of solving

problems of the form of Eq. (3.10) is presented in [3]. It allows for more efficient, but less

accurate algorithms as it proposes the use of a greedy framework instead of the dynamic

programming one. We opt for such an alternative approach for solving the problem in Eq.

(3.10).

In order to get to our greedy framework, we need a measure for comparing clusters and

deciding on proper merging choices. Thus, we define the dissimilarity measure d : (Ci ,C j ) →
R+

0 as the difference in the criterion function before and after the merging of two clusters, i.e.,

d(Ci ,C j ) = p(Ci ∪C j )−p(Ci )−p(C j ) = ∑
x∈Ci∪C j

D2
T (Mx , MCi∪C j )− ∑

x∈Ci

D2
T (Mx , MCi ) (3.13)

where DT is the geodesic distance on the Grassman manifold and MCi is the mean tangent of

cluster Ci . We assume that the merging of any two fusible clusters always gives rise to a cluster

with a higher score in terms of the criterion function. Under some mild assumptions on the

relations between P,d andΦ [3], we can now rewrite Eq. (3.10) as

C∗
L (X ) =

(
C

′
L+1(X ) \ {C

′
i ,C

′
j }

)
∪ {C

′
i ∪C

′
j } where (3.14)

(C
′
L+1(X ),C

′
i ,C

′
j ) = argmin

Ci ,C j∈C
C∈ΦL+1

ψ(Ci ,C j ) is true

(P (C)+d(Ci ,C j ))

This equation still suggests a dynamic programming solution. The difference with Eq. (3.11) is

that in Eq. (3.14) we move from higher values of L to lower ones, i.e., in order to find the best

partition of size L , we check all partitions of size L +1 for the pair of fusible clusters that can

be merged with the minimum cost.

From Eq. (3.14), it is now straightforward to derive a greedy approximation strategy for the

clustering problem by eliminating the search over the setΦL+1, i.e.,

ĈL (X ) =
(
ĈL+1(X ) \ {C

′
i ,C

′
j }

)
∪ {C

′
i ∪C

′
j } where (3.15)

(C
′
i ,C

′
j ) = argmin

Ci ,C j∈ĈL+1(X )
ψ(Ci ,C j ) is true

d(Ci ,C j )

With this approach, we reduce significantly the computational complexity of the scheme,

as we don’t perform an exhaustive search over all possible partitions of size L +1 anymore.

Instead, we rely on one partition of size L +1, the ĈL+1(X ), and perform a search over all

fusible pairs of clusters in this one. However, as it is often the case with greedy strategies, we
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cannot guarantee the optimality of the resulting partitions ĈL (X ) anymore.

3.4 Greedy cluster merging for locally linear approximation

Following the greedy strategy that is introduced in the previous section, our manifold approxi-

mation algorithm is based on grouping the manifold samples X according to local tangent

spaces, in order to minimize the cost function in Eq. (3.10) and to preserve the manifold geom-

etry. Our method is divided in two main steps. First, we perform the necessary preprocessing

steps on the samples in order to compute the graph GX and the tangent spaces Mx . Second,

we use the graph GX and the tangent spaces Mx ’s to greedily merge the samples into clusters

according to Eq. (3.15) until we reach a feasible partition with L components. The block

diagram of the method is presented in Figure 3.2 .

3.4.1 Tangent space

In the first step of the algorithm, our objective is to compute the neighborhood graph GX and

the local tangent space Mx for each sample x ∈X . There exist various ways to construct GX .

We have chosen to use the simplest one, namely the k-nearest neighbor approach, i.e., we

connect each sample in X with its k-nearest neighbors. The resulting graph GX is assumed

to be undirected and symmetric. For each sample x we can then define a neighborhood

Nx = {y ∈X : (x, y) ∈ E } as the set of samples that are connected to x by an edge in GX . Then,

we can approximate the tangent space at x by the d-dimensional subspace of RN that best

approximates the data in Nx . Equivalently, we compute Mx as the d-dimensional subspace of

RN that best approximates the neighborhood N 0
x i.e., Nx shifted to the origin1. In other words,

we need to compute the best d-rank approximation of the data matrix corresponding to N 0
x ,

denoted as [N 0
x ]. Based on Eckart-Young theorem [35], this approximation is equal to the

d-rank SVD of [N 0
x ]. Therefore, the tangent space Mx corresponds to the subspace spanned

by the left eigenvectors of the d dominant singular values of [N 0
x ].

The first step of our scheme is not the main focus of our work. Its purpose is to infer the local

geometry of the manifold and as such can be replaced by any other algorithm that achieves

the same objective. We have made simple choices, namely a k-nearest neighbor algorithm for

representing the local manifold geometry and SVD decomposition for tangent computation.

Our goal is to show that tangent space information can be effective in manifold approximation

even when tangents are computed with naive techniques. More sophisticated techniques can

be used for tangent computation e.g. [37], [123], as any further improvement of this step can

only benefit the overall algorithm. For example, one can account for the noise in the data

using the method shown in 3.3. After computing the tangents with the process described

above, an additional improvement step is performed by averaging neighboring tangents. In

1We apply a shift operator T~x to the whole neighborhood Nx , where~x is the vector corresponding to the sample
x in RN . This operator moves x to the origin and brings along all its neighborhood, while preserving all distances
in it.
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Sample set X
Neighborhood parameter k
Manifold dimensionality d
Number of flats/clusters L

Input

Neighborhood graph GX

Local Tangent Spaces Mx

Step 1: Tangent Spaces (Section 3.4.1)

{Mx}

Start with n clusters Cn

Compute the costs for merging
the fusible clusters (Eq. 3.23)

Merge the pair with the min cost

Find a flat for the new cluster (Eq. 3.3)

Number of clusters == L ?

Compute final flats F

Step 2: Greedy Merging (Section 3.4.2)

Partition C∗
L, Flats F

Output

Yes

No

Figure 3.2 – The block diagram of the system.

this way, the final tangents are smoothed and the effect of noise is almost cancelled. However,

such alternative solutions for tangent space computation go beyond the scope of this work.

3.4.2 Greedy merging

Once the graph and the tangent spaces have been computed, we proceed with solving the

optimization problem presented in Eq. (3.10). In order to minimize the cost function, we

follow the method presented in Eq. (3.15). We start with n = |X | separate clusters, one for

each sample. This is the optimal partition for n clusters, i.e., C∗
n = {{x}, x ∈ X }. Then, we

reduce the number of clusters iteratively, by merging the clusters Ci and C j with the minimum
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(a) (b) (c)

Figure 3.3 – An example of smoothing of the tangents in case of noisy data. In (a) we have the
tangents computed based on the original data and in (b) the corresponding tangents in case of
noisy data. Then, in (c) we see the result of the smoothing. As we can observe, the smoothing
process (averaging in this case) improves significantly the appearance the computed tangents,
resulting in almost removing the side effects of noise.

dissimilarity, until we reach the desired number of clusters L .

At each iteration, there exists a set of possible mergings between the clusters in C. The fusibility

predicate, given in Eq. (3.6), defines the sufficient condition for a pair of clusters to be fusible:

any cluster Ci can be merged with any of its neighbors, i.e., the set NGCi = {C j : ∃x ∈Ci , ∃y ∈
C j s.t (x, y) ∈ E }. The dissimilarity between Ci and C j ∈ NGCi is given by Eq. (3.13) as

d(Ci ,C j ) = ∑
x∈Ci∪C j

D2
T (Mx , MCi∪C j )− ∑

x∈Ci

D2
T (Mx , MCi )− ∑

x∈C j

D2
T (Mx , MC j )

= ∑
x∈Ci

D2
T (Mx , MCi∪C j )− ∑

x∈Ci

D2
T (Mx , MCi )

+ ∑
x∈C j

D2
T (Mx , MCi∪C j )− ∑

x∈C j

D2
T (Mx , MC j ) (3.16)

Note that, since MCi and MC j are respectively the mean tangents of Ci and C j , each of them

is the subspace that minimizes the sum of the square distances from the tangents in each

cluster (see Eq. (3.3)). As a result, MCi∪C j can only produce the same or a higher value than

MCi when measuring the sum of square distances from the tangents in Ci . In other words,∑
x∈Ci

D2
T (Mx , MCi∪C j ) is greater or equal to

∑
x∈Ci

D2
T (Mx , MCi ). The same holds for the cluster

C j . Therefore, d(Ci ,C j ) is always non-negative.

Unfortunately, it is costly to compute Eq. (3.16) for all feasible mergings as it requires the

computation of the mean tangent for all possible merged clusters. We would rather use a

measure that depends only on the information that is already available to the algorithm, i.e.,

the means of the clusters that we have computed so far and their distances to the tangents in

their clusters. Moreover, since we are using a greedy bottom-up approach with an initial cost

equal to zero, we have to ensure that, at each iteration of the algorithm, the chosen merging

does only marginally increase the overall cost. Therefore, an upper bound for d(Ci ,C j ) that
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3.4. Greedy cluster merging for locally linear approximation

depends only on the means of the existing clusters would be a suitable approximate dissimi-

larity measure d̃(Ci ,C j ) for our algorithm. It would contribute in reducing the complexity of

the algorithm by limiting the amount of necessary computations at each iteration.

In order to compute our approximate measure d̃(Ci ,C j ), we need to perform a series of steps.

First, we observe that:∑
x∈Ci

D2
T (Mx , MCi∪C j ) ≤ ∑

x∈Ci

D2
T (Mx , MC j ), (3.17)

which means that the mean tangent of Ci ∪C j is closer to the mean tangent of Ci than the

mean tangent of C j . This statement, which also holds if we interchange the clusters Ci

and C j , is inevitably true. Indeed, by contradiction, if
∑

x∈Ci
D2

T (Mx , MCi∪C j ) is larger than∑
x∈Ci

D2
T (Mx , MC j ), then

∑
x∈Ci∪C j

D2
T (Mx , MCi∪C j ) is also strictly larger than∑

x∈Ci∪C j
D2

T (Mx , MC j ). But, this contradicts the optimal character of MCi∪C j for representing

Ci ∪C j in terms of the geodesic distance.

Then, by substituting Eq. (3.17), and its equivalent form for C j in Eq. (3.16), we have:

d(Ci ,C j ) ≤ ∑
x∈Ci

[
D2

T (Mx , MC j )−D2
T (Mx , MCi )

]
+ ∑

x∈C j

[
D2

T (Mx , MCi )−D2
T (Mx , MC j )

]
(3.18)

Moreover, by the triangle inequality:

DT (Mx , MCi ) ≤ DT (Mx , MC j )+DT (MCi , MC j ), ∀x ∈X (3.19)

DT (Mx , MC j ) ≤ DT (Mx , MCi )+DT (MCi , MC j ), ∀x ∈X (3.20)

Taking the square of these inequalities and summing over C j and Ci respectively we get:∑
x∈C j

[
D2

T (Mx , MCi )−D2
T (Mx , MC j )

]≤
2DT (MCi , MC j )

∑
x∈C j

DT (Mx , MC j )+|C j |D2
T (MCi , MC j )

∑
x∈Ci

[
D2

T (Mx , MC j )−D2
T (Mx , MCi )

]≤
2DT (MCi , MC j )

∑
x∈Ci

DT (Mx , MCi )+|Ci |D2
T (MCi , MC j ) (3.21)

Substituting Eq. (3.21) in Eq. (3.18) we finally have the following upper bound for the dissimi-

larity measure:

d(Ci ,C j ) ≤ (|Ci |+ |C j |)D2
T (MCi , MC j ) (3.22)

+2DT (MCi , MC j )

[ ∑
x∈Ci

DT (Mx , MCi )+ ∑
x∈C j

DT (Mx , MC j )

]
,
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Chapter 3. Manifold approximation

which depends only on pre-computed information. Therefore we can define our approximate

dissimilarity measure d̃(Ci ,C j ) as

d̃(Ci ,C j ) = (|Ci |+ |C j |)D2
T (MCi , MC j ) (3.23)

+2DT (MCi , MC j )

[ ∑
x∈Ci

DT (Mx , MCi )+ ∑
x∈C j

DT (Mx , MC j )

]
,

By comparing Eq. (3.23) with Eq. (3.16), we can observe that Eq. (3.23) is indeed more

computationally efficient as it involves only the means of the existing clusters and not those

of the clusters after merging the fusible pairs. In our algorithm, the costs for all possible

mergings at each iteration are thus computed according to Eq. (3.23). The clusters with the

minimum estimated merging cost are then combined and the mean of the newly formed

cluster is computed as shown in Section 3.3.3. The procedure is then repeated until we reach

the desired number of clusters L .

At the end, each cluster represents a group of samples that can be well approximated by a d-

dimensional flat. We compute the final flats for each cluster and we use the subspace spanned

by the left eigenvectors corresponding to the d dominant singular values of each cluster’s

data matrix as representative subspace. The overall manifold approximation algorithm is

summarized in Algorithm 1.

Algorithm 1 Agglomerative clustering based on differences of tangents (ACDT)

Input: X ,k,L ,d
1: Construct G(X ,E) . Step 1, Section 3.4.1
2: for all x ∈X do
3: Nx = {y ∈X : (x, y) ∈ E } . Compute neighborhoods
4: [N 0

x ] =U SV T , Mx =U . Compute tangent spaces
5: end for
6: n = |X |, λ= 0, C∗

n = {{x} : x ∈X } . Step 2, Section 3.4.2
7: for λ< n −L do
8: (C

′
i ,C

′
j ) = argmin

Ci ,C j∈C∗
n−λ

ψ(Ci ,C j ) is true

d̃(Ci ,C j ) . Eq. (3.23)

9: C∗
n−λ+1 = (C∗

n−λ \ {C
′
i ,C

′
j })∪ {C

′
i ∪C

′
j }

10: Compute MC
′
i ∪C

′
j

. Eq. (3.4)

11: λ=λ+1
12: end for
13: for Ci ∈ C∗

L
do . Compute the final flats Fi

2

14: [C 0
mi

] =U SV T

15: Fi =U
16: end for
Output: C∗

L
,F

2mi is the sample mean of Ci , [C 0
mi

] is the data matrix formed by the samples in Ci shifted by mi and U ,S,V
are the results of its d-rank SVD.
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3.4. Greedy cluster merging for locally linear approximation

3.4.3 Computational complexity

We now analyze and compare briefly the complexity of both versions of the manifold ap-

proximation algorithm, the one using the exact dissimilarity measure of Eq. (3.16) and the

other using the approximate measure of Eq. (3.23). The preprocessing step is the same for

both schemes and it is skipped in the following analysis. Then, the operations that are time

consuming in our scheme are the tangent distance computations and the computation of

mean tangents. In the following we will consider that both have similar computational costs.

Computing the cost of a possible merging with Eq. (3.23) requires only the computation of one

additional tangent distance at each step. Denoting by Kn−λ the number of possible mergings

in the clustering Cn−λ at step λ, the complexity of one step of the greedy merging (line 9 in

Algorithm 1) requires Kn−λ computations of tangent distances. Then, the operation at line 11

also requires one mean tangent computation plus |C ′
i ∪C

′
j | tangent distance computations for

the newly formed cluster. Therefore, the greedy merging (lines 8-12 in Algorithm 1) will be

performed with a time complexity of Tappr ox (n) =O
(∑n−L

λ=1 (1+|C ′
i ∪C

′
j |+Kn−λ)

)
where n is

the number of data samples.

On the other hand, if the exact dissimilarity measure was used, Eq. (3.16) would require one

mean tangent computation plus |C ′
i ∪C

′
j | tangent distance computations for every possible

merging. Then, after picking the winning merging, no further actions would be required. In

total, the scheme would have a time complexity of Texact (n) =O
(∑n−L

λ=1 (1+|C ′
i ∪C

′
j |)Kn−λ)

)
.

To complete our analysis, we need to estimate the number of possible mergings Kn−λ. Since,

at each step of the algorithm, we perform one merging operation, we will have exactly n −λ
clusters at step λ. Moreover, each Ci ∈ Cn−λ will have on average a size equal to ˜|Ci | = n

|Cn−λ|
=

n

n −λ and therefore we have that Ci has at most k
n

n −λ different neighbors. Thus, the number

of possible mergings is at most Kn−λ ≤
1

2
|Cn−λ|k

n

n −λ = 1

2
kn.

By substituting Kn−λ from above and |C ′
i ∪C

′
j | with its average in Tappr ox (n) we get:

Tappr ox (n) =O

(
n−L∑
λ=1

(
1+2∗ n

n −λ + 1

2
kn

))
=O

(
n−L∑
λ=1

1

2
kn

)
=O

(
n2) (3.24)

For the exact dissimilarity measure we have:

Texact (n) =O

(
n−L∑
λ=1

(
1+ n

n −λkn
))

=O
(
kn2(Hn−1 −HL−1)

)=O
(
n2 lnn

)
(3.25)

which is higher than the average running time of our approximate algorithm1. Therefore,

we can clearly see that the use of the approximate dissimilarity measure is beneficial for the

1Hn , HL are the harmonic numbers of order n and L respectively
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Chapter 3. Manifold approximation

computational complexity of the algorithm.

3.5 Experimental results

To study the performance of our manifold approximation scheme, we have tested it for both

synthetic and real datasets. We have compared our scheme (ACDT) with two other manifold

approximation approaches from the literature, namely the Hierarchical Divisive Clustering

(HDC) [120] and the Hierarchical Agglomerative Clustering (HAC) [40]. The HDC algorithm

starts with considering all the data as one cluster and then hierarchically partitions them by

dividing highly non-linear clusters. As a linearity measure, it uses the deviation between the

Euclidean and geodesic distances, i.e., each cluster gets a nonlinearity score that is equal to

the average ratio of the geodesic distance over the Euclidean one for all the pairs of samples

in the cluster. The process continues until all existing clusters have a nonlinearity score

that is lower than a given threshold. On the other hand, HAC is a bottom-up algorithm,

i.e., each sample is considered at the beginning as a separate cluster and then clusters are

merged iteratively until their number reduces to the desired target. At each iteration of the

algorithm, the pair of clusters with the minimum distance is merged. The distance between

two clusters is measured as the average geodesic distance between the samples of the one

cluster and the samples of the other. Our scheme follows also a bottom-up strategy; however

our distance measure is completely different than the one in [40]. Instead of relating our

merging decisions to the average geodesic distances, we use the variance of tangents to decide

on proper mergings. This choice has been motivated by the definition of tangents as the best

locally linear approximations of manifolds and has been proven very effective in practice.

In order to quantify the performance of the compared schemes, we have used the mean

squared reconstruction error (MSRE). The MSRE is defined as

MSRE = 1

N

N∑
i=1

||xi − x̂i ||2

where xi and x̂i are respectively a data sample and its projection on the corresponding ap-

proximating flat, while N is the total number of signals. For the HDC and HAC algorithms,

whose output is a set of clusters and not a set of representative flats, we have computed the

corresponding flats by principal component analysis on the data of each cluster. The results

of our experiments for all three algorithms are given below for three different datasets.

3.5.1 Synthetic Data

Firstly, we test the performance of our scheme in approximating synthetic manifolds. We

use the Swiss roll and the S-curve dataset. The training set for both cases consists of 5000

points, randomly sampled from the manifolds. The neighborhood size k is set equal to 15 in

the experiments. We have observed that it is preferable to use low values for k, varying from
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Figure 3.4 – Mean squared reconstruction error (MSRE) versus the number of flats. The error
on the y-axis is shown in logarithmic scale.

0.5% to 2% of the total number of samples, in order to avoid “short-circuit” effects that distort

the manifold structure.

The MSRE versus the number of flats, for our synthetic manifolds, is presented in Figure 3.4.

The results are averaged over 10 randomly chosen training sets. From Figure 3.4, we can see

that our scheme approximates better the manifold structure than the other approaches. The

approximation performance is better even for a small number of flats but the differences are

more evident in the mid-range cases where the number of flats is between 15 and 30. For

higher number of flats, the difference stabilizes around 50 to 60 flats when the MSREs of the

algorithms converge. The effectiveness of our method is mainly due to the use of the difference

of tangents for measuring the linearity of sample sets instead of the geodesic-based criteria

used by other algorithms [120, 40].

For the sake of completeness, we also give in Table 3.1 the running times for the three algo-

rithms in the case of 60 flats. We can see that the two bottom-up schemes are a bit penalized

in terms of complexity as they start with a high number of clusters (equal to the number of

points) and proceed with mergings until they reach the desired number of clusters, which is

significantly smaller in this experiment. On the other side, HDC has to perform fewer splittings,

as it starts with considering all points as one cluster. As far as ACDT is concerned, we would

like to note that there is still room for improvement as the code used is far from optimized.

For example, a significant gain could be achieved by optimizing the SVD computations but

this is beyond the scope of our paper.

ACDT HDC HAC
Running time (sec) 389 15 288

Table 3.1 – Running times for the three algorithms in case of the Swiss role data and 60 flats.
The results were obtained on an Intel Core Duo 2.66 GHz, MacBook Pro.
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Figure 3.5 – The final groups formed by the proposed approximation algorithm with 12 flats.
Each color represents a different cluster of points.
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Figure 3.6 – The final groups formed by the HDC, HAC, LSA and spectral clustering algorithms
with 10 flats. Each color represents a different cluster of points.
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Figure 3.7 – MSRE for natural patches for different choices of the flats’ dimensionality. The
error on the y-axis is shown in logarithmic scale.

Finally, an example of the final groups computed by our algorithm is shown in Figure 3.5 for the

case of 12 flats. In this figure, we see that the structure of the manifold is correctly preserved by

the proposed manifold approximation algorithm. The final groups for the HDC and the HAC

algorithms for the S-curve data are shown in Figure 3.6. Moreover, to strengthen our argument

on the inappropriateness of general subspace clustering methods for manifold data, we also

provide the results of Local Subspace Affinity (LSA) method [124] and spectral clustering in

the same Figure. For spectral clustering we used the same k-nearest neighbor graph as for our

own scheme, weighted with tangent distances by the formula wi j = 1−
DT (Mxi , Mx j )

maxDT

where

maxDT is the maximum tangent distance over the whole dataset. As we can see clearly from

the plots, all algorithms fail to uncover clusters that comply with the manifold geometry. The

spectral clustering, HDC and HAC achieve better results than LSA but when compared to

ACDT it is obvious that they orient their clusters in the wrong way.

3.5.2 Natural patches

We have also tested the performance of our scheme in approximating natural image patches

since they are often assumed to form a lower dimensional manifold, e.g. [93]. The manifold

samples are taken from the training set of the Berkeley Segmentation Dataset (BSDS) [85]. Each

patch is of size 8×8 and captures a square region of a natural image. Before approximating

the manifold, we preprocess the patches so that they have zero mean and unit variance. For

constructing the manifold we use 10,000 patches and k is set equal to 100.

The approximation performance (in terms of the MSRE) versus the number of flats is pre-

sented in Figure 3.7. We have plotted the approximation error for three different choices of the

flats’ dimensionality, i.e., d = 16,32 and 60 respectively. As we can observe from the plots, in

all cases, our scheme approximates significantly better the manifold structure than the other

approaches and the differences increase as the dimensionality of flats increases. The perfor-

mance of the HDC and the HAC schemes is quite similar with the HDC usually outperforming

the HAC. These results suggest that our approximation algorithm is very promising even in
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Figure 3.8 – Example faces from the VidTIMIT database after face detection and downsampling.
The size of the images is 26×26

cases where the underlying structure of the data cannot be easily identified. The effectiveness

of our method is mainly due to the use of the difference of tangents for measuring the linearity

of sample sets instead of the geodesic-based criteria used by other algorithms

3.5.3 VidTIMIT faces

In a last set of experiments, we have also tested the approximation power of ACDT on faces

taken from the VidTIMIT database [102]. This face database contains 3 different video se-

quences for 43 subjects. In each video sequence, the person performs a head rotation starting

from the frontal position and moving sequentially to the right, left, center, up and down. For

our experiments, we have first isolated the faces with the P. Viola’s face detector [119] from

all the video sequences and then downsampled the images to size 26×26. Some resulting

example faces are shown in Figure 3.8.

Based on the assumption that all face images belonging to the same subject form a low

dimensional manifold, we have used the previous algorithms to approximate this manifold

with different number of flats. The dimension of the manifold was set to 10 and the number of

neighbors k = 15. The results of the approximation for two of the subjects are shown in Figure

3.9. For this experiment,in addition to the MSRE, we also provide results in terms of the median

SNR in the image reconstruction. As we can see from these plots ACDT generally outperforms

the other two algorithms, although the differences are not extremely big. However, there

are sample cases where the performance of the schemes is significantly different. Such an

example is shown in Figure 3.10, where we can see that ACDT achieves a significantly better

approximation than the other schemes. The reason is that the group that the sample belongs

to with ACDT is more uniform than the corresponding group uncovered by HDC and HAC.

These groups are shown in Figure 3.11 where it is obvious that the group of ACDT contains

mainly frontal poses with open eyes, while the same group in the other algorithms includes

also closed eyes and downwards or slightly profile poses.

3.6 Conclusion

In this chapter, we have considered the problem of manifold approximation with affine sub-

spaces while preserving the underlying structure. For this purpose, we employed a greedy

technique that partitions manifold samples into groups based on the difference of local tan-

gents. We have borrowed elements of the constrained clustering theory to motivate the use of
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Figure 3.9 – Results for the MSRE and median SNR for two subjects in VidTIMIT database.

ACDT, SNR = 30 dBHDC, SNR = 24 dBHAC, SNR = 23 dBOriginal

Figure 3.10 – The reconstruction of a sample face based on the approximating flats.

33



Chapter 3. Manifold approximation

a greedy scheme for manifold approximation. Our method has shown to be quite powerful for

manifold approximation where it outperforms state-of-the-art manifold approximation ap-

proaches both in terms of preserving the manifold structure and reducing the approximation

error.
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(a) ACDT

(b) HDC

(c) HAC

Figure 3.11 – The corresponding group for the sample image in Figure 3.10 according to the
different approximation schemes.
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4 Structured sparse molecule coding

4.1 Introduction

In this chapter, we focus on sparse signal representations and we propose a new signal model

to represent signal patterns and higher level structures. Our model represents signals as

sparse sets of molecules, which are linear combinations of atoms from a redundant dictionary

of elementary functions. It permits to efficiently represent the signal structures as parts or

patterns; it builds richer priors than classical structured sparsity models that merely focus

on the support of the signal representation and not the actual energy distribution. As such,

the traditional priors are not suitable for differentiating patterns with the same support but

different distributions, which could actually be very different signal patterns. Such a case is

presented in Figure 4.1 where we show how much the image of a face can change when varying

the coefficients of its sparse code while keeping the same support.This ambiguity is unfortu-

nately a serious drawback in various applications such as signal recovery and recognition, for

example.

To be more specific, we define representative molecules whose prototypes are linear combi-

nations of atoms, or equivalently typical patterns in images. Then, we introduce the idea of

molecule realizations in order to take into account the variability of patterns in natural images.

The molecule realizations are slightly deformed versions of molecule prototypes with small

deviations in the coefficients and possibly in the support of the atoms. However, capturing

such changes in the support of the codes is quite challenging. To this end, we form pools

of similar atoms in the dictionary, and assume all atoms in a pool carry similar information.

Then, we allow atoms in the molecule prototypes to be replaced by similar atoms from their

respective pools when forming the molecule realizations. As a result, a given molecule can

take various forms that are controlled by the construction of the atom pools. This scheme

provides flexibility in the representation of signals with molecules, while preserving the main

structural information in the sparse signal approximation. The molecule prototype is essen-

tially expressing a main visual pattern while its realizations allow for signal dependent versions

of the main pattern with possibly minor deformations.
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(a)

(b) (c) (d)

Figure 4.1 – An example of the ambiguity related to the support of the sparse codes. In (a) we
show the image of a face and in (b) its sparse approximation with 60 atoms on a dictionary of
Gaussian atoms. The next two columns are produced by randomly choosing the values of the
coefficients on the same support. The final signal is then normalized. The resulting images
are quite different than the original face proving the importance of the coefficients along with
the support of the sparse code.

Our efficient structured sparsity model represents a quite unique framework in the literature.

In particular, the consideration of the coefficient distribution and the atom pools, as well as

the definition of both molecule prototypes and realizations, are important characteristics of

our new signal representation model. The coefficients permit to differentiate structures with

distinct energy distributions on the same support and thus to facilitate the proper recovery

of image information in case of incomplete or inaccurate observations. Another definition

of molecule has been previously proposed in [31] to describe a set of coherent atoms in a

dictionary, but it is more related to the notion of a group or a pool of atoms than to our original

definition of a molecule. The idea of pooling that is used for defining molecules realizations

is quite often used under different forms to provide local invariance [66, 67] in the signal

representation. In our case however, it provides local invariance to small deformations of a

set of atoms with higher resilience to sparse code variability in the identification of typical

patterns in images. Finally, the differentiation between the molecule prototypes and molecule

realizations in our new model leads to realizations of structures that are signal dependent, like

in [98, 128]. Hence, the signal representation is flexible but nevertheless follows a pre-defined

structure. The specific characteristics of our scheme make it very suitable for various signal

processing tasks and especially signal denoising and inpainting.

The structured sparsity model proposed in this paper is essentially a two-layer architecture

with the first layer consisting of the dictionary atoms and the second of the molecules. Deep

architectures have been a subject of research for a long time in the machine learning com-

munity with very promising recent results [67, 70] and they have recently started becoming

more popular in the context of dictionary learning too [109, 101]. In [109], the authors intro-

duced a multilevel dictionary structure where at each level the signals were concentrated near
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hyperlines. Molecules could also be considered hyperlines, however in contrast to [109], we

allow signals to be composed of more than one molecules in the same level of structure. On

the other hand, the structure model in [101, 2] is closer to ours as they authors constrain the

dictionary atoms to be sparse combinations of the atoms in a base dictionary. The proposed

models however are more rigid than ours, as we include the notions of pools and molecules

realizations that enable the proper handling of minor structure deformation in the signals.

The rest of the chapter is organized as follows. In Section 4.2 we describe our model in detail,

we discuss different options for the molecule realizations and we exploit the characteristics

of atoms pools to design effective similarity measures for detecting energy-based molecule

realizations in signals. In Section 4.3 we formally show that our choice of the synthesis

dictionary based on molecules realizations provides a good compromise between structure

and flexibility. Then, in Section 4.4 we propose a novel constructive sparse coding algorithm of

signals with our new structured sparsity model. Finally, in Section 4.5 we show the use of our

framework with illustrative experiments in various applications such as compressed sensing,

inpainting and denoising. Our results show that our structured sparsity prior leads to better

reconstruction performance than classical sparsity priors due to its flexible molecule-based

representation.

4.2 Structured image model

We present now our new structured sparsity model for images whose multi-level structure

permits to represent visual patterns or typical signal parts as combinations of elementary

atoms in a dictionary. In other words, we define molecules as linear combinations of atoms to

represent groups of structurally similar signal patterns. We define the concept of molecule

prototypes along with molecule realizations that are slightly deformed versions of the proto-

types aiming at capturing additional signal variability. We first present our new model and

then discuss the concept of molecule realizations in more detail. We start by introducing

a simple case of possible deformations, namely the error-based realizations that allow for

flexibility only in the coefficients of the molecule prototypes. Next, we extend our definition of

molecule realizations to the energy-based ones that allow changes in both the coefficients and

the support of the prototype. To this end, we introduce the notion of pools of atoms, which

is central for computing energy-based molecule realizations. Based on this notion, we then

introduce a new structural difference function that is later used to compare visual patterns

when computing image representations.

We first provide an example to illustrate our structured sparsity model. Our model is built

on the concepts of molecule prototypes and realizations. The prototype is a representative

pattern for a group of molecule realizations, which are slightly deformed versions of a typical

image part. The top left image in Figure 4.2 shows a molecule prototype, which is an orthogo-

nal angle formed by two edge-like atoms from the dictionary of elementary atoms. In other

words, the molecule prototype is represented by a particular linear combinations of atoms, as
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l2:  0.44348

l2:  1.2671

l2:  0.64469

l2:  1.2666

l2:  0.40551

l2:  1.3337

l2:  0.63039

l2:  1.234

Figure 4.2 – Illustrative example of a molecule prototype and its realizations. In the first row,
the molecule prototype (on the left) represents a near orthogonal crossing of edges while
the molecule realizations describe visual patterns that are similar to the prototype. The l2

distance between the prototype and the realizations in the image domain is given on top of
each realization. In the second row, we show the corresponding sparse codes of the images in
(a). The l2 distance of the sparse codes seen as vectors in ℜN is given on top of each figure. As
we can see, none of the metrics depicts accurately the structural similarity among the patterns.

shown in the first bottom atomic energy distribution plot in Figure 4.2. The molecule could

however appear with small deformations in actual images, and such molecules realizations are

illustrated in the rest of the images in Figure 4.2. They look quite similar to the molecule pro-

totype and preserve to some extent its structural characteristics, but they are not constructed

with the exact same atoms, as illustrated by their respective coefficient distribution plots in

the second row.

4.2.1 Multi-level structure

We now describe our new signal model in more details. We consider a set of signals X ∈RN×B

and a base dictionary D ∈RN×K of elementary functions or atoms dk with 1 ≤ k ≤ K , whose

linear combinations can effectively represent the signals X . We assume that the occurrence

of atoms in the signal representation is not completely independent but that atoms rather

have the tendency to form typical visual patterns. In other words, there are some linear

combinations of atoms that tend to appear more frequently than others, possibly with slight

changes either in the energy distribution or atom sets. The most frequent atom combinations

are represented by a set of molecule prototypes M = {ml , l ∈ {1, ..,Q}} where each prototype is

defined as a sparse set of atoms with specific coefficient values, i.e.,

ml =
K∑

k=1
cπ,l (k)dk = Dcπ,l , ||cπ,l ||0 < n (4.1)

where n is the sparsity level of the molecules. We assume cπ,l (k) ≥ 0,∀k ∈ [1, . . . ,K ] and we

define the support Γπ,l of the molecule ml to be the set of atoms dk with cπ,l (k) > 0 i.e.,

Γπ,l = {dk ∈ D, cπ,l (k) > 0}. The non-negativity of coefficients will be explained in more detail

40



4.2. Structured image model

Term Description Definition
Molecule group of structurally similar

signal patterns
prototype & realizations

Molecule
prototype

main visual pattern of the
molecule

linear combination of atoms specified by the
coefficient vector cπ,l

Molecule
realization

possibly deformed versions
of the main pattern

linear combination of atoms specified by a
coefficient vector cx,l with ∆(cπ,l ,cx,l ) < t ,∀l

Table 4.1 – Description and definition of the concepts of molecules and their prototype and
realizations.

in Section 4.2.3. We can further write all the molecule prototypes in a matrix form as

M = DCπ, with Cπ =
[
cπ,1 cπ,2 · · · cπ,Q

]
. (4.2)

We consider that the molecules correspond to the most important parts in the signals, but

that they may appear as realizations that are similar but not identical to the prototypes. Equiv-

alently, we consider a signal x ∈ X to be a sparse non-negative combination of molecules

realizations plus some bounded noise. We define cx,l as the vector of atom coefficients that

expresses the realization of the molecule ml in x. We further consider that the difference be-

tween a molecule realization and the corresponding prototype is small, i.e., ∆(cπ,l ,cx,l ) < t ,∀l ,

where the function ∆ measures the structural difference between molecules. The parameter t

is a threshold value on the structural difference and its value permits to control the flexibility

of our new multi-level model in capturing the variability in typical visual patterns. The signal

can therefore be written as

x = DCx a +η, with Cx = [
cx,1 cx,2 · · · cx,Q

]
and ∆(cπ,l ,cx,l ) < t ,∀l ∈ [1, . . . ,Q] (4.3)

We further consider that the approximation error is bounded (i.e., ||η||2 < H), the atom and

molecule coefficients are defined as ai ≥ 0,∀i and cx,i (k) ≥ 0,∀(k, i ) and the representation is

sparse, i.e., ||a||0 ≤ s for some sparsity threshold s.

The image model in Eq. (4.3) corresponds to a sparse decomposition of x into molecule

realizations, or equivalently the expansion of the signal x into dictionary atoms whose coef-

ficients are given by Cx a. The grouping of atoms into representative molecules is driven by

the choice of the structural difference function ∆ that quantifies the deviation of molecule

realizations from the corresponding prototypes. A summary of the newly introduced concepts

of molecules is given in Table 4.1. In the rest of this section, we present more details about

the definition of molecule realizations and we provide the corresponding formula for the

structural difference ∆(cπ,l ,cx,l ).
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4.2.2 Error-based realizations

The matrix Cπ serves as a rich prior about the signal that specifies simultaneously the support

and the coefficients of the molecule prototypes. To allow however some flexibility in the

coefficients in the molecule realizations we can incorporate a constrained error matrix to

capture such deviations from the prototype coefficients while preserving their support. To be

more specific, we denote the error vectors Ex,l ∈RK , ∀l ∈ [1, . . . ,Q] and we have

cx,l = cπ,l +Ex,l ,∀l ∈ [1, . . . ,Q] (4.4)

To ensure the preservation of the support we demand that Γx,l ⊆ Γπ,l where Γx,l and Γπ,l are

the supports of cx,l and cπ,l respectively. Therefore, from Eq. (4.4) we get that the support of

Ex,l should also follow the same restriction, i.e., ΓEx,l ⊆ Γπ,l . Therefore,

cx,l = cπ,l +Ex,l , with ΓEx,l ⊆ Γπ,l ,∀l (4.5)

In this case, the structural difference ∆(cπ,l ,cx,l )l can be the usual l1 or l2 norm of the differ-

ence between cπ,l and cx,l i.e, the norm of the vector Ex,l . The choice between the two norms

depends on the application and it is related to whether the number of erroneous coefficients

in the realizations is important or not. In our work [65], we have applied the l1 norm as struc-

tural difference, i.e.∆(cπ,l ,cx,l ) = ||cπ,l −cx,i ||1 = ||Ex,l ||1, with interesting results to denoising

experiments.

4.2.3 Energy-based realizations

Even though the definition of molecule realizations in Eq. (4.5) allows some flexibility in the

coefficients, it does not cover cases where deviations in the support of the prototypes appear

as well, such as the ones that we show in Figure 4.2. In order to extend our definition to

capture such additional deviations, we introduce the concept of atom pools which is central

for computing molecule realizations that can capture both types of variation. The atom pools

are groups of similar atoms in the dictionary, and we use them to define a structural difference

metric∆ that can account for simultaneous deviations in both the coefficients and the support

of the prototypes. This measure is later used to compare visual patterns when computing

image representations.

Pools of atoms

In our framework, the signal is represented as a linear combination of atoms taken from a

redundant dictionary. The redundancy of the dictionary helps in building sparse representa-

tions but also leads to the fact that many atoms may carry similar information. In particular, a

specific image feature can be well captured by a specific atom di in the dictionary. But the

same feature might also be well represented by atoms that are similar to di , as illustrated in

Figure 4.3. Depending on the actual image representation method, the same visual feature
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4.2. Structured image model

Figure 4.3 – The representation of an atom di and its pool P (di ) in RN . The pool is defined by
the atoms with cos φ> 1−ε. Then, bk dk +b j d j is one possible realization of the atom di with
energy ei = bk〈di ,dk〉+b j 〈di ,d j 〉.

can therefore be coded in various ways. We would like to make sure that our structured sparse

image model is able to take this phenomenon into account.

We define the notion of atom pools in order to represent atoms that are similar. More specif-

ically, in a dictionary D, each atom di can be represented as a unit norm vector in the sig-

nal space RN . Then, there might be other atoms d j in D that are very similar to di , i.e.,

〈di ,d j 〉 > 1− ε, with ε the approximation threshold on the similarity of two atoms. In this

case, the energy of the projection of d j on di is significant, so that a visual feature may be

equivalently well represented by the atoms di or d j . We characterize this phenomenon by

introducing the notion of pools of atoms: each atom di is related to a pool P (di ) of atoms d j ’s

that are most similar to di . In other words, a pool is defined as

P (di ) = {d j ,1 ≤ j ≤ K , | 〈di ,d j 〉 > 1−ε} (4.6)

Equipped with this definition, we can now measure the difference between alternative rep-

resentations of the same visual features. In particular, we can estimate the actual energy

corresponding to the atom di in a signal represented by the sparse code b that does not

actually include the atom di . In other words, looking at the sparse signal decomposition

x = Db with bi = 0, we would like to know how much of the energy is actually aligned along

the direction represented by the atom di . It mainly corresponds to the energy captured by the

coefficient of all the atoms in the pool P (di ). We can therefore approximate the energy of the

signal in the direction of di as

ei (b) = ∑
j∈P (di )

b j 〈di ,d j 〉 = Si b (4.7)
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where

Si ( j ) =
〈di ,d j 〉 if d j ∈ P (di )

0 if d j 6∈ P (di )
(4.8)

The vector Si expresses essentially the pairwise relationships between the atom di and the

rest of the atoms in the dictionary D . The energy estimate above is very useful in computing

the structural difference between molecules that is explained below. The value of ei (b) is

essentially the length of the projection of the vector vi (b) =∑
j∈P (di ) b j d j , the realization of di ,

in the direction of di . When the entries of b are non-negative, vi is guaranteed to lie in the

geometric space defined by the pool P (di ) and as a result the error ||di − vi ||22 is bounded (the

proof is provided in A.1). In the rest, we will adopt this assumption of non-negativity without

loss of generality. Finally, an example of the pool of an atom, as well as a possible non-negative

realization of the atom from its pool, is shown in Figure 4.3.

Definition of energy-based realizations and their structural difference

Based on the above definition of atom pools, we can now define energy-based molecule

realizations with deviations on both the support and the coefficients. A molecule realization

of this kind can be defined as the deformation of a molecule prototype whose original atoms

could be each substituted by atoms from their respective pool. Equivalently, a molecule

realization is essentially a molecule prototype that can be realized through linear combinations

of atoms in the pools of the initial prototype. As a result, a molecule realization has a similar

energy as the prototype when measured on atom pools but not necessary exactly the same

coefficient values or the same support on the atom level.

Following the notation we introduced for the error-based realizations, we can rewrite Eq. (4.4)

for the energy-based realizations as

cx,l = cπ,l +Ex,l , with Γx,l ⊆ ΓPπ,l ,∀l ∈ [1, . . . ,Q] (4.9)

where, as before,Γx,l andΓπ,l are the supports of cx,l and cπ,l respectively andΓPπ,l =
⋃

dk∈Γπ,l
P (dk )

is the union of the active pools in the ith molecule prototype. The difference with Eq. (4.4) is

that an energy-based molecule realization is constrained by specific energy levels on the pools

of the atoms in the support of the molecule prototype ΓPπ,l instead of the support Γπ,l and as a

result the realizations are allowed to have non-zero values in the union of the pools of these

atoms.

This fact makes it difficult to measure the similarity between the patterns represented by the

molecule prototype and its realizations. For example, the l2 norm in both the image and

sparse code domain fail to uncover the structural similarity between the instances, as it does

not take into account the actual features represented by the atoms nor their interplay. The

inability of the l2 norm in capturing the similarity of molecules can be observed by checking
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4.2. Structured image model

Figure 4.4 – Illustration of a molecule prototype and a possible realization. The vector Wl is the
indicator function of the support Γπ,l of the molecule prototype cπ,l . The structural difference
between cπ,l and cx,l is then ∆(cπ,l ,cx,l ) = ||Wl × (cπ,l −S cx,l ))||22 = (c2 −〈d1,d2〉b1)2 + (c21 −
b21)2 + (c46 −〈d46,d45〉b45 −〈d46,d47〉b47)2

the norms in Figure 4.2. However, while the l2 norm cannot be trusted to compare a molecule

prototype cπ,l and a deformation cx,l in the atomic level, the same is not true in the pool

level: by definition energy-based realizations have similar energies with the prototypes when

measured at the pool level. Therefore, we can define a structural difference measure that

compares the energies in the pools of cx,l and cπ,l . Then, if the energies are comparable, the

structural difference can be considered to be small.

To be more specific, using the formula for the energy level of an atom based on its pool given

in (4.7), we can write the structural difference ∆ as:

∆(cπ,l ,cx,l ) = ∑
k∈Γπ,l

(cπ,l (k)−ek (cx,l ))2

= ∑
k∈Γπ,l

(cπ,l (k)−Sk cx,l )2

= ||Wl × (cπ,l −S cx,l ))||22 (4.10)

where S = [S1 S2 · · · SK ], with Si from Eq. (4.8). The indicator vector Wl denotes the inclusion

of dictionary atoms in the support Γπ,l of the molecule ml , i.e.,

Wl (k) =
1 if dk ∈ Γπ,l

0 if dk 6∈ Γπ,l

(4.11)
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Note that atoms that participate in the same molecule are assumed to not have overlapping

pools which is equivalent to assuming that the atoms in a prototype are quite incoherent.

As we will see in Section 4.3 this is a desired property that leads to lower coherence on the

dictionary and thus better recovery guarantees. In general, the lower the structural difference

∆(cπ,l ,cx,l ), the more compatible the molecule realization and its prototype. Finally, we show

an example of a molecule prototype and one possible realization in the atomic level in Figure

4.4 along with the corresponding structural difference function.

4.3 Recovery Analysis

The proposed model presented in Eq. (4.1) defines signals to be be formed as a composi-

tion of molecule prototypes with small, controlled deformations. The molecules are further

defined as linear combinations of a set of basic atoms. According to this model, one could

approximate signals in three different ways, namely as linear combinations of elements in

three different dictionaries: the atomic dictionary D , the molecule prototype dictionary DCπ

and the dictionary of molecule realizations. In the rest of this section, we analyze the pros and

cons of each option in accurately representing signals.

On the one hand, the benefit of the atomic dictionary, is its flexibility since it includes all

possible atoms present in signals. However, the lack of any structure makes it less appropriate

for recovering signals under challenging conditions, in the presence of intense noise or when

information is missing, as the sparsity prior may prove to be insufficient for a satisfactory

reconstruction. On the other hand, it is known that the inclusion of more structure in the

dictionaries facilitates significantly the task of signal restoration even under severe degradation.

The dictionary of molecule prototypes as well as that of molecule realizations have both the

advantage of providing structured priors. However, this advantage comes at a price in both

cases.

The dictionary of molecule prototypes, might not be always sufficient for retrieving the right

structure in the signals. We can rewrite a signal given from Eq. (4.1) as :

x = D Cx a +η= D (Cπ+Ex ) a +η≈ D Cπ a +D Cπ ã +η= D Cπ (a + ã)+η= D Cπ b +η

where D Cπ ã is the best approximation of D Ex a in the dictionary of molecule prototypes DCπ.

The vector a is an exact sparse representation. However, Ex can take various forms so that the

vector ã does not necessarily have a sparse nature in DCπ. Therefore, the structure of b can be

significantly different from that of a resulting in a false recovery of the signal structure. The

source of the above problem is the lack of flexibility in the dictionary DCπ: it defines patterns

through the prototypes to assist the retrieval of degraded signals but at the same time the

dictionary elements are quite rigid and restrictive.

Therefore, it appears that building a dictionary with all possible molecule realizations, denoted

as DCx , could be a better and more flexible alternative with a compromise between structure
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and flexibility. However, building a dictionary with all possible molecule realizations results in

a very coherent representation. As we have seen in Section 4.2.1, the molecule realizations are

essentially small deformations of a molecule prototype. Therefore, all realizations of the same

prototype are highly similar. The recovery performance of a dictionary is known to deteriorate

as the sparsity of the signals decreases and the coherence of the dictionary increases. To put it

more formally, a known recovery constraint for BPDN (Basis Pursuit Denoising) [22] or OMP

(Orthogonal Matching Pursuit) [112] is given by

k ≤ 1

2
(

1

µx
+1). (4.12)

where µx is the coherence of the underlying dictionary and k is the sparsity of the signal, i.e.,

the number of elements in the signal. The coherence µx equals the maximum absolute inner

product between two distinct vectors in the dictionary, i.e.,

µx = max
d j ,dk∈DCx , j 6=k

|〈d j ,dk〉| (4.13)

Therefore, the more coherent the dictionary DCx , the more sparse the signals should be in

order to be able to recover them.

We can analyze how the coherence µx of the dictionary DCx is affected by the presence of

multiple realizations for each molecule prototype. Since the realizations of the same molecule

prototype are very similar, µx can be lower bounded using the maximum distance r between

any realization and the corresponding molecule prototype. The theoretical bound, Lx ≤µx , is

given by

Lx = 1−2r 2 (4.14)

To quantify this result, we can compare the molecule realization dictionary with the case of

a dictionary DCu that contains only one molecule realization per molecule prototype. The

restriction on the allowed number of instances per prototype allows for a theoretical upper

bound on the coherence µu of the dictionary DCu , i.e., Uu ≥µu with

Uu =µ(1−2r 2)+2r
√

(1−µ2)(1− r 2) (4.15)

where µ is the coherence of the dictionary of molecule prototypes DCπ. In practice the

coherence µu is expected to be close to µ. Both theoretical bounds depend on the distance r

which is driven by the characteristics of the atoms pools as well as the internal structure of the

molecules. The latter is measured by the maximum similarity between atoms belonging to the

same molecule, denoted as µM . To improve the readability of the section we have moved the

exact expressions for r as well as the proofs for the bounds in the A.2.

From the expression for Lx we can see that the smaller the r is, the worse the µx is expected

to be. On the other hand, when r is small, Uu gets closer to µ. In order to present these
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dependencies more concretely, we show in Figure 4.5 some plots of µx and µu for various

settings. At the first row, we present the bounds Lx and Uu computed based on Eq. (4.14) and

(4.15) respectively while at the second row we show the mean values of µx and µu computed

experimentally for different values of the molecule prototype coherence µ over random gener-

ations of the dictionaries DCu and DC x. For simplicity, in our calculations we have assumed

that the number of atoms in all molecules is the same, denoted as n. The pool angle φ was set

to 10 degrees while we varied the maximum in-molecule atomic similarity µM . In both rows,

the red line refers to the coherence of the DCx dictionary, the blue line to the coherence of

DCu and the yellow to that of molecule prototypes DCπ.

From the figures, according to the values of the bounds Lx and Uu , the benefit of the use of

DCu over DCx is more prominent when the molecule prototypes are not very coherent (lower

values of µ). In this case, the lower bound for µx , Lx , is higher than the upper bound for µu , Uu ,

so that µu is guaranteed to be lower than µx . This benefit depends also on the coherence of

the atoms belonging to the same molecules: it is larger when µM is low. However, the analysis

of the experimental mean shows that in practice the coherence µu of the dictionary DCu lies

very close to the coherence of the initial molecule prototype dictionary DCπ, while µx lies

always close to 1. Therefore, we observe that restricting the number of realizations in the

dictionary to one per molecule prototype preserves the dictionary coherence quite well while

the inclusion of more than one molecule realizations per prototype pushes the dictionary

coherence towards 1.

To sum up, from the above discussion we can see that deciding which dictionary to use for

signal decomposition is not trivial. The underlying atomic dictionary D lacks structure, the

dictionary of molecule prototypes DCπ lacks flexibility while the dictionary of all molecule

realizations suffers from inefficient size and high coherence. To alleviate this issue, we propose

an iterative decomposition scheme that searches for the best molecule realizations using

at each iteration a synthesis dictionary with strictly one molecule realization per molecule

prototype, denoted as DCu above. In this way, at each iteration we have a guarantee for the

coherence of the used dictionary while through the iterations we expect to recover the right

signal structure. The details of the exact problem formulation as well as the proposed solution

are presented in the next Section.

4.4 Adaptive molecule coding algorithm

We now formulate the problem of decomposing a signal into a sparse set of molecule realiza-

tions. From now on, we will mainly refer to energy-based molecule realizations as they are the

most generic ones. We assume that the signal x follows the model in Eq. (4.3), or equivalently

that the signal can be well approximated by a sparse linear combination of molecule realiza-

tions represented by Cx along with their respective coefficients a. Each molecule realization

in Cx is an energy-based realization of the corresponding molecule prototype in Cπ. The

signal approximation can then be computed by solving the adaptive molecule coding problem
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Figure 4.5 – Comparison plots for the coherence of the dictionaries DCx and DCu containing
many VS one realizations per molecule prototype respectively. The plots are for different
values of the number of atoms per molecule n, the size of the atoms pools φ as well as the
maximum similarity of atoms in the same molecule µM . In the first row we plot the theoretical
bounds while in the second the average coherence observed over random generations of the
dictionaries DCx and DCu .

written as follows:

{â,Ĉx } = argmin
a, a(l )≥0,∀l

Cx ,Cx (k,l )≥0∀k,l
Γx,l⊆ΓPπ,l

,∀l

[
||x −DCx a||22 +λ1||a||1 +

∑
l ,a(l )>0

(
λ2∆(cπ,l ,cx,l )+λ3||cx,l ||1

)]

(4.16)

where each cx,l is a molecule realization for the molecule prototype cπ,l with l ∈ [1, . . . ,Q].

The Γx,l is then the support of cx,l and ΓPπ,l =
⋃

dk∈Γπ,l
P (dk ) is the union of the active pools in

the ith molecule prototype with support Γπ,l . The first term in the objective function in Eq.

(4.16) is the error of the approximation of the signal with a sparse set of molecule realizations.

The second term favors a sparse approximation with the l1 norm of the coefficient vector

a. The last term drives the form of the molecule realizations: the term ∆(cπ,l ,cx,l ) tends to

favor molecules realizations that are close to prototypes while the l1 norm on the molecule

realization codes cx,l ensures their sparsity. The constraint on the support Γx,l is necessary

from the definition of energy-based molecule realizations given in equation (4.9). Finally, the

weight parameters λi ’s permit to balance the different terms of the objective function.
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By substituting the structural difference function from Eq. (4.10) in Eq. (4.16) we get:

{â,Ĉx } = argmin
a, a(l )≥0,∀l

Cx ,Cx (k,l )≥0∀k,l
Γx,l⊆ΓPπ,l

,∀l

[
||x −DCx a||22 +λ1||a||1 +λ2

∑
l ,a(l )>0

||Wl × (cπ,l −S cx,l )||22

+λ3
∑

l ,a(l )>0
||cx,l ||1

]
(4.17)

where Wl is given in Eq. (4.11). For a given dictionary D, a set of pools represented by S and

a set of molecule prototypes written as Cπ, the objective function in Eq. (4.17) is minimized

when the variables a and Cx form a structured sparse approximation of x. However, the above

optimization problem cannot be solved easily as it is not jointly convex for both variables ax

and Cx . However, when one of the variables is fixed, the problem is convex with respect to

the other one. Therefore, we adopt an alternating optimization technique with two steps for

solving the optimization problem in Eq. (4.17). The two steps are computed as follows.

1. We first fix the set of molecules realizations, and solve the sparse coding problem for the

coefficient vector a. Given Cx , the solution for a can be found as:

â = argmin
a, a(l )≥0,∀l

[||x −DCx a||22 +λ1||a||1
]

(4.18)

2. Then, we fix the coefficient vector, and find the set of molecule realizations that minimize

the objective function of the coding problem. Given a, the solution for Cx can be found

as

Ĉx = argmin
Cx ,Cx (k,l )≥0∀k,l
Γx,l⊆ΓPπ,l

,∀l

[
||x −DCx a||22 +λ2

∑
l ,a(l )>0

(||Wl × (cπ,l −S cx,l )||22

+λ3
∑

l ,a(l )>0
||cx,l ||1

]
, (4.19)

The first problem is essentially an l1 regularized sparse coding problem which is convex on a. It

can be solved with many different algorithms, e.g., [84, 7]. In our case we have chosen to solve

it with the method of alternating direction method of multipliers (ADMM) [17]. Following the

findings in [24], we have also employed the method of reweighted l1-minimization to get to a

sparser solution. Note that, at the very first iteration of the global algorithm, Cx is initialized

with Cπ, while it is later updated during the solution of the second step of the alternating

algorithm.

The second problem is also convex. As for the first problem, we have chosen to solve it with

ADMM [17]. In order to solve it more efficiently, we have transformed it into a more convenient

form that allows for the optimization over one vector of coefficients b instead of the whole
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matrix Cx . Since the support of each molecule realization Γx,l is restricted to the union of the

pools of the active atoms in the corresponding molecule prototype, i.e., ΓPπ,l , many of the

entries in matrix Cx are constrained to be zero. The vector b represents the possible non-zero

entries in Cx , i.e. the coefficients of the atoms in ∪l ,a(l )>0ΓPπ,l . Essentially it expresses the

flexibility that is allowed in the molecule realizations once the molecules are chosen.

To complete our problem transformation, we introduce the vector C̃ that expresses the ex-

pected energy in the atoms pools. It is created by concatenating into vector form the entries

in Cπ that correspond to the energy expected in each pool of active atoms. Equivalently, the

corresponding dictionary of atoms D̃ is created by concatenating the atoms in each of the

active pools. Finally, the new vector of relationships S̃ between atoms in D̃ replaces the vector

S. With these modifications, the problem in Eq. (4.19) can be equivalently expressed as:

b̂ = argmin
b

||x − D̃ b||22 +λ2||C̃ − S̃ b||22 +λ3||b||1 with b(k) ≥ 0,∀k (4.20)

Solving this problem is more efficient in terms of time and space than solving the equivalent

problem in Eq. (4.19) as the size of the vector b is usually much smaller than that of the whole

dictionary D .

Finally, we iterate between the two optimization problems until the value of the signal re-

construction doesn’t change much. Although this alternate optimization technique does

not have any optimality guarantee, it gives good results in practice and therefore offers an

effective constructive solution to the sparse coding problem of Eq.(4.17). Since the algorithm

has several constraints on the structure and sparsity the final molecule realizations cannot be

completely different from the predefined molecule prototypes and as a result the quality of

the signal reconstruction depends significantly on the initialization of the molecule structure.

However, the design and learning of good molecule prototypes is beyond the scope of this

chapter which is mainly focused on the sparse coding step. We will however, discuss it more in

the next chapter. Finally, as long as the parameters of the algorithm are concerned, the values

for the λ’s were chosen according to each specific task based on a small validation set. The

value for the parameter r required for the ADMM method was set to 1 for all the experiments.

The pseudocode of the complete sparse coding scheme, called Adaptive Molecule Coding

(AMC), is presented in Algorithm 2.

4.5 Experimental results on signal restoration

Next, we have evaluated the effectiveness of our model for various image restoration tasks

on both synthetic and real data. In signal restoration, a high quality signal x needs to be

reconstructed from its degraded measurements y . The problem can be modeled in a generic

form as

y = H x + v (4.21)

51



Chapter 4. Structured sparse molecule coding

Algorithm 2 Adaptive molecule coding (AMC)

1: function AMC(x,D,Cπ,S,λ1,λ2,λ3,ε)
2: â = argmina [||x −D Cπ a||2 +λ1||a||1] , a ≥ 0 . Initialize a
3: while true do . Alternate optimization
4: (D̃ , S̃,C̃ ) = tr ans f or m(D,C ,S, â) . Create new variables for Eq. (4.20)
5: b̂ = argminb

[||x − D̃ b||22 +λ2||C̃ − S̃ b||22 +λ3||b||1
]

,b ≥ 0 . Solve for b
6: Ĉx = tr ans f or m−1(b̂,C , â) . Reconstruct Cx from b
7: w = 1./â . Set new weights for re-weighted l1

8: â = argmina

[||x −D Ĉx a||2 +λ1||w.∗a||1
]

, a ≥ 0 . Solve for a
9: if Ĉx â −Cp ap < ε then return . If signal coding did not change significantly, stop

10: else
11: ap = â, Cp = Ĉx

12: end if
13: end while
14: return â,Ĉx

15: end function

where H is a degrading operator and v is additive noise.

4.5.1 Synthetic Data

For the case of synthetic data, we have used a dictionary of gaussian anisotropic atoms with

mother function φ(x, y) = A exp(−(x/2)2 − y2). We have sampled the image plane for two

scale levels [0.5 1] with a step size 1 for translation and π/6 for rotation. The atoms of the

dictionary were combined according to 10 predefined molecules contained in Cπ. The size

of the signals and the molecules was 10×10. Each molecule was randomly constructed to

contain 2,3 or 4 atoms of equal energy. Then each signal was created as a random combination

of a few molecule realizations (2,3 or 4).

To produce a molecule realization we have followed the definition of energy-based realizations

given in Section 4.2.3. To be more specific, for each atom in the molecule prototype we

produced an approximation using the atoms in the atom’s pool. The approximating atoms

were chosen randomly, their total number drawn from a geometric distribution with p = 0.7

(so that the approximation is a sparse combination of atoms) while their coefficients were

adjusted so that the projection of their combination to the atom direction is close to the

original coefficient value. Finally, for each restoration task, the appropriate operator was

applied to get the testing data.

We have compared our method with the l1-l2 group norm [58] that assumes that the atoms are

forming groups and penalizes the l1 norm on the groups instead of the atoms by substituting

the atom coefficients with the l2 norm on each group (the algorithm is denoted as A12 in the

rest). To define each group gi ∈G we have used the support of the corresponding molecule

mi . The atoms that didn’t belong to any group, were considered as separate groups of size 1.

52



4.5. Experimental results on signal restoration

The resulting optimization problem was:

b̂ = argmin
b

{||y −H D b||2 +λ
∑

gi∈G

||bgi ||} (4.22)

where b is the signal decomposition in the atomic level and bgi is its restriction on gi . The

decomposition â in groups ( or equivalently molecules in our case) is computed as the l2 norm

of the coefficients in each group i.e., âi = ||b̂gi ||.

As we have discussed before in Section 4.3, one alternative for the synthesis dictionary is the

dictionary of molecules prototypes. This approach is similar to the sparse coding step in [101]

that assumes a double sparsity structure prior where the learned atoms are constrained to

be linear combinations of a set of base atoms. This way, the learned atoms are similar to

our molecule prototypes. However, the proposed sparse coding does not allow the atoms to

further adjust to the signals. Therefore, their approach is equivalent to sparse coding with l1

regularization on the molecule dictionary, i.e., the outcome of:

â = argmin
a

{||y −H ∗Dπ∗a||2 +λ||a||1} (4.23)

where Dπ = DCπ is the molecule dictionary.In the rest, we denote this algorithm as Am .

Finally, we have also compared our scheme with simple sparse coding on D, i.e.,

â = argmin
a

{||y −H ∗D ∗a||2 +λ||a||1} (4.24)

The method is denoted A1 in the rest.

The performance of the algorithms is compared using various measures. To quantify the

performance in terms of the signal recovery we have computed both the mean square re-

construction error of the signal approximation (MSRE), i.e.,
∑

i ||xi−x̂i ||2
N where x̂ is the signal

reconstruction and N is the number of signals , as well as the mean sparsity ratio of the re-

covered representations where the sparsity ratio is computed as the l0 norm of the recovered

representation in D over the l0 norm of the true atomic representation. Finally, we are also

interested in how effective are the schemes in detecting the correct molecules. Therefore, we

have also computed the accuracy of the molecule detection, which is the ratio of the correctly

categorized molecules (T P +T N ) over all the molecule instances (P +N ).

Denoising

To start with, we have tested the performance of the schemes under noise. In this case, H = I

and v is white gaussian noise. The results, for different noise levels, are shown in Figure 4.6.

For each noise level, the results were averaged over 5 different molecule matrices and 1000

signal instances per matrix. The parameters for each algorithm, chosen based on a small

validation set, were: λ1 = 0.01,λ2 = 1,λ3 = 0.1 for AMC and λ1 = 0.1 for all the rest. From

53



Chapter 4. Structured sparse molecule coding

std
0.02 0.04 0.06 0.08

M
S

R
E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
AMC
A

m

A
1

A
12

std
0.02 0.04 0.06 0.08

S
p
a
rs

it
y
 r

a
ti
o

0

2

4

6

8

10

12

14
AMC
A

m
A

1

A
12

std
0.02 0.04 0.06 0.08

A
c
c
u
ra

c
y

0

0.2

0.4

0.6

0.8

1
AMC
A

m
A

12

Figure 4.6 – The results for denoising on synthetic data with different coding schemes. The
performance is evaluated with the MSRE of the reconstructed signals as well as the sparsity
ratio and the accuracy of the recovered representations.
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Figure 4.7 – The results for inpainting on synthetic data with different coding schemes. The
performance is evaluated with the MSRE of the reconstructed signals as well as the sparsity
ratio and the accuracy of the recovered representations.
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Figure 4.8 – The results for compressed sensing on synthetic data with different coding
schemes. The performance is evaluated with the MSRE of the reconstructed signals as well as
the sparsity ratio and the accuracy of the recovered representations.

Figure 4.6 we can observe that as the noise increases the effectiveness of the structure is more

prominent: the MSRE of A1 progressively deteriorates compared to the other 3 schemes that

use a structured prior. Moreover, for the highest noise level the Am scheme which is the one

with the least flexible structure prior, almost reaches the best performance. However, our

scheme manages to perform best for all the noise levels by uncovering signal representations

with small MSREs, accurate molecule detection, and satisfactory sparsity (Am has a fixed

sparsity level for each molecule, therefore it is expected to have the lower value as the most

constrained one).

54



4.5. Experimental results on signal restoration

Inpainting

Next, we have tested the performance of the schemes for inpainting. In this case, we have

created a set of signals by omitting the signal values in a randomly chosen square region. We

have tried three different sizes for the region: 3×3, 4×4 and 5×5. Then, the signals were

divided into 4 sets based on their SNR. The signal recovery problem was solved over the known

regions of the signals: each signal x was expressed as x ′ = Px .∗x where Px is the mask denoting

the known region. In this case, H = Px .∗ I resulting in masking each dictionary atom. No extra

noise was added to the data. The values for the parameters were λ1 = 0.001,λ2 = 1,λ3 = 0.1 for

AMC and λ= 0.01 for all the rest. The results are shown in Figure 4.7. Again, we can observe

the benefits from the flexible prior that our scheme provides compared to the rest: the MSRE is

always the lowest, the accuracy is the highest while the sparsity ratio is satisfactory, usually the

lowest after Am which is the most constrained one. In case of highly disturbed signals (lowest

SNR) the Am also outperforms the rest, proving the importance of structure in applications

were there is a significant amount of missing information.

Compressed Sensing

Finally, we have compared the recovery performance of the schemes for compressed sensing.

The measurement process was performed by setting H =ΦwhereΦ is a random projection

matrix. The entries ofΦwere independent realizations from a standard normal distribution.

We have checked three different sizes for Φ namely 25, 15 and 8 measurements. For each

number of measurements the results were averaged over 5 different instances of matrix Φ.

The values of the parameters were λ1 = 0.01,λ2 = 10,λ3 = 0.01 for AMC and A1 while λ1 = 1

for Am and λ1 = 0.01 for A12. The results for the different number of measurement are shown

in Figure 4.8. Our scheme significantly outperforms the rest as the number of measurements

decreases while keeping a high accuracy on molecule detection. The sparsity ratio is almost

stable for all sizes of measurement matrix and quite close to 1 which is the desired value.

4.5.2 Denoising of digit images

Next, we have used our adaptive molecule coding scheme to perform denoising on MNIST

images [72]. The images have been downsampled to 14×14 and normalized. In order to better

fit the signal model the digits were further coarsely pre-aligned to avoid big discrepancies in

the position and the orientation. The molecule prototypes were extracted using the algorithm

presented in [101] from 1000 examples per digit while for the testing we used 100 examples

per digit. The denoising performance was tested over different noise levels and measured

by the mean squared reconstruction error and the mean sparsity ratio. The parameters were

fixed according to a small validation set and their values were λ1 = 0.001,λ2 = 0.01,λ3 = 0.01

for AMC and λ1 = 0.01 for the rest of the schemes.

The results of our experiments are presented in Figure 4.9. We have experimented with both
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Figure 4.9 – Results for denoising on data from MNIST digits for various levels of noise. On the
first row we plot the MSE and on the second the sparsity ratio of the results. In the first two
columns we present the results obtained when each digit was treated separately while on the
third row we simultaneously denoised digits from different classes. The results were obtained
with 20 molecule prototypes per digit.

denoising each digit separately using molecules extracted only for its class as well as denoising

with molecules extracted from many classes simultaneously. In the first two columns we show

the results we obtained for digits 0 and 9 separately while in the third column we plot the

results for the case of denoising digits 0, 1, 2 and 3 with molecules extracted for all 4 digits

together. From the plots we can see that AMC is the scheme that manages to perform well

for all different noise levels. As expected the benefits from rich structure priors are more

prominent in the presence of severe noise, where Am , the scheme with the most restrictive

prior, outperforms A1 and A12 that have loser priors. However, for lower noise levels the

performance of Am is not sufficiently good due to the rigidity of its prior. Our scheme on the

other hand performs well in all cases as it adapts to the signals almost as succesfully as A1 in

the less noisy cases, while preserving the structure as Am in the more noisy cases. Finally, it is

also important to note that AMC is the scheme that achieves on average a sparsity ratio close

to one, meaning that it is highly efficient as it achieves a good signal restoration using only as

many components as it is necessary.

4.5.3 Restoration of image patches

Finally, in image restoration it is often the case that the non-local similarities that different

regions of the image may exhibit are used to enhance the restoration process [33, 81]. The idea
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of ‘nonlocally centralized’ sparse codes is not very far from the idea of molecule prototypes.

Therefore, we have followed the same intuition to define molecules prototypes based on the

non-local similarity of patches and use their deformed versions to further enhance the image

recovery from compressed measurements.

To be more specific, when only sparsity is used as a prior for the recovery of the patches xi of

an image X , the recovery problem for each patch can be written as:

âi = argmin
ai

||yi −ΦD ai ||22 +λ1||ai ||1 (4.25)

where ai is the decomposition of the patch xi in the dictionary D and yi is the measurements

acquired for this patch. The recovered image X̃ is then created by the recovered patches x̃i .

However, when taking into account the non-local similarity of the patches, a molecule proto-

type can be extracted for every patch and further enhance the recovery by restricting the code

of each patch to be a realization of the prototype. The corresponding coding problem is then:

ĉx,i = argmin
cx,i

||yi −ΦD cx,i ||22 +λ2||Wi × (cπ,i −S ∗ cx,i )||22 +λ3||cx,i ||1 (4.26)

where cπ,i is the molecule prototype for x̃i and cx,i is the patch dependent molecule realization.

In order to obtain cπ,i we search the image X̃ for the most similar patches to x̃i and we build a

setΩi as in [33]. Then, based on the sparse codes of the patches inΩi we extract a molecule

prototype for x̃i . The prototype extraction algorithm is a greedy procedure that identifies

a small number of atoms to account for most of the energy in the sparse codes in Ωi while

taking into account the atoms pools. It is an iterative procedure that at each step adds in the

support of the molecule prototype the atom with the most energy in its pool. The energy of

the atoms falling in the already chosen pools is considered covered and the algorithm iterates

until a sufficient amount of the energy is covered. In this way, we extract a molecule prototype

cπ,i that accepts as realizations all the patches inΩi .

To show that our proposed coding scheme is suitable for enhancing the recovery of the original

image, we have compared it to the λ1 based sparse coding presented in Eq. (4.25) which only

imposes sparsity as structure. Moreover, following the ideas in [33], we have also implemented

a scheme where the imposed structure is defined as the mean sparse code over similar patches.

The corresponding optimization problem is then:

ãi = argmin
ai

||yi −ΦD ai ||22 +λ2||âi −ai ||22 +λ3||ai ||1 (4.27)

where âi is the mean sparse code obtained from the sparse codes of the patches inΩi .

We have tested the performance of the above schemes on the images ‘House’ and ‘Barbara’.

Each image was divided in 10×10, non-overlapping patches. As a base dictionary D we have

used a DCT overcomplete dictionary with 256 atoms. For solving the coding problem in Eq.

(4.26) we have used the Algorithm 2, namely the part that solves for Cx given a, as in this
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Figure 4.10 – Results for image recovery with compressed measurements. The values of the
parameters were set to λ1 = 10 and λ2 =λ3 = 1000.

case for each patch there is only one molecule prototype and as result the vector of molecule

coefficients is set to 1. The entries ofΦ were independent realizations from a standard normal

distribution. We have checked two different size forΦ, namely 30 and 50 measurements, while

for each number of measurements the results were averaged over 5 different instances of the

matrixΦ. The measurements were further corrupted with noise.

In the Figure 4.10 we show the PSNR of the recovered images based on the three different

schemes for various levels of noise and the two different number of measurements. From

the results we can verify that the non-local similarity of the patches is very helpful for the

image restoration as the λ1 sparse coding has a much lower PSNR than the other two schemes.

Moreover, our molecule based coding scheme manages to extract more effectively the struc-

tural similarities of the patches than the mean sparse code as it achieves better PSNR results

for the majority of settings. Therefore it is proven that the idea of molecule prototypes and

realizations based on atoms pools is a powerful one providing correct priors for patch based

restoration of images.
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4.6 Conclusions

In this chapter we have presented a new two-layer structure model for signals. We have

defined our structural elements, the molecules, as linear combinations of atoms and we

have distinguished between molecule prototypes and molecule realizations to add more

flexibility in the model. For the molecule realizations, we started with allowing small errors

on the sparse coefficients and then we extended our definition to allow deviations on both

the support and the coefficients of the prototypes based on the notion of pools of atoms. We

have presented a new algorithmic scheme for adaptive molecule coding (AMC) and we have

conducted experiments on both synthetic and real data that proved the effectiveness of our

model for various restoration tasks.

In this chapter, our goal with our new structure model has been to provide a better modeling

strategy for higher level patterns while allowing for invariance to small deformations. In the

next chapter, we use these concepts further to move the structure analysis from the signal to

the sparse code domain. To this end, instead of considering that the molecules are given a

priori, we devise a scheme for representing the codes with molecule realizations and learn the

corresponding molecule prototypes at the same time, directly in the sparse code domain.
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5.1 Introduction

In this chapter we address the problem of learning the signal structure. We focus on the signals’

sparse codes and we aim at uncovering structured representations for the codes without

transforming them back to the signal domain. Although sparse codes have been employed

successfully in various tasks like signal restoration and classification, they usually require

the explicit knowledge of the atoms of the underlying dictionary and the coding algorithm.

However, this can prove quite restrictive in practice as the dictionary is not always known

explicitly. Moreover, in this way we lose the opportunity to work with sparse data which is

easier from a computational point of view than working with the original signals. Additionally,

biological evidence supports the use of sparsity to produce signal representations that can

fully describe the corresponding signals without reconstructing it. Our goal here is therefore

to provide a way to understand and analyze the sparse codes with minimal information

requirements on the underlying dictionary and the coding algorithm. In this way, we can

bring them a step closer to being standalone signal representations and facilitate their use in

various settings including cases where it is desirable to minimize the system resources like in

sensor networks.

To this end, we use the structure model that we have developed in the Chapter 4 to enable a

structured representation of sparse codes. We define a sparse code to be a linear combination

of a few molecule realizations based on a set of molecule prototypes. Based on the struc-

tural difference measure for molecules that we have defined earlier, we devise a scheme for

representing a given code with molecule realizations and learn the corresponding molecule

prototypes directly from the sparse codes. Our algorithm requires only minimal knowledge

of the underlying dictionary, namely the correlations between features or the matrix of the

atoms’ pools. As a result, we can recover the signal structure independently of the exact atom

form and of the actual sparse coding algorithm that produced the codes.

The rest of the chapter is organized as follows. In Section 5.2 we present our problem formula-

tion for learning the structure from the sparse codes and we propose an optimization solution
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that alternates between steps of sparse code representation and structure update to solve it.

Then, in Section 5.3 we present our matching pursuit representation algorithm for the sparse

codes and in Section 5.4 we give the details of the structure update step. Finally, in Section

5.5 we present the results of our learning scheme and we compare it to traditional dictionary

learning techniques to extract the structure from synthetic data, digit and object images.

5.2 Structure learning in the sparse code domain

In this section we present the problem of learning the underlying structure of signals based

on their sparse codes. To be more specific, we assume that we have a set of sparse codes

X where each sparse code x ∈ X can be considered as a vector in RN with ||x||0 ≤ TS where

TS stands for the maximum allowed sparsity level. We want to learn a set of M molecule

prototypes Cπ = [cπ,1 cπ,2 . . . cπ,M ] ∈ RN×M such that each sparse code can be represented

well as a linear combination of a few molecule realizations. We use the definition of energy-

based molecule realizations given in Section 4.2.3 and we adopt the corresponding structural

difference introduced in Eq. (4.10) to constrain the molecule realizations to lie close to the

molecule prototypes. In other words we want to solve the following problem:

Ĉπ = argmin
Cπ≥0

∑
x∈X

argmin
ax,i≥0, cx,i≥0
∆(cπ,i ,cx,i )≤T

Γx,i⊆Γx∩ΓPπ,i ,∀i∈[1,...,M ]

||x −Cx ax ||22

such that ||ax ||0 ≤ TM

(5.1)

where Cx = [cx,1 cx,2 . . . cx,M ] is the matrix of the molecule realizations for signal x ∈ X and

ax ∈RM is the vector of corresponding coefficients. The threshold parameters TM ,T permit to

control the sparsity of the representation and the flexibility to deformations respectively and

they are dependent on the application at hand.

As in the previous chapter, we constrain the representations to be positive, i.e., we assume

that the molecule prototypes and their realizations have only non-negative entries and are

also combined with non-negative coefficients. The support of each molecule realization cx,i ,

namely Γx,i , is constrained by the definition in Section 4.2.3 to be a subset of the union of

the active pools in the ith molecule prototype ΓPπ,i =
⋃

k∈Γπ,i
P (k), where Γπ,i is the support of

the ith molecule prototype defined Γπ,l = {dk ∈ D, cπ,l (k) > 0}. In the learning problem of Eq.

(5.1), we constrain the Γx,i further in order to comply with the sparse nature of the code x. To

this end, we further restrict it to be a subset of the support of x, Γx . When the two conditions

are combined, we get Γx,i ⊆ Γx ∩ΓPπ,i , ∀i , x. In this way, Γx,i is by definition sparse and we no

longer need to constrain the l0 or l1 norm of cx,i to enforce sparsity. However, we still need a

proper norm constraint to control the sparsity of the coefficients ax . In this formulation, we

opt for the l0 norm, upper bounded by the constant TM . Finally, to ensure that the cx,i ’s are

proper molecule realizations ∀i , we constrain the structural difference ∆(cπ,i ,cx,i ) to be small,

namely less or equal to a given threshold T .
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5.2. Structure learning in the sparse code domain

In Eq. (5.1), we can substitute the structural difference ∆(cπ,i ,cx,i ) of Eq. (4.10) to get the

following formulation:

Ĉπ = argmin
Cπ≥0

∑
x∈X

argmin
ax,i≥0, cx,i≥0

||Wi×(cπ,i−S cx,i )||≤T
Γx,i⊆Γx∩ΓPπ,i ,∀i∈[1,...,M ]

||x −Cx ax ||22

such that ||ax ||0 ≤ TM ,

(5.2)

where Wi is the indicator function of the support Γπ,i which has been previously defined in

Eq. (4.11). Moreover, the matrix S, defined in Eq. (4.8), represents the information about the

atoms’ pools and it is the only information that we need for the underlying dictionary. With

the involvement of Wi and S, the l2 norm in ∆(cπ,i ,cx,i ) adjusts to the core characteristic of

the energy-based realizations that is essentially to resemble the corresponding prototype at

the pool level instead of the atomic level.

The problem in Eq. (5.2) is highly complicated and non-convex as it requires to solve for

the set of code representations for all x ∈ X , namely AX = {ax }x∈X ,C X = {Cx }x∈X as well

as the molecule prototypes Cπ. In order to solve it, we adopt the technique of alternating

optimization described in Algorithm 3. Alternating optimization [14] is a common approach

for treating complex optimization problems over many variables that replaces the difficult

joint optimization over all variables with a sequence of easier optimizations involving subsets

of the variables. In our case, we divide the learning problem in Eq. (5.2) into two sub-problems:

the representation of the sparse codes as linear combinations of molecule realizations given

the molecule prototypes and the update of the molecule prototypes based on the codes’

representations. The first problem is solved with a matching pursuit algorithm adapted to the

nature of the sparse codes and the molecule realizations. The details of the scheme are given

in Section 5.3. The second problem, namely the update of the molecule prototypes, is solved

with the algorithm presented in Section 5.4. We iterate over these two steps until we reach

convergence.

Finally, to check the convergence of the alternating optimization algorithm for the molecule

learning we use a slightly modified version of our previously defined structural difference

measure ∆(cπ,i ,cx,i ) to compare the old and the new molecule prototype structure. Since

the measure is not symmetric, given two molecule prototypes cπ,k and cπ,m , we check both

the differences ∆(cπ,k ,cπ,m) and ∆(cπ,k ,cπ,m) and average them, i.e., we set the symmetric

measure of difference between molecule prototypes to be:

∆π(cπ,k ,cπ,m) = 1

2
(∆(cπ,k ,cπ,m)+∆(cπ,k ,cπ,m))

= 1

2
(||Wm × (cπ,m −S ∗ cπ,k )||2 +||Wk × (cπ,k −S ∗ cπ,m ||2)

where Wk (i ) = 1 if only i ∈ Γπ,k and Wm(i ) = 1 if only i ∈ Γπ,m are the indicator functions of the

support sets of the two prototypes respectively. In order for the comparison to be meaningful,

the two prototypes need to be normalized. In our work, we used the l2 norm for that purpose
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Chapter 5. Structure learning from sparse codes

Algorithm 3 Molecule learning in sparse code domain (MLSC)

1: function LEARNSPARSE( X ,S, M ,TA ,TM ,TE ,T,δ)
2: Cπ =I ,Stop = 0 . Initialize structure and flag
3: while !Stop do
4: for x ∈ X do . MP for codes with current structure (5.3)
5: [ax ,Cx ] = MPSPARSE( Cπ, x,S,TM ,T,δ) . Alg. 5
6: end for
7: AX = {ax }x∈X ,C X = {Cx }x∈X

8: Cπ,N = UPDATESTR(X , AX ,C X ,S,TA ,TE ,T ) . Update structure, Alg. 8 (5.4)
9: di f f = STRDIFFERENCE(Cπ,Cπ,N ) . Compare old and updated structure Alg. 4

10: if di f f < δ then Stop = 1 end if . If structures similar enough, stop iterations
11: Cπ =Cπ,N

12: end while
13: return Cπ

14: end function

Algorithm 4 Structural difference between sets of prototypes

1: function STRDIFFERENCE(Gπ,Fπ)
2: for i = 1 : |Fπ|, j = 1 : |Gπ| do . Compute cost for every pair of molecule prototypes
3: Wg ,i = gπ,i > 0,W f , j = fπ, j > 0

4: cost (i , j ) = 1

2

(||Wg ,i × (gπ,i −S ∗ fπ, j )||2 +||W f , j × ( fπ, j −S ∗ gπ,i )||2)
5: end for
6: [Assi g n,di f f ] = HUNGARIAN(cost ) . Find the prototype assignment [68]
7: return di f f , Assi g n . that minimizes the cost between the two structures
8: end function

i.e., we assume ||cπ,m || = ||cπ,k || = 1.

Finally, in our learning problem the structure we optimize for is a set of molecule prototypes.

In order to compare two sets of molecule prototypes, Gπ = {gπ,i , i ∈ [1, M ]}} and Fπ = { fπ,i , i ∈
[1, M ]}}, we define:

∆S,π(Gπ,Fπ) = minPGF

∑M
k=1∆π(gπ,k , fπ,PGF (k))

M
(5.3)

where PGF : [1, M ] → [1, M ] is a bijection that assigns each molecule in Gπ to exactly one

molecule in Fπ. The best PGF for two given sets Gπ,Fπ can be computed with the Hungarian

algorithm [68]. The pseudocode of the function is given in Algorithm 4.

5.3 Sparse code representation

We present now the method used to solve the first step in the structure learning algorithm

of Eq. (5.2) where the molecule prototypes are fixed. In this case, the problem in Eq. (5.2)

becomes equivalent to representing a sparse code x ∈ RN as a set of molecule realizations
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5.3. Sparse code representation

written as:

[âx ,Ĉx ] = argmin
ax,i≥0, cx,i≥0

||Wi×(cπ,i−S cx,i )||≤T
Γx,i⊆Γx∩ΓPπ,i ,∀i∈[1,...,M ]

||x −Cx ax ||22

such that ||ax ||0 ≤ TM

(5.4)

This problem is similar to the one we have presented in Eq. (4.17) for decomposing a signal

into molecule realizations. The main difference relies in the data approximation term where

instead of the signal we now have its sparse code x and we do not have any explicit dictionary

D . Nevertheless the problem remains non-convex and we could follow the same alternating

optimization procedure as the one introduced in Chapter 4.

However, the sparse nature of the codes in combination with their representation as vectors in

RN where the similarities of the underlying atoms are not taken into account complicates the

procedure. For example, in the Algorithm 2 if we try to initialize ax by solving the problem

in Eq. (5.4) with Cx =Cπ, we may get easily a zero vector as solution. This happens when the

code x and the set of prototypes in Cπ do not have overlapping supports and therefore none of

the prototypes can be used to decrease the error in the approximation of x. The code x might

have indeed very similar atoms to the ones in the prototypes, but that is not sufficient as atom

similarities are ignored when the dictionary D does not appear in Eq. (5.4) .

To overcome this difficulty, we propose a different solution path. The above observation

suggests that we need to adjust the molecule prototypes to the code, i.e., solve for the molecule

realizations, simultaneously with the coefficients while taking into account atom similarities.

This resembles the strategy proposed by matching pursuit algorithms [84, 30, 112]. Therefore,

we will follow the same greedy recipe. The basic idea is to start with an empty code repre-

sentation and a residual code equal to the original sparse code and to pick at each iteration

the molecule with the realization that best fits the residual code and remove it form the resid-

ual. The iterative decomposition procedure continues until either the maximum number of

allowed molecules in the representation TM is reached, or the residual cannot be reduced

anymore. The pseudocode of the scheme is presented in Algorithm 5.

Finding the molecule realization that best approximates the residual code, however, is not

trivial as a simple inner product solution between the residual and the molecule prototype

would again be challenged by potential non-overlaps in the support. To resolve this issue,

we propose a new method for ‘projecting’ the residual code to the direction of the molecules

which takes into account the atoms’ pools and the sparse nature of the codes. To this end,

in Section 5.3.1 we present the exact problem formulation for the projection. We take some

steps into simplifying it before we present the closed form solution to this simplified version

in Section 5.3.2.
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Chapter 5. Structure learning from sparse codes

Algorithm 5 MP for representing sparse codes with molecule realizations (MPSPARSE)

1: function MPSPARSE( Cπ, xS,TM ,T,δ)
2: r = x, âx,i = 0,∀i ∈ [1, M ] . Initialize residual and code representation
3: for j = 1 : TM do . Until reaching the maximum number of molecules
4: for i = 1 : M do . Find the projections of the current residual to the molecules
5: [âr,i , ĉr,i , r̃i ] = PROJECT2MOL(r,cπ,i ,S,T ) . Alg. 6
6: end for
7: [mi nr , mi ni ] = mini (||r̃i ||2) . Find the molecule with the minimum residual
8: if ||r ||2 −mi nr < δ then . If not significant reduce in residual, stop
9: j = j −1, BREAK

10: end if
11: âx,mi ni = âr,mi ni , ĉx,mi ni = ĉr,mi ni . Otherwise, pick the molecule
12: r = r̃mi ni . and update residual
13: end for
14: return âx ,Ĉx . Return the decomposition coefficients and realizations
15: end function

5.3.1 Sparse code projection to molecules

The problem of finding the realization of a molecule prototype cπ,i , i ∈ [1, M ] that can best

approximate the residual code r or equivalently the problem of projecting the residual sparse

code to the direction of cπ,i , can be written as:

{âr,i , ĉr,i } = argmin
ar,i≥0, cr,i≥0

||Wi×(cπ,i−S cr,i )||≤T
Γr,i⊆Γr ∩ΓPπ,i

||r − cr,i ar,i ||22 (5.5)

where the index i refers to the ith molecule prototype in Cπ. For the sake of simplicity, in the

rest of this Section we omit the index i and we set:

cπ = cπ,i , w =Wi , b = ar,i , v = cr,i (5.6)

to be the ith molecule prototype, the indicator function of its support as well as the projec-

tion coefficient of the residual to the molecule direction and the realization that achieves it

respectively. After the changes in notation, the problem of Eq. (5.5) becomes:

{b̂, v̂} = argmin
b≥0, v≥0

||w×(cπ−S v)||≤T
Γv⊆Γr ∩ΓPπ

||r − v b||22 (5.7)

where Γv is the support of v , Γr is the support of r and ΓPπ
is the union of active pools in the

prototype cπ.

This problem is not jointly convex on both variables b, v . Thus, it is not easy to find its global

minimum. To avoid getting caught in poor local minima, we carefully simplify the formulation

so that the problem becomes convex while remaining true to the underlying structure of the
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5.3. Sparse code representation

variables. In Eq. (5.7) the differences between the vectors are measured in two different ways

with ||r − v b||22 at the atomic level and ||w × (cπ−S v)|| at the pool level. In particular, the

structural difference between the molecule prototype and its realization can be written as :

||w × (cπ−S v)|| = ||cw − vw || (5.8)

where cw = w × cπ and vw = w × (S v). Essentially, cw and vw are non-zero only at the active

entries of W , i.e., the active pools in the prototype cπ. Therefore we could consider them as

the restrictions of the corresponding vectors cπ, v in the pool level.

Moreover, based on the constraint Γv ⊆ Γr ∩ΓPπ
, we observe that for each pool in the prototype

cπ we know exactly which atoms to pick in order to create the realization v , namely the

common atoms between the support of the residual code Γr and the pool. Hence, we are only

missing the amount of energy in each active pool. As a result, we can simplify the problem in

Eq. (5.7) by first solving it for the vectors with non-zero entries only for the active pools of cπ,

marked by w , and then expanding the solution back to the original atomic level with the aid

of Γr . We denote the restriction of the residual code r to the pool level by rw = w × (S r ). The

simplified formulation of Eq. (5.7) is then:

{b̂, v̂w } = argmin
b≥0 vw≥0,
||cw−vw ||≤T

||rw − vw b||22 (5.9)

The problem in Eq. (5.9) can be treated as the projection of a point to a convex set. To be

more specific, the constraint ||cw − vw )|| ≤ T indicates that vw belongs to hypersphere H with

radius T while the constraint vw ≥ 0 restricts vw to live in the non-negative orthant J . Both H

and J are convex sets and so is their intersectionΩ= H ∩ J . Based on the convexity ofΩ and

the positivity of the coefficients b, it can be proved that the vector z = vw b belongs to a closed

convex cone CΩ, ∀b ≥ 0, vw ∈ H . The proof is given in the Appendix A.3. After this observation,

the problem can be written as

ẑ = argmin
z∈CΩ

||rw − z||22 (5.10)

which is exactly the problem of projecting a point to a closed convex set and according to the

projection theorem, it is convex and it has a unique solution [18].

5.3.2 Solution for the code projection to molecule direction

The projection of a point in the intersection of convex sets (POCS) is a well-studied problem

[39]. A traditional solution approach suggests to sequentially pass over the individual sets and

project onto each one a deflected version of the previous iterate [47]. However, in our case due

to the small value of T in applications and the positivity of cw , it is usually the case that the

hypersphere H lies entirely into J , i.e. Ω= H ∪ J = H . In the rest, we will make this assumption

and find an efficient way to project a point on CΩ. In the opposite case, a more generic POCS
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Chapter 5. Structure learning from sparse codes

(a) Case 1 : the residual falls in
the area of the cone.

(b) Case 2a: the residual falls
outside the cone, non-zero
projection.

(c) Case 2b: the residual falls
outside the cone, zero projec-
tion.

algorithm should be employed instead.

To compute the solution we look at our convex cone CΩ, which can be alternatively defined

as the conical hull of the hypersphere H . As a result, it can also be described as the set of

vectors whose angle from cw is less or equal to φ, the maximum between any vector vw in CΩ

and cw . The maximum angle φ can be computed as φ= cos−1(

√
||cw ||2 −T 2

||cw || ) as it is shown in

Appendix A.4. Therefore, we can easily deduce the relative position of rw with respect to the

cone by comparing φ with the angle between the vectors rw and cw , denoted by ψ. Then we

can distinguish two cases, namely rw is inside the cone C when ψ<=φ and rw is outside the

cone C when ψ>φ. In the rest, we give the details of the solution in each case.

1. ψ<=φ : rw ∈ CΩ. In this case, the vector rw is inside the convex cone C . Therefore, the

vector ẑ that minimizes Eq. (5.10) is equal to rw . For this case, there are many different

decompositions of z as z = vw b,b > 0, vw ∈ H . For simplicity, we pick vw to be the

projection of cw in the direction of rw , i.e., v̂w = 〈cw ,rw 〉
||rw ||2 ∗ rw . Then b̂ = ||rw ||2

〈cw ,rw 〉 . The

geometric representation of this case on the plane defined by rw and cw is shown in

Figure 5.1a.

2. ψ>φ : rw ∉ CΩ. In this case, the vector ẑ has a different direction than the rw . Due to

the symmetry of C around cw , we can constrain our search for ẑ on the plane defined by

rw and cw . Then we can distinguish two possible cases:

(a) ψ−φ<π/2 : An example of such a case is shown in Figure 5.1b. In this case, v̂w

can be described by its relative position to the vectors rw and cw . More specifically

we can write:

v̂w = l1 rw + l2 cw , vw is on the plane defined by rw ,cw

||v̂w || = cosφ, vw is φ radiants from cw

〈v̂w ,rw 〉 = cos(ψ−φ)||rw || ||v̂w ||, vw lies ψ−φ radians away from rw

The above equations constitute a 2×2 system system of equations for l1, l2 which

can be solved by substitution. The exact numeric solution is presented in the

pseudocode of the Function FINDV(ψ,φ,rw ,cw ) in the Algorithm 7. Finally, the
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5.4. Structure update

coefficient b̂ is the projection of rw to the direction of v̂w , i.e., b̂ = 〈rw , v̂w 〉
||v̂w ||2 .

(b) ψ−φ>=π/2. In this case, shown in Figure 5.1c, ẑ = 0. Then, b̂ = 0 and ˆvw = 0 too.

Finally, to complete the solution, we need to get the complete vector v̂ by expanding its

restriction to the pools v̂w back to the atomic domain. We can do it by iterating over the active

pools of cπ. For the jth pool of the prototype cπ, we define γ j = Γr ∩P (Γπ( j )) to be the common

support between the residual r and the pool. From the jth entry in v̂w we know the available

energy in this pool. In order to mantain the structure in the entries of the residual r , we will

enforce the same proportions in the entries of the molecule realization v̂ . To this end, we set

v̂(k) =


r (k)

rw ( j )
v̂w ( j ) if k ∈ γ j ,

0 otherwise
(5.11)

This way, we have
v̂(k)

v̂w ( j )
= r (k)

rw ( j )
,∀k ∈ γ j ,∀ j . The pseudocode of the expansion procedure is

presented Function FINDV(ψ,φ,rw ,cw ) in the Algorithm 7. Finally, using the values for b̂ and

v̂ that we have computed for the projection, we can compute the new residual as r̃ = r − b̂ ∗ v̂ .

To sum up, in this section we have presented a greedy matching pursuit algorithm for rep-

resenting a sparse code as a few molecule realizations. To allow the matching pursuit to

adapt to the specific characteristics of the sparse codes and to the molecule structure, we

have designed a new scheme for discovering the realization of a molecule prototype that

best approximates a residual sparse code. To achieve an effective and efficient solution we

simplified the original problem formulation to a form that could be solved accurately based

on the geometrical properties of convex sets. The pseudocode of the functions involved in

our scheme are presented in the Algorithms 6 and 7 for the PROJECT2MOL and the functions

FINDV and EXPANDV respectively.

5.4 Structure update

We consider now the problem of updating the set of molecule prototypes Cπ. Since the

molecule realizations are strongly connected to their prototypes through the structural con-

straint ||Wi × (cπ,i −S cx,i )|| ≤ T, ∀i , x we need to update the prototypes and their realizations

at the same time to ensure the constraint. To achieve that, we use the code representations

discovered so far to update each molecule, both prototype and realizations, alone. Specifically,

for each molecule i ∈ [1, M ], we consider that all cπ, j 6=i and cx, j 6=i , ax, j 6=i ,∀x are known. Then,

we solve the problem of Eq. (5.2) for the prototype cπ,i and the corresponding code represen-

tations cx,i , ax,i for all the codes x that use the ith molecule, i.e., ∀x, ax,i > 0. We denote this

set by Xi = {x ∈ X , ax,i > 0} and we call it the supporting set of the ith molecule. Then, based
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Chapter 5. Structure learning from sparse codes

Algorithm 6 Projection to molecule

1: function PROJECT2MOL(r,cπ,S,T )
2: b̂ = 0, r̃ = r, v̂ = 0 . Initialization
3: w = cπ(k) > 0, Γπ = {k : w(k) == 1} . Support of the molecule prototype
4: ΓPπ

=⋃
k∈Γπ P (k) . Support of active pools

5: rw = w × (S r ), cw = w × cπ . Vectors in pools’ level
6: if rw == 0 then r etur n end if . If no overlap with molecule prototype, return

7: φ= cos−1

√
||cw ||2 −T 2

||cw || , ψ= cos−1 〈rw ,cw 〉
||rw ||||cw || . Angles φ, ψ

8: if ψ<φ then . Case 1

9: b̂ = ||rw ||2
〈rw ,cw 〉

10: v̂w = 〈cw ,rw 〉
||rw ||2 ∗ rw

11: else . Case 2
12: if ψ<π/2 then . Case 2a
13: v̂w = FINDV(ψ,φ,rw ,cw ) . Alg. 7

14: b̂ = 〈rw , v̂w 〉
||v̂w ||2

15: else . Case 2b
16: return
17: end if
18: end if
19: v̂ = EXPANDV(v̂w , b̂,r,Γπ) . Alg. 7
20: r̃ = r − b̂ v̂ . New residual
21: return b̂, v̂ , r̃
22: end function

on Eq. (5.2), our update problem for the ith molecule becomes:

ĉπ,i = argmin
cπ,i≥0

∑
x∈Xi

argmin
ax,i≥0 cx,i≥0

||Wi×(cπ,i−S cx,i )||≤T
Γx,i⊆Γex ∩ΓPπ,i

||ex − cx,i ax,i ||22
(5.12)

where ex is the code residual with respect to the i-th molecule i.e., the part of the code that is

not covered by the other molecules i.e.,

ex = x − ∑
j 6=i

Cx, j ax, j (5.13)

Moreover, Γex is the support of the residual ex while Γx,i and ΓPπ,i are the support of the

molecule realization cx,i and the union of active pools of the prototype cπ,i respectively. As in

the previous Section, for the sake of simplicity, in the rest of this Section we will omit the index

i of the molecule and refer to it as cπ instead of cπ,i . Equivalently, we will set:

w =Wi , bx = ax,i , vx = cx,i , Q = Xi (5.14)
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Algorithm 7 Projection to molecule: auxiliary functions

1: function FINDV(ψ,φ,rw ,cw )) . Find the vector v̂w (Case 2a )

2: A = cos(ψ−φ)∗cosφ∗ ||cw ||
||rw || , B = cosψ∗||cw ||

||rw ||
3: l2 = sinψ

cosφ sin(ψ−φ)
4: l1 = A− l2 ∗B
5: v̂w = l1 ∗ rw + l2 ∗ cw

6: return v̂w

7: end function

8: function EXPANDV(v̂w , b̂,rw ,S,Γπ) . Expand v̂w to get v̂ (Case 2)
9: for j ∈ Γπ do . For every active pool in the prototype

10: γ j = {k : r (k) > 0 ∧ S( j ,k) > 0} . Find common support between pool and r
11: if |γ j | > 0 then

12: v̂(k) = vw ( j )

rw ( j )
∗ r (k),∀k ∈ γ j . Distribute energies in the atoms in the pool

13: end if .while preserving the ratios of energies in r
14: end for
15: return v̂
16: end function

to be indicator function of the support of the ith molecule, the coefficient and the realization

of the ith prototype for the representation of code x and the support set of the molecule

respectively. After the changes in notation the problem (5.12) becomes:

ĉπ = argmin
cπ>0

∑
x∈Q

argmin
bx≥0, vx≥0

||w×(cπ−S vx )||≤T
Γvx ⊆Γex ∩ΓPπ

||ex − vx bx ||22
(5.15)

where Γvx is the support of vx and ΓPπ
is the union of active pools in the prototype cπ.

Although updating one molecule at a time results in a simpler problem formulation than the

one in Eq. (5.2) that solves for all the molecules simultaneously, the new optimization problem

in Eq. (5.15) still presents some challenges. A major one is the dependence of the constraints

on the molecule support through both w and ΓPπ
. The inclusion of these variables into the

problem formulation transforms it into a mixed-integer optimization problem, rendering its

exact solution inefficient and time consuming as it can require a full search of the variable

space.

To overcome this difficulty, we build an approximate solution to Eq. (5.12) in successive steps.

To start with, in Step A, we decide on the support Γπ of the prototype cπ and we solve for w and

ΓPπ
. Then, in Step B, we solve for the coefficients of the prototype on the chosen support Γπ.

The two steps are discussed below. The pseudocode of the overall procedure for updating the

structure is given in Algorithm 8 while the details for updating each molecule are presented in

Algorithm 9.

71



Chapter 5. Structure learning from sparse codes

Algorithm 8 Structure update

1: function UPDATESTR( X , AX ,C X ,S,TA ,TE ,T )
2: for i = 1 : M do . Update molecules, one by one
3: Xi = {x ∈ X : ax,i > 0} . Find codes that use the molecule i
4: if |Xi | ==; then . If molecule not used at all,
5: Xi = {xp , p = r and per m(|X |,1)} . pick randomly the Xi

6: end if
7: AXi = {ax }x∈Xi ,C Xi = {Cx }x∈Xi

8: [Ĉπ,i ,C Xi , AXi ] = UPDATEMOL(Xi , i ,C Xi , AXi ,TA ,S,TE ,T ) . Update molecule
(Alg. 9)

9: end for
10: return Ĉπ

11: end function

Step A: Solve for molecule support

In the first step, we solve for the support of the prototype cπ, denoted as Γπ. Our solution

is based mainly on the constraint Γvx ⊆ ΓEx ∩ΓPπ
, which indicates that the active pools in

the molecule prototype ΓPπ
should cover as many of the non-zero entries in Ex as possible.

Otherwise, the realizations vx cannot be non-zero in these positions and the approximation

error increases. However, given a maximum number of pools that can be included in the

prototype, denoted as TA , deciding which pools to pick to maximize the covered energy in

the residuals ex is an NP-hard problem [106]. An exact solution could be devised with the

use of dynamic programming. However, such an approach would not be efficient for our

scheme as the algorithm would be invoked multiple times for one structure update, causing an

important computational overhead. Instead, we propose a greedy solution that approximates

the optimal support Γπ efficiently through iterations. The algorithm starts with an empty

support set and at each iteration adds the most ‘energetic’ pool to it. Essentially, it follows the

same strategy as the matching pursuit algorithms as it tries to pick a few pools to cover most

of the coefficients’ energy in the residual codes ex .

To be more specific, we start by setting rx = ex ,∀x ∈Q. Then we project the residuals into the

pools using the matrix S and we sum over all the codes in Q to get the total ‘energy’ in each

pool i.e.,

EP = ∑
x∈Q

S rx (5.16)

where S is the matrix representing the atoms’ pools, defined in Eq. (4.8). From this vector, we

pick the strongest pool to add to the support. Then, we update the residuals rx by zeroing

out the coefficients into the chosen pool, as these entries are now in the allowed support.

We iterate until the maximum number of atoms per prototype, namely TA , is reached or

until the energy left in the residual codes rx ’s is very small, namely less than a threshold

TE . During the iterations, we also make sure that the chosen support fulfills the molecule
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assumption introduced in Section 4.2.3 which states that a molecule prototype should not

include overlapping pools. To this end, we introduce a vector of forbidden atoms for the

support that is updated at each iteration based on the newly added pool.

Step B: Solve for molecule coefficients

After we decide on the support Γπ, we solve for the exact coefficients of the prototype cπ. To

this end, we use the same method introduced in Section 5.3.1 to simplify the problem of Eq.

(5.15) by projecting the vectors to the pool levels. We define:

cw = w × cπ

vx,w = w × (S vx )

ex,w = w × (S ex )

In reality, we have cw = cπ since the vector w is the indicator function of cπ. Then the difference

between the molecule prototype and its realization is written ||w × (cπ−S vx )|| = ||cw − vx,w ||
and the problem formulation becomes:

ĉw = argmin
cw≥0

∑
x∈Q

argmin
bx≥0, vx,w≥0

||cw−S vx,w )||≤T

||ex,w − vx,w bx ||22 (5.17)

The optimization problem with unknowns vx,w ,bx∀x ∈ Q as well as the vector cw is not

convex. Geometrically, the problem in Eq. (5.17) is equivalent to finding the location of

the hypersphere H of radius T that we introduced in Section 5.3.2 so that its conical hull C

minimizes the sum of squared distances between the vectors ex,w and their projections on

C . However, in contrary to the problem in Eq. (5.9), the one in Eq. (5.17) cannot be solved

in a closed form. To avoid tedious alternation techniques, we will provide an approximate

solution instead. We can observe that when the value of T is small, which is usually the case,

the hypersphere shrinks to a very small area around cw and the conic hull reduces to the

vector cw . Thus, we can set cw ≈ vx,w∀x ∈Q and Eq. (5.17) becomes:

ĉw = argmin
cw≥0

∑
x∈Q

argmin
bx≥0

||ex,w − cw bx ||22 (5.18)

We denote with BQ = [bx1 bx2 . . .bx|Q| ] the vector with the coefficients of all codes in Q and with

Ew = [ew,1ew,2 . . .ew,|Q|] the matrix with the corresponding error vectors. We can re-write the

Eq. (5.18) as :

ĉw = argmin
cw>0,BQ>0

||Ew − cw BQ ||2F (5.19)

If Ew is a non-negative matrix, the problem in Eq. (5.19) is the non-negative matrix factoriza-

tion of Ew of rank 1. In the opposite case, the negative entries in Ew can not be approximated
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Chapter 5. Structure learning from sparse codes

due to the positivity constraints on cw and BQ . However, we can still solve Eq. (5.19) with NMF

[13] after we zero out the negative entries of Ew . Finally, we have ĉπ = ĉw as the vectors cw and

cπ are identical due to cw = w × cπ where w is the indicator function of the prototype cπ.

Algorithm 9 Molecule update

1: function UPDATEMOL( Q, i , AXi ,C Xi ,TA ,S,TE ,T )
2: ex = x −∑

j 6=i Cx, j ax, j . Compute error vectors for index set
3: rx = ex ,For b =;,Γπ =; . Initiliaze residuals, molecule support, allowed pools
4: for k = 1 : TA do . Step A: support (5.4)
5: EP =∑

x∈Q S rx . Project residuals in the pools, sum over all instances
6: [maxV , i ndex] = max(EP × f or b) . Find the most energetic, allowed pool
7: if maxV < TE then br eak end if . If not enough energy left, stop
8: Γπ = Γπ∪ {i ndex} . Add the chosen pool to support
9: ΓPπ

=∪k∈ΓπP (k) . Find covered pools
10: rx (m) = 0,∀m ∈ ΓPπ

,∀x ∈Q . Update residuals
11: f or b = { j : P ( j )∩ΓPπ

6= ;} .Update allowed atoms: no overlaps with chosen pools
12: end for . Step B: coefficients (5.4)
13: w =1(Γπ) . Indicator function of chosen support
14: ew,x = w × (S ex ) . Restrict errors to chosen support
15: Ew = [ew,x1 ew,x2 . . .ew,x|Q| ],E+

w = max(Ew ,0) . Build error matrix
16: ĉπ = N MF (E+

w ,1) . Pick the direction for the molecule
17: for j = 1 : |Q| do . Code representations for x ∈Q
18: [bx , vx ] = PROJECT2MOL(ex , ĉπ,S,T ) . Algorithm 6
19: end for
20: AXi = {bx , x ∈Q},C Xi = {vx , x ∈Q}
21: return ĉπ, AXi ,C Xi

22: end function

Once ĉπ has been completed through steps A and B above, we complete the solution to the

problem in Eq. (5.15) and solve for bx , vx ∀x ∈Q with our algorithm that solves and finds the

best molecule realization for representing a residual code as described in Algorithm 6.

To sum up, in this Section we have presented our scheme for updating the molecule prototypes

after finding the sparse representations of the codes. Faced with a complicated optimization

problem in Eq. (5.15), we have designed a series of steps that permits us to find an approximate

solution efficiently. In the rest of the Chapter, we present the results of our learning scheme

for various data.
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5.5. Experimental results

Figure 5.2 – Examples of synthetic signals composed each by 1,2 or 3 molecule realizations.
In the first row we have the images and in the second the distribution of energy in the sparse
code domain. The corresponding molecule prototypes are shown in Figure 5.3.

5.5 Experimental results

5.5.1 Synthetic Data

Experimental settings

In this section we have experimented with synthetic data to check whether our learning algo-

rithm, namely MLSC, manages to correctly recover the underlying structure when presented

with a set of sparse codes. The underlying dictionary consists of gaussian anisotropic atoms

i.e.,

D = {φu : u = (τx ,τy ,r,σ) ∈U } (5.20)

where φ(x, y) = A exp(−(x/h)2 − y2) is the gaussian mother function and φu(x, y) = φ(x ′, y ′)
with x ′ = cosr (x − τx )+ sinr (y − τy ), y ′ = (1/s)(−sinr (x − τx )+ cosr (y − τy )) is the trans-

formation between the mother function and an atom φu . In the definition, h stands for the

anisotropy level, r is the rotation parameter, τx and τy denote translations in x and y directions,

and σ represents the scale.

The atoms of the dictionary are combined according to M predefined molecules contained

in structure matrix C . Each molecule is randomly constructed to contain 2, 3 or 4 atoms

of equal energy. To produce a molecule realization we use the same procedure as in the

previous chapter to model patterns that are quite similar in structure but may have different

sparse representations. In short, for each atom in the molecule prototype we produced an

approximation using the atoms in the atom’s pool. The atoms are chosen randomly, their

total number drawn from a geometric distribution with p = 0.7 (so that the approximation is a

sparse combination of atoms) while their coefficients are adjusted so that the projection of

their combination to the atom direction is close to the original coefficient value.

Each training signal is created as a random combination of a few molecule realizations (2,3 or

4). During the structure learning process, only the corresponding sparse codes of the signals,

as well as the matrix S with the atoms’ pools is considered to be known, and the knowledge

of the complete dictionary D is not necessary. Finally, the values of the parameters T,TE for
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Chapter 5. Structure learning from sparse codes

(a) 1st prototype. (b) Examples of realizations of the 1st prototype.

(c) 2nd prototype. (d) Examples of realizations of the 2nd prototype.

(e) 3rd prototype. (f) Examples of realizations of the 3rd prototype.

Figure 5.3 – The molecule prototypes for the example described in Section 5.5.1. In each
subfigure, the top line shows the images and the bottom the distribution of their coefficients
in the sparse code domain. In Figures 5.3a, 5.3c, 5.3e we plot the molecule prototypes while in
the Figures 5.3b, 5.3d, 5.3f we have some possible molecule realizations.

MLSC are both set to 0.1 for this set of experiments.

Illustrative example

We first present an illustrative example to highlight the notions of molecule prototypes and

realizations. For this case, we use 3 molecule prototypes of 20×20 pixels each, i.e., M = 3. The

underlying gaussian dictionary D is created by sampling the image plane with a step size 1 for

translation and
π

10
for rotation. The anisotropy h in Eq. (5.20) was set equal to 6. The images

and the sparse codes of the 3 molecule prototypes are shown in Figure 5.3. Some examples of

the training signals composed of 1 to 3 molecule realizations, along with their sparse codes,

are shown in Figure 5.2. From the figures, we can observe that the sparse codes of the same

molecules can be very different in the various realizations.

We then apply our MLSC structure learning algorithm on 500 training signals to recover M

molecule prototypes. The results of the learning are shown in both the image and code domain

in Figure 5.4 along with the results of alternative algorithms, namely the traditional dictionary

learning method K-SVD [1] and its recent expansion to sparse structured atoms, the double
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(a) Original molecule structure. (b) Recovered structure with MLSC.

(c) Recovered structure with DS. (d) Recovered structure with K-SVD.

Figure 5.4 – Structure learning results for the example in Section 5.5.1. At the top left we see the
original molecule prototypes and then at the top right the molecules learned by our scheme.
At the bottom left we have the results of the DS algorithm and finally at the bottom right the
results of the K-SVD. In each Figure, the top line shows the images and the bottom shows the
distribution of their coefficients in the sparse code domain.

sparsity algorithm (DS) [101]. From this figure, we can observe that K-SVD, as expected, finds

molecules that are not sparse since it is not designed to handle constraints on the structure

of the atoms. DS on the other hand correctly identifies sparse molecules. However, the lack

of the notion of the pools and of the relation between molecule prototypes and realizations,

results in mixing the second and third molecule. Our scheme however, correctly identifies the

underlying molecules.

Results over different numbers of molecules

Moving a step further, we test our learning scheme on synthetic data built from bigger molecule

dictionaries. For this case, we use the same settings as in the previous example, except that the

dictionary D has atoms of size 14×14. The anisotropy is set equal to 2 and we have sampled

the image plane for two scale levels [0.5 1] with a step size 2 for translation and
π

6
for rotation.

We have experimented with various values for the number of molecules M in the structure

model. For each of the dictionaries we create a training set of sparse codes used for the

learning and a testing set used for evaluating the results. As in the previous example, we

compare our results with those of double sparsity algorithm (DS) and K-SVD. We measure

the performance with the structural difference for molecule sets introduced in Eq. (5.3) and

the mean square reconstruction error (MSRE) of the testing set when coded with the learned

structures. The MSRE is computed in both the sparse code and the image domain.
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(c) MSRE in signal domain

Figure 5.5 – The evaluation of the structures learnt by the different schemes over the number
of molecules M in the dictionary for the case of synthetic data. In (a) we plot the structural
difference between the learned models and the optimal structure and in (b) and (c) the MSRE
in both the sparse code and image domain that is achieved with the learned structures when
coding the testing set.

The results of the experiments, averaged over 5 different structure instances for each M , are

shown in Figure 5.5. From the plot in Figure 5.5a, we can see that our scheme manages to

uncover the structure that is the most relevant one in terms of our measure of structural

difference of Eq. (5.3). In the same plot, we observe that K-SVD performs very poorly in

terms of this measure, as it is expected since it does not take into account the sparse nature

of the molecules. Double sparsity on the other hand, performs better than K-SVD but still

worse than our scheme. In the next two plots in Figures 5.5b and 5.5c, we plot the MSRE for

the testing set in both the sparse code and image domain. For reference, we also plot the

MSRE achieved when the optimal structure is used in the coding. The scheme is denoted

as ‘MLSC, opt’. The qualitative behavior in both domains is the same for all schemes with

our scheme being the closest to the performance of the optimal structure. The interesting

twist however is that the MSRE achieved by the structure learnt with K-SVD is a bit better

than that of the double sparsity scheme. This observation means that the non-sparse nature

of the molecules of K-SVD that is completely wrong in terms of structure, permits a better

approximation performance of the signals. The sparse and strict molecules of the DS scheme

are more accurate but perform worse in the approximation. Therefore, the two performance

measures are not equivalent and satisfying both tasks, namely correct structure and good

approximation performance, seems challenging. Luckily, our scheme performs well on both

aspects.

5.5.2 Digit images

Next, we have used our algorithm to learn the structure of MNIST images [72]. The images

have been downsampled to 14×14 and normalized. In order to better fit the signal model the

digits are coarsely pre-aligned to avoid big discrepancies in the position and the orientation.

For learning the molecule prototypes we use 1000 examples per digit and for the testing 500

examples per digit. In order to find a sparse representation of the digits, we use again the
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(a) Digit 0, low threshold. (b) Digit 0, high threshold.

(c) Digit 9, low threshold. (d) Digit 9, high threshold.

(e) Digit 4, low threshold. (f) Digit 4, high threshold.

(g) Digit 7, low threshold. (h) Digit 7, high threshold.

Figure 5.6 – Examples of the molecules learned with MLSC for various digits and different
values of the threshold parameter TE in Algorithm 8. In the top row of each figure we plot the
images of the molecules and in the bottom the corresponding distribution of coefficients in
the sparse code domain.

dictionary of gaussian anisotropic defined in Eq. (5.20) with two levels of anisotropy h set to 2

and 4 and two scale levels [0.5 1]. The translation parameters τx ,τy are sampled with a step

size 1 and the rotation parameter r with step size
π

6
.

In a first test, we investigated the influence of the energy threshold TE in the Algorithm 8 on

the sparsity of the learned molecules as well as on their appearance. We have experimented

with two different values for TE a higher one set to 0.1 and a lower one set to 0. The rest of the

parameters are set to M = 20,TA = 10,TM = 5,T = 0.2. The results of the learning for different

digits are shown in Figure 5.6. Recall that learning is performed in the sparse code domain,

but in order to interpret the results more easily we also plot the corresponding images. As

expected when the value of TE is low, the molecules are less sparse and resemble more images

of full digits, encoding more complicated patterns. On the other hand, when TE is high, fewer

atoms are included in the molecules, which end up representing parts of the digits.

In order to quantify the quality of the extracted molecules, we compare their approximation

performance in both the sparse code and image domain with the molecules learned from
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(b) Image space.

Figure 5.7 – Comparison of the MSRE on the testing set of various digits in both the sparse
code and image domain. The 20 molecule prototypes are extracted with 3 different schemes
namely MLSC, DS and K-SVD and the coding is performed with the MPSPARSE (Alg. 5) for the
first two and the MPSPARSE (Alg. 5) and the OMP for the K-SVD.
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Figure 5.8 – Approximation example for an instance of the digit 4. Starting from the left we have
the testing signal, and then its approximation with the structure extracted with the MLSC, the
DS and the K-SVD. The square resonstruction error is written on top of each approximation.

DS and K-SVD algorithms. We have kept the same values of parameters M ,TA ,TM and T

in all algorithms and we have set TE in our algorithm to the value allowing the best perfor-

mance, which proved to be 0. For the K-SVD algorithm, we plot both cases of coding with our

MPSPARSE algorithm in Algorithm 5 and the classical OMP as the nature of the molecules

extracted by KSVD is not always proper for our scheme (negative values, non-sparse). For the

DS, on the other hand, we plot only the results with the MPSPARSE algorithm as the molecules

learned with the DS are compatible with our algorithm. The MSRE for the testing set of each

digit is shown in Figure 5.7. Moreover, examples of the molecule prototypes included in the

dictionaries of the different schemes for the case of the digit 4 are shown in Figure 5.9.

From the Figure 5.7, we can verify that the molecules learned with MLSC, approximate the

testing codes better than the molecules learned with the competing schemes in the sparse

code domain. However, the MSRE for the corresponding images does not always confirm this
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(a) MLSC

(b) DS

(c) K-SVD

Figure 5.9 – Examples of the molecules learned with the MLSC, DS and the K-SVD for the digit
4. In the top line of each sub-figures we plot the images of the molecule prototypes and in the
bottom their sparse codes. These prototypes are part of the structure used to compute the
MSRE’s in Figure 5.7.

as there are digits where the K-SVD molecules give good approximation error in the image

domain. This difference is due to the nature of the K-SVD algorithm that extracts molecules

with both positive and negative entries. However, the results of this scheme are highly variable

and not very consistent across the testing set.

Moreover, in Figure 5.9 we can see that the molecules learned with MLSC and DS have often

similar supports in the sparse code domain. However, the DS molecules have usually a couple

of high coefficients while the rest of the support has quite small values in contrast to MLSC

that produces more well-balanced molecules. As a result, we can verify that the values of

the coefficients is important as it affects significantly the performance. Finally, in Figure 5.8

we present a concrete example of the approximation achieved by the different schemes for

an instance of the digit 4 where we observe a degradation of the approximation as we move

from MLSC to the others: DS approximation captures less details of the digit while K-SVD

approximation is rather blurry and much less well shaped.

5.5.3 Object images

Finally, we have also experimented with images of objects. For that purpose we use the Ams-

terdam Library of Object images (ALOI) [44] which is a color image collection of one-thousand

small objects. Each object is recorded under different viewing angles and illumination settings.

81



Chapter 5. Structure learning from sparse codes

(a) Car (b) Watering Can (c) Duck

Figure 5.10 – Some examples of the images of three objects in ALOI dataset along with their
sparse approximation.

In our experiments, we use the grayscale version of the images downsamled to the size 35×35.

For the sparse representation of the images we use as before the dictionary of gaussian atoms

from Eq. (5.20) with the anisotropy h set to 1 and 4 and the scale s to 2[0:0.5:4] as in [41]. The

translation parameters τx ,τy are sampled with a step size of 0.5 and the rotation parameter r

with
π

8
. However, to reduce the computational overhead that a dictionary of that size induces

after finding the sparse codes of the images, we discard the atoms of the dictionary that have

not been used for sparse coding along with the corresponding dimensions in the codes. Some

instances of the objects ’Car’, ’Watering Can’ and ’Duck’ from the dataset are shown in Figure

5.10.

In a first test, we investigate the changes in the appearance of the learned molecules as

the number of molecules M in the structure model changes. We try with M = 10,20,30 for

each object and the results for the ’Car’ and ’Duck’ objects are shown in Figure 5.11. The

rest of the parameters are set to TA = 10,TM = 5,T = 0.2,TE = 0. As before, the learning is

performed in the sparse code domain, but in order to interpret the results more easily we plot

the corresponding images as well. From the Figure, we can observe that when M is low, almost

all molecules look like blurry shapes of the objects in the different viewpoints. However, as M

increases, new molecules handling the details of the objects in the different viewpoints start

to emerge allowing for more accurate object approximation.

Finally, as before, we compare the approximation performance of the molecules learned with

the MLSC with the ones learned with the DS and the K-SVD algorithms. For the comparison,

we keep the same values of parameters TA ,TM ,T and TE as above and we have set M to 30.

Since the number of objects per category is small in the ALOI dataset, we use all the instances

for training and we report the MSRE for these images in Figure 5.12. For the K-SVD algorithm,

we plot both cases of coding with our MPSPARSE algorithm and the classical OMP as the

nature of the molecules extracted by KSVD is not always proper for our scheme (negative

values, non-sparse). From the Figure 5.12, we can verify that the molecules learned with our

scheme, approximate the testing signals better than the molecules learned with the competing

schemes in both domains. This can also be verified from the Figure 5.13 where we show the

approximation of a ’Duck’ instance from all algorithms in both the image and the sparse
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(a) 10 molecules for car. (b) 10 molecules for duck.

(c) 20 molecules for car. (d) 20 molecules for duck.

(e) 30 molecules for car. (f) 30 molecules for duck.

Figure 5.11 – Examples of the molecules learned with our scheme for different number of
molecules M in the structure model. In the left side we have the molecules for the object car
and in the right side the ones for the object duck.
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Figure 5.12 – Comparison of the MSRE on ALOI dataset in both the sparse code and image
domain. The 30 molecule prototypes are extracted with 3 different schemes namely MLSC, DS
and K-SVD and the coding is performed with the MPSPARSE (Alg. 5) for MLSC and DS and
with both the MPSPARSE (Alg. 5) and the OMP for the K-SVD.
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Figure 5.13 – Approximation example for an instance of the object duck.

domain .

Finally, the molecule prototypes in the dictionaries of the different schemes for the object

’Duck’ are shown in Figure 5.14. From the Figure we can observe that with this dataset many of

the molecules learned with the MLSC and the DS are similar. However, from the DS molecules

we luck the ’details’ molecules appear with our scheme as M increases. As a result, the MSRE

with the MLSC molecules is better than the one with DS. The same observation can also be

made by the approximation example in Figure 5.13: the DS approximation has gotten less

details about the duck figure while the SMC approximation is more detailed and accurate.
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5.6 Conclusions

In this chapter, we have presented our algorithm for learning structure from the signals’ sparse

codes. We have used the structure model that we introduced in the Chapter 4 to formulate the

structure learning problem directly in the sparse code domain. In order to deal efficiently with

the resulting complex optimization problem we have alternated between steps of finding the

representation of the codes based on the current molecule structure and then updating the

structure based on the codes’ representation. For each step, we have carefully analyzed the

simplified optimization problem to get an approximate, yet effective solution. As a result, our

scheme is very efficient and it also requires only minimal knowledge about the underlying

dictionary, namely the ‘correlation’ matrix S of the atoms’ pools. We have tested our scheme

in learning the structure of various datasets like synthetic, digit and object images. From our

experiments we have verified the superior performance of our scheme compared to other

existing learning techniques that are however not designed explicitly for the sparse domain.
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(a) SMC

(b) DS

(c) K-SVD

Figure 5.14 – Molecule dictionaries for M = 30 for the different learning schemes for the
duck object. In each case, the images of each prototype are plotted along side their sparse
representation.
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6 Conclusions

6.1 Summary of the thesis contributions

In this thesis we have explored several ways to highlight the structure in low-dimensional

signal representations. In particular, we have focused on two popular signal models, namely

the manifolds and the sparse representations, and we have proposed techniques to enhance

them by either exploring their structural form if already present or by introducing more

structure in case of lack.

For the case of manifolds, we have designed a new manifold approximation technique to un-

cover the structure that is already embedded in the model but it is usually not known explicitly.

Motivated by the local linear nature of the manifolds, we have employed affine subspaces,

the flats, as approximation functions and we have used the difference of tangents to uncover

groups of points that comply with the low dimensionality of the flats. As a result, our algo-

rithm guarantees the preservation of the manifold’s local linear structure. Moreover, by using

elements from the theory of constrained clustering we have given a thorough justification for

the greedy nature of our scheme.

In the case of sparse representations, we have addressed two different issues. First, to enable

the differentiation of structures on the same support but with distinct energy distributions, we

have focused on defining more informative priors than the traditional ones. To this end, we

have proposed a new structured sparsity prior, the molecules, which take into account both the

coefficients and the support of the codes. To make our new prior more flexible we have defined

both molecule prototypes and molecule realizations, such that the molecules can adjust to the

data by getting signal-dependent forms. In order to compare the molecules, we have designed

a new structural difference measure based on the comparison of the corresponding sparse

codes. Moreover, we have also proposed a sparse coding scheme adapted to our new structure

model that permits an effective decomposition of signals into molecule realizations.

Finally, we have used our structure model of molecule prototypes and realizations to formulate

the structure learning problem directly in the sparse code domain. Based on the difference
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measure between the prototypes and their realizations, we have designed an algorithm that

requires only minimal knowledge of the underlying dictionary, namely the matrix of the atoms’

pools. As a result, the signal structure can be recovered independently of the exact form of

the atoms in the underlying dictionary. Finally, in order to deal efficiently with the complex

optimization problem, we have divided in into smaller sub-problems that we have carefully

analyzed and simplified to get an approximate but effective solution.

6.2 Discussion

To conclude this thesis, we discuss some observations that we made while working for repre-

sentation learning with manifolds and sparse priors.

Firstly, we highlight that our approximation scheme and the resulting flats for the manifolds

could be seen as a dictionary with group structure. To be more specific, we could build a

dictionary D by concatenating the bases for all flats in the approximation. Then, each signal

on the manifold has a decomposition using only the base elements of one flat, so it is K-

sparse where K is the flat dimensionality. And since only one flat participates in each signal’s

decomposition, the representation is 1-sparse in the level of groups while inside each group

the coefficients are generally non-zero. This is exactly the definition of group sparsity with

the l1 − l2 prior. However, the two models are not exactly equivalent, as the dictionary D

can generate more signals than the ones that belong to the manifold. Nevertheless, it is an

interesting insight as it also provides a link to our work with molecules as structural elements

in dictionaries: we get the molecule prior when we shrink the flats to 1-D hyperlines and we

relax the restriction for the signals to belong to only one group.

Secondly, we would like to mention that the manipulation of manifolds poses some challenges.

The most fundamental one is the assumption of local smoothness for the manifold. This

assumption is reasonable, but it can prove to be quite tricky under the light of the curse of the

dimensionality. In high dimensional spaces, the non-linear nature of the manifold may require

huge amounts of data to uncover its true underlying structure. In our work, we have used

the k-NN nearest neighbor graph to model the manifold structure. This classical technique

provides reasonable results in many cases. However, it is not very reliable in high-dimensional

spaces and it is very sensitive to noise. And although there has been recently some work on

the reliable estimation of the local geometry and the tangent spaces for manifolds [113, 123],

the problem still remains open.

Then, we would like to comment shortly on the depth of the architecture that we have used in

our structured sparsity model. The quest for depth and multiple layers in representations is

not new, as it is inspired from the architecture of many biological systems processing natural

stimuli. Many advances in the field have emerged recently in the machine learning community

with wide adoption of deep convolutional networks. These models, while achieving impres-

sive performance is some tasks, do unfortunately not provide much insight on how to get a

meaningful and effective signal representation. In this thesis, we have tried to follow the trend
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for deep data models by defining a second representation level for sparse representations. The

components of our model are explicit and intuitive. Although our performance in applications

is not as impressive as the deep nets ones, we obtained some promising results. One inter-

esting direction for further exploration therefore consists in the expansion of our structured

model to more than one layer. However, since the molecule realizations allow for independent

deformations in the atoms of the molecule, the challenge consists in the coordination between

the individual molecule deformations so that the pattern modeled by the molecule prototype

is not completely deformed into another shape but rather transformed. In other words, the

model should be expanded in order to provide transformation invariance.

Seen through the prism of transformation invariance, molecules could be very useful tools

for signal analysis as the ability to represent complex patterns in a transformation invariant

way is essential for applications like signal classification and recognition. For transformation

invariant molecule learning an interesting direction could be the use of Lie operators [94].

Moreover, the molecule learning could be further enhanced by the use of terms that explicitly

encourage the molecules’ discriminative power with techniques similar to the ones applied in

discriminative dictionary learning [97]. Additionally, the underlying dictionary of atoms could

also be learned from the data to further improve both the representative and discriminative

power of the system. In our work we assumed that the atomic dictionary is given a priori,

however a joint learning of the atoms and the molecules is an interesting direction for research.

Finally, in our work we have used a specific difference measure for the sparse codes between

molecules and molecule realizations based on our definition of deformations and on the

properties of the underlying dictionary. However, the matrix S, modeling the similarities

in the pools of the dictionary, could be alternatively learned from the data; that would be

particularly useful in case of absence of any information about the dictionary. Moreover, it

would allow the matrix to adapt to data by possibly allowing different sizes of pools for the

atoms. Additionally, the structural difference measure could also assume different forms

where the various methods about metric learning [69, 10] could be employed.
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A Supplementary proofs

A.1 Bound on error of atom realization

Figure A.1 – An example of the realization of the atom di from vector vi = b1d1 +b2d2 +b3d3

with d1,d2,d3 ∈ P (di ) and b1,b2,b3 > 0.

As we have mentioned in Section 4.2.3, if we constrain the atoms that participate in the

realization of the atom di to lie in its pool P (di ) and have non-negative coefficients we can

guarantee that the resulting approximation has a bounded error, i.e., ||di − vi ||22 ≤ L . To see

why, let vi =∑
j∈P (di ) b j d j . Then, from Figure A.1 we have:

||di − vi ||22 = ||ri ||2 = ||pi ||2 + (1−ei )2 = e2
i tan2φui + (1−ei )2 (A.1)

However for the angle between vi and di we have:

cosφui =
〈vi ,di 〉
||vi ||

=
∑

j∈P (di ) b j 〈d j ,di 〉
||∑ j∈P (di ) b j d j ||

≥ (1−ε)
∑

j∈P (di ) b j∑
j∈P (di ) |b j |

= 1−ε

if b j ≥ 0,∀ j ∈ P (di ) and ||di || = 1. Therefore, when we allow only non-negative coefficients in

the approximation, vi belongs to P (di ).

Moreover, since cosφui ≥ 1−ε, then sinφui ≤
p
ε(1−ε) and therefore tanφui ≤

√
ε

1−ε . Finally,
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from Eq. A.1 we get:

||di − vi ||22 ≤ (1−ei )2 +e2
i

ε

(1−ε)
(A.2)

A.2 Recovery analysis

In this section, we present the theorems that provide the lower and upper bounds on the

coherence of dictionaries DCx and DCu discussed in Section 4.3. The dictionary DCx is a

dictionary that contains more than one realization per molecule prototype while the dictionary

DCu is restricted to one realization per prototype. To evaluate their coherences denoted as

µx and µu respectively we first need to examine the distance between a molecule prototype

mπ,l = D cπ,l and its possible realizations mx,l = D cxi ,l . The corresponding upper bound is

presented in the next Theorem.

Theorem 1

Let ||cπ,l ||0 ≤ n,∀l and φ= acos(1−ε) where ε is the parameter used in the pool definition in Eq.

(4.6). Moreover, let the error |cπ,l (i )−ei | between the energy in an atom di of a molecule prototype

and the energy on its pool in any of the molecule realizations be bounded by |cπ,l (i )− ei | ≤
E cπ,l (i ),∀l , i ∈ Γπ,l , where E is a positive constant. Finally, let µM stand for the in-molecule

coherence defined as the maximum coherence between the atoms that belong to the same

molecule, i.e., µM = maxl
(
maxi , j∈Γπ,l ,i 6= j | < di ,d j > |) and assume that µM ≤ 1

n−1 . Then, the

distance between any molecule prototype mπ,l and any of its realizations mx,l is bounded by

||mx,l −mπ,l || ≤
√

((1+E)2t an2φ+E 2)n

1− (n −1)µM

Proof. For the molecule prototype mπ,l =
∑

i∈Γπ,l
cπ,l (i )di a molecule realization can be written

as :

mx,l =
∑

i∈Γπ,l

vi =
∑

i∈Γπ,l

(ei di +pi ) = mπ,l +
∑

i∈Γπ,l

(
pi − [cπ,l (i )−ei ] di

)
where an example of an approximation vector vi for an atom di is shown in Figure A.2.

Therefore:

||mx,l −mπ,l || = || ∑
i∈Γπ,l

(
pi − [cπ,l (i )−ei ] di

) || ≤ ∑
i∈Γπ,l

||pi − (cπ,l (i )−ei )di || (A.3)

by the triangle inequality. However, pi is orthogonal to the direction of di . Therefore:

||pi − (cπ,l (i )−ei )di || =
√

||pi ||2 +||(cπ,l (i )−ei )di ||2 =
√

e2
i t an2φv + (cπ,l (i )−ei )2
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Figure A.2 – An example of the approximation of the atom di from vector vi deviating by φv in
direction. The desired energy level is cl i while the projection of vi gives an energy of ei .

Substituting in Eq. (A.3), we get:

||mx,l −mπ,l || ≤
∑

i∈Γπ,l

√
e2

i t an2φv + (cπ,l (i )−ei )2 ≤
√

(1+E)2t an2φ+E 2 ||cπ,l ||1 (A.4)

since |ei | ≤ E cπ,l (i ),∀l , i ∈ Γπ,l , and cπ,l (i ) ≥ 0,∀l , i . For the ||cπ,l ||1, given ||cπ,l ||0 ≤ n, we have

:

||cπ,l ||1 ≤ ||cπ,l ||2
p

n (A.5)

To bound the l2 norm, we use the Rayleigh quotient R(M , x) = xT M x
xT x and its bound λmi n(M) ≤

R(M , x). In our case, M = DT
Γπ,l

DΓπ,l where DΓπ,l is the matrix of the atoms participating in

molecule mπ,l . Then, for x = cπ,l we have :

λmi n(DT
Γπ,l

DΓπ,l ) ≤ 1

||cπ,l ||2
⇔||cπ,l || ≤

1√
λmi n(DT

Γπ,l
DΓπ,l )

(A.6)

where λmi n is the minimum eigenvalue of DT
Γπ,l

DΓπ,l . Finally, from the Gershgorin circle

theorem applied on DT
Γπ,l

DΓπ,l , which is the Gram matrix of DΓπ,l that contains the inner

products of the atoms in Γπ,l , we get:

|λ−1| ≤ maxi∈Γπ,l

∑
j 6=i , j∈Γπ,l

| < di ,d j > |

Since µM = maxl
(
maxi , j∈Γπ,l ,i 6= j | < di ,d j > |) we get that ∀l :

1− (n −1)µM ≤λmi n(DT
Γπ,l

DΓπ,l )

Assuming 1− (n −1)µM > 0 ⇔µM ≤ 1
n−1 and substituting in Eq. (A.6), we have :

||cπ,l || ≤
1√

1− (n −1)µM
(A.7)
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Figure A.3 – The geometry of the molecule prototypes and the region of their realizations
restricted on the plane Omk ml defined by the center of the axis and the two prototypes. The
region of the realizations is restricted by a sphere of radius r . The angleφs shows the maximum
angle between the molecule prototype and any of the realizations, whileφ is the angle between
the two prototypes.

Combining Eq. (A.5),(A.7) and (A.4) we finally get that :

||mx,l −mπ,l || ≤
√

((1+E)2t an2φ+E 2)n

1− (n −1)µM

With an established bound for the distance ||mx,l −mπ,l || between a molecule prototype and

its realizations, we can prove the following theorem which provides a lower bound for the

coherence µx of any dictionary DCx with more than one realizations per prototype.

Theorem 2

When the distance between any molecule prototype and its realizations is bounded by ||mx,l −
mπ,l || ≤ r with r <

p
2

2 , the coherence µx of any dictionary DCx with more than one molecule

realizations per molecule is

µx ≥ 1−2r 2 = Lx (A.8)

Proof. The coherence of the dictionary DCx is :

µx = maxx,l ,y,k
| < mx,l ,my,k > |
||mx,l ||∗ ||my,k ||

= maxx,l ,y,k |cosφmx,l ,my,l |

where mx,l ,my,l are realizations of the molecule prototypes mπ,l and mπ,k and φmx,l ,my,l is

the angle between the two vectors. A lower bound to µ̃ can be found by computing the

maximum angle between two realizations of the same molecule, i.e. for l = k. Then, µx ≥
|maxx,y cosφmx,l ,my,l |,∀l .
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From the Figure A.3 we can see that, since all the molecule realizations live in a sphere

of radius r around the prototype mπ,l , the angle between any two realizations mx,l ,my,l

has to be less than or equal to 2φs . For the bound to be different than zero, we need that

2φs <π/2 ⇔ r <p
2/2. Then, from the Figure A.3, we have:

cosφs = ||OC ||
||Om2||

=
p

1− r 2

1
=

√
1− r 2

since ||Om2|| = ||mπ,l || = 1. Therefore:

φφmx,l ,my,l
≤ 2φs ⇔

cosφmx,l ,my,l ≥ cos2φs , φs ≤ π

4
⇔

cosφmx,l ,my,l ≥ 2cos2φs −1, φs ≤ π

4
⇔

cosφmx,l ,my,l ≥ 2(1− r 2)−1, r <
p

2/2 ⇔
cosφmx,l ,my,l ≥ 1−2r 2, r <

p
2/2 ⇔

|cosφmx,l ,my,l | ≥ 1−2r 2, r <
p

2/2 ⇔
µx ≥ 1−2r 2, r <

p
2/2 (A.9)

Finally, we can use the same bound on the distance ||mx,l −mπ,l || between a molecule proto-

type and its realizations to establish an upper bound on the coherence µu of any dictionary

DCu with maximum one realization per prototype. The following theorem formalizes this

bound.

Theorem 3

Let the coherence of the molecule prototype dictionary DC be µ. Given the bound on the

distance between any molecule prototype and its realizations ||mπ,l −mx,l || ≤ r with r <
p

2
2 , the

coherence µu of any dictionary DCu with at most one realization per molecule is

µu ≤Uu =µ(1−2r 2)+2r
√

(1−µ2)(1− r 2) (A.10)

Proof. We have:

µu = maxx,y,l ,k,l 6=k
| < mx,l ,my,k > |
||my,k ||∗ ||mx,l ||

= maxx,l ,y,k |cosφmx,l ,my,l | (A.11)

where mx,l ,my,k are realizations of the molecules mπ,l and mπ,k respectively and φmx,l ,my,k

is the angle between the two corresponding vectors. In the rest, we will restrict ourselves to

the case where the angle φmx,l ,my,l that maximizes the Eq. (A.11) is less or equal to π
2 . In the

opposite case, a similar analysis can be followed and the final bound on µu is the same. Under
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this assumption, we have

µu = maxl ,k,l 6=k cosφmx,l ,my,k (A.12)

Moreover, we can assume that the indices l ,k that maximize Eq. (A.12) are the same as the

ones that maximize the equation µ= maxl ,k | < mπ,l ,mπ,k > | = maxl ,k cosφl k . In other words,

we assume that the molecule prototypes that are the most coherent are also the ones that give

rise to the most coherent realizations. Therefore, we will continue our analysis for the case

where cosφl k =µ. It is sufficient to restrict the rest of the analysis on the plane defined by the

molecules prototypes mπ,l ,mπ,k . This is true because the space occupied by each prototype’s

realizations is a sphere, and the minimum distance and angle points between spheres live on

the plane defined by their centers.

The geometry on this plane is shown in Figure A.3. From the Figure we have that:

φmx,l ,my,k ≥φ and φ=φlk −2φs

Therefore:

φmx,l ,my,k ≥φlk −2φS ⇔ cos(φl k −2φS) ≥ cosφmx,l ,my,k (A.13)

Therefore, using Eq. (A.12), we have:

µu ≤ cos(φlk −2φS) (A.14)

However, from trigonometry we have :

cos(φlk −2φS) = cosφlk cos2φS + sinφlk sin2φS (A.15)

Since cosφlk = µ, we also have sinφl k =
√

1−cos2φl k =
√

1−µ2. Moreover from the tri-

angle OC mπ,l we have cos2φS = 1−2r 2 and sin(2φS) =
√

1−cos2 (2φS) =
√

1− (1−2r 2)2 =
2r

p
1− r 2. Substituting the above in Eq. (A.15) we get:

cos(φlk −2φS) =µ(1−2r 2)+2r
√

(1−µ2)(1− r 2)

Substituting this expression in Eq. (A.14), we get :

µu ≤µ(1−2r 2)+2r
√

(1−µ2)(1− r 2)
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A.3 Proof of convexity of C

We assume closed convex setΩ. We want to prove that the set of points C = {z : z = v b} with

b ≥ 0, v ∈Ω is a closed convex cone. According to the definition from [18], the set C is a convex

cone if for any z1, z2 ∈C and a1, a2 ≥ 0, we have a1 z1 +a2 z2 ∈C . Since z1, z2 ∈C , there exists

b1,b2 ≥ 0 and v1, v2 ∈Ω such that z1 = v1 b1 and z2 = v2 b2. Then, we have

z12 = a1 z1 +a2 z2

= a1 b1 v1 +a2 b2 v2

= (a1 b1 +a2 b2)

((
1− a1 b1

a1 b1 +a2 b2

)
v2 + a1 b1

a1 b1 +a2 b2
v1

)

Since v1, v2 ∈Ω andΩ is convex, we have that v12 =
(
1− a1 b1

a1 b1 +a2 b2

)
v2+ a1 b1

a1 b1 +a2 b2
v1 ∈ H .

Therefore,

z12 ∈C as z12 = (a1 b1 +a2 b2) v12 with v12 ∈ H and a1 b1 +a2 b2 ≥ 0 (A.16)

So C is a convex cone. Finally, since the setΩ is closed, so is the cone C .

A.4 Maximum angle

Here, we prove the formula for the maximum angle to center for vectors in a hypersphere. We

assume hypersphere H centered at c ∈RN and with radius T . Then, a vector v ∈RN belongs to

H if and only if

||c − v || ≤ T ⇔||c − v ||2 ≤ T 2 (A.17)

Furthermore, we have ||c −v ||2 = ||c||2 +||v ||2 −2〈c, v〉. Substituting the inner product formula

〈c, v〉 = ||c|| ||v || cosφ we get:

||c − v ||2 = ||c||2 +||v ||2 −2||c|| ||v || cosφ (A.18)

where φ is the angle between the vectors c and v . Combining Eq. (A.17) and Eq. (A.18) we get:

||v ||2 −2||c|| ||v || cosφ+||c||2 −T 2 = 0 (A.19)

The Eq. (A.19) is a quadratic equation for ||v ||. In order for the equation to be feasible, the

discriminant needs to be non-negative, i.e.,

∆≥ 0 ⇔
4||c||2 cos2φ−4(||c||2 −T 2) ≥ 0 ⇔

cos2φ≥ ||c||2 −T 2

||c||2 (A.20)
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From Eq. (A.20) we can observe that if T > ||c|| then φ ∈ [0,π]. However, in our problem we

assume T << ||c||. Therefore, in order for ∆≥ 0 we need

φ≤ cos−1 ||c||2 −T 2

||c||2 or (A.21)

φ≥π−cos−1(
||c||2 −T 2

||c||2 ) (A.22)

However, the solution in Eq. (A.22) is not valid as it produces negative values for ||v ||. Therefore,

we are left with the constraint in Eq. (A.21). As a result the maximum angle φ between a vector

v in the hypersphere H and the hyperspheres centre c is given by the formula

φ= cos−1 ||c||2 −T 2

||c||2 (A.23)
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