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Résumé
Depuis des décennies, les informaticiens développent des outils pour les aider à traiter
de grands jeux de données, dont la création a été rendue triviale par les ordinateurs.
A l’aube du 21ème siècle, pourtant, ces données massives ne sont plus l’exclusivité de
l’informatique, mais sont au contraire devenues omniprésentes : chaque aspect de la vie
humaine génère désormais quotidiennement des quantités exponentielles de données. Les
outils créés par les informaticiens sont donc devenus utiles, voire essentiels, à beaucoup
d’autres domaines, comme les sciences humaines, l’économie, ou la biologie. De par leur
expertise dans l’utilisation de ces outils, les chercheurs en informatique sont donc souvent
les premiers à les appliquer sur de telles données. Ils amènent alors un regard nouveau sur
des problèmes existants dans d’autres domaines, et permettent ainsi parfois de prendre
du recul et d’aborder ces problèmes sous un angle différent.

Dans cette thèse, nous explorons l’application de techniques d’analyse de données et
d’apprentissage automatique à plusieurs problèmes pratiques. Ces problèmes tirent leur
origine de plusieurs domaines, tels que les sciences sociales, l’économie, et les sciences
politiques. Nous démontrons que les techniques issues de l’informatique permettent de
contribuer de manière significative à la résolution de ces problèmes. De plus, nous montrons
que la combinaison de plusieurs modèles, ou de plusieurs jeux de données, joue un rôle
déterminant dans la qualité des solutions que nous trouvons.

La première application que nous considérons est la mobilité humaine. Nous décrivons
notre participation gagnante au Nokia Mobile Data Challenge, où notre tâche était de
prédire le prochain endroit qu’un utilisateur allait visiter, étant donné son historique
et son contexte actuel. Un examen méticuleux des données nous permet de mettre
en évidence certaines de leurs caractéristiques, comme leur non-stationnarité ou leur
rareté, qui rendent la tâche difficile. Nous présentons trois familles de modèles dont les
performances varient de manière significative d’un utilisateur à l’autre, même si leurs
performances globales sont similaires. Afin de tirer avantage de cette diversité, nous
introduisons plusieurs stratégies de combinaison des modèles, dont les performances
dépassent celles des prédicteurs individuels.

La seconde application à laquelle nous nous intéressons est la prédiction du succès de
campagnes de financement participatif. Nous avons récolté des données sur Kickstarter
(une des plateformes de financement participatif les plus populaires), afin de prédire si
une campagne atteindra son but de financement ou non. Nous montrons qu’il est possible
d’obtenir de bons résultats en considérant uniquement les informations concernant l’argent
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Résumé

promis aux campagnes, mais que la qualité des prédictions est améliorée si l’on combine
ces informations avec des données tirées du réseau social de Kickstarter, ainsi que de
Twitter. En particulier, les prédictions faites quelques heures seulement après le lancement
d’une campagne sont améliorées de 4%, atteignant ainsi une précision de 76%.

Nous passons ensuite dans le domaine de la politique, et commençons par étudier les
idéologies des politiciens. En utilisant leurs opinions, récoltées sur une plateforme d’aide
au vote, nous montrons que les thèmes qui divisent le plus les politiciens sont ceux qui
sont habituellement associés à une orientation gauche/droite, ou libérale/conservatrice,
validant ainsi la représentation simplifiée du système politique qui est couramment utilisée.
Afin d’attirer l’attention sur de potentielles mauvaises utilisations des plateformes d’aide
au vote, nous créons un profil pour un candidat fictif qui récolte deux fois plus de
recommandations de vote que n’importe quel candidat existant. Pour contrer ce genre
d’abus, nous démontrons qu’il est possible de surveiller les politiciens une fois qu’ils ont été
élus, et de potentiellement détecter les changements d’opinion, en combinant les données
extraites de la plateforme d’aide au vote avec les résultats de leurs votes au Parlement.

Finalement, nous étudions les résultats de votations. Nous montrons d’abord qu’il est
possible de mettre en avant des habitudes de vote typiques d’un pays, et leur évolution au
cours du temps, en utilisant uniquement les résultats de votations à un niveau géographique
détaillé. Ces résultats nous permettent aussi d’identifier des régions représentatives du
pays, dont la connaissance du résultat est cruciale pour une bonne prédiction du résultat
national d’une votation. Nous nous intéressons ensuite à la prédiction du résultat exact
d’une votation dans toutes les régions (au lieu du résultat national binaire) et nous
montrons que l’obtention de bonnes performances nécessite la combinaison de données
concernant les régions et les votes eux-mêmes. Nous comparons l’utilisation de méthodes
bayésiennes et non-bayésiennes qui combinent factorisation de matrices et régression. Nous
montrons que les méthodes bayésiennes permettent de mieux estimer les hyperparamètres
que des méthodes non-bayésiennes comme la validation croisée, et que, à nouveau, la
combinaison de modèles et de données appropriés permet d’améliorer la qualité des
prédictions. De plus, les modèles ainsi obtenus sont applicables à d’autres problèmes,
produisent des prédictions robustes, et peuvent facilement être interprétés.

Mots-clés : analyse de données, apprentissage automatique, combinaison de modèles et
de jeux de données, prédiction de la mobilité humaine, prédiction du succès du financement
participatif, analyse de données politiques, prédiction du résultat de votations, réduction
de dimensionnalité, modèles bayésiens, processus gaussien
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Abstract
Computer scientists have been developing tools to deal with large quantities of data for
decades, as the very nature of computers makes creating large datasets trivial. In the
beginning of the 21st century, however, large datasets have become ubiquitous: data is
being generated by all aspects of human life, at an exponentially increasing rate. These
tools are thus becoming useful, even essential, to many other fields, such as human
sciences, economics, and biology. As creators of these tools, computer scientists are often
among the first to apply them to such datasets, shedding a new light on existing problems
in other fields, allowing to overcome tunnel vision and make progress.

In this thesis, we explore the application of data mining and machine learning
techniques to several practical problems. These problems have roots in various fields
such as social science, economics, and political science. We show that computer science
techniques enable us to bring significant contributions to solving them. Moreover, we
show that combining several models or datasets related to the problem we are trying to
solve is key to the quality of the solution we find.

The first application we consider is human mobility prediction. We describe our
winning contribution to the Nokia Mobile Data Challenge, in which we predict the next
location a user will visit based on his history and the current context. By carefully
examining the data, we are able to highlight some characteristics that contribute to the
difficulty of the task, such as sparsity and non-stationarity. We present three different
families of models and observe that, even though their average accuracies are similar,
their performances vary significantly across users. To take advantage of this diversity,
we introduce several strategies to combine models, and show that the combinations
outperform any individual predictor.

The second application we examine is predicting the success of crowdfunding campaigns.
We collected data on Kickstarter (one of the most popular crowdfunding platforms),
in order to predict whether a campaign will reach its funding goal or not. We show
that we obtain good performances by simply using information about money, but that
combining this information with social features extracted from Kickstarter’s social graph
and Twitter improves early predictions. In particular, predictions made a few hours after
the beginning of a campaign are improved by 4%, to reach an accuracy of 76%.

Then, we move to the realms of politics, and first investigate the ideologies of politicians.
Using their opinion on several aspects of politics, gathered on a voting advice application
(VAA), we show that the themes that divide politicians the most are the ones that we
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usually associate with left-wing/right-wing and liberal/conservative, thus validating the
simplified two-dimensional view of the political system that many people use. We bring
attention to the potentially malicious uses of VAAs by creating a fake candidate profile
that is able to gather twice as many voting recommendations as any other. To counter
this, we demonstrate that we are able to monitor politicians after they were elected, and
potentially detect changes of opinion, by combining the data extracted from the VAA
with the votes that they cast at the Parliament.

Finally, we study the outcome of issue votes. We first show that simply considering
vote results at a fine geographical level is sufficient to highlight characteristic geographical
voting patterns across a country, and their evolution over time. It also enables us to find
representative regions that have a high predictive power of the national outcome of a
vote. We then demonstrate that predicting the actual result of a vote in all regions (in
opposition to the binary national outcome) is a much harder task that requires combining
data about regions and votes themselves to obtain good performances. We compare
the use of Bayesian and non-Bayesian models that combine matrix-factorization and
regression. We show that Bayesian methods give better estimates of the hyperparameters
than non-Bayesian methods such as cross-validation, and that, here too, combining
appropriate models and datasets improves the quality of the predictions. Moreover, the
resulting models generalize well to many different tasks, produce robust predictions, and
are easily interpretable.

Keywords: data mining, machine learning, combining models and datasets, human
mobility prediction, crowdfunding success prediction, political data analysis, vote results
prediction, dimensionality reduction, Bayesian models, Gaussian processes.
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1 Introduction

They say a little knowledge is a dangerous thing, but it
is not one half so bad as a lot of ignorance.

Terry Pratchett

Data has always been at the heart of research: For centuries, scientists have conducted
experiments to collect observations, in order to verify or refute their hypotheses. The
21st century is witnessing a change to this millennial way of doing science: in all aspects
of human life, data is generated and collected at an exponentially increasing rate. The
capabilities of computers and the advances in computer science have rendered possible
the simulation of very complex systems and the processing of high volumes of data, thus
enabling scientists to move from tedious and time-consuming physical experiments to
rapid, highly-parallelizable software experiments. For example, biologists who used to
run experiments in vivo (with a living creature) and in vitro (inside a test tube) “now
commonly speak of doing them in silico — as simulations run on the silicon chips of a
computer” [66].

Some of the contributions from computer science to the society are direct products of
research in this field. For example, the World Wide Web, developed at CERN by Tim
Berners-Lee in the late 1980s, has been instrumental in the spread of knowledge and is
at the core of the development of the Information Age. More fundamentally, the formal
definitions of computation and computability have deep implications in fields such as
mathematics [94], philosophy [20], and biology [88].

These two advancements, the availability of data and increased computational power,
have also enabled computer science to bring significant indirect contributions. Indeed,
the application of techniques and algorithms (from computer science) to data generated
by experiments in other fields has enabled developments that were previously undreamed
of. Physicists, for example, rely heavily on computers to process and filter measurements
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Chapter 1. Introduction

gathered in the Large Hadron Collider (LHC). As each experiment in the LHC generates
600 million events per second, they use specialized hardware and software to filter these
events, recording only 200 events per second [32]. Even with such a significant reduction
in the amounts of data recorded, the LHC annually produces 30 petabytes of data [31]
— about 300 000 times the size of the whole English language Wikipedia — which then
need to be stored and processed efficiently.

Another great success of computer science in advancing other fields is the Human Genome
Project. This project began in 1990, with the goals of determining the sequence of
chemical elements that make up human DNA and of understanding the roles of all genes
in the human genome. Initially estimated to take 15 years, the sequencing was completed
in 2003, two years ahead of schedule due to the advances in data-processing techniques
and computer hardware [86].

In this thesis, we will show that many fields, such as social science, economics, and political
science, can directly benefit from the algorithms developed by computer scientists. In
particular, techniques from the data-mining and machine-learning communities can be
adapted to solve practical problems that involve gathering, processing, and combining
data at a large scale. Such applications are at the core of why computers were created:
to enable people to solve problems that are too complex to be handled manually.

In short, the work presented in this thesis has two purposes. First, we show that applying
techniques from machine learning and data mining enables us to significantly improve the
solutions to problems that stem from fields such as social science, economics, and political
science. Second, we propose novel applications of data-mining techniques from which
practitioners of these fields can gain new insights into their data. One key characteristic
of our work is that we combine models or datasets that are relevant to the task at hand,
reinforcing the old adage saying that “the whole is greater than the sum of its parts”.

1.1 Outline and Contributions

In this dissertation, we present our work on four different problems:

• The first problem we tackle is related to the mobility of people. We introduce, in
Chapter 2, three families of methods for predicting the next location a user will
visit, based on data recorded from his cellphone. Highlighting the diversity in the
results obtained by these three families for different users, we propose five different
strategies to combine these models. We submitted the predictions obtained using
these combinations to the Nokia Mobile Data Challenge and won first place in the
Next Place Prediction Task.

• In Chapter 3, we introduce the problem of predicting the success of crowdfunding
campaigns. We present a novel dataset that we collected over a period of eight
months and made available to the scientific community. We developed several

2
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models that each outperform previous work on crowdfunding success prediction,
and we show that the combination of financial data with social features significantly
improves early predictions.

• In Chapter 4, we detail our data-driven study of the political landscape of Switzer-
land. We analyze the political opinions of citizens, political candidates, and elected
members of the parliament, and we show that the usual left/right and liberal/con-
servative simplification of the political space is indeed the most efficient way of
summarizing the political opinions of Swiss people. We are the first to highlight
potential misuses of the data from voting advice applications. For example, we
propose a method for taking advantage of this data to optimize the answers of a
candidate in order to obtain more recommendations. We also present a technique
for detecting candidates who falsely advertise their opinion on the voting advice
application and then vote differently once elected.

• Finally, we study the outcome of issue votes in Chapter 5. We introduce a new
dataset of hundreds of votes, with detailed geographical results and side information
about both votes and regions. We analyze voting patterns over a large time scale
and show that such an analysis enables political scientists to highlight interesting
behaviors. We also make a methodological contribution by detailing the construction
of a model for predicting the outcome of a vote in each region. We show how using
a Bayesian approach enables us to properly tune the model’s hyperparameters and
to significantly improve the prediction results.

1.2 Models

The four problems we described above can be solved using several methods. Indeed,
computer scientists have been developing models and algorithms for decades in order to
solve practical problems of different complexities. When presented with a new problem,
one of the main difficulties we face is in selecting which method to use. Of course, there
is no golden rule, and several techniques often give similar results for a given application.

We list below the models we use in this thesis. We do not claim to give a detailed and
comprehensive description of these models, rather we provide the main idea behind each
of them and we list their main advantages and limitations. Table 1.1 summarizes the list
of models and in which chapters they are used. In Section 1.2.3, we give more details
about the reasons behind our choice of models.

1.2.1 Evolution of a System over Time

The first two methods we introduce are suited for modeling the evolution of a system
over time. They apply to a wide variety of problems, from modeling physical systems to
describing the relationship of symbols in DNA.
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Chapter 1. Introduction

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Markov chain X X – –
Dynamic Bayesian network X – – –

k-nearest neighbors – X – –
Logistic regression – – X –
Artificial neural network X – – –
Support vector machine – X – –
Gradient-boosted decision tree X – – X

Table 1.1 – Summary of the different methods used in this thesis, and the
chapter in which they are mentioned.

Markov Chain

A first-order Markov chain (MC) is a mathematical model that can be defined by a state
space X , that enumerates the different states the system can be in, and a transition
matrix P , where Pij ∈ [0, 1] represents the probability of the system going from state
i ∈ X to state j ∈ X .

The key property of MCs is that their future evolution is independent from their past,
given their present state. In other words, if we represent the state of the system at time
n as a random variable Xn ∈ X , the sequence of random variables X1, X2, . . . , Xn, Xn+1

is a MC if and only if

P(Xn+1 = i | X1 = k, . . . ,Xn = j) = P(Xn+1 = i | Xn = j) = Pij .

MCs provide an intuitive framework for modeling data that evolves over time. Their
training is efficient, and they require only the transition matrix P to be stored. Their
main limitations are that their state space is discrete and that their expressiveness is
directly tied to the size of their state space. They can be extended to higher orders, where
the probability of the next state depends on the k past states (instead of only the current
one). However, the storage cost and training data requirements of these higher-order
MCs grow exponentially with their order k.

Dynamic Bayesian Network

A dynamic Bayesian network (DBN) [84] is a probabilistic model that can be used to
express the conditional dependencies of random variables over adjacent time steps. It is a
very powerful tool that enables the modeling of complex systems in which several random
variables are linked and evolve over discrete time steps. Markov chains, presented above,
can be seen as a special case of DBNs.
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1.2. Models

The strength of DBNs lies in their flexibility: they can be tailored to describe many
practical problems in a very intuitive way. Once the various variables have been defined,
a DBN enables us, for example, to perform inference on the future state of the system,
based on some observed current and past data. The main drawback is that the feasibility
of this inference depends on the structure of the DBN. In many practical applications, it is
not possible to perform an exact inference and complex approximate-inference algorithms
are required.

1.2.2 Classification

In some contexts, modeling the evolution of a system over time can be seen as a more
general classification task: Given some features, such as its current state and possibly
some side information, what will be the next state of the system? In this case, the classes
are simply the set of possible states. Deciding between two (or more) possible outcomes is
also at the heart of many other practical problems: Is this tumor benign or malignant? Is
this e-mail ham or spam? Is this a photo of a cat, a dog, or a human? The classification
algorithms we describe below are designed to solve such tasks, but they differ in their
requirements and complexity.

Logistic Regression

Logistic regression (LR) [65] is one of the simplest classification techniques. It extends the
idea of linear regression to binary classification, by passing the output of the regression
through a logistic function σ(x) (illustrated in Figure 1.1) that maps any value x ∈ R to
the interval [0, 1]:

σ(x) =
1

1 + exp(−x)
.

If we encode the binary classes as 0 and 1, the output of LR can be interpreted as the
probability of the input being of class 1. In other words, given an N -dimensional sample
x ∈ RN and its class y ∈ {0, 1}, we have that

P(y = 1 | x) =
1

1 + exp(−βx)
,

where β ∈ RN are the parameters of the model.

LR can be trained and evaluated efficiently, especially for high-dimensional datasets.
Its main limitation is that it only performs well with linearly-separable datasets, thus
rendering it unusable for many complex problems that require more flexible decision
regions.
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Figure 1.1 – Logistic function σ(x).

k-Nearest Neighbors

k-nearest neighbors (k-NN) [38] is a simple algorithm that can be used for classification
and regression. When used for classification, it takes as input a list of training samples,
along with their assigned labels. To classify a new sample, k-NN simply computes the
distance of this sample to all known training samples and outputs the class most common
among the k closest ones. The metric used to compute the distance can be chosen freely,
a typical choice being the l2-norm.

The main advantage of k-NN is that it is simple and very intuitive. However, its main
drawback is that it strongly suffers from the curse of dimensionality [28]: in high-
dimensional spaces, the nearest and the farthest neighbors tend to be at similar distances,
resulting in poor classification results. Moreover, it is computationally expensive: The
classification of each new sample requires its distance to all training samples to be
computed, and thus all training samples to be kept in memory. Even though some more
advanced techniques (such as k-d trees [27]) can be used to find the k closest samples
efficiently, the computational costs of k-NN prevents its use with datasets of large size.

Artificial Neural Network

An artificial neural network (ANN) [81] is a classification algorithm inspired by the
structure of the brain. It passes its input through a sequence of layers that each apply
a linear transformation and that are interconnected by transfer functions. A two-layer
ANN with a suitable transfer function can approximate any continuous function [64]. The
shape and transfer function of the output layer can be tailored for various applications,
for example, to perform multi-label classification.

The main advantages of ANNs are that they can be trained relatively simply and
be evaluated rapidly (as they mostly rely on matrix multiplications), and that their
generalization power is directly controllable through their structure. They can also easily
handle multi-label classification problems. Their main drawback is that there is no
guarantee that their training will find a global optimum.
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Support Vector Machine

A support vector machine (SVM) [37] is a popular binary classification algorithm. The
intuition behind a SVM is simple: It maps training samples to a high-dimensional space
and finds the hyperplane separating the two classes of samples in that space with the
largest “margin”. This hyperplane is built by selecting training samples that are close to
the decision threshold: the support vectors.

The main advantage of SVMs is that their training is stable, because it always converges
to a global optimum. Moreover, they can be very efficient to evaluate, as they only require
the support vectors for the computation of the decision threshold. Their main drawbacks
are that their training can be slow for large datasets and that their complexity can only
be indirectly controlled using hyperparameters. Moreover, they are not easily applicable
to multi-label problems.

Gradient-Boosted Decision Tree

A simple way of building a classifier is to enumerate the rules that qualify a sample to
be a member of a particular class. These rules can be expressed as decision trees, where
nodes represent decisions made on some features of the sample, and leaves represent
the classes we associate with the sample. Gradient-boosted decision trees (GBDTs) [49]
combine such decision trees sequentially, such that each decision tree focuses on the
training samples misclassified by the previous trees.

GBDTs can be evaluated efficiently and they naturally handle multi-label problems.
Moreover, for small sizes, the resulting model can be easily interpreted. Their main
drawbacks are that their hyperparameters are difficult to tune, rendering GBDTs prone
to overfitting, and that they are not robust (a small perturbation of the training data
can result in very different models).

1.2.3 Our Choices

As we already mentioned, most of the models described above can be applied to each of the
problems we study in this thesis. Even though these models differ in their requirements
or in their capabilities, we still have to decide which one to use. We describe below the
reasons behind our choice of algorithms for each application.

In Chapter 2, we build models to predict the next location a user will visit, based on his
current context. MCs and DBNs are obvious choices to model such a problem: many of
the state-of-the-art methods for mobility prediction use some variant of MCs. We thus
include a simple first-order MC as a baseline, and design a problem-specific DBN as one
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Chapter 1. Introduction

of our three models. We cannot use high-order methods that take more than the current
location into account, as we only have the current context as input.

Because a user usually visits several places, the task of predicting his next move can also
be seen as a multi-label classification problem, where the label to predict is the next
location. We thus use ANNs and GBDTs for this task, as they can naturally handle
multi-class problems. Moreover, the output of ANNs and GBDTs being usually dissimilar
(GBDTs produce sharp and non-smooth decision regions while ANNs are more stable with
respect to their inputs), we take advantage of this diversity by combining the resulting
models.

In Chapter 3, we build models to predict the success of crowdfunding campaigns. The
first two models rely on the amounts of money pledged to campaigns for their predictions.
We take two approaches: one model uses the whole series of amounts, from the beginning
of the campaign to the current amount, whereas the second model only uses the current
amount. We want the first model to compare campaigns based on the shape of their
trajectory as a whole, and not only on a few values. Therefore, we use a k-NN, as it gives
equal weights to all input features. As the second model basically needs to capture the
step-by-step evolution of campaigns, we use a first-order MC.

The other two models we develop rely on features extracted from the social network of
Kickstarter and from Twitter. SVMs, ANNs, and GBDTs could all be used, but we choose
to use SVMs, as the dimensionality of the input data and the number of models we need
to train are reasonably small. Indeed, SVMs are more computationally costly to train,
but their training is stable and always converges to a global optimum, facilitating the
choice of hyper-parameters through cross-validation.

In Chapter 4, we predict the votes politicians will cast at the parliament based on their
opinions expressed on a voting advice application. As we need to train a separate model
for each vote and for each politician, and to choose the best hyperparameters for each of
these models though cross-validation, we restrict ourselves to algorithms that are efficient
to train and evaluate : LR and GBDT. As we found no improvement when using the
non-linear method in our experiments, we use LR for simplicity and efficiency.

Finally, in Chapter 5, we predict the binary national outcome of a vote using the result
of this vote in one small administrative region. The very nature of the problem makes
GBDTs good candidates for this task, as they naturally capture the thresholding that
occurs when computing the binary outcome of a vote from a proportion of “yes”. We also
compared simpler methods, such as LR, but found that GBDTs gave better results.
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2 Where Will They Go?

Coming back to where you started is not the same as
never leaving.

Terry Pratchett

Mobility is a central aspect of our life; the locations we visit reflect our tastes and lifestyle
and shape our social relationships. Now, with smartphones and other connected devices
being almost ubiquitous, our location is tracked, recorded, and analyzed at all times.
Using this data, researchers and companies have been studying the mobility of people for
more than a decade, to describe the intrinsic characteristics of mobility patterns, but also
to better understand the behavior and relationships of people [59, 41, 87].

A better understanding of the mechanics and motivations behind human mobility is
of high interest to many, from service providers to public administrations. Companies
can use mobility data to enhance their services, by strengthening their infrastructure
in locations with a high probability of visit, but also to better target promotions and
advertisements. Similarly, urban planners can rely on estimates of frequentation based on
mobility models to better design and size new urban developments. Mobility modeling is
also critical in the study and prediction of the diffusion of infectious diseases [26, 122].

2.1 Problem: Human Mobility Prediction

In this chapter, we describe our winning contribution to Next Place Prediction Task of
the Nokia Mobile Data Challenge (NMDC). Our task was “to predict the next destination
of a user given the current context, by building user-specific models that learn from their
mobility history and then applying these models to the current context to predict where
the users go next” [77]. A context is described by the data collected from the mobile
phone of the user (date, location of the user, cell tower id, WLAN, phone calls, etc.)
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Chapter 2. Where Will They Go?

We present the dataset, in Section 2.2, and identify some of its characteristics that are
at the root of its unpredictability. For instance, some users change their home location
during the observation period. We develop techniques that enable us to detect and adapt
to these changes.

We introduce, in Section 2.4, an artificial neural network tailored for mobility prediction,
as well as other predictors based on graphical models and decision trees. These predictors
exhibit similar average prediction accuracies. For each user, however, we observed a high
performance variability between the models. In order to take advantage of this variability,
in Section 2.5, we finally combine the models by using different blending strategies. We
show that the combined models achieve a higher accuracy than any individual model.

2.2 Dataset

The NMDC was “a large-scale research initiative aimed at generating innovations around
smartphone-based research, as well as community-based evaluation of related mobile data
analysis methodologies” [77]. It was organized by Nokia and took place from January
2012 to April 2012. It featured an open track, in which participants were able to propose
their own problem to study, and three dedicated tracks, each defining a specific problem
for teams to solve: semantic place prediction, next-place prediction and demographic
attributes prediction.

At the heart of this challenge was the dataset gathered during the Lausanne Data Collection
Campaign (LDCC) [71]. This dataset consists of a rich set of features (locations, phone
calls, text messages, application usage, etc.) recorded from the smartphones of 170
participants, over periods of time ranging from a few weeks to almost two years. This
data was collected in a privacy-preserving manner, allowing for meaningful statistics to
be gathered while the anonymity of participants was protected.

Each task had its own subset of the LDCC data. The Next-Place Prediction Task, the
focus in this chapter, was assigned a subset of 80 users. For each user, the last 50 days of
data were kept as a test set for the evaluation of each team’s submissions, and the rest
were used as training data.

For privacy reasons, all identifiers (phone numbers, WLAN SSIDs, contact names, etc.)
were encrypted; but more importantly, physical locations were not released. Instead,
for each user, the organizers of the NMDC first identified places — corresponding to
circular areas with a 100-meter radius — by using both GPS and WLAN data. Then,
they represented each place by a unique identifier. Consequently, a sequence of geographic
coordinates is represented as a sequence of place identifiers.

The user’s visits to these places are the data used for the prediction task. Each visit is
defined by starting and ending times, and the visited place. In addition, several types
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2.2. Dataset

of data are available: accelerometer, application usage, GSM, WLAN, media plays, etc.
The complete list can be found in the dataset description [77]. Given a visit and all the
associated data characterizing it, our task was to predict the next place visited by the
user after he left his current location.

At the end of the challenge, each participating team was allowed to submit five different
sets of predictions, corresponding to visits from the undisclosed part of the LDCC data.
Then, the organizers of NMDC evaluated the prediction accuracy of each participating
team’s submissions.

2.2.1 Constraints

We present below two major constraints (imposed by the rules of the NMDC) that
restricted the range of methods we could use and that made our task more challenging:

User Specificity. To prevent cross-referencing people and places between users, sensitive
data is user-specific: The identifiers are encrypted using different keys, and places
are defined and numbered for each user independently. Moreover, the rules of
the challenge explicitly forbid all participants to try and reverse this process, or
make some links between users. We are therefore not allowed to build joint models
over the user population, i.e., to learn from one user to make a prediction about
another. For this reason, we build user-specific predictors, and consider each user
independently.

Memoryless Predictors. As explained above, the input for the Next-Place Prediction
Task is the current visit, along with all additional data recorded from the user’s
phone during that time. For the training phase, to train our models we have access
to the whole sequence of visits of each user, enabling us, for example, to study
the time intervals between visits. When being evaluated on the undisclosed part
of the dataset, however, we are only given the current visit of a user, but not his
history, i.e., the sequence of previous visits. If we were given the history, we could
develop higher-order predictors that not only take into account the current place
but also the sequence of places visited just before. Indeed, such information is very
useful: If a user is currently at a transportation hub, e.g., a bus station, knowing
whether he was home or at work just before greatly helps in predicting his next
move. Because this information is not available to us in this challenge, we limit
ourselves to memoryless predictors, i.e., methods that take into account only the
current context, without any knowledge of the past.
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2.2.2 Characteristics

Before developing our models, we study the characteristics of individual users, to gain
insights into the specificity of their behaviors. For an example of the various types of mo-
bility patterns encountered across users, we show in Figure 2.1 an intuitive representation
of the mobility traces of three users selected from the dataset. The figure depicts a user’s
behavior over one year as a matrix, where each column is a day of the year and each line
an interval of one hour. We map each place to a color, and leave blank the intervals of
time during which we have no information about the user’s location.

A few users, for example User 143 shown in Figure 2.1(a), have a very regular behav-
ior, which seems to support the results (such as those presented by Song et al. [108])
claiming that human mobility is very predictable. However, similarly to User 1 shown in
Figure 2.1(c), the majority of users shows no clear regular pattern in their behavior. Of
course, a lack of visual regularity does not imply that there is no underlying structure in
a user’s mobility. We will see in Section 2.4.3 that we can still predict the behavior of
such users with reasonable accuracy.

Interestingly, some users have a rather regular behavior, but with a significant change
at some point during the data collection period. For example, User 13 (shown in
Figure 2.1(b)) seems to have moved, with about two thirds of his nights spent at one
place, and the last third of his nights spent at a different location. Such a non-stationarity
in the behavior of users could lead to significant errors in the prediction of movements.
Indeed, a change that happens late in the dataset would lead to the undisclosed test set
beginning very differently from the training data.

These observations highlight the following salient characteristics of the data that we
believe are critical to the prediction task:

Non-Stationarity. We often observe a significant change in users’ habits over time, as
illustrated in Figure 2.1(b). The fact that some users change their home or work
location right at the end of the observation period complicates the prediction task.
To overcome this, we implement home-change detection mechanisms, as described in
Section 2.3.2. Moreover, to get a realistic estimation of our predictors’ performances,
we keep the last part of the dataset as testing data, as explained in Section 2.3.3.

Data Gaps. We experience, for some users, periods (ranging from a few hours up to
a few months) with no information about their behavior. Moreover, as shown in
Figure 2.1(c), these gaps are sometimes followed by a change of mobility habits. To
limit the effect of such transitions, our predictors take into account the possibility
that we have missed some data between two detected visits, by including the
directness of a visit (described in Section 2.3.1) as an input feature.
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2.2. Dataset

(a) User 143: regular mobility pattern

0 50 100 150 200 250 300 350

Day

0

5

10

15

20

H
o
u
r

(b) User 13: regular mobility pattern with a change of home
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(c) User 1: irregular mobility pattern with data gaps and non-stationarities
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Figure 2.1 – Typical behaviors of users over one year, shown as matrices where
each column is one day of the year and each line an interval of one hour. We
map each place to a color and leave blank the intervals of time during which
we have no information about the user’s location. We show (a) a very regular
user, (b) a home change, and (c) data gaps and non-stationarities.
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Definition Domain Explanation

L N Number of distinct places
L {1, . . . , L} Set of visited places
k N Time resolution

X(n) L Place of the visit
Ts(n) N Absolute starting time
Hk
s (n) {1, . . . , k} Quantized starting hour

Ds(n) = day(Ts(n)) {1, . . . , 7} Starting day
Ws(n) = weekday(Ts(n)) {0, 1} Indicates whether the visit starts on a week-

day
Te(n) N Absolute ending time
Hk
e (n) {1, . . . , k} Quantized ending hour

De(n) = day(Te(n)) {1, . . . , 7} Ending day
We(n) = weekday(Te(n)) {0, 1} Indicates whether the visit ends on a weekday
U(n) {0, 1} Indicates whether there might be an unob-

served place between X(n) and X(n+ 1)
C(n) {0, 1} Indicates whether the user charged his phone

during the visit

Table 2.1 – Definition and domain of the variables relative to a user, as well
as those describing his nth visit.

Sparsity. The period of observation for some users is too short (less than 15 days) to
reflect faithfully their mobility patterns. We overcome this lack of data by allowing
for coarser segmentations of the day, using the time resolution parameter described
in Section 2.3.1. We also limit the complexity of our predictors, so that they do not
over-fit the data.

2.3 Framework

2.3.1 Notation

Before formally introducing our models, we first define the variables that describe the
dataset. During the study period, a user makes N visits of variable duration to L distinct
places, represented by the set L = {1, . . . , L}.

In Table 2.1, we list the variables corresponding to a user, as well as those relative to
his nth visit. All time-relative variables are derived from the starting and ending times,
which are given as absolute times. The binary variable U(n) indicates whether there
might be an unobserved place between X(n) and X(n + 1). This situation typically
arises when location data is partially missing between the two visits. In such case, we say

14



2.3. Framework

that the transition from X(n) to X(n+ 1) is not necessarily direct. The directness of a
transition is given as a feature in the NMDC dataset.

To allow for various quantizations of the day, we introduce a time resolution parameter k.
This enables us to consider a coarser segmentation of the day: instead of always splitting
a day into 24 hours, we can choose to split it into k time periods. For instance, if k = 2,
Hk
s (n) ∈ {1, 2}, with Hk

s (n) = 1 denoting the event that the nth visit starts between
midnight and noon. Such a coarse segmentation can be helpful when training predictors
for a user for which few data is available.

2.3.2 Home-Change Detection

To overcome one of the challenges caused by the non-stationary of the data (illustrated in
Figure 2.1), we propose an algorithm for detecting changes in home location and adapt
the learning process accordingly. At any moment t, we define home as the place where
the user spends more than Tthreshold hours of his sleeping periods1 during the interval of
time [t− Thistory, t]. The parameter Thistory controls to which extent we keep in memory
the past behavior of the user. At the end of the observation period corresponding to
the training set, the user who changes his habits will have at least two places flagged as
home. We declare the last place that was flagged as his final home. More importantly,
the history of visits is modified as if the user’s home has always been his final home.

Such a modification enables us to capture the user’s habits while avoiding the lengthy
process of adapting to a home change. The procedure for detecting home changes is
summarized in Algorithm 12. Empirical results show that applying our home-change
detection algorithm results in a significant improvement in the prediction accuracy for
the users who change their habits during the observation period.

2.3.3 Learning Procedure

For each user, we separate the data into three parts, as illustrated in Figure 2.2: we
define the first 80% of the data as set A, the following 10% as set B and the last 10%
as set C. Finally, we call set D the undisclosed part of the data, on which our predictors
were evaluated during the final part of the NMDC.

We divide the dataset deterministically—instead of doing for example cross-validation—
because of the non-stationarity of the users’ behavior, which we described in Section 2.2.2.
We expect set D to be much more similar to the end of the dataset than to its beginning.
Indeed, even if a user’s behavior is globally non-stationary, it usually shows regular

1We define sleeping periods as the moments during the night where a user is most likely to be sleeping.
2Based on empirical evidence, we choose Thistory = 14 days, Tthreshold = 18 hours and the sleeping

period to be between 3 a.m. and 6 a.m.

15



Chapter 2. Where Will They Go?

Algorithm 1: Home-change detection
Input: User’s visits, Tthreshold, Thistory, sleeping period
Output: User’s visits with all detected homes changed to the most recent one

H = {}
for each visit n do

I = [Ts(n)− Thistory, Ts(n)]
P (n) = place where the user spent most of his sleeping periods in I
TP (n) = time spent at P (n) during the sleeping periods in I
if TP (n) ≥ Tthreshold then
H = H ∪ {P (n)}

Phome = last element of H
for each visit n do

if X(n) ∈ H then
X(n) = Phome

0 80% 90% 100%

set A set B set C set D

Available data Undisclosed data

User’s visits

Figure 2.2 – Separation of a user’s dataset. We define the first 80% of the
user’s visits as set A, the following 10% as set B, and the last 10% as set C.
Finally, we call set D the undisclosed part of the dataset, on which submissions
to the NMDC are evaluated.

patterns over short time intervals. Having set C as close as possible to set D maximizes
the likelihood of their samples belonging to the same “stationary” period. Moreover, by
training our predictors on “past” data and evaluating them on very recent data, we can
test whether they are able to adapt to users’ changes of habit.

The training is performed in three parts: First, we train each predictor on set A, and
evaluate its performance on set B, to compare individual predictors. Then, we train
each predictor on both sets A and B, combine them (as explained in Section 2.5) using
their performance computed before on set B, and evaluate the prediction accuracy of the
combination on set C, . Finally, we train each predictor on sets A, B and C and combine
them in order to predict for the samples in set D.
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2.3.4 Performance Measure

To evaluate the performance of a predictor on a set of visits, we consider its prediction
accuracy, i.e., the proportion of samples for which it successfully predicts the next place.

First, consider a predictor φ: It takes as input v(n), the data corresponding to the nth
visit, and it outputs a probability distribution over the possible next places. More formally,
consider ∆L = {x ∈ [0, 1]L :

∑L
l=1 xl = 1}, the (L − 1)-dimensional simplex. Then, a

predictor is a function
φ : V → ∆L,

where V is the space of features corresponding to a visit.

We could directly define the output of a predictor as the predicted next place. However,
keeping a distribution over places as output enables us to combine predictors. Indeed,
we can easily put several predictors together by computing a mixture of their output
probability distributions over places. As explained in Section 2.5, there are different ways
of choosing the weight of each predictor, each resulting in a unique global predictor.

The place X̂φ
n predicted by φ for the nth visit v(n) is thus the most likely next place

X̂φ
n = arg max

l∈L
φl(v

(n)), (2.1)

where φl(v(n)) is the lth component of the vector output by φ when given the data
corresponding to the nth visit as input, i.e., the probability that the next visited place is
l.

Finally, we define the prediction accuracy AS(φ) of the predictor φ over the samples in
set S as:

AS(φ) =
1

|S|
∑
i∈S

I{
X̂φ
i =X(i+1)

}, (2.2)

where X(i+1) is the true next place corresponding to the ith visit, and IA is the indicator
function, taking value 1 if the event A is true, and 0 otherwise.

2.4 Predicting Next Location

In this section, we present the different models we developed for predicting the next
location of a user.

2.4.1 Artificial Neural Network

We consider next-place prediction as a multi-label classification task: Given the current
place as input, and potentially some additional features, we want to predict the corre-
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Figure 2.3 – Architecture of our 2-layer artificial neural network, with Nin

inputs, Nhu hidden units and L outputs. A non-linear transfer function is
applied between the first and second layer, and a softmax function is applied
to the output, to obtain a probability distribution over places.

sponding class, i.e., the next visited location. With this approach, we train for each user
a 2-layer artificial neural network (ANN) that has Nin inputs, Nhu hidden units and L
outputs. The outputs are normalized to obtain a probability distribution over places.
Such a network is illustrated in Figure 2.3.

Input Encoding

We encode places as categorical data: We represent each place l as a L-dimensional
binary vector, where only the lth component is equal to 1, and all others to 0. Other visit
attributes, such as the ending day De(n) or the ending hour Hk

e (n), can also be included
as additional input features, and are encoded in a similar way if needed. For example, to
use (X(n), Hk

s (n), Ds(n)) as inputs, we first encode them as binary vectors, as explained
above, and then we simply concatenate them. The resulting input vector x is thus of size
Nin = L+ k + 7.

Training

To obtain a probability distribution {y ∈ [0, 1]L :
∑L

l=1 yl = 1} from the output z ∈ RL

of the second layer, we use a soft-max transfer function:

yi = softMax(zi) =
exp(zi)∑L
j=1 exp(zj)

, i ∈ {1, . . . , L}.

A natural loss-function to train such a network is the negative log-likelihood. For the output
y ∈ [0, 1]L, corresponding to some input x ∈ RNin and the ground truth t ∈ {0, 1}L
(where tl = 1 if l is the true next place, and 0 otherwise), we define the loss as

L(y, t) = −
L∑
l=1

tl log(yl).
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To find the optimal parameters of the ANN, we minimize the above loss function over
the training set.

Features

For each user, we consider as input for the ANN different subsets of the following features,
described in Table 2.1:

• X(n)

• Ds(n), De(n)

• Hk
s (n), Hk

e (n) for k ∈ {2, 4, 6, 8, 12, 24}

• Ws(n),We(n)

• C(n)

By combining the above features in an exhaustive way3, we obtain more than 200 ANNs
for each user. We also tested more features, but chose not to use them in the end, as
they did not improve the overall prediction performance.

Implementation

We implement our ANNs by using Torch 5 [36], a machine-learning framework written
in Lua. We use a stochastic gradient descent [78] to train each ANN, and we use early
stopping as a regularization technique [83]. For all users, we empirically found that
Nhu = 50 hidden units were sufficient.

To speed up the training, we use hardTanh as the non-linear transfer function between
the two layers:

hardTanh(x) =


−1 if x < −1,

x if x ∈ [−1, 1],

1 if x > 1.

It is an approximation of the hyperbolic tangent, that is much faster to evaluate [35].

3The current place X(n) is always used. We then include either Ds(n) and Hk
s (n), or De(n) and

Hk
e (n), or both, for varying values of k. The other features Ws(n),We(n) and C(n) are used only

when both starting and ending day/hour are included. We made this choice to reduce the number of
combinations and thus the running time of our experiments.
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2.4.2 Other Models

Gradient-Boosted Decision Trees

The second type of model we consider to predict the next location is a gradient-boosted
decision tree (GBDT) [49, 50] . Similar to neural networks, GBDTs model the Next-Place
Prediction Task as a multi-label classification problem, where the set of classes is L, the
places visited by the user. As input, we use the current place X(n) and directness of the
transition U(n), as well as various subsets of the visit features described in Table 2.1:
starting day and hour, ending day and hour, or both.

Two parameters control the structure of the GBDTs: the number of trees Ntree and the
minimum number of observations Nobs required to create a terminal node in the trees.
We implement our GBDTs in Python, and train several variants, with the subsets of
features described above, Ntree ∈ {2, 5, 100}, and Nobs ∈ {2, 50, 100, 200, 500}.

Dynamic Bayesian Network

The last model we consider is a dynamic Bayesian network (DBN). In contrast to the
first two families of models, which can be seen as black-box models, DBNs are tailored for
the task at hand.

The rationale behind our DBN is as follows: The next place a user will visit depends
on his current place and on the time at which he leaves it. The dependence between
the current and next place is strong when the difference between the ending time of the
current visit and the starting time of the next one is small (typically the case for direct
transitions). However, as this time difference gets larger, the influence of the present
place on the next one fades out, while the starting time of the next visit bears increasing
importance. As we do not know the starting time of the next visit, the main challenge is
to model its randomness, given carefully chosen information about the current visit.

As shown in Figure 2.4, the DBN captures these intuitions. The conditional distribution
of the next place

P(X(n+ 1) | X(n), Hk
e (n),We(n), U(n))

is a linear combination of place- and time-dependent distributions

π P(X(n+ 1) | X(n))︸ ︷︷ ︸
place-dependent

+(1− π)P
(
X(n+ 1) | Hk

e (n),We(n), U(n)
)

︸ ︷︷ ︸
time-dependent

,

where 0 ≤ π ≤ 1 is the parameter that governs the contribution of each distribution.

To predict future visits, we first learn the model parameters by using our training data.
We introduce a latent variable z that dictates which mixture component is used for each
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Visit n+ 1

Figure 2.4 – Diagram of our dynamic Bayesian network. It explicitly models
the next location X(n+1) as depending both on the current location X(n) and
the starting hour Hk

s (n+ 1) and starting day Ws(n+ 1) of the next visit. The
importance of these two components is governed by a mixture coefficient π.
As the starting hour and day of the next visit are unknown when predicting,
they are treated as latent variables, depending on the ending hour and day
of the current visit, as well as the directness of the transition.

visit, and learn both distributions and the mixture coefficient π using an expectation-
maximization algorithm [29, chap. 9] to maximize the likelihood of the data in set A.

2.4.3 Results

As explained above, for each user we have several variants of each family of models, with
different set of input features and/or parameters. We select, for each user and each family,
the predictor that has the best performance on set B, then train it again on both sets
A and B, to evaluate its performance over set C. We show in Figure 2.5 the prediction
accuracy for each of the three families of predictors presented above, averaged over all
users. For comparison, we also include two baseline predictors: the first always predicts
the most visited place, whereas the second uses a first order Markov chain.

Despite the fundamental differences between the three families of predictors, they exhibit
very similar average prediction accuracies and outperform significantly the baseline
predictors. However, when looking at users individually, the performance of each family
varies greatly, as illustrated in Figure 2.6 for three selected users. We explain these
variations by the diversity of types of user behaviors that are captured, with different
levels of faithfulness, by each family of predictors.

Moreover, as shown in Figure 2.7, we observe a high variance of the predictability of
users: We reach a prediction accuracy of 100% for the most predictable user, and we
predict correctly 0% of the time for the least predictable one. Besides the intrinsic
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Figure 2.5 – Prediction accuracy on set C of the different families of models,
trained on sets A and B, averaged over all users. For each user and each
family, we choose the set of features and parameters that yields the best
prediction accuracy on set B when trained on set A only. As baselines, we
also include one predictor that always outputs the most visited place, and
one that uses a first order Markov chain.
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Figure 2.6 – Prediction accuracy of each family on set C, for three selected
users. For each family, we choose the best predictor on set B. Even though
Figure 2.5 shows that the three families of predictors have similar average
performances, this figure clearly illustrates that, across users, their perfor-
mances vary greatly.
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Figure 2.7 – Histogram of the prediction accuracy on set C per user. For each
user, we chose the best predictor on set B. There is a high variance in the
predictability of users.

unpredictability of people, the major factor causing such a poor prediction-performance
is the lack of data: the training data of the least predictable user only spans 12 days.

We obtained these results by using only basic features of the visits. In an attempt to
improve the accuracy of our predictors, we included additional contextual information,
such as distance between places, GSM cell towers, WLANs or accelerometer data, but we
observed no improvement. We also implemented various preprocessing techniques, such
as clustering and feature embedding, with no improvement either.

2.5 Combining Models

As expected, the accuracies of the models presented in Section 2.4 are not equal, but more
importantly, each predictor makes different errors: certain samples for which a predictor
fails might be those on which another excels, as illustrated below in Section 2.5.1. This
idea prompts us to use blending, that is, to combine several predictors to take advantage
of their diversity.

Notation

Before describing each blending strategy, we first define Φ, the set of all predictors trained
on the data. This set can be split into three subsets of predictors Φ = ΦANN ∪ ΦGBDT ∪
ΦDBN, where each subset corresponds to all predictors of one same family. For instance,
ΦGBDT is the set of all predictors from the GBDT family.
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A predictor φ is defined by its family, some internal parameters, and the data it was
trained on. Thus, we can refer to the predictor φ in general, or to a specific predictor
φ(u), that was trained using the data of user u. We do not mention the dependence on u
when it is obvious from the context.

2.5.1 Diversity of Predictors

We evaluate the diversity between two predictors by the proportion of samples, averaged
over all users, for which only one of them predicts the correct next place. Therefore, the
diversity between two predictors φ1 and φ2 is defined as

diversity(φ1,φ2) =
1

|U|
∑
u∈U

1

Nu

Nu∑
n=1

∣∣∣∣I{X̂φ1
n (u)=Xn+1(u)

} − I{
X̂

φ2
n (u)=Xn+1(u)

}∣∣∣∣ ,
where U is the set of all users, Nu is the number of samples for user u, X̂φ

n (u) is the
prediction made by the predictor φ for the nth sample of user u, as defined in Equation 2.1,
and Xn+1(u) is the true next place.

To measure the diversity of a set of predictors Φ, we compute the average diversity
between all possible pairs:

diversity(Φ) =
1

|Φ|(|Φ| − 1)

∑
φ1∈Φ

∑
φ2∈Φrφ1

diversity(φ1,φ2). (2.3)

Similarly, we measure the diversity between two sets of predictors Φ1 and Φ2 by computing
the average diversity between all possible pairs:

diversity(Φ1, Φ2) =
1

|Φ1||Φ2|
∑
φ1∈Φ1

∑
φ2∈Φ2

diversity(φ1,φ2). (2.4)

Figure 2.8 shows the diversity of our predictors, both intra- and inter-family. To avoid
taking into account predictors that have a poor prediction-performance, which would bias
the diversity measure, we only keep the 10 best predictors of each family, according to
their performance on set B, and we compare their predictions over set C.

With less than 6% of samples for which, when taking a random pair of predictors, only one
of them is correct, the DBN family is the most consistent of the three families. However,
we see that DBN and ANN have more than 14% of such samples, even though they have
similar performances overall. This suggests that blending these families together will result
in increased performance, which is confirmed in the results presented in Section 2.5.3.
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Figure 2.8 – Diversity between the best 10 predictors of each family, mea-
sured as the average proportion of samples for which, given a random pair
of predictors, only one of them predicts the correct next place. The diagonal
shows the diversity between predictors of the same family, as defined in Equa-
tion 2.3, whereas the other values show the diversity between two families of
predictors, as defined in Equation 2.4. Predictors of different families clearly
show a higher diversity than predictors of the same family, which suggests
that blending all three families would result in a better accuracy than only
using one individual family.

2.5.2 Blending Strategies

Below, we briefly explain the five blending strategies we used to generate our submissions
to the NMDC. We designed these strategies to take advantage of (a) the diversity of our
three families of predictors, and (b) the evaluation of the performance of each predictor.
We compute the accuracy AS(φ) of each predictor φ on a given set S using Equation 2.2.

Strategy 1. For each user, we choose the predictor that has the best accuracy on set B:

φ1 = arg max
φ∈Φ

{AB(φ)} .

Strategy 2. For each user, the predictor is a weighted mixture of all predictors, where
the weight of each predictor is proportional to its average performance on set B:

φ2 =
1∑

φ∈ΦAB(φ)

∑
φ∈Φ

AB(φ) · φ.
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Strategy 3. For each user, we first select the best predictor of each family on set B:

φANN = arg max
φ∈ΦANN

{AB(φ)} ,

φGBDT = arg max
φ∈ΦGBDT

{AB(φ)} ,

φDBN = arg max
φ∈ΦDBN

{AB(φ)} .

Then, we simply combine these three predictors uniformly:

φ3 =
1

3
φANN +

1

3
φGBDT +

1

3
φDBN.

Strategy 4. As we have many predictors (3 families with a large space of parameters), a
majority of them has an average performance. Thus, when we blend them together,
the few good predictions made by the best models are averaged out by all the
other predictions. This is particularly true for Strategy 2. To prevent this and
still guarantee some diversity, we first select the top 10 predictors4 of each family
(evaluated on set B):

Φtop = {φ : φ is one of the best 10 predictors of its family}.

The final predictor is a mixture of this subset of predictors, weighted by their
performance on set B:

φ4 =
1∑

φ∈Φtop
AB(φ)

∑
φ∈Φtop

AB(φ) · φ.

Strategy 5. We choose the predictor that has the best average accuracy over all users:

φ5 = arg max
φ∈Φ

{∑
u∈U

AB(φ(u))

}
,

where U is the set of all users, and φ(u) corresponds to the predictor φ trained
using the data of user u. Contrarily to the others, this strategy chooses the same
predictor for all users.

We could also combine predictors using non-linear models such as neural networks, where
we learn the optimal combination of the individual predictors. We could even go further
and use sample-based blending techniques, where we adapt the combination of the blenders

4We tried several numbers of top predictors and empirically found that 10 were sufficient to ensure
enough diversity while not “diluting” the good predictions.
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Figure 2.9 – Prediction accuracy on sets C and D of the five different blending
strategies, described in Section 2.5.2.

to the features of each sample. However, due to the limited amount of data available in
the NMDC, we limit ourselves to linear blenders. Indeed, more sophisticated blending
techniques would require larger validation sets.

2.5.3 Results

Figure 2.9 shows the resulting prediction accuracies on set C of the blending strategies
described above. The results confirm that making use of the diversity of the predictors,
while taking into account their individual performances, increases significantly the pre-
diction accuracy. For example, the most successful blending strategy (Strategy 4) is a
mixture of the 10 best predictors of each family where the contribution of each predictor
is proportional to its accuracy. This strategy outperforms Strategy 1 where we take
simply the most accurate predictor for each user (55.55% vs. 53.17%, i.e., a relative
improvement of 4%).

These observations are corroborated by the prediction accuracies on the undisclosed set
D (also shown in Figure 2.9), which were revealed by the organizers at the end of the
NMDC. They confirm the accuracies measured on set C: the ranking of the strategies
relative to their accuracy is respected, and Strategy 4 is still the best with a prediction
accuracy of 56.22%.

2.6 Related Work

With the increasing availability of human-mobility datasets comes a growing scientific
interest in studying human mobility and in understanding the mechanisms that govern it.
The literature is composed of both descriptive and predictive approaches: the descriptive
approach [70, 59, 108, 107, 99] is based on modeling both individual and group mobility.
The main goal of the descriptive approach is to capture the statistical properties of human
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mobility and to ensure, for the sake of realism, that the trajectories generated by mobility
simulators exhibit these same properties. The predictive approach [25, 109, 33], however,
focuses on the implementation of methods that accurately predict the locations users will
visit in the near future. Naturally, the approach we take is predictive, as the main goal of
our present work is to predict as accurately as possible the next place a user will visit. In
this section, we present a selection of articles that we believe are representative of the
rich literature about human-mobility prediction.

Song et al. [108] study the predictability of human mobility using a dataset of 45 000

mobile phone users. They try to answer the fundamental question, “To which extent is
human mobility predictable?” They represent the mobility of each user as the sequence of
detected cell towers. They quantify the users’ mobility predictability by approximating
the entropy rate of their mobility process (process generating a sequence of cell towers
IDs). They find out that, on average, 1 bit of information is needed to describe the next
cell tower a user will visit. They claim that humans are 93% predictable, and that the
predictability varies slightly across the whole population, which suggests that we are all
equal in predictability. However, the authors do not implement a mobility predictor to
verify empirically the claims presented.

Song et al. [109] evaluate the performance of several location predictors using a two-year
trace of the mobility of over 6000 users. They represent the mobility of a user as the
sequence of Wi-Fi access points detected. The authors claim that the major challenges
faced when it comes to mobility prediction are the unseen contexts and the sudden change
of users’ habits. To overcome these drawbacks, the authors enhance their predictors with
fallback and aging mechanisms, resulting in an enhanced prediction accuracy. Their best
predictor is a second-order Markov chain with a fallback mechanism and has a median
prediction accuracy of about 72%.

Similarly, Scellato et al. [102] use a non-linear method for predicting the time and duration
of a user’s next visit to one of his significant places. Their method identifies patterns
in a user’s mobility history that are similar to his recent movements in order to predict
his behavior. As stated in Section 2.2.1, we could not use high-order methods for the
Next-Place Prediction Task because we have access to information about the present visit
only.

In order to enhance the classic approach to mobility prediction, Cho et al. [33] study
the influence of the social dimension on mobility: They claim that human mobility is a
combination of periodic movements and seemingly random jumps that are correlated with
the social network of the user. They develop a mobility model based on these observations
and evaluate its performance on a mobility dataset composed of GPS points and cell tower
IDs. The results do not show a systematic improvement of prediction accuracy when the
social dimension is taken into account. However, the authors expect that, with denser
datasets, the social dimension will bring significant improvement to mobility prediction.
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Gao et al. [51] won third place in the NMDC. They present a probabilistic framework
with fallback mechanisms, which relies on spatial and temporal features, similar to our
tailored model presented in Section 2.4.2. Wang and Prabhala [120] ranked second in
the NMDC. They propose a periodicity-based probabilistic model, similar to our way of
combining the day of the week and hour of the day as input features, along with models
that use a support vector machine. Both teams obtained an accuracy of 52% on set D,
whereas our best strategy reached an accuracy of 56%. Although they use features and
models that are similar to those we proposed in this chapter, they do not address the
problems caused by non-stationarities, such as home changes; nor do they combine the
different models they develop to take advantage of their variability. We believe that these
two differences were key in our winning the NMDC.

The related work we have introduced and, more generally, the studies on human mobility,
rely heavily on empirical evidence: The authors analyze a mobility dataset in order to find
interesting patterns, capture statistical properties or test the methods they implemented.
The temptation is to draw from this analysis a conclusion about human mobility and its
fundamental properties (distribution of distance between consecutive locations visited,
predictability, etc.) without taking into consideration the specific characteristics of
the dataset studied and their effect on the results found. For example, quantifying the
predictability of human mobility depends strongly on the resolution of location information
available: Predicting the next cell tower a user will visit could be straightforward [108],
but finding his exact location within this cell is much more challenging.

2.7 Summary

In this chapter, we present the mobility predictors we developed for the Nokia Mobility
Data Challenge. We use a wide range of techniques, including a dynamic Bayesian network
and artificial neural networks. Moreover, we adapt these techniques to the characteristics
of the data, by implementing mechanisms that ensure the adaptability of the predictors
to the sudden changes in users’ behavior and the sparsity of the data. In particular,
a home-change detection algorithm enables us to improve significantly the prediction
accuracy for the users with an important change of habits.

The three families of predictors we introduce obtain similar average prediction accuracies.
However, their performance varies significantly across users, with some predictors failing
when other succeed. In order to take advantage of the diversity of these predictors, we
introduce several blending strategies that combine them into a global and more accurate
predictor. Despite the simplicity of these techniques, the predictors — obtained after
blending — are able to bring a relative improvement of up to 4% over individual predictors.
Each of the five blending strategies we submitted to the NMDC outperformed all the
other participants’ submissions, enabling our team to win the Next-Place Prediction
Task.
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It is well known that a vital ingredient of success is not
knowing that what you are attempting cannot be done.

Terry Pratchett

The launch of ArtistShare [1] in 2003 marked the beginning of a new way of funding
creative projects: crowdfunding. Contrary to traditional funding strategies, where an
entrepreneur would obtain the money required to launch his business from banks or a
few individual private investors, crowdfunding allows businessmen to cut intermediaries
and obtain the money they need directly from their potential clients. In exchange for
their money, investors usually receive either a reward, or equity in the funded company.
Relatively little known before 2010, crowdfunding has gained traction recently, with more
than $5.1B raised worldwide in 2013 [30].

Kickstarter [7] is one of the largest crowdfunding websites; as of 2015, more than $1.5B
have been received in pledges from 7.8 million backers to fund more than 200 000 projects
[69]. It is a reward-based crowdfunding platform: people pledging money towards a
project receive rewards ranging from the acknowledgement of their participation to deep
involvement in the project’s development.

An important characteristic of Kickstarter is that its fundraising model is all or nothing.
When launching a campaign, the creator sets a funding goal and a deadline. Once its
deadline is reached, a campaign is considered successful if and only if it has reached its
goal. In this case, backers actually pay the money they pledged and the project idea is
realized. In the case where the goal is not reached, the campaign is considered as failed
and no money is exchanged.
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3.1 Problem: Crowdfunding Success Prediction

As only 38% of campaigns reach their goal1, for creators it is of high interest to know
early on about the probability of success of their campaign to be able to react accordingly.
Users whose campaigns are failing to take off might want to increase their visibility and
start a social media campaign, whereas those whose campaigns are highly likely to succeed
could already start working on their projects to get a head start, or look into possible
extensions of their goal.

Similarly, backers could also benefit from a prediction. If the predicted probability of
success of a campaign is low shortly after its launch, they could engage their friends and
social network in backing it. When the predicted success probability is high, backers
could also adjust their pledge, maybe reducing it a little in order to support another
campaign, while being confident that this campaign will still succeed.

In this chapter, we present our work on predicting the success of Kickstarter campaigns.
We first describe the data we collected for this task in Section 3.2. We then describe two
classes of models that we developed: models that use the amount of pledged money to
predict the campaign’s success, in Section 3.3.1, and models that use other social data,
in Section 3.3.2. Finally, we show in Section 3.4 that combining both classes of models
significantly improves the prediction accuracy over individual models.

3.2 Dataset

Our dataset2 consists of data collected on Twitter and on Kickstarter’s website between
September 2012 and May 2013.

3.2.1 Collecting the Data

We learn about new campaigns on the Recently Launched page of Kickstarter [9]. Once a
new campaign is detected, its main characteristics, such as its category, funding goal and
deadline, are collected and stored in a database. Then, we regularly, until the campaign
reaches its end, crawl the page of each campaign to record the current amount of pledged
money and number of backers. On average, we record the status of a campaign every 15
minutes, from its beginning to its end.

In parallel, we monitor3 Twitter for any public tweet containing the keyword kickstarter.
For each tweet matching our search, we record all its data in our database. To determine if

1As of July 2015. Globally, the success rate of Kickstarter campaigns has been slowly decreasing, as
illustrated in Figure 3.1.

2The data presented in this chapter is available online [12].
3We use the Twitter Streaming API [117] to search for the keyword kickstarter. Because few tweets

match this search query compared to the global number of published tweets, we know that we get a large
uniform fraction of the relevant tweets (usually close to 100%) [116].
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the tweet is related to a particular campaign, we search its text for a link to a Kickstarter
page. If any Kickstarter URL is found, the tweet is identified in the database as a
reference to the corresponding campaign. We thus have, for each campaign, all public
tweets related to it.

In addition to using Twitter, Kickstarter integrates Facebook into its website, as another
way of spreading the word about campaigns. However, contrary to Twitter, most Facebook
posts are not public, being usually restricted to the user’s friends. As a result, a search
similar to the one described above performed on Facebook usually yields very few results.
For this reason, we only use Twitter in our dataset.

Finally, we regularly crawl the Backers page of each campaign to get the list of users who
pledged money and to store them in our database. As this last step is time-consuming to
perform, it is done only every couple of days, resulting in only a few snapshots of the list
of the backers of a campaign. This means that we only have a coarse resolution of the
time at which each backer joined a campaign, rendering difficult to extract meaningful
information from these times. For this reason, we do not use them in our models.

3.2.2 Overview

Table 3.1 describes the global statistics of our dataset, separately for successful and
failed campaigns, as well as the combined total. Table 3.2 shows the average statistics of
individual campaigns. As one could expect, failed campaigns have on average a much
higher goal than those that succeed (close to four times higher), but it is interesting
to note that they also have a longer duration4. Moreover, we have a nearly even split
between successful and failed campaigns, with more than 48% of campaigns that reach
their funding goal. The reported global success rate of Kickstarter is lower, with 38% of
successful campaigns overall [69]. We explain this difference by the fact that our dataset
was collected during an intermediary period of Kickstarter, during which it was popular
enough to attract backers, but new enough to not get many low-quality submissions.

Interestingly, the global success rate of Kickstarter campaigns has slowly decreased over
the last few years. To illustrate this trend, we briefly consider an extended version5 of
our dataset that contains the campaigns collected by our crawler between October 2012
and July 2015. We show in Figure 3.1 the monthly success rate of these campaigns, i.e.,
the proportion of campaigns that reach their funding goal. We see that it varies slightly
from month to month6 and that the global trend is downwards, as highlighted by the
linear least-square fit shown as a dashed line.

4Project creators can choose the duration of their campaign. The default value is 30 days, with a
maximum of 60 days.

5As said above, the data we study in this chapter was collected between September 2012 and May
2013.

6The unusual peak in September 2013 comes from a downtime of our crawler, during which we mostly
collected campaigns through Twitter, thus biasing our data towards successful campaigns.
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Campaigns Pledges

Count Ratio Users Count Amount Average Tweets

Successful 7739 48.24% 1 207 777 2 030 032 141 942 075 69.92 564 329
Failed 8303 51.76% 171 450 212 195 16 084 581 75.80 173 069

All 16042 100.0% 1 309 295 2 242 227 158 026 656 70.48 737 398

Table 3.1 – Global statistics of our dataset of Kickstarter campaigns. Users
are unique people who have backed at least one campaign. We show the total
number of pledges, the corresponding amount in $, and the average pledge
for these users.

Goal ($) Duration (days) Backers Final amount Tweets

Successful 9595 30.89 262 216.60% 73
Failed 34 693 33.50 25 11.40% 20

All 22 585 32.24 139 110.39% 46

Table 3.2 – Average campaign statistics of our Kickstarter dataset. The final
amount is the total amount of pledged money reached at the end of the
campaign, relative to its goal.
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Figure 3.1 – Monthly success rate of Kickstarter campaigns. The solid blue
line shows for each month the proportion of campaigns that successfully
reached their funding goal. The dashed green line shows the linear least-
square fit, highlighting the downward trend of the success rate. The peak
in September 2013 comes from a downtime of our crawler, where we mostly
gathered campaigns through Twitter, thus biasing our collected data towards
successful campaigns.
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3.2.3 Preprocessing

As explained in Section 3.2.1, our crawler regularly visits the page of each campaign
to get its current status, i.e., the amount of pledged money and the number of backers.
On average, a campaign’s status is sampled every 15 minutes, resulting in thousands of
samples at irregular time intervals.

To be able to compare campaigns with each other, we resample each campaign’s sequence
of statuses to obtain a fixed number of Ns = 1000 statuses. We normalize the time at
which each status was captured with respect to the campaign’s launch date and duration.
To obtain a normalized amount, we divide the current amount of money pledged of each
status by the goal amount of the campaign.

A campaign c is thus characterized by its funding goal g(c), launch date l(c), duration
d(c), final state f(c) (equal to 1 if the campaign succeeded, 0 otherwise) and a sequence
of status samples {si(c)}1≤i≤Ns . Each status si(c) = (mi(c) bi(c)) is itself composed of
the normalized amount of money pledged mi(c) (i.e., we divide the amount by g(c)) and
the number of backers bi(c).

Because each campaign is resampled to have Ns evenly-spaced statuses, the time ti(c) of
the ith status si(c) is simply defined as

ti(c) = l(c) +
i− 1

Ns − 1
d(c), 1 ≤ i ≤ Ns.

Table 3.3 summarizes the variables describing a campaign c. Figure 3.2 illustrates the
evolution of mi(c) over time, for successful and failed campaigns separately. Although
there are many campaigns that clearly succeed (reaching their goal after less than 20%
of their duration), or clearly fail (never passing 10% of their goal), we see that there
are also many intermediary campaigns. These campaigns follow the global trend, with
a sharp jump at the beginning, a steady increase in the middle, and usually a surge in
pledges at the end [73]. However, a significant portion of these campaigns never reach
their goal, as shown in Figure 3.2(b).

3.3 Models for Success Prediction

An important characteristic of our prediction problem is that we want to be able to predict
the success of a campaign given its status at various stages: just after its beginning, two
days into the campaign, etc. This means that the longer a campaign has been running,
the more information a model could take into account to make its prediction. There
are thus two approaches we could take: (a) use models that are able to handle variable
amounts of input data, or (b) create a distinct model for each state of progress in a
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(a) Successful campaigns
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(b) Failed campaigns
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Figure 3.2 – Visualization of the amount of money pledged towards campaigns,
from their beginning (0%) to their end (100%). The amounts are normalized
with respect to the goals of the campaigns. We show (a) successful campaigns
(i.e., campaigns that have raised at least their goal by the end) and (b) failed
campaigns. The dashed horizontal line corresponds to the funding goal.
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Variable Description

g(c) Funding goal
l(c) Launch date
d(c) Duration
f(c) Final state (1 if successful, 0 otherwise)
{si(c)}1≤i≤Ns Sequence of resampled statuses

ti(c) Sample time of the ith status
mi(c) Normalized amount of money pledged at time ti
bi(c) Number of backers at time ti

Table 3.3 – List of the variables describing a campaign c. The campaign sta-
tuses (time of capture, current pledged amount, and number of backers) cap-
tured by our crawler are resampled to obtain Ns = 1000 statuses {si(c)}1≤i≤Ns
at regular time intervals, as explained in Section 3.2.3.

campaign. As models with variable input sizes are intrinsically more complicated to
handle, we choose to learn separate models for each state of progress.

Below, we introduce the models we use for predicting the success of a campaign. We
investigate two families of models: in Section 3.3.1, we consider models that only rely
on the amounts of pledged money to make their predictions. In contrast, the models
presented in Section 3.3.2 do not take money into account, but instead rely solely on
social features.

As explained above, all these models use only partial information: to predict the success
of a campaign c, they only consider a prefix {si(c)}i∈I of its sequence of statuses, where
I = {1, . . . , S} and 1 ≤ S < Ns. When presenting results below, we show the performance
of models for S = 5, 10, 15, . . . , 995, i.e., every half a percent of the duration of a campaign.

3.3.1 Money-Based Models

The first family of models that we define only uses the sequence of amounts of money
pledged {mi(c)}i∈I , which we call the trajectory, to predict the outcome of a campaign c.
When considering the trajectory of a campaign, two approaches can be used to predict
its outcome: (a) assume that the whole trajectory is important (i.e., that it matters if
the campaign just got to its current amount or has not gotten any pledges for a while),
or (b) simply consider the current amount of pledged money and discard the rest of the
trajectory. We investigate both approaches: the first model takes the whole trajectory
into account, whereas the second just uses the current amount.
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k-Nearest Neighbors

Our first model is a k-Nearest Neighbors (k-NN) classifier [38]. Given a new campaign
c, its partial trajectory {mi(c)}i∈I and a list of campaigns for which the ending state is
known, k-NN first computes the distance between c and each known campaign c′:

dI(c, c′) =

√∑
i∈I

(mi(c)−mi(c′))
2.

Then, it selects topk,I(c), the k known campaigns that are the closest to c with respect
to the distance defined above. Finally, it computes the probability of success φk-NN(c, I)

of c as the average final state of these k nearest neighbors:

φk-NN(c, I) =
1

k

∑
c′∈topk,I(c)

f(c′).

Markov Chain

Our second model uses the campaign trajectories to build a time-inhomogeneous Markov
Chain that characterizes their evolution over time, and then it simply uses the current
amount a new campaign has reached to compute its probability of success.

To define the Markov Chain, we first need to discretize the (time, money) space into a
T ×M grid. This means that we resample time, to have T samples of each campaign’s
trajectory, and we map the amounts of pledged money to a setM of M equally-spaced
values, ranging from 0 to 17. For example, if M = 3,M = {0, 0.5, 1}.

We thus obtain for each campaign c a sequence of discretized amounts of money pledged
{m′j(c)}1≤j≤T . Let M ′j be the random variable associated with the discretized amount
m′j . The Markov model defines, for each time j, the transition probability

Pm,m′(j) = P
(
M ′j+1 = m′ |M ′j = m

)
.

Putting these probabilities together, we define the M ×M transition matrix P (j) =

(Pm,m′(j))m,m′∈M, for each 1 ≤ j < T . These transition matrices are not specific to a
campaign but learned globally over all campaigns.

Success Prediction with the Markov Model By using the transition probabilities
described above, predicting the success of a new campaign c at time i is straightforward,
given its current amount of pledged money mi(c). First, we compute the corresponding
resampled time j and discretized amountm′j(c). Then, the probability of c being successful

7All values larger than 1 are mapped to 1.
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is simply the probability of its final discretized amount M ′Ns(c) to be equal to 1 (100%
of the goal), given that is current discretized amount is m′j(c).

We compute this success probability φMarkov(c, j) given its current discretized amount of
pledged money m′j as

φMarkov(c, j) = P
(
M ′Ns(c) = 1 |M ′j(c) = m′j(c)

)
=
∑
m′∈M

P
(
M ′Ns(c) = 1 |M ′j+1(c) = m′

)
P
(
M ′j+1(c) = m′ |M ′j(c) = m′j(c)

)
=

T−1∏
j′=j

P (j′)


m′
j(c),1

,

where the last step is obtained by repeatedly applying the law of total probability.

Example Figure 3.3 gives an example of such a Markov model, for T = 50 time steps
j, and M = 30 possible values for the discretized amounts m′j . Figure 3.3(a) represents
the transition probabilities Pm,m′(j) as edges between each pair (mj ,m

′
j+1), for all times

1 ≤ j < T . The thickness and color of these edges represent their likelihood, with thin
orange edges being unlikely, and thick purple edges being likely. We observe that, under
this model, campaigns that have trouble getting pledges early on are likely to never take
off (with very thick purple edges linking the low amounts of pledged money). We also
remark that there exist steep transitions from low to high amounts, both in the very early
stages and close to the end of a campaign. These correspond to the general trends that
we observe in the shape of trajectories in Figure 3.2.

Figure 3.3(b) shows the probability of success associated with each state m′j , computed as
explained above. We clearly see a transition, with a thin yellow band representing states
with a success probability close to 50%. States shown in green, in the upper-left part
above the line, have a high probability of success, while those in red, in the lower-right
part below the line, are more likely to fail.

3.3.2 Social Models

We now introduce the second family of models. Contrary to those presented above, which
use the amount of money pledged to predict the success of campaigns, the social models
use only side information obtained from Twitter and Kickstarter’s social graph. To build
these models, we simply extract social features, as described below, add some features
about the campaign such as its goal and duration, and then use a support-vector machine
(SVM) [37] with a Gaussian Radial-Basis Function (RBF) kernel to predict whether a
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(a) Transition probabilities P (j)
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(b) Success probabilities φMarkov(c, j)
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Figure 3.3 – Illustration of the Markov model, with T = 50 and M = 30. We
show (a) the transition probabilities between the money states of each time
step and those of the next. The width and color of the edges reflect their
likelihood: thin orange edges are unlikely, thick purple eges are likely. We
also show (b) the success probability of each state, i.e., the probability that
a campaign reaches its goal if it is currently at that state. We see a clear
transition, between states where campaigns have a high probability of success
(upper-left part), and those where failure is more likely (lower-right part).
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campaign will succeed or not, based on these features. As we only have a few features for
each sample and our dataset is of reasonable size, we chose to use a SVM to be guaranteed
to have the optimal classifier for each set of hyperparameters.

Tweets

We extract the first set of social features from Twitter: Indeed, we expect that the
chatter about a campaign should be a good indicator of its popularity. As mentioned in
Section 3.2, we have, for each campaign c, the list of all public tweets that contain a URL
pointing to its page. As each tweet tweetn(c) has a timestamp, we can select the subset
of tweets Tt(c) = {tweetn(c) | timestamp(tweetn(c)) < t} that were published before a
time t. Using Tt(c), we extract the following features about each campaign c at time t:

• number of tweets, replies and retweets,

• number of users who tweeted,

• estimated number of backers8.

We then add the campaign’s goal g(c) and duration d(c) to these features and feed them
to a SVM, resulting in a model φtweets(c, t).

Campaigns/Backers Graph

Although the features extracted from Twitter contain information about a campaign’s
popularity, they tell us nothing about the identity of the backers or about their behavior
on Kickstarter. To get this information, we investigate the social graph of Kickstarter.
This graph G1 contains all campaigns and backers as vertices, and it has an edge between
a campaign c and a backer b, if and only if b backed c. G1 is thus an undirected and
unweighted9 bipartite graph.

From G1, we can extract the co-backers graph G2: it is the projection of G1 onto the
campaigns vertices. G2 is an undirected weighted graph, where vertices are campaigns
and the weight of an edge between two campaigns c1 and c2 is the number of backers
who have pledged money to both c1 and c2. Figure 3.4 shows an example of (a) a
campaigns/backers graph G1 and (b) the corresponding co-backers graph G2.

Using G1 and G2, we can now extract a second set of social features. We consider a new
campaign c whose probability of success we want to estimate at some time t. We simply

8We estimate the number of backers by counting the number of tweets that contain texts such as “I
just backed project X”, which is the default message proposed by Kickstarter.

9It would be interesting to consider a weighted version of this graph, where the weight of each edge
corresponds to the amount of money pledged. Unfortunately, we do not have access to this information,
and thus can only consider the unweighted version.
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(a) Campaigns/backers graph G1

2 1

(b) Co-backers graph G2

Figure 3.4 – Example of (a) a campaigns/backers graph G1 and (b) the corre-
sponding co-backers graph G2. G1 contains both campaigns (left) and backers
(right) as vertices, and has an edge between a campaign c and a backer b if and
only if b pledged money to c. G2 is the projection of G1 onto the campaigns
vertices, where the weight of an edge between two campaigns represents their
number of common backers.

integrate c into G1 and G2, using its list of backers at time t to add the necessary edges
in both graph.

Then, we extract the following features of c:

• number of campaigns with co-backers (i.e., the degree of c in G2),

• number and proportion of these campaigns that are successful,

• number of backers,

• number and proportion of first-time backers10.

As with tweets, we then add the campaign’s goal g(c) and duration d(c) to these features
and feed them to an SVM, resulting in a model φgraph(c, t).

3.3.3 Training and Performance Evaluation

In order to train our models, select their hyperparameters and evaluate their performance,
we separate the dataset into 3 parts: 70% of the campaigns are selected as the training set,

10First-time backers are users that pledged money only to the campaign c. Intuitively, a campaign
that is able to get new people to sign up on Kickstarter might be more likely to succeed.
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Model Selected hyperparameters

k-NN k = 25
Markov M = 30
Tweets C = 1000, γ = 0.1
Campaigns/backers graph C = 1000, γ = 0.001
Combined C = 100, γ = 0.1

Table 3.4 – Hyperparameter values selected for the different models. We
use 70% of the data as training data and 20% as validation data, and select
the best hyperparameters with the best average performance on 10 random
assignments.

20% as the validation set and the remaining 10% as the test set. These sets are randomly
chosen and all results presented below are averaged over 10 different assignments.

Each of the models presented above has some hyperparameters to be tuned:

• for k-NN, the number of neighbors k,

• for Markov, the number of money values M ,

• for the two social models, the SVM parameters (soft margin penalty C and RBF
kernel coefficient γ).

We select the best hyperparameters for each model by doing an exhaustive search on a wide
range of values and by evaluating the corresponding average prediction accuracy on the
validation set, for 10 random assignments. All models are implemented in Python, and we
use the SVM implementation of scikit-learn [89]. We report the selected hyperparameters
in Table 3.4.

3.3.4 Results

Figure 3.5 shows the prediction accuracy of the models presented above. Every 0.5% of
the campaign duration, we train a new model on 90% of the campaigns and predict the
success of the remaining 10% of campaigns, based on their status at that time. We report
the median prediction accuracy of each model over 10 random assignments of train/test
data, plus/minus one standard deviation. In addition to the model we introduced, we
show as a baseline the model developed by Greenberg et al. [60]. This baseline uses static
campaign attributes, such as category, goal, and whether they have a video description or
not, to predict the success of campaigns before their launch. This approach obtains a
prediction accuracy of 68%. This accuracy does not change with the progression of the
campaign, as the baseline only uses static attributes.
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Figure 3.5 – Prediction accuracy of the models described in Section 3.3, along
with the static baseline of Greenberg et al. [60]. For each state of progress of
a campaign, we train a new model using 90% of the campaigns and evaluate
its performance on the remaining 10%. We show the median accuracy over
10 random assignment, plus/minus one standard deviation.

The two money-based models perform similarly, and very well: after 15% of the duration
of a campaign, its current amount of money pledged enables us to predict its success
with an accuracy higher than 85%. As time goes by, this accuracy steadily increases, to
reach more than 97% in the very last moments. However, the k-NN model is very costly
compared to the Markov model: it requires that all training samples be kept in memory
and that the distance to each of them be computed when we want to classify a new
sample. In contrast, the Markov model is compact, requiring only the matrices P (j) to
be stored, and it computes the success probability of new samples very efficiently, because
this requires only matrix multiplications. It is thus noticeable that such a lightweight
and elegant model performs as well as a heavyweight method.

The two social models have different results. Although their performances are clearly
inferior to those of the models that use the sequence of pledges, both social models quickly
outperform the baseline performance of 68% obtained by Greenberg et al. [60]. It is
interesting to note that although the Graph model has a fast increase in accuracy after
a few time steps, it quickly stabilizes to about 80%, up to the end. The Tweets model,
however, constantly improves its accuracy.
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3.4 Combining Models

The models that use the sequence of pledges show a good prediction accuracy, especially
towards the end of a campaign. At the beginning, however, the accuracy could still be
improved. Such an improvement would be very useful to creators and backers, enabling
them to react accordingly to correct the course of a campaign. A higher accuracy at later
stages, however, would not be of high interest.

To improve the accuracy of the models presented in Section 3.3, we propose to combine
the money-based models with those using social features. Indeed, the early results of
money-based models seem to indicate that money alone is not sufficient to distinguish
successful campaigns from those that will fail. Adding social features such as popularity on
Twitter and links with other successful campaigns could help further refine the predictions.

3.4.1 Combined Model

We build a combined model by taking the predictions of all individual models and by
training an SVM to combine them into a final prediction. The features used by this
combined model are the campaign goal g(c), its duration d(c), along with the probabilities
of success obtained by using each of the four individual models described in Section 3.3.

3.4.2 Hyperparameter Selection

As with the social models described in Section 3.3, we use a RBF kernel for the SVM, thus
having two hyperparameters C and γ to tune. We do an exhaustive search on a logarithmic
scale for both hyperparameters and choose those that maximize the average prediction
accuracy on the validation sets, for 10 random assignments. The hyperparameter values
we select are C = 100 and γ = 0.1.

3.4.3 Results

Figure 3.6(a) shows the prediction accuracy of the combined model, along with the static
baseline presented in Section 3.3.4. We highlight in Figure 3.6(b) the relative improvement
of the combined model with respect to the best individual model, at each time step.

Overall, the improvement of the combined model is the strongest at the beginning of the
campaign, increasing significantly the accuracy: the first combined prediction is 4% more
accurate than any individual model. In other words, on average 4 hours after the launch
of a campaign, the combined model can assess the campaign’s success with an accuracy
higher than 76%.
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(a) Prediction accuracy of the combined model

0 20 40 60 80 100

Campaign progress [%]

65

70

75

80

85

90

95

100

P
re
d
ic
ti
o
n
a
cc
u
ra
cy

[%
]

Baseline

Combined

(b) Relative improvement over the best individual model
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Figure 3.6 – Results of the combined model. For each state of progress of a
campaign, we train a new model using 90% of the campaigns and evaluate its
performance on the remaining 10%. We show (a) the median accuracy over 10
random splits (plus/minus one standard deviation) and (b) the improvement
of the combined model relative to the best individual model. Combining
social data with the amounts of pledged money is helpful for early predictions,
with a relative improvement of 4% for the first prediction.
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3.5 Related Work

With the increasing popularity of crowdfunding platforms, people have are interested
in studying the dynamics of crowdfunding campaigns and in understanding what drives
their success or failure. Some online tools, such as Kicktraq [8], provide tracking tools
for crowdfunding campaigns and basic trend estimators, but none has yet implemented
proper success prediction.

In the scientific community, several studies have been published on crowdfunding platforms:
Kuppuswamy and Bayus [73] study the dynamics of backers and the effect of responsibility
among them. They highlight the effect of past support on future backers, as well as the
the “last rush” effect that we observed, where some campaigns have a sudden increase
in pledges close to their deadline. Similarly, Mollick [82] describes the dynamics of
the success and failure of Kickstarter campaigns. He presents various statistics about
the determinant features for success and analyzes the correlation of many campaign
characteristics with its outcome.

Crosetto and Regner [39] take a similar approach, with data extracted from Startnext, the
biggest crowdfunding platform in Germany. Wash [121] focuses on a different platform,
called Donors Choose, where people can donate money to buy supplies for school projects.
He describes how backers tend to give larger donations when the donation would enable
a campaign to reach its goal, and he also studies the predictability of campaigns over
time. Agrawal et al. [23] investigates the importance of geographical location and social
links on the timing of pledges.

Greenberg et al. [60] propose a success model for Kickstarter campaigns, based solely on
their static attributes, i.e., attributes available at the launch of a campaign. They obtain
a prediction accuracy of 68%, which we use as a baseline when presenting the results
in Section 3.3. More recently, Rao et al. [95] study the time-series of money pledges
on Kickstarter to investigate the extent to which the inflows and their derivatives are
indicators of the success of a campaign. They reach accuracies that are similar to ours.

3.6 Summary

In this chapter, we introduce the problem of predicting the success of a crowdfunding
campaign. We highlight the importance of combining information about both the evolution
of a campaign (its sequence of pledges over time) and its social components (popularity
on Twitter and identify of its backers). We show that even though models that rely solely
on money give good predictions, taking social features into account improves predictions
made in the early stages of a campaign, where they are the most helpful. The data
presented in this chapter is available online [12] and the models are integrated into an
online tool that we describe briefly in Appendix A.
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“Listen, Peaches, trickery is what humans are all about,”
said the voice of Maurice. “They are so keen on tricking one
another all the time that they elect governments to do it for
them.”

Terry Pratchett

Since the early 2000s, several governments, organizations, and academic groups set up
voting advice applications (VAAs). VAAs are usually implemented as websites that
enable politicians and interested citizens to express their preferences on political issues, by
answering a series of pre-determined questions spanning a variety of topics. The candidates
have public profiles containing their responses (as well as various other information, such
as their birthdate, interests, or Facebook profile), and the voters are matched with
candidates based on their own responses. This enables citizens to obtain for example
voting recommendations for future elections or simply to investigate the difference of
opinion between politicians and themselves.

At first limited to European countries, VAAs can now be found worldwide, some spanning
multiple countries or even continents: Vote Compass [16] in Canada, the USA and
Australia, Vote Match [17] in Europe, and Preference Matcher [11] in Europe and South
America. Some countries also have their own local VAA, such as StemWijzer [15] in the
Netherlands, Wahl-O-Mat [18] in Germany, and Smartvote [14] in Switzerland. These
platforms are well received and used by a significant portion of the public: StemWijzer
was used by 40% of the Dutch electorate in 2006, and Wahl-O-Mat by 12% of the German
electorate in 2009 [52].

The initial reason for the existence of these VAAs was to increase political transparency
and citizen participation. Yet, as a byproduct, they also provided researchers with new
ways of mining and (re-)discovering patterns that are peculiar to political life, but that
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usually require tedious manual analysis and knowledge of the domain. Although the
nature of this data is not new, its scale is unprecedented.

4.1 Problem: Identifying (Changes in) Ideologies

In this chapter, we study the political opinions of politicians and citizens. We exploit the
scale of the data extracted from a VAA to answer several fundamental questions from
a statistical perspective. We first begin by describing the data in Section 4.2. Then, in
Section 4.3, we identify the main themes that separate politicians the most, to understand
if the traditional left/right and liberal/conservative axes are “efficient” ways of dividing
the ideological space. To raise awareness about the potential misuse of VAAs, we show in
Section 4.4 that it is possible to craft on a VAA a new profile that gets twice as many
recommendations as the best real profile. Finally, we propose in Section 4.5 a way of
detecting such misuse, by combining the votes cast by elected politicians with their VAA
responses to detect significant changes in opinion between their pre-electoral profile and
their voting behavior once elected.

4.2 Dataset

In this chapter, we focus on Switzerland, as it has a very rich political landscape (seven
major political parties compete for seats in the parliament), easily available data (all
votes cast in the parliament are recorded and downloadable for free), and an established
voting advice application (Smartvote has been active since 2003).

4.2.1 Background: Politics of Switzerland

Before introducing the two datasets we use in this chapter, we give a brief overview of
the Swiss political system. It consists of a Federal Council (7 seats) and a bicameral
parliament, which is composed of the Council of States (46 seats) and the National
Council (200 seats). The Federal Council serves as head of state and executive power,
and the parliament possesses the legislative power (together with citizens, as per the
constitutional right for citizens to launch initiatives1). The Council of States represents
the cantons (the states of the federal state), and each canton is attributed two seats
(except six “half” cantons that have only one seat). The National Council represents the
people, and each canton is attributed a number of seats proportional to its population.

The National Council and the Council of States are elected at the same time every four
years. Several political parties are represented in the parliament. In this chapter, we
focus on the seven largest parties (in terms of votes obtained during the National Council
elections in 2011) shown in Table 4.1.

1Initiatives, similar to propositions in California, allow any citizen or organization to gather a
predetermined number of signatures to propose a new piece of legislation [125].
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Full name Ideology Votes

SVP Swiss People’s Party National conservatism 26.6%
SP Social Democratic Party Social democracy 18.7%
FDP Free Democratic Party Classical liberalism 15.1%
CVP Christian Democratic People’s Party Christian democracy 12.3%
Greens Green Party Green politics 8.4%
BDP Conservative Democratic Party Conservatism, economic liberalism 5.4%
GL Green Liberal Party Green liberalism 5.4%

Table 4.1 – The seven major political parties in Switzerland after the National
Council elections of 2011. The last column lists the percentage of votes each
party obtained during these elections.

4.2.2 Opinions Expressed on the Smartvote VAA

Our first dataset consists of the responses given on the Smartvote VAA [14] by the citizens
and candidates during the Swiss parliamentary elections of 20112. Smartvote proposes a
long and a short survey. The short survey is composed of 32 questions and the long survey
is composed of 75 questions, which include the 32 questions from the short survey. The
voters (meaning here the visitors of the website) have the freedom to choose which survey
to answer, but the candidates have to answer all the questions of the long survey. The
questions address various topics ranging from society to economy and finance, and they
were carefully selected to cover topics as representative as possible of current political
issues. Answering consists in selecting one of the following options: strongly agree - agree
- disagree - strongly disagree. An additional set of “budget questions” requires selecting
one of the options: less - no change - more. Finally, the voters can also select “no answer”
(an option not available to the candidates). Each possible answer is mapped internally by
Smartvote to a number in the set {0, 0.25, 0.75, 1} for regular questions, and in the set
{0, 0.5, 1} for budget questions. The final recommendation given to each voter is a list of
candidates, in decreasing order of distance (using the l2-norm) to this voter [113].

2990 candidates filled out the survey, which represents about 82% of all the candidates.
Unless otherwise specified, we consider the responses given by voters who participated in
the short survey (which was the most popular survey). This amounts to about 229 000

voters3, which corresponds to 9.3% of the total voter turnout of 2011. Detailed statistics
about this dataset are summarized in Table 4.2.

2The Smartvote dataset can be obtained on demand for research purposes, by sending a request to
contact@smartvote.ch.

3Obtaining a precise figure for the number of unique voters is difficult, as one voter can ask for several
recommendations on the website. This number is an estimate, obtained by Smartvote after filtering out
identical web sessions.
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Number of questions in the short survey 32
Number of questions in the long survey 75
Number of candidates who answered the long survey 2 990
Approximate number of unique voters that requested recommendations 436 726
Number of voters who completed all questions of the short survey 229 133
Number of voters who completed all questions of the long survey 80 067

Table 4.2 – Statistics about the political opinions dataset that contains the
responses given on the Smartvote VAA by the citizens and candidates during
the Swiss parliamentary elections of 2011.

4.2.3 Votes in the Parliament

Our second dataset consists of all the votes of the members of the National Council cast
during the first half of the 49th legislature, between December 2011 and December 2013.
There were 2,494 votes by the 200 national councilors during this period4. To compare
the opinions given on Smartvote with the votes in the National Council, we discard the
votes of the councilors that did not answer the Smartvote survey, hence our final dataset
contains the votes (or abstentions) of 181 national councilors.

4.3 Ideological Space

In this section, we provide an analysis of the political landscape of Switzerland. We observe
that simple dimensionality-reduction techniques can produce useful visual representations
of political positions. We then analyze the difference of distribution and polarization
between voters and candidates (before and after the elections) in such political spaces.
Finally, we compute pairwise similarities between political parties, as measured by the
opinions expressed by their members.

4.3.1 Dimensionality Reduction

To be able to compare candidates with voters, we consider only responses to the questions
of the short survey. Each candidate can thus be represented as a point in a space of 32
dimensions. Because it is likely that some politicians tend to think similarly on several
questions, we can expect that some of these dimensions are strongly correlated. For
instance, it could be the case that two persons who answer similarly to the question
“Should access to naturalization be made more difficult?” also answer similarly to the
question “Are you in favor of legalizing the status of illegal immigrants?”. Therefore,
one of the first questions that we could ask concerns the intrinsic dimensionality of this
dataset. In the following, we use a singular value decomposition (SVD) [58, 119] in order
to compute the sets of questions that best capture these correlations.

4The data is publicly available via a dedicated web-service: http://ws.parlament.ch/votes.
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We merge budget and regular questions and denote by A = {0, 0.25, 0.5, 0.75, 1} the set
of possible responses to any question on Smartvote. Let Q be the number of questions
and C the number of candidates. Using this notation, we define C as the C ×Q matrix
of candidates’ responses, whose (i, j)th entry ci,j ∈ A is the response of the ith candidate
to the jth question. We start by centering C so that it has zero mean. We then compute
the SVD of C as

C = UΣW T ,

where U is the C × C matrix whose columns are the left-singular vectors of C, Σ is a
C ×Q diagonal matrix, whose Q non-zero entries are given by the singular values of C,
andW is the Q×Q matrix whose columns are the right-singular vectors of C. We adopt
the usual convention, according to which the columns of U and W , and the diagonal
elements of Σ are ordered by decreasing amplitude of the corresponding singular values.

The projection ofC onto the basis constituted by its singular vectors is given byC ′ = CW .
The matrix C ′ has a diagonal covariance matrix, i.e., all its dimensions are uncorrelated.
Furthermore, if we denote by si the singular value associated with the ith singular vector,
the variance of the data along the ith dimension of C ′ is proportional to s2i . It follows
that, for any k ≤ Q, the first k dimensions of C ′ are the k dimensions that capture most
of the variance of the data.

We use this property in Figure 4.1 (top) to obtain a visual representation of the candidates
on the plane, by showing the first two columns of C ′, i.e., the projection of C onto its first
two singular vectors. In Figure 4.1 (bottom), we also show the representation of the same
candidates using the Smartmap provided by Smartvote [90]. The Smartmap employs a
similar dimensionality-reduction technique based on correspondence analysis [63], and
it has been manually validated in order to obtain the correspondence with traditional
left/right and liberal/conservative directions [105].

The relative positions of candidates and political parties are qualitatively similar in
both cases, which confirms that our dimensionality-reduction approach is consistent with
traditional ideological representations.

Interestingly, the singular value decomposition easily recovers the usual left/right and
liberal/conservative divisions, by looking only at the responses (and not at the questions
themselves). In Table 4.3, we show the two most important questions corresponding to
each of the first four singular vectors of C (i.e., the two questions with the largest absolute
weights for each of the first four columns of W ), along with their weight relative to the
most important question of each axis. It very clearly appears that the first two axes refer,
broadly speaking, to openness and integration of foreigners, and to economic liberalism.
The third axis tends to be dominated by “societal” issues, such as drug consumption and
adoption by same-sex couples, and the fourth axis is hard to interpret.
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Figure 4.1 – Top: projection of candidates onto the first two singular vectors
of the matrix of their Smartvote responses. Bottom: projection obtained
by the Smartvote Smartmap, with qualitative axes referring to traditional
ideological separations. The two projections are qualitatively very similar.
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Singular vector Weight Most important questions dividing candidates

First 100% Would you support foreigners who have lived for at least ten years
in Switzerland being given voting and electoral rights at municipal
level throughout Switzerland?

96% Are you in favour of legalizing the status of sans papiers immigrants
(i.e., immigrants who have no official paperwork) through a one-off,
collective granting of residency permits?

Second −100% Are you in favour of the complete liberalization of shop opening
times (i.e., shops would be able to choose their own opening
times)?

−93% Should Switzerland conclude an agricultural free trade agreement
with the EU?

Third −100% Should Switzerland legalize the consumption of hard and soft drugs
as well as the possession of such drugs for personal consumption?

−97% Should same-sex couples who have registered their partnership be
able to adopt children?

Fourth 100% Should the acquisition of owner-occupied residential property be
promoted through tax allowances for construction savings?

93% Should the powers of the security services be increased to include
“preventative” supervision of communication by post, e-mail and
telephone?

Table 4.3 – Two most important questions of the first four singular vectors of
the candidates’ answers matrix A. These questions are those that contribute
the most, in absolute value, to each of the singular vectors. Their weight is
shown relative to the most important question of each axis. They can be used
to interpret the different themes on which the candidates tend to disagree
the most.

We apply the same dimensionality reduction technique on the voters’ responses matrix
V . Table 4.4 shows the two most important questions corresponding to each of the
first four singular vectors of the voters’ response matrix. The first two singular vectors
capture themes that are similar to those of the candidates, whereas the fourth singular
vector corresponds to the candidates’ third. Interestingly, the question of liberalizing
shop opening times is the most important for both the second and the third singular
vectors of the voters’ response matrix, suggesting that this issue divides many voters.

4.3.2 Candidates, Voters, and Polarization

Using the dimensionality-reduction approach presented above, we compare the distribution
of candidates with that of voters in the ideological space. To this end, we divide the
two-dimensional region of Figure 4.1 (top) into a 30× 30 grid and compute the candidate
density as the number of candidates in each cell. We follow the same procedure for voters
and show both densities in Figure 4.2. Perhaps the most striking feature of this figure is
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Singular vector Weight Most important questions dividing voters

First 100% Would you support foreigners who have lived for at least ten years
in Switzerland being given voting and electoral rights at municipal
level throughout Switzerland?

94% Should popular initiatives be declared invalid if their entry into
force would lead to infringement of the European Convention on
Human Rights (ECHR)?

Second 100% Are you in favour of the complete liberalization of shop opening
times (i.e., shops would be able to choose their own opening times)?

−96% A recently launched popular initiative is proposing to limit the
maximum salary that can be earned in a company to 12 times the
lowest salary (the “1:12” initiative). Do you support this idea?

Third 100% Are you in favour of the complete liberalization of shop opening
times (i.e., shops would be able to choose their own opening times)?

98% Are cuts in federal taxes over the next four years something you
believe should be a priority?

Fourth 100% Should Switzerland legalize the consumption of hard and soft drugs
as well as the possession of such drugs for personal consumption?

83% Should same-sex couples who have registered their partnership be
able to adopt children?

Table 4.4 – Two most important questions of the first four singular vectors of
the voters’ answers matrix V . These questions are those that contribute the
most, in absolute value, to each of the singular vectors. Their weight is shown
relative to the most important question of each axis. They can be used to
interpret the different themes on which the voters tend to disagree the most.
The first two singular vectors are similar to those of the candidates.

the comparatively large density of candidates residing on the “left” of the political space.
As it has already been observed [56], left-wing candidates appear to be very consistent in
their responses and exhibit little variance. It seems to be that these candidates, more
than the others, tend to strongly agree on the issues raised in the first two singular
vectors. It is also possible that this is partly an artifact due to the (publicly admitted [19])
existence of “guidelines” provided by some parties and used by their candidates to answer
Smartvote questions.

The difference between the two densities of Figure 4.2 also suggests that politicians are
somewhat more polarized than citizens. This fact has often been observed by political
scientists, in particular in Switzerland [79]. It is confirmed by the first two plots in
Figure 4.3 that show the proportion of total variance that is captured by each of the
first three singular vectors (as well as the remaining variance, captured by the remaining
singular vectors). We see that the first three singular vectors capture 36% of the variance
in the voters responses, whereas candidates have 58% of their variance captured by these
first three dimensions.
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Figure 4.2 – Density of candidates (top) and voters (bottom) in their ideo-
logical spaces, computed from their Smartvote responses. The distributions
are very different: voters are well spread, whereas candidates show a density
peak on the “left” side of the space, where they have very low variance in
their Smartvote responses.
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Figure 4.3 – Proportion of the variance captured by the singular vectors of
the matrices corresponding to voters, candidates, and parliament members.
The opinions given by the candidates are more polarized than the opinions
given by the voters. Votes at the parliament are more polarized than the
opinions given on Smartvote.

To further investigate the polarization of politicians, we apply the same dimensionality-
reduction approach to their votes, once elected at the parliament. We consider the votes of
the member of the Swiss parliament during the 49th legislature, described in Section 4.2.3,
and we gather them in a matrix of parliament votes P . We then compute its SVD and
project P onto its first two singular vectors. The resulting two-dimensional representation
of the members of the parliament is shown in Figure 4.4 (top). Unfortunately, the singular
vectors of the matrix P are not easily interpretable, as they are composed of votes at the
parliament that are often technical and very specific to the issue at hand.

Once elected, politicians are much more clustered compared to their pre-electoral opinion
expressed on Smartvote (shown at the bottom5 of Figure 4.4). This polarization of
elected candidates can be explained by the existence of coalitions in the parliament. To
highlight this effect, we show in Figure 4.5 a mapping between the two representations
of elected candidates. We show their two-dimensional representation computed from
their Smartvote responses on the left and from their votes in the parliament on the right.
We see that a few candidates with similar opinions expressed on Smartvote vote quite
differently once in the parliament.

We also show in the last plot of Figure 4.3 the variance captured by each singular vector
of the matrix of parliament votes P . It confirms that votes in the parliament are strongly
polarized, with 66% of the total variance explained by only the first three axes. The
candidates, in contrast, are somewhat less polarized during the pre-electoral campaign,
but still significantly more than the voters.

5The representation show at the bottom of Figure 4.4 is the same as the one shown at the top of
Figure 4.1, but only showing elected candidates instead of all of them.
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Figure 4.4 – Two-dimensional representations of elected candidates, obtained
(a) from the dataset of their votes in the parliament and (b) from their
Smartvote responses. The votes in the parliament are more clustered than
the pre-electoral opinions given by candidates. The representation obtained
from Smartvote responses (b) is the same as the one shown in Figure 4.1
(top), but showing only elected candidates instead of all of them.
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Figure 4.5 – Mapping between the two-dimensional representations of elected
candidates computed from their Smartvote responses (left) and their votes
in the parliament (right). A few candidates with similar opinions expressed
on Smartvote vote quite differently once in the parliament.

4.3.3 Parties Overlap

Figure 4.1 shows that some subsets of the political parties significantly overlap with each
other. To verify whether such overlaps still exist in the original 32-dimensional space, we
compute, for each party, the proportion of candidates of this party closer to the median
answer of the candidates of at least one other party than to the median of their own
party. These proportions are shown in Figure 4.6. It appears that several of the main
parties have a large proportion of their candidates closer to at least one other party. This
concerns more than 20% of the candidates of four of the seven parties. The FDP, CVP
and BDP show exceptionally large figures; more than 35% of FDP, 45% of CVP and 50%
of BDP candidates are closer to the median answer of at least one other party. These
parties do not belong to political extremities, rather they share a region near the center
of the political space, which partly explains why they largely overlap. In practice, this
means that using Smartvote questions, it is hard to determine which party best suits a
person with centrist opinions.

In order to gain more insight into which parties are actually close to each other, we
look at detailed pairwise overlaps. Specifically, for each pair of parties (i, j), we show in
Figure 4.7 the proportion of candidates of party i closer to the median opinion of party j
than to the median of their own party i. Again, these proportions are computed in the
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Figure 4.6 – Proportions of candidates of each party that are closer to the
median of at least one other party than to the median of their own party.
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Figure 4.7 – Inter-party overlaps. The number in row i and column j indicates
the percentage of candidates of party i that are closer to the median position
of party j than to the median of their own party i.

61



Chapter 4. Should They Be There?

original 32-dimensional space, and are thus not subject to distortion due to dimensionality
reduction. It is surprising that even opposite parties (such as SVP and SP, or SVP and
Greens) have a few overlapping candidates.

As an example of the interpretation of these overlaps, consider two parties: BDP and
SVP. BDP was created in 2009, when SVP excluded one of its members who was part of
the Federal Council. As a response, the cantonal branch of SVP to which this member
belonged split from the national party and renamed itself to BDP. Over the following
months, members of SVP from other cantons followed, moving from SVP to BDP. When
looking at their overlap in Figure 4.7, we see that only 6% of the members of BDP are
closer to the median position of SVP than to that of BDP. Conversely, only 4.8% of the
members of SVP are closer to the median position of BDP than to that of SVP. These
low overlaps thus suggest that the members of BDP indeed have diverging opinions from
those of the members of SVP, which supports the reasons behind the division of the two
parties.

4.4 Crafting a New Political Profile

As explained in Section 4.2.2, the Smartvote VAA gives voting recommendations to
visitors by first computing the l2-distance between their responses and those of each
candidate, and then by recommending the candidates who gave responses closest to those
of the visitors. This means that the responses candidates give to each question in the
Smartvote survey influence directly the number of voting recommendations they get.
Hence, it is interesting to see if it is possible to create an “optimized” profile, in order to
obtain as many recommendations as possible.

Computing the optimal set of answers that maximize the likelihood of a candidate
appearing at the top of recommendations would require knowing the answers of all the
candidates and the voters. However, at the time of completing the survey, candidates
can only access the answers given by their fellow candidates (which are publicly listed
on the website), but not those of the voters. Furthermore, even if the set of answers
given by voters were known in advance, the computation of an optimal profile is of
combinatorial complexity; if there are n questions with k possible choices, an exhaustive
search requires O(kn) computations. More efficient techniques (e.g., based on geometric
approximation [62]) could be used to solve this problem. We leave a more formal study
of this optimization problem for future work.

Instead, we propose a simple but efficient heuristic to craft a new candidate profile, by
looking only at the answers of the other candidates. Our method consists in inspecting the
distribution of candidates in the two-dimensional ideological space depicted in Figure 4.1.
We see that there are several spots where the density of candidates is quite low. However,
from Figure 4.2, we know that voters tend to have a more uniform distribution, thus
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Figure 4.8 – Zoom into the two-dimensional representation of candidates
shown in Figure 4.1. We clearly see an area with few candidates, which we
choose for the location of our crafted opinion, represented as a star.

suggesting that these spots might correspond to “under-represented” citizens. Thus, we
choose to place our crafted candidate in one of those spots, filling a gap in the ideological
space but staying far from the extremes.

Such an “optimal” positioning problem has been studied from a game-theoretical point of
view in simpler settings [40, 85] and researchers have shown that choosing the median
position leads to obtaining the most voting recommendations. However, selecting the
median answer to each question as our crafted profile does not give satisfactory results in
our setting, as shown in Figure 4.9.

To compute the actual responses this crafted candidate should give to the Smartvote
survey, we proceed as follows: First, we find the coordinates of an empty spot in the
ideological space, represented in Figure 4.1, is still close to the center of the space. The
intuition behind this choice is that we want to be as far away as possible from any other
candidate, and still be close to the majority of voters. Such a location is illustrated
in Figure 4.8. Then, we perform the inverse operation of the projection explained in
Section 4.3.1, to project a two-dimensional point back onto the 32-dimensional space of
Smartvote responses. Because the responses can only take values in A, we round each
component of the resulting projected answer to the closest value.
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Figure 4.9 – Number of appearances of candidates in the top recommen-
dations. The curves show how many times the median, best, and crafted
candidates appear in the top R recommendations for voters. We also show
that simply giving the median answer to each question does not beat the
best real candidate. The crafted candidate uses responses corresponding to
the star shown in Figure 4.8. It gets more recommendations than any other
candidates, appearing in the top 50 recommendations for close to half of the
230 000 voters.

Finally, we add this crafted set of responses (obtained from the point shown in Figure 4.8)
to the list of candidates and compute recommendations for each voter. We count, for all
candidates, the number of times they appear in the top R recommendations of a voter,
for R ∈ {1, . . . , 50} and show the results in Figure 4.9. The lower curve shows how many
times the median candidate appears in the top R recommendations, and the error bars
indicate the standard deviation. The second curve shows how many times a crafted profile
with simply the median answer to each question appears in the top R recommendations.
The third curve from the bottom shows the maximum number of times a real candidate
appears in the top R recommendations. The upper curve shows how many times our
crafted profile appears in the top R recommendations.

We see that our crafted profile appears significantly more often in the top recommendations
than any other candidate. For example, it appears more than 100 000 times in the top
50 recommendations, about twice as much as the best real candidate. As our dataset
consists of around 230 000 voters, this means that our crafted profile is recommended to
almost half of the voters. Although the effect of these recommendations on direct votes
has not been clearly determined [118], Ladner et al. [74] indicate that 67% of Smartvote
users state that Smartvote had an influence on their choice of party. This influence is
even more significant for swing voters [75] and for younger or less informed voters [55].
Thus, both parties and individual candidates would benefit from an increased number of
recommendations.
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Instead of trying to optimize the profile of a single candidate, a party could be interested
in jointly optimizing the answers of all of its members. This would allow the party to make
sure that it covers as well as possible the region of the ideological space that corresponds
to its political agenda. Indeed, if two of its candidates have similar profiles, they will
compete with each other when the voting recommendations are emitted. Instead, they
could try to distance themselves from each other and compete with representatives of
other parties. We leave for future work the study of this more general global positioning
problem.

4.5 Detecting Ideological Changes

We showed above how an unscrupulous candidate could create a profile that would
gather more recommendations than any other. This could result in the election of this
candidate, who would then have to vote daily in the parliament. However, in this case,
the votes this candidate would cast in the parliament might not be in accordance with
the opinion expressed by his crafted Smartvote responses. As all votes of the members
of the parliament are publicly disclosed, a concerned citizen could monitor legislators in
order to detect flip-floppers, i.e., candidates changing their opinion after they are elected.
We propose here a method for measuring the shift in opinion of candidates, between the
profile they advertised on Smartvote (or any other VAA) during an electoral campaign,
and their voting patterns in the parliament once they are elected. Note that our method
only quantifies opinion shifts. Of course, there are many contexts where politicians can
be reasonably expected to change opinions with time, and moderate opinion shifts need
not always to be interpreted as bad signals.

4.5.1 Predicting Parliament Votes from Smartvote Profiles

The first step towards detecting changes of opinion is to map a set of Smartvote responses
to votes in the parliament. To do so, we identify parliament votes that can be predicted
by Smartvote responses. Indeed, our intuition is that, as Smartvote responses are a good
indicator of a candidate’s political opinion, some votes can be accurately predicted from
a set of Smartvote responses. Therefore, we define the following learning problem: Given
the Smartvote profiles of all elected candidates, and their votes in the parliament on a
given issue, learn a model that predicts the vote vc ∈ {yes, no} of a new candidate c on
this issue from his Smartvote profile cc.

We train a linear classifier6 for each of the 2494 votes in the parliament dataset. For
each vote, we filter candidates to keep those that actually voted (some are sometimes

6We use logistic regression [43], implemented in Python with scikit-learn [89]. We also tried non-linear
methods such as gradient-boosted decision trees and found no improvement. We thus use a linear model
for simplicity and efficiency.
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Figure 4.10 – Cumulative distribution function of the predictability of par-
liament votes from Smartvote responses. For each issue in the parliament
dataset, we use the Smartvote profile of elected candidates to predict their
votes, and report the average accuracy over 10 folds, where 90% of the can-
didates are used for training and 10% for evaluation. We see that close to
50% of votes can be predicted with an accuracy higher than 95%, using only
the Smartvote profiles of legislators.

absent, or abstain) as learning samples. We evaluate the predictability of each vote by
computing the prediction accuracy of our linear classifier on 10 folds, where, for each
fold, the classifier is trained on 90% of the candidates and evaluated on the remaining
10%. We then compute the average accuracy on these 10 folds, and report the results in
Figure 4.10.

Figure 4.10 shows the cumulative distribution function of the prediction accuracy for
each vote, averaged over the 10 folds. We observe that the vast majority of votes in the
parliament can be predicted with a high accuracy from Smartvote profiles; more than
90% of votes can be predicted with an accuracy higher than 85%, and close to 50% of
the votes can be predicted with an accuracy higher than 95%.

4.5.2 Comparing Expected and Actual Votes

Now that we have a way to map Smartvote opinions to parliament votes, we can compute
the expected votes of legislators, based on their Smartvote profile, and compare them
with their actual votes. To do so, we first choose the 1000 most predictable votes, in
order to maximize the confidence in our predicted votes. This corresponds to the top
40% of votes, meaning that each of them can be predicted with an accuracy higher than
96% (see Figure 4.10).

We then use a procedure, similar to the one described in Section 4.5.1, for predicting
the expected votes of each candidate on these 1000 issues. For each candidate, we first
train one linear classifier for each issue, using the Smartvote profile and vote on this
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Figure 4.11 – Comparison of expected and actual votes of parliament mem-
bers. Each segment represents a legislator, and goes from his expected votes
(according to his Smartvote profile) to his actual votes. The median legislator
has only 0.3% of votes that are different than what can be predicted from
his advertised opinion. The largest difference is 3.75%. Interestingly, the
magnitudes of the shifts seem to be different for the three coalitions.

issue of all other elected candidates. Then, we use each classifier and the candidate’s
Smartvote profile to compute his expected votes on these issues, and we compare them
with his actual votes. To summarize the results, we compute the proportion of actual
votes that differ from the expected votes. This proportion corresponds to the shift in
opinion of the candidate, between his Smartvote profile and his actual voting behavior in
the parliament.

The 181 legislators voted on a median number of 906 issues. The median discrepancy
between the votes predicted from Smartvote profiles and the actual votes is only 0.3%.
This means that the median candidate votes coherently with his advertised Smartvote
opinion 99.7% of the time. The candidate with the largest discrepancy has 3.75% of
his votes in opposition to his advertised opinion; although this distance is an order of
magnitude larger than the median distance, it still means that 96 votes out of 100 are
coherent with what he advertised, which is a somewhat reassuring observation. A larger
distance could mean that he falsely advertised his opinion on Smartvote, or that he
“flip-flopped”, i.e., he changed his opinion significantly after being elected. However, it
can also be expected that legislators sometimes divert from their advertised positions,
for example to follow their party on a specific issue. Thus, interpreting such differences
between expected and actual votes should be done carefully.
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To visualize these opinion shifts, we show in Figure 4.11 the two-dimensional represen-
tation7 of the expected and actual votes of each councilor, computed as explained in
Section 4.3.1. Each candidate is represented as a segment, with one end corresponding
to his expected votes, and the other to his actual votes. The longer a segment, the
more significant the shift in opinion between his Smartvote profile and his votes in the
parliament. Interestingly, the magnitudes of the shifts seem to be different for the three
coalitions.

4.6 Related Work

Spatial approaches are often used to represent politicians or parties, most often using
one or two dimensions. Some studies use dimensionality-reduction techniques similar to
ours [56, 112, 124, 123]. However, to the best of our knowledge, we are the first to apply
it on datasets of this scale. Furthermore, we show how it can be used to design ideal
VAA profiles, and put them in contrast with parliamentary votes.

Hansen et al. [61] explore the cohesiveness of political parties using VAA data, by
measuring the agreement among party members. We propose a different approach that
enables us to measure the overlap between each pair of parties.

Many researchers studied roll calls in the U.S. Congress [93, 92, 34]. For instance, Poole
and Rosenthal [93] study voting patterns in Congress, and find that legislators can be
described in a space of low dimensionality. Based on spatial voting theory, Enelow and
Hinich [42] propose a method for predicting congressional votes. Their method relies only
on past congressional votes to make predictions. Although we study the predictability of
votes, we do not use our predictors to predict future votes. Instead, we propose a method
that permits mapping one space (the opinions expressed on a VAA) onto another (the
votes in the parliament), in order quantify opinion shifts.

Related to the votes prediction and the opinion shifts measurement that we propose in
Section 4.5, Gerrish and Blei [57] study the prediction of lawmakers’ position on a bill,
using the text of the bill. The authors use the resulting model to explore how lawmakers
deviate from their expected voting patterns. Finally, Poole [91] studies members of the
U.S. Congress and finds that they “adopt a consistent ideological position and maintain
it over time”.

7We restrict the parliament dataset to the 1000 most predictable votes, instead of all 2494 votes,
resulting in a projection slightly different than that shown in Figure 4.4.
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4.7 Summary

In this chapter, we study the opinion of citizens and politicians on various societal topics,
using Switzerland as our laboratory. We show that the data extracted from Smartvote,
a Swiss VAA, corroborates the left/right and liberal/conservative simplifications of the
ideological space that is often used: the sets of questions that correspond to these themes
capture a large portion of the differences of opinion, both for citizens and politicians. We
also notice that many political parties have a significant overlap with others, some having
up to 40% of their members closer to the median opinion of at least one other party.

To raise awareness about the potential misuse of VAAs, we describe how an unscrupulous
candidate could create a synthetic VAA profile, in order to gather a very large number
of voting recommendations. To hold a legislator accountable for his opinions expressed
on a VAA, we propose to combine VAA responses with votes cast in the parliament in
order to build a mapping between pre-electoral opinions and voting behaviors of elected
candidates. By comparing expected votes with actual votes, our technique enables us to
spot legislators that vote in contradiction to the opinions that they expressed on a VAA.

Overall, our work applies to any country where similar data is available, and it points
to some avenues created by open government initiatives that enable new data-mining
approaches to political and social science.
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5 How Will They Vote?

Ankh-Morpork had dallied with many forms of govern-
ment and had ended up with that form of democracy known
as One Man, One Vote. The Patrician was the Man; he had
the Vote.

Terry Pratchett

In order to promote transparency and accountability, as well as to stimulate citizen
awareness, an increasing number of governments across the globe are adopting open
government directives [76]. These result in the release of massive amounts of structured
data about multiple aspects of state affairs, politics, and governmental agencies in various
countries. As of 2015, the website Data Portals [4] references more than 420 such local,
regional and national datasets.

Among these datasets, the detailed outcomes of issue votes are published in many countries.
Such votes are direct expressions of the opinion of the people, on various issues such as
education, economy, and even ethics. In some cases, the detailed results are released at
a fine geographical level, along with the national outcome of these votes. This newly
available data gives an unprecedented view into the political landscape of a country. It
enables us to gain a deeper understanding of the different voting behaviors across regions,
and to investigate what makes regions similar, or dissimilar.

Of course, political parties are very interested in this information. Being able to identify
patterns in vote results, based on characteristics of the vote or the regions, would enable
them to better focus their campaigning efforts. The media also spend much of their
resources trying to predict the outcome of votes, both before and during the day of the
vote. Knowing whether a vote will be a narrow or clear win, and being able to identify
regions that are crucial in determining the national outcome, would enable media and
polling agencies to better focus their attention on.
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5.1 Problem: Vote Results Prediction

In this chapter, we study the voting behavior of small administrative regions in a country,
and the relationship between the local and the national results of votes. Taking Switzerland
as an example, we investigate, in Section 5.3, the voting patterns across municipalities
and their evolution over time. Then, we address the problem of predicting the outcome
of votes. We first show, in Section 5.4, that it is possible to identify individual regions
that have a high predictive power of the binary national outcome of a vote. However,
such a binary prediction is of limited use, especially because it does not tell how certain
the result will be and it requires obtaining the result of a specific region.

To overcome this requirement, we propose, in Section 5.5, to take a collaborative-filtering
approach and to model jointly the outcome of a vote across all regions, given side
information about the vote and the regions. Such a model enables us to predict the
outcome of a vote in all regions, based on a few observed results, and then to refine
the predictions as more results are made available throughout the day. Moreover, by
taking into account characteristics about the vote and the regions, the model is able to
make accurate predictions with only a few observed results. These regional predictions
can then be combined to predict the national outcome with high precision. We also
show, in Section 5.5.7, that the models are easily interpretable, enabling us to investigate
which regions are likely to vote the same and to identify the relationship between the
characteristics of regions and the correlation between their results.

5.2 Dataset

As mentioned above, we consider the case of Switzerland, as it has a very active political
system with easily available data. Swiss citizens vote on average eight times per year, on
various issues regarding military, finances, transportation, culture, integration of foreigners,
public health, etc. The results (i.e., the proportions of “yes”) are publicly available [47] for
each Swiss municipality1. In December 2014, there were 2352 municipalities in Switzerland.
Our dataset consists of the outcomes of the federal (i.e., nationwide) issue votes in each
municipality between January 1981 and December 2014. There were 281 such votes.

In addition to the vote results, we gather side information about both votes and municipal-
ities. For each vote, political parties publish voting recommendations, such as “in favor”,
“against”, or “no recommendation”. We obtain, for each vote, the voting recommendation
from the 13 main political parties in Switzerland2. For each municipality, we gather
25 features about its location, population, and electoral profile3. Table 5.1 lists the
municipality features and their main statistics.

1Municipalities are the smallest administrative regions in Switzerland.
2The voting recommendation are available on request at the Swiss Federal Statistics Office [5].
3All the features describing Swiss municipalities are available online [46].
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Feature Unit Min Max Mean Median

x meters 487 212.59 826 224.39 633 278.12 627 998.66
y meters 76 505.50 294 280.03 200 725.71 206 342.33
Elevation meters 196.00 1 960.00 607.49 521.00

Population count 12.00 380 777.00 3 419.26 1 333.00
Population density inhabitants/km2 0.80 11 866.48 389.49 157.83
Age 0-19 % 0.00 38.24 21.63 21.60
Age 20-64 % 33.33 80.00 61.09 61.17
Age 65+ % 4.76 66.67 17.28 16.81
Social aid % 0.00 11.45 1.71 1.27
Foreigners % 0.00 60.76 14.84 12.55
Jobs count 4.00 444 198.92 2 064.51 453.91

Election BDP % 0.00 82.15 7.35 4.84
Election CVP % 0.00 87.20 14.20 8.42
Election PEV % 0.00 24.13 2.56 1.89
Election FDP % 0.00 92.11 14.42 12.13
Election SP % 0.00 55.33 16.46 16.11
Election PST % 0.00 28.50 1.58 0.52
Election GL % 0.00 18.13 5.35 4.81
Election SVP % 0.00 100.00 30.45 30.08
Election Greens % 0.00 32.10 7.10 6.27
Election other right % 0.00 60.73 3.26 1.60

Speaks German 0 = No, 1 = Yes 0 1 0.64 1
Speaks French 0 = No, 1 = Yes 0 1 0.30 0
Speaks Italian 0 = No, 1 = Yes 0 1 0.06 0
Speaks Romansh 0 = No, 1 = Yes 0 1 0.03 0

Table 5.1 – Summary of the 25 features describing each Swiss municipality.
The x and y coordinates are defined in the Swiss coordinates system [44].
Election features show the proportion of votes for each party during the
national elections of 2011 (see Table 4.1 for more information about the main
Swiss political parties). The language features show which languages are
spoken in each region (some regions are multilingual).

5.2.1 Preprocessing

Administrative regions change over time. It is common to have fusions and divisions of
municipalities in Switzerland, and the total number of municipalities has been reduced
by more than 10% since 2000 [45]. This means that some of the current municipalities
did not exist at some point in the past, and thus have no explicit results for some past
votes. To make sure that all regions have a result for all votes, we could simply discard
all municipalities that did not exist at some point in time during the whole 34 years that
our dataset spans. However, this would result in about 7% of discarded regions. To have
as much data as possible, and to be able to make predictions about all regions that exist
today, we chose to interpolate missing results instead.
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To do so, we begin by constructing the history of each region. This history contains,
for each region d, the set of regions d′ that are related to it, either by fusion (d′ merged
with other regions and became d) or division (d′ was divided into smaller regions, one
of which being d). We use the list of all fusions and divisions, available from the Swiss
federal statistical office as a list of pairs (dold ⇒ dnew). The procedure for constructing
the regions’ history is described in Algorithm 2.

Algorithm 2: Construction of the history of all regions
Input: List of fusions and divisions of regions, as pairs (dold ⇒ dnew)

Output: History of each region, as a mapping dnew ⇒
{
d
(1)
old, d

(2)
old, . . .

}
for each region d do

history(d) = {}

for each change (dold ⇒ dnew) in chronological order do
history(dnew) = history(dnew) ∪ {dold} ∪ history(dold)

Using the history of all regions, we can now interpolate the missing results. We define
regions existing today as the set of current regions R. We want to have, for each region
d ∈ R, a result for each vote in our dataset, interpolated if needed.

For each vote n and region d, we use the true result of d if d existed at the time of n.
If not, we interpolate its result as follows: Using the history of d, we select the set of
regions Rn(d) = {d′ ∈ history(d) : d′ existed at the time of n} that are related to d and
have a result for n. We define the interpolated result of d as the average of the results
of regions in Rn(d), weighted by the number of ballot papers that each region collected.
This procedure is summarized in Algorithm 3.

Algorithm 3: Interpolation of the missing results of a vote
Input: Current regions R, history of all regions, outcome and ballot of vote n for

regions existing at the time of n
Output: Interpolated result of vote n in current regions that did not exist at the

time of n

for each current region d ∈ R do
if d did not exist at the time of n then

resultn(d) = 0
sum = 0
for each region d′ ∈ history(d) do

if d′ existed at the time of n then
resultn(d) = resultn(d) + ballotn(d′) · resultn(d′)
sum = sum + ballotn(d′)

resultn(d) = resultn(d) / sum
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We also standardize the features of votes and regions, such that they have zero mean and
unit variance.

5.3 Voting Patterns

We begin by taking a closer look at the voting patterns across the regions, and their
evolution over time. We consider the D × N matrix Y = (ydn)1≤d≤D,1≤n≤N , where
D = 2352, N = 281 and ydn ∈ [0, 1] is the outcome (proportion of “yes”) of vote n in
region d.

5.3.1 The Infamous “Röstigraben”

To identify the main voting patterns across regions, we use principal components analy-
sis [103, 106], similarly to our approach in Section 4.3. We center Y , compute its singular
value decomposition, and project Y onto its first two singular vectors to obtain Y ′,
a two-dimensional representation of the voting behavior of each region. We show the
resulting projection in Figure 5.1(a). In this figure, each municipality is represented by a
point whose shape and color indicates the language spoken by the majority.

Figure 5.1(a) shows two clear clusters, corresponding to the French-speaking regions
on one side, and the remaining regions on the other, separated by what Swiss people
humorously call the Röstigraben4. The gap between the two clusters reflects the difference
in opinion that often arises during federal votes in Switzerland, where the results of
French-speaking regions are significantly different than those of German-speaking regions.
Although the Italian-speaking regions are culturally closer to the French-speaking ones
(and are usually placed on the same side of the Röstigraben), in this projection their
voting patterns seem to be globally closer to those of German-speaking regions.

5.3.2 Geographical Patterns

To investigate the relationship between the geographical location of a municipality and
its voting behavior, we map each point of the two-dimensional space represented in
Figure 5.1(a) to a color, illustrated by the gradient in Figure 5.1(b). We then draw
the map of Switzerland in Figure 5.1(c), where each region is shown with the color
corresponding to its location in Figure 5.1(a). Thus, two regions with similar voting
behaviors have a similar color on the map5. Lakes are shown in dashed gray.

4Literally Rösti ditch, also called the hashbrown curtain. This term describes the cultural difference
between the German-speaking Switzerland, on one side, and the French-speaking part (sometimes together
with the Italian-speaking part) on the other.

5An interactive version of this map is available online, on the platform described in Appendix B.
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Lugano

(c) Geographical voting patterns

Figure 5.1 – Voting patterns of Swiss municipalities. We show in (a) the
projection of the results of each region onto the first two singular vectors of
the vote results matrix Y . The shape and color of each point indicates the
language spoken by the majority. To visualize the geographical distribution
of voting behaviors in (c), we color each municipality based on its location
in (a), using the color gradient shown in (b). The Röstigraben, correspond-
ing to the cultural difference between French-speaking and German-speaking
municipalities, is clearly visible from the difference in voting patterns.
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Again, the separation between the French and German-speaking parts is clearly visible.
Moreover, it is possible to identify different types of regions: Urban centers, such as the
greater areas of Geneva, Lausanne, Bern, and Zürich have relatively similar tints of green,
indicating that they share similar voting patterns, whereas rural areas in the German-
speaking part share a deep purple color. The French-speaking part of the mountainous
canton of Valais, located in the southwestern part of Switzerland, has its own unique
voting pattern, shown in light blue.

5.3.3 Changes over Time

The voting patterns illustrated in Figure 5.1 are the summary of 34 years of votes.
However, voting behaviors change over such long periods of time. The population of
municipalities grows, people move, and the societal attitudes on various subjects evolve.
To visualize the variations in the voting behavior of regions over time, we take subsets of
votes, and perform the same dimensionality reduction as described above.

For each window of 75 contiguous votes, we project the result of each municipality onto
the first two singular vectors of the corresponding subset of the columns of Y . We thus
obtain a two-dimensional representation of regions, for each window of 75 votes. As we
are more interested in the relative position of regions in the projected space than their
absolute location, we use the projection of the first 75 votes as a reference point, and
then we take the symmetry and rotation of the subsequent representations that minimize
the total displacement of regions.

We show in Figure 5.2 four snapshots of the voting behaviors of regions. Each snapshot
corresponds to 75 contiguous votes, spanning between 8 and 11 years and covering the
whole duration of the dataset. Although the Italian-speaking regions have voting patterns
that are globally similar to those of the German-speaking ones, as seen in Figure 5.1(a),
they change their behavior between snapshots (b) and (c): their more recent votes are
more similar to those of the French-speaking regions than the German-speaking ones.

Figure 5.2 shows snapshots of the voting patterns, during different time intervals. Instead,
we can look at the “trajectory” of specific municipalities over all snapshots, to visualize
how their relative behaviors changed over time. Figure 5.3 illustrates the evolution of
the voting patterns of four Swiss municipalities: Bern (the German-speaking capital),
Geneva (the largest French-speaking city), Lugano (the largest Italian-speaking city), and
Savièse (a rural French-speaking municipality from the canton of Valais). Globally, Bern
and Geneva have relatively stable voting patterns over time, with both their relative and
absolute positions changing little. Savièse has significantly evolved in its voting behavior:
It starts with an “extreme” position, corresponding to the more rural regions with low
population, and slowly moves to the center of the space, as its population grows over
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(a) Jun 14, 1981 – May 17, 1992 (b) Feb 16, 1992 – Feb 7, 1999

German Romansh French Italian

(c) Sep 27, 1998 – Jun 5, 2005 (d) Sep 26, 2004 – Sep 28, 2014

Figure 5.2 – Evolution of the voting behavior of regions over time. Each
snapshot takes 75 votes into account and shows the projection of their results
onto the first two singular vectors of the corresponding subset of the columns
of Y . Between snapshots (b) and (c), the Italian-speaking regions change
their voting behavior, from being closer to the German-speaking regions to
being closer to the French-speaking ones.
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Figure 5.3 – Evolution of the voting behavior of four Swiss municipalities, over
snapshots of 75 contiguous votes. Bern and Geneva, two of the largest cities,
globally maintain their (relatively similar) voting behaviors. Lugano, one of
the main Italian-speaking cities, distances itself over time from Geneva and
increasingly ressembles Savièse, a rural French-speaking municipality from
the canton of Valais.

time6. Its final voting behavior is similar to that of Lugano, which starts close to Geneva
but slowly distances itself. Figure 5.3 is a simple example, but it highlights the powerful
exploration and interpretation tool that such a visualization provides.

5.4 Predictions from a Single Municipality

We have seen in Section 5.3 that regions vary substantially in their voting patterns. One
question that arises from this observation is whether it is possible to find one region
whose voting behavior is representative of the global national outcomes. To answer this
question, we study in this section the predictability of the binary outcome of votes at the
federal level, using the outcome in a single municipality as unique feature.

We therefore define the following learning problem: Given the outcome ydn ∈ [0, 1] of the
nth vote in the dth region, can we predict its outcome on ∈ {yes, no} at the federal level?

6The population of Savièse nearly doubled between 1981 and 2014, with about 2700 registered voters
in 1981 and 5000 in 2014.
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Figure 5.4 – Cumulative distribution function of the accuracy of the predic-
tion of the outcome of votes at the federal level, given the outcome of a single
municipality. The accuracies are averaged over 10 cross-validation folds. 10%
of municipalities allow to predict vote results at the national level with an
accuracy higher than 90%.

We split our dataset of 281 votes by taking the first 80% (224 votes) as a training set,
and the remaining 20% (57 votes) as a test set. We train one binary classifier7 for each
municipality d ∈ {1, . . . , D}. The parameters of the classifiers are selected using 10-fold
cross-validation on the training set.

Figure 5.4 shows the cumulative distribution function of the accuracy of these D classifiers,
averaged over the 10 validation sets (i.e., over the 10 cross-validation folds). About 10%
of regions correspond to an accuracy higher than 90%, which means that knowing their
result enables us to predict the binary outcome at the national level with less than 10%
of mistakes. Moreover, some municipalities reach accuracies of more than 96% on the
validation set. The municipality reaching the highest average prediction accuracy on
the validation sets is Rüegsau, a village of 3000 inhabitants in the canton of Bern. The
classifier which uses the vote outcome in Rüegsau as a feature to predict the national
binary outcome obtains a prediction accuracy of 93% on the test set. This means that
out of the 57 votes of our test set, only 4 are incorrectly predicted by the classifier of
Rüegsau.

Having such a representative sample could be extremely useful to many: Polling institutes,
political parties and even news agencies would be able to target this municipality instead
of sampling the population at random, thus maximizing the utility of their opinion
surveys.

7We use a gradient-boosted decision tree [49, 50], implemented in Python using scikit-learn [89].
GBDTs are good candidates for this problem, as they naturally capture the thresholding that happens
when a proportion is converted to a binary outcome. Moreover, they give better results than simpler
methods such as logistic regression.
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5.5 Collaborative Prediction of Vote Results

Instead of predicting the binary national outcome of a vote using the result of one specific
municipality, a more useful model would enable us to jointly predict the outcome in all
regions for a given vote, having observed the result of any subset of the regions. By using
such a model, we would be able to predict the outcome of future votes in all regions at
once, and to take into account local results as they are released on the day of the vote
in order to refine these predictions. Moreover, the national outcome of a vote simply
being the aggregation of local results, these predictions could also be used to predict the
national result.

We observed, in Figure 5.1, that many municipalities have similar voting patterns. Some
of these similarities can be partially explained by the characteristics of the municipalities,
such as their spacial proximity, their demographic attributes, and their political orienta-
tions. In addition to similarities between regions, we also observe that some votes share
similar patterns of regional results. We show in Figure 5.5 two examples of such groups
of votes, in which (a) the French-speaking regions (and sometimes the Italian-speaking
regions) vote in opposition to the rest of the country, and (b) densely-populated regions
and rural regions vote differently. Other patterns, such as unanimous results, are also
very common.

To take into account these similarities between votes and between municipalities, we
view the problem as a collaborative-filtering problem [111] where each region expresses its
opinion toward all votes. We use a latent-factor model to capture the bi-clustering of
regions and votes [72, 100]. Moreover, to accurately predict when few regional results are
available, we incorporate several features about the regions and votes, which addresses
the cold-start problem [21]. These features not only improve predictions but also enable
us to interpret and understand voting behaviors.

As we will show in Section 5.5.5, it is difficult to properly choose the hyperparameters of
such a model. Taking a Bayesian approach enables us to properly set hyperparameters
and make use of uncertainty to obtain stable predictions.

5.5.1 Notation

As before, we denote by ydn the outcome of the nth vote in the dth region. We have
D = 2352 regions and N = 281 votes. We gather the outcomes of the nth vote into in
a D-dimensional vector yn and all outcomes into the D ×N matrix Y . For each vote
n, the national outcome ȳn is the average of the regional results yn, weighted by the
turnout in each region. We gather all national results into the N -dimensional vector ȳ.
We denote the 25 features of the dth region by xd and the 13 features of the nth votes by
wn (both sets of features are described in Section 5.2). Finally, we gather the features xd
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(a) “Röstigraben”: French-speaking versus others

(b) City versus countryside

Figure 5.5 – Example of some patterns of results (from 0% of “yes” in white to
100% in dark blue). Many votes show similar result patterns. For example,
we show votes where (a) the French-speaking regions (and sometimes the
Italian-speaking regions) vote in opposition to the rest of the country, and
(b) the densely-populated regions vote in opposition to the rural areas.
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Variable Dimension Description

D = 2352 1 Number of regions, indexed by d
N = 281 1 Number of votes, indexed by n

ydn 1 Outcome of the nth vote in the dth region
yn D Vector of the outcomes of the nth vote in all regions
Y D ×N Matrix of the outcomes of all votes in all regions

ȳn 1 National outcome of the nth vote
ȳ N Vector of the national outcomes of all votes

xd 25 Vector of the features of the dth region
X 25×D Matrix of the features of all regions

wn 13 Vector of the features of the nth vote
W 13×N Matrix of the features of all votes

Table 5.2 – Summary of the notation and the dataset sizes.

of all regions into the 25×D matrix X and the features wn of all votes into the 13×N
matrix W .

Our dataset is thus D = {Y , ȳ,X,W }. Table 5.2 summarizes the notation and the
dataset sizes.

5.5.2 Goals

We are interested in predicting the outcome of a new vote with feature vector w? in all
regions. Moreover, we would like to make these predictions in an online manner, i.e., to
refine the predictions as more regional results are made available.

Suppose that, at a certain time t on the day of the vote, we have observed its outcome
in Dt < D regions. Denote the set of observed regions by Ot = {d1, d2, . . . , dDt} (the
ith observed outcome was that of region di). Denote the corresponding Dt-dimensional
vector of outcomes by yOt,?.

At all times t and given D, w?, and yOt,?, our goal is thus to make the following two
predictions:

1. predict the outcome yd? in all regions d /∈ Ot,

2. predict the national outcome ȳ?.

In addition, we are interested in explaining and interpreting the reasons behind the
predictions.
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5.5.3 Model

A popular approach to model collaborative data such as ours is to use matrix factorization,
where we assume that Y can be predicted using a low-rank matrix. As mentioned above,
this low-rank model can be combined with a regression model to address the cold-start
problem. We take a similar approach. We model the “preferences” zdn of the dth region for
the nth vote using an additive model with four components (we describe each component
in detail below):

zdn = µn︸︷︷︸
bias

+ fn(xd)︸ ︷︷ ︸
regression using
region features

+ fd(wn)︸ ︷︷ ︸
regression using
vote features

+ vTd un,︸ ︷︷ ︸
matrix

factorization

(5.1)

where µn ∈ is a bias, fn : R25 → R and fd : R13 → R are regression functions, and
vd ∈ RL and un ∈ RL are latent factors. A benefit of such a model is that we can obtain
many specialized models by adding/removing components. For our analysis, this proves
to be useful as it enables us to establish the significance of individual components. Below,
we first describe each component in details and then list the combinations we use in our
experiments.

Bias

The first component µn is a bias term for each vote n. We could also add a bias term µd
for each region d and a global bias µ, although in our experiments these do not make any
difference.

Regression using Region Features

The second component fn(xd) is a regression term that uses region features. We use two
types of regression models. The first type is a linear regression model:

fn(xd) = βTnxd, (5.2)

where βn is a 25-dimensional weight vector associated to each vote n. We gather all
weight vectors into the 25×N vote weights matrix B. We assume that each βn is sampled
independently from a normal distribution with precision parameter λβ > 0:

βn ∼ N (0, λ−1β I),

where I is the identity matrix of the required dimension.

The second type of model is based on a Gaussian Process (GP) [97]. Here, each fn is
sampled independently from a GP with mean function m(·) and covariance function
k(·, ·):

fn(xd) ∼ GP(m(xd), k(xd,xd′) ).
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We use a zero mean function and a squared-exponential (SE) covariance function with
two hyperparameters σs ∈ R and l ∈ R25:

k(x,x′) = σ2s exp

(
−1

2
(x− x′)Tdiag(l2)−1(x− x′)

)
,

where diag(l) is the diagonal matrix constructed from the vector l.

Regression using Vote Features

The third component fd(wn) of Equation 5.1 is a regression term that uses vote features
and is defined similarly to the model described in Equation 5.2:

fd(wn) = γTd wn,

where γd is a 13-dimensional weight vector associated to each region d. Again, we gather
all weight vectors into the 13×D region weights matrix Γ . These weights also have a
Gaussian prior, with associated precision parameter λγ > 0:

γd ∼ N (0, λ−1γ I).

We do not include a GP version of this component, because it gives similar results in
our experiments but renders computations in the combined model significantly more
complicated.

Matrix Factorization

The fourth and last component of Equation 5.1 is a matrix-factorization model. The
latent features vd are associated with the dth region and un are those associated with the
nth vote. These latent features are vectors of length L to which we associate Gaussian
priors, with precision parameter λv > 0 for vd and λu > 0 for un:

vd ∼ N (0, λ−1v I),

un ∼ N (0, λ−1u I).

We gather the latent features of regions into the L×D matrix V and those of votes into
the L×N matrix U .

Observation Noise

Finally, given the preference zdn of the dth region for the nth vote, we model the
corresponding outcome as:

ydn = zdn + εdn,

where εdn is the observation noise.
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For each vote and each region, the noise is drawn i.i.d. from a Gaussian prior:

εdn ∼ N (0, σ2o),

where σ2o is the noise variance.

This is not an ideal choice, as ydn lies in the interval [0, 1], however this choice does lead
to simple inference algorithms. It is straightforward to use a different likelihood function
by using more sophisticated inference methods such expectation-propagation or sampling
methods [97].

5.5.4 Models and Inference Methods

We now summarize the models that we use in the remainder of this section. The purpose
of our comparison is to demonstrate that Bayesian methods works well in the context
of vote results prediction for two reasons. First, during online predictions, a Bayesian
method takes the uncertainty into account and combines the components of Equation 5.1
appropriately to obtain accurate predictions. Second, during offline learning, a Bayesian
approach enables us to find good hyperparameter values using the automatic relevance
determination (ARD) framework [97, Section 5.1]. This approach, as we will show,
generalizes much better than non-Bayesian methods such as cross-validation (CV).

We compare a variety of models to show results in favor of the above arguments. The
complete list of the models we use in our experiments is given in Table 5.3. We describe
below each model in detail.

The first model BIAS is our baseline and consists only of the bias term. For the Gaussian
likelihood, µn is simply the sample mean of the vector yn. All of our models include the
bias term.

The next three models are linear regression models involving a combination of fn(xd)

using region features and fd(wn) using vote features. We fit LIN(r) and LIN(v) using
least-squares (LS).

The LIN(r) + LIN(v) model simply combines regression terms on vote and on region
features:

znd = µn + βTnxd + γTd wn.

We find the regression weights B and Γ by minimizing the following objective function:

f(B,Γ ) =
1

2

∑
d,n

(ydn − βTnxd − γTd wn)2 +
1

2
λβ
∑
n

βTnβn +
1

2
λγ
∑
d

γTd γd.

86



5.5. Collaborative Prediction of Vote Results

Name Description Inference Hyperparam. Learning

BIAS Bias term only LS - -
LIN(r) Linear regression using re-

gion features
LS λβ CV

LIN(v) Linear regression using vote
features

LS λγ CV

LIN(r) + LIN(v) Linear regression using re-
gion and vote features

ALS {λβ , λγ} CV

GP(r) GP regression using region
features

Bayes {σ2
o , σ

2
s , l} ARD

MF Matrix factorization ALS {λu, λv} CV
MF + LIN(r) Matrix factorization with lin-

ear regression using region
features

ALS {λu, λv, λβ} CV

MF + GP(r) Matrix factorization with GP
regression using region fea-
tures

Bayes {σ2
o , σ

2
s , l} ARD

MF + GP(r) + LIN(v) Matrix factorization with GP
regression using region fea-
tures and linear regression us-
ing vote features

Bayes {σ2
o , σ

2
s , l, λγ} ARD

Table 5.3 – Summary of the models we compare and the learning and in-
ference methods we use. We give a short description of all models and list
their hyperparameters. LS stands for least-squares, ALS for alternating least-
squares, CV for cross-validation, Bayes for Bayesian inference, and ARD for
automatic relevance determination.

If we consider Γ as fixed, we can minimize the above objective function with respect to
each βn independently:

f(βn) =
1

2
(y′n −XTβn)T (y′n −XTβn) +

1

2
λββ

T
nβn, (5.3)

where y′n = yn −Γ Twn. Equation 5.3 is the objective function of ridge regression, whose
solution is

βn = (XXT + λβI)−1Xy′n.

With Γ fixed, we can thus find each βn using the above equation. Then, we fix B and
apply the same procedure to find each γd, alternating the two until convergence. We
summarize the resulting procedure in Algorithm 4.

Intuitively, we expect LIN(r)+LIN(v) to be better than either LIN(r) or LIN(v). However,
we will show that, if we use cross-validation to set the hyperparameters, the combination
does not perform better than individual models.
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Algorithm 4: Alternating least-squares algorithm for the LIN(r) + LIN(v) model
Input: Vote outcomes Y , region features X, vote features W , weight precision

parameters λβ and λγ
Output: Weight matrices B and Γ

Initialize Γ
while convergence criterion is not met do

B =
(
XXT + λβI

)−1 (
X
(
Y − Γ TW

))
Γ =

(
WW T + λγI

)−1 (
W
(
Y T −BTX

))

The next model GP(r) is a GP regression model that uses region features. We use the
standard Bayesian method for inference with GPs. We learn the hyperparameters by
maximizing the marginal likelihood [97, Section 5.4].

The next four models combine regression models with the matrix-factorization model.
The first model MF does not have any regression terms hence is expected to gives worse
predictions for new votes. It expresses the outcome of a vote as the product of two latent
factors:

znd = µn + vTd un.

Similarly to LIN(r) + LIN(v), we find the parameters of MF by minimizing the following
objective function [126]:

f(U ,V ) =
1

2

∑
d,n

(ydn − vTd un)2 +
1

2
λu
∑
n

uTnun +
1

2
λv
∑
d

vTd vd.

If we consider V as fixed, we can minimize the above objective function with respect to
each un independently:

f(un) =
1

2
(yn − V Tun)T (yn − V Tun) +

1

2
λuu

T
nun. (5.4)

Again, Equation 5.4 is the objective function of ridge regression, whose solution is

un = (V V T + λuI)−1V yn.

With V fixed, we can thus find each un using the above equation. Then, we fix U and
apply the same procedure to find each vd, alternating the two until convergence. We
summarize the resulting procedure in Algorithm 5.

The second model MF + LIN(r) is an extension of MF, obtained by adding LIN(r). We
train it using a combination of the two ALS methods presented above, where we append
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Algorithm 5: Alternating least-squares algorithm for the MF model
Input: Vote outcomes Y , latent features precision parameters λu and λv
Output: Latent feature matrices V and U

Initialize V
while convergence criterion is not met do

U =
(
V V T + λuI

)−1
V Y

V =
(
UUT + λvI

)−1
UY T

the explicit features of regions to their latent features. This model is expected to perform
better than MF, but again we will show that CV leads to a sub-optimal performance.

LIN(r) is replaced with GP(r) in the third model, in order to enable the use of non-linear
kernels. For inference, we will use a Bayesian method that works directly on zdn and show
that this model does not suffer from the problem of hyperparameters setting that affects
MF + LIN(r). This is made possible by adapting the EM algorithm of Khan et al. [68]
to select the hyperparameters using ARD. Most importantly, this method automatically
chooses a good value for the hyperparameter σs in order to combine the MF and GP(r)
terms optimally. It thus automatically finds the proper combination of the MF and GP(r)
terms. We give the outline of this method in Algorithm 6.

The fourth model adds the component LIN(v) to address the cold-start problem of
new votes. However, we cannot easily integrate this component into the EM algorithm
presented above. Thus, we first remove its contribution from Y and then apply the EM
algorithm on the remainder. As we will show, this model obtains the best performance of
all the models, while remaining computationally simple.

Hyperparameter Learning

We keep the last 50 votes of our dataset as the test set and train our models on the first
231 votes. We implement all our models using Matlab.

For the non-Bayesian models, we use 10-fold cross validation to set the hyperparameters
and we monitor the validation root-mean-square error (RMSE) to test the convergence.
For each fold, we select 10% of the outcomes as our validation data and use the rest
to train the model. This means that, on average, we observe the results of 90% of the
regions for each vote of the training set, and we predict the outcome of the remaining
10% of regions. The models are thus trained for weak generalization, as opposed to strong
generalization. This is not optimal, as it means that the hyperparameters selected by
this procedure will give the best results when we observe many outcomes for a vote, but
not necessarily with only a few observations.
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Algorithm 6: EM algorithm for the MF + GP(r) model
Input: Vote outcomes Y , region features X
Output: Latent feature matrix V

Initialize V , σ2s ,θ = {σ2o , l}
while convergence criterion is not met do

// Initialization
Compute the covariance matrix K using X and θ
Compute its Cholesky L = chol(K)
Let Σ = V TV + σ2sK
Initialize C = 

// E step
for each vote n do

E(tn) = Σ(Σ + σ2oI)−1yn
cov(tn) = Σ −Σ(Σ + σ2oI)−1Σ
C = C + 1

N

(
cov(tn) + E(tn)E(tn)T

)
Let C̃ = L−1CL−T

Compute R, the matrix of eigenvectors of C̃, and Λ, the corresponding
diagonal matrix of eigenvalues

// M step

σ2s = Tr(R)−Tr(Λ)
D−L

V = LR(Λ− σ2sI)
1
2

Update Σ = V TV + σ2sK
Find θ maximizing the likelihood of yn ∼ GP (0,Σ + σ2oI) for all n

We could repeat this procedure for several percentage of observed results, e.g., with only
5% of observed result for each vote. Our goal however is to have a single model that is
able to make predictions with any number of observed results. We thus choose to train
the ALS models with almost all the results observed, so that they have enough data to
learn the global patterns of results. We show in Table 5.4 the hyperparameter values
selected using 10-fold cross-validation for the non-Bayesian methods.

For the Bayesian models, we select the hyperparameters by maximizing the marginal
likelihood [97, Section 5.4]. We can thus use all of the 231 train votes and do not need to
use cross-validation8. We rely on the GPML toolbox [96] for the GP computations.

We use L = 25 as the dimension of the latent features of all models that have a MF
component, as we empirically found that higher values do not increase the performances
but result in longer training and evaluation times.

8As the hyperparameter of the LIN(v) component of MF+GP(r)+ LIN(v) is not automatically set
by the EM algorithm, we set it to λγ = 200. We empirically found that this value is small enough to
take advantage of the vote features for early predictions, while not damaging the end performances.
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Model λu λv λβ λγ

LIN(r) — — 34 —
LIN(v) — — — 32
LIN(r) + LIN(v) — — 36 80

MF 0.03 31 — —
MF + LIN(r) (CV) 0.08 28 100 —
MF + LIN(r) (hand) 0.03 31 34 —

Table 5.4 – Hyperparameters selected for each of the non-Bayesian models,
using 10-fold cross validation. We also show the hyperparameters of the
hand-tuned version of MF+ LIN(r) shown in Figure 5.7, that are simply the
hyperparameters found by CV for its individual components.

5.5.5 Results

Our goal is to estimate the accuracy of the online predictions. We thus proceed as follows.
First, we pick a random reveal order, which specifies the order in which we observe the
results of 90% of the regions (2116). Then, we define the last 10% of these regions (236)
as the test regions, on which we will evaluate the error. We report the RMSE on the last
10% of regions, averaged over the 50 test votes and 500 random reveal orders. As the
error over the 50 test votes and 500 orders does not vary significantly, we do not show
error bars on the figures below.

We first show in Figure 5.6 the results of the baseline, BIAS, and of the models that only
use linear regression. As the standard error of our results is small, we do not show error
bars on the figures presented below. All the difference in performances are significant.

LIN(v) gets the best early performances, meaning that the voting recommendations of
parties are useful when few observations are available. With many observed regions,
however, LIN(v) quickly reaches its limit. LIN(r) starts with performances similar to
those of BIAS and worse than those of LIN(v), but quickly outperforms both BIAS and
LIN(v). LIN(r) + LIN(v) gets a slight advantage over LIN(r) by taking into account the
voting recommendations, but is not able to reach the same early performance as LIN(v),
as the hyperparameters selected by CV tend to overpenalize the component that uses
vote features.

The same problem occurs with MF + LIN(r), as shown in Figure 5.7. First, we see in
this figure that MF needs a few hundred observed regions before it can get performances
better than LIN(r), as it needs to properly estimate the latent features of the new vote.
By combining the MF and LIN(r) components, we obtain performances better than with
MF only, but the hyperparameters obtained by CV again do not result in performances
matching those of the individual models at all time.
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Figure 5.6 – Results of the BIAS, LIN(r), LIN(v), and LIN(r)+LIN(v) models.
We show the RMSE on the predicted result of the last 10% of regions, aver-
aged over 500 random reveal orders and 50 test votes. While LIN(r)+LIN(v)
achieves the best performance with many observed regions, its early perfor-
mances do not match those of LIN(v).
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Figure 5.7 – Results of the LIN(r), MF, and MF + LIN(r) models. We show
the RMSE on the predicted result of the last 10% of regions, averaged over
500 random reveal orders and 50 test votes. Similar to Figure 5.6, the hyper-
parameters selected by CV for MF + LIN(r) do not result in performances
matching those of the individual models with all numbers of observed re-
gions. By hand-tuning the hyperparameters, however, we are able to obtain
a model that has good performances all along, suggesting that there is room
for improvement over CV.
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Figure 5.8 – Results of the MF+LIN(r) and MF+GP(r) models. We show the
RMSE on the predicted result of the last 10% of regions, averaged over 500
random reveal orders and 50 test votes. The Bayesian model MF+GP(r) gets
better performances with few observed regions than both the cross-validated
and hand-tuned MF + LIN(r) models, even with a simple linear kernel.
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Figure 5.9 – Results of the LIN(v), MF + GP(r), and MF + GP(r) + LIN(v)
models. We show the RMSE on the predicted result of the last 10% of regions,
averaged over 500 random reveal orders and 50 test votes. MF + GP(r) +
LIN(v) is able to properly combine the LIN(v) component with MF + GP(r)
to obtain both good early performances and good results with many observed
regions.
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However, by hand-tuning these parameters (using the parameter values shown in Table 5.4),
we obtain a model that matches the early results of LIN(r) and gets performances better
than MF with many observed regions. This means that there is still room for improvement
over the model obtained with CV.

We show in Figure 5.8 that the solution to this problem is to use a Bayesian model.
Indeed, the MF+GP(r) model is able to beat both the cross-validated and the hand-tuned
versions of MF + LIN(r). To make sure that the improved performance does not come
from the non-linearity of the SE kernel of the GP(r) component, we also show a variant of
the MF+GP(r) that uses a linear isotropic kernel, which also beats the two non-Bayesian
models.

Finally, we show in Figure 5.9 that adding the LIN(v) component to MF+GP(r) enables
us to obtain the same early performances as those of LIN(v), completing the model. The
final combination MF + GP(r) + LIN(v) thus obtains the best overall performances.

5.5.6 National Results Prediction

We can use the models presented above to predict the national result of a vote. To do so,
we first predict the result in all unobserved regions, using the result of those observed.
Then, we simply compute the average of the results of all regions (observed and predicted),
weighted by their population. To achieve the most accurate predictions of the national
result, we should use the turnout in each region as the weights, instead of their population.
However, we do not have access to this information on the day of the vote, hence cannot
use it for the prediction.

Similarly to the results presented above, we show in Figure 5.10 the absolute error on the
national result, averaged over 50 test votes and 500 random reveal orders. The difference
in performance between MF + GP(r) and MF + GP(r) + LIN(v) is smaller than when
predicting individual regions. They can both predict the national outcome of a vote with
an absolute error smaller than 1%, after having observed the result of only 50 regions.

As we show in Figure 5.11, the national outcome of the votes in our dataset are very
diverse, spanning nearly the entire interval of possible results. To investigate whether
votes whose outcome is close to 50% have a larger error than others, we show in
Figure 5.12 the relationship between the true outcome of votes and the error made by the
MF + GP(r) + LIN(v) model. We first group the 50 test votes by their national result
into eight bins, each 10% wide. We then consider these bins separately, and show—for
each bin—the distribution of the RMSE on the national result with 50 observed regions,
over 500 random reveal orders. We see that there is no systematic relationship between
the outcome of a vote and the error made by MF + GP(r) + LIN(v), with very similar
distribution of errors over all bins. Therefore, our model is not biased towards any
particular type of vote and can predict all votes equally well.
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Figure 5.10 – Results of the national prediction for selected models. We show
the absolute error of the predicted national result, averaged over 500 random
reveal orders and 50 test votes. Both MF+GP(r) and MF+GP(r)+ LIN(v)
are able to predict the national outcome of a vote within 1% using the results
of only 50 municipalities.
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Figure 5.11 – Distribution of the national results of the 281 votes in our
dataset. The national results span nearly the whole range of possible results
and are not biased towards the extremes.
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Figure 5.12 – Distribution of the absolute error of national predictions with
respect to the true national outcome of the vote. We group the 50 test votes
by their national result into eight bins. For each bin (shown as columns), we
show the distribution of the absolute errors made by the MF+GP(r)+LIN(v)
model with 50 observed results, over 500 random reveal orders for each vote
of the bin. There is no systematic relationship between the national result
and the errors made by the model.

Finally, we compare the accuracy of the models when predicting the binary outcome
of a vote, i.e., whether it is accepted or not. To do so, we simply predict the national
result as explained above, and then convert this predicted to a binary outcome. We
show in Figure 5.13 the accuracy of these predictions for several models. With binary
predictions, we see that the models with the LIN(v) component get a slight advantage
when observing only a few regions, similar to what we observed in Figure 5.9. For example,
MF + GP(r) + LIN(v) obtains an accuracy of 99% with just 100 observed regions. We
see a drop in accuracy with many observed regions, which could result from using the
population of regions instead of the true turnout when computing the national result.

5.5.7 Model Interpretation

As we already mentioned, one of the advantages of the models presented in this section is
that they are easily interpretable. This means that political scientists, for example, could
use such models to study the voting behavior of a country and verify the effect of some
characteristics of the regions.

To illustrate the interpretability of these models, we show in Figure 5.14 the relative
importance of the features of the regions, as learned by the MF + GP(r) + LIN(v) model.
These weights can be directly obtained from l, one of the hyperparameters of the GP(r)
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Figure 5.13 – Accuracy of the national binary predictions for selected models.
We show the proportion of the national binary outcomes that are correctly
predicted, over 500 random reveal orders and 50 test votes. MF + GP(r) +
LIN(v) obtains an accuracy of 99% with just 100 observed regions.

component. We see that this component mostly explains the correlation between the
results of two regions using their geographical proximity, and then their election results,
i.e., their political orientations.

To explore further the correlation between regions, we show in Figure 5.15 a map
of Switzerland with its cantons outlined. On this map, we draw a line between two
municipalities if their correlation according to the MF + GP(r) + LIN(v) model is higher
than 0.8. Again, such a map could lead to interesting interpretations. For example,
we see that the Zürich area, in the North, is heavily clustered. We also clearly see a
separation between the French-speaking and the German-speaking parts of the canton of
Valais. This difference of voting behaviors in the canton of Valais could already be seen
in Figure 5.1.

5.6 Related Work

To the best of our knowledge, we are the first to investigate this dataset of issue votes
and to make a large-scale study of the voting behaviors in a country, at such a fine
geographical level. While issue votes have not been extensively studied, there is a large
body of work that studies elections [98, 67, 54]. Similar to the analysis presented in
Section 5.3, Agnew [22] investigates the geographical voting patterns of Italy, in order to
assess the homogeneity of the country.
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Figure 5.14 – Relative importance of the region features learned by the GP(r)
component of the MF+GP(r)+LIN(v) model. We see that most of the correla-
tion between two municipalities is explained by their geographical proximity,
with more weight given to the X-axis as it also partially encodes the language
dimension (a large distance on the X axis usually implies different languages).

Armstrong and Graefe [24] use biographical information about candidates to predict U.S.
election results. Recently, several studies have focused on Twitter data to predict the
outcome of elections, from Germany [115] to the Netherlands [101] and Singapore [104].
However, some researchers (see e.g., Gayo [53]) have warned against relying only on tweets
to predict election results, arguing that the data is inherently biased and that missing
signals could be more important than observed ones.

The models we introduce in Section 5.5 are not new. Matrix factorization and regression
have been applied in similar collaborative settings, both individually [80, 126, 100] and
combined with each other [21, 110]. However, we believe we are the first to apply such
models to the problem of predicting the outcome of issue votes.

5.7 Summary

In this chapter, we introduce several applications of a dataset of issue votes. We first use
this dataset to study the voting behavior of Swiss municipalities, and its evolution over
time. We show that simple dimensionality-reduction techniques enable us to highlight
well-known characteristics of the political landscape of Switzerland, such as the difference
in voting behavior between the French-speaking and the German-speaking regions.
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Figure 5.15 – Visualization of the correlation between the results of municipal-
ities captured by the MF + GP(r) + LIN(v) model. We show a link between
two regions if their correlation is larger than 0.8, and add the boundaries
of the cantons to have a frame of reference. There are clusters that corre-
spond to cantons, but we also see many correlated regions around Zürich,
in the North. Interestingly, we can clearly see the separation between the
French-speaking and the German-speaking parts of the canton of Valais, in
the southwestern part of the country.

We then introduce the problem of predicting the outcome of a vote. Such a prediction
could be useful to the media, polling agencies, and the political actors of the country. We
first show that it is possible to identify individual regions that have a high predictive
power of the binary national outcome.

We then reformulate the vote prediction problem into a more general setting, where we
jointly predict the outcome in all regions, given a few observed results. We take a principled
approach and show that combining a matrix-factorization component with regression
terms that use features about both the regions and the votes enables us to predict vote
results with a high accuracy. Moreover, we demonstrate that Bayesian methods are
superior to non-Bayesian ones for this application, with proper hyperparameter setting
leading to better performances. Finally, we illustrate the interpretability of the resulting
model with two simple examples.
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6 Conclusion

Getting an education was a bit like a communicable
sexual disease. It made you unsuitable for a lot of jobs and
then you had the urge to pass it on.

Terry Pratchett

In this thesis, we showed that there is a great potential for innovation at the intersection
of computer science and fields such as social science, economics, and political science.
Nowadays, these fields generate large amounts of data, that computer scientists are
sometimes better equipped to deal with than most other researchers. We demonstrated
that the proper application of techniques from the data-mining and machine-learning
communities enables us to bring significant contributions to practical problems. In
particular, we showed that combining models and relevant datasets is key to the quality
and usefulness of the results we obtain.

In Chapter 2, we presented our work on human-mobility prediction. We described our
participation to the Nokia Mobile Data Challenge, that enabled us to win the Next-Place
Prediction Task. The reasons for our winning are twofold: First, we identified non-
stationarity as one of the key characteristics of the data that rendered the task difficult,
and implemented a home-change detection algorithm for dealing with non-stationary
users. Second, we developed three different types of predictors, that obtain different
results for the same users but have globally similar performances, and we combined them
by taking this diversity into account. The combined predictions all outperformed the
submissions of other competitors in the challenge.

In Chapter 3, we introduced a novel dataset of crowdfunding campaigns that we extracted
from Kickstarter. We showed that using information about the money pledged to
campaigns is sufficient to predict accurately after a couple of days if the campaigns are
going to reach their funding goal or not. However, this information does not enable
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us to distinguish properly, after a few hours, the campaigns that are going to succeed
from those that are likely to fail. By adding data extracted from the social network of
Kickstarter and from Twitter, and by combining the resulting models, we were able to
significantly improve early predictions. In particular, predictions made by the combined
model on average four hours after the beginning of a campaign are 4% more accurate.
We made the dataset available to the scientific community and built an online platform
(described in Appendix A) to make the predictions available to the public.

In Chapter 4, we studied the ideology of the citizens and the politicians of Switzerland.
Using data extracted from a voting advice application, we showed that the traditional
left-/right-wing and liberal/conservative views of the political system are indeed the most
efficient two-dimensional representations of political opinions. In order to raise awareness
about the potential misuse of such data, we introduced a method for “abusing” voting
advice applications: We crafted a fake candidate profile that would have obtained twice as
many voting recommendations as any other real candidate. We also proposed a technique
for monitoring elected politicians, by combining their pre-electoral opinions with the
votes that they cast once elected, in order to detect potential changes of opinion after the
elections.

Finally, in Chapter 5, we presented a novel dataset of issue votes. We showed that such
publicly available data can be used to automatically uncover typical patterns in the
voting behaviors of small geographical regions. Moreover, we identified regions that have
a high predictive power of the binary national outcome of votes. We then showed in a
principled way that we obtain accurate predictions of the outcome of votes in all regions
by combining matrix factorization with regression using features about both votes and
regions. We also demonstrated how taking a Bayesian approach enabled us to properly
choose the hyperparameters of our models, and how the resulting models could lead to
useful interpretations.

On the Need for Collaboration

As we mentioned several times, the problems we solved in this thesis have their roots in
fields quite far from computer science, such as social science and economics. As computer
scientists, we are most of the time better equipped to deal with the data generated by
these fields: The data-mining and machine-learning communities have produced numerous
techniques to process, analyze, and predict quantities extracted from these datasets. One
problem remains, however: we usually lack the deep understanding of these fields that is
required to go beyond the sometimes simplistic interpretations presented in this thesis.
We thus need to complete the journey: After having looked in these fields for problems
to solve, we must go back there with our solutions. Collaborating with political scientists,
for example, is the logical next step after the analysis presented in Chapters 4 and 5.
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Automated Machine Learning

There are only a few of us, computer scientists, but so many of them, researchers from
political science, biology, social science, history, etc. It is thus not sustainable to hope
that one of us will be here for each of them, to help them make sense of their data
and extract the information they need. The recent developments in automated machine
learning [114, 48] are in our opinion a good solution to this problem. The goal of this
emerging discipline is to “take the human expert out of the loop” [2] and to design
machine-learning frameworks that are directly useable by end users, i.e., the people
that understand the data. Such frameworks would enable researchers from other fields
to directly use data-mining and machine-learning techniques on their dataset, without
needing our intervention.

Keeping the Users in the Loop

The automated machine learning effort is a step in the right direction: It puts the outcome
of the research of computer scientists back into the hands of people, for them to use. This
is the reason why we built the two websites described in Appendices A and B: to make
it possible for regular people to use the outcome of our research. While we understand
that it is not always possible, and that theoretical research is sometimes hard to apply
in practice, we strongly believe that all researchers should take the extra steps needed
to produce useable and understandable results. This requires of course some additional
efforts that are sometimes hard to justify in the competitive world of scientific research,
but we are deeply convinced that they are worth the investment.
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A Sidekick: Real-Time Success Predic-
tion of Kickstarter Campaigns

To make the research presented in Chapter 3 available to the public, we developed
Sidekick [13], a website showing real-time success predictions of Kickstarter campaigns.

Live Campaigns

The data collected through the process described in Section 3.2 is directly available on
Sidekick. We show all live campaigns with their characteristics (category, funding goal,
etc.), current status (number of backers and amount of pledged money), and predicted
probability of success. The predictions are obtained using the combined model described
in Section 3.4. Figure A.1 shows the home page of Sidekick, which lists campaigns that
are close to their end. Visitors can search, filter, and sort campaigns, based on their
attributes.

Campaign Page

Each live campaign also has a dedicated page, with more detailed information. We show
on this page the evolution of pledges over time, as well as the history of the predictions
the model made for this campaign.

Figure A.2 shows an example of a campaign page. We see that the probability of success
went from close to 0 to nearly 100% after roughly one third of the campaign. While this
campaign only has two days left and still needs to raise another 30% of its goal, the
algorithm gives it a success probability of 84%.
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Appendix A. Sidekick: Real-Time Success Prediction of Kickstarter
Campaigns

Figure A.1 – Home page of Sidekick, the platform showing real-time suc-
cess predictions of Kickstarter campaigns. It shows live campaigns that are
close to their end, with their current status and the corresponding predicted
probability of success.

Figure A.2 – Example of a page dedicated to a campaign. It shows some
information about the campaign, the evolution of its pledges over time, as
well as the evolution of the predicted probability of success.
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B Predikon: Visualizing Vote Results
and Voting Patterns

To share some of the results of our exploration of political data, we developed Predikon [10],
a website enabling people to visualize the result of issue votes in Switzerland, as well as
the voting patterns presented in Section 5.3.

Data

We collect the outcome of votes directly on the website of the Swiss Federal Statistical
Office [47]. We show municipalities as they currently exist, and interpolate the past results
of those that are the outcome of a fusion or a division of municipalities, as explained in
Section 5.2.1.

In addition to the outcome of each vote, we display some information about each munici-
pality. This information was extracted from the Wikipedia page of the municipalities, as
well as from municipality portraits published by the Swiss Federal Statistical Office [46].

Implementation

The back end of the website is implemented using Python and the Flask microframework [6].
The front end of the website is implemented using HTML5 and Javascript. All the
interactive visualizations use the D3.js library [3].

Vote Results

The result of all Swiss issue votes can be visualized, from 1848 to today. Votes that
took place before 1981 only have results at the cantonal level, whereas recent votes have
results at the municipal level. For each vote, we show a map of Switzerland with cantons
(or municipalities) colored according to their outcome: green regions accepted the issue,
yellow regions were undecided, and red regions rejected the issue. Figure B.1 shows an
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Appendix B. Predikon: Visualizing Vote Results and Voting Patterns

Figure B.1 – Example of the visualization of the outcome of a vote that took
place before 1981 and for which results are only available at the cantonal
level. We include some basic information about cantons, as well as links to
their Wikipedia page and official website.

example of a vote with results available only at the cantonal level and Figure B.2 shows
a recent vote with municipality results.

Voting Patterns

In addition to vote results, the platform also presents an interactive version of the voting
patterns visualization shown in Figure 5.1. It shows the position of each municipality in
the two-dimensional space illustrated in Figure 5.1(a), as well as the colored map presented
in Figure 5.1(c). Visitors can chose to color the municipalities in the two-dimensional
space according to various factors: language, population, strength of political parties,
etc. In Figure B.3, municipalities are colored on the right according to their population
density, highlighting the fact that cities are at one end of their “cloud”, and rural regions
at the other.

Below the interactive map shown in Figure B.3, we show the 10 votes that have the most
weight in the first (Figure B.4, top) and second (Figure B.4, bottom) eigenvectors used
to compute the two-dimensional representation of municipalities. The map on the left
side gives an overview of the pattern of results for each vote. The bar on the right side
shows the relative importance of each vote, as well as to which side of the axis a “yes” to
this vote corresponds.
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Figure B.2 – Example of the visualization of the outcome of a vote that took
place after 1981 and for which results are available at the municipal level. We
include some basic information about municipalities, as well as links to their
Wikipedia page and official website.

Figure B.3 – Visualization of the voting patterns described in Section 5.3.
The left side of the page shows the map of Switzerland with municipalities
colored according to their position in the two-dimensional representation on
the right. Visitors can color municipalities on the right side according to
several features, such as their population density.
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Appendix B. Predikon: Visualizing Vote Results and Voting Patterns

Figure B.4 – List of the 10 most important votes composing each axis of the
two-dimensional representation on the right side of Figure B.3. The map on
the left side shows the results for each vote, and the bar on the right side
indicates the relative importance of each vote in the axis.
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