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 “Twenty years from now you will be more 

disappointed by the things that you didn’t 

do than by the ones you did do. So throw 

off the bowlines. Sail away from the safe 

harbor. Catch the trade winds in your sails. 

Explore. Dream. Discover.” 
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Abstract 

 

The detection of molecules that can bind to active sites of protein targets and the 

measurement of their affinities is a promising application of NMR. Nowadays, the 

screening of drug candidates is routinely done by NMR in pharmaceutical industry. 

We have proposed to use the relaxation of Long-Lived States (LLS) for drug screening by 

NMR. Long-lived states are nuclear spin states whose decay time constant 𝑇𝐿𝐿𝑆 can be 

much longer than the longitudinal relaxation time 𝑇1. LLS can be used to screen and 

determine the dissociation constant 𝐾𝐷 of molecular fragments that bind weakly to protein 

targets. The use of LLS for fragment screening leads to a spectacular increase in contrast 

between free and bound ligands, and thus allows one to characterize binding of fragments 

with very weak affinities, with 𝐾𝐷 in the millimolar range, which is difficult to achieve by 

other methods such as ITC. By exploiting the LLS behavior of a spy molecule, we 

experimentally demonstrate that it is possible to measure dissociation constants KD as 

large as 12 mM, corresponding to very weak binding, where most other biophysical 

techniques fail, including other NMR methods based on the observation of ligands. 

Furthermore, we have combined LLS for screening for improved contrast with 1H 

dissolution-DNP to enhance the sensitivity. DNP-enhanced screening for measuring LLS 

signals of a weak ligand allows one to use very low concentrations of ligands and proteins. 

We observed dramatic differences between the spectra of the ligand in the presence or 

absence of a protein, or in the presence of the protein combined with a stronger ligand.  

Moreover, we have explored LLS involving pairs of 19F nuclei to study binding phenomena. 

Indeed, fluorine detection is quite interesting because it offers the possibility to perform 

screening experiments without any problems due to overlapping signals. In a custom-

designed fluorinated ligand that binds trypsin, we have observed a promising ratio 𝑇𝐿𝐿𝑆 / 

𝑇1 > 4. This fluorinated ligand has been used as spy molecule in competition experiments, 

which allowed us to rank the affinities and estimate dissociation constants of arbitrary 

ligands that do not contain any fluorine. 

 

 

Keywords: drug discovery, fragment screening, ligand binding, competition experiments, 

Long-Lived States, dynamic nuclear polarization, trypsin, Hsp90, fluorine. 
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Sommario 

 

La rilevazione di molecole che si legano al sito attivo di proteine e la misura della loro 

affinità è una promettente applicazione dell’NMR. Nell’industria farmaceutica, al giorno 

d’oggi lo screening di molecole con potenziale farmaceutico è abitualmente eseguito con 

tecniche NMR. 

Abbiamo proposto l’uso del rilassamento degli stati a lunga vita (LLS) per lo screening di 

ligandi tramite NMR. Gli stati a lunga vita sono stati di spin nucleari la cui costante di 

rilassamento 𝑇𝐿𝐿𝑆 può essere molto più lunga della costante di rilassamento longitudinale 

𝑇1. Gli LLS possono essere utilizzati per selezionare ligandi e determinare la costante di 

dissociazione 𝐾𝐷 di frammenti molecolari che si legano debolmente a proteine. L’uso degli 

LLS per lo screening di frammenti molecolari permette uno spettacolare aumento del 

contrasto tra ligandi liberi e legati, permettendo quindi di caratterizzare il legame di 

frammenti con affinità molto deboli, con 𝐾𝐷 nell’ordine del millimolare. Questo è un 

traguardo normalmente molto difficile da raggiungere con altri metodi, per esempio con 

l’ITC. Sfruttando il comportamento degli LLS in una molecola spia, abbiamo dimostrato 

sperimentalmente che è possibile misurare costanti KD fino a 12 mM, corrispondenti a 

legami molto deboli, dove molte altre tecniche biofisiche falliscono, compresi molti metodi 

NMR basati sull’osservazione dei ligandi. 

Inoltre, abbiamo combinato l’alto contrasto dello screening effettuato tramite LLS con la 

DNP per aumentare la sensibilità dell’esperimento NMR. L’uso della DNP per misurare i 

segnali LLS di un ligando debole permette l’uso di  concentrazioni molto basse di ligando 

e proteina. Con questo approccio, abbiamo osservato enormi differenze tra gli spettri del 

ligando in presenza o in assenza della proteina, o in presenza della proteina e di un 

ligando più forte. 

In aggiunta, abbiamo testato la possibilità di usare LLS su coppie di nuclei di fluoro per 

studiare questo tipo di fenomeni. Infatti, la rilevazione dei segnali del fluoro è piuttosto 

interessante perchè offre la possibilità di eseguire esperiementi di screening evitando 

problemi derivanti dalla sovrapposizione di segnali. In un ligando fluorurato che si lega 

alla tripsina, abbiamo misurato un promettente rapporto 𝑇𝐿𝐿𝑆 / 𝑇1 > 4. Questo ligando 

fluorurato è stato usato come molecola spia in esperimenti di competizione, 

permettendoci di confrontare le affinità e stimare le costanti di dissociazione di ligandi che 

non contengono atomi di fluoro. 
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Keywords: drug discovery, screening di frammenti, esperimenti di competizione, stati a 

lunga vita, polarizzazione dinamica nucleare, tripsina, Hsp90, fluoro. 
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1. Introduction 

 

he overall cost of the development of a new drug is about $800 million to $1 

billion.[1] These numbers may seem to be exaggerated, but two factors can 

explain them. The first one is the complexity of the research and development 

process: for every 5000-10000 compounds that enter the selection process, on average 

only one gets approved for the market. Hundreds of other molecules are dropped during 

the intermediate selection steps and the final cost must include the expense of these 

failures. The second reason is the length of the process: on average 10-15 years are 

needed to develop a new drug from the beginning of the discovery campaign to the final 

approval. These numbers are quite impressive. It means that a drug which enters into the 

market today is the result of a process that has started in the 2000. At that time, the twin 

towers were still standing and Wikipedia did not yet exist.  
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1.1 The drug discovery and development process 

  

uring the past 40 years there has been a huge acceleration in the understanding 

of molecular mechanisms that underlay disease processes. As a consequence, 

modern pharmaceutical research has become progressively based on target-

focused discovery, where the aim is to modulate the biological activity of a particular 

molecular target and thus provide a cure for a disease. The ‘post-genome era’ has further 

increased the number of targets of therapeutic interest for which there are not yet known 

small-molecule modulators, stimulating many new studies and opening the way to fight 

diseases that were hitherto incurable. 

The entire process consists in two parts. The first one is the phase of “drug discovery”, 

during which a few molecules are identified, studied and optimized in order to be 

subsequently tested as potential drugs. The second one is called “drug development” 

and consists of an ensemble of clinical tests needed to get the final approval for marketing.   

 

Figure 1 The drug discovery and development timetable. After the target identification, screening 
campaigns are performed in order to identify a few hit compounds, which have to be optimized in order to 
address requirements such as affinity, specificity, absorption, distribution, metabolism, excretion and 
toxicological properties (ADMET). Before accessing to the clinical trials, the compounds have to pass some 
preclinical tests, in order to verify their efficacy and safety. During the clinical trials, composed of three 
phases, potential drugs are tested on humans in order to test the safety and efficacy and to optimize the 
dose. At the end of these clinical phases, the FDA decides if the molecule can go to the market. The whole 
process can take 10-15 years. 
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1.1.1 The drug discovery phase 

 

The first step of drug discovery is the understanding of a disease. Scientists try to 

understand how genes are altered, how proteins are overexpressed, etc., and how these 

abnormalities affect the health of the patients. In many cases, the major 

biopharmaceutical companies are not the only sources of knowledge of this step; many 

smaller companies, research centers, universities and other nonprofit institutions provide 

significant contributions to the basic knowledge of the disease etiology.  

Once the knowledge of a disease allows it, pharmaceutical researchers select a target for 

a potential new drug. Already at this step there is the risk of failure: the chosen target has 

to be “druggable”, i.e., it should be possible to regulate its activity with high affinity and 

selectivity by a drug-like molecule, and its role in the disease has to be validated. In other 

words, researchers have to demonstrate that the chosen target is relevant to the disease 

being studied through experiments in both living cells and in animal models of the disease. 

A recent study estimated that among the 30000 genes in the human genome, only 3000 

might code for druggable proteins.[2] Only about 400 of such targets have been studied 

so far. 

Once the target is chosen, scientists look for a molecule, a “hit compound”, which may act 

on it to alter the course of the disease. There are different approaches to search for a hit 

compound: 

- Natural compounds: molecules present in nature can be starting points for 

developing a new drug;  

- De novo: computer modeling can be used to design a molecule from structure base 

knowledge that may bind and modulate the target’s activity; 

- Screening: Few hundred thousand up to few millions compounds can be tested 

against the target to identify promising compounds; 

- Biotechnology: Researchers can genetically engineer living systems to produce 

biological molecules that can fight a disease. 

The next phase involves its optimization. The aim is to enhance properties such as 

specificity, efficiency and safety. Typically scientists synthetize hundreds of analogues of 

the initial hit and test them with the aim of improving the above-cited properties.  For 

example, they can make the compound less likely to interact with other chemical pathways 

in the body, thus reducing potential side effects. The resulting molecule is called lead 

compound. 
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Once a few lead compounds have been identified, they have to go through a series of 

tests to study their pharmacokinetics properties. In fact, a drug should be 1) absorbed into  

the bloodstream, 2) distributed to the proper site of action, 3) metabolized efficiently and 

effectively, 4) successfully excreted from the body and 5) demonstrated not to be toxic.

Before being allowed to test a candidate drug on humans, several preclinical tests need 

to be performed. Scientists have to understand how the drug works and what its safety 

profile looks like. Several in vitro and in vivo tests need to be carried out. Agencies like 

the FDA (Food and Drug Administration) require the molecules to go through severe tests 

before being applied to humans. 

All the above steps can take from three to six years. After starting with 5000-10000 

molecules, scientists may have identified a group reduced to one to five molecules which 

will be studied in clinical trials as candidate drugs. 

 

1.1.2 The drug development phase 

 

Before starting any clinical trials, an Investigational New Drug (IND) application has to be 

submitted to the FDA. This file includes the results of the preclinical work, the molecular 

structure and the hypothetical mechanism of action in the body, a list of any side effects 

and a detailed clinical plan for the next studies. FDA must be regularly updated on results 

of on-going tests and can stop the trials at any time if problems arise. 

In Phase 1 trials, the candidate drug is tested on about twenty to one hundred healthy 

volunteers. These are the first tests on humans and they are mainly aimed at getting 

information on the safety profile and the definition of the safe dosing range. 

In Phase 2 trials the potential drug is tested on about 100 to 500 patients who suffer from 

the disease. The aim of these tests is to evaluate the effectiveness of the drug, while 

keeping possible short-time side effects under observation. In this stage, scientists also 

optimize the dose strength and schedules for use of the drug.  

In Phase 3 trials, the candidate drug is tested on a larger number (about 1000-5000) 

patients to get statistically significant data about safety, efficacy and overall benefit-risk 

relationship of the drug. This is the costliest, longest and most critical phase.

At the end of the third phase, all data are evaluated. If the results demonstrate that the 

potential drug is safe and effective, the company can file a New Drug Application (NDA) 

to the FDA requesting approval to market the drug. At this point, FDA reviews the 

application and can decide to 1) approve the medicine, 2) request more information or 

studies, or 3) deny approval. 
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It can take 7-9 years from the first tests of Phase 1 and the FDA approval. Research on a 

new drug continues even after approval since potential long-term side effects can occur. 

The company is asked to submit periodic reports to the FDA. 

A famous proverb says “Rome wasn’t built in a day”. “Neither was a drug generated in a 

day”, we could add. 
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1.2 Fragment-Based Drug Discovery 

 

owadays, the search for hit compounds is usually achieved through screening 

campaigns. Large libraries (>105) of molecules are usually screened against the 

target of interest and their potential interactions are detected by biochemical or 

cell-based functional assays. The molecules identified through this procedure, called 

High-Throughput Screening (HTS), are then optimized via medicinal chemistry in order to 

improve their pharmacokinetic properties. 

Progress in robotics and engineering allows one to accelerate the speed of the process. 

Nowadays, it is possible to monitor up to 100 million reactions in ten hours.[3] 

Nevertheless, the use of HTS has often proven to be inefficient for drug discovery resulting 

often in false positive and false negatives. About half of the HTS campaigns fail, mainly 

because the library does not contain any good small molecules as starting points.[4] The 

probability to fail is even higher for new classes of targets, such as protein-protein 

interactions (PPIs), for which there are not many historical precedents.[5, 6] 

The hit molecules identified through this strategy may be complex and suffer from a 

substantial lipophilicity. These compounds therefore often have limitations with respect to 

the criteria of Absorption, Distribution, Metabolism, Excretion and Toxicological (ADMET) 

that cannot be easily overcome during the following optimization step. 

 

 

Table 1 Main differences between Fragment-Based Drug Discovery (FBDD) and High-Throughput 

Screening (HTS) 

 

 

N 

  

FBDD 
 

 

HTS 

 

 
About 103 compounds of small size (<300 Da) >105 compounds (>300 Da) 

 

 
High coverage of chemical space Poor coverage of chemical space 

 

 
Low-affinity hits (100 µM < KD < 10 mM) 

High-affinity hits (KD in the low µM  or 

stronger) 
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In the past decade, an alternative approach called Fragment-Based Drug Discovery 

(FBDD) has emerged. FBDD involves the use of small libraries of fragments that are low 

molecular weight compounds. The idea is that scientists can look for small binding 

fragments and then either expand a fragment or combine two of them to achieve the 

affinity one expects from HTS. 

The top part of Figure 2 shows an example of high-throughput screening: many 

compounds are screened against a target to identify a hit that binds. This will be then 

optimized through medicinal chemistry. The central part of Figure 2 represents the 

fragment-linking approach: the screening identifies two small molecules that bind to 

nearby sites. They can then be linked together and optimized via medicinal chemistry. 

This is the principle of a well-known strategy known as structure-activity relationship 

(SAR), implemented by NMR for the first time by Fesik and co-workers.[7] 

 

 

Figure 2 Graphical representation of the main approaches to develop a drug. (Top) In high throughput 
screening (HTS), libraries of relatively complex molecules are screened to identify hit compounds with high 
potency. (Middle) in FBDD, screening can identify fragments that can be successively merged in order to 
generate a ligand with higher potency. (Bottom) in FBDD, a fragment with low affinity can be identified and 
then optimized to improve its potency via medicinal chemistry.  
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Although extremely elegant, many scientists have found that the linking is much more 

challenging than might be expected. The main difficulty is that much of the potency of the 

two fragments will be lost if they are not perfectly positioned, so that the affinity of the 

resulting molecule will not be as good as expected. Therefore, a frequently used 

alternative strategy is “fragment growing”, shown in the bottom part of figure 2: a single 

fragment is expanded or “grown” by medicinal chemistry to increase the potency of the 

initial fragment. 

The hit rates of screening campaigns of fragment libraries is usually higher than those of 

HTS. This is due to the fact that the larger the molecules, the more complex their 

structures. As consequence, each additional moiety has an increasing probability of 

interfering with binding. On the other hand, fragments give an opportunity to better sample 

the active site of the target, giving important information to medicinal chemists, who have 

to link different fragments or to optimize one of them. 

 

 

 

Figure 3 Correlation between the potency and the molecular mass of molecules considered in FBDD and 
HTS, and of approved drugs. Reproduced from [8]. FBDD starts with smaller and less potent molecules, 
giving medicinal chemists more opportunities to improve important properties needed to develop a 
successful drug. 
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1.2.1 What is a fragment? 

 

The idea of FBDD to work with small fragments has been supported by some empirical 

evidence, summarized in Lipinski’s famous rule of five (RO5).[9] Lipinski and co-workers 

observed that most orally administered drugs are relatively small and moderately lipophilic 

molecules. Note that the rule of five does not apply to certain classes of drugs, for example 

to antiviral drugs.  

Based on these observations, the rule summarizes molecular properties which turn out to 

be important for the pharmacokinetics of a drug: 

1) The molecular mass should be less than 500 Da. This allows one to work with 

molecules that can efficiently explore the binding pocket and represent the variety 

of chemical space; 

2) An octanol-water partition coefficient log P (ClogP) not greater than 5. Solubility is 

a critical parameter for fragment libraries. Fragments require a certain level of 

hydrophilicity to be soluble up to 1-2 mM, but they should be sufficiently 

hydrophobic to interact properly with the target; indeed, many of the druggable 

protein targets have pockets with strong hydrophobic contributions to binding; 

3) No more than 5 hydrogen bond donors; 

4) No more than 10 hydrogen bond acceptors; 

Lipinski’s rules have been successively refined for the fragments. Results of the analysis 

of a diverse set of fragment hits show that such hits seem to obey a ‘rule of three’ 

(RO3).[10] The average molecular weight is less than 300 Da, the number of hydrogen 

bond donors is not greater than 3, the ClogP is less than 3, and the number of hydrogen 

bond acceptors is not greater than 3. In addition, the results suggest that the number of 

rotatable bonds (NROT) should not be greater than 3 and the polar surface area (PSA) 

should not be greater than 60 Å2. 

These are only guidelines, but nowadays many companies follow them while designing 

libraries of fragments.
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1.2.2 Ligand efficiency 

 

We could assume that a fragment behaves like an ant. If it invades a picnic, a guy can 

easily squash it. But if he watches the ant escape with a crumb, the answer is different: 

ants can carry at least ten times their own body weight.  

It is the same for fragments. Due to their small size, fragments bind their target very 

weakly. Despite of this, they often bind tightly for their dimensions. In order to express the 

binding affinity of a fragment in the light of its molecular mass, the most widely used 

parameter is called ligand efficiency (LE).[11] LE can be defined as the ratio between the 

free energy of ligand binding and the number of heavy atoms in the ligand. The ‘free 

energy of ligand binding’, Δ𝐺𝑏𝑖𝑛𝑑, is equal to -RTln𝐾𝐷, where R is the ideal gas constant, 

T the temperature, and 𝐾𝐷 the dissociation constant. The number of heavy atoms refers 

to the number of non-hydrogen atoms in the ligand. Alternative parameters exist, as the 

binding efficiency index (BEI), which is defined simply as the ratio between the free energy 

of ligand binding and the molecular weight. 

A drug with a 𝐾𝐷 of 10 nM and a molecular weight of 500 Da (about 38 heavy atoms) 

would have LE = 0.3 Kcal/mol/heavy atom. Thus, the aim is to reach ligand efficiencies of 

0.3 Kcal/mol/heavy atom or better. Ligand efficiency values can vary considerably based 

on the target: for many kinases, inhibitors can have LE above 0.5 Kcal/mol/heavy atom, 

while for more challenging targets (as most protein-protein interactions) LE can fall below 

0.3 Kcal/mol/heavy atom. 

 

1.2.3 FBDD compounds in clinical trials 

 
Table 2 shows an updated list (January 2015) of drugs that entered clinical trials starting 

from fragments. Almost half of the targets are protein kinases, demonstrating that it is 

relatively straightforward to identify fragments with high LE that bind to the purine-binding 

site of this class of proteins.  

August 17th, 2011, marked history of FBDD, when the FDA approved the first drug deriving 

from fragment-based screening. The drug is sold with the name Zelboraf (vemurafenib) 

and targets a mutant of kinase B-Raf. It can extend life of patients with metastatic 

melanoma, where it displayed an impressive activity.[2, 12] Vemurafenib was discovered 

at Plexxikon and developed in partnership with Roche. It is the result of a particularly rapid 
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drug discovery and development process: initiated in February 2005, it took just six years 

to reach approval. Figure 4 shows the initial fragment and its optimization into the final 

drug, reporting the potency and ligand efficiency of each step. 

 

 

  Drug candidate Company Role 

Approved Vemurafenib Plexxikon  B-Raf(V600E) inhibitor 

Phase 2/3 

ABT-199 Abbott selective Bcl-2 inhibitor 

LEE011 Novartis/Astex CDK4 inhibitor 

MK-8931  Merck   BACE1 inhibitor 

Phase 2 

AT13387 Astex  HSP90 inhibitor 

AT7519 Astex CDK1,2,4,5 inhibitor 

AT9283 Astex  Aurora, Janus kinase 2 inhibitor 

AUY922 Vernalis/Novartis   HSP90 inhibitor 

Indeglitazar   Plexxikon  pan-PPAR agonist 

Linifanib (ABT 869) Abbott VEGF & PDGFR inhibitor 

LY2886721 Lilly  BACE1 inhibitor 

LY517717 Lilly/Protherics FXa inhibitor 

Navitoclax (ABT 263) Abbott Bcl-2/Bcl-xL inhibitor 

AZD5363  AstraZeneca/Astex/CR-UK AKT inhibitor 

AZD3293 AstraZeneca/Astex/Lilly BACE1 inhibitor 

PLX3397  Plexxikon FMS, KIT, and FLT-3-ITD inhibitor 

Phase 1 

ABT-518  Abbott  MMP-2 & 9 inhibitor 

ABT-737 Abbott  Bcl-2/Bcl-xL inhibitor 

AZD3839 AstraZeneca  BACE1 inhibitor 

DG-051  deCODE  LTA4H inhibitor 

IC-776  Lilly/ICOS LFA-1 inhibitor 

JNJ-42756493 J&J/Astex FGFr inhibitor 

AT13148 Astex AKT, p70S6K inhibitor 

LP-261   Locus  Tubulin binder 

LY2811376  Lilly  BACE1 inhibitor 

PLX5568 Plexxikon  kinase inhibitor 

SGX-393 SGX Bcr-Abl inhibitor 

SGX-523 SGX Met inhibitor 

SNS-314  Sunesis Aurora inhibitor 

AZD5099 AstraZeneca Bacterial topoisomerase II inhibitor 

RG-7129 Roche BACE1 inhibitor 

Undisclosed Vernalis/Servier Bcl-2 inhibitor 

    

Table 2 Drug candidates currently under clinical evaluation (January 2015).[13] 

 

http://practicalfragments.blogspot.com/2009/01/fragments-in-clinic-indeglitazar.html
http://practicalfragments.blogspot.com/2010/01/fragments-in-clinic-dg-051.html
http://practicalfragments.blogspot.com/2011/11/and-once-more-into-breach.html


 
1.2.3 FBDD compounds in clinical trials 
 

12 
 

 

 

 

Figure 4 Pathway for the discovery of the first drug based on fragment-based screening. The initial hit 
compound (7-azaindole) was optimized, maintaining a good LE while enhancing its potency and selectivity 
for the desired target. 

 

1.2.4 Screening of fragments libraries 

 
HTS screening campaigns are typically performed at low ligand concentrations (typically 

10 µM) and normally deliver potent hits.[14] However, some screens fail to identify a good 

starting point for lead optimization. This can be due to 1) assays that are not well 

configured, 2) problems of solubility or stability of the compounds in the screening libraries 

or 3) lack of good compounds in the libraries. To overcome the last two problems, 

screening collections are continuously updated with new compounds, based on 
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experience that has been gathered during other screening campaigns, in view of 

achieving a better coverage of chemical space. 

Another approach is to screen libraries of fragments, which due to their size and low 

complexity are likely to interact much more weakly with the target. This therefore requires 

one to reconfigure screening assays for much higher concentrations. Issues of solubility 

of screening compounds are aggravated by the high concentrations used. Small quantities 

of organic solvents like DMSO can be used to improve the solubility and light scattering 

techniques can be employed to confirm the absence of aggregates.[12] 

There are two ways to carry out fragment screening: biochemical screening (High 

Concentration Screening, HCS) or biophysical screening. 

 

1.2.4.1 Biochemical assays at high concentration 

 
This approach consists in performing classical biochemical assays, but working at higher 

concentrations (up to 1 mM). In this way, it is possible to use the same technology used 

for the classical high-throughput screening technology for detection, and one can identify 

some hits very quickly. In addition, the amounts of protein required are very small and 

many ‘difficult’ targets (like GPCR or ion channel targets) can be studied. Nevertheless, 

many problems can occur. For example, high ligand concentrations can interfere with the 

assay or be toxic for cells. Moreover, compound aggregations can give rise to false 

positives, or false negatives can result from a lack of solubility of the compounds. 

 

1.2.4.2 Biophysical techniques 

 
There are several biophysical techniques to screen fragments. Different biophysical 

techniques have different problems and provide complementary information about 

binding. For example, quantitative affinity data can be obtained from isothermal titration 

calorimetry (ITC), surface plasmon resonance (SPR), or NMR spectroscopy, while X-ray 

crystallography can provide detailed atomic resolution of the binding mode. 

Throughput and material requirements can differ dramatically between different 

techniques, determining the stage of the FBDD campaign for which they are best suited. 

Primary screening is carried out using techniques with high throughput that require small 

amounts of target protein, while secondary screening can be performed with techniques 

that have a lower throughput. Traditionally, X-ray crystallography and ITC are considered 
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as low throughput techniques, while SPR and thermal shift measurements are higher 

throughput methods. Depending on whether ligand- or target-detected techniques are 

used, NMR spectroscopy can offer a high or low throughput and potentially provide an 

atomic model of binding. 

 

X-ray crystallography 

 
X-ray crystallography provides direct information about the binding mode at atomic 

resolution.[15] Usually, protein crystals are soaked with a solution containing high 

concentrations (about 50 mM) of the fragment and binding is detected directly by 

observation of the fragment bound to the protein in the electron density. There is no risk 

of false positives, but false negatives can occur when binding sites are occluded by crystal 

contacts or when ligand binding requires a conformational change of the target protein 

that is inhibited by the crystal framework. The latter problem can be avoided by attempting 

co-crystallisation of the protein in the presence of the ligand. In general, X-ray 

crystallography provides high resolution data, and is able to detect fairly weak binders, up 

to KD ~ 5 mM . 

The low throughput of the technique does not allow its use for primary screening, but it is 

generally considered as the gold standard for final hit validation. Furthermore, the 

throughput of X-ray crystallography has recently been increased.[16] The use of 

automated, rapid data collection at powerful synchrotron beam sources that allow the 

collection of high-resolution data in minutes, employing sample-changing robots, and 

semi-automatic processing and structure solution has speeded up the process 

considerably. Molecular replacement strategies can reduce structure solution to manual 

inspection of ligand placements in different electron maps. Ligand orientations are 

obtained by ligand fitting routines, employing similar strategies as those used in molecular 

docking [17], with the advantage to optimize the fit of the ligand with the experimental 

electron density. If a cocktail of several ligands is used, it is important to use a diverse set 

of ligands to make them identifiable from the shape of their electron density, and to 

minimize the chances that two or more ligands compete for the same binding site. 

The technique requires the protein of interest to crystallize in a reproducible way. 

Problems of solubility of the ligand can be addressed by using low concentrations of 

organic co-solvents, such as 1 to 10% DMSO. X-ray crystallography does not provide 

information about binding affinities, so X-ray observations must be combined with data 
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obtained by other methods. Ideally, X-ray crystallography should be used in conjunction 

with a method with higher throughput like SPR, or verified by ITC after crystallization. 

 

NMR spectroscopy 

 

NMR spectroscopy was the first technique used for experimental FBDD screening.[18] In 

the SAR by NMR methodology [7], the binding of a fragment to a protein is detected 

through the change in protein chemical shifts. These changes are due to the different 

chemical environments experienced by the nuclei of the protein upon binding. In its first 

application, two fragments identified in this way were merged, yielding a binder with 

improved potency.[16] 

SAR by NMR is an example of target-detected method. In such methods, the chemical 

shifts of the target protein are observed in two-dimensional NMR experiments. As a 

consequence, these methods are limited to small proteins with molecular masses of about 

30 to 40 kDa and require relatively large amounts of isotope-labelled proteins. On the 

other side, target-detected methods can provide information about the binding site, if the 

protein resonance assignments are available. 

As an alternative, several ligand-detected methods have been developed, such as 

Saturation Transfer Difference (STD) [19], WaterLOGSY [20] or Target-Immobilized NMR 

Screening (TINS).[21] These methods require less protein, no isotope labelling, and are 

also applicable to larger proteins. On the other hand, they usually do not provide 

information about the binding site, but they are generally faster and simpler (usually, one-

dimensional NMR experiments suffice). NMR methods for ligand screening will be the 

topic of chapter 2. 

 

Surface Plasmon Resonance (SPR) 

 

In this technique, the protein is immobilized on a metal-coated surface and ligands flow 

past.[22] The binding of a ligand to the protein determines changes in the 

refractivity/reflectivity properties of the metal. In fact, these properties are directly 

correlated with the mass of the protein and the mass of the ligand and can be detected by 

an optical device. 

SPR is a high-throughput technique, well suited for primary screening. Screening 

campaigns are rapid and straightforward to set up. The immobilization of the protein on 
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the metal surface implies the need of very small amounts of protein. SPR allows one to 

obtain important data about affinity. Indeed, the recorded sensogramm is time-dependent 

and the approach represents a continuous-flow system, so ligands first saturate the 

protein and are then washed off, thus allowing one to determine kinetic information 

encoded in the kon and koff rates. 

With SPR, several thousands of compounds can be screened in a few days, making it 

ideally suited for prioritizing subsequent X-ray experiments.[23] 

 

Isothermal Titration Calorimetry (ITC) 

 

Isothermal Titration Calorimetry (ITC) measures the heat released upon ligand 

binding.[24, 25] ITC is the technique of choice for the precise determination of binding 

constants. It is the only widely used biophysical technique that is able to deconvolute the 

contributions of enthalpy and entropy to ligand binding. These properties are essential to 

understand the importance of polar and hydrophobic interactions and to guide medicinal 

chemists during the fragment expansion process. One drawback of ITC, however, is that 

it requires large amounts of protein and has a rather low throughput. As consequence, 

ITC is well suited for secondary screening and hit confirmation. 

 

Thermal shift assay 

 

In a thermal shift assay [26-28], the unfolding temperature of a target protein is determined 

in the presence and absence of a ligand by optical strategies. Indeed, folded and unfolded 

proteins have different fluorescence properties. In fact, the binding of small ligands to 

proteins stabilizes the protein’s folded state by increasing its heat capacity. As a 

consequence, ligand binding leads to an increase of the unfolding temperature. 

Thermal shift assay is a good technique for “yes/no” binding information and has a high 

throughput. It is mainly utilized as an enrichment process before applying a secondary 

screening technique. On the other hand, this strategy is also subject to false negative, 

since fragments sometimes do not display changes in the protein unfolding temperature. 
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Computational techniques  

 

Nowadays, computational techniques can be used to identify molecules with a greater 

probability of binding a biological target. The process of screening virtual libraries is called 

Virtual Screening (VS). There are two main approaches to VS: docking and de novo 

design. Neither are widely used as stand-alone tools. The use of experimental knowledge 

to enrich data from virtual screening campaigns plays a key role to obtain useful results. 

 

Docking 

 

Molecular docking was used for the first time more than 20 years ago.[29] This 

computational tool combines a search algorithm to generate putative binding modes of a 

ligand and its receptor with a scoring function that ranks them. 

The realization that the conformation of small molecules that form a complex with a 

macromolecular target does not imperatively correspond to a global minimum [30] and 

that proteins experience structural rearrangements upon binding [31] highlighted the 

necessity to include flexibility in docking algorithms. This means that docking algorithms 

should consider the fluctuations of bond distances and dihedral angles in addition to the 

rotational and translational degrees of freedom of the ligand. This is not feasible, due to 

the size and flexibility of macromolecular receptors and the time constraints that must be 

fulfilled for docking algorithms. At present, most docking algorithms consider the target as 

a rigid structure, and only the degrees of freedom corresponding to dihedral angles of the 

ligand are explored. 

Despite of this simplification, most docking programs nowadays correctly predict the 

binding modes for 70-80% of all known protein-ligand pairs within a root mean square 

deviation (RMSD) of 2 Å. Recent studies have shown that VS results can improve when 

the flexibility of the receptor is included in the algorithm.[32] Nevertheless, flexible receptor 

docking is very prone to generating false positives.[33]  
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De novo Design 

 

It has been estimated that over a 106 million organic molecules could exist with molecular 

weights not greater than 500 Da.[34] It is evident that VS libraries (usually containing 105-

107 molecules) cover only a small part of the chemical space.  

De novo design methods [35] offer a way to explore the whole chemical space. They rely 

on the design of ligands from scratch, by merging fragments from pre-defined libraries 

and testing the complementarity to the receptor with the same or similar scoring functions 

as used for docking. 

The molecules proposed by de novo methods are in most cases unknown. This can be a 

limitation, considering that the synthetic feasibility is generally ignored so that the chemical 

structures proposed can often not be easily synthesized. Recent improvements in this 

field provided programs with outputs prioritized according to their chemical accessibility.  

De novo design methods are complementary to experimental fragment screening 

methods. Experimental approaches can identify small fragments that need to be extended 

to become lead molecules, while de novo design methods can benefit from limiting the 

search to chemical scaffolds that are known to bind an active site. 
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2. Nuclear magnetic resonance for ligand screening 

 

ntil the mid 1990s, the role of NMR in the pharmaceutical industry was quite 

limited.  Its main use was focused on the three-dimensional structure 

determination of peptides and proteins (as well as on the study of small molecules 

and metabolites). In this context, NMR was restricted mainly to a small subset of NMR-

accessible targets (with molecular masses lower than 20 KDa and expressible in E. Coli). 

Moreover, the development of a drug candidate usually requires a considerable amount 

of structural information beyond the simple apo structure of the protein without ligand. 

Typically, a loop of structure determination, modeling and chemistry has to be repeated 

in order to achieve the potency, selectivity and ADMET properties required for a drug 

candidate. In this context, NMR is not able to generate structural data at the same 

resolution and with the same speed as X-ray crystallography.   

Something changed after 1996. The milestone work of Fesik and co-workers [1] showed 

that NMR could give a huge contribution to  drug discovery. SAR by NMR [1] proved the 

possibility to start a drug discovery project from compounds which would have been 

normally considered to bind too weakly to be relevant for classical medicinal chemistry.[2] 

Alternative techniques have been proposed to find such weakly binding fragments, for 

instance X-ray crystallography [3], mass spectrometry [4] and high-concentration enzyme 

assays [5], but NMR screening remains one of the most robust and reliable techniques for 

identifying ligands with dissociation constants between 10 µM and 10 mM or greater.[6] 

In fact, it is possible to study binding phenomena through the dramatic changes in several 

NMR parameters, which occur when a small and rapidly tumbling molecule binds to a 

slowly tumbling macromolecular target. 

NMR screening has transformed magnetic resonance from a marginal tool to obtain 

structural information about proteins into a fundamental instrument for the discovery of 

lead compounds. Nowadays, there are many companies whose drug-discovery platforms 

are strongly dependent on NMR. Several pharmaceutical industries use NMR as their 

principal tool for both screening campaigns and ligand interaction studies. 
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2.1 The dissociation constant  
 

quilibrium processes involving non-covalent interactions are very common in 

chemical and biochemical systems. It is possible to define a molecular complex 

as “a non-covalently bound species of definite substrate-to-ligand stoichiometry 

that is formed in an equilibrium process in solution”.[7]  

The binding of a small molecule to a macromolecular target is in general considered as 

an equilibrium process and leads to the formation of a complex: 

 

 

𝐿 + 𝑃 

𝑘𝑜𝑛

⇌
𝑘𝑜𝑓𝑓

𝑃𝐿 (1) 

 

where L is the small molecule (often called ligand or binder), P is the macromolecular 

target and PL is the resulting molecular complex. The dissociation rate constant 𝑘𝑜𝑓𝑓 is 

inversely proportional to the lifetime τB of the ligand-target complex. The association rate 

constant 𝑘𝑜𝑛 can be considered to be an estimate of the probability of a productive 

encounter between protein and ligand. 𝑘𝑜𝑛 is often assumed to be diffusion-limited and 

consequently values varying between 107 and 109 M-1s-1 are assigned to it. Of course, this 

approximation does not take into account the potential complexity of intermolecular forces 

that may attract or repel protein and ligand. 

The binding affinity can be described by the temperature-dependent equilibrium 

dissociation constant: 

 

 
𝐾𝐷 =  

[𝐿][𝑃]

[𝑃𝐿]
=  

𝑘𝑜𝑓𝑓

𝑘𝑜𝑛
 (2) 

 

where [L], [P] and [PL] are the concentrations at equilibrium of ligand, protein and ligand-

protein complex, respectively.  

Combining equation 2 with the definitions of some known experimental parameters, as 

the total ligand concentration [𝐿]𝑡𝑜𝑡 = [𝐿] + [𝑃𝐿] and the total target concentration [𝑃]𝑡𝑜𝑡 =

[𝑃] + [𝑃𝐿], leads to: 

 

E 
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[𝑃𝐿]  =  

[𝑃]𝑡𝑜𝑡 +  [𝐿]𝑡𝑜𝑡 +  𝐾𝐷 − √([𝑃]𝑡𝑜𝑡 +  [𝐿]𝑡𝑜𝑡 +  𝐾𝐷)2 − 4[𝑃]𝑡𝑜𝑡 [𝐿]𝑡𝑜𝑡 

2
 

(3) 

 

Figure 1 shows the trend of the bound target fraction 𝑝𝐵
𝑃 =  [𝑃𝐿] [𝑃]𝑡𝑜𝑡⁄  as a function of the 

total ligand concentration [𝐿]𝑡𝑜𝑡, for different values of 𝐾𝐷. In general, increasing [𝐿] leads 

to an increase of 𝑝𝐵
𝑃. When [𝐿] ≪  𝐾𝐷, 𝑝𝐵

𝑃 is proportional to [𝐿]; When [𝐿] =  𝐾𝐷, 50% of 

the protein is saturated; When [𝐿] ≫  𝐾𝐷, the protein tends to be completely saturated.  

 

 

Figure 1 Bound protein fraction [𝑃𝐿] [𝑃]𝑡𝑜𝑡⁄  as a function of the ligand concentration [𝐿]𝑡𝑜𝑡. The protein 

concentration used in the calculation is [𝑃]𝑡𝑜𝑡 = 10 µ𝑀. 

 

 

Ligands of weaker affinity have larger 𝐾𝐷 and as consequence require more ligand to 

reach the same value of 𝑝𝐵
𝑃. A value of 𝐾𝐷 in the mM range gives rise to a 1:1’000 ratio of 

free to bound states in a equimolar mixture of P and L, while a 𝐾𝐷 in the µM range implies 

a 1:1’000’000 ratio of these states, i.e., a more stable ligand-protein complex with less 

free species present. 

Figure 2 shows the trend of the bound ligand fraction 𝑝𝐵
𝐿 =  [𝑃𝐿] [𝐿]𝑡𝑜𝑡⁄  as a function of the 

total ligand concentration [𝐿]𝑡𝑜𝑡. 𝑝𝐵
𝐿  can assume values in the range 0 ≤  𝑝𝐵

𝐿  ≤  1 𝜀⁄  [8], 
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where 𝜀 =  [𝐿]𝑡𝑜𝑡 [𝑃]𝑡𝑜𝑡⁄  is the ligand-to-protein ratio. The highest value is reached for low 

values of [𝐿]𝑡𝑜𝑡. The protein saturation condition occurs for high ligand-to-protein ratios, 

but in this case 𝑝𝐵
𝐿  tends to zero, because of the ligand is in excess compared to the target. 

 

 

Figure 2 Bound ligand fraction [𝑃𝐿] [𝐿]𝑡𝑜𝑡⁄  as a function of the ligand concentration [𝐿]𝑡𝑜𝑡. The protein 

concentration used in the calculation is [𝑃]𝑡𝑜𝑡 = 10 µ𝑀. 

 

2.1.1 Dissociation constants in competitive binding equilibria 

 

The situation described so far is the simplest case. Often, different species compete for 

the same binding site of the protein. In this case, the equilibria of the system can be 

described in the following terms: 

 

 

𝑃𝐿 
𝑘𝑜𝑛

𝐿

⇋
𝑘𝑜𝑓𝑓

𝐿
𝐿 + 𝑃 + 𝐼 

𝑘𝑜𝑛
𝐼

⇌
𝑘𝑜𝑓𝑓

𝐼
 𝑃𝐼  (4) 

 

where L and I are two competing ligands. Addition of I reduces [𝑃𝐿]; in fact, I competes 

with L, hampering the interactions of the latter with the protein.  
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Figure 3 shows the bound ligand fraction 𝑝𝐵
𝐿  as a function of the total competitor 

concentration[𝐼]𝑡𝑜𝑡 for different dissociation constants of the competitor. 𝑝𝐵
𝐿  decreases 

rapidly with increasing concentration and/or binding affinity of the competing ligand I. As 

consequence, 𝑝𝐵
𝐿  can be seen as a "marker" that indicates the presence of a second, 

competing molecule I. From now on, the ligand L will be called spy molecule or reporter, 

while ligand I will be dubbed competitor. 

The 𝐾𝐷 of the spy molecule determined in the presence of a competitor is called apparent 

dissociation constant, 𝐾𝐷,𝐿
𝑎𝑝𝑝

 and contains information about the affinity of the competitor 

for the protein. The relationship between the two values is the following: 

 

 𝐾𝐷,𝐼 =  
[𝐼]𝑡𝑜𝑡 𝐾𝐷,𝐿

𝐾𝐷,𝐿
𝑎𝑝𝑝

− 𝐾𝐷,𝐿
  (5) 

 

where 𝐾𝐷,𝐿 is the true dissociation constant of the spy molecule and 𝐾𝐷,𝐼 is the dissociation 

constant of the competitor. The denominator has to be greater than zero, hence 𝐾𝐷,𝐿
𝑎𝑝𝑝 >

 𝐾𝐷,𝐿 and consequently the bound fraction of the spy molecule L in presence of the 

competitor I is lower than in its absence. 

 

 

Figure 3 Bound ligand fraction [𝑃𝐿] [𝐿]𝑡𝑜𝑡⁄  as a function of the competitor concentration [𝐼]𝑡𝑜𝑡, for different 
values of the dissociation constant of the competitor. The concentrations of protein P and ligand L used in 

the calculation are 10 µM and 200 µM respectively.
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2.2 Effect of binding on NMR parameters 

 

f a nucleus that “jumps” between two magnetically non-equivalent sites is observed, 

the appearance of the observed signal depends on the rate of the exchange process. 

For example, it is possible to consider the following complex formation equilibrium: 

 

 𝐴 ⇌ 𝐴𝐵  (6) 

 

where A and AB are two distinct environments or sites. Let’s define 𝜈𝐴 and 𝜈𝐴𝐵 as the 

Larmor frequencies of the nucleus in sites A and AB, respectively. If the system is 

characterized in a coordinate system that is rotating at a frequency 𝜈0, defined as the 

average of 𝜈𝐴 and 𝜈𝐴𝐵,  

 𝜈0 =
1

2
 (𝜈𝐴 + 𝜈𝐴𝐵)   (7) 

 

the nuclei in the two sites precess in opposite directions: nuclei in site A precess at 

frequency (𝜈0 −  𝜈𝐴), while nuclei in site AB precess at frequency (𝜈𝐴𝐵 −  𝜈0). Different 

cases are possible: 

 

1) Slow exchange. This means that a nucleus in site A precesses many times before 

it leaves that site. The same happens for a nucleus in site AB. There is plenty of 

time for absorption of energy from the radiofrequency field B1 and two distinct 

resonance peaks will appear at 𝜈𝐴 and 𝜈𝐴𝐵 in the NMR spectrum; 

2) Intermediate exchange. The resonance peaks tend to become broader. Indeed 

(𝛿𝐸)(𝛿𝑡) ≈ ℎ, where 𝛿𝐸 and 𝛿𝑡 are uncertainties associated with energy and time 

measurements and ℎ is the Planck constant. Defining 𝛿𝐸 = ℎ𝛿𝜈 and identifying 𝛿𝑡 

with the state lifetimes 𝜏, it results 𝛿𝜈 ≈ 1/(𝜏): this means that the width of the 

peaks 𝛿𝜈 increases as the state lifetimes decrease. 

3) Fast exchange. A nucleus in site A does not have enough time to precess many 

times before it leaves that site. The same happens for a nucleus in site AB. From 

the point of view of the rotating frame, the nuclei are essentially stationary. As 

consequence, a single resonance peak will appear at 𝜈0 =
1

2
 (𝜈𝐴 + 𝜈𝐴𝐵). 
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A binding event such as described in equation 1 represents a two-state equilibrium for 

both protein P and ligand L. Both species, in fact, exist either in a free (P, L) or bound 

state (PL). The binding affinity drives the ligand and protein through an exchange process 

between their free and complexed forms. In this situation, the ligand transiently affects the 

NMR parameters characteristic of the protein and perturbs the chemical environment of 

the binding site. In other words, the exchange process promoted by the mutual binding 

affinity of ligand and protein modulates the NMR parameter of the two species.  

A complete analysis of the influence of chemical exchange on the NMR parameters for 

arbitrary exchange timescales would require the use of Hahn’s, Maxwell’s and 

McConnell’s equations.[9, 10] However, in most NMR screening experiments, the 

systems are in fast exchange and the situation is greatly simplified. Indeed, these kinds 

of experiments are typically performed with a large excess of ligand with respect to the 

protein ([𝐿]𝑡𝑜𝑡 [𝑃]𝑡𝑜𝑡 > 10⁄ ) and the ligand is weak, i.e., 𝐾𝐷  ≥ 100 µ𝑀. As discussed in 

paragraph 2.1, 𝑘𝑜𝑛 is often approximated by the diffusion-limited rate (107-109 M-1s-1) [8], 

so the slowest reasonable values of the exchange rate 𝑘𝑒𝑥 = (𝑘
𝑜𝑛

[P] + 𝑘
𝑜𝑓𝑓

) are in the 

range 103  <  𝑘𝑒𝑥 < 105 𝑠−1. These values exceed most differences in rotating frame 

precession frequencies, thus validating the fast exchange assumption. 

Under the fast-exchange regime, the observed NMR parameters 𝜀𝑜𝑏𝑠 can be defined as 

simple averages 

 𝜀𝑜𝑏𝑠 =  𝑝𝐵𝜀𝐵 +  𝑝𝐹𝜀𝐹   (8) 

 

 𝜀𝑜𝑏𝑠 =  𝑝𝐵𝜀𝐵 +  𝑝𝐹𝜀𝐹 +  𝜀𝑒𝑥   (9) 

 

where 𝜀𝐵 and 𝜀𝐹 are the values of the NMR parameter 𝜀 (e.g., a relaxation rate, a chemical 

shift, etc.) in the bound and free forms, respectively. Equation 9, which contains an 

additional term 𝜀𝑒𝑥, applies to parameters for which chemical shift modulations can give 

relevant contributions, for instance the transverse relaxation rate 𝑅2. 

Observation of differences between 𝜀𝑜𝑏𝑠 and 𝜀𝐹 allows the detection of ligand binding. 

Equation 8 shows that the ability to detect binding depends on the magnitude of the term 

𝑝𝐵𝜀𝐵 compared to 𝑝𝐹𝜀𝐹. Unfortunately, under typical conditions of screening experiments 

([𝐿]𝑡𝑜𝑡  ≫  [𝑃]𝑡𝑜𝑡), 𝑝𝐵  ≪  𝑝𝐹. For this reason it is most convenient to choose for NMR 

parameters which are amplified in the bound state, i.e., with 𝜀𝐵  ≫  𝜀𝐹. 

Since 𝑝𝐹 = (1 − 𝑝𝐵) and 𝑝𝐵 =  𝑝𝐵
𝑃/𝜖, it is possible to write 

 𝜖(𝜀𝑜𝑏𝑠 −  𝜀𝐹)  =  
(𝜀𝐵− 𝜀𝐹)[𝐿]𝑡𝑜𝑡

[𝐿]𝑡𝑜𝑡 + 𝐾𝐷
  (10) 
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Equation 10 shows that 𝜖(𝜀𝑜𝑏𝑠 − 𝜀𝐹) (where 𝜀 =  [𝐿]𝑡𝑜𝑡 [𝑃]𝑡𝑜𝑡⁄  is the ligand-to-protein ratio) 

increases with ligand addition and reaches a plateau at (𝜀𝐵 −  𝜀𝐹), when [𝐿]𝑡𝑜𝑡  ≫  𝐾𝐷 ,  i.e., 

when the binding site is saturated. 

 

2.3 Ligand-Based and Protein-Based Screening 

 

MR offers a rich source of parameters that are sensitive to the changes in 

physical properties associated with binding and differ significantly between the 

free and bound states. As consequence, a great variety of NMR methods have 

been developed to perform screening experiments. 

The NMR methods used to detect the binding of small molecules to macromolecular 

targets fall into two categories: the ones detecting changes in the parameters of the ligand 

are defined as ligand-based techniques, while the ones detecting changes in the 

properties of the protein are defined as protein-based techniques. Both approaches are 

routinely used and present advantages and limitations. 

Protein-based NMR methods consist in the identification of perturbations of assigned 

protein resonances due to binding events. Therefore, this approach gives direct 

information about the binding site and allows the discrimination between specific and 

nonspecific binding. Moreover, it does not rely on fast exchange to retrieve information 

about the bound state, thus allowing the detection of ligands with 𝐾𝐷 values from nM to 

mM. On the other hand, the direct observation of the protein usually requires the 

experiments to be performed with isotopically-enriched targets at rather high 

concentrations. Furthermore, problems of signal overlap and fast transverse relaxation 

rate are obviously correlated with the molecular mass of the target and impose severe 

limits on the molecular mass; generally, this approach is applied for proteins with 

molecular masses smaller than 40 KDa.[6] 

Ligand-based NMR methods consist in observing a change of an NMR parameter of the 

ligand upon binding. They require only small amounts of protein and do not suffer from 

any limitations in molecular mass. Since the ligand concentration is usually high and the 

detection is based on the observation of nuclei with high gyromagnetic ratios (such as 1H 

or 19F), there is no need for isotopic labeling. On the other hand, observation of the ligand 

fails to give any information about the binding site; moreover, detection of binding is limited 

to weakly interacting molecules in the fast exchange regime, since the approach relies on 
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the exchange-mediated transfer of information from the bound state to the free state. 

Displacement of spy molecules by stronger competitors may allow one to circumvent the 

latter limitation and to discriminate between specific and nonspecific interactions. 

The elaboration of different strategies to study ligand-protein interactions has followed 

progress in technology. At the beginning there were not many choices. In the mid-1970s, 

the only way to perform these kinds of studies was by means of R1 or R2 relaxation rates. 

With the 100 MHz spectrometers available at that time, there was little hope to resolve 

any protein signals. So the earliest NMR studies in this field were based on the 

observation of the ligands. With the increase of the available magnetic fields and the 

availability of pure and isotopically enriched proteins, direct protein-observed studies have 

started to be performed from the mid-1980s to present times. During the last two decades, 

the development of a series of new ligand-observed methods (mainly based on 

magnetization transfer effects) has lead to a renaissance of ligand-observed experiments. 

The limitations of protein-based approaches confine the number of targets to which the 

technique is applicable. Many new and interesting targets are too large, express too poorly 

or are too unstable to be suitable for this approach. As a consequence, ligand-based 

methods are nowadays more often used in pharmaceutical industry. 

 

2.4 Protein-Based Methods 

 

f the protein of interest is amenable to direct studies by NMR (i.e. if it is stable in 

solution and if it can be expressed in relatively large amount), protein-based methods 

can provide a unique set of information. In particular, if the structure of the protein has 

been studied and the assignment of its resonances is available, an atomic scale resolution 

of the ligand-binding site is obtained directly from screening experiments. So far, this 

approach has been mainly used for the detection of ligands that bind to proteins. 

These experiments are based on the observation of chemical shift perturbations (CSPs) 

in 15N-1H and/or 13C-1H correlation spectra of the target protein in the presence of a ligand 

or a mixture of up to 50 ligands. In common experiments, a 15N-labeled protein sample (at 

a concentration between 10 and 100 µM) is tested against a set of compounds by 

measuring 15N-1H TROSY-type or HSQC-type experiments. CSPs are considered 

significant if they are greater than 0.1 ppm for at least two peaks of the spectrum.[11] The 

chemical shift perturbations ∆𝛿 are defined as: 
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∆𝛿 =  √[(𝛿( 𝐻, 𝑝𝑝𝑚1 )

𝑓𝑟𝑒𝑒
−  𝛿( 𝐻, 𝑝𝑝𝑚1 )

𝑜𝑏𝑠
)

2

+ 0.04 (𝛿( 𝑁, 𝑝𝑝𝑚15 )
𝑓𝑟𝑒𝑒

−  𝛿( 𝑁, 𝑝𝑝𝑚15 )
𝑜𝑏𝑠

)
2

] (11) 

 

Once a binder is identified, CSPs can be monitored as a function of ligand concentration 

during a titration in order to determine the dissociation constant.[12] 

This approach is usually limited to proteins with molecular masses lower than 30 kDa, but 

it can be extended to larger systems by performing 13C-1H HMQC with selectively labeled 

proteins. 13C-labeling of methyl-containing amino acids such as methionine, isoleucine, 

leucine, alanine or valine is the most common strategy.[13] 

The importance of providing information about the binding site has been firstly 

demonstrated in a landmark work by Fesik and co-workers.[1] Starting from the 

hypothesis that the binding energy of a ligand can be described as a sum of all interactions 

[14], it has been demonstrated that different fragments, identified as weak inhibitors in 

their own right, can be combined to drastically improve the potency of the resulting 

molecule. These structure-activity relationship studies are called “SAR by NMR”. In the 

above-mentioned work, this approach was validated by the successful design of potent 

inhibitors of FKBP and stromelysin. The strategy consists in screening fragments in order 

to find molecules that bind the protein at two distinct sites that are close enough on the 

protein surface. Structural information obtained using intermolecular NOE data are then 

exploited in order to design a chemical linker that does not modify the binding mode of the 

two moieties. In this way it is possible to efficiently combine weak fragments with 𝐾𝐷′𝑠 in 

the millimolar range to get an inhibitor with a dissociation constant in the nanomolar range. 

 

2.5 Ligand-Based Methods 

 

igand-based methods are based on the dependence of different NMR parameters 

on the tumbling regime of the molecule studied. Molecules with 𝜏𝑐𝜔0  ≪ 1, where 

𝜏𝑐 is the correlation time and 𝜔0 the Larmor frequency, have relatively long 

relaxation times, large translational diffusion coefficients and positive NOEs. If such 

molecules bind to a slow tumbling molecule, so that 𝜏𝑐𝜔0  ≫ 1, their behavior will change: 

they will assume the properties of the slow tumbling molecule, thus having shorter 

relaxation times, small translational diffusion coefficients and negative NOEs. 
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Figure 4 Dependence of different NMR parameters on the molecular tumbling regime. Ligand-based 
methods are based on the fact that small, fast tumbling molecules assume the properties of large, slowly 
tumbling macromolecules when they bind to them. 

 

As discussed in paragraph 1.2.1, compounds used in NMR screening have masses that 

are typically below 500 Da and thus 𝜏𝑐𝜔0  ≪ 1, while targets have usually masses greater 

than 10 KDa so that 𝜏𝑐𝜔0  ≫ 1. As consequence, small molecules which bind to a 

macromolecular target can be distinguished from those that do not by observing an NMR 

parameter that is sensitive to the correlation time 𝜏𝑐. Unlike protein-based methods, high 

molecular masses of the protein are an advantage for the sensitivity of ligand-based 

methods. 

Alternatively, one can exploit magnetization transfer pathways between the ligand and the 

protein, which obviously exist only in the bound state. These can be either intramolecular 

ligand effects, as in the case of transferred NOEs, or transfer between protein and ligand 

after the selective excitation of one species, as in the case of Saturation Transfer 

Difference (STD). 

In a ligand-protein binding equilibrium, the properties mentioned above are dominated by 

the effects of the bound population, with only a small contribution from the free population. 

Therefore, fast exchange is needed in order to transfer information from the bound state 

to the free state. 

A general consideration, valid for all relaxation parameters, needs to be made before we 

examine different experiments in more detail. The main relaxation mechanisms in 1H NMR 

are 1H-1H dipole-dipole (DD) interactions between pairs of proton spins. The DD relaxation 

rate of a proton can be written as a double sum  

 

 𝑅(𝑉) =  ∑ 𝑎𝑚𝑚 ∑
1

𝑟𝑗
6 𝐽𝑗(𝑚𝜔)𝑗   (12) 
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where the inner sum runs over all protons j that have dipolar interactions with the proton 

under investigation, while the outer sum represents a linear combination of the spectral 

density functions 𝐽𝑗(𝑚𝜔) evaluated at different multiples m of the Larmor frequency 𝜔. 

The coefficients 𝑎𝑚 depend on the spin order 𝑉 (e.g., Iz, Ix, multiple quantum coherences, 

etc.) and on the rate constant considered (e.g. R1, R2, etc.). Each spectral density 𝐽𝑗(𝜔) 

can be defined as 

 

 
𝐽(𝜔) =  

2

5

𝜏𝑐

1 + (𝜔𝜏𝑐)2
 (13) 

 

The spectral density function 𝐽(𝜔) at 𝜔 = 0 is 

 

 𝐽(0) =  
2

5
𝜏𝑐  (14) 

 

Relaxation rates that strongly depend on 𝐽(0) are highly sensitive probes for binding, since 

𝜏𝑐 increases drastically upon binding, thus leading to an amplification of the corresponding 

relaxation rate. 

The following paragraphs will explore different commonly used methods, starting from 

relaxation-filtered experiments and concluding with magnetization transfer-based 

experiments. 

 

2.5.1 Transverse Relaxation Rates 

 

The transverse relaxation rate 𝑅2 =  1 𝑇2⁄  is perhaps the best-established NMR assay. In 

fact, the strong dependence of 𝑅2 on the overall molecular rotational correlation time 𝜏𝑐 

causes the difference between its values in the free and the bound form to be particularly 

large. This is due to the strong dependence on 𝐽(0). Indeed R2 of a proton under 1H-1H 

DD relaxation can be defined as 

 

 
𝑅2 =  

ℏ2𝛾𝐻
4

8
∑

1

𝑟𝑗
6  {5𝐽𝑗(0) + 9𝐽𝑗(𝜔𝐻) + 6𝐽𝑗(2𝜔𝐻)}𝑁

𝑗=1   (15) 
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As a result, when the ligand is bound to the protein, one has 𝑅2,𝑏𝑜𝑢𝑛𝑑  ≫ 𝑅2,𝑓𝑟𝑒𝑒, since 

𝜏𝑐,𝑐𝑜𝑚𝑝𝑙𝑒𝑥  ≫ 𝜏𝑐,𝑓𝑟𝑒𝑒 𝑙𝑖𝑔𝑎𝑛𝑑. Fast exchange allows the transfer of information from the bound 

to the free state, so that the observed transverse relaxation rate 𝑅2,𝑜𝑏𝑠 can be defined as 

in equation 9: 

 

 𝑅2,𝑜𝑏𝑠 =  𝑝𝐵𝑅2,𝑏𝑜𝑢𝑛𝑑 +  𝑝𝐹𝑅2,𝑓𝑟𝑒𝑒 +  𝑅𝑒𝑥   (16) 

 

where 𝑅𝑒𝑥 is 

 

 𝑅𝑒𝑥 = (Ω𝐹 −  Ω𝐵)2 𝑝𝐹𝑝𝐵

𝑘𝑒𝑥
   (17) 

 

In order to detect binding, 𝑅2,𝑜𝑏𝑠 obviously needs to be different from 𝑅2,𝑓𝑟𝑒𝑒. This means 

that 𝑝𝐵𝑅2,𝑏𝑜𝑢𝑛𝑑 needs to be significant relative to 𝑝𝐹𝑅2,𝑓𝑟𝑒𝑒. However, under conditions 

typical for ligand-based methods, the ligand is present in large excess ([𝐿]𝑡𝑜𝑡 [𝑃]𝑡𝑜𝑡  ≫ 1⁄ ), 

so that 𝑝𝐵 is much smaller than 𝑝𝐹. Nevertheless, thanks to its 𝐽(0) dependence, 

𝑅2,𝑏𝑜𝑢𝑛𝑑  ≫ 𝑅2,𝑓𝑟𝑒𝑒. As consequence, 𝑝𝐵𝑅2,𝑏𝑜𝑢𝑛𝑑 can be significant despite the large 

excess of the ligand. 

The rate 𝑅𝑒𝑥 expresses the line broadening due to the difference between the chemical 

shifts of the free and bound states. In some circumstances, 𝑅𝑒𝑥 may be very large, so that 

effects of binding on 𝑅2,𝑜𝑏𝑠 can be observed even if 𝑝𝐵𝑅2,𝑏𝑜𝑢𝑛𝑑 is not significant. In 

particular, 𝑅𝑒𝑥 may be large if 𝑘𝑒𝑥 is small and/or if the difference (Ω𝐹 −  Ω𝐵) between the 

chemical shifts of the free and bound forms is large. The latter case is common in 19F 

NMR, due to the large range of chemical shifts of fluorine. 

The linewidth of a resonance is proportional to 𝑅2. If one neglects contributions due to 

field inhomogeneities, etc., the linewidth in Hz can be defined as 𝐿𝑊 =  𝑅2 𝜋⁄ . As 

consequence, binding events can in principle be detected by comparing the linewidths of 

a small molecule in the presence and absence of a protein. In practice, if the effect is small 

or if spectral crowding hampers direct comparison of the two spectra, direct observation 

of line broadening can be difficult. 

Alternatively, it is possible to use 𝑅2 experiments designed to observe differences in 

transverse relaxation behavior in the presence and absence of a protein.[15] Typically, 𝑅2 

relaxation can be monitored using Carr-Purcell-Meiboom-Gill (CPMG) pulse trains [16, 

17] or continuous-wave irradiation as in 𝑅1𝜌 spin-lock methods.[18] In such experiments, 



 
2.5.1 Transverse Relaxation Rates 
 

 

36 

the presence of a radiofrequency irradiation during the transverse relaxation period leads 

to different expressions for 𝑅𝑒𝑥: 

 

 
𝑅𝑒𝑥

𝐶𝑃𝑀𝐺 =  
𝑝𝐹𝑝𝐵(Ω𝐹− Ω𝐵)2

𝑘𝑒𝑥
 (1 −

2tanh (𝑘𝑒𝑥 𝑡𝑐𝑝⁄ )

𝑘𝑒𝑥𝑡𝑐𝑝
)    (18) 

 

 
𝑅𝑒𝑥

1𝜌
=  

𝑝𝐹𝑝𝐵(Ω𝐹− Ω𝐵)2(sin Θ𝑟𝑓)2

𝑘𝑒𝑥
 (

𝑘𝑒𝑥

(𝑘𝑒𝑥)2+ (Ω𝑆𝐿)2)     (19) 

 

where 𝑡𝑐𝑝 is the delay between two consecutive 180º pulses and  Ω𝑆𝐿 is the carrier 

frequency of the spin lock. In 𝑅1𝜌 experiments, on-resonance spin locking correspond to 

the spin magnetization locked by the RF field along the x- or y-axis, so that 𝑅1𝜌 ≈ 𝑅2. In 

both cases, comparison of 𝑅2-filtered experiments acquired with and without protein 

reveals binding through one or several resonances that have been attenuated because of 

an increase of 𝑅2 upon binding. 

 

2.5.2 Paramagnetic relaxation enhancement 

 

A variation of relaxation filtering is the approach called SLAPSTIC (spin labels attached 

to protein side chains as a tool to identify interacting compounds).[19] This method 

involves the use of a spin label, such as 2,2,6,6-tetramethyl-1-piperidine-1-oxyl (TEMPO), 

which is covalently attached to selected protein side chains. Ligands that bind in the 

proximity of the spin label will relax more rapidly, because of the electron-proton DD 

interaction with the unpaired electron of the radical. 

The observed transverse relaxation rate 𝑅2,𝑜𝑏𝑠 can be written as follows: 

 

 𝑅2,𝑜𝑏𝑠 =  𝑝𝐵𝑅2,𝑝𝑎𝑟𝑎 + 𝑝𝐵𝑅2,0𝐵 +  𝑝𝐹𝑅2,0𝐹 +  𝑅𝑒𝑥     (20) 

 

where 𝑅2,𝑝𝑎𝑟𝑎 is 

 

 
𝑅2,𝑝𝑎𝑟𝑎 =  

ℏ2𝛾𝑒
2𝛾𝐻

2

8
∑

1

𝑟𝑗
6

𝑁
𝑗=1 {4𝐽𝑗(0) +  3𝐽𝑗(𝜔𝐻)}     (21) 

 

The j sum runs over all N spin labels in the proximity of the proton under consideration. 

The electron gyromagnetic ratio 𝛾𝑒 is about 660 times larger than 𝛾𝐻. As consequence, 
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electron-proton DD interactions can give a huge contribution to relaxation. The large 

𝑅2,𝑝𝑎𝑟𝑎 in the bound state assures that the contribution of the bound form to the 𝑅2,𝑜𝑏𝑠 is 

significant, since 𝑝𝐵𝑅2,𝐵  ≫  𝑝𝐹𝑅2,𝐹 (where 𝑅2,𝐵 is the sum of the contributions of the 

paramagnetic relaxation rate 𝑅2,𝑝𝑎𝑟𝑎 and of 𝑅2,0𝐵 due to all other relaxation mechanisms). 

As consequence, small fractions 𝑝𝐵 of bound ligands can be used. In some 

circumstances, the use of spin labels can lead to the reduction on the order of 50 times of 

the required protein concentration.[19] 

For this approach to be successful, the target of interest should have amino acids that are 

amenable to spin labeling (for instance lysine, tyrosine, cysteine, histidine, and 

methionine) in the vicinity of the binding site. Moreover, target tailoring should not 

significantly modify the structure and the flexibility of the macromolecule, since the 

accidental occlusion of the site of interest would preclude binding. As consequence, prior 

knowledge of the 3D structure of the protein is required. 

 

2.5.3 Longitudinal relaxation rates 

 

The longitudinal relaxation rate 𝑅1 = 1/𝑇1 is another parameter that is sensitive to the 

correlation time. When a small molecule is interacting with a macromolecular protein, the 

observed longitudinal relaxation rate 𝑅1,𝑜𝑏𝑠 can be defined as 

 

 𝑅1,𝑜𝑏𝑠 =  𝑝𝐵𝑅1,𝑏𝑜𝑢𝑛𝑑 + 𝑝𝐹𝑅1,𝑓𝑟𝑒𝑒     (22) 

 

where 𝑅1,𝑏𝑜𝑢𝑛𝑑 and 𝑅1,𝑓𝑟𝑒𝑒 are the longitudinal relaxation rates in the bound and free 

states, respectively. 

It is necessary to distinguish between non-selective relaxation rates 𝑅1,𝑛𝑠 and selective 

relaxation rates 𝑅1,𝑠; the former can be measured by inverting all resonances contained 

in a spectrum, while the latter is determined by selectively inverting only one resonance. 

The corresponding relaxation rates due to dipolar interactions between a proton i under 

investigation and neighboring protons j can be defined in terms of spectral densities [20]: 
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𝑅1,𝑠 =  

ℏ2𝛾𝐻
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𝑗=1      (24) 

 

The last term of equation 24 indicates a direct dependance of 𝑅1,𝑠 on 𝐽(0). Figure 5 shows 

the selective and non-selective longitudinal and transverse relaxation rates as a function 

of the correlation time 𝜏𝑐. One can distinguish between slow tumbing regime (𝜔𝜏𝑐 < 1), 

where 𝑅1,𝑛𝑠 is smaller than 𝑅1,𝑠, and fast tumbing regime (𝜔𝜏𝑐 > 1), where 𝑅1,𝑛𝑠 > 𝑅1,𝑠. 

Anyway, 𝑅1,𝑛𝑠 does not show a direct dependence on 𝜏𝑐 [21]: when a small molecule binds 

to a large macromolecule, its 𝑅1,𝑠 increase rapidly, while 𝑅1,𝑛𝑠 does not. 

 

 

Figure 5 𝑅1,𝑛𝑠, 𝑅1,𝑠 and 𝑅2 as a function of the correlation time. All rates were divided by the constant 𝐾 =

 ℏ2𝛾𝐻
4 10⁄ ∑ 1 𝑟𝑗

6⁄𝑁
𝑗=1 . These simulations were performed for a Larmor frequency 𝜔 = 400 𝑀𝐻𝑧. 

While testing mixtures of several compounds, it can be challenging to perturb several 

chosen spins selectively. Indeed, different selective inversion pulses may have to be 

applied for each compound. However, this difficulty can be circumvented by selectively 

inverting a single resonance of a suitable spy molecule in competition experiments.   
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2.5.4 Transverse 19F relaxation 

 

Most methods that are used for ligand-target interaction studies are based on proton 

detection. Nevertheless, a few methods exploit the favorable properties of fluorine NMR 

spectroscopy. Fluorine detection offers some unique advantages: (a) high sensitivity 

(𝛾 𝐹19 𝛾 𝐻1⁄ = 0.94) and 100% natural abundance of the 19F isotope; (b) no interference of 

signals due to non-fluorinated solvents, buffers or detergents; (c) absence of overlap with 

signals of other non-fluorinated species in solution; (d) high sensitivity of the transverse 

relaxation rate 𝑅2 to binding events. 

Point (d) deserves to be discussed in more detail. There are two main reasons that explain 

the high sensitivity of fluorine 𝑅2 to binding events: (i) the contribution of 𝐽(0) for the DD 

interactions and for the chemical shift anisotropy (CSA) and (ii) the important contributions 

of exchange broadening. 

Fluorine transverse relaxation 𝑅2 is dominated by large contributions due to DD 

interactions with proton spins in the surrounding, and CSA. For fluorine, 𝑅2 can be defined: 

 

 𝑅2 =  𝑅2
𝐷𝐷 + 𝑅2

𝐶𝑆𝐴 +  𝑅2
𝑜𝑡ℎ𝑒𝑟𝑠     (25) 

 

where 𝑅2
𝐷𝐷 is the contribution of the DD interactions between the isolated 19F nucleus and 

surrounding protons on the ligand (and on the protein in the complex), 𝑅2
𝐶𝑆𝐴 is the 

contribution of CSA, and 𝑅2
𝑜𝑡ℎ𝑒𝑟𝑠 stems from other sources. The rates 𝑅2

𝐷𝐷 and 𝑅2
𝐶𝑆𝐴can 

be defined as follows [20, 22] 
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where Δ𝜎 is the CSA of the 19F nucleus which can be defined as Δ𝜎 =  𝜎𝑧𝑧 − (𝜎𝑥𝑥+𝜎𝑦𝑦)/2, 

where 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧 are the principal components of the chemical shift tensor. The 

asymmetry parameter is defined as 𝜂𝐶𝑆𝐴 = (3 2⁄ )(𝜎𝑥𝑥−𝜎𝑦𝑦)/Δ𝜎. 

The trends of the dipolar and CSA contributions to 𝑅2 as a function of the correlation time 

𝜏𝑐 are shown in figures 6 and 7, respectively. Both of these contributions are monotonic 
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functions of 𝜏𝑐 and can be used for screening small molecules that interact with a protein. 

The relaxation of the bound state is further boosted by additional intermolecular dipolar 

interactions between the 19F under investigation and protons of the macromolecular 

target. 

Proteins that have been selectively labeled with fluorinated amino acids have been 

studied by 19F NMR since the 1970s. However, the initial results were disappointing: large 

CSA effects lead to extensive line broadening of the 19F NMR spectra [23]. This fact is 

well described by figure 7; the slower the molecular tumbling, the larger the CSA 

contribution to the transverse relaxation. Despite the negative consequences for the 

quality of the 19F spectrum of the protein, this effect turns out to be useful for detecting 

binding events [24, 25]. Because of the strong dependence of CSA contributions on the 

correlation time, large differences occur between the transverse relaxation rates of the 

free and bound states, allowing one to detect very small fractions of ligands in the bound 

state. 

 

 

Figure 6 𝑅2
𝐷𝐷 of 19F as a function of the correlation time. The rates were divided by the constant 𝐾 =

 ℏ2𝛾𝐻
2𝛾𝐹

2 𝑟𝐹𝐻𝑖

6⁄ . These simulations were performed for fluorine and proton Larmor frequencies 

376 and 400 𝑀𝐻𝑧, respectively. 
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Figure 7 𝑅2
𝐶𝑆𝐴 of 19F as a function of the correlation time. The simulations were performed for a fluorine 

Larmor frequency 376 MHz. Typical CSA values of fluorobenzene were used (𝛥𝜎 = 71.5 ppm and 𝜂𝐶𝑆𝐴 =
 −1.32). 

 

 The transverse relaxation rates 𝑅2 of 19F are also extremely sensitive to chemical 

exchange. If the relaxation rate behavior is studied through a CPMG experiment, the 

observed transverse relaxation rate can be expressed as: 

 

 
𝑅2,𝑜𝑏𝑠 =  𝑝𝐵𝑅2,𝑏𝑜𝑢𝑛𝑑 +  𝑝𝐹𝑅2,𝑓𝑟𝑒𝑒 +  𝑝𝐵𝑝𝐹

2𝜏𝑟𝑒𝑠4𝜋2(𝛿𝑓 − 𝛿𝑏)2 {1 − [
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𝜏

𝑝𝐹𝜏𝑟𝑒𝑠
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𝜏

𝜏𝑟𝑒𝑠

]}     (28) 

 

where 𝛿𝑓 and 𝛿𝑏 are the chemical shifts of the spin under investigation in the free and 

bound state, respectively, while 𝜏𝑟𝑒𝑠 = 1/𝑘𝑜𝑓𝑓 is the residence time of the ligand in the 

bound state and 𝜏 is the spin-echo delay in the CPMG scheme. Simulations show that the 

exchange term of equation 28 reaches its maximum value of 𝑅𝑒𝑥  =  𝑝𝐵𝑝𝐹
2𝜏𝑟𝑒𝑠4𝜋2(𝛿𝑓 −

𝛿𝑏)2 for 2𝜏 ≫  𝜏𝑟𝑒𝑠, with the 80 % of the maximum value reached with 𝜏 ≈  5 𝜏𝑟𝑒𝑠.[26] 

Indeed, if 2𝜏 is smaller than the residence time, the dephasing resulting from the exchange 

can be neglected. Conversely, if 2𝜏 is larger than 𝜏𝑟𝑒𝑠, the ligand exchanges many times 

between free and bound state and this will lead to maximum dephasing. This effect is 

evident in figure 8. The four intensities represented in the picture are the result of four 19F 

CPMG experiments with a constant total relaxation period of 80 ms, with two different 𝜏 
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values (left and right). In absence of protein, different spin-echo delays do not lead to 

different intensities (bottom part); conversely, if exchange events occur, the exchange 

contribution described above leads to a significant difference of intensities between the 

two experiments. 

 

Figure 8 19F CPMG spectra of a CF3 containing ligand in the presence (top) and absence (bottom) of a 
protein, recorded with two different 𝜏 values (200 µs on the left, 10 ms on the right). The difference in 

intensities between experiments performed with different 𝜏 values is noticeable only in presence of the 
protein, when the exchange term influences the observed relaxation rate. Reproduced from [26]. 

 

2.5.5 Translational diffusion 

 

Diffusion experiments typically use a spin echo pulse sequence with a magnetic field 

gradient applied during the spin-echo delays. Before the refocusing pulse, the gradient 

spatially encodes the nuclear spins, while the one after the refocusing pulse decodes 

them. Only spins that do not move during the interval between the gradients will contribute 

to the signal. It is possible to measure translational diffusion coefficients by incrementing 

either the gradient strength or its duration. 

The translational diffusion rate 𝐷 of a sphere of radius 𝑟 in a continuous medium of 

viscosity 𝜂 can be defined by the Stokes-Einstein equation, [27] 𝐷 = (𝐾𝑇)/(6𝜋𝜂𝑟), where 

𝐾 is the Boltzmann constant and 𝑇 is the temperature. Of course, the translational diffusion 
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coefficient 𝐷 is closely related to the molecular size. A large molecule will diffuse slower 

than a small one.  

In order to be able to apply the fast exchange approximation, the ligand needs to be in 

fast exchange not only on the time scales of the chemical shifts but also on the timescale 

of the diffusion measurement (typically a few hundred milliseconds) [28]. If this is the case, 

the observed translational diffusion coefficient 𝐷𝑜𝑏𝑠 is: 

 

 𝐷𝑜𝑏𝑠 =  𝑝𝐵𝐷𝑏𝑜𝑢𝑛𝑑 +  𝑝𝐹𝐷𝑓𝑟𝑒𝑒 (29) 

 

where, as usual, 𝐷𝑏𝑜𝑢𝑛𝑑 and 𝐷𝑓𝑟𝑒𝑒 are the translational diffusion constants of the bound 

and free state, respectively. 

Diffusion-based filtering was one of the first proposed ligand-based methods.[15] Despite 

this, it has not proved to be as generally applicable as some other methods. This is mainly 

due to the limited dynamic range of 𝐷, which usually differs only about one order of 

magnitude between free and bound states. As consequence, low ligand-protein ratios are 

required to achieve substantial changes of 𝐷𝑜𝑏𝑠 upon binding. Under these conditions, 

rapid relaxation can lead to significant line broadening; as a result, this method is usually 

applied to small and intermediate size proteins, which are highly soluble and available in 

large amounts. 

 

2.5.6 Transferred NOEs 

 

There is a huge difference in correlation times between small molecules and 

macromolecular proteins, with 𝜏𝑐 values in the region of 10-12 and 10-8 s, respectively.[29]  

Slowly tumbling molecules show strong negative NOEs, while rapidly tumbling molecules 

have weak positive NOEs. In the presence of a binding event, the small ligand acquires 

transiently the correlation time of the protein, thus showing NOE cross-peaks that change 

sign in 2D-NOESY.[30] Transferred NOEs are easily distinguishable from NOEs due to 

the ligand in the free state, since the latter have opposite sign, and are slower to build in 

intensity. 

The transferred Nuclear Overhauser Effect Spectroscopy (trNOESY) experiment relies on 

relatively short mixing times (100-500 ms) to probe for binding-induced changes in intra-

ligand magnetization transfer. Indeed, the mixing time should be long enough to allow the 

trNOE to build up, but short enough to have negligible NOE intensities due to the free 
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population. This limits the sensitivity of the method: the same binding information can be 

obtained from a 1D STD experiment in 0.5 h as from a 2D trNOESY experiment in 4 h.[8] 

Consequently, this method has been progressively supplanted by other methods as STD 

or waterLOGSY.  

Despite this, the change in sign of trNOEs makes this method useful when other screening 

strategies give ambiguous results. trNOEs have proven to be extremely useful in giving 

information about the bound conformation to assist modeling [31, 32], when a 3D structure 

of the ligand-protein complex cannot be obtained. 

An important variant of the method is the inter-ligand trNOE (ILNOE) [33], where the 

trNOE is detected between two different ligands that bind to a protein in proximal sites. 

This strategy can be important to extend the SAR by NMR approach to systems which 

are difficult to crystallize, since it gives indications about the relative proximity of the 

ligands involved in the generation of the trNOE effect. 

 

2.5.7 NOE pumping 

 

The previously described trNOE effects are based on intra-ligand magnetization transfer. 

Alternatively, one can exploit inter-molecular NOE pathways between ligand and protein 

as a signature of binding events. 

In NOE pumping experiments [34], the magnetization of a small molecule is selectively 

saturated by a diffusion filter, while the protein magnetization remains unchanged. A 

subsequent mixing period allows a magnetization transfer from the protein to the ligand. 

An additional CPMG filter can then be used in order to filter out the residual protein signals.  

The method can suffer from a lack of sensitivity due to the fact that the magnetization is 

stored on the macromolecular protein and its short transverse relaxation times 𝑇2 can 

result in rapid losses of magnetization. A solution to this problem is provided by an inverse 

experiment, where the magnetization is transferred from the ligand to the protein. This 

experiment is known as reverse NOE pumping [35] and uses a CPMG filter to saturate 

the protein magnetization. The magnetization stored on the ligand is then transferred to 

the macromolecule during a mixing period. The result is a reduction in intensity of the 

ligand signals, which would not occur in the absence of a macromolecular protein. In order 

to discriminate signal losses due to NOE effects from losses due to ligand relaxation, the 

experiment is performed twice: in a reference experiment, a CPMG filter is inserted after 

the mixing period. In this latter experiment, the protein magnetization has not been 
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saturated and the ligand signals do not suffer from intensity losses due to magnetization 

transfer to the macromolecule.  

 

2.5.8 Saturation Transfer Difference 

 

The idea of saturation transfer was already developed in the early 1960s.[36] This 

approach has been applied in the late 1990s to identify binding events between small 

molecules and biological targets, and has become known as Saturation Transfer 

Difference (STD).[37, 38] The method exploits the magnetization transfer between an 

irradiated protein and a bound ligand. The identification of the binding molecule is obtained 

through the analysis of the difference between two experiments performed with or without 

saturation.  

In the ‘on-resonance’ experiment, a train of shaped pulses (typically N repetitions of 50 

ms frequency-selective pulses with Gaussian or Seduce-1 profiles) saturates some 

resonances of the protein. To selectively saturate only the protein, the irradiation is limited 

to a frequency range that contains only protein resonances; usually a region shifted upfield 

(between 0 and -1 ppm, containing resonances of methyl groups of the protein) or 

downfield (9-10 ppm). Only a small subset of the protons of the protein is saturated by the 

pulse train, but 1H-1H cross-relaxation pathways rapidly transfer this saturation across the 

protein. After saturation, which usually goes on for a few seconds, a 𝜋 2⁄  pulse can be 

followed by a CPMG filter to suppress the protein signals and by a water suppression 

sequence to remove solvent resonances. If a small molecule binds to the protein, some 

magnetization transfer will also occur at the ligand-protein interface, via intermolecular DD 

interactions between protein and ligand. This will result in the partial saturation of the 

ligand resonances. 

In the ‘off-resonance’ experiment, the same experiment described above is performed, 

but the pulse train is applied far from the protein resonances. In this case, none of the 

magnetization transfer pathways described before can occur. The signals of the on-

resonance experiment are then subtracted from those of the off-resonance experiment, 

usually by interleaving scans and using an inversion of the receiver phase on alternate 

scans. In the resulting difference spectrum, only resonances which experienced saturation 

(by direct irradiation or via magnetization transfer) will appear, thus identifying the 

interacting ligand. 

The STD amplification factor 𝑆𝑇𝐷𝑎𝑓 can be defined as following: 
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 𝑆𝑇𝐷𝑎𝑓 =  
(𝐼0− 𝐼𝑠𝑎𝑡)

𝐼0
∗  

[𝐿]𝑡𝑜𝑡

[𝑃]𝑡𝑜𝑡
  (30) 

 

where 𝐼0 and 𝐼𝑠𝑎𝑡 are the signal intensities in the off- and on-resonance experiments, 

respectively. Important structural information can be obtained from a detailed analysis of  

the amplification factors of individual signals of the ligand. It may be possible to discern 

the ligand surface that is in contact with the target (epitope mapping).[39]  

Titration experiments based on the STD effect allow one to determine the dissociation 

constant 𝐾𝐷 of the ligand. When 𝑆𝑇𝐷𝑎𝑓 is plotted against the total ligand concentration 

[𝐿]𝑡𝑜𝑡, the curve can be fitted to the following equation to extrapolate 𝐾𝐷: 

 

 
𝑆𝑇𝐷𝑎𝑓 =  

−𝑆𝑇𝐷𝑎𝑓
𝑚𝑎𝑥

1+(
[𝐿]𝑡𝑜𝑡

𝐾𝐷
)

+  𝑆𝑇𝐷𝑎𝑓
𝑚𝑎𝑥  (31) 

 

where 𝑆𝑇𝐷𝑎𝑓
𝑚𝑎𝑥 is the maximum 𝑆𝑇𝐷𝑎𝑓 effect. 

The STD method has some unique advantages. First of all, the technique works 

particularly well with high-molecular mass drug targets, since efficient spin diffusion within 

the protein is needed in order to transfer the magnetization to the bound ligand. Moreover, 

in systems where fast exchange prevails, slow relaxation of the ligand in its free state 

allows one to accumulate a high concentration of saturated ligand molecules over the 

duration of the saturating pulse train. This permits to saturate large amounts of ligand with 

low concentrations of protein. As consequence, STD experiments can be performed with 

a 50-500-fold excess of ligand. 

The NOE cross-relaxation 𝜎𝑁𝑂𝐸 rate between two protons depends on the correlation time 

𝜏𝑐: 

 

 𝜎𝑁𝑂𝐸 =  
𝛾4ℏ2

10𝑟𝑖𝑗
6 {

6𝜏𝑐

1+4𝜔2𝜏𝑐
2 −  𝜏𝑐}   (32) 

 

In the presence of small or medium-sized proteins with a relatively small 𝜏𝑐, magnetization 

transfer via DD interactions may be inefficient, so that the complete saturation of the 

protein may fail. Moreover, the observed 𝑆𝑇𝐷𝑎𝑓 cannot be linked directly to the affinity of 

a ligand: a strong binder will show weak STD signals since a small 𝑘𝑜𝑓𝑓 limits the turnover 

of ligand molecules in the binding site. Another problem can be saturation leakage [40] 
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via chemical exchange with the solvent; for this reason the STD experiment is 

preferentially performed in D2O rather than H2O. Nucleic acid proteins suffer from a low 

proton density which limits cross-relaxation within the protein, so that the STD technique 

is not very useful for this kind of systems. 

The epitope mapping from the analysis of 𝑆𝑇𝐷𝑎𝑓 of ligand signals can only be performed 

for binders with weak affinities. Indeed, if the residence time is long compared to cross-

relaxation of the ligand in the bound state, the magnetization spreads over all ligand 

protons and leads to a uniformly small STD effect.[21]  

STD technique is useful for the study of ligands with 10−8 <  𝐾𝐷 <  10−3 M.[37] For weaker 

ligands and if [𝐿]𝑡𝑜𝑡 <  𝐾𝐷, less than half of the protein molecules will be bound to a ligand. 

This means that the saturation transfer from the protein to the ligand is inefficient. 

Conversely, for stronger ligands, the kinetic off-rate constant 𝑘𝑜𝑓𝑓 is very small, thus 

diminishing the saturation of the magnetization on the ligand. In particular, if the residence 

time of the ligand in the bound state is long on the timescale of its 𝑅1 in the bound state, 

the ligand cannot “remember” its visit to the binding site of the saturated protein and 

relaxes back to equilibrium. 

 

2.5.9 WaterLOGSY 

 

The NOE pumping and STD methods described in the previous two paragraphs rely on 

the selective perturbation of the magnetization of either ligand or protein and exploit the 

magnetization transfer between the two species to characterize the binding properties of 

the molecule under investigation. The so-called “water-ligand observed via gradient 

spectroscopy” (water-LOGSY) method [41] represents an elegant modification of these 

approaches. 

WaterLOGSY does not need to create a pool of magnetization on either ligand or protein. 

It is based on indirect excitation of the magnetization of the ligand-protein complex and of 

the free ligand by selective perturbation of bulk water magnetization. The perturbation of 

bulk water can be achieved either by selective saturation or by selective inversion of the 

water signal. Nowadays, the most robust scheme to achieve efficient selective inversion 

of the water signal is ePHOGSY,[42, 43] which consists of a water-selective 180º 

refocusing pulse sandwiched between two pulsed field gradients. 

Different pathways can be involved in the transfer of magnetization from bulk water to 

either bound or free ligand molecules. Bound ligand molecules benefit from magnetization 
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transfer from water molecules that reside in the binding site and in the hydration sphere 

around the ligand-protein complex. Moreover, chemical exchange between bulk water and 

exchangeable protons of the protein, i.e., labile carboxyl, amino, hydroxyl, imidazole, 

guanidinium and amide protons [44, 45], pumps protein magnetization that can be 

transferred to the ligand. When the ligands are bound to the protein, the magnetization 

transfer within the ligand-protein complex occurs rapidly because of its long correlation 

time 𝜏𝑐, generating large negative signals. 

In the waterLOGSY experiment, magnetization is also transferred directly from the bulk 

water to the free ligand molecules. This transfer occurs via DD interactions between the 

hydration shell and the free ligand molecule, and possibly via chemical exchange through 

exchangeable protons of the ligand. In this case, the DD interactions fluctuate with short 

correlation times, leading to weak positive NOE’s that generate small positive signals. The 

spectra are usually shown phased so that bound signals are positive and free signals 

negative. As consequence, the observed waterLOGSY signals 𝐼𝑊𝐿 result from the sum of 

negative signals due to free ligands that cannot bind and positive signals of ligand 

molecules that can bind to the protein [8]: 

 

 𝐼𝑊𝐿 = 𝐶([𝑃𝐿]𝜎𝑏𝑜𝑢𝑛𝑑 + [𝐿]𝜎𝑓𝑟𝑒𝑒)    (33) 

 

Where C is a proportionality constant that accounts for the appropriate unit conversions, 

[𝑃𝐿] is the concentration of the bound ligand, [𝐿] is the concentration of the free ligand, 

while 𝜎𝑏𝑜𝑢𝑛𝑑 and 𝜎𝑓𝑟𝑒𝑒 are the cross-relaxation rate constants describing the transfer of 

magnetization from water to ligand protons in the bound and free states, respectively.  

As the contribution of the free state becomes more significant, the resulting waterLOGSY 

spectrum of the ligand can pass through a null or be negative. For instance, if [𝐿]𝑡𝑜𝑡  ≫

 [𝑃]𝑡𝑜𝑡 the negative contribution of the free state [𝐿]𝜎𝑓𝑟𝑒𝑒 may overwhelm that of bound 

state, resulting in a false negative. For this reason, the experiment should not be carried 

out with large ligand/protein ratios. The reference spectrum 𝐼𝑊𝐿,𝑓𝑟𝑒𝑒 recorded in the 

absence of the protein can be subtracted from the spectrum 𝐼𝑊𝐿 obtained in the presence 

of the protein. The difference 𝐼𝑊𝐿 −  𝐼𝑊𝐿,𝑓𝑟𝑒𝑒 can be defined as [8]: 

 

 

 
𝐼𝑊𝐿 −  𝐼𝑊𝐿,𝑓𝑟𝑒𝑒 =  

[𝑃]𝑡𝑜𝑡(𝜎𝑏𝑜𝑢𝑙𝑑− 𝜎𝑓𝑟𝑒𝑒)[𝐿]

[𝐿]+ 𝐾𝐷
     (34) 
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Fitting the curve of 𝐼𝑊𝐿 −  𝐼𝑊𝐿,𝑓𝑟𝑒𝑒 during a titration to equation 34 and approximating [𝐿] ≈

 [𝐿]𝑡𝑜𝑡 allows one to estimate 𝐾𝐷. The estimated lower limit of 𝐾𝐷 that can be detected is 

𝐾𝐷  ≈ 0.1 µM.[46] Ligands with a greater affinity have longer residence times so that the 

transferred magnetization is lost due to longitudinal relaxation before the ligand leaves the 

binding site. 

WaterLOGSY can be used when STD is not applicable, as for nucleic acid proteins.[47] 

The bulk water can be seen as a pool of magnetization that compensates for the lack of 

proton DD cross-relaxation pathways in proteins with low proton density. 

 

 

Figure 9 Identification of a ligand that binds to the protein cdk2 in a mixture of 10 compounds using waterLOGSY. 
Top: 1H spectrum of the mixture in absence of protein. Bottom: waterLOGSY spectrum of the mixture in the presence 
of the protein. The positive waterLOGSY peak framed in a dashed red square indicates binding of the corresponding 
compound to the protein. Spectra reproduced from [21]. 
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3. Nuclear Long-Lived States 

 

wo particles with spin I = 1/2 can couple to form a composite system with total spin 

I = 0 or 1. The spin I = 0 state can only have the magnetic quantum number m = 

0, while the spin I = 1 configuration comprises three distinct energy levels (m = -1, 

0, 1). These two categories of spin states are called respectively singlet state and triplet 

states. 

When the two spin-1/2 particles are both electrons, there is usually a large energy 

difference between the singlet and triplet states, mainly due to the electron exchange 

interaction, which arises from the overlap of the electronic wavefunctions. In this situation, 

the electronic singlet and triplet states are nearly exact eigenfunctions of the Hamiltonian 

of the system. In many cases, an excited electronic singlet state is converted into lower-

energy electronic triplet states through a process known as intersystem crossing (ISC). 

If the two spin-1/2 particles are both nuclei, the situation is different. Nuclear exchange 

couplings are usually small, because the nuclear wavefunctions are strongly localized and 

there is no overlap. Since the nuclear exchange coupling usually vanishes, the singlet-

triplet energy splitting is extremely small, and it is often dominated by weak symmetry-

breaking interactions such as the chemical shift difference. As a consequence, the use of 

the language of singlet and triplet states is less widespread in NMR, compared with the 

fields of electronic spectroscopy or molecular quantum mechanics. However, the 

concepts of singlet and triplet states are very important to understand the relaxation 

properties of the nuclear spin systems. 

The singlet and triplet states of a nuclear spin-1/2 pair can be described by the 

wavefunctions [1]: 

 

 |𝑆0⟩ =  
1
√2
⁄  (|𝛼𝛽⟩ − |𝛽𝛼⟩) 

|𝑇−1⟩ = |𝛽𝛽⟩ 

|𝑇0⟩ =  
1
√2
⁄  (|𝛼𝛽⟩ + |𝛽𝛼⟩) 

|𝑇+1⟩ = |𝛼𝛼⟩ 

(1) 

 

where the symbols 𝛼 and 𝛽 refer to angular momentum components ±ℏ/2 respectively,  

along a defined quantization axis (usually, the external magnetic field axis). If the system 
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is exposed to an external magnetic field, the configuration of the energy eigenstates of 

the spin-1/2 pair is different if the nuclear sites are magnetically equivalent or inequivalent. 

If the nuclear sites are magnetically equivalent, the nuclei experience identical local 

magnetic fields generated by the local electronic environment. In this situation, the singlet 

and triplet states are exact eigenstates of the Hamiltonian of the system. The three triplet 

states are split by the nuclear Zeeman resonance frequency, which is proportional to the 

applied magnetic field, as shown in figure 1. 

 

 

Figure 1 Energy levels for a system of two magnetically equivalent spins with I = 1/2. 

 

If the nuclear sites are magnetically inequivalent, the nuclei experience local fields which 

can be significantly different, depending on the size of the chemical shift difference and 

the magnitude of the external magnetic field. If this difference is much larger than the 

scalar coupling between the two spins, the spin-pair is said to be weakly coupled. In this 

situation, the energy eigenstates of the system are close to the individual Zeeman states 

|𝛼𝛼⟩, |𝛼𝛽⟩, |𝛽𝛼⟩ and |𝛽𝛽⟩, as shown in figure 2. 

Usually, the relaxation of nuclear spin systems is described by Redfield’s equations, which 

involve transition probabilities between pairs of eigenstates. The classical Redfield theory 

of weakly-coupled spin pairs does not use the singlet and triplet states, since these are 

not eigenstates of a system of two inequivalent spins.  

However, the use of singlet and triplet states in the Redfield formalism can show an 

important property: just as in electronic spectroscopy, where intersystem crossing 

between singlet and triplets is a slow process, nuclear singlet-triplet transitions break spin-
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exchange symmetry and are therefore hindered. In addition, if the coherent singlet-triplet 

transitions are suppressed, the lifetime of the nuclear singlet order is often longer than the 

longitudinal relaxation time 𝑇1. This fact provides the interesting possibility of storing 

nuclear spin order for times much longer than 𝑇1.[2-4] 

 

 

Figure 2 Energy levels for a magnetically inequivalent 2-spin-1/2 system. 

 

However, in order to exploit these longer lifetimes, two problems must be overcome. In 

the case of two inequivalent spins, spin order cannot be deposited in a state that is not an 

eigenstate of the Hamiltonian of the system. Indeed, rapid singlet-triplet interconversion 

would lead to a rapid depletion of the non-equilibrium state. On the other hand, singlet 

states cannot be observed directly, since they have total spin zero and therefore they do 

not give rise to any NMR signal. 

 

3.1 The principle of symmetry-switching 

 

he solution to both problems outlined above is to switch the symmetry of the spin 

interactions at different points during the experimental procedure. When the 

symmetry prevails, coherent singlet-triplet transitions are quenched, so that the 

lifetime of the singlet state is extended. When the symmetry is broken, singlet-triplet 
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transitions are allowed, so that spin order to be deposited in the singlet state and be 

converted into detectable magnetization. 

A typical singlet NMR experiment comprises three steps:  

 In the excitation interval, the symmetry is broken, so that coherent singlet-triplet 

transitions are allowed. These coherent transitions are used to create an imbalance 

between the populations of the singlet and triplet states, abbreviated as TSI (triplet-

singlet imbalance); 

 In the storage interval, coherent singlet-triplet transitions are quenched by imposing 

spin-exchange symmetry. During this period, the TSI decays with a time constant 

𝑇𝑇𝑆𝐼 (also known as 𝑇𝑆), which may be longer than the longitudinal relaxation time 

𝑇1; 

 In the detection interval, the symmetry is broken again. This permits the 

observation of singlet-derived NMR signals. In fact, nuclear singlet order is non-

magnetic, but the broken symmetry restores coherent singlet-triplet transitions, 

which are used to obtain observable nuclear magnetization.  

If a pair of magnetically equivalent spins is considered, symmetry is a starting feature of 

the system. The symmetry has to be broken both to populate the TSI and subsequently 

during the detection interval. Conversely, if an inequivalent two-spin system is considered, 

symmetry must be imposed during the storage interval. 

All para-hydrogen-based methods belong to the first category and exploit the use of 

chemical reactions to break the symmetry of the two magnetically equivalent spins during 

the excitation and detection intervals.[5, 6] Dihydrogen gas is prepared in a metastable 

state of enriched nuclear singlet order by thermal equilibration at low temperatures 

(typically 40 K) in the presence of a metal catalyst, followed by separation from the catalyst 

and warming to ambient temperature. The symmetry of the hydrogen molecule is usually 

broken by a reaction in a metal complex. In this state of broken symmetry, coherent 

singlet-triplet transitions permit the conversion of hyperpolarized singlet order to 

hyperpolarized magnetization, thus leading to large NMR signals. 

It has been recently demonstrated that a singlet-triplet imbalance can also be created 

directly in a system of magnetically equivalent spins by dynamic nuclear polarization 

(DNP); the resulting long-lived states have been nicknamed Hyperpolarized Equivalent 

Long-Lived States (HELLS).[7] The detection is performed after the symmetry has been 

broken, by means of enzymatic or chemical reactions. Alternatively, the TSI can be 
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transferred by cross-relaxation to observable, enhanced signals of protons and coupled 
13C spins.[8] 

Alternatively, many traditional methods use a change of the magnetic field to which the 

nuclei are exposed to impose or remove the symmetry in a system of magnetically 

inequivalent spins. In field-cycling singlet NMR, a strong magnetic field is applied to break 

the exchange symmetry. Then, exchange symmetry is restored by removing this magnetic 

field and coherent singlet-triplet transitions are suppressed. To obtain detectable 

magnetization, radiofrequency pulse sequences can be applied at the nuclear resonance 

frequency.[1, 2, 9] In high-field NMR, the nuclear singlet order is maintained by using a 

resonant spin-locking field which suppresses effects of chemical shift differences and 

establishes an effective spin-exchange symmetry in the nuclear spin Hamiltonian.[1, 3, 

10] 

 

3.2 Applications 

 

he extended lifetime of nuclear singlet states can suggest new applications of 

hyperpolarized NMR. In fact, they can provide a possibility to reduce losses of 

hyperpolarized spin order due to relaxation in the interval between the generation 

of hyperpolarized spin order and its use.  

Dynamic nuclear polarization (DNP) consists in the doping of the sample with 

paramagnetic species and the application of a resonant microwave field slightly offset 

from the electron Larmor frequency at low temperatures. Under suitable conditions, a 

large polarization of nuclei builds up. It has been shown that the frozen sample can be 

dissolved using injection of a hot solvent and transferred to an NMR magnet, resulting in 

an enormous increase in signal strength.[11] Nevertheless, this dissolution method (D-

DNP) has a serious limitation:  hyperpolarized magnetization has a limited lifetime, which 

decays with the time constant 𝑇1. Relaxation causes important losses of hyperpolarization 

during the warming process, the transport to the second magnet, or the transport of the 

hyperpolarized substance to the site of interest. The use of singlet states has enormous 

potential in combination with dissolution-DNP. Tayler and coworkers have shown that a 

TSI can be directly populated before the transfer by DNP for the two inequivalent 13C spins 

in 1,2-13C2-pyruvic acid.[12] They demonstrated that a singlet-triplet population imbalance 

could be created directly by hyperpolarization, i.e., without any extra manipulations of the 
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sample. However, in this experiment the magnitude of the TSI, which depends on the 

nuclear polarization reached, was very limited. As discussed before, alternative strategies 

involve the use of magnetically equivalent spin systems and particular strategies for the 

detection of the otherwise NMR-silent singlet order. [7, 8] However, most of the current 

experiments where D-DNP is combined with LLS rely on rf pulses sequences to prepare 

the LLS after the transfer of the hyperpolarized sample to the detection spectrometer.[13-

15] 

The extended lifetime of singlet states allows a greater interval for the transport to take 

place, while still maintaining the memory of the nuclear spin system. This allows the 

measurement of smaller diffusion coefficients or slower flow rates. Singlet states can also 

allow the study of slower exchange processes than is normally the case.[4, 16, 17] 

The relaxation of nuclear singlet states is sensitive to the presence of nearby magnetic 

centers such as other magnetic nuclei and can therefore be used as a probe of molecular 

geometry. Its sensitivity to changes in molecular structure can be used to detect protein 

folding and unfolding.[18] 

 

3.3 Long-Lived States: the principles 

 

uclear magnetic resonance can give structural and dynamic information on 

molecules containing nuclei with a non-vanishing magnetic moment.  

Many studies, like the examination of slow translational diffusion, chemical 

exchange or folding of proteins, are limited by the longitudinal relaxation time 𝑇1, which 

gives a measure of the time needed for the nuclear spins to return to thermal equilibrium. 

𝑇1 is usually regarded as the maximum lifetime of the memory of nuclear spins. 

Nevertheless, Carravetta and Levitt have recently demonstrated that there are nuclear 

spin states whose decay time constant 𝑇𝐿𝐿𝑆 is much longer than 𝑇1.[1, 10, 19, 20] These 

nuclear states are called Long Lived States (LLS). LLS are based on peculiar properties 

of singlet states, i.e., spin states that can be represented by an antisymmetric combination 

of Zeeman spin states of two nuclei. A singlet state is immune to the dipolar interaction 

between the two spins of the system, which is the main relaxation mechanism in solution-

state NMR. If a population imbalance between singlet and triplet states can be created, it 

can be be stored for a long time. 
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Nuclear spin states are conveniently labeled as |𝛼⟩ and |𝛽⟩
 
according to the projection of 

their angular moment onto the z-axis: 

 𝐼𝑧|𝛼⟩ =  
1

2
 |𝛼⟩ (2) 

 
𝐼𝑧|𝛽⟩ = − 

1

2
 |𝛽⟩ (3) 

 

Singlet and triplet states are defined as antisymmetric and symmetric superpositions, 

respectively, of the Zeeman spin states. As mentioned in equation 1, they can be written 

as follows:
 

 

 |𝑆0⟩ =  
1
√2
⁄  (|𝛼𝛽⟩ − |𝛽𝛼⟩) 

|𝑇−1⟩ = |𝛽𝛽⟩ 

|𝑇0⟩ =  
1
√2
⁄  (|𝛼𝛽⟩ + |𝛽𝛼⟩) 

|𝑇+1⟩ = |𝛼𝛼⟩ 

 

with 

 𝐼2|𝑆0⟩ =  𝐼(𝐼 + 1)|𝑆0⟩ = 0 (4.1) 

 𝐼2|𝑇𝑚⟩ = 𝐼(𝐼 + 1)|𝑇𝑚⟩ = 2|𝑇𝑚⟩  (4.2) 

 

where  𝐼2 = 𝐼𝑥
2 + 𝐼𝑦

2 + 𝐼𝑧
2 is the square of the spin angular momentum and  𝑚 =  −1, 0, +1 

is the quantum number for the projection of 𝐼 onto the quantization axis.[21] 

These states can be classified according to their symmetry properties with respect to the 

spin exchange operator P: 

 𝑷|𝑆0⟩ =  −|𝑆0⟩ (5.1) 
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 𝑷|𝑇𝑚⟩ =  +|𝑇𝑚⟩  (5.2) 

The singlet state is anti-symmetric while the triplet states are symmetric with respect to 

the exchange of the two spins. The singlet and triplet states are eigenstates of the spin 

Hamiltonian for a magnetically equivalent spin pair. 

When the two spins are in magnetically equivalent environments, the nuclear spin 

Hamiltonian can be written as follows: 

 

 𝐻 = 𝜔0𝐼𝑧 + 2𝜋𝐽𝐼1𝐼2 (6) 

 

where 𝐽 is the spin-coupling constant, 𝜔0 = −𝛾𝐵 is the Larmor frequency and 𝐵 is the 

applied static magnetic field. Its matrix representation in the singlet-triplet basis is: 

 

                                           |𝑆0⟩        |𝑇+1⟩    |𝑇0⟩        |𝑇−1⟩    

 

𝐻 =

(

 
 
 
 
 
−
3

2
𝜋𝐽 0 0 0

0 𝜔0 +
1

2
𝜔𝐽 0 0

0 0
1

2
𝜔𝐽 0

0 0 0 −𝜔0 +
1

2
𝜔𝐽)

 
 
 
 
 

 (7) 

 

If the two spins are in magnetically equivalent environments, the three triplet states are 

spaced by energy dfferences 𝛾𝐵 and there is a field-independent energy difference of 2𝜋𝐽 

between the singlet state and the central triplet state. 

The singlet state is non-magnetic and does not induce any NMR signal. In practice, with 

the inversion-recovery method, in a system of magnetically equivalent spin pairs, only the 

relaxation to equilibrium within the triplet manifold is measured. The time constant 𝑇1 is 

thus an exclusive property of the triplet states. 

However, the situation is different if the population of the singlet state is perturbed with 

respect to that of the triplet state. In this case, the re-establishment of thermal equilibrium 
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needs singlet-triplet transitions. Here is the heart of the phenomenon. These transitions 

can be far slower than 𝑇1. 

The reason why 𝑇𝑠 is usually longer that 𝑇1 can be explained by symmetry considerations. 

It has been demonstrated in equation 5 that the singlet state is antisymmetric under 

exchange, while the three triplet states are symmetric with respect to exchange. However, 

the conversion of an exchange-antisymmetric state into an exchange-symmetric state 

requires a mechanism that is itself exchange-antisymmetric. Since many of the strongest 

relaxation processes are exchange-symmetric (including the homonuclear dipole-dipole 

coupling between the nuclei, which is the strongest relaxation mechanism in a system of 

two coupled spin-1/2 in solution), they cannot contribute to 𝑇𝑠. In general, a relaxation 

mechanism can induce singlet-triplet transitions only if it does something 'different' to the 

two nuclear spins. 

 

When the two spins are in magnetically inequivalent environments, the nuclear spin 

Hamiltonian can be written as follows: 

 

 𝐻 = 𝜔0(1 + 𝛿1)𝐼1𝑧 + 𝜔0(1 + 𝛿2)𝐼2𝑧 + 2𝜋𝐽𝐼1𝐼2 (8) 

 

where 𝛿1 and 𝛿2 are the two chemical shifts. Its matrix representation in the singlet-triplet 

basis is the following: 

 

                         |𝑆0⟩                    |𝑇+1⟩                   |𝑇0⟩                     |𝑇−1⟩   

 

𝐻 =

(

 
 
 
 
 
−
3

2
𝜋𝐽 0

1

2
𝜔0Δ 𝛿 0

0 𝜔0(1 +
1

2
Σ 𝛿) +

1

2
𝜔𝐽 0 0

1

2
𝜔0Δ 𝛿 0

1

2
𝜔𝐽 0

0 0 0 −𝜔0(1 +
1

2
Σ 𝛿) +

1

2
𝜔𝐽)

 
 
 
 
 

 (9) 

 

where the sum and the difference of the chemical shifts are: 
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 Σ 𝛿 =  𝛿1 + 𝛿2 (10.1) 

 Δ 𝛿 =  𝛿1 − 𝛿2 (10.2) 

 

The relaxation theory for inequivalent spin-1/2 pairs does not predict any states that have 

a lifetime longer than 𝑇1. The reason is apparent in equation 9: there are two terms 

1
2⁄ 𝜔0 Δ 𝛿 that connect the singlet state to the central triplet state. These terms indicate 

that singlet-triplet transitions are induced by the chemical shift frequency difference 

𝜔0 Δ 𝛿. Therefore, the long-lived nature of the singlet state is masked by the chemical shift 

difference. In order to fully exploit the long lifetime of singlet states the chemical shift 

difference must be suppressed. 

 

 

3.4 The singlet NMR experiment 

 

n the case of magnetically equivalent spin pairs, singlet and triplet states are 

eigenstates of the spin system. However, the singlet state is non-magnetic and does 

not provide an NMR signal. In the case of magnetically inequivalent spin pairs, when 

the nuclear spin Hamiltonian is expressed in the singlet-triplet basis, the cross terms 

between singlet and triplet states demonstrate that coherent singlet-triplet transitions are 

allowed by chemical shift frequency difference. 

Evidently, to exploit the long-lived nature of the singlet state (and hence to have 𝑇𝑠 =

 𝑇𝐿𝐿𝑆), a combination of the two previous situations has to be devised.  Starting from a 

magnetically inequivalent spin pair (IS spin system), the trick is to switch the symmetry of 

the spin interactions at different points during the experimental procedure: 

1. Singlet preparation: in a situation of broken spin-exchange symmetry; the two spins 

are magnetically inequivalent and the system Hamiltonian is the one given in 

equation 9. The goal is to obtain a magnetization which corresponds, in the next 

step, to the maximal difference between singlet and triplets populations; 

I 
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2. TSI sustaining: in this step, by imposing spin-exchange symmetry, coherent 

singlet-triplet transitions are prohibited and the singlet population decays with a 

constant time 𝑇𝑠 = =  𝑇𝐿𝐿𝑆 which can be much longer than 𝑇1; 

3. Detection: in the last step, spin-exchange symmetry is broken again and nuclear 

spin order is transformed into a detectable magnetization. 

The two most used procedures for sustaining TSI are the followings:  

a) Field cycling: the magnetic field is temporarily reduced (either by removing the 

sample from the region where the magnetic field is strong or by reducing the current 

in the main solenoid) and magnetic equivalence is thus established; 

b) Radio-frequency spin-locking: the effect of the chemical shift difference is 

suppressed by applying a resonant radio-frequency field. 

The mechanical procedure for the field cycling method is often slow and complicated. 

Where possible, it is more convenient to apply resonant radio-frequency irradiation to 

suppress the chemical shift difference. This is the solution that we adopted in the 

experiments shown in this thesis, and it will be described in more detail in the following 

paragraphs. 

 

3.4.1 TSI preparation 

 
In this step, a spin density operator corresponding to singlet nuclear spin order must be 

created. The normalized operator 𝑄𝐿𝐿𝑆, which describes the population difference 

between singlet and triplet states, is given by: 

 

 
𝑄𝐿𝐿𝑆 = 

√3

2
[|𝑆0⟩⟨𝑆0| −

1

3
(|𝑇+1⟩⟨𝑇+1| + |𝑇0⟩⟨𝑇0| + |𝑇−1⟩⟨𝑇−1|)] (11) 

 

Since singlet and triplet states are not eigenstates in a magnetically inequivalent spin pair, 

it is more convenient to define two distinct basis sets: 

 IS spin system: Product Basis set (PB)   Φ𝑃𝐵 = {|𝛼𝛼⟩, |𝛼𝛽⟩, |𝛽𝛼⟩, |𝛽𝛽⟩} ; 

 I2 spin system: Singlet-Triplet Basis set (STB)  Φ𝑆𝑇𝐵 = {|𝑆0⟩, |𝑇+1⟩, |𝑇0⟩, |𝑇−1⟩} 
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It is thus possible to convert the density operator from the Liouville space expressed in 

the Φ𝑆𝑇𝐵 base to the Liouville space expressed in the Φ𝑃𝐵 base and vice-versa.[4] 

The operator QLLS expressed in the product basis is: 

 

 𝑄𝐿𝐿𝑆 =  −
2

√3
 (𝐼𝑥𝑆𝑥 + 𝐼𝑦𝑆𝑦 + 𝐼𝑧𝑆𝑧) =  

1

√3
(−2𝑍𝑄𝑥 − 2𝐼𝑧𝑆𝑧)  (12) 

 

where 𝑍𝑄𝑥 = [|𝛼𝛽⟩⟨𝛽𝛼| + |𝛽𝛼⟩⟨𝛼𝛽|] 2⁄  and 2𝐼𝑧𝑆𝑧 = [|𝛼𝛼⟩⟨𝛼𝛼| − |𝛼𝛽⟩⟨𝛼𝛽| − |𝛽𝛼⟩⟨𝛽𝛼| +

|𝛽𝛽⟩⟨𝛽𝛽|]. 

In order to excite LLS, a zero-quantum coherence ZQx and/or a longitudinal two-spin order 

2IzSz must be created.[4] 

 

3.4.2 TSI storage 

 
As mentioned above, the chemical shift difference between spins in magnetically 

inequivalent sites leads to coherent singlet-triplet transitions in the presence of the main 

field 𝐵. To reveal the long lifetime of the singlet state, this source of relaxation must be 

suppressed. 

 

 

Figure 3 Sketch of an NMR spectrum of a weakly coupled two spin ½ system with some important 

parameters. 

 

The Hamiltonian of a two-spin system irradiated by a continuous RF field is given by: 
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 𝐻 = 𝜔1(𝐼𝑥 + 𝑆𝑥) + Δ𝜔(𝐼𝑥 + 𝑆𝑥) + 2𝜋𝐽𝐼𝑆 +
1
2⁄ ΔΩ(𝐼𝑥 − 𝑆𝑥)   (13) 

 

where 𝜔1 is the RF amplitude, Δ𝜔 = 𝜔𝑅𝐹 − (Ω𝐼 + Ω𝑆)/2 is the offset of the carrier 𝜔𝑅𝐹 

from the center of the spectrum (Ω𝐼 + Ω𝑆)/2 and ΔΩ =  Ω𝐼 − Ω𝑆 is the chemical shift 

difference.[22] While the first three terms in the equation above are invariant with respect 

to a permutation of the two spins, the last term is anti-symmetric. This causes singlet-

triplet transitions that lead to the leakage of singlet state population.  

The application of a radio-frequency (RF) field allows the suppression of the chemical shift 

difference, making the effective Hamiltonian symmetric with respect to permutation. The 

ratio ΔΩ/𝜔1 between the magnitude of the chemical shift difference and the RF amplitude 

is an important parameter that affects the singlet lifetime. The ratio Δ𝜔/𝜔1 between the 

offset and the RF amplitude is another important parameter. When Δ𝜔 𝜔1⁄ = 0 and 

ΔΩ/𝜔1  ≪ 1, the term proportional to the chemical shift difference ΔΩ is rendered 

ineffective. However, when the offset |Δ𝜔| 𝜔1⁄ > 0, part of the term that is proportional to 

ΔΩ remains secular with respect to the first dominant term. In other words, moving the 

carrier away from the center of the spectrum (Δ𝜔 ≠ 0) re-introduces the chemical shift 

difference. To efficiently sustain the singlet state, it is necessary to know the value of the 

two chemical shifts. 

A sufficiently strong RF field imposes a spin-exchange symmetry on the nuclear spin 

system and locks the anti-symmetric singlet state. However, to sustain the TSI, the RF 

field must be applied for a long interval. Therefore, the applied RF field should be as weak 

as possible in order to minimize sample heating.  

Spin-locking can be achieved with an unmodulated RF field, often referred to as 

continuous-wave (CW) irradiation. Assuming that the RF carrier frequency corresponds 

to the chemical shift 𝛿𝑅𝐹, the resonance offset frequencies are given by  

 

 Ω1 = 2𝜋𝛾𝐵(𝛿1 − 𝛿𝑅𝐹)  (14.1) 

 Ω2 = 2𝜋𝛾𝐵(𝛿2 − 𝛿𝑅𝐹)  (14.2) 
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A good singlet spin-locking by a CW RF field requires that the nutation radiofrequency 

𝜔𝑛𝑢𝑡 is considerably larger than both resonance offset frequencies (|𝜔𝑛𝑢𝑡|  ≫  |Ω1|, |Ω2|). 

For example, in a 600 MHz spectrometer (14 T), two protons with a chemical shift 

difference of 1 ppm are spaced by 600 Hz. The resonant frequencies are +/- 300 Hz away 

from the spin-locking field and an RF nutation frequency of at least 1 kHz would be 

necessary for efficient singlet spin-locking. This amplitude can be applied to the sample 

for intervals as long as a few minutes without problems.  

If the chemical shift difference is larger, the situation is more complicated. For example, a 

chemical shift difference of 50 ppm (i.e., 7.5 kHz in 14 T) is common for 13C. Under these 

conditions, it is impossible to lock the singlet state of such a spin pair without risking 

sample heating and damage to the NMR probe. Therefore, singlet spin-locking using CW 

RF fields requires that the two spins have similar chemical shifts and that the RF field is 

applied close to resonance for both spins. 

Spin-locking can also be obtained by modulated spin-locking fields. Trains of broadband 

refocusing pulses can be used [4] as well as WALTZ-16 modulation of the RF field [10]. 

With this technique, a much broader bandwidth of the spin-locking field can be achieved 

with respect to the average chemical shift, but not with respect to the difference of the 

chemical shifts. This is a strong restriction on singlet NMR performed in high magnetic 

fields. In most cases, if the chemical shift difference is very large, the field-cycling method 

must be used instead of spin-locking 

.     

3.4.3 Detection 

 
As described by equation 12, during the sustaining time of the singlet state, the nuclear 

spin order is comprised of zero-quantum coherence and longitudinal two-spin order. At 

the end of the sustaining time, the density operator must be converted into detectable 

magnetization. For this purpose, a procedure that resembles the time-reversal of the 

singlet preparation step can be used.[4] 
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3.4.4 LLS pulse sequence 

 
As mentioned above, the LLS experiments presented in this thesis were performed using 

the optimized LLS pulse sequence described by Sarkar.[4] Hereunder the individual steps 

of the pulse sequence are described. 

 

 

 
 

System: two non-equivalents spins 𝐼 =  1 2⁄  and 𝑆 =  1 2⁄  with a chemical shift difference 

Δ𝜈𝐼𝑆 = (Ω𝐼 − Ω𝑆)/(2𝜋), and scalar coupling constant 𝐽𝐼𝑆. 

 

1. Boltzmann equilibrium, the magnetization is aligned with the z axis [23]: 

 

 𝜎(1) = 𝑎(𝐼𝑧 + 𝑆𝑧)   (15) 

 

2. The first 𝜋 2⁄  pulse with a phase parallel to the x axis flips the magnetization 

towards the transverse plane of the rotating frame: 

 

 
𝜎(1)  

(𝜋 2⁄ )𝑥
→     𝜎(2) = 𝑎(−𝐼𝑦 − 𝑆𝑦)   (16) 

 

3. The 𝜏1 − 𝜋 − 𝜏1 sequence convert the in-phase magnetization into anti-phase 

magnetization if 𝜏1 = 1/(4𝐽𝐼𝑆): 

 

 𝜎(2)  
𝜏1−𝜋−𝜏1
→       𝜎(3) =  𝑎(2𝐼𝑥𝑆𝑧 + 2𝐼𝑧𝑆𝑥)   (17) 
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4. The 𝜋 4⁄  pulse along the –y axis generates a superposition of longitudinal two-spin 

order and two-spin coherence: 

 

 

 

 

 

 

𝜎(3)  
(𝜋/4)−𝑦
→      𝜎(4) =  𝑏(2𝐼𝑧𝑆𝑧 − 2𝐼𝑥𝑆𝑥)  (18) 

 

Using the definitions of zero (𝑍𝑄𝑥) and double- (𝐷𝑄𝑥) quantum coherences [24]: 

 

 

 

 
{
𝑍𝑄𝑥 = 

1

2
(2𝐼𝑥𝑆𝑥 + 2𝐼𝑦𝑆𝑦)

𝐷𝑄𝑥 = 
1

2
(2𝐼𝑥𝑆𝑥 − 2𝐼𝑦𝑆𝑦)

 (19) 

 

we have 2𝐼𝑥𝑆𝑥 = 𝑍𝑄𝑥 + 𝐷𝑄𝑥 and hence: 

 

 

 

 

𝜎(4) =  𝑏(2𝐼𝑧𝑆𝑧 − 𝑍𝑄𝑥 −𝐷𝑄𝑥)  (20) 

The 𝐷𝑄𝑥 term can be suppressed by a pulsed field gradient (PFG) which affects 

neither the 2𝐼𝑧𝑆𝑧 nor the 𝑍𝑄𝑥 terms, so that one retains after this PFG: 

 

 

 
𝜎(4) =  𝑏(2𝐼𝑧𝑆𝑧 − 𝑍𝑄𝑥)   (21) 

 

5. To avoid that 2𝐼𝑧𝑆𝑧 and −𝑍𝑄𝑥 cancel each other, a delay 𝜏2 = 1/(2Δ𝜈𝐼𝑆) is inserted 

to let −𝑍𝑄𝑥 evolve into +𝑍𝑄𝑥 under the chemical shift difference: 
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𝜎(4)  

𝜏2=1/(2Δ𝜈𝐼𝑆)
→          𝜎(5) =  𝑏(2𝐼𝑧𝑆𝑧 + 𝑍𝑄𝑥)    (22) 

 

6. A continuous-wave (CW) radiofrequency (RF) field with an amplitude 𝜈1 larger than 

the chemical shift difference between the two spins (𝜈1 > 5Δ𝜈𝐼𝑆) is usually applied 

to render the two spins I and S equivalent. During the ‘sustaining delay’ 𝜏𝑚, the 

spin system is better best described in the singlet-triplet basis (STB) given by 

Φ𝑆𝑇𝐵 = {|𝑇+1⟩, |𝑇0⟩, |𝑆0⟩, |𝑇−1⟩}. The conversion from the product basis to the 

singlet-triplet basis can be summed up as follows: 

 

                 

 

 

where filled circles indicate a population excess with respect to thermal equilibrium, 

while empty circles indicate a population deficiency. Hence one obtains:  

 

  

 

 

 

𝜎(6) = 𝑏(|𝑆0⟩⟨𝑆0| −
1

2
(|𝑇1⟩⟨𝑇1| + |𝑇−1⟩⟨𝑇−1|))𝑆𝑇𝐵    (23) 

 

7. During the sustaining delay 𝜏𝑚, the population |𝑆0⟩⟨𝑆0| of the singlet state |𝑆0⟩ is 

isolated from the three triplet states. The flow of populations between the singlet 

and triplet states is largely suppressed as long as the magnetic equivalence is 

maintained by the RF field. However, the populations of the three triplet states will 

equilibrate with a time constant 𝑇1. If we multiply all populations by an arbitrary 

factor three for the sake of clarity, we have at the end of the sustaining delay 𝜏𝑚: 
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𝜎(7) = 𝑐(|𝑆0⟩⟨𝑆0| −
1

3
(|𝑇1⟩⟨𝑇1| + |𝑇0⟩⟨𝑇0| + |𝑇−1⟩⟨𝑇−1|))𝑆𝑇𝐵    (24) 

 

8. When the CW RF field is switched off, the two spins become inequivalent again, 

and are best described in the product basis (PB): 

 

 

 

 
𝜎(7) =  

𝑐

2
(

1
1

−3
1

)

𝑆𝑇𝐵

𝐶𝑊 𝑜𝑓𝑓
→     𝜎(8) =  𝑐(2𝐼𝑧𝑆𝑧 + 𝑍𝑄𝑥)𝑃𝐵    (25) 

 

9. Again, 𝑍𝑄𝑥 is converted to −𝑍𝑄𝑥 via the chemical shift difference during a delay 

𝜏2 = 1/(2Δ𝜈𝐼𝑆). Remembering the definition of −𝑍𝑄𝑥 (see step 4) , we obtain: 

 

 

 

 

𝜎(9) = 𝑐(2𝐼𝑧𝑆𝑧 − 𝑍𝑄𝑥) = 𝑐(2𝐼𝑧𝑆𝑧 − 2𝐼𝑥𝑆𝑥 − 2𝐼𝑦𝑆𝑦)    (26) 

 

10. A last (𝜋 4⁄ ) pulse along the y-axis partly converts the first two terms into 

observable anti-phase magnetization, while −2𝐼𝑦𝑆𝑦 remains unobservable: 
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𝜎(9) 

(𝜋 4⁄ )𝑦
→     𝜎(10) = 𝑑(2𝐼𝑥𝑆𝑧 + 2𝐼𝑧𝑆𝑥 − 2𝐼𝑦𝑆𝑦)  (27) 

 

11. An optional 𝜏1 − 𝜋 − 𝜏1 sequence with 𝜏1 = 1/(4𝐽𝐼𝑆) can be inserted to convert the 

antiphase magnetization into in-phase magnetization: 

 

 𝜎(10) 
𝜏1−𝜋−𝜏1
→       𝜎(11) =  𝑑(𝐼𝑦 + 𝑆𝑦 − 2𝐼𝑦𝑆𝑦)   (28) 

The sensitivity of LLS experiments is limited by the requirements of  magnetization 

transfer. Ignoring relaxation, the presence of two 𝜋 4⁄  pulses leads to a signal which is 

about one-half of the signal derived from the initial polarization. In addition, the 

experiments suffer from transverse relaxation of the zero-quantum component 𝑇2(𝑍𝑄) and 

from longitudinal relaxation of the IzSz term 𝑇1(𝐼𝑧𝑆𝑧) during the two intervals 𝜏2 =

1/(2𝛥𝜈𝐼𝑆). 

To boost the sensitivity, one can use pulse schemes such as WASTE [25] for homonuclear 

decoupling of the two spins that participate in the LLS during signal acquisition. The 

collapse of the two doublets into two singlets would increase the observed signals 

intensities.  

 

3.5 Relaxation of Long-Lived States 

 

It has been previously mentioned that LLS are immune to relaxation by fluctuations of the 

dipolar coupling between the two nuclei of the spin system. As shown by equation 5, 

singlet states are antisymmetric with respect to the permutation of the two spins, while the 

dipole-dipole interaction is a mechanism which acts symmetrically on the spin pair and 

thus cannot mix symmetric triplet states with the antisymmetric singlet state. 
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In its simplest form, relaxation can be described by Bloch's equations, which provide a 

phenomenological picture of relaxation. Bloch’s formulation does not provide any 

microscopic explanation of the origin of relaxation, nor does it allow to predict the 

magnitude of the rate constants. This limitation can be overcome by treating relaxation 

quantum mechanically. 

In Liouville space, the relaxation rates of populations and coherences can be obtained as 

eigenvalues of the matrix representation of the relaxation superoperator in an appropriate 

operator basis. The set of basis operators is chosen as the one containing all 

eigenoperators 𝑄𝑟 obtained by commutation with the total spin angular momentum along 

the z-axis 𝐼𝑧: 

 

 𝐼𝑧𝑄𝑟 = 𝑝𝑟𝑄𝑟   (29) 

 

where the integer value 𝑝𝑟 is called the coherence order. 

If a superoperator 𝑨 commutes with the superoperator Iz, the matrix representation of 𝑨 is 

block-diagonal in the chosen basis set 𝑏 with a block for each possible value of the 

coherence order 𝑝 [21]: 

 

 
 

The matrix block containing operators with the same coherence order p will be denoted 

as [𝑨]𝑝
𝑏. In the context of singlet states relaxation, it is convenient to use an operator basis 

where the basis operators are built from an appropriate combination of all the 16 products 

of the type [10]: 

 

 |𝑠⟩⟨𝑟|   (30) 

 

 

where |𝑠⟩  ∈  {|𝑆0⟩, |𝑇−1⟩, |𝑇0⟩, |𝑇+1⟩} 

           ⟨𝑟|  ∈  {⟨𝑆0|, ⟨𝑇−1|,⟨𝑇0|, ⟨𝑇+1| } 
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Furthermore, it is sufficient to consider only the zero-quantum block of the relaxation 

matrix to examine the relaxation properties of LLS because the singlet state belongs to 

this block and is not coupled to any blocks with different coherence orders.[21] 

 

  

 

Figure 4 Redfield kite structure of the relaxation supermatrix [26]. 

 

The zero-quantum block (𝑝 =  0) of the operator basis is: 
 
 
 

𝑆𝑇𝐵0 = 

{
 
 
 
 

 
 
 
 

1

2
(|𝑆0⟩⟨𝑆0| + |𝑇+1⟩⟨𝑇+1| + |𝑇0⟩⟨𝑇0| +  |𝑇−1⟩⟨𝑇−1|)

1

2√3
(3|𝑆0⟩⟨𝑆0| − |𝑇+1⟩⟨𝑇+1| −  |𝑇0⟩⟨𝑇0| − |𝑇−1⟩⟨𝑇−1|  )

1

√2
(|𝑇+1⟩⟨𝑇+1| − |𝑇−1⟩⟨𝑇−1|)

1

√6
(2|𝑇0⟩⟨𝑇0| − |𝑇+1⟩⟨𝑇+1| − |𝑇−1⟩⟨𝑇−1| )

|𝑆0⟩⟨𝑇0|

|𝑇0⟩⟨𝑆0| }
 
 
 
 

 
 
 
 

   (31) 

 

The first operator in this zero-quantum block (𝑄1
𝑆𝑇𝐵0) is one-half of the unity operator and 

commutes with all other spin operators. The second basis operator (𝑄2
𝑆𝑇𝐵0) has an 

expectation value proportional to the deviation of the singlet population from a uniform 

population distribution. The third (𝑄3
𝑆𝑇𝐵0) and the fourth (𝑄4

𝑆𝑇𝐵0) operators represent 

perturbations of the triplet populations, the third one having an expectation value 
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proportional to the total longitudinal magnetization for the two nuclei. Finally, the last two 

operators (𝑄5
𝑆𝑇𝐵0) and (𝑄6

𝑆𝑇𝐵0) represent zero-quantum singlet-triplet coherences. 

 

3.5.1 The homogeneous master equation 

 
The dynamics of a spin system can be described by the homogeneous Liouville-von 

Neumann master equation: 

 𝑑

𝑑𝑡
𝜎(𝑡)  =  −𝐿(𝑡)𝜎(𝑡)  (32) 

 

where 𝜎(𝑡) is the density matrix representation and 𝐿 the Liouvillian superoperator, which 

represents a superposition of both coherent and incoherent effects on the spin-system, 

described respectively by the commutation superoperators 𝐻0 and Γ: 

 

 𝐿(𝑡) = −𝑖𝐻0(𝑡)+  Γ   (33) 

 

In a frame rotating at a frequency 𝜔𝑅𝐹 (preferably corresponding to the average of the 

chemical shifts of the two spins), the coherent superoperator can be written as [27] 

 

 𝐻0 = 𝜔𝐼𝐼𝑧 +𝜔𝑆𝐼𝑧 + 2𝜋𝐽𝐼𝑆 + 𝜔𝑛𝑢𝑡(𝐼𝑥 + 𝑆𝑥)    (34) 

 

where 𝜔𝐼 and 𝜔𝑆 are the offsets of the two spins 𝐼 and 𝑆, respectively, and 𝜔𝑛𝑢𝑡 is the 

amplitude of the CW RF field with frequency 𝜔𝑅𝐹 applied to suppress the chemical shift 

difference of the two spins, making them equivalent in the sense of average Hamiltonian 

theory. 

The superoperator 𝐿 contains a superposition of the contributions of all possible relaxation 

mechanisms: 

 

 Γ =  Γ𝐷𝐷 + Γ𝐶𝑆𝐴 + Γ𝑆𝑅 + Γ𝑃𝑆 + ∑ Γ𝑗𝑘𝑗,𝑘     (35) 
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where Γ𝐷𝐷 is the contribution due to the dipole-dipole (DD) interaction between the two 

spins, Γ𝐶𝑆𝐴 is the contribution of the chemical shift anisotropy, Γ𝑆𝑅 is the contribution of the 

spin rotation mechanism and Γ𝑃𝑆 is the contribution of interactions with the paramagnetic 

species, while ∑ Γ𝑗𝑘𝑗,𝑘  is the sum of all cross-correlation terms, such as DD-CSA, etc.. 

From now on it is necessary to distinguish the types of mechanisms that cause relaxation. 

In the following paragraph, the attention will be focused on the dipolar mechanism 

between the spin pair, in order to demonstrate its inefficiency for the relaxation of LLS.

 

3.5.2 The dipolar relaxation mechanism 

 
As mentioned, it is possible to demonstrate, by symmetry arguments, that the singlet state 

of two spin-1/2 nuclei is immune to the DD relaxation mechanism. 

Singlet states are anti-symmetric with respect to spin exchange, while the dipole-dipole 

interaction acts symmetrically on the two coupled nuclei and thus cannot mix symmetric 

and anti-symmetric states. Therefore, singlet and triplet states are never interchanged. 

A theoretical explanation requires examination of the zero-quantum block of the matrix 

representation of Γ𝐼𝑆
𝐷𝐷 in the 𝑆𝑇𝐵0 basis [21] : 

 

 

[Γ𝐼𝑆
𝐷𝐷]0

𝑆𝑇𝐵0 = −
𝑏𝐼𝑆
2 𝜏𝑐
10

(

  
 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 15 0 0 0
0 0 0 9 0 0
0 0 0 0 5 0
0 0 0 0 0 5)

  
 

 (36) 

 

where 𝑏𝐼𝑆 = −(ℏ𝜇0𝛾𝐼𝛾𝑆)/(4𝜋𝑟𝐼𝑆
3 ) is the dipolar coupling constant. 

The zero-quantum block is diagonal and 𝑄2
𝑆𝑇𝐵0 is, indeed, an eigenoperator of the 

superoperator DD

IS . Its eigenvalue corresponds therefore to the decay rate of the singlet 

population. At the same time, the longitudinal magnetization −𝑄2
𝑆𝑇𝐵0 has a  non-vanishing 

decay rate. Hence in the extreme narrowing regime [21]: 

 𝑅𝑠
𝐷𝐷 = 0    (37) 
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 𝑅1
𝐷𝐷 = 

3

2
𝑏𝐼𝑆
2 𝜏𝑐    (38) 

 

The relaxation rate of the singlet state 𝑅𝑠
𝐷𝐷 due to the dipolar interaction between the spin 

pair vanishes. The singlet state population is immune to this kind of interaction. On the 

other hand,

 

the correspondent longitudinal magnetization decay rate 𝑅1
𝐷𝐷 does not vanish 

and is consistent with that derived by Redfield relaxation theory. 

As a result, if a population imbalance between singlet and triplet states is excited, the main 

relaxation mechanism in solution is switched off. Relaxation of this long-lived state will 

occur due to secondary mechanisms, like dipolar couplings with “out-of-pair” nuclear spins 

or paramagnetic species, chemical shift anisotropy, spin rotation, and so on.  
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4. The use of Long-Lived States for studying ligand-protein 

interactions 

 

he first step of drug discovery is commonly referred to as hit identification. 

Screening techniques such as enzyme-linked immunosorbent assays (ELISA),[1] 

surface plasmon resonance (SPR, also known under the trade name Biacore),[2] 

isothermal titration calorimetry (ITC),[3] and an ever-expanding range of nuclear magnetic 

resonance (NMR) techniques [4-6] allow one to recognize ligands for a defined protein 

contained in extensive libraries of chemical compounds.  

Because one can choose from a wide range of observable parameters, NMR 

spectroscopy offers several methods to study interactions between small ligand molecules 

and macromolecular targets. It is possible to extract dissociation constants [7] and to 

obtain structural information about the protein and its complex with the ligand.[8] Provided 

the exchange between the free and bound forms of the ligand is faster than the difference 

of their resonance frequencies,[8, 9] i.e., when 𝑘𝑒𝑥 ≈  𝑘𝑜𝑓𝑓  ≫ (𝜋/√2)Δ𝜐, where Δ𝜐 is the 

chemical shift difference (in Hz) of the signals in the bound and free states, any observable 

quantity 𝜀𝑜𝑏𝑠, be it a frequency or a relaxation rate, is determined by a weighted average 

of the free and bound forms [10]: 

 

 𝜀𝑜𝑏𝑠 =  𝑝𝐵𝜀𝐵 +  𝑝𝐹𝜀𝐹    (1) 

 

where 𝑝𝐵 and 𝑝𝐹 are the mole fractions of the bound and free ligands, respectively, while 

𝜀𝐵 and 𝜀𝐹 are the values of the parameter 𝜀 in the bound and free forms, respectively. 

Observation of differences between 𝜀𝑜𝑏𝑠 and 𝜀𝐹 allows the detection of ligand binding. 

Provided that 𝜀𝐵 ≠ 𝜀𝐹, differences between 𝜀𝑜𝑏𝑠 and 𝜀𝐹 can be detected if there is a certain 

amount of ligand in the bound form, i.e., 𝑝𝐵 > 0. 

The sensitivity of a parameter 𝜀 to binding events can be expressed by the experimental 

contrast 𝐶𝜀, which is a function of the “observable” parameters 𝜀𝑜𝑏𝑠 and 𝜀𝐹: 

 

 𝐶𝜀 =  |
𝜀𝑜𝑏𝑠− 𝜀𝐹

𝜀𝑜𝑏𝑠
| ∗ 100    (2) 

 

The larger the contrast, the more sensitive the parameter 𝜀 to ligand–protein binding, i.e., 

smaller the fraction of ligand in the bound form 𝑝𝐵 that is required to detect binding.  

T 
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Several NMR methods based on such a contrast are extensively used nowadays to 

determine dissociation constants of ligand–protein interactions. The quantity 𝜀𝑜𝑏𝑠 can be 

determined by the chemical shifts of one or more selected nuclei of either target proteins 

[11] or ligands,[12] the translational or rotational diffusion constant of the ligand,[13] the 

relaxation rates 𝑇1, 𝑇2 or 𝑇1𝜌, the rate of magnetization transfer by cross-relaxation 

(Overhauser effect) between protons belonging to the ligand,[14] the saturation transfer 

from proteins to ligands determined by difference spectroscopy,[15] or “waterLOGSY” that 

exploits differences in the rate of transfer of magnetization from bulk water to free or bound 

ligands by cross-relaxation.[16] Several of these methods rely on differences in rotational 

correlation times between the free ligand and the protein–ligand complex.[17] 

It has been recently demonstrated that so-called Long-Lived States (LLS), also known as 

singlet states (SS) in isolated two-spin systems, can be used very efficiently to investigate 

protein-ligand interactions.[18] In the following paragraphs, the use of LLS for this purpose 

will be described and experimental results will be discussed. 

 

 

4.1 LLS contrast 

 

s mentioned in the previous paragraph, detection of ligand-receptor binding is 

obtained through observation of a difference between  𝜀𝑜𝑏𝑠 and 𝜀𝐹. Equation 1 

nicely shows that such a difference is possible only if 𝜀𝐵 ≠ 𝜀𝐹. In particular, the 

larger the difference between 𝜀𝐵 and 𝜀𝐹, the smaller the fraction of ligand in the bound 

form 𝑝𝐵 required to generate a sufficient difference between the parameters 𝜀𝑜𝑏𝑠 and 𝜀𝐹. 

In other words, for a fixed ligand-to-receptor ratio [𝐿]/[𝑃], i.e., a fixed 𝑝𝐵, large differences 

between 𝜀𝐵 and 𝜀𝐹 lead to a large experimental contrast 𝐶𝜀, while small differences 

between 𝜀𝐵 and 𝜀𝐹 lead to a small value of 𝐶𝜀. Combining equation 1 with the definitions 

𝑝𝐵 = [𝑃𝐿]/[𝐿]𝑡𝑜𝑡 and 𝑝𝐹 = ([𝐿]𝑡𝑜𝑡 − [𝑃𝐿])/[𝐿]𝑡𝑜𝑡, one gets: 

 

 𝜀𝑜𝑏𝑠 =  
[𝑃𝐿]

[𝐿]𝑡𝑜𝑡
(𝜀𝐵 − 𝜀𝐹) + 𝜀𝐹    (3) 

 

Equation 3 can be used to fit the variation of an observed parameter during a titration in 

order to extrapolate the dissociation constant 𝐾𝐷, since the ratio [𝑃𝐿] [𝐿]𝑡𝑜𝑡⁄  is a function 

of 𝐾𝐷. It we rearrange equation 3, we obtain: 

 

A 
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 (𝜀𝑜𝑏𝑠 − 𝜀𝐹) =  
[𝑃𝐿]

[𝐿]𝑡𝑜𝑡
(𝜀𝐵 − 𝜀𝐹)    (4) 

 

Equation 4 correlates directly the experimental difference (𝜀𝑜𝑏𝑠 − 𝜀𝐹) with the difference 

(𝜀𝐵 − 𝜀𝐹) between the values of the parameter 𝜀 in the bound and free forms, showing 

that the larger the difference (𝜀𝐵 − 𝜀𝐹), the smaller the bound fraction 𝑝𝐵 = [𝑃𝐿]/[𝐿]𝑡𝑜𝑡 

required to obtain a detectable (𝜀𝑜𝑏𝑠 − 𝜀𝐹). 

The LLS relaxation rate 𝑅𝐿𝐿𝑆 is extremely sensitive to ligand-protein binding. Long-lived 

states have the unique property that their populations relax with time constants that can 

be much longer than longitudinal relaxation time constants (𝑇𝐿𝐿𝑆 ≫ 𝑇1). The intensity 𝐼 of 

the LLS signal decays mono-exponentially as a function of the sustaining delay 𝜏𝑚: 

 

 𝐼(𝜏𝑚) =  𝐼0exp (−𝑅𝐿𝐿𝑆𝜏𝑚)    (5) 

 

where 𝐼0 is the LLS intensity at 𝜏𝑚 = 0 and 𝑅𝐿𝐿𝑆 is the LLS relaxation rate. The LLS 

relaxation rate 𝑅𝐿𝐿𝑆 and thus the LLS lifetime 𝑇𝐿𝐿𝑆 = 1/𝑅𝐿𝐿𝑆 can be extracted by fitting the 

signal intensity observed as a function of the sustaining delay 𝜏𝑚. For pairs of protons, 

𝑇𝐿𝐿𝑆/𝑇1 ratios as large as 60 have been observed in R-CH=CH-R’ systems.  

Glycine residues in peptides contain two diastereotopic Hα protons, so it is straightforward 

to excite LLS in virtually any glycine-containing peptide.[19] It has been shown by phage 

display [20] using a peptide library and consensus sequence analysis that peptides that 

bind to Urokinase-type Plasminogen Activator (uPA) must contain at least one arginine 

residue.[21] We therefore considered the GGR tripeptide, which turns out to be a weak 

binder for uPA. 

The two Hα protons of the central glycine residue are not magnetically equivalent, due to 

the vicinity of the chiral Cα carbon of the arginine residue. Hence, it is possible to excite 

long-lived states with the pulse sequence described in chapter 3.[22] The lifetime 𝑇𝐿𝐿𝑆 of 

this pair of diastereotopic Hα protons was determined to be 𝑇𝐿𝐿𝑆 = (8.0 ± 0.2) 𝑠 at 8 ºC 

and 9.4 T.[18] Under the same conditions, the longitudinal relaxation time 𝑇1 turned out to 

be 𝑇1 = (0.40 ± 0.08) 𝑠, leading to a ratio 𝑇𝐿𝐿𝑆/𝑇1 as large as 20.
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Figure 1 Chemical structure of the tripeptide GGR. The two Hα protons of the central glycine residue are 
highlighted in red. The chiral Cα carbon of the arginine residue is indicated by a star. 

 

The situation changes drastically if there are interactions between ligands and proteins. 

We simulated the dipole-dipole contributions (the main relaxation pathways in solution-

state NMR spectroscopy if chemical shift anisotropy can be neglected) to the 𝑅1 and 𝑅𝐿𝐿𝑆 

relaxation rates of the free and bound tripeptide GGR. For the conventional longitudinal 

relaxation rates 𝑅1, the dipole-dipole interactions between the protons of the ligand and 

those lining the binding site of uPA contribute roughly to 85% of the observed contrast. 

Moreover, the structures of free GGR and of the GGR-uPA complex in water were 

optimized using Gromacs 4.5.3 [23] using the GROMOS 53a6 force field.[24] The 

chemical shifts of the free and bound ligands were calculated by using these structures 

as input for Camshift 1.35.[25] The chemical shifts of the two Hα protons of the central 

glycine residue in GGR in the free and bound forms were estimated by modeling to change 

by ca. 0.5 ppm (200 Hz at 9.4 T in our experiments). Conventional longitudinal relaxation 

is not influenced by such a shift, but it has a dramatic effect on the lifetimes of the LLS.[26, 

27] Indeed, during the LLS relaxation period, a radiofrequency (RF) field must be used to 

mask the chemical shift difference between the two Hα protons involved in the LLS. This 

field is most efficient when the carrier frequency coincides precisely with the center 

between the shifts of the two Hα protons, as we chose for the free ligand. When the ligand 

is bound, there is a frequency mismatch due to the change in chemical shifts upon binding, 

and the LLS decays rapidly, so that its lifetime is reduced. Indeed, figure 2 shows that ca. 

75% of the decay rate of the LLS signal is due to the coherent effect of the frequency 

mismatch that occurs upon binding. This effect can be enhanced by using weaker RF 

fields or higher static fields. 
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Figure 2 (Top) The tripeptide glycine-glycine-arginine (GGR) and its complex with Urokinase-type 
Plasminogen Activator (uPA). (Middle) Frequency jumps of the two Hα protons of the central glycine of GGR 
when it forms a complex with uPA. It is estimated that the two chemical shifts of the Hα protons jump by 0.5 
ppm (200 Hz at 9.4 T) as the ligand goes from the free (green solid line) to the bound forms (red dashed 
line). The spectrum of the bound ligand cannot be observed directly because of fast exchange. The chemical 
shifts are weighted averages of the values in the free and bound forms. (Bottom) Relative contributions to 
the decay rate 𝑅𝐿𝐿𝑆 = 1/𝑇𝐿𝐿𝑆 of the long-lived state of the two Hα protons in the complex. The RF field used 

to sustain the LLS was monochromatic with an amplitude of 𝜈1 = 1 𝑘𝐻𝑧, well above the minimum required 

to mask the chemical shift difference 𝛿(𝐻𝛼) −  𝛿(𝐻𝛼′) = 100 𝐻𝑧 in the free ligand. 

 

The combination of a slow relaxation rate 𝑅𝐿𝐿𝑆
𝑓𝑟𝑒𝑒

< 𝑅1
𝑓𝑟𝑒𝑒

 of the ligand in its free state with 

a rapid relaxation rate 𝑅𝐿𝐿𝑆
𝑏𝑜𝑢𝑛𝑑 in its bound state makes the difference (𝑅𝐿𝐿𝑆

𝑏𝑜𝑢𝑛𝑑 − 𝑅𝐿𝐿𝑆
𝑓𝑟𝑒𝑒

) 

particularly large, thus making the relaxation of long-lived state an extremely sensitive 

NMR parameter to ligand-protein binding. 

To demonstrate the enhancement of the contrast 𝐶𝐿𝐿𝑆 with respect to the contrast 𝐶1 and 

𝐶1𝜌, binding experiments were carried out for a 1 mM solution of the tripeptide ligand GGR 

in the presence of its protein target trypsin in the range 0.5 < [𝑃] < 50 µM, using various 

methods (𝑇𝐿𝐿𝑆, 𝑇1 and 𝑇1𝜌). Figure 3 shows that the LLS method can work with a protein-

ligand ratio that is ~25-fold lower that required for the well-known 𝑇1𝜌 method, whereas 
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the 𝑇1 contrast remains below 𝐶1 < 10 % even at the highest protein concentration  [𝑃] = 

50 µM. 

 

 

 

Figure 3 Experimental contrast for 𝑇𝐿𝐿𝑆 (red), 𝑇1𝜌 (green), and 𝑇1 (blue) methods for the diastereotopic pair 

of protons on the central glycine residue of the tripeptide GGR in a solution with a fixed concentration [𝐿] =
1 mM and a variable trypsin concentration 0.5 µM < [𝑃]0 < 50 µM in D2O at 8 ºC and 11.7 T. 

 

 

4.2 Competition experiments 

 

quation 3 can be used to fit the variation of the observed LLS relaxation rate 𝑅𝐿𝐿𝑆
𝑜𝑏𝑠 

during the titration of a ligand against a target: 

 

 𝑅𝐿𝐿𝑆
𝑜𝑏𝑠 =  

[𝑃𝐿]

[𝐿]𝑡𝑜𝑡
(𝑅𝐿𝐿𝑆

𝑏𝑜𝑢𝑛𝑑 − 𝑅𝐿𝐿𝑆
𝑓𝑟𝑒𝑒

) + 𝑅𝐿𝐿𝑆
𝑓𝑟𝑒𝑒

   (6) 

 

The fitting allows one to estimate the LLS relaxation rate of the bound form 𝑅𝐿𝐿𝑆
𝑏𝑜𝑢𝑛𝑑 and 

the molar fraction of the ligand in the bound form 𝑝𝐵 = [𝑃𝐿] [𝐿]𝑡𝑜𝑡⁄ . The latter parameter 

is a function of the dissociation constant 𝐾𝐷 [28]: 

 

 [𝑃𝐿]

[𝐿]𝑡𝑜𝑡
=

[𝑃]𝑡𝑜𝑡+[𝐿]𝑡𝑜𝑡+𝐾𝐷−√([𝑃]𝑡𝑜𝑡+[𝐿]𝑡𝑜𝑡+𝐾𝐷)2−4[𝑃]𝑡𝑜𝑡[𝐿]𝑡𝑜𝑡

2[𝐿]𝑡𝑜𝑡
   

(7) 

 

E 
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As consequence, it is possible to determine the dissociation constant by fitting the 

variation of the observed relaxation rate during a titration experiment. For example, the 

ligand GGR was titrated over a range 0.5 mM < [𝐿]𝑡𝑜𝑡 < 10 mM in the presence of [𝑃]𝑡𝑜𝑡 = 

10 µM uPA at 8 ºC. The curve in figure 4 was fitted to equation 6, yielding 𝐾𝐷 = 220 ± 10 

µM and 𝑇𝐿𝐿𝑆
𝑏𝑜𝑢𝑛𝑑 = 1/𝑅𝐿𝐿𝑆

𝑏𝑜𝑢𝑛𝑑 = 30 ± 10 ms. In contrast, as shown in figure 4, binding had 

virtually no effect on the longitudinal relaxation rates 𝑅1 = 1/𝑇1 of the same Hα protons. 

 

 
Figure 4 Lifetimes 𝑇𝐿𝐿𝑆 of the long-lived state associated with the two Hα protons of the central glycine 
residue of the weak ligand L = GGR and their conventional longitudinal relaxation times 𝑇1 in the presence 

of [𝑃]𝑡𝑜𝑡= 10 µM uPA as a function of [𝐿]𝑡𝑜𝑡 at 8 ºC and 400 MHz in D2O. The curve shows a fit of the 

experimental data to equation 6. 

 

Experiments based on the direct observation of ligands suffer from some limitations: non-

specific binders may give similar effects as specific ones, ligands are difficult to detect if 

their solubility is low, and strong ligands in slow exchange are easily mistaken for non-

binders. Indeed, when binding is too strong, the lifetime of the ligand-protein complex may 

be too long on the NMR time scale, so that the conditions for equation 1 are not fulfilled 

and the rates are not properly averaged.  

To overcome these drawbacks, Dalvit and co-workers [29] introduced competition 

experiments for ligand screening. In this approach, a weak-affinity ligand is used as a spy 

molecule; a stronger binder partly displaces the spy molecule, and the latter’s expulsion 

from the binding site of the macromolecular target leads to a decrease of relaxation rates 

of nuclei that belong to the displaced spy ligand. Of course, the contrast defined above 

should be sufficient. The concentration of the competitor that is required to displace the 
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spy molecule is inversely proportional to the former’s affinity for the macromolecular 

target: the higher the affinity, the lower the concentration needed. Figure 5 shows the LLS 

signals of vanillic acid diethylamide, which is a weak ligand for the heat shock protein 

Hsp90, in three different solutions. The signals of vanillic acid diethylamide (which are 

easily observed in absence of protein, top spectrum in figure 5), disappear in the presence 

of Hsp90 (middle) because of the enhanced LLS relaxation caused by interactions with 

the protein. When Astex’s clinical Hsp90 inhibitor AT13387 is added (bottom), the signal 

is almost completely restored, demonstrating that both vanillic acid diethylamide and the 

high-affinity inhibitor bind Hsp90 to the same ATP binding site, and that the latter is the 

strongest binder of the two. 

 

 

Figure 5 LLS spectra of vanillic acid diethylamide in three different solutions, sustaining the LLS during a 
delay τ = 2.5 s: (1) 500 µM vanillic acid diethylamide in the absence of Hsp90; (2) 500 µM vanillic acid 

diethylamide in the presence of 10 µM Hsp90; (3) 500 µM vanillic acid diethylamide in the presence of 10 
µM Hsp90 and 10 µM AT13387. In the latter case, vanillic acid diethylamide is partly expelled from the ATP 
binding site of Hsp90 so that its LLS signal is partially restored. 

 

The observed relaxation rate 𝑅𝐿𝐿𝑠
𝑜𝑏𝑠 of the spy ligand gives information about the 

dissociation constant 𝐾𝐷
𝑐𝑜𝑚𝑝

 of the competitor. The dissociation constant determined by 

titration of the spy molecule in the presence of a competitor has come to be known as 

apparent dissociation constant 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

 that allows one to determine the true dissociation 
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constant 𝐾𝐷
𝑐𝑜𝑚𝑝

 of the competitor. The relationship between these two constants is 

expressed by the following equation: 

 

 
𝐾𝐷

𝑐𝑜𝑚𝑝 =  
[𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 𝐾𝐷

𝑠𝑝𝑦

𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

− 𝐾𝐷
𝑠𝑝𝑦   

(8) 

 

where [𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 is the concentration of the competitor and 𝐾𝐷
𝑠𝑝𝑦

 is the true dissociation 

constant of the spy molecule. 

Note that the competitor does not need to contain any spin pairs that can sustain an LLS. 

Moreover, by keeping the concentration of the spy ligand low, one can study competing 

ligands with limited solubility. Furthermore, as the changes in 𝑅𝐿𝐿𝑠
𝑜𝑏𝑠 need only to be 

observed for the spy molecule, there are no requirements for the competitor to fulfill the 

fast-exchange condition. This implies that the dissociation constants 𝐾𝐷
𝑐𝑜𝑚𝑝

 of the 

competitor can lie anywhere in a wide range below 100 µM. Following this approach, GGR 

was used as spy molecule and titrated over a range 0.5 mM < [𝐿𝑠𝑝𝑦]𝑡𝑜𝑡 < 10 mM in the 

presence of [𝑃]𝑡𝑜𝑡 = 10 µM uPA and [𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 = 10 µM of two different competitors at 8 

ºC. In this fashion, 𝐾𝐷
𝑐𝑜𝑚𝑝

 = 89 ± 20 µM was determined for 4-aminobenzamidine, which 

has a better affinity than GGR but is not strong enough to inhibit uPA. Next, the bicyclic 

peptide ligand UK-18 has been investigated. This ligand has a high affinity and specificity 

for uPA [30], and indeed 𝐾𝐷
𝑐𝑜𝑚𝑝

 = 180 ± 20 nM was determined by the LLS method [18], 

in good agreement with previously published results obtained by Heinis and co-workers 

(𝐾𝐷
𝑐𝑜𝑚𝑝

 = 157 ± 39 nM) [30] and Stubbs and co-workers (𝐾𝐷
𝑐𝑜𝑚𝑝

 = 180 nM).[31]

 

 
4.3 Spin-pair labeling for ligand LLS experiments 

 
 drawback of ligand screening by LLS is that the ligands (or only the spy ligand in 

the competition approach) must carry a pair of nonequivalent spins with I = 1/2. 

When such ligands are not immediately available in the compound libraries, 

synthetic labeling strategies can circumvent this issue. These approaches include two 

steps: 1) the identification of a spy ligand that binds weakly to the target protein, and 2) 

the functionalization of this ligand by attaching a spin-pair label that can carry LLS. By 

way of illustration, 3-bromothiophene-2-carboxylic acid (henceforth called “BT”), which is 

known to have long lifetimes 𝑇𝐿𝐿𝑆 [32], has been covalently attached to the tripeptide GGR. 

A 
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The resulting spin-pair-labeled tripeptide was called BT-GGR (figure 6b). It is a weak 

ligand for trypsin. [33] 

Despite some steric effects and long-range dipolar relaxation mechanisms in the spin-

pair-labeled tripeptide BT-GGR, the two aromatic protons of the bromothiophene group 

retain a remarkably long lifetime 𝑇𝐿𝐿𝑆(BT) = 11.7 ± 0.7 s in the absence of protein. In this 

particular tripeptide, both diastereotopic pairs of Hα protons on the two glycine residues of 

BT-G1G2R can be used to excite LLS. They have lifetimes 𝑇𝐿𝐿𝑆(G1) = 10.4 ± 0.5 s and 

𝑇𝐿𝐿𝑆(G2) = 9.3 ± 0.5 s again in the absence of protein. 

The spin-pair-labeled ligand BT-GGR was added to a solution containing [𝑃]𝑡𝑜𝑡 = 25 µM 

trypsin over a range 0.5 mM < [𝐿]𝑡𝑜𝑡 < 40 mM. At each concentration, the observed 

relaxation times 𝑇𝐿𝐿𝑆
𝑜𝑏𝑠 = 1/𝑅𝐿𝐿𝑆

𝑜𝑏𝑠 of the three different pairs of protons were measured. 

Figure 6a shows how the titration curves can be fitted to equation 6. As expected, nearly 

the same dissociation constants were obtained for the three proton pairs that can sustain 

LLS in BT-GGR: 𝐾𝐷(BT) = 0.18 ± 0.03 mM, 𝐾𝐷(G1) = 0.24 ± 0.01 mM, and 𝐾𝐷(G2) = 0.21 

± 0.02 mM. 

 

 

Figure 6 LLS titration experiments. a) Observed LLS lifetimes of the three proton pairs on the spin-pair-

labeled tripeptide BT-GGR as a function of the ligand concentration [𝐿]𝑡𝑜𝑡, in the presence of 25 µM trypsin 
in D2O at 25 ºC and 11.7 T. b) Pairs of protons capable of sustaining LLS in BT-GGR: on bromothiophene 
BT (red), on the N-terminal glycine G1 (blue) and on the central glycine G2 (green). 
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The functionalized ligand can be used as spy molecule in competition experiments, once 

the dissociation constant 𝐾𝐷
𝑠𝑝𝑦

 of the spin-pair labeled spy ligand and its LLS lifetime in 

the bound form 𝑇𝐿𝐿𝑆
𝑏𝑜𝑢𝑛𝑑 are known. It is possible to optimize the competitor [𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 and 

protein [𝑃]𝑡𝑜𝑡 concentrations to rank strong competitors according to their binding 

strengths. Figure 7 shows the calculated 𝑇𝐿𝐿𝑆
𝑜𝑏𝑠 (BT) of the bromothiophene protons in BT-

GGR if [𝑃]𝑡𝑜𝑡 = 25 µM and [𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 = 50 µM as a function of the dissociation constant 

𝐾𝐷
𝑐𝑜𝑚𝑝

 of the competitor. Under these conditions, 𝑇𝐿𝐿𝑆
𝑜𝑏𝑠 changes dramatically  in the range 

between 𝐾𝐷
𝑐𝑜𝑚𝑝

 = 100 µM and 𝐾𝐷
𝑐𝑜𝑚𝑝

 = 1 µM. 

 

 

Figure 7 Effect of a competitor on the lifetime 𝑇𝐿𝐿𝑆
𝑜𝑏𝑠 of a spy molecule. The lifetime of the pair of aromatic 

protons of bromothiophene (BT) depends on the dissociation constant of the competing ligand, calculated 
using equations 6, 7 and 8. The parameters of the spy molecule BT-GGR were obtained from the fit of the 

data in figure 6: 𝐾𝐷 = 0.2 mM, 𝑇𝐿𝐿𝑆
𝑏𝑜𝑢𝑛𝑑 = 0.1 s, 𝑇𝐿𝐿𝑆

𝑓𝑟𝑒𝑒
 = 11 s, [𝐿𝑠𝑝𝑦]𝑡𝑜𝑡 = 0.5 mM, [𝑃]𝑡𝑜𝑡 = 25 µM, and [𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 

= 50 µM. The three points correspond to 𝑇𝐿𝐿𝑆
𝑜𝑏𝑠 in the presence of myricetin (𝐾𝐷

𝑐𝑜𝑚𝑝
 = 3 µM, green), apigenin 

(𝐾𝐷
𝑐𝑜𝑚𝑝

 = 39 µM, blue) and in the absence of any competitor (red) calculated for these conditions. 

 
A library of competing ligands can thus be ranked according to their affinities by observing 

the LLS signal of a spy ligand. Under the conditions shown in figure 7, one can easily rank 

competing ligands with great accuracy, provided 1 µM < 𝐾𝐷
𝑐𝑜𝑚𝑝

 < 100 µM. The ranking of 

ligands can be achieved by performing LLS experiments with a single sustaining delay 

𝜏𝑚. As the observed relaxation rate 𝑅𝐿𝐿𝑆
𝑜𝑏𝑠 of the spy ligand is attenuated in the presence of 

a stronger competitor, the LLS signal intensity of the spy ligand after a suitably chosen 

delay 𝜏𝑚 will be enhanced. For instance, LLS spectra of 0.5 mM BT-GGR were recorded 

with 𝜏𝑚 = 3 s in the presence of [𝑃]𝑡𝑜𝑡 = 25 µM trypsin with four different competitors, all 

with [𝐿𝑐𝑜𝑚𝑝]𝑡𝑜𝑡 = 50 µM: myricetin (𝐾𝐷
𝑐𝑜𝑚𝑝

 = 3 µM), morin (𝐾𝐷
𝑐𝑜𝑚𝑝

 = 30 µM), apigenin (𝐾𝐷
𝑐𝑜𝑚𝑝
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= 39 µM) [34] and benzamydine (𝐾𝐷
𝑐𝑜𝑚𝑝

 = 39 µM).[31] Figure 8a shows three of the five 

LLS spectra, obtained either without competitor (red), with apigenin (blue), or with 

myricetin (green). Figure 8b shows the signal intensities of the spy ligand BT-GGR in the 

presence of one of the four competing ligands.  

Note that the spin-lock duration m has to be chosen carefully to tune the experiment to 

the expected range of affinities. Equation 8 can be used to estimate the apparent 

dissociation constant of the spy molecule 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

, and equations 7 and 6 then allow one 

to estimate the relaxation rate RLLS of the spy molecule in the presence of a competitor. 

Once this relaxation rate is known, the spin-lock duration can be set to maximize the 

difference between the signals of the spy molecule with and without competitor. 

 

 

Figure 8 LLS competition binding experiments. a) Signals of one of the two aromatic protons of 
bromothiophene (BT) in the spy ligand BT-GGR at a concentration of 0.5 mM in the presence of 25 µM 
trypsin, sustaining the LLS for 𝜏𝑚 = 3 s in D2O at 25 ºC and 11.7 T: 1) in the absence of any competitor 
(red), 2) in competition with 50 µM of the intermediate ligand apigenin (blue), and 3) in competition with 50 
µM of the stronger ligand myricetin (green). b) Peak intensities of one of the aromatic protons of BT-GGR 
under the same conditions as in a), without competitor and in the presence of apigenin, benzamidine, morin, 

or myricetin. The better the binding, the smaller the dissociation constant 𝐾𝐷
𝑐𝑜𝑚𝑝

, the more effective the 

displacement of the spin-pair-labeled spy ligand BT-GGR, and the more intense its LLS signal. 
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4.4 Hyperpolarized LLS ligand screening experiments 

 
t is obviously desirable to use low concentrations of both proteins and ligands, not only 

to save expensive materials, but also to avoid protein and ligand aggregation and to 

be able to study poorly soluble ligands. The ligand concentrations cannot be very low 

because of the intrinsic poor sensitivity of NMR. At ligand concentrations [𝐿]𝑡𝑜𝑡 < 100 µM, 

NMR spectra require extensive signal averaging to show sufficient signal-to-noise ratios 

(SNR).  

Hyperpolarization of nuclear spins by dissolution dynamic nuclear polarization (D-DNP) 

[35] can overcome this problem. By microwave irradiation of samples containing radicals 

at temperatures close to 𝑇 = 1.2 K, the polarization of electron spins can be transferred to 

protons or other nuclei, followed by rapid dissolution of the hyperpolarized samples and 

their transfer to a high-resolution NMR spectrometer for detection. Enhancements 𝜀𝐷𝑁𝑃 

up to five orders of magnitude can be obtained for nuclei with low gyromagnetic ratios, 

while enhancements 100 <  𝜀𝐷𝑁𝑃 < 1000 can be achieved for 1H or 19F nuclei.[36] The 

technique has not been very popular for 1H and 19F nuclei so far, because rapid 𝑇1 

relaxation tends to cause losses of polarization during the transfer from the polarizer to 

the spectrometer. 

Ligands with covalently attached spin-pair labels such as BT-GGR contain protons with 

long 𝑇1 values and are therefore suitable for hyperpolarization by dissolution DNP. Indeed, 

provided 𝑇1(1H) > 1 s, a sufficient fraction of the hyperpolarized magnetization can be 

preserved during the transfer from the DNP polarizer to the NMR spectrometer.  

In our laboratory, BT-GGR has been hyperpolarized by DNP and used as a spy ligand in 

LLS competition binding experiments.[33] We shall give a brief protocol for these 

experiments. In a glass-forming solvent mixture H2O/D2O/DMSO-d6 (v/v/v = 5:35:60), 10 

mM BT-GGR are dissolved with 25 mM 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPOL). Five frozen beads (5 x 10 µL) of this solution are loaded together with five 

frozen beads (5 x 10 µL) of 3 M ascorbate [37] into a home-built DNP polarizer [38, 39] 

operating at 𝐵0 = 6.7 T and 𝑇 = 1.2 K. The sample is irradiated with microwaves at a 

frequency 𝑓𝑚𝑊 = 188.3 GHz and power 𝑃𝑚𝑊 = 100 mW. At 𝐵0 = 6.7 T, a proton polarization 

up to 𝑃(1H) = 90 % can be obtained [39], while 𝑃(1H) is only ~ 40 % in polarizers operating 

at 𝐵0 = 3.35 T. After ~ 15 min of microwave irradiation, a steady-state proton 𝑃(1H) can 

generally be reached. 

The DNP sample can be dissolved rapidly in 0.7 s with 5 mL of hot D2O (𝑃 = 1 MPa, 𝑇 = 

400 K) and transferred to a 11.7 T NMR spectrometer in 4.5 s through a “magnetic tunnel” 
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so that 𝐵0 > 0.8 T during the transfer, [40] which is particularly important to preserve the 

polarization of 1H and 19F nuclei.[41] A fraction of 400 µL of the hyperpolarized solution is 

then injected in ~ 2 s into a 5 mm tube waiting in the NMR spectrometer containing 250 

µL D2O, 3.65 µM trypsin and 3.65 µM of a competitor such as myricetin. After injection 

and concomitant dilution, the sample has a concentration of 1.4 µM trypsin, 1.4 µM 

competitor, and 120 µM hyperpolarized spy ligand BT-GGR. After a 3 s interval to allow 

for proper mixing, a reference free induction decay is observed in 0.5 s after exciting 

transverse magnetization with a single 5º pulse to control the quality of the hyperpolarized 

sample and to normalize the signal intensity of the spy ligand with respect to its known 

concentration. This is immediately followed by the LLS sequence described in chapter 3, 

using a fixed sustaining time 𝜏𝑚 = 3 s. 

 

Figure 9 DNP setup to perform hyperpolarized LLS screening experiments. A sample containing the spy 
ligand BT-GGR and TEMPOL is initially cooled down to 4.2 or 1.2 K. By microwave irradiation, the electron 
spin polarization is transferred to the protons. The frozen sample is then rapidly dissolved with hot solvent 
(usually D2O) and transferred to a conventional high-resolution spectrometer, where the LLS experiment 
can be recorded after a delay of a few seconds to allow proper mixing of the solution.  

 

 

 

Figure 10 shows DNP-enhanced LLS spectra of (i) 120 µM of the spin-pair-labeled spy 

ligand BT-GGR in the absence of protein, (ii) the same with 1.4 µM trypsin, and (iii) the 

same with 1.4 µM trypsin and 1.4 µM myricetin as competitor. A dramatic decrease of the 
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LLS signal intensity stemming from BT-GGR is observed in the presence of trypsin. An 

equimolar amount of the competitor myricetin leads to a partial displacement of the spy 

ligand that can be readily detected through the revival of its LLS signal. With only 120 µM 

of BT-GGR, the DNP-enhanced LLS spectrum of figure 10 recorded in a single scan after 

𝜏𝑚 = 3 s has a signal-to-noise ratio of 130. Under the same conditions, but without DNP, 

an accumulation of 225 transients for ~1 h was necessary to reach the same SNR. 

 
Figure 10 DNP-enhanced LLS competition binding experiments. DNP-enhanced LLS spectra of the two 

aromatic protons of bromothiophene in 120 µM BT-GGR after a sustaining time τm = 3 s, (i) without protein 

(black), (ii) in the presence of 1.4 µM trypsin (orange), (iii) with 1.4 µM trypsin and 1.4 µM myricetin as 

competitor (green). All spectra were acquired in a single scan in D2O at 25 ºC and 11.7 T. 

 

 

A DNP-enhanced LLS spectrum of BT-GGR with a concentration as low as 10 µM could 

be recorded with a SNR of 16. Clearly, DNP allows one to decrease the concentration of 

ligands, but the protein concentration should not be decreased further. Indeed, lower 

protein concentrations would diminish the observed contrast. Figure 11 shows the protein 

concentration [𝑃]𝑡𝑜𝑡 necessary to obtain a satisfactory contrast 𝐶𝐿𝐿𝑆 = 50 %, depending 

on the ligand concentration, for different dissociation constants. If 𝐾𝐷 = 200 µM, a protein 

with cannot be diluted to nanomolar concentrations without sacrificing contrast. It is clear 

that when [𝐿]𝑡𝑜𝑡 < 𝐾𝐷, it is does not make sense to decrease the protein concentration 

further, since this leads to  a loss of contrast 𝐶𝐿𝐿𝑆. 

Without DNP, using a 50-fold increase in ligand concentration (figure 8), 256 transients 

had to be accumulated in 100 min to obtain a SNR of 8. The experimental conditions can 

be adapted depending on the primary objective: low concentrations of either protein or 

ligand, rapid throughput, high sensitivity for the displacement by a competitor, or high 

SNR. In figure 10, the conditions were optimized for high SNR and high contrast upon 
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addition of a competitor, albeit at the expense of a slightly higher ligand concentration and 

longer polarization build-up time. To attain faster throughput, one could polarize at a 

higher temperature 𝑇 = 4.2 K and 𝐵0 = 6.7 T, where proton polarization 𝑃(1H) = 25 % can 

be reached by DNP in ~ 2 min.[39] The price to pay would be an approximate three-fold 

lower SNR. Similarly, at 𝑇 = 1.2 K and 𝐵0 = 3.35 T, as in commercially available DNP 

polarizers, 𝑃(1H) = 40 % can be reached in ~ 6 min.[32] 

 

Figure 11 Protein concentrations required to obtain a 50 % LLS contrast for different ligand concentrations. 

When [𝐿]𝑡𝑜𝑡 < 𝐾𝐷, the required protein concentration to obtain a sufficient contrast approaches a plateau. 
The decrease of the protein concentration below the plateau leads to a drop of contrast. These simulations 
are based on equations 6 and 7. 

 

With the set-up used to perform these experiments, the time required for the transfer from 

the polarizer to the detection magnet is similar to 𝑇1(1H) of the spy ligand BT-GGR. A 

significant fraction of the proton hyperpolarization is lost during the 10 s interval between 

dissolution and signal acquisition. Nevertheless, a faster sample injection device [41] 

could decrease this interval to 1.2 s. An acceleration of the transfer would enhance the 

remaining proton polarization and thus the SNR. Such improvements would allow either 

a further decrease in ligand concentration or an increase in sample throughput.  

After dissolution, the sample temperature could not be monitored in our experiments. 

Nevertheless, one can assume that during the “voyage” through the magnetic tunnel, the 

hyperpolarized solution reaches room temperature. In any case, potential temperature 
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drifts of the final solution after dissolution should not affect the ranking of competitors, 

since the temperature should affect the restoration of the signals of the spy molecule in a 

uniform and reproducible manner. 

 

4.5 Exploring weak ligand-protein interactions by LLS 

 
n fragment-based drug discovery (FBDD), fragment screening is performed using 

relatively small libraries of carefully chosen compounds with low molecular weights 

(120-250 Da). Useful fragments typically have dissociation constants 𝐾𝐷 ranging from 

0.1 to 10 mM or greater. Techniques that can detect ligand-protein complexes, such as 

X-ray crystallography, surface plasmon resonance (SPR), isothermal titration calorimetry 

(ITC), and high-concentration assays can be used for fragment screening. The output of 

these target-based methods depends on the fraction of bound protein with respect to the 

total protein concentration.[42] If the binding affinities are weak, the equilibrium can only 

be shifted by increasing the concentration of the fragments, which must therefore be highly 

soluble, a requirement that is difficult to meet.

In ligand-based methods the output is given by the fraction 𝑝𝐵 = [𝑃𝐿]/[𝐿]𝑡𝑜𝑡 of bound 

ligands with respect to the total ligand concentration.[42] So despite its low intrinsic 

sensitivity, the detection of ligands by NMR spectroscopy can be used over an extremely 

wide dynamic range of dissociation constants 𝐾𝐷 while requiring only relatively low protein 

and ligand concentrations. In contrast to the above-mentioned biophysical techniques, 

NMR allows one to perform screening with ligand concentrations [𝐿]𝑡𝑜𝑡 that are orders of 

magnitude lower than the corresponding dissociation constants 𝐾𝐷. 

As has been shown in chapter 2, the fraction 𝑝𝐵 of ligand in the bound form depends on 

the affinity of the ligand. In particular, for a given ligand [𝐿]𝑡𝑜𝑡 and protein concentration 

[𝑃]𝑡𝑜𝑡, the larger the dissociation constant, the lower the fraction of ligand in the bound 

form 𝑝𝐵 (see figure 2, chapter 2). As consequence, the detection of weak interactions 

turns out to be challenging.  

Equation 4 shows that, for a fixed value of 𝑝𝐵, the ability of detecting the binding event 

depends on the difference (𝜀𝐵 − 𝜀𝐹) between the values of the parameter 𝜀 in the free and 

bound forms. In the case of long-lived states, the difference Δ𝑅𝐿𝐿𝑆 = (𝑅𝐿𝐿𝑆
𝑏𝑜𝑢𝑛𝑑 − 𝑅𝐿𝐿𝑆

𝑓𝑟𝑒𝑒
) can 

be much larger than Δ𝑅1, Δ𝑅2, etc., so that it is possible to achieve a high contrast 𝐶𝐿𝐿𝑆 

even for high ligand/protein ratios, making LLS-based screening particularly attractive for 

a fragment-based approach that seeks to identify weakly binding ligands. 
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Figure 12 shows mole fractions 𝑝𝐵 of bound ligands for different ligand/protein ratios and 

the corresponding contrast 𝐶𝐿𝐿𝑆 during a titration of vanillic acid diethylamide against the 

N-terminal ATPase domain of heat shock protein 90 (Hsp90). Long-lived states were 

excited on the two aromatic protons of the ligand. Even for a large ligand-to-protein ratio 

[𝐿]𝑡𝑜𝑡 [𝑃]𝑡𝑜𝑡⁄  = 272, one observes a dramatic 45 % contrast.

A contrast 𝐶𝐿𝐿𝑆 = 23 %, corresponding to a ratio 𝑅𝑜𝑏𝑠/𝑅𝑓𝑟𝑒𝑒 = 1.3, can be achieved with a 

ratio [𝐿]𝑡𝑜𝑡/[𝑃]𝑡𝑜𝑡 = 707, i.e., under conditions where less than 0.2 % of the ligand is bound 

to the protein. Compared to other 1H-detected NMR methods, which suffer from lower 

contrast, this allows ligand binding to be detected for low protein concentrations and/or 

low binding affinities. One can thus more easily customize the concentrations of proteins 

and ligands to study very weak affinities in screening assays. For example, to detect 

ligands with 𝐾𝐷 ≤ 1 mM and [L] = 500 µM, one would require a protein concentration [P] = 

3 µM; alternatively, if [P] = 20 µM one can detect binding even if 𝐾𝐷 > 10 mM. Such weak 

affinities are typically encountered for fragments that bind to protein-protein interfaces. 

This offers considerable advantages over fragment screening by traditional ligand-based 

NMR methods. 

 

 

Figure 12 (Left) Structure of vanillic acid diethylamide. The pair of aromatic protons that is suitable for the 
excitation of LLS is indicated by bold red letters. (Right) Molar fractions of bound ligands for different 
ligand/protein ratios and the experimentally observed contrast 𝐶𝐿𝐿𝑆 for a titration of vanillic acid diethylamide 

(𝐾𝐷 = 790 µM) in the presence of the protein Hsp90. 

  
LLS screening is most effectively carried out in competition mode, as proposed by Dalvit 

et al. [29] for traditional 𝑅1 and 𝑅2 experiments: a strongly binding ligand partly displaces 

a weakly binding ‘spy’ ligand from the binding site, so that one observes a decrease of the 

relaxation rate 𝑅𝐿𝐿𝑆 of the displaced spy ligand.  
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Obviously, the search for weak binders by a competition approach is a difficult task, since 

the spy ligand has to be displaced by a weaker competitor. Nevertheless, it has been 

demonstrated that LLS can efficiently reach this goal. Vanillic acid diethylamide (𝐾𝐷 = 790 

µM) has been used as spy ligand in LLS competition screening experiments against 

Hsp90.[43] The performance of LLS screening in competition mode with a mixture 

containing known binders and known non-binders has been tested. Indeed, if a library of, 

say, 1000 compounds is to be screened against a protein target, it is most efficient to 

screen ‘cocktails’ containing typically 3-10 ligands, to reduce experimental time and 

protein consumption. In the absence of competing binders, the interaction between the 

spy ligand and the protein leads to rapid LLS relaxation and hence to the attenuation of 

the LLS signal (spectrum 1 in Figure 13); conversely, the presence of a competitor leads 

to a partial displacement of the spy ligand, hence to slower LLS relaxation and a partial 

restoration of the LLS signal of the spy (spectrum 2 in Figure 13). This change in LLS 

signal is due to a mere 13 % change in the amount of bound ligand, which itself is only 

0.3 % of the total ligand concentration. 

Once the presence of a binder in a mixture has been demonstrated, a deconvolution step 

is needed to identify the hit, as shown in Figure 13 (spectrum 3), which allowed the 

identification of 3-hydroxyindazole as a weak binder for Hsp90. 

Note that to displace a weak spy ligand by fragments that are binding even more weakly, 

the latter must be present at similar concentrations. This is a considerable advantage over 

other NMR methods used in competition mode, which because of lower contrast require 

much higher concentrations to achieve effective displacements, as they require small 

ligand/protein ratios to detect weak ligands. Furthermore, if the mixtures comprise many 

components, the NMR resonances of the spy molecule may be obscured by overlapping 

signals [44], which may hamper all NMR methods when used in competition mode. 

Fortunately, the LLS sequence in effect eliminates signals that do not stem from long-lived 

states. As shown by spectrum 2 in Figure 13, resonances that arise from other compounds 

are considerably reduced, compared to the conventional 1H spectrum of the same mixture 

(spectrum 4).  
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Figure 13 Identification of a weak binder in a mixture. (1) Weak LLS signals of the spy ligand after sustaining 
the LLS for 𝜏𝑚 = 2.5 s in the absence of any competing binder in mixture 1 ([𝐿𝑠𝑝𝑦]𝑡𝑜𝑡= 500 µM with 𝐾𝐷  = 790 

µM, protein [Hsp90] = 2.5 µM and three non-binding ligands: 600 µM tyrosine, 600 µM 3,4-
difluorobenzylamine and 600 µM 4-trifluoromethyl-benzamidine). (2) Enhanced LLS signals in the presence 
of a weak binder (mixture 2 contains 600 µM of the weakly binding ligand 3-bromo-5-methyl-pyridin-2-
ylamine (𝐾𝐷= 2.2 mM) instead of 600 µM of the non-binding ligand 3,4-difluorobenzylamine). (3) LLS signals 
observed in the presence of only the binding fragment (mixture 3 contains 500 µM spy ligand, 2.5 µM protein 
[Hsp90], and 600 µM of the weakly binding ligand 3-bromo-5-methyl-pyridin-2-ylamine). (4) Conventional 
1H spectrum of mixture 2. 

  

Once weak binders have been identified, their dissociation constants 𝐾𝐷 can be 

determined from 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

 upon titration of the spy ligand in the presence of a constant 

amount of a weak binder or vice versa.[29] Titration of a spy ligand allows one to keep the 

same experimental set-up for different fragments. The highest concentrations of the 

competing ligands are limited only by their solubility. At each concentration, the rates 𝑅𝐿𝐿𝑆 

can be obtained from the ratio of the LLS signal intensities observed with two different 

sustaining delays 𝜏𝑎 and 𝜏𝑏. The affinity of 2-amino-pyrimidine was determined with 10 

μM Hsp90, using a fixed concentration [2-amino-pyrimidine] = 7 mM, and by titrating 500 

μM < [𝐿𝑠𝑝𝑦] < 5 mM. The measured dissociation constant 𝐾𝐷 = 11 ± 2 mM of 2-amino-

pyrimidine suggests very weak binding of this ligand to the protein. Binding must be 

specific to explain these observations. The fragment bound to Hsp90 was also observed 

by X-ray crystallography by Murray et al.[45]  
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Figure 14 (Grey line) Direct titration of the spy ligand vanillic acid diethylamide in the presence of 10 μM 
Hsp90 protein. (Black line) Competition experiment with titration of vanillic acid diethylamide as a spy ligand 
in the presence of 10 μM Hsp90 protein and a constant concentration of 7 mM of 2-amino-pyrimidine. 

Note that the choice of the spy molecule determines the experimental conditions of the 

LLS assay. With a spy molecule such as vanillic acid diethylamide (𝐾𝐷
𝑠𝑝𝑦

 = 790 µM), a 

concentration of 7 mM of the competing 2-amino-pyrimidine (𝐾𝐷 = 12 mM) gives rise to 

19% contrast (first point of black curve in Figure 14). This can be reduced to 3.3 mM to 

give rise to a 10% contrast, which is sufficient to show binding in screening experiments, 

as shown in Figure 13 for 3-hydroxyindazole (difference between spectra 1 and 2). If the 

expected affinities of fragments for a particular target are on the order of 𝐾𝐷 = 5 mM or 

higher, it is most convenient to identify and use a weaker spy molecule that would ensure 

a 10% contrast while working at lower fragment concentrations. As a consequence, one 

can effectively screen and identify weak fragments with very low solubility. 

The ability of measuring accurate binding constants in the mM range, where methods 

such ITC and high concentration assays may fail, in particular when the ligand solubility 

is limited, enables the investigation of structure-activity relationships and the guidance of 

initial steps of hit optimization chemistry.
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4.6 Extending LLS ligand screening to 19F nuclei 

 

n competition experiments, the concentration of the competitor that is required to 

displace the spy molecule is inversely proportional to the former’s affinity for the 

macromolecular target: the higher the affinity, the lower the concentration needed. The 

study of weakly binding fragments turns out to be challenging since high concentrations 

and thus high solubility are required. Moreover, if mixtures of competitors are tested, the 

risk of signal overlap must be circumvented by a careful choice of the cocktail of 

molecules.  

The excitation of LLS involving pairs of 19F nuclei belonging to spy ligands that have been 

designed to feature a favorable contrast CLLS between free and bound forms allows one 

to study weak protein-ligand interactions while avoiding signal overlap. 19F detection offers 

several advantages [46] over 1H detection: a) high sensitivity, since 19F has a high 

gyromagnetic ratio and 100% natural abundance; b) absence of overlap with protonated 

solvents, buffers or detergents; c) absence of overlap with other molecules if experiments 

are performed on chemical mixtures with many components; d) high sensitivity of 

transverse 𝑅2 relaxation of 19F to binding, as seen in chapter 2. 

Long-lived states have so far only been observed in systems comprising 1H, 13C or 15N 

nuclei.[47] We have synthetized a molecule that contains a pair of diastereotopic aliphatic 

fluorine atoms: 1,1-difluoro-1-phenylacetyl-Gly-Arg, abbreviated as DFPA-GR (figure 15). 

The presence of an arginine residue assures a weak binding affinity for the active site of 

trypsin [21], thus allowing one to explore the behavior of LLS of pairs of 19F nuclei upon 

binding. Aliphatic fluorine atoms have been preferred to aromatic ones, in order to 

minimize LLS relaxation due to CSA contributions. In fact, amino acids with 19F-labels in 

aliphatic positions have shown smaller CSA values than in aromatic compounds with 19F 

substituents on the ring. [48, 49] [48, 49] [48, 49]  

 

 

Figure 15 Structure of DFPA-GR that contains a pair of aliphatic diastereotopic fluorine atoms (red), which 
are magnetically inequivalent because of the vicinity of a chiral center (*). 
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No less than seven bonds separate the fluorine nuclei from the closest chiral center (Cα 

of the arginine residue, indicated by a star in figure 15). The chemical shift difference Δ𝜈𝐼𝑆 

between the two diastereotopic fluorine nuclei is only 0.8 ppm or Δ𝜈𝐼𝑆 = 301 Hz at 𝐵0= 

9.40 T (400 and 376 MHz for 1H and 19F, respectively). As consequence, an RF field 𝜈1= 

1.5 kHz is sufficient to sustain the LLS and to achieve 𝑇𝐿𝐿𝑆= 2.63 s. In general, Δ𝜈𝐼𝑆 can 

be controlled by varying the distance between the fluorine nuclei and the chiral center. For 

instance, when the glycine residue is deleted, one observes an increase of the chemical 

shift difference between the two diastereotopic fluorine nuclei to Δ𝜈𝐼𝑆 = 2.05 ppm, thus 

requiring a ca. 2.5-fold increase of the RF field amplitude 𝜈1 to sustain the LLS. The 

resulting 𝑇𝐿𝐿𝑆 = 2.06 s is slightly shorter than the one in DFPA-GR. On the other hand, the 

insertion of an additional Gly residue would lead to a further reduction of the chemical shift 

difference Δ𝜈𝐼𝑆.  

The excitation of LLS for the pair of fluorine nuclei of DFPA-GR was achieved with the 

pulse sequence described in chapter 3, with the addition of continuous-wave 1H 

decoupling during the acquisition period. In the absence of protein, the LLS relaxation rate 

of the ligand was found to be 𝑅𝐿𝐿𝑆 = 0.38 s-1, while the longitudinal relaxation rate is 𝑅1 = 

1.64 s-1, leading to a favorable ratio 𝑅1/𝑅𝐿𝐿𝑆 > 4. This shows that it is possible to achieve 

LLS with sufficiently long lifetimes for pairs of fluorine nuclei.  

Of all parameters, the transverse relaxation rate 𝑅2(19F) = 1/𝑇2(19F) is one of the most 

sensitive to binding phenomena, because 𝑅2(19F) benefits from significant exchange 

broadening effects.[46] The rates 𝑅2(19F) of the ligand DFPA-GR have been determined 

in the presence or absence of trypsin. The resulting R2(19F) contrast lies in the range 32 

< C2 < 40 % for the two diastereotopic 19F nuclei for 370 µM DFPA-GR with 2 µM trypsin 

(i.e., a 185-fold excess). On the other hand, if we switch our attention to LLS, the contrast 

CLLS is as large as 87% under the same conditions. This confirms that RLLS is extremely 

sensitive to binding. 

The affinity of DFPA-GR was determined with a fixed concentration of 2 μM trypsin, 

titrating 400 μM < [DFPA-GR] < 8 mM. The measured dissociation constant 𝐾𝐷(DFPA-

GR) = 106 ± 26 µM indicates that the fast exchange condition is easily fulfilled, i.e., 𝑘𝑒𝑥  = 

(𝑘𝑜𝑛[P] + 𝑘𝑜𝑓𝑓) ≈ 𝑘𝑜𝑓𝑓 >> 𝛥𝜔, where [P] is the concentration of the free protein and 𝛥𝜔 = 

2𝜋𝛥𝜈 is the difference in chemical shifts between the bound and free forms of the ligand. 

Indeed, the dissociation constant 𝐾𝐷 must be equal to the ratio between the kinetic 

dissociation and association rate constants, 𝐾𝐷= 𝑘𝑜𝑓𝑓 /𝑘𝑜𝑛, and since the latter is usually 

assumed to be limited by diffusion (107 < 𝑘𝑜𝑛 < 109 M-1s-1),[4] 𝑘𝑜𝑓𝑓 must be in the range 

103-105 s-1. 
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Figure 16 (Top) Signals derived from 19F-19F LLS of 500 µM DPFA-GR in the absence of trypsin after 𝜏𝑚 = 
0.7 s. (Center) the same in the presence of 2 µM trypsin. (Bottom) in the presence of 2 µM trypsin and 485 
µM morin as competitor, which partly displaces DPFA-GR from the binding site of the protein, leading to a 
partial restoration of its signals. A total of 128 scans were recorded for each spectrum, with acquisition and 
repetition times of 0.7 and 3 s, respectively.  

Once a suitable spy ligand such as DFPA-GR that fulfills the fast exchange regime has 

been identified, libraries of potential binders can be screened by competition experiments 

[29] by observing changes in the LLS decay rates of the spy ligand. Figure 16 shows the 

LLS spectrum of 500 µM DFPA-GR in the absence of protein (top), in the presence of 2 

µM trypsin (center) and with 2 µM trypsin plus 485 µM morin, a well-known trypsin inhibitor 

[50] (bottom). Since a competitor like morin partly displaces the spy molecule from the 

binding site of the protein, its presence leads to a partial restoration of the LLS signals of 

the spy ligand. 

Once a competitor has been identified, its dissociation constant needs to be determined. 

To do so, the spy DFPA-GR can be titrated in the presence of a constant concentration of 

competitor or vice versa [29]. The curve of TLLS vs. [𝐿𝑠𝑝𝑦] can be fitted using equation 6 to 

extrapolate an apparent dissociation constant 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

. The dissociation constant 𝐾𝐷
𝑐𝑜𝑚𝑝

 

of the competitor can be calculated from the knowledge of 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

 using equation 8.  
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Figure 17 (left) LLS decays of 495 µM DFPA-GR (black) in the absence of protein and competitor, (blue) in 
the presence of 2 µM trypsin and 500 µM morin, (green) in the presence of 2 µM trypsin and 500 µM BT-
GGR and (red) in the presence of 2 µM trypsin. The exponential decays in the figure are derived from 
experimental 𝑅𝐿𝐿𝑆values; (right) LLS intensities of the spy DFPA-GR in the four solutions described above, 

after sustaining for 𝜏𝑚= 0.7 s. 

 

A quick estimate of 𝐾𝐷
𝑐𝑜𝑚𝑝

 can be obtained from a single titration point: knowing 𝑅𝐿𝐿𝑆
𝑜𝑏𝑠, the 

mole fraction 𝑝𝐵 of the spy molecule in its bound form can be estimated through equation 

6. At this point, 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

 can be calculated by rearranging equation 7.  Following this 

approach, the 𝐾𝐷
𝑐𝑜𝑚𝑝

 values [33] have been estimated to be 𝐾𝐷
𝑐𝑜𝑚𝑝

 = 28 µM for morin and 

𝐾𝐷
𝑐𝑜𝑚𝑝

 = 250 µM for BT-GGR, in reasonable agreement with values reported in the 

literature (30 and 200 µM).[33, 34] This shows that competition screening experiments 

and quick estimates of the affinities of competitors can be performed on the same sample. 

More accurate 𝐾𝐷
𝑐𝑜𝑚𝑝

 measurements require full titration experiments.  
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Figure 18 (top) Proton spectrum of 495 µM DFPA-GR (spy); (bottom) Proton spectrum of 495 µM DFPA-

GR and 500 µM BT-GGR. The grey square shows the range where the signals of the α-protons of the 

glycine residues occur. 

 

Often, screening is performed by testing mixtures (also known as “cocktails”) of 3-10 

putative competitors, in order to reduce experimental time and minimize protein 

consumption. If one observes proton signals, such experiments need a careful choice of 

the mixtures in order to avoid overlap of signals of the putative ligands with those of the 

spy molecule. For example, figure 18 shows a comparison between the 1H spectra of the 

spy molecule DFPA-GR alone and mixed with BT-GGR, a competitor with a similar 

molecular structure. The overlap between the proton signals of the spy molecule and 

those of the competitor are too severe to allow one to perform any competition screening 

experiments. The problem can become even more severe when looking for weak binders. 

Indeed, the larger the dissociation constants, the higher the required concentrations of the 

competitors. In this context, 19F NMR has no rivals. It allows one to perform experiments 

with high sensitivity while avoiding problems of overlap with protonated buffers and signals 

of mixtures. The combination of the high sensitivity to binding phenomena offered by the 

LLS method and the lack of overlap in 19F NMR can be put to good use for fragment-

based drug discovery. 
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5. Experimental procedures 

 

All the experiments presented in this thesis were performed at 298 K on 500 MHz (11.7 

T) or 600 MHz (16.4 T) Avance Bruker spectrometers equipped with 5 mm CryoProbes.  

The following paragraphs give some details about ligand titrations, competition 

experiments, fitting of data and synthesis of ligands. Further details can be found in 

references [1-3]. 

 

5.1 Ligand titrations 

 

Ligand titrations, as in figure 4 of Chapter 4, were performed by addition of small aliquots 

(from 1 to 2 µL) of a concentrated ligand solution (from 150 to 200 mM) to 400 µL of a 

buffered D2O solution containing the protein (from 10 to 20 µM). Lifetimes 𝑇𝐿𝐿𝑆 were 

obtained by mono-exponential fitting of signal intensities observed with the LLS pulse 

sequence described in Chapter 3, using 10 different spin-lock durations 0.5 s < 𝜏𝑚 < 5𝑇𝐿𝐿𝑆. 

A short-cut can sometimes be used. For example, the relaxation rates 𝑅𝐿𝐿𝑆 reported in 

figure 14 were obtained from ratios of the signal intensities observed using only two 

different sustaining delays 𝜏𝑎 and 𝜏𝑏, repeating each of them twice in order to compare 

four pairs of signal intensities 𝐼𝑎(𝜏𝑎)/𝐼𝑏(𝜏𝑏). In this case, the relaxation rates where 

obtained from the ratio 𝑅𝐿𝐿𝑆 = (log⁡(𝐼𝑎/𝐼𝑏))/(𝜏𝑏 − 𝜏𝑎). Typically, we used 𝜏𝑎 = 0.5 s, while 

𝜏𝑏 was chosen in the vicinity of the estimated value of 𝑅𝐿𝐿𝑆. 

Competition experiments were performed in the same manner. The only difference was 

the presence of a potential competitor in the protein solution. 

Ligand concentrations were carefully measured using the PULCON technique.[4] 

 

5.2 Fitting of titration curves 

 

The experimental data obtained were fitted to equation 6 of Chapter 4 to determine the 

fraction of ligand in the bound form [𝑃𝐿] [𝐿]𝑡𝑜𝑡⁄ . Equation 7 was used to determine the 

dissociation constant 𝐾𝐷.  

For competition experiments, equation 7 of Chapter 4 gives the apparent dissociation 

constant of the spy molecule 𝐾𝐷
𝑠𝑝𝑦,𝑎𝑝𝑝

. Using this value, equation 8 of Chapter 4 gives the 

dissociation constant of the competitor. 
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5.3 Hyperpolarized LLS experiments 

 

A detailed protocol for DNP-LLS experiments is described on page 95. Further details are 

described in reference [2]. 

 

5.4 Chemical synthesis of ligands 

 

Two ligands mentioned in this thesis, BT-GGR and DFPA-GR, are not commercially 

available and were synthetized in our laboratory. Since the synthesis of BT-GGR is 

described in the supporting information of reference [2], we describe here the preparation 

of DFPA-GR. 

The synthesis of 1,1-difluoro-1-phenylacetyl-Gly-Arg (DFPA-GR) was performed by solid-

phase peptide synthesis (SPPS) using 2-chlorotritylchloride resin and Fmoc protected 

amino acids. The first step is a SN1 substitution of Fmoc-Arg(Pbf)-OH on the resin. All 

remaining reactive 2-chlorotrityl groups were then capped with MeOH. The molecule was 

obtained by coupling of Fmoc-protected Gly in the presence of HOBt and TBTU, followed 

by deprotection of the N-terminus of the dipeptide. Finally, difluoro-phenyl-acetic acid was 

attached at the N-terminus of the dipeptide. Cleavage from the resin, followed by 

deprotection of the arginine side chain, afforded DFPA-GR. 

 

N-Fmoc-Arg(Pbf)-O-resin (2): After swelling with dry DCM (80 mL) for 5 min, the 2-

chlorotrityl chloride resin (0.83 mmol.g-1, 1 equiv, 1 mmol, 1.2 g) was treated with a 

solution of Fmoc-Arg(Pbf)-OH (1) (1.2 equiv, 1.2 mmol, 0.78 g) in dry DCM (10 mL) and 

DIPEA (2.5 equiv, 6.23 mmol, 0.81 g) shaken at 125 rpm at room temperature for 2 hrs. 

The reaction was performed in 4x10 mL filtration tubes with polyethylene fritters. MeOH 

(10 mL) was added to cap the free sites, and the reaction mixture was shaken for 1. The 

resin was washed with DCM (3 × 12 mL), DCM/MeOH 1:1 (3 × 12 mL), MeOH (3 × 12 

mL), diethyl ether (3 x 12 mL) and dried for 12 hrs in vacuo to give the N-Fmoc-Arg(Pbf)-

O-resin (2). 

 

N-Fmoc-Gly-Arg(Pbf)-O-resin (3): N-Fmoc-Arg(Pbf)-O-resin (2) was suspended in a 

solution of 20% piperidine in DMF (10 mL) for 30 min and shaken to give the N-

deprotected resin. The resin was washed with DMF (4 × 10 mL) and DCM (4 × 10 mL).  

Fmoc-Gly-OH (4 equiv, 4 mmol, 1.19 g), HOBt (4 equiv, 4 mmol, 0.54 g), TBTU (4 equiv, 
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4 mmol, 1.29 g) and DIPEA (4 equiv, 4 mmol, 0.52 g) were dissolved in DMF (10 mL). 

The solution was added to the N-deprotected resin. The reaction mixture was shaken at 

room temperature for 3 hrs to give Fmoc-Gly-Arg(Pbf)-O-resin (3) which was washed with 

DMF (4 × 10 mL). 

 

 

Scheme 1. Synthesis of the 19F labelled ligand for trypsin 5. 

 

DFPA-Gly-Arg(Pbf)-O-resin (4): Fmoc-Gly-Arg(Pbf)-O-resin (3) was suspended in a 

solution of 20% piperidine in DMF (30 mL) for 30 min and shaken to give the N-

deprotected resin. The resin was washed with DMF (4 × 10 mL) and DCM (4 × 10 mL). 



 
5.4 Chemical synthesis of ligands 
 
 

118 
 

Difluoro-phenyl-acetic acid (4 equiv, 4 mmol, 0.69 g), HOBt (4 equiv, 4 mmol, 0.54 g), 

TBTU (4 equiv, 4 mmol, 1.29 g), and DIPEA (4 equiv, 4 mmol, 0.52 g) were dissolved in 

DMF (30 mL). The solution was added to the N-deprotected resin. The reaction mixture 

was shaken at room temperature for 3 hrs at 125 rpm to give DFPA-Gly-Arg(Pbf)-O-resin 

(4) which was washed with DMF (4 × 10 mL) and DCM (4 × 10 mL). 

DFPA-Gly-Arg (5): Cleavage from the resin and deprotection of the side-chain was 

carried out with 10 mL TFA:H2O:TIS (95:2.5:2.5) for 3 hrs. TFA was then removed by 

evaporation and the final product (5) was obtained after lyophilization. 
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6. Conclusions 

 

he drug discovery and development process is a very long and expensive 

pathway. It can take 12-15 years from the first, preliminary tests to the final 

approval for marketing.  

In the first stage of drug discovery, screening campaigns are usually performed in order 

to identify a “hit compound”, which may bind to a macromolecular target and alter the 

course of a disease. NMR offers a rich source of parameters that are sensitive to changes 

in physical properties associated with binding. As consequence, a great variety of NMR 

methods have been developed to perform screening experiments.  

Long-Lived States (LLS) are nuclear spin states whose decay time constant 𝑇𝐿𝐿𝑆 can be 

much longer than the longitudinal relaxation time 𝑇1. The goal of the present work was to 

develop a new NMR strategy to study the interactions between ligands and proteins, by 

exploiting some peculiar properties of the LLS.  

In the regime of fast exchange on the NMR time scale, i.e., when the exchange between 

the free and bound forms of a weak ligand is fast compared to the difference of their 

resonance frequencies, the observable relaxation rate of a long-lived state associated with 

a weak ligand results from a weighted average of the bound and free forms. As described 

in Chapter 4, the contrast between the averaged LLS relaxation rate and the LLS 

relaxation rate of the free ligand is proportional to the difference of the relaxation rates of 

the free and the bound forms. Because of the long lifetimes of LLS in the free form and 

the boosted LLS relaxation in the bound state, this difference is particularly large, making 

the relaxation of long-lived states one of the most sensitive NMR parameters to ligand-

protein binding.  

LLS have been successfully excited in glycine residues in short polypeptides in order to 

quantify their affinities for protein targets. The use of competition experiments allowed the 

study of binders which do not contain any spin system that can sustain a long-lived state. 

Whenever there is no ligand that can carry a long-lived state, the functionalization of a 

binder with a spin-pair label can provide a molecule that can be used as reporter in LLS 

competition experiments. This strategy was used to synthetize a ligand containing a 

bromo-thiophene group, which can carry an LLS on its two aromatic protons. The relatively 

long 𝑇1 of these spins allowed us to perform a dissolution DNP experiment, where the 

functionalized ligand was hyperpolarized, transferred to a conventional NMR 

spectrometer and used as LLS reporter in competition experiments. This strategy allows 

T 
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one to perform screening experiments with high contrast while working with low 

concentrations of ligand and proteins. 

The superior sensitivity of the LLS method can be exploited in order to quantify the affinity 

of a weakly binding fragment to a protein target. By exploiting the LLS behaviour of a spy 

molecule, we experimentally demonstrated that it is possible to measure dissociation 

constants up to 12 mM, where most other biophysical techniques fail, including NMR 

methods based on the observation of ligands.  

We also explored LLS involving pairs of 19F nuclei to study binding phenomena. In a 

custom-designed fluorinated ligand that binds trypsin, we have observed a ratio 𝑇𝐿𝐿𝑆 / 𝑇1 

> 4. We found a dramatic effect on the LLS lifetime 𝑇𝐿𝐿𝑆 of the fluorinated ligand and great 

contrasts have been observed between signals derived from 𝑇𝐿𝐿𝑆 with/without protein. This 

fluorinated ligand has been successively used as spy molecule in competition 

experiments, which allowed us to rank the affinities of arbitrary ligands that do not contain 

any fluorine. The extension of LLS to pairs of 19F nuclei is an important achievement, since 

fluorine detection allows one to perform screening campaigns without suffering from 

problems due to overlapping signals. The combination of fluorine detection with DNP will 

be the next frontier of screening by LLS. It could provide biophysical scientists with a very 

sensitive and innovative tool to perform ligand-protein interaction studies.  
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“Exploring Ligand Affinities for Proteins by NMR of Long-Lived 

States” 

Biomolecular Magnetic Resonance Lab (Prof. G. Bodenhausen)  

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 
 

2011  Internship 

“Long-lived nuclear spin states: new probes for the investigation of 

biomolecular dynamics and interactions” 

Biomolecular Magnetic Resonance Lab (Prof. G. Bodenhausen)  

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland 
 

2009 – 2011  M.Sc. in Chemistry  

University of Padova, Italy 

Master thesis: “Long-lived nuclear spin states: new probes for the 

investigation of biomolecular dynamics and interactions” 
 

2006 – 2009  B.Sc. in Chemistry  

University of Padova, Italy 

Bachelor thesis: “DJ1-DAQ conjugates in Parkinson disease (a 

topological study with molecular dynamic simulations)” 
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Awards 
 
 
2013 
 

 

 Prize for the best poster, 49th International Conference on Medicinal 

Chemistry, Nice, France 

2015 

 

 2015 SCNAT/SCS Chemistry Travel Award, offered by the Swiss 

Chemical Society and the Swiss Society for Foood and Enviromental 

Chemistry 

 

 

Professional and research experience 
 
 
EPFL  - Investigation of fundamental aspects of NMR spectroscopy in liquid 

states 

- Development of NMR experimental methods 

o Detection of ligand-protein binding with new strategies, which 

allow to save materials and to work with cheaper proteins 

o Definition of chemical strategies to render screening methods 

always applicable 

o Combination of new screening methods with innovative techniques 

(dissolution-DNP) to increase the sensitivity of the experiments 

o Development of screening strategies based on 19F detection, which 

allow to speed-up the screening processes  

o Investigation of relaxation properties of water in gas phase 

o Development of strategies to detect para-water in bulk 

- Supervision of several student projects 

- Organization of interdisciplinary projects for students, to be developed 

in different EPFL laboratories  

- Teaching at all levels (B.Sc, M.Sc. and Ph.D) 

 

   

Programming skills 
 
 

- Experience with Matlab, Origin  

- Experience with Bruker NMR software for implementation/modification of pulse sequences 

- Basic experience with programming languages as Pascal, Java 

 

 
 

Patent applications 
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EP20110793393, Method for the nmr based determination of the affinity of drugs for a target 

protein , EPFL 

 
 

Hobbies and interests 
 
 
Passionate of wines and agriculture, traveling, sports. I am currently the vice-president of 

Italaus, an association of Italian students and PhDs (recognized by EPFL) for the promotion of 

the Italian culture in Lausanne.  
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Conferences 
 

 

1. EUROMAR Conference, Dublin, Ireland, June 30th-July 5th, 2012. 
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Poster title: Boosting Sensitivity of Ligand-Protein Screening by NMR of Long-Lived 

States 
 

2. ENC Conference, Asilomar, California, April 14-19th, 2013. 

Poster title: Protein-Ligand Affinity using Long-Lived States and Long-Lived 

Coherences 
 

3. RICT Conference, Nice, France, July 3-5th, 2013. 

Poster title: Towards DNP-Enhanced LLS and LLC for Ligand Screening 
 

4. SCS fall meeting, Lausanne, Switzerland, September 6th, 2013. 

Poster title: Protein-Ligand Affinity using Long-Lived States and Long-Lived 

Coherences 
 

5. ENC Conference, Boston, USA, March 23-28th, 2014. 

Poster title: DNP-Enhanced Ligand-Protein Screening by NMR of Long-Lived States 
 

6. RSC NMR DC, Spring Meeting 2014, Cambridge, UK, April 10-11th, 2014.  

Oral presentation: Beyond the millimolar range: measuring ultra-weak ligand-protein 

affinities using NMR of Long-Lived States 
 

7. EUROMAR Conference, Zurich, Switzerland, June 29th-July 3rd, 2014.  

Poster title: Exploring weak ligand-protein interactions by Long-Lived States in NMR: 

improved contrast in Fragment-Based Drug Screening 
 

8. FBLD Conference, Basel, Switzerland, September 21-24th, 2014.  

Poster title: Exploring weak ligand-protein interactions by Long-Lived States in NMR: 

improved contrast in Fragment-Based Drug Screening 
 

9. NMRS Conference, Amritsar, India, March 6-9th, 2015.  

Invited oral presentation: Ligand-Protein Interaction Studies by NMR of Long-Lived 

States 
 

10. ENC Conference, Asilomar, California, April 19-24th, 2015.  

Oral presentation: Ligand-Protein Screening by Long-Lived States of Fluorine-19 

Nuclei 
 

11. EUROMAR Conference, Prague, Czech Republic, July 5-10th, 2015.  

Oral presentation: Long-Lived States of pairs of Fluorine-19 Nuclei: a new tool for 

Ligand-Protein Screening 


