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Abstract
This thesis develops models of activity and destination choices in pedestrian facilities from
WiFi traces. We adapt the activity-based travel demand analysis of urban mobility to pedestri-
ans and to digital footprints. We are interested in understanding the sequence of activities
and destinations of a pedestrian using discrete choice models and localization data from
communication antennas.

Activity and destination choice models are needed by pedestrian facilities, in particular multi-
modal transport hubs such as train stations or airports, for decision aid when building new
infrastructure, modifying existing infrastructures, or locating points of interest such as ticket
machines in a train station. Understanding demand for activities is particularly important
when facing an increasing number of visitors or when developing new activities, such as
shopping or catering.

Data from existing sensors, such as WiFi access points, are cheap and cover entire facilities,
but are imprecise and lack semantics to describe moving, stopping, destinations or activities
carried out at destinations. Thus, understanding pedestrian behavior first requires to observe
the actual behavior and detect stops at destinations, and second to model the behavior.

Part I of this thesis focuses on activity-episode sequence detection. We develop a Bayesian
approach to merge raw localization data with other data sources in order to take into account
the imprecision and describe activity-episode sequences. This approach generates several
activity-episode sequences for a single individual. Each activity-episode sequence is associated
with a probability of being the true sequence. It is based on a measurement equation and a
prior probability distribution. The measurement equation expresses the imprecision of the
sensor. The prior represents the attractivity of the different points of interest surrounding the
measurement and allows the use of a priori information from other sources of data (register
data, point-of-sale data, counting sensors, etc.).

Part II proposes models for activity and destination choices. The joint choice of activity
type and activity timing is modeled with an activity path approach. The sequence of activity
episodes is seen as a path in an activity network. Time is considered as discrete. Unlike
traditional models, our model is not tour-based, starting and ending at the home location,
since the daily “home”activity is meaningless in our context. The choice set contains all
combinations of activity types and time intervals. The number of different paths is thus very
large (increasing with time resolution and disaggregation of types of activities). Inspired by
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Abstract

route choice models, we use a Metropolis-Hastings algorithm for the sampling of paths to
generate the choice set. An importance sampling correction of the utility allows the estimation
of unbiased model parameters without enumerating the full choice set.

While the activity path model describes the choice of an activity type in time, the destination
where the activity is performed is modeled with a destination choice model conditional on
the activity type. Our approach accounts for the panel nature of the data and deals with serial
correlation between error terms.

Using real WiFi data collected on the EPFL campus, we estimate an activity path choice model
showing a satiation effect, a schedule delay effect related to class start time, primary activity
preferences, time of day preferences and pattern preferences.

We also develop a destination model for a specific activity type: eating. Knowing that the
individual has decided to eat, which restaurant does she choose? This conditional desti-
nation choice model includes in its utility the cost of menus, available types of foods and
drinks, visibility of the restaurant, distance from a previous activity episode, socioeconomic
characteristics and habits.

This thesis proposes a set of rigorous methodologies to detect, model and forecast pedestrian
choices of activities and destinations in pedestrian infrastructure, using sensor data. A proof-
of-concept has been developed on a campus using real data. Our decision-aid methodologies
will help multimodal transport hub operators to optimize the locations of different points of
interest (such as ticket machines, restrooms or shops), define opening hours or train schedules,
and find a balance between different types of users (travelers or shoppers).

Key words: Activity choice; Destination choice; Network traces; Pedestrians; Semantically-
enriched routing graph (SERG); Potential attractivity measure; Activity-episode sequence;
Activity path; Activity network; Importance sampling; Strategic sampling; Dynamic model;
Initial conditions problem; Panel data; Location choice
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Résumé
Cette thèse développe des modèles de choix d’activité et de destination pour les infrastructures
piétonnes à partir de traces WiFi. L’analyse de la demande en transport basée sur l’activité,
initialement développée pour la mobilité urbaine, est ici adaptée aux piétons et aux em-
preintes numériques des téléphones portables. Nous nous intéressons à la compréhension
des séquences d’épisodes d’activité d’un piéton en utilisant les modèles de choix discret et les
données de localisation des antennes de communication.

Les modèles de choix d’activité et de destination sont nécessaires aux infrastructures pié-
tonnes, en particulier pour les pôles d’échanges multimodaux comme les gares ou les aéro-
ports, afin d’aider à la décision lors de la construction de nouvelles infrastructures, lors de la
modification de structures existantes, ou pour le choix du positionnement de certains points
d’intérêt tels que les distributeurs à billets dans les gares. Mieux comprendre la demande pour
les différentes activités disponibles est particulièrement important face à l’augmentation du
nombre de visiteurs ou lors du développement de nouvelles activités, telles que l’ouverture
d’un magasin ou d’un lieu de restauration.

Les données issues de capteurs existants, tels que les antennes WiFi, sont bon marché et
couvrent des infrastructures entières, mais elles sont imprécises et dépourvues de la séman-
tique permettant de décrire les mouvements, les arrêts, les destinations et les activités effec-
tuées à destination. Dès lors, comprendre les comportements piétons nécessite tout d’abord
d’observer le comportement réel et de détecter les arrêts aux destinations, et seulement
ensuite de modéliser le comportement.

La première partie de cette thèse se focalise sur la détection des séquences d’épisodes d’activité.
Nous y développons une approche bayésienne pour fusionner des données de localisation
brutes avec d’autres sources de données de manière à prendre en compte l’imprécision de la
localisation et à décrire les séquences d’épisodes d’activité. Cette approche génère plusieurs
séquences d’épisodes pour un individu. Chacune d’entre elles est associée à la probabilité
d’être la vraie séquence, effectivement effectuée par l’individu. L’approche s’appuie sur une
équation de mesure et une distribution de probabilité a priori. L’équation de mesure exprime
l’imprécision du capteur. La distribution a priori représente l’attractivité des différents points
d’intérêt dans le voisinage de la mesure et permet l’utilisation d’information a priori à partir
d’autres sources de données (données de registres, données de points de vente, capteurs de
comptage, etc.).
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Abstract

La deuxième partie de cette thèse propose des modèles pour les choix d’activité et de des-
tination. Le choix commun du type d’activité et du timing des activités est modélisé avec
une approche dite “du chemin d’activité”. La séquence d’épisodes d’activité est vue comme
un chemin dans un réseau d’activité. Le temps est considéré comme discret. Contrairement
aux modèles traditionnels, notre modèle n’est pas basé sur la notion de tour, commençant
et terminant au domicile, puisque le domicile comme activité quotidienne n’a pas de sens
dans notre contexte. L’ensemble de choix contient toutes les combinaisons de types d’activité
et d’intervalles de temps. Le nombre de chemins d’activité différents est par conséquent
très élevé (augmentant avec la résolution temporelle et la désagrégation des types d’activité).
Inspirés par les modèles de choix d’itinéraire, nous utilisons un algorithme de Metropolis-
Hastings pour échantillonner des chemins, générant ainsi l’ensemble de choix. Une correction
de l’utilité liée à l’échantillonnage préférentiel permet d’estimer des paramètres du modèle
non biaisés sans énumérer l’ensemble de choix complet.

Alors que le modèle de chemin d’activité décrit le choix d’un type d’activité dans le temps, la
destination où cette activité a lieu est modélisée à l’aide d’un modèle de choix de destination
conditionnel au type d’activité. Notre approche prend en compte la nature de panel des
données et gère l’autocorrélation entre les termes d’erreur.

En utilisant des données WiFi réelles collectées sur le campus de l’EPFL, nous estimons un
modèle de choix de chemin d’activité qui montre un effet de satiété, un effet d’aversion au
retard lié aux heures de cours, une préférence pour une activité principale, une préférence
pour l’heure de la journée et une préférence pour certains profils d’activité (c’est-à-dire la
préférence pour un ordre dans lequel réaliser les activités).

Nous développons aussi un modèle de choix de destination pour un type d’activité spécifique :
manger. Sachant que l’individu a décidé de manger, quel restaurant choisit-il ? Ce modèle
de choix de destination conditionnel inclut dans sa fonction d’utilité le coût des menus, le
type de nourriture et de boisson proposées, la visibilité du restaurant, la distance à partir de
l’épisode d’activité précédent, les caractéristiques socioéconomiques et les habitudes.

Cette thèse propose un ensemble de méthodologies rigoureuses pour détecter, modéliser
et prédire les choix d’activité et de destination des piétons dans les infrastructures qui leur
sont dédiées, en utilisant des données de capteurs. Une démonstration de faisabilité a été
développée sur le campus en utilisant des données réelles. Nos méthodologies d’aide à la
décision aideront les opérateurs des pôles d’échanges multimodaux à optimiser la localisation
des différents points d’intérêt (tels que distributeurs à billets, toilettes ou magasins), à définir
les heures d’ouverture ou les horaires de train, et à trouver un équilibre entre les différents
types d’usagers (voyageurs ou personnes qui font leurs courses).

Mots clefs : Choix d’activité ; Choix de destination ; Traces WiFi ; Piétons ; Réseau de routage
enrichi sémantiquement ; Mesure d’attractivité potentielle ; Séquence d’épisodes d’activité ;
Chemin d’activité ; Réseau d’activité ; Echantillonnage préférentiel ; Modèle dynamique ; Pro-
blème des conditions initiales ; Données panel ; Choix de localisation
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Zusammenfassung
Die vorliegende Arbeit befasst sich mit der Entwicklung von Modellen, mit welchen die Wahl
von Destinationen und Aktivitäten in Fussgängeranlagen anhand von ‘WiFi-Spuren’ vorher-
gesagt werden kann. Die aktivitäten-basierte Mobilitätsanalyse, welche ursprünglich für die
städtische Mobilität entwickelt wurde, wird auf Fussgänger und digitale ‘Fussabdrücke’ von
Mobiltelefonen angewandt. Wir interessieren uns für das Verständnis von Aktivitäts- und
Destinations- Sequenzen von Fussgängern und verwenden dafür diskrete Entscheidungsmo-
delle in Verbindung mit Lokalisierungsdaten von Kommunikationsantennen.

Diskrete Entscheidungsmodelle für die Wahl von Aktivitäten und Destinationen finden An-
wendung in Fussgängerinfrastrukturen, insbesondere bei multimodalen Verkehrsknoten, wie
Bahnhöfen oder Flughäfen, bei der Dimensionierung neuer Anlagen, bei Umbauten oder bei
der Platzierung besonderer Dienstleistungsstellen, wie Billett-Automaten. Das Verständnis
der Aktivitätsnachfrage ist besonders wichtig bei steigenden Besucherzahlen oder bei einer
Angebotserweiterung, wie zum Beispiel der Eröffnung eines Ladens oder eines Imbiss-Standes.

Daten bestehender Sensoren wie WiFi-Antennen sind kostengünstig und decken oft die
gesamte Infrastruktur ab. Gleichzeitig sind sie aber auch ungenau und es fehlt ihnen eine
Semantik zur Beschreibung von Bewegungen, von Aufenthalten, von Destinationen sowie
von Aktivitäten, denen an einzelnen Orten nachgegangen wird. Für das Verständnis des
Fussgängerverhaltens ist es somit unumgänglich, zunächst das tatsächliche Verhalten zu
beobachten und Aufenthalte an Destinationen zu erkennen. Erst anschliessend kann das
eigentliche Verhalten modelliert werden.

Der erste Teil dieser Arbeit beschäftigt sich mit der Erkennung von Aktivitätsepisodense-
quenzen. Wir entwickeln einen Bayes’schen Ansatz für die Verknüpfung von Lokalisierungs-
rohdaten mit anderen Datenquellen, um die Ungenauigkeit der Daten zu berücksichtigen
und um die Aktivitätsepisodensequenzen zu beschreiben. Dieser Ansatz generiert mehrere
Aktivitätsepisodensequenzen für jeden Fussgänger. Jede von ihnen hat eine gewisse Wahr-
scheinlichkeit, die wahre Sequenz zu sein. Das Verfahren stützt sich auf Messgleichungen und
Wahrscheinlichkeitsverteilungen, welche vorgängig bekannt sind. Die Messgleichung drückt
die Ungenauigkeit des Sensors aus. Die A-priori-Wahrscheinlichkeit stellt die Attraktivität von
verschiedenen Destinationen in der Umgebung des Messortes dar und erlaubt es, vorgän-
gig bekannte Information von anderen Datenquellen (Registrierungsdaten, Verkaufsdaten,
Zählsensoren, etc.) zu berücksichtigen.
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Abstract

Im zweiten Teil der Arbeit werden Modelle zur Wahl von Aktivitäten und Destinationen prä-
sentiert. Die gleichzeitige Wahl des Aktivitätstypes und der Aktivitätszeit wird mit einem
sogenannten “Aktivitätspfadansatz” modelliert. Die Aktivitätsepisodensequenz wird dabei als
ein Pfad in einem Aktivitätsnetzwerk angesehen, wobei die Zeit als diskret betrachtet wird. Im
Gegensatz zu klassischen Modellen basiert das unsere nicht auf einer Tour, die zu Hause be-
ginnt und endet, da die Aktivität „Zuhause“ in unserem Kontext keine eigentliche Bedeutung
hat. Die Auswahlmöglichkeiten beinhalten alle Kombinationen von Aktivitätstypen und Zeit-
intervallen. Die Anzahl von unterschiedlichen Aktivitätspfaden ist demzufolge sehr gross (sie
nimmt mit der zeitlichen Auflösung und der Feinheit der Unterscheidung an Aktivitätstypen
zu). Inspiriert von Routenwahlmodellen verwenden wir ein Metropolis-Hastings-Algorithmus,
um eine Auswahl an Pfaden zu genieren. Eine Varianzreduktionstechnik erlaubt es, erwar-
tungstreue Modellparameter zu schätzen ohne die Gesamtheit aller Pfade zu berücksichtigen.
Während das Aktivitätspfadmodell die Wahl eines Aktivitätstypes und eines Zeitintervalls
beschreibt, wird die Wahl der Destination, an welcher die Aktivität ausgeführt wird, mit ei-
nem auf den Aktivitätstyp bedingten Destinationswahlmodell beschrieben. Unser Ansatz
berücksichtigt Paneleffekte der Daten, sowie Reihenkorrelation zwischen Fehlertermen.

Basierend auf realen WiFi-Daten vom Universitätscampus der ETH Lausanne schätzen wir ein
Aktivitätspfadwahlmodell, welches Effekte wie die Sättigung, die Vermeidung von Verspätun-
gen bezüglich der Vorlesungszeiten sowie Vorlieben für Hauptaktivitäten, für Tageszeiten und
für verschiedene Verhaltensmuster darstellt.

Wir entwickeln ebenfalls ein Destinationswahlmodell für den spezifischen Aktivitätstyp ‘Es-
sen’. Angenommen, eine Person entscheidet sich etwas zu essen, welchen Verpflegungsort
(Restaurant, Kantine, Take-Away) wird sie wählen? Dieses bedingte Destinationswahlmodell
berücksichtigt in seiner Nutzenfunktion die Verpflegungskosten, die Art der verfügbaren Ess-
und Trinkmöglichkeiten, die Sichtbarkeit eines Verpflegungsortes, die Entfernung zur vorher-
gehenden Aktivitätsepisode, sowie sozioökonomische Eigenschaften und Angewohnheiten.

Diese Arbeit präsentiert eine Reihe rigoroser Methodologien zur Erkennung, Modellierung
und Vorhersagung von Aktivitäten und Destinationen in Fussgängeranlagen basierend auf
Sensordaten. Eine Machbarkeitsstudie mit realen Daten auf einem Universitätscampus wurde
durchgeführt. Unsere Methoden werden den Betreiber von multimodalen Verkehrsknoten-
punkten helfen, die Platzierung von Dienstleistungsorten wie Billett-Automaten, Toiletten
oder Verkaufsstellen zu optimieren, die Öffnungszeiten oder den Zugfahrplan zu bestimmen,
und ein Gleichgewicht zwischen Kundentypen (Reisende oder Personen, welche ihre Einkäufe
tätigen) zu finden.

Stichwörter: Aktivitätswahl; Destinationswahl; WiFi-Spuren; Fussgänger; semantisch angerei-
cherte Routing-Graphen; potentielles Attraktivitätsmass; Aktivitätsepisondesequenz; Aktivi-
tiätspfad; Aktivitätsnetzwerk; Varianzreduktion; dynamisches Modell; Anfangswertproblem;
Paneldaten; Standortwahl
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1 Introduction

This thesis seeks to develop a better understanding of pedestrian demand and to develop
decision aid tools. It builds an activity-based approach from communication network traces,
modeling activity and location choices. This approach is sensitive to policies and demand
management strategies, when modifying or building pedestrian infrastructures or designing
public transit timetables. Network traces, such as WiFi signatures, allow the observation and
modeling of behavior.

1.1 Thesis motivation: Pedestrian activities in public spaces

1.1.1 Understanding pedestrian demand

Crowd dynamics and pedestrian modeling have been extensively studied in recent years due
to urban growth and its pressure on urban infrastructure (Bierlaire and Robin; 2009; Duives
et al.; 2013; Kasemsuppakorn and Karimi; 2013; Kneidl et al.; 2013; Weidmann et al.; 2014) and
due to the availability of new tracking data (Sevtsuk et al.; 2009; Naini et al.; 2011; Versichele
et al.; 2012; Duives et al.; 2014; Yoshimura et al.; 2014; van den Heuvel et al.; 2015). Crowd and
pedestrian simulation is emerging as a tool for designing new infrastructures and optimizing
the use of current infrastructures (Tabak et al.; 2010; Kim et al.; 2015).

Understanding pedestrian demand is important for several reasons. In shops, the analysis of
the factors impacting purchase behavior are useful for marketing purposes (e.g., Hui et al.;
2009; Kholod et al.; 2010; Yaeli et al.; 2014). Visitor counting in different parts of a building is
useful for demand-controlled ventilation, improving indoor air quality and energy savings
(e.g., Tabak et al.; 2010; Kuutti et al.; 2014). For tourism, the visitor’s experience can be im-
proved based on people’s behavior, through way-finding systems in city centers (Kemperman
et al.; 2009; Edwards and Griffin; 2013), management of congestion in museums (Yoshimura
et al.; 2014), or development of infrastructure in parks (O’Connor et al.; 2005). Mass events
such as festivals can evaluate the number of visitors (Naini et al.; 2011) and their daily and
hourly patterns of visits (Versichele et al.; 2012). In hospitals, Lee et al. (2012) optimize the
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allocation of facilities on a floor and Haq and Luo (2012) review studies on nurses’ behavior,
patient preferences, building development and extension design. In inner-city shopping areas
or Central Business Districts, pedestrian demand depends on the properties and spatial distri-
bution of facilities, and conversely the economic viability of facilities depends on pedestrian
behavior (Borgers and Timmermans; 1986b; Saarloos et al.; 2010).

1.1.2 Decision aid tools for public spaces

Operators of pedestrian facilities are interested in pedestrian demand, i.e., in (1) knowing how
many people are visiting, (2) what visitors are doing once in the facility and (3) for how long. In
facilities with controlled entrances, such as museums, counting can be easily performed with
mechanical doors or sales data. When it is not the case, typically in transport hubs, counting
is already a challenging task. Determining the activities of visitors and their duration in the
facility is more difficult. What are shoppers buying in shops? What are visitors observing in
museums? Are people in transport hubs shoppers or travelers? And do travelers need to buy a
ticket or not?

Issues such as the source of congestion or the location of points of interest in pedestrian
facilities need a solution. A decision aid tool for public spaces must predict the total activity
travel demand within a public space. This requires the development of demand models at the
scale of pedestrian infrastructures. It will help shops in defining their layout, music festival in
locating toilets or optimizing concert schedules, transport hubs in locating ticket machines,
or museums in setting up exhibitions avoiding bottlenecks.

1.2 Thesis objective: An activity-based approach to pedestrian de-
mand

Pedestrian demand is driven by a need to perform activities in different locations. The ex-
istence of time-space constraints in pedestrian infrastructures asks for explicit modeling
of activity scheduling decisions. Such models are traditionally used for people performing
trips at an urban scale as an important source of information for strategic planning, and
management or optimization of transportation networks (Ben-Akiva et al.; 1996; Bowman
and Ben-Akiva; 2001; Arentze and Timmermans; 2004; Balmer et al.; 2006; Roorda et al.; 2008,
among others). For pedestrians, they are useful in describing congestion, for the efficient
design of new facilities, and for travel guidance and information systems.

The goal of this thesis is to adapt the activity-based approaches developed since the 1970s for
urban areas to pedestrian facilities. Such models are sensitive to demand management strate-
gies such as modifying schedules (e.g., train schedules in train stations or concert schedules
in a music festival) and to land-use policies (e.g., concentrating the development of services in
the center of a facility or in corridors). Activity-based modeling can also evaluate the impact of
information and communication technology in public spaces, like in airports (Kalakou et al.;
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2015) or in train stations, e.g., on the purchase of the ticket (going to the ticket machine versus
buying on the phone).

1.2.1 Pedestrian choice of activity patterns

Published pedestrian research focuses mostly on walking behavior and crowd dynamics, as
proven by the many reviews on various walking behavior models (Papadimitriou et al.; 2009;
Schadschneider et al.; 2009; Bellomo et al.; 2012; Duives et al.; 2013; Mustafa and Ashaari;
2015). Bierlaire and Robin (2009) decompose pedestrian behavior into activity, destination,
mode, route, next step and speed choices. From their review of the literature, it appears that
the least studied area is activity choice for pedestrians. Borgers and Timmermans (1986b)
sequentially model the choice of a destination in time. Then, they consider impulse shopping
stops on the way, conditional on destination and route choice. Hoogendoorn and Bovy (2004)
decompose pedestrian behavior into three levels: strategic (departure time choice, activity
pattern choice), tactical (activity scheduling, destination choice, route choice) and operational
(walking behavior). They focus on the simultaneous choice of route and destination and
minimize a cost function depending on a walking cost and an activity scheduling cost. The
activity scheduling cost is used to control the order of activities, the “mandatory” activities
and the schedule delay. The cost function must be evaluated and compared to all other
orders of activities. All possible orders of activities quickly becomes very large, when the
number of activities increases. They propose an example with two activities, 1 and 2, leading
to two possible orders of activities, 12 or 21. Daamen (2004, ch. 2) mentions activity patterns
modeling as a blank spot in research. Liu, Usher and Strawderman (2014) model the activity
pattern as the choice of performing an activity type in one of three time intervals delimited
by check-in and security control in an airport. This approach does not model duration nor
time-of-day preferences.

For car trips and at urban scale, activity-based models often assume a “home” location and a
tour-based structure (Ben-Akiva et al.; 1996; Shiftan; 1998; Bhat and Singh; 2000; Bowman and
Ben-Akiva; 2001; Miller et al.; 2005; Shiftan; 2008; Abou-Zeid and Ben-Akiva; 2012), which is
not very well adapted for pedestrian facilities. The choices of activity types and scheduling
are often not considered simultaneously, for combinatorial reasons (Shiftan and Ben-Akiva;
2011). When considering simultaneously activity type and scheduling, assuming that the
period of interest contains T time units, the number of alternatives is K T and the choice set
size increases exponentially. By considering tours or sequential order, without timing, the size
of the choice set decreases. Other approaches consider time as a continuous variable and
use a multiple discrete-continuous approach (Bhat; 2005) or a dynamic discrete-continuous
approach (Habib; 2011).

A brief review of activity choice models for pedestrians and for urban areas shows that there
is no simultaneous model for a full sequence of activities, or activity pattern, including pre-
ferred time of day, preferred arrival time and preferred duration. In the general literature
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about activity-choice, the combinatorial number of activity sequences is solved by modeling
subproblems (e.g., activity patterns without time of day and duration) and by assuming a
priori structures in activity patterns (e.g., mandatory vs discretionary). Models are tour-based,
assuming a home location. Therefore, they cannot be directly applied to pedestrian facilities.
This research gap needs to be filled with a model of activity patterns adapted to pedestrian
facilities, without assumptions about priorities of activities and including preferences that
define order of activities, time of day and duration simultaneously.

1.2.2 From geolocalized data to activity and destination choices

Our objective is to develop a complete activity-based pedestrian demand model. The tradi-
tional activity-schedule approach decomposes the activity-travel decision into two sets of
models (Abou-Zeid and Ben-Akiva; 2012): a daily activity pattern model including the number
and purposes of tours and the number of stops per tour, and tour-level models including
the destination and mode choice and the timing of activities. Our goal is to merge the daily
activity pattern models with the timing of activities from tour-level models from the traditional
activity-schedule approach. We assume that all visitors walk, therefore we do not consider
mode choice in the context of pedestrian facilities, and so we do not consider it in this thesis.

A complete activity-based pedestrian demand analysis requires real data for the estimation
and evaluation of the methods. Our objective consists in using existing data: network traces,
measures of attractivity and map information. Individual mobility traces are becoming avail-
able from pervasive systems, such as cellular networks (González et al.; 2008) or WiFi hotspots
(Section 2.1.1). In many cases, cost and privacy issues do not allow the use of high precision
sensors such as cameras covering an entire pedestrian infrastructure. The large size of cer-
tain public spaces, such as an airport or a music festival, implies either precise sensors with
incomplete coverage (e.g., cameras or bluetooth sensors in intersections), or full coverage
with imprecise long range sensors (e.g., cellular network data, traces from WiFi infrastruc-
tures). Apart from being imprecise, network traces follow individuals over a longer period than
traditional pen-and-paper surveys (see Section 2.2.1). Thus, it becomes possible to collect
activity-episode sequences covering several days, weeks or months. Network traces are not
the only available data to help understand activity and location choices. Aggregate measures
of attractivity, i.e., occupancy, are also available, such as point-of-sale data or occupancy of
a train or airplane, associated with a schedule. Map information, such as distances from a
pedestrian network or the location of points of interest, help the understanding of pedestrian
behavior. In this thesis, we develop methodologies to merge these different sources of data
and use their panel nature.

1.3 Thesis contributions: Activity episodes detection and modeling

This dissertation proposes methodologies to detect and model activity episodes from WiFi
traces. Its contributions can be categorized as activity-episode sequence detection, activity
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1.3. Thesis contributions: Activity episodes detection and modeling

path choice modeling and location choice modeling. The different steps to reach a complete
activity-based pedestrian demand model are presented in Fig. 1.1.

Raw data

Activity-episode sequence detection (Ch. 3)

Activity path choice model (Ch. 4)

Location choice model (Ch. 5)

Pre-processing of the data

Modeling of behavior

Figure 1.1 – A full system for the modeling of strategic behavior from raw localization data,
including pre-processing of the data and modeling of activity and destination choice models.

1.3.1 Activity-episode sequence detection

WiFi traces offer the opportunity to collect panel data in the long term, but do not directly
detect activity-episode sequences. In Ch. 3, stop and activity at the stop are extracted by
merging the WiFi localization data with land use information.

Explicitly modeling the imprecision in the measure Our Bayesian approach takes into ac-
count the fact that pedestrian networks are usually denser than other mobility networks
and localization is often sparse, in particular indoors. This methodology is robust for
low density measurements. Ambiguity is explicitly stated through the likelihood of each
activity-episode sequence.

Using prior knowledge of the infrastructure The network traces of a device are supported
by the a priori knowledge of the underlying pedestrian map and attractivity of the
activities. Time constraints—such as schedules for trains in a railway station, for planes
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Chapter 1. Introduction

in an airport, for concerts in a music festival, or for classes on a campus, or opening
hours for shops or restaurants—can be added to the model. The usage of a pedestrian
network corrects for anisotropy in the facility.

Avoiding the pingpong effect If access points are changing very often from one to another
while the device is in fact static, the true activity location does not change with our
approach.

We present an empirical study on a campus.

1.3.2 Activity path choice model

In Ch. 4, we describe a model for the choice of an activity pattern. We focus on choice set
generation of activity patterns using recent developments in route choice modeling and
strategic sampling.

No tours, no priorities Our modeling approach is not structured on home and tours from
home, since it is not adapted to the public space context. It does not assume any
priorities between activities or episodes, primary and secondary activities, or mandatory
and discretionary.

Managing large choice sets Modeling simultaneously the choice of activity type, time of day
and duration generates large choice sets. The large dimensionality of the choice set is
managed through strategic sampling using a Metropolis-Hastings algorithm.

Unique utility for activity type, time-of-day and duration Focusing on simultaneous choi-
ces of activity type, duration and time-of-day, the chosen alternative is one sequence of
activity episodes. Represented as a path in a network, the sequence is a single choice
and utility is associated with the full pattern.

1.3.3 Location choice model

Chapter 5 describes a location choice model conditional on the activity-episode sequence.

Including panel data Chapter 5 specifically develops a modeling framework to account for
panel data in location choices. It allows to understand people’s habits in their decision
processes

Correcting for serial correlation Only a few dynamic models of location choice exist in the
literature, and none of them to our knowledge correct for serial correlation. We apply
the Wooldridge (2005) method to deal with the initial values problem on the choice of
catering location on EPFL campus using WiFi traces.
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We present cross-validation results. We also present elasticities to price and forecast the
scenario of the opening of a new catering location. Predicted market shares of the new
catering location correspond to point-of-sale data of the first week of opening.

1.4 Outline

Chapter 2 reviews the literature in pedestrian data, activity-episode detection, activity and
location choice modeling.

This thesis is then structured in two main parts:

Part I presents the preprocessing of WiFi traces in order to detect stops and activity type at
the stops. It provides activity-episode sequences from raw localization data.

Chapter 3 proposes a Bayesian approach using WiFi traces to detect pedestrian activity-
episode sequences. It merges WiFi traces with attractivity measures, map infor-
mation and time constraints. A case study on the EPFL campus is presented, with
validation and sensitivity analysis.

This chapter has been published as:

Danalet, A., Farooq, B., and Bierlaire, M. (2014). A Bayesian Approach to
Detect Pedestrian Destination-Sequences from WiFi Signatures, Trans-
portation Research Part C: Emerging Technologies 44: 146-170.

Part II focuses on modeling the activity and location choices from the activity-episode se-
quences.

Chapter 4 first describes the general framework for modeling activity-episode sequen-
ces, decomposing the behavior into activity and location choices. The probability
of reproducing the observation of a sequence of measurements is formally ex-
pressed.

Then, this chapter proposes a model for the simultaneous choice of activity types,
order, start times and durations of activity episodes in a sequence. In particular, we
develop a framework for choice set generation based on path choice to deal with
the large choice set. A case study using WiFi traces on EPFL campus is presented.

This chapter has been submitted for publication in a special issues of an academic
journal for the 14th International Conference on Travel Behaviour Research.

Danalet, A., Bierlaire, M. (2015). Strategic sampling for activity path
choice.

Chapter 5 applies the Wooldridge (2005) method to deal with the initial values problem
on the choice of catering location on EPFL campus using WiFi traces. Cross-
validation and forecasting in the scenarios of cost increase and opening of a new
catering location are presented.
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This chapter has been submitted for publication in the Journal of Choice Modeling:

Danalet, A., Tinguely, L., de Lapparent, M., Bierlaire, M. (2015). Location
choice with longitudinal WiFi data. Technical report TRANSP-OR 151110.

Chapter 6 concludes the thesis, review theoretical and policy applications, together with
limitations of the present study and future research directions.
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2 Literature review

In this literature review, pedestrian data are first described (Section 2.1). Then, we present
the different strategies used in the literature to transform raw data into activity episodes
(Section 2.2), to model the activity choice (Section 2.3) and the destination choice (Section 2.4).

2.1 Pedestrian data

The recent developments in detection technologies open doors to new research about pedes-
trian behavior. Traditional data are collected by manual counting, mechanical counting,
infrared beans and video surveillance. We briefly introduce the purpose, the scale and the
context of these data collection campaigns, and review the opportunities and drawbacks of
these traditional tools and of recent technologies. Then, we further develop on mobile phone
tracking data (from an antenna perspective) and map data in Section 2.1.1 and 2.1.2.

Purpose Data about pedestrians are collected for health (e.g., Shephard; 2008; Ding and
Gebel; 2012; Sugiyama et al.; 2012), security (e.g., Candamo et al.; 2010; Popoola and Wang;
2012), marketing and sales (e.g., Kholod et al.; 2010; Hui et al.; 2013; Yaeli et al.; 2014) and trans-
portation purposes. In transportation, collected data are used for safety, security, efficiency
and attractiveness (Bauer et al.; 2009), for modeling activity, destination, mode and route
choices and walking behavior (Bierlaire and Robin; 2009), at strategic, tactical and operational
levels (Hoogendoorn and Bovy; 2004).

In practice in transportation, these data are used to plan evacuation in case of emergency or
model normal behavior, both in cities or in pedestrian facilities, to provide travel guidance and
information helping the pedestrians in implementing their journeys, and to build efficient
facilities, and manage them on a daily basis.

In this thesis, we focus on transportation purposes, in particular the strategic level of modeling
activity and destination choices in a normal, non-evacuation context. The goal of such models
is to understand the demand for different points of interest in the pedestrian facility and
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forecast demand management policies, e.g., about the localization of points of interest or the
impact of schedules on the demand for the different categories of points of interest. There is
no specific literature about the data requirements for such models in the pedestrian context.

Scale Pedestrian data collection campaigns take place at city or pedestrian facility scales. We
motivate this decomposition in two levels by the presence or absence of mode choice. Recent
attempts centralize pedestrian traffic counts at the national level (Nordback et al.; 2015), but
as a decision aid tool for cities.

At the city scale, information on pedestrian traffic is an “emerging area” as mentioned by the
Traffic Monitoring Guide (TMG) of the US Federal Highway Administration (FHWA; 2013). It
includes information on monitoring pedestrians for the first time in 2013. Apart from traffic
flows, data about walkability are also collected at the city scale (Pivo and Fisher; 2011) and
household travel surveys begin to include walk as a travel mode (Berge and Peddie; 2010;
Morency et al.; 2011; Millward et al.; 2013; Ravalet et al.; 2014).

Pedestrian facilities include train stations, airports, concert halls or festivals, shopping malls,
campuses, hospitals, sports infrastructure such as stadiums, or even religious infrastructures.
In these facilities, people are supposed to walk and other transport modes are exceptional.
Originally, pedestrian data are collected at this scale mostly for safety issues, e.g., in Mecca
(Helbing et al.; 2007) or for music festivals, like for the Love Parade in Duisburg (Helbing and
Mukerji; 2012; Krausz and Bauckhage; 2012). In a normal behavior context, studies have been
performed in train stations (Daamen; 2004; Ueno et al.; 2009; Hänseler et al.; 2014; Ton; 2014;
van den Heuvel et al.; 2015), airports (Manataki and Zografos; 2009; Solak et al.; 2009; Wu and
Mengersen; 2013; Kalakou et al.; 2014; Liu, Usher and Strawderman; 2014), hospitals (Yao et al.;
2011; Khan; 2012; Prentow et al.; 2014), music festival (Naini et al.; 2011; Versichele et al.; 2012;
Duives et al.; 2014), museums (Kanda et al.; 2007; Lanir et al.; 2014; Yoshimura et al.; 2014) and
commercial centers (Zhang et al.; 2012; Yaeli et al.; 2014).

Depending on the purpose and the scale, different data collection techniques are used. When
data are related to the full facility, collection techniques are revealed and stated preferences
surveys (Kalakou et al.; 2014; Liu, Usher and Strawderman; 2014), based on the shape of the
built environment (Ueno et al.; 2009; Khan; 2012; Zhang et al.; 2012) and/or aggregate demand
such as train or flight schedules (Manataki and Zografos; 2009; Solak et al.; 2009), or using
wireless technologies such as WiFi, Bluetooth or RFID (Naini et al.; 2011; Yao et al.; 2011;
Versichele et al.; 2012; Prentow et al.; 2014; Ton; 2014; Yaeli et al.; 2014; Yoshimura et al.; 2014);
when focusing on a specific area such as a corridor and on more microscopic behaviors, data
must be more precise and different technologies are used, e.g., visual, depth and infrared
sensors (e.g., Hänseler et al.; 2014) or laboratory experiments (e.g., Moussaïd et al.; 2009). In
this thesis, we focus on the scale of pedestrian facilities.
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2.1. Pedestrian data

Data collection techniques As seen in the previous paragraph, when trying to understand
people’s behavior in a pedestrian facility, one can directly ask the person (revealed and stated
preferences surveys), look at the map, study flight or train schedules, use wireless technolo-
gies or directly observe the person (visual, depth or infrared sensors). We review different
techniques here.

Data are traditionally decomposed in two main types: counts and trajectories (Bauer et al.;
2009; Bierlaire and Robin; 2009). Counts are further decomposed into intersection or segment
counts (Nordback et al.; 2015), while tracking methods are decomposed between intrusive
and non-intrusive in Bauer et al. (2009), i.e., when distribution of a tracking device is needed
or not. We briefly describe the different data collection methods for counting and tracking
below, and discuss their advantages and disadvantages.

Manual counts and shadowing Manual counts are performed by individuals, in the field
or on a video recording. Data usually cover a short duration at infrequent intervals and are
biased by weather conditions, events, and weekly and seasonal variations (Nordback et al.;
2015). It is the most expensive way for counting pedestrians and a common practice (FHWA;
2013; van den Heuvel and Hoogenraad; 2014). Human observers usually underestimate the
flows by 8 % to 25 % (Diogenes et al.; 2007). Depending on the complexity of the scene and the
motivation of the human observers, counting on a video recording is not necessarily more
accurate than field work, but can be repeated (Greene-Roesel et al.; 2008).

The tracking counterpart of manual counting is shadowing (or stalking). It has been used
in many studies (e.g., Routledge et al.; 1974) and in particular performed in train stations
(Daamen; 2004; Millonig and Maierbrugger; 2010). It is mostly used for qualitative research,
in sociology or ethnography (Quinlan; 2008), since it is difficult to collect a large number of
traces.

Mechanical counts Mechanical counts are automated and usually cover a longer duration
than manual counts (Bauer et al.; 2009; Nordback et al.; 2015). They are usually considered as
cheaper than other counting sensors (Bauer et al.; 2009). They include pressure and seismic
sensors (pressure mats), sensitive to the weight of the pedestrians, and turnstiles.

Survey data Revealed preference (RP) data about mode or location choices are collected us-
ing household travel surveys (Atasoy et al.; 2013; Ravalet et al.; 2014) or on street/in pedestrian
facilities surveys (Kalakou et al.; 2014). Household travel surveys usually focus on long and
motorized trips and regroup cycling and walking in one “soft mode” category (e.g., Atasoy et al.;
2013). Some examples do include walking and short trips, in order to study number of steps
(Morency et al.; 2011) or typology of walkers (Ravalet et al.; 2014). Recall questionnaires ask
the respondent to remember a past decision and report about it. Liu, Usher and Strawderman
(2014) typically ask the respondents to describe their last visit in an airport. They are not
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very precise and face recall bias and social-desirability bias. Millward et al. (2013) suggest
to use GPS-assisted prompted recall survey to determine frequency, length and purpose at
destination of walking episodes. One issue with revealed preference surveys is the difficulty to
collect a lot of observations (Liu, Usher and Strawderman; 2014 use 400 activity patterns with
a web-based revealed preference survey in an airport).

Lasers and infrared sensors Infrared Sensor (Active or Passive) is a common practice and
is less expensive than manual counting, according to FHWA (2013). It can also be used for
tracking pedestrians, but cost per area is high (each sensor only monitors a few square meters)
(Bauer et al.; 2009). Challenges related to such technique include detecting the walking
direction and dense scenarios when occlusion happens (Bauer et al.; 2009), in particular high
errors with groups (FHWA; 2013). Laser range scanners have the same problem with dense
crowds. They can be used for counting and tracking, by sensing the distance to the nearest
object. Laser scanners are expensive compared to video cameras (Bauer et al.; 2009).

Video counting Video counting is the usual data collection technique used in a crowded
environment (Versichele et al.; 2012). The occlusion issue is usually managed by using a
top view (Bauer et al.; 2009). Lighting can cause problems, as well as weather (Bauer et al.;
2009; FHWA; 2013). Specifically for counting, the technology has potential accuracy in dense,
high-traffic areas, but counting algorithm development is still maturing, video counting
underestimate count flows in dense conditions (Bauer et al.; 2009) and “much of this university
research has not been incorporated into existing commercially available products” (FHWA;
2013). For trajectory detections, Alahi (2011) and Alahi et al. (2014) use networks of cameras to
track and analyze pedestrian trajectories. Alahi’s main motivation is the number of already
installed cameras generating large datasets. Finally, video image processing typically has the
highest equipment costs (Bauer et al.; 2009; FHWA; 2013).

GPS, RFID tags and readers, smart card, ... Passive RFID tags, reacting to the signals of a
RFID reader, can be used for counting. They are mostly used for access controls in offices,
museums, etc. (Bauer et al.; 2009). Active tags with their own power supply could possibly be
used for tracking (Bauer et al.; 2009). Hendrich et al. (2008) use RFID to identify how nurses
spend their time on specific activities and the distance they travel in 36 hospitals. Kholod et al.
(2010) use RFID to collect the shopping path length in grocery store.

GPS devices are precise but raise the issues of distributing and recollecting the devices and of
the precision indoor and in dense urban settings (Versichele et al.; 2012).

van den Heuvel and Hoogenraad (2014) use smart card data (or automatic fare collection
(AFC) data), i.e., check-in and check-out of passengers, in a train station. These data provide
information on the speed and the route of passengers in the train station. RFID tags used for
ticketing can also be used without an explicit check-in or check-out by the user. Yu Quan et al.
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(2011) use such sensors to detect the speed of pedestrians. Such data are very recent and not
yet used in practice for tracking pedestrians at a large scale.

Data from the mobile phone Location based-services provided directly by smartphones
generate relevant data. A large proportion of the population carry and use their smartphone
in everyday life and sensors into mobile phones offer large quantities of data for ubiquitous
observations of their owner. The development of research based on these data is due to

1. the number and quality of sensors in recent phones,

2. the possibility to create third-party apps and easily install and deliver them on the user’s
phone and

3. the easy transmission of collected data allowed by mobile data (Lane et al.; 2010).

The device’s owner can explicitly provide data input (participatory sensing) or data can be col-
lected autonomously without user involvement (opportunistic sensing) (Hoseini-Tabatabaei
et al.; 2013). Participatory sensing faces the issue of bias related to user’s opinion (McNeill and
Chapman; 2005; Hoseini-Tabatabaei et al.; 2013). Mobile phones contain inertial, ambient and
positioning sensors. We review here only positioning sensors (i.e., GSM, GPS, WiFi, Bluetooth).
A review of inertial and ambient sensors can be found in Hoseini-Tabatabaei et al. (2013).

Cell tower signals are used by the phone to call and transfer data. Collecting the GSM cell ID
(CID) identifies the base transceiver station (BTS) and localize the mobile user. The fluctuation
pattern of cell IDs associated with signal strength provide information on user’s mobility (see
Anderson et al.; 2007 for an example in the health context).

GPS is more precise than cell tower signals. It can be used for pedestrian navigation (Arikawa
et al.; 2007). Nevertheless, it works only outdoor. It also reduces the battery life of the phone
(Gaonkar et al.; 2008). The battery life issue is usually dealt with by using other sensors, such
as WiFi or cell tower signals.

A mobile phone can locate itself when connecting to WiFi by knowing the location of access
points. Due to the large signal transmission range, the positioning accuracy is low, and signal
strength, signal triangulation and fingerprinting can be used to improve the localization (when
there are more than one access point available). WiFi is the second most power-demanding
sensor after GPS (Gaonkar et al.; 2008) for providing location information. Similarly to cell
tower, it can be used indoor.

Bluetooth is designed for short-range communication. A phone can detect other devices using
Bluetooth, uniquely identify them through Bluetooth MAC address (also called Bluetooth
identifier - BTID), detect the device type and the device name (Hoseini-Tabatabaei et al.; 2013).
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All data from the mobile phone require the explicit agreement of the device’s owner and
generate privacy issues. They also require the transmission of the data to the analyst, either
using WiFi when available or GSM or 3G networks otherwise. In (Ball et al.; 2014), 59 % of the
participants of a smartphone-based travel survey use GSM or 3G network for the upload of
their data. 3G data was of greatest battery cost than GPS and WiFi location information.

Ultra-sonic measurements, radar measurements, pedometers are not reviewed here, as they
are not often used in the transportation literature. Pedometers have been mostly used for
health related issues (Bierlaire and Robin; 2009). A review of the existing data collection
techniques show that data mostly focus on local behavior (Papadimitriou et al.; 2009). Data
collection techniques face issues such as small sample sizes (manual counts and shadowing,
surveying), cost (manual counts and shadowing, video counting), underestimation of counts
(manual counts), precision (surveying), recall and social-desirability biases (surveying), the
need to distribute devices (e.g., GPS devices, RFID tags) and the need for agreement of the
user and the privacy risk of accessing other data with data from the mobile phone. In the case
of smart card data, only passengers are tracked and not all visitors in the train station.

In the following sections, we focus on mobile phone tracking data from antennas, often
existing in pedestrian infrastructure and covering the full infrastructure (Section 2.1.1), and
on map data (Section 2.1.2).

2.1.1 Mobile phone tracking data

Similarly to Alahi’s motivation about pre-existing network of cameras (Alahi; 2011; Alahi et al.;
2014), networks for mobile phones already exist, a majority of people are carrying a mobile
device such as a smartphone, and they generate data. Data from communication network
infrastructure (“network traces”) include all data from antennas providing communication to
the mobile phone, i.e. cell tower data, WiFi access point data and Bluetooth sensors. It does
not include GPS, since there is no access to the satellites data. According to Calabrese et al.
(2014), mobile phone tracking data are used for estimating population distribution, activity
types and mobility patterns, analyzing local events and the geography of social networks.

Using traces from communication network infrastructure has several advantages on data
from the smartphone. First, full coverage of the facility/area of interest is usually cheap
(Versichele et al.; 2012) and allows for an estimation of the overall demand (Yoshimura et al.;
2014). The communication infrastructure sometimes already exists, and increasing its density
has a positive side effect. Smartphone users do not need to install anything on their device,
and so the access to sensitive information such as emails or address book is limited for the
analyst, which ensure privacy for the users. There is no need to distribute and recollect
tracking units, network traces usually generate large samples of data, there is no bias related
to the individual being aware of being followed, and the different technologies (Bluetooth,
GSM data, WiFi) work indoor (Versichele et al.; 2012; Yoshimura et al.; 2014). Finally, traces
from communication network infrastructure are related to the infrastructure and not to the
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individual: all individual smartphones going through a facility are tracked and not all places
visited by the same individuals. It allows the analyst to focus on the pedestrian facility/area of
interest covered by the communication network.

There are few drawbacks to network traces as well. Socio-economic and demographic at-
tributes are difficult to collect due to both privacy concerns (if the data already exist) and to
the difficulty to survey the tracked person from the infrastructure side (if the data does not
exist). Additionally, smartphone users are not necessarily representative of the full popula-
tion. Smartphones’ users might represent a biased sample of the population, in particular
under-representing elderly people (Versichele et al.; 2012; Calabrese et al.; 2013). Network
traces have the advantage of long data collection duration. Nevertheless, compared to data
from the mobile phone, the frequency of measurements in network traces depends on the
usage of the phone and is often related to an action by the user (making a call, using internet,
receiving an SMS, etc.).

Indoor localization is complicated due to walls and different obstacles, blocking waves propa-
gation and reflecting signals. Different techniques are developed to mitigate the measurements
errors, including triangulation (lateration techniques, methods based on signal attenuation
and Received Signal Strength (RSS), etc.), scene analysis such as fingerprinting, or proxim-
ity measures. Without entering the technical details, let’s mention that fingerprinting, i.e.,
constructing a radio-map by collecting signal strength samples, has been criticized for being
time consuming, labor intensive, vulnerable to environment changes and expensive (Hossain
and Soh; 2015). Fingerprinting for a large area is impractical and calibration-free methods
are preferred (“large” being more than 600 m2, since Faragher and Harle (2015) performed
fingerprinting for such a surface). A review of positioning algorithms and technologies can be
found in Liu et al. (2007). We briefly summarize some observations on different technologies
below.

Technologies

Mobile phone tracking data include mobile phone network data (also called GSM data or
cellular telephone signals). Mobile phone network data from cell towers are the equivalent
of cell tower signals from mobile phones, from an antenna point of view. They are provided
by the phone operators (in Estonia, Ahas et al.; 2010, in the US, Isaacman et al.; 2011, in Côte
d’Ivoire (Ivory Coast), Liu, Janssens, Cui, Wang, Wets and Cools; 2014; Palchykov et al.; 2014).
Call data records (CDR) are only generated when the device is in use. The only option to get
continuous cellular tower data consists in installing a logging app on the mobile device (Eagle
et al. 2009). These data have been used to detect home and work locations (Ahas et al.; 2010;
Isaacman et al.; 2011). Mobile phones can be tracked in most indoor contexts, but only with a
precision of several hundred meters in practice (Yaeli et al.; 2014) (50-200 m depending on cell
size according to Liu et al.; 2007, but it can be much more, in particular in low density areas).
A complete review is available in Calabrese et al. (2014).
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The range of Bluetooth scanners vary between 10 to 100 m (Versichele et al.; 2012), typically
10-15 m (Liu et al.; 2007). The penetration rate varies between 7 % and 11 % (Versichele et al.;
2012; van den Heuvel et al.; 2015). Bluetooth traces have been used to study spatiotemporal
crowd density variations, typology of visitors, the visit duration, and the flows (Versichele et al.;
2012; Yoshimura et al.; 2014), the transport mode to reach the zone (Versichele et al.; 2012)
and route choice (Yoshimura et al.; 2014; van den Heuvel et al.; 2015).

Wireless local area networks (WLAN) allows to track devices. The range of WLAN is 50-100 m
(Liu et al.; 2007). WiFi traces are collected indoor, e.g., in stores (Yaeli et al.; 2014) or for
conferences (Krueger et al.; 2015). The device (e.g., a smartphone) does not technically need
to be logged on to the WiFi network, but just to have WIFi antenna turned on. Identification is
made through the MAC address and some vendors started recently to randomize it, but the
real MAC address is used when the device connects with the WiFi network (Yaeli et al.; 2014).
The typical accuracy of WiFi positioning systems using Received Signal Strength (RSS) is 3 to
30 m (Liu et al.; 2007).

Mobile phone network data are too imprecise to be used at the scale of a pedestrian facility
(Yaeli et al.; 2014). Compared to GSM data, Bluetooth tracking is more precise (Yoshimura et al.;
2014) but still has a low penetration rate (Yaeli et al.; 2014). Near field communication (NFC)
is included in many phones but has a maximum range of about 5 cm. Both Bluetooth tracking
and NFC require to install scanners, which is not needed with WiFi access points. In this thesis,
we propose to detect pedestrians from already deployed WiFi network infrastructure, originally
not designed to provide such data, using commercially available WiFi tracking tools without
performing fingerprinting (see Section 3.4.1). Even when installing sensors, this approach
is cost-effective for large pedestrian facilities “with continuous operational challenges or
redevelopment activities” (van den Heuvel and Hoogenraad; 2014).

2.1.2 Map data

This section focuses on the information in pedestrian networks. Existing pedestrian networks
are described. Then, space syntax, a possible usage of information from pedestrian networks,
is briefly described and criticized.

The pedestrian network depends on the scale of the study area and on the definition of
destinations: buildings (Yoon et al.; 2006), WiFi access points (APs) (Wanalertlak et al.; 2011;
Tuduce and Gross; 2005), rooms (Sevtsuk et al.; 2009), or, at an urban scale, subzones of the
motorized regional zone system as nonmotorized destinations (Eash; 1999).

The walking distance between the destinations is usually not available (Kasemsuppakorn and
Karimi; 2013). Yoon et al. (2006) converted a map to a graph between buildings and limited
themselves to major roads. In the extension of a Chicago model for nonmotorized trips, the
Manhattan distance is motivated by the grid plan and the absence of a pedestrian network
(Eash; 1999).
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Kasemsuppakorn and Karimi (2013) propose to build the pedestrian network from GPS traces,
which does not work indoor. Kang et al. (2004) are using WiFi to cluster places of interest and
label them, but APs serve different kinds of locations surrounding them (Calabrese et al.; 2010).
Without a model based on a pedestrian network, changes in the pedestrian facilities such as
pedestrian bridges or underpasses cannot be tested.

Indoor networks of pedestrian facilities allowing for computation of the shortest path between
two destinations are increasingly available for airports, museums, campuses, hospitals and
malls due to the complexity of path finding (Goetz and Zipf; 2011). Crowdsourced geodata
such as OpenStreetMap are extending to indoor spaces (Goetz; 2012).

On campuses, University of Ottawa proposes a shortest path using indoor routes depending
on shortest or “warmest” options1. Of particular relevance to the application within this
thesis, EPFL website proposes an orientation tool for the campus, http://map.epfl.ch. It
allows localization of offices or any place in the university, as well as itineraries between these
places. Moreover, it offers thematic maps, such as lists of restaurants. Created in 2002, it is
based on a student project (Büchel; 2004). From Autocad files (i.e., drawings), new data were
generated: a network, with vertices and edges in 3D, with lifts, stairs, ramps and doors. This
process used Feature Manipulation Engine (FME) scripts. This tool results from a collaboration
between Camptocamp, an EPFL spin-off company, EPFL’s Real Estate and Infrastructures
Department (DII), EPFL’s Information Technology Domain (DIT) and EPFL’s Knowledge and
Information Services (KIS). It is based on PostgreSQL and PostGIS as databases and Mapserver
as visualization tool (Philipona; 2002).

One possible usage of pedestrian network in understanding pedestrian behavior is space
syntax (Hillier and Hanson; 1984; Hillier; 1999). Space syntax quantifies the 2D spatial con-
figuration of the built environment. As stated by Ratti (2004), space syntax is “an extension
of network analysis concepts into architecture and urban planning”. Space syntax has been
used to evaluate indoor building configurations, in hospitals (Haq and Luo; 2012; Khan; 2012),
airports (Kalakou et al.; 2014) and museums (Choi; 1999; Hillier and Tzortzi; 2006). The spatial
and visual layout of the rooms and corridors are described with measures of accessibility,
depths (i.e., number of changes in direction) of the pedestrian network, measures of con-
nectivity of the different rooms, visual accessibility (i.e., the number of points visible from a
given location). Space syntax has been criticized as not being able to model pedestrian choice
making (Ratti; 2004). It does not consider street size and length (Ratti; 2004; Haq and Luo;
2012), building height, land use (Ratti; 2004), or task or motivational requirements (Lu et al.;
2009; Haq and Luo; 2012). As we will see in this thesis, distance is a main driver for destination
choices of pedestrians (see Section 5.3.1), which contradict the discarding of metric informa-
tion by space syntax. In this thesis, we propose to use pedestrian map information, including
metric information, and merge it with network traces and land use data (see Ch. 3).

1http://www.uottawa.ca/maps/
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2.2 Activity-episode detection

2.2.1 From diary surveys to location-aware technologies

One recent trend in travel demand modeling is the usage of data from location-aware technolo-
gies (Chen and Yang; 2014; Danalet et al.; 2014; Miller; 2014; Carrel et al.; 2015). Traditionally,
collected data are revealed preferences about activity and travel patterns from diary surveys,
where people describe 1-2 past days (Ettema; 1996; Carrel et al.; 2015). The largest panel
surveys include a six-week period for 317 participants (Axhausen et al.; 2002), a six-week
period for 261 participants (Axhausen et al.; 2007) and a twelve-week period for 71 participants
(Schlich; 2004). Most long-term surveys cover a maximum of 7 days and are not panel data
(Ortúzar et al.; 2011; Carrel et al.; 2015). GPS-based prompted recall activity-travel survey
allows for longitudinal surveys, using GPS devices carried by respondents (Frignani et al.;
2010; Yang and Timmermans; 2015). Recall methods can be implemented on mobile devices
(Rindfüser et al.; 2003; Cottrill et al.; 2013).

Location-aware technologies help improving the quality of explicit surveying. They can also
be used alone, from the communication infrastructure side, such as cell tower traces or WiFi
access points traces (Bekhor et al.; 2013; Calabrese et al.; 2013), or from the individuals’ devices
(Etter et al.; 2012; Buisson; 2014; Chen and Yang; 2014; Carrel et al.; 2015). Etter et al. (2012)
show that it is possible to predict up to 60% of next visited places from passive smartphone
data.

2.2.2 Preprocessing: stop and semantics detection

Data preprocessing methods are needed to transform these raw observations into data adapted
for modeling purpose. First, detection of stops points discriminates places where people spend
time and perform activities from moving between these stop points (Rieser-Schüssler; 2012;
Jiang et al.; 2013). After cleaning the data, Bekhor et al. (2013) define a destination as a cell
tower where the device is connected for more than 20 minutes without changing. Using
triangulation from cell towers, Calabrese et al. (2013) merge all measurements in a time
interval ¢T with maximum distance 1 km. ¢T is not given. In Jiang et al. (2013), the first
step is similar, with a distance of 300 m and a stay time of 10 min. Here, the accuracy of the
location is about 200 to 300 m. The second step associates with each other the different stop
points at different times if they are close using a grid-based clustering method. It allows to
identify the places that are visited multiple times, despite measurement errors. Based on
triangulation from WiFi access points, Danalet et al. (2014) associate all measurements with
points of interest (POI) in the map, compute the travel time between these POI, define a
distribution for arrival and departure time based on travel time and measurement timestamp,
and finally remove destinations with expected duration smaller than Tmi n = 5min. From WiFi
data from smartphones, Buisson (2014) clusters measurements using a Density-based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm.
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Pure location-aware technologies lack the path semantics (Miller; 2014). To overcome this
issue and detect activity purpose, localization data are merged with land-use information
(Rieser-Schüssler; 2012; Miller; 2014; Danalet et al.; 2014). A review of research in this direction
before 2012 is available in Miller (2014). Jiang et al. (2013) propose a visual example of how
land use data could be applied, without a general methodology. In a pedestrian facility, we
propose a Bayesian approach in Chapter 3. In urban context, Buisson (2014) also uses a
Bayesian approach. For a given cluster of access points:

P (Ak |t̂ ) / P (t̂ |Ak ) ·P (Ak ) (2.1)

where Ak is an activity type and t̂1:J is a set of measurement timestamps corresponding to the
cluster. P (t̂ |Ak ), the probability of generating a signal at a certain time knowing the activity
type, is computed using time-use statistics, e.g., from travel diary surveys. The prior is similar
to the one defined in Ch. 3, using OpenStreetMap data for list of POI, and census and national
statistics for number of residents and employees.

Several applications using data from communication infrastructure have been developed
to study mobility behavior, both with WiFi (Yaeli et al.; 2014) and GSM traces (Bekhor et al.;
2013; Calabrese et al.; 2011). These new data collections are motivated by the needs for
calibrated agent-based models. Post-processing methods are needed to transform these
raw observations into data adapted for modeling purpose to overcome imprecision and
missing observations in the data: detection of stops points, activity purpose detection through
land-use information and spatial matching (Rieser-Schüssler; 2012). Hoseini-Tabatabaei
et al. (2013) review these needs for mobile phone sensing. With GSM traces, Bekhor et al.
(2013) mention the elimination of “unreasonable movements performed in short time periods
between antennas located far apart” without more details. Calabrese et al. (2011) does not
consider the underlying transportation network to correct for anisotropy.

2.2.3 Mobility models for WiFi traces

A large literature exists about WiFi traces from a computer communication point of view. A
complete review can be found in Aschenbruck et al. (2011). All references in this paper define
mobility trace-based models as a tool to improve the quality of the WiFi. The goal is to predict
the next point-of-attachment of the user (Wanalertlak et al.; 2011). This body of work studies
mostly pedestrians, since the scale of the problem is related to offices or campuses. Yoon et al.
(2006) study mobility models for WiFi infrastructure and try to make them representative of
real mobility, and mention the possible applications to urban planning, socially-based games,
or augmented reality. Field studies have been done (Tang and Baker; 2000; Balachandran et al.;
2002; Balazinska and Castro; 2003; Yoon et al.; 2006; Sevtsuk et al.; 2009; Zola and Barcelo-
Arroyo; 2011; Wanalertlak et al.; 2011; Meneses and Moreira; 2012). The main results are the
prediction of changes in access points (APs). The main problem reported in these articles
is the ping pong effect, when the device has similar signal strengths from different APs and
changes regularly from one to another. This is a problem from a network viewpoint, and
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also for modeling pedestrian origins and destinations. Yoon et al. (2006) propose to use a
moving average weighted by time spent at destination to remove the extra AP logs. A general
solution presented in Aschenbruck et al. (2011) consists in aggregation of data over different
APs. Most studies about WiFi are focusing on network performance and management and
not on human mobility. In Yoon et al. (2006), contrarily to all other papers cited here, an OD
matrix is estimated at the building level in Dartmouth college. Variations in time/day are not
considered, as Aschenbruck et al. (2011) noticed.

In the literature about mobility models for WiFi infrastructure from a computer communi-
cation point of view, the most common model, Random Waypoint model (RWP), is often
criticized as not representing real human mobility (Conti and Giordano; 2007). One of the
problems with RWP consists in using straight lines between two signals in different APs, even
if this path is not physically possible. This is the main reason why trace-based mobility models
were developed in this domain of research. A key challenge in building a realistic model is to
define a pedestrian network and the corresponding possible paths that the user with a device
can follow. This process of constructing and using the pedestrian network in order to improve
the mobility model is not explicitly presented in Aschenbruck et al. (2011) in their large review
of trace-based mobility models. The need for a more complex approach is emphasized in
Rojas et al. (2005).

2.3 Activity choice modeling

2.3.1 Early works

Before 1950, transportation studies didn’t have predictive power and mostly described the
current state of traffic (Weiner; 1999). In 1954, Mitchell and Rapkin (1954) theorized models for
travel patterns and behavior based on trips and susceptible to change depending on attributes
such as land use or socioeconomic characteristics. They already mentioned at the time the
limitations of a trip-based approach to really understand motivations of travel.

In practice, travel demand analysis has been decomposed in four sequential steps in the Urban
Transportation Modeling System (UTMS): trip generation, trip distribution, modal split and
traffic assignment. The fundamental unit of these analysis is a trip. Trips are generated not
from a behavior-based demand but from a physical analogy with gravity: from trip production
location to trip attraction location. In 1955, the Chicago Area Transportation Study (CATS)
used this analytical decomposition.

In the 1970s, a shift was observed from the traditional trip-based approach to a demand-
oriented approach. Trips started to be considered as a derived demand. Scheduling decisions
were surveyed, e.g., in the Household Activity Travel Simulator (HATS) (Heggie and Jones; 1978;
Jones; 1979). At the same time, models started to be more of a disaggregate microsimulation
approach. This change in paradigm is the origin of activity-based travel demand modeling. It
is related to the rapid development of random utility-based individual choice models for route,
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mode, frequency and destination choice (McFadden; 1974; Stopher and Meyburg; 1975).

The premise of activity-based approach consists in considering activity as a choice and trips
as a way to complete the chosen activity. In other words, modeling the daily activity patterns
allows the development of behavioral travel demand models that are sensitive to changes in
policy.

For Hägerstraand (1970) the choice set of activities is constrained in three ways:

Capability constraints are biological or technological constraints of the individual. Some
are fundamentals and structure mostly the time when activities are performed, mainly
sleeping at night and eating at some time of the day. Others are distance oriented and
express the time-space constraints on movement. People need to perform a trip to reach
a destination before being able to perform an activity.

Coupling constraints define the requirement for some activities of other people or resources
(salesman and customer in a shop, students and teacher in a class, meetings at work).

Authority constraints are protecting resources and limit accessibility to certain persons.
They can be related to payment, invitation, power or custom: a seat in a theater is a
temporary authority constraint, while traffic rules are permanent.

In practice, there are traditionally two main components in activity-based models: activity
generation (dealing with the basic needs for self-realizations) and activity scheduling (spatio-
temporal constraints and opportunities related to the actual activities). The interactions
between these two components are in both directions.

Activity generation is facing the problem of generating the choice set for activity patterns and
different techniques have been proposed. Using discrete choice models, Adler and Ben-Akiva
(1979) proposed one of the earliest examples of these models. The patterns are chosen on
attributes such as modes, number of destinations, purposes, time spent at destination, travel
times, etc. Bowman and Ben-akiva (1996) propose a hierarchical approach, with a decom-
position into primary and secondary tours, assuming some activities are more important in
structuring the travel patterns. For both types of tours, they model the activity pattern, the
choice of tour and the choice of destination itself.

Another stream of research assumes that people are not rational utility maximizers and do not
always take optimal decision. This type of rule-based models are numerous (Hayes-Roth and
Hayes-Roth; 1979; Jones et al.; 1983; Pendyala et al.; 1998; Arentze and Timmermans; 2004,
among others). Based on the works by Newell and Simon (1972) and Tversky and Kahneman
(1981) in psychology, sub-optimal decisions are related to a satisficing approach or a limitation
in information acquisition and treatment. Habib (2007) reviews these models and mentions
some of their limitations. They are good for modeling short-term policy analyses but not for
long-term demand forecasting and they need specific rules to be able to response to changes
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in policy. Inputs are generated empirically and lack theoretical foundation. Handling of
preference heterogeneity is a difficult task in these models. Bowman and Ben-akiva (1996)
criticized these models and the absence of dependencies in activity choices across the day.

2.3.2 Contemporary approaches

This review presents some relevant aspects of activity choice for our approach. Concepts
from route choice literature are also used in this thesis and are briefly reviewed here. General
reviews about activity-based travel demand modeling can be found in Ettema (1996), Bhat
and Koppelman (1999), Roorda (2005), Habib (2007), Bowman (2009), Feil (2010), Pinjari and
Bhat (2011), Miller (2014) and Rasouli and Timmermans (2014).

All models of activity choice are built on the assumption that demand for traveling stems
from a demand for activity participation, and understanding activity patterns is important
for demand modeling. The goal of these models is to improve the traditional 4-step model
by considering demand for activities instead of demand for trips (Bowman; 2009; Pinjari
and Bhat; 2011). They model the interactions between time and space, trying to limit the
independence assumption of the different elements of the choice (Rasouli and Timmermans;
2014).

This field of research faces methodological and technical challenges such as

• modeling interactions between different activities in the sequence (e.g., if there was a
drop-off, there may be a pick-up later on; if you go shopping in the afternoon, you may
not need to do it the evening; if you have dinner at 6pm, you don’t need to do it again at
8pm);

• modeling social interactions: coupling constraints for household activities (e.g., Ho and
Mulley; 2013; Gupta and Vovsha; 2013) or group activities from the social network;

• dynamic modeling demand across several days (e.g., Nijland et al.; 2014); or

• modeling matching of demand and supply, i.e., congestion, as in Bradley et al. (2010);
Ouyang et al. (2011); Habib et al. (2013).

The activity-based approach is traditionally used to evaluate transport policies. The applica-
tion of models of activity choice is now extending to new domains (Rasouli and Timmermans;
2014). They are used to quantify emissions (e.g., Shiftan et al.; 2015), health-related indicators
(e.g., Perchoux et al.; 2013), carpooling (Galland et al.; 2014) and well-being (Abou-Zeid and
Ben-Akiva; 2012; De Vos et al.; 2013).

Activity-based models can also be applied to pedestrians. The impact of timetables and
platform allocations have been identified as a major challenge in pedestrian facilities such as
train stations (Daamen; 2004, ch. 2) but is not studied in her thesis. Reviews about activity
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choice for pedestrians can be found in Timmermans et al. (1992) and Bierlaire and Robin
(2009). Recently, Liu (2013) developed an activity-based travel demand model in the context
of an airport, focusing on activity scheduling, destination and route choice and rescheduling
models. It is based on revealed and stated preference survey data. The revealed preference
survey was sent to faculty and staff from the author’s university. They were asked to describe
the activities they performed and the activity with the longest duration the last time they visited
an airport in the last 12 months. 359 responses were used for estimating the model. This thesis
particularly focuses on congestion and consequent rescheduling. For Liu (2013), the home-
based structure of urban activity behavior is replaced in airports by three structuring events:
check-in, security check and boarding. Supposedly, in pedestrian context, the level of service
(congestion, queues and flight schedules) is more important than people’s characteristics,
compared to activity choice in urban context. About the model, a nested logit is used. Each
choice of activity is considered independently from other activities from a same individual.
The nesting structure does not reflect any intuitive behavior.

In the following review of activity-based models, we are interested in how the time represen-
tation impacts the modeling of choice set generation in activity-based modeling. Different
representations of time and activity types drive different strategies to manage the very large
number of alternatives. In this review of activity-based travel demand modeling, we focus
on the time representation (Section 2.3.3), the choice set generation (Section 2.3.4), the for-
mulation of the utility function (Section 2.3.5) and the correlation between activity patterns
(Section 2.3.6).

2.3.3 Time representation in activity modeling

Time is the most important dimension in modeling activity-travel behavior (Yamamoto and
Kitamura; 1999). Its adequate representation is a prerequisite for accurate forecasting (Häger-
straand; 1970; Pinjari and Bhat; 2011). Compared to trip-based models, scheduling models
see time not as a cost, but as a resource being used (Bhat; 2005). Time can be represented as
continuous, decomposed in tours from home, or as the chronological activity episodes (e.g.,
Li and Lee; 2014).

An example of continuous time is the dynamic discrete-continuous choice model by Habib
(2011). In this model, the decision maker sequentially chooses an activity type, and then
its duration, constrained by a given time budget and the expected utility for the remaining
time. This model is myopic, in the sense that it assumes that decision makers sequentially
choose activities, without planning later activities. The concept of composite activity covering
the rest of the day does not allow to model the choice of an overall pattern of activities with
planning behavior. The multiple discrete-continuous extreme value models (Bhat; 2005;
Pinjari and Bhat; 2011; Wang and Li; 2011) represent time as continuous and as a constraint
(time budget). The decision maker chooses several activity types and allocates to each of them
a corresponding time-use, so that it sums to the total time budget. The order in which it is
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consumed is not modeled.

In the activity-schedule approach (Ben-Akiva et al.; 1996; Bowman; 1998; Bowman and Ben-
Akiva; 2001; Bradley et al.; 2010; Shiftan and Ben-Akiva; 2011; Gupta and Vovsha; 2013), the
fundamental unit of time is a tour. A tour is a way to decompose the available time in a day in
manageable units with duration. The behavior is modeled as two sequential decisions, the
activity pattern and the tours. Only the tour models include information about timing, through
(1) the tour time of day choice model, modeling the tour primary destination arrival and
departure times, and (2) the trip departure time choice model, modeling some intermediate
stop arrival and departure times for trips on the tour (Childress; 2010; Abou-Zeid and Ben-
Akiva; 2012). Tours, primary destination of the tours and subtrips on the tours are sequentially
modeling the timing of activities in order to simplify the model and reduce the size of the
choice set.

The time representation in activity modeling is generally continuous or tour-based. In continu-
ous time, the time representation is close to reality but misses an overall pattern choice (choice
of time expenditure per activity type without order in activity episodes in e.g., Pinjari and Bhat;
2011 or choice of time expenditure per activity episode without pattern utility in Habib; 2011).
With tours, the choice of pattern is explicit but independent of the timing decision (start time
and duration). It assumes a primary activity of the tour and a main mode (e.g., Shiftan and
Ben-Akiva; 2011).

2.3.4 Choice set generation

Choice set generation is the process of defining the considered alternatives in an individual
decision making. Assumptions must be made about the availability of the different options
and the decision maker’s awareness of them. Availability or awareness of the alternatives can
be deterministically or stochastically defined (Ben-Akiva and Bierlaire; 2003).

Choice set generation in route choice

In the route choice context, the number of paths connecting an origin and a destination is
very large and cannot be enumerated in practice. The universal choice set, containing all
possible routes, cannot be used. There are two ways of dealing with it: selecting a choice set
that only contains the paths considered by the decision maker (consideration choice set), or
sampling a subset of paths large enough to be confident that it contains all important paths
for the decisions maker (importance sampling). The consideration choice set is supposed to
be consistent with behavior but is very often not available and too small for estimation, while
the importance sampling is not very realistic behaviorally but is statistically more efficient.

Van Nes et al. (2008) propose a classification of different choice sets, by order of inclusion
of alternatives: the chosen alternative, the considered alternatives, the reported alternatives
(by the decision makers as considered), the feasible alternatives (i.e., available), the logical
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alternatives (i.e., no loop) and the existing alternatives (i.e., the universal choice set). They
compare choice sets made of reported alternatives by the respondents and choice sets made
of feasible alternatives defined by a set of constraints. Having access to reported alternatives
is difficult, and even impossible when using localization data from smartphones or antennas.
Moreover, when data are available, the size of the choice set is too small for model estimation
(average size of 2.8 in Van Nes et al.; 2008).

Consideration choice set Depending on the data collection technique, the consideration
choice set can be explicitly asked in a survey. This is very often not possible, in particular when
using different traces (GPS, WiFi, or other tracking systems). In these cases, the consideration
must be modeled and a choice set generation algorithm is defined. It can be seen as a pre-
choice before the actual choice. These models are not based on data but on assumptions
about how people choose the paths they evaluate.

Repeated shortest path search

These approaches assume that people consider only the shortest paths as possible alternatives.
This is less restrictive than it might appear, by using a generalized cost. The repeated shortest
path approaches assume that the consideration set is made of a large enough number of
shortest paths. These approaches generate very similar paths. In order to represent the
heterogeneity of all paths and the variety of choices, van der Zijpp and Fiorenzo Catalano
(2005) propose to remove unrealistic paths. Instead of generating a large number of shortest
paths and removing the irrelevant ones, they propose algorithms for the constrained shortest
path problem, directly generating feasible shortest paths. Constraints are supposed to express
relevance, such as attractivity, circuitousness, non-overlapping or detour.

Constrained enumeration

These approaches assume that people do not consider some alternatives due to constraints.
They generate all possible alternatives satisfying these constraints using branch-and-bound.
Prato and Bekhor (2006) describe the construction of a connection tree between the origin and
the destination. It is depth-first built and the branching rule is based on logical constraints:
shortest path constraints with tolerance for going backwards or for longer travel times, avoid-
ing detours, loops, overlaps and left turns. Parameters for these constraints are hand-tuned in
order to reach behavioral consistency. Consistency is defined as heterogeneity and realism,
i.e., ability to reproduce actual chosen routes. Prato and Bekhor (2006) collect 236 actual
chosen routes to go to work using a web-based survey. 90 % of the respondents also reported
the alternative routes considered for reaching the workplace, corresponding to 339 possible
alternatives. Exploiting the road network of the city of Turin, Italy, 91.1% of chosen paths and
82.6% of reported paths are reproduced .

Importance sampling Flötteröd and Bierlaire (2013) propose a Metropolis-Hastings algo-
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rithm for the sampling of paths. It creates a Markov chain sampling paths according to an
arbitrary distribution, without enumerating all possible paths.

The goal consists in drawing a state i 2 S with probability b(i )P
i2S b(i ) , where b(i ) is the target

weight of state i . With this approach, the probability does not need to be computed and only
the target weight b(i ) is needed. The target weights are defined as

b(i ) = e°µ±(°)

|°|(|°|°1)(|°|°2)/6
(2.2)

where ± is the cost function of the path °, µ a scale factor and |°| the number of nodes in path °.
The denominator in the definition of b(i ) is justified by the state variable definition: the state
variable i is defined as a tuple (°, a,b,c), with a,b and c nodes on path °, and consequently a
path ° corresponds to |°|(|°|°1)(|°|°2)/6 state variables i .

In the Metropolis-Hastings algorithm, the probability to move from state i to state j is needed.
The transition matrix Q defines the proposal distribution and can be decomposed in two main
operations (see Fig. 4.4). One operation, “splicing”, randomly draws a node as a replacement
of b and connect a and c through this new node with shortest paths according to the proposal
distribution. The other operation, “shuffling”, redistribute a,b and c along °. Flötteröd and
Bierlaire (2013) propose to draw the new node with a logit distribution using shortest path
length through this node, in order to drive the process toward short paths. To guarantee scale-
invariance with respect to path cost, they suggest the use of a scale parameter µ= ln2

(≥°1)±SP
. In

this way, the probability of choosing a path of cost ≥±SP is twice less than the shortest path
(with cost ±SP ). For the second operation, “shuffling”. they propose a uniform ascending
choice of a, b and c.

These techniques allow to sample paths from a large network according to any sampling
probabilities. The sampling probabilities do not need to be defined by link, but can be defined
directly for the whole path. Importance sampling probabilities are crucial for an explicit
correction in the discrete choice model.

Chen (2013) (Ch. 5) uses the Metropolis-Hastings path sampling technique by Flötteröd and
Bierlaire (2013) for a route choice model estimated from GPS data. The weight function is
composed of the path’s length and of the frequency of observation of the given path. This
“observation score” represents the inclusion of observed GPS data in the sampling process in
order to include more relevant observations. This algorithm reduces the needed choice set
size.

Choice set generation in activity choice

Choice set specification has received attention in different fields such as route choice or
residential location choice (Ben-Akiva and Boccara; 1995; Swait; 2001; Başar and Bhat; 2004;
de Lapparent; 2009; Rasouli et al.; 2013). A general review about choice set generation in

26



2.3. Activity choice modeling

spatial context can be found in Pagliara and Timmermans (2009).

Activity scheduling consists of two steps: generating the choice set and making a choice among
this set (Liao et al.; 2013). The definition of the choice set for each decision is a major weakness
of the approach (Kang and Recker; 2013). The choice set generation in the context of activity
modeling is complex and fundamental to have unbiased estimates for the parameters of the
model, but data about the actual choice-set are usually missing. Moreover, the choice set
containing all combinations of activity episodes is large (Bowman; 1998, p.74).

Most research in the field is applied to simpler problems. The size of the choice set is reduced
through limitations in what enters the choice set and different assumptions related to the
representation of time.

For each activity type k 2 {1, ...,K } (e.g., shopping), the activity-schedule approach considers
two choices:

1. Is there a home-based tour with this activity type as the primary destination?

2. Are there secondary stops on this tour?

Thus, at a maximum, the choice set for the activity pattern consists of 22K alternatives (2K

possible tours with a primary destination being one of K activity types and, for each primary
destination, 2K tours with secondary stops being one of K activity types, see Abou-Zeid
and Ben-Akiva; 2012 for an example). It is further reduced using logical rules, such as the
impossibility to have secondary stops if no corresponding primary tour is chosen. Different
applications of the activity-schedule approach use different sizes of the choice set in the
activity pattern model (Shiftan and Ben-Akiva; 2011). Nevertheless, they all use the home-
based tour structure to reach a manageable size for the activity pattern choice set (48 elements
in the San Francisco model, 114 in the Portland model (Shiftan and Ben-Akiva; 2011)). The
timing of the tours and stops is estimated in submodels.

In the case of activity sequences (Li and Lee; 2014), the choice set contains K M sequences,
assuming a maximum number M of possible activities in the day. Timing is not considered
and thus it decreases the size of the choice set. Some models consider a single activity pattern,
typically home-work-home, with composite activity episodes for before and after work (Ettema
et al.; 2007; Jenelius et al.; 2011). In these cases, the choice is only about timing. In the multiple
discrete-continuous extreme value models, the choice set only contains K alternatives, one
for each activity type, with decreasing utility with time.

As a general strategy, activity type and scheduling are often not considered simultaneously.
By considering tours or sequential order, without timing, the size of the choice set decreases.
When considering simultaneously activity type and scheduling, assuming that the period of
interest contains T time units, the number of alternatives would be K T and the choice set
size explodes. Two answers are proposed in the literature: (1) Considering time as a continu-
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ous variable and using a multiple discrete-continuous approach (Bhat; 2005) or a dynamic
discrete-continuous approach (Habib; 2011), or (2) Using the universal choice set contain-
ing all possible combinations of time units and activity types and performing importance
sampling, as mentioned in Flötteröd and Bierlaire (2013). In this case, Lemp and Kockelman
(2012) propose a first estimation using simple random sampling (SRS) and a second estimation
drawing alternatives in proportion to the choice-probability estimates.

In the pedestrian context, activity choice is considered as an important level of pedestrian
behavior in Daamen (2004, ch. 2) but is not dealt with because of the challenge of the choice
set generation (Daamen; 2004, ch. 3). In an airport context, Liu, Usher and Strawderman (2014)
consider three time units (between entering and check-in, between check-in and security,
between security and boarding) and for each time unit the choice to perform or not five activity
types, resulting in 15 alternatives. They recognize the need of modeling the various sequences
for a future study.

2.3.5 Formulation of utility function for activity sequences

Modeling the activity pattern formation requires a proper definition of the utility of an activity
pattern. Bhat (2005) considers the overall utility on an individual as the sum of the utilities of
each activity episode. This utility must reflect the time-of-day preferences, the fatigue effects
and the scheduling constraints (Ettema et al.; 2007). The activity-schedule approach also
defines the primary activity as the most important activity of the day (Bowman and Ben-Akiva;
2001).

Time of day preference

The time-of-day element of the utility represents the variation in gain from performing the
activity at different periods of time (“when”-dimension). Ettema and Timmermans (2003); Joh
et al. (2004); Jenelius et al. (2011); Fu and Lam (2014) assume that the marginal utility follows
a unimodal function, increasing first for a warming up phase and decreasing after reaching
a saturation point. Ettema et al. (2004) propose to use a Cauchy distribution to express the
marginal utility.

Satiation effect

The utility of an activity episode increases with time, while marginal utility of activity partici-
pation decreases (Yamamoto and Kitamura; 1999; Ettema et al.; 2007; Pinjari and Bhat; 2010;
Habib; 2011). Satiation2 expresses a fatigue effect (“how long”-dimension). In Habib (2011),

2Researchers in the transportation research community use “satiation” in order to express the decreasing
marginal returns in activity modeling literature. We comply with this usage. Still, it must not be confused with the
non-satiation assumption of preferences in standard microeconomics, stating that more is always better, or more
precisely that, regardless of the individual’s comsumption, an arbitrarily small quantity of a good is generating
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the utility of time expenditure is multiplied by 1
Æ (tÆ°1), with Æ the satiation parameter. The

role of the satiation parameter Æ is to reduce the marginal utility with increasing duration.
When Æ= 1, there is no satiation and utility linearly increases with time expenditure. Satiation
appears when Æ< 0 (Bhat; 2008). This is why Habib (2011) specifies Æ= 1°exp(°øy), where y
is a vector of variables and ø is the corresponding parameter vector. In practice, Æ depends
on a constant per activity type and on the time-of-day. The effect of these two variables on
satiation is evaluated by estimating ø.

Ettema et al. (2007) assume that a part of the utility for an engagement in an activity depends
on the duration. This duration dependent utility follows a logarithmic function for the fa-
tigue effect, ¥k ln(t ). ¥k is specific to the activity type. The corresponding marginal utility is
¥k
t . When the duration t increases, the duration dependent utility ¥k ln(t) increases and its

marginal counterpart ¥k
t decreases.

Schedule constraints

Time of day preference and fatigue effect have been used in several papers (Ettema and
Timmermans; 2003; Jenelius et al.; 2011). Ettema et al. (2007) add schedule constraints in the
utility function, inspired by Small (1982). First introduced by Vickrey (1969), scheduling costs
explain the choice of departure time (e.g., Arnott et al.; 1990, 1993). Small (1982) defines the
utility of trip departure time as a function of travel time and schedule delay:

V =Æt t +∞e SDE+∞l SDL (2.3)

where t t is the travel time, SDE is the early schedule delay and SDL is the late schedule delay.
Schedule delays are defined as the difference between the preferred arrival time t§ and the
actual arrival time t a :

SDE = max(t§ ° t a ,0) (2.4)

SDL = max(t a ° t§,0) (2.5)

Schedule delay approach introduces constraints in the schedule, such as a train departure
time, preferred time to start working, or beginning of courses. They are a mathematical
expression of coupling constraints as defined by Hägerstraand (1970). Ettema et al. (2007)
and Hess et al. (2007) include schedule delay in models of choice of activity patterns. This
approach has some limitations. It assumes a linear, yet asymmetric, effect of being early or late.
More recent works propose non-constant marginal utilities for the scheduling preferences
(Tseng and Verhoef; 2008). In order to implement schedule constraints, anchor points t§ need
to be known.

positive utility. For a proper use of “satiation” in transportation research, see Kockelman (1998, 2001).
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2.3.6 Correlation between activity patterns

The correlation among alternatives (i.e., paths) is a well-known issue in route choice modeling
when using random utility models. The similarity between two paths is usually measured as
physical overlap (Vovsha and Bekhor; 1998). Frejinger and Bierlaire (2007) decompose the
strategies to address this issue in two categories of models: deterministic correction (C-Logit
models byCascetta et al.; 1996, Path Size Logit by Ben-Akiva and Bierlaire; 1999) and explicit
modeling of correlation in the error term (Cross Nested Logit by Lai and Bierlaire; 2014, Error
Component models by Bolduc and Ben-Akiva; 1991). The first category is the most frequent
and the simpler to compute.

The Path Size Logit consists of including an attribute, called Path Size (PS), in the deterministic
part of the utility, in order to correct for overlapping paths. It is derived from aggregation of
alternatives (Ben-Akiva and Lerman; 1985, ch. 9), where the elemental alternatives are the
paths and the aggregate alternatives are the links. In the route choice context, the size of the
aggregate alternatives, i.e., a link, equals the number of paths using the link (see Frejinger and
Bierlaire (2007) for a detailed development).

In activity choice context, utility is related to time of day, satiation and schedule delay (Sec-
tion 2.3.5). All these parameters are defined for a given activity type (e.g., shopping). In the
Activity Schedule approach, Bowman (1998, p.25) mentions that patterns sharing primary
purpose are probably correlated and let it as a future research. Primary activity is defined as
the most important activity of the day, either by asking the respondents in a survey (Antonisse
et al.; 1986) or by counting the number of activity episodes in a tour and using deterministic
priority rules from other studies when not available from the survey (Bowman and Ben-Akiva;
2001). Note that when deterministic rules cannot discriminate between different activity
purposes, the activity of longer duration is defined primary.

As a general conclusion, this literature review for models of activity choice shows the need for
modeling an explicit pattern utility with timing dimension (start time and duration). Consider-
ing simultaneously the order, timing and duration of activity-episode patterns generates very
large choice sets. Large choice sets have been managed with discrete-continuous approaches.
Importance sampling techniques have been recently improved and are an interesting ap-
proach, but have not been implemented yet. Since 1998, correlation between activity patterns
have been detected as an issue but no answer has been given to it to our knowledge.

2.4 Location choice

Location choice models are common in studies of urban transportation policies and plan-
ning. Ben-Akiva and Lerman (1985) mention three of them, for the Paris region and Maceio,
Brazil. Very often, such models are applied to the choice of location for grocery shopping
(Timmermans; 1996; Dellaert et al.; 1998; Fox et al.; 2004; Scott and He; 2012). Location choice
models are applied to several other different contexts, such as the choice of a departure airport
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(Furuichi and Koppelman; 1994), the choice of a hospital for patients by general practitioner
(primary care physicians) (Whynes et al.; 1996), the choice of touristic destinations (Woodside
and Lysonski; 1989; Um and Crompton; 1990; Eymann and Ronning; 1997; Oppermann; 2000;
Seddighi and Theocharous; 2002; Bigano et al.; 2006; Chi and Qu; 2008; Gössling et al.; 2012;
Yang et al.; 2013) and in particular recreational outdoor facilities (Fesenmaier; 1988; Scarpa
and Thiene; 2005; Thiene and Scarpa; 2009), the choice of migrants (Fotheringham; 1986) and
the optimal allocation of charging stations for electric vehicles (He et al.; 2013).

Regarding pedestrians, Borgers and Timmermans (1986a) successively model the destination
choice to predict the total demand for shops in a shopping street in a city center. Timmermans
et al. (1992) review the existing literature in 1992. Eash (1999) has developed models for non
motorized destination choice, with application to the Chicago Area. Zhu and Timmermans
(2011) propose heuristics rules including principles of bounding rationality and compare them
to discrete choice models. The models are validated on the same sample used for estimation
and no cross validation is performed. Ton (2014) studies route and location choice in train
stations based on tracking and counting data. Counting data come from infrared scanners
and tracking data come from WiFi and Bluetooth scanners. Counting data allow to apply
the model to pedestrians without smartphones. The choice is between locations for a given
activity type. Kalakou et al. (2014) apply a similar approach for location choice for a given
activity type (which coffee shop knowing that the individual is visiting one) in an airport.

2.4.1 Attributes of the choice for a location

The main attributes in location choices in urban context are travel time, travel cost and dis-
tance (Cambridge Systematics Europe; 1984; Ben-Akiva and Lerman; 1985; Whynes et al.; 1996).
Other variables are used: type of neighborhood, number of different services or speciality
stores (banks, post offices, medical facilities, offices, shops, foodcourts, cinemas, etc.), parking
facilities (park-seek time, parking cost), number of retail employees (Cambridge Systematics
Europe; 1984; Ben-Akiva and Lerman; 1985; Zhu et al.; 2006; Shobeirinejad et al.; 2013) or
symbolic acts (support of community charities, front-door greeters, patriotic displays) (Arnold
et al.; 1996). Another typical attribute is the size in the context of aggregation of alternatives
(see Section 2.4.2). It represents the number of elemental alternatives in the considered aggre-
gate alternatives (subsets of the choice set). The interpretation of this attribute is complicated,
since it absorbs both the preference for a large set of destinations compared to a small one
and the correlation between destinations in the set. The expected sign is opposite in the two
situations (Frejinger and Bierlaire; 2007). In shop patronage, the main attributes are the retail
floor space, the accessibility and the price (Arnold et al.; 1983; Scott and He; 2012).

In the pedestrian context, the main attributes of location choice are the attractiveness of
the location and travel time. More specifically, models include floor space (Borgers and
Timmermans; 1986a), pedestrian environment in neighborhood, employment (Eash; 1999)
as measures of attractiveness and distance as an approximation of travel time (Borgers and
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Timmermans; 1986a; Ton; 2014). Kalakou et al. (2014) include space syntax in the specification
of the utility through “integration”, i.e., a measure of accessibility.

2.4.2 Location choice models

In an urban context, models are often based on tours, characterized by a travel mode and
a destination. Models of joint choice of travel mode and destination aggregate destinations
into zones (Cambridge Systematics Europe; 1984; Ben-Akiva and Lerman; 1985). Stratified
importance sampling is used, dividing the destination choice set into non-overlapping strata
based on the origin zone. In the Paris Region example, this procedure decreases the choice set
from 595 destinations £ 4 travel modes to 7 sampled alternatives for each trip (Cambridge
Systematics Europe; 1984; Ben-Akiva and Lerman; 1985). In a pedestrian context, the choice
set is often smaller, due to the smaller study area (e.g., Ton; 2014; Kalakou et al.; 2014, with 2 to
4 alternatives). Most destination choice models are logit models (Arnold et al.; 1983; Zhu et al.;
2006; Scott and He; 2012; Kalakou et al.; 2014; Ton; 2014). Probit models have been used (e.g.,
Whynes et al.; 1996).

Panel data are common in transportation research (Golob et al.; 1997) and habits are often
observed in travel behavior (Gärling and Axhausen; 2003), in particular in route choice (Aarts
and Dijksterhuis; 2000; Bamberg et al.; 2003; Thøgersen; 2006; Eriksson et al.; 2008; Verplanken
et al.; 2008; Gardner; 2009; Schwanen et al.; 2012) and in car ownership (Jong et al.; 2004). In
Markov models of destination choices, transition matrix represents the probability of choosing
a destination given the choice of destination at the previous stop. Markov models are criticized
for being descriptive, replicating the data, and not being sensitive to behavioral changes
(Kitamura; 1990; Timmermans et al.; 1992). Dynamic models using panel data increase
statistical efficiency, improve predictions and allow to study behavioral dynamics (Kitamura;
1990). In 1990, Kitamura (1990) considered the inclusion of lag terms in discrete choice models
not well advanced. Unresolved issues in the estimation of dynamic models using panel data
included the representation of the initial conditions and the correlated error term in dynamic
models. In 2001, McFadden (2001) highlighted the importance of panel data in discrete
choice models (Carrel et al.; 2015). Yang et al. (2013) model the choice of a second touristic
destination after visiting a first one using a nested logit. The panel nature of the data is not
explicitly taken into account in their model, similarly to Wu (2012, ch. 5.2), since the previous
destination characteristics are not included in their model. For pedestrian destination models,
Timmermans et al. (1992) mention in their review the “issue of whether a pedestrian tends to
always buy certain items in the same store”, i.e., the question of loyalty, as future research.

Few authors explicitly include lagged variables in location models. In tourism literature,
Grigolon et al. (2014) include the previous vacation length choice in the choice of the current
vacation length. They compare a logit, a mixed logit and a dynamic mixed logit and show that
the dynamic mixed logit is the best in estimation and forecasting. In their dynamic mixed
logit, by assuming that the error term is independent of the variables (i.e., exogenous), and in
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particular independent of the lagged variable, they assume that unobserved attributes do not
persist over time for a given individual. This can lead to bias in the estimation of the model,
in particular when the choice of the vacation length of a stay is influenced by variables not
included in their model. In the choice of a shop in a pedestrian street, Zhu et al. (2006) also
face serial correlation and mention independence issues as a technical challenge for future
research.

In light of the literature review in Section 2.2.1 and 2.4, we emphasize that location-aware
technologies allow to collect panel data in the long term. These data must be used in location
choice models and lagged variables must be included in the utility function of locations. This
leads to bias in the estimation of the model and serial correlation. Wooldridge (2005) proposes
a solution to the problem of serial correlation (see Section 5.2 for details). It is mostly applied
to binary probit (Arulampalam and Stewart; 2009). Our contribution in Ch. 5 develops a
location choice model using panel data from localization-aware technologies. We include a
lagged variable and Wooldrige’s correction for endogeneity. To our knowledge, this correction
has never been applied to dynamic location choice. We apply it to a logit model with 21
locations in the choice set.
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3 Detecting activity-episode sequences

In collaboration with Bilal Farooq

3.1 Introduction

Individual mobility traces are becoming available from pervasive systems, such as cellular
networks or WiFi hotspots (see Section 2.1.1). In many cases, cost and privacy issues pro-
hibit from installing high precision sensors such as cameras covering an entire pedestrian
infrastructure. The large size of pedestrian facilities, such as an airport or a railway station,
implies either precise sensors with incomplete coverage (e.g., cameras or bluetooth sensors in
intersections), or full coverage with imprecise long range sensors (e.g., cellular network data,
traces from WiFi infrastructures). As a result, localization data are either sparse, fuzzy, or both.
We propose a methodology exploiting sparse data with an explicit modeling of the imprecision
in the measure, and using prior knowledge of the infrastructure. It provides mobility patterns
semantic, such as stop locations and purposes and start and end times. The methodology
recovers mobility patterns that generated the localization data, similarly to reverse geocoding,
i.e., recovering a postal address from x-y coordinates.

Section 3.2 describes the necessary data for detecting pedestrians, while Section 3.3 describes
the methodology to merge these data. A case study on the Ecole Polytechnique Fédérale de
Lausanne (EPFL) campus is described in Section 3.4, with results of this case study, together
with validation and sensitivity analysis. Finally, we conclude and discuss future work in
Section 3.5.

3.2 Data requirement

We assume two kinds of data sources before applying the detection methodology: network
traces and semantically-enriched routing graph with which we can associate the network
traces.
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3.2.1 Network traces

An input of the probabilistic detection method consists of timestamps and localization data
coming from network traces: WiFi traces, GSM traces, Bluetooth tracking or RFID localization.
We define a measurement as m̂ = (x̂, t̂ ), where x̂ 2R£R£R is the position of the measurement
(x-y coordinates in a coordinate system, and floor or altitude in a multi-floor environment) and
t̂ the measurement timestamp. The nature of the measurement depends on the data collection
technique. With data from access points (APs) (WiFi APs, cell towers, ...), the measurement x̂
corresponds to the position of an AP; in multilateration data, the measurement x̂ is anywhere
in space, and not related to AP locations. For a given individual n, we assume a chronologically
ordered sequence (m̂1,n , , ...,m̂ jn ,n ...,m̂Jn ,n), which is abbreviated as m̂1:Jn ,n , where Jn is the
total number of measurements. The measurement timestamp t̂ is continuous.

Accuracy ª is also needed for each measurement x̂. It is defined as the distribution of the
Euclidean distance between the location estimate x̂ and the actual location x̊, x̂ = x̊ +ª. It
can either be constructed by the information provided by the localization tool (e.g. level of
confidence, attenuation rate, etc.) or by the analyst. In the second case, one has to design
experiments and calibrate the error distribution based on already known locations in the area
covered by the antennas.

Different levels of anonymity are possible with these data. Originally, a unique identifier
per device is collected (e.g., the MAC address for a smartphone using WiFi). This unique
identifier may be processed in two different ways. First, it may be associated with a username
through identification in the system and thus to the identity and socioeconomic information
if available, such as gender, age or income. Second, it may be anonymized to guarantee
anonymity. The data anonymization can be total or keep some socioeconomic information.
This way, i can

1. correspond to a unique anonymous ID, just for tracking individual traces;

2. be associated with some socioeconomic characteristics without the identity of the user,
or

3. correspond to a personal identifier.

All options are technically feasible. EPFL ethics committee recommends to remove the per-
sonal identifier when sharing the data with other researchers (allowing options 1 or 2 and
banning option 3 for transmission).

3.2.2 Pedestrian semantically-enriched routing graph

The following detection methodology needs a semantically-enriched routing graph (SERG).
We define SERG as a set of nodes N and a set of edges E . SERG allows for routing individuals
from origins to destinations through an optimal path, and contains information about points
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of interest (e.g., the name of the room or the type of the room in a pedestrian context, or
shopping facilities in an urban context). In order to link localization measurements x̂ to the
graph, each node in N must be associated with a coordinate system.

In a centerline approach as defined in Goetz and Zipf (2011) for a corridor in an indoor context,
some nodes correspond to intersections and not to possible destinations. Nodes are defined
as destinations if they correspond to a room, a shop or a restaurant, i.e. if they are points of
interest (POI ) in the pedestrian infrastructure. POI is a subset of N .

Formally, SERG := (N ,E ,L , f , g ,POI ), where L is a set of relevant labels for rooms, restau-
rants, shops, etc., f : N ! L is the labeling function, and g : N ! R£R£R a function
associating nodes with coordinates in a coordinate system. POI ΩN .

More information can be added to SERG . The path realism (both physically and behaviorally)
can be improved by adding information to the graph and using a generalized cost for the
shortest path algorithm. A solution to balance between the shortest path and the simplest
path is to give each edge of the pedestrian network a weight. It represents the aversion to floor
changes and less important walkways in a pedestrian context, or to left turns or traffic lights in
an urban context. Goetz and Zipf (2011) propose a weighted indoor routing graph, which is an
enriched version of SERG . Adding information to edges E allows for a more realistic shortest
path algorithm. Adding information to nodes N gives the opportunity to associate other data,
such as schedules, opening hours, or door access.

3.3 Methodology

We are proposing a modeling approach to extract the possible activity-episode sequences
performed by pedestrians from digital traces in a communication networks. This Bayesian ap-
proach merges measured network traces (continuous in space) (Section 3.2.1) and pedestrian
semantically-enriched routing graph (Section 3.2.2) to compute the likelihood that a given
sequence of activity episodes (discrete in space) has actually generated the observed traces.

We define an activity episode a = (x, t°, t+) as a POI where the user is spending time, where x
is the episode location, t° the episode start time, and t+ the episode end time. The episode
location x is a POI in SERG, x 2 POI , and is labeled, f (x) 2 L . In the wireless localization
literature, the episode location x is called a symbolic location, “a location in a natural-language
way” (Liu et al.; 2007). t° and t+ are continuous random variables and define the time spent at
destination, t+° t°. We impose that t+° t°   Tmin, a minimum threshold (typically 5 min in a
pedestrian context, or 20 min in the same antenna location in an urban context in Bekhor et al.;
2013). The output of the probabilistic method consists of a set of L candidate activity-episode
sequences (a1, ..., a√n , ..., a™n ), which is abbreviated as a1:™n , where™n is the total number of
episodes. ™n is individual specific and unknown to the analyst. In the following developments,
both the number of measurements in the sequence Jn and the number of episodes ™n are
individual specific, but the n subscript is omitted to make the notation light. Each candidate
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activity-episode sequence a1:™ is associated with the probability of being the actual one.

In the next section, we propose a probabilistic measurement model associated with an activity-
episode sequence. Then, in Section 3.3.2, the generation process of candidate activity-episode
sequences is described. Figure 3.1 shows the plate model (see Koller and Friedman; 2009,
Section 6.4.1) of the link between the activity episodes and the measurements.

x̂√j t̂√j

x√°1 t+√°1

t°√ x√ t+√

Measurement m√
j

Activity episode a√ ™

J

Figure 3.1 – Plate model for the probabilistic measurement model. It represents the generation
process of network traces. While being in point of interest x√ between times t°√ and t+√, users

generate measurements x̂√j at time t̂√j . Dark shaded nodes represent the observed variables.
The arrows represent the dependencies between the variables. Boxes express the multiple
iterations of the conceptual object: there are™ activity episodes a√, and J measurements m√

j
in total.

3.3.1 Probabilistic measurement model: a Bayesian approach

A probability P (a1:™|m̂1:J ) is associated with each activity-episode sequence a1:™. It takes into
account the inaccuracy in the network traces based on the measurements and some prior
knowledge about the potential activity-episode locations. The activity probability P (a1:™|m̂1:J )
that a1:™ is the actual activity-episode sequence given the measurement m̂1:J is decomposed
as:

P (a1:™|m̂1:J ) / P (m̂1:J |a1:™) ·P (a1:™) (3.1)

where P (m̂1:J |a1:™) is the measurement likelihood and P (a1:™) is a prior knowledge about the
activity episodes.
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Measurement likelihood

For each activity-episode sequence a1:™, our goal is to compute the probability

P (m̂1:J |a1:™) (3.2)

that the performed episodes generated the observed measurement sequence.

We assume that a measurement m̂ j always corresponds to an activity episode a√. We denote
m̂√

j = (x̂√j , t̂√j ) the measurement in m̂1:J corresponding to a√ = (x√, t°√, t+√), i.e. when t°√ … t̂√ …
t+√. As a result, m̂1:J =[√m̂√

1:J . If a measurement is generated while walking, the model will
consider it as a very short activity episode (that can be eliminated later).

If the device’s owner is performing activity episode a, the probability that it will generate a
measurement m̂ is a function of the location of the episode location x, the measurement
location x̂ and the accuracy ª of the measurement. Thus we can decompose Eq. 3.2 as:

P (m̂1:J |a1:™) =
™Y

√=1
P (m̂√

1:J |a√) (3.3)

=
™Y

√=1

JY

j=1
P (m̂√

j |a√) (3.4)

=
™Y

√=1

JY

j=1
P (x̂√j |x√). (3.5)

Equality in Eq. 3.3 assumes measurement independence between activities, i.e. measurement
error in the sequence is only related to the corresponding activity episode in time. Equality
in Eq. 3.4 assumes independence between measurements, i.e. error is the same for different
measurements while in the same location x√ and time interval t°√, t+√. Equality in Eq. 3.5
assumes no measurement error in time, i.e. measurement error is only a localization error.

These three independence assumptions mean that the error in measurement, i.e., the proba-
bility of being away from the real location, depends only on distance between a measurement
and the real location, and on accuracy ª. It does not mean that measurements are indepen-
dent, but conditionally independent, knowing the real location of the device. Autocorrelation
of the error between different measurements (for a given location) is due to obstacles or
other environmental clutter (i.e., shadowing). Autocorrelation is assumed to be taken into
account by the data collection tool, when generating x̂ (see Mailaender; 2011; Taylor; 2013
about autocorrelation between measurements during the data collection process).
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Prior: potential attractivity measure

Introducing prior knowledge may be needed when localization is weak and the density of POI
is high (this is particularly common in a pedestrian context). Moreover, the prior gives the
possibility to add information from available data. In this section, we propose the first formal
definition of attractivity for pedestrian infrastructures to our knowledge. It is built on existing
literature for urban context and allows to coherently merge different data sources.

Space-time accessibility is a very common concept in land use planning (Miller; 2010). Even
before the accessibility literature, the classical gravity-potential indicators were defining
similar concepts of attraction. Stewart (1948) defines a “population potential” in a law of
“demographic gravitation” by substituting the mass by the number of people in Newtonian
gravitation. Lakshmanan and Hansen (1965) measure attractivity in a retail market potential
model as shopping goods floor space, referring to it as “supply”. Carrothers (1956) proposes a
review of the gravity and potential concepts. He shows that it has been applied to very different
contexts (shopping center locations, population and migration forecasting, allocation of land
use) with the central concept of population masses, or potential.

Space-time accessibility measures availability of activities for individuals given temporal
and spatial constraints. Several definitions have been proposed. Hansen (1959) defines
accessibility as a “potential of opportunities for interaction”:

acci =
X

j

S j

t tÆi j

where acci is the accessibility of place i , S j is a measure of the “size of the activity” at j ,
such as the number of jobs, the annual retail sales or the population in a residential area,
and t ti j represents the travel time between i and j . The Æ parameter, defining the weight of
travel time in accessibility measure, is evaluated based on the urban growth, assuming it is
directly proportional to accessibility. Weibull (1980) develops a rigorous axiomatic framework
defining attraction-accessibility measure based on distance and attractivity (also called supply
capacity). No clear definition of what exactly is attractivity is given but in an example about
labor market, attractivity is defined as a function of the number of jobs and a demand potential
for each zone (Weibull; 1976). He mentions that attractivity may be described as “offer”, and
gives the examples of places at day-nurseries and hospital beds.

A definition of accessibility merging the attractivity-accessibility measures (Weibull; 1980) and
the constraints-oriented approach (see Section 2.3.1 and Hägerstraand; 1970) is proposed by
Miller (2010). He emphasizes that a pure constraints-oriented approach gives each opportunity
an equal weight, and, conversely, an attractivity-accessibility approach does not take into
account temporal constraints. We propose to similarly define a potential attractivity measure
by merging attractivity and time constraints for the pedestrian context.

Formally, we define the potential attractivity measure as a model of aggregated occupation
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per point of interest (POI). The unit of attractivity is the number of persons. The potential
attractivity measure Sx,n(t°, t+) between a start time t° and an end time t+ for x 2 POI
and individual n is time dependent and may differ across individuals. It depends on the
instantaneous potential attractivity measure Sx,n(t ) at a given time t :

Sx,n(t°, t+) =
Zt+

t=t°
Sx,n(t )d t . (3.6)

In practice, time is discretized and the integration is replaced by a sum. The instantaneous
potential attractivity measure depends on time-constraints and attractivity:

Sx,n(t ) = ±x,n(t ) ·at tn(x, t )

where ±x,n(t ) is a dummy variable for time-constraints such as schedules or opening hours,
with value 1 if the POI is open or scheduled and 0 otherwise: opening hours of shops and
restaurants, or timetables in the case of conferences, campuses, or public transport infrastruc-
tures. Timetables are individual-specific. Their availability depends on the level of anonymity
for localization data (see Section 3.2.1).

Attractivity at tn(x, t) is context-specific, as seen in the land use literature: number of jobs,
annual retail sale, population per zone, places at day-nurseries, hospital beds. In the pedes-
trian facility context, data sources could be checkouts in supermarkets, metro card swapping
data, concert tickets data, number of seats in a restaurant, number of employees per office,
number of students in class, capacity of different zones in a stadium or a public transport
infrastructure.

As a general guideline, the potential attractivity measure depends on the available information:

• If the attractivity is stable in time for a given POI x (e.g., an office on campus with a given
number of employees and no explicit office hours), ±x,n(t ) = 1 8t and Sx,n(t ) = at t (x);

• If the POI has opening hours (e.g. a shop on campus), ±x,n(t) = 1 for t in the opening
hours and 0 otherwise, and consequently Sx,n(t ) = at t (x) for t in the opening hours and
0 otherwise;

• If the POI has varying attractivity in time, Sx,n(t) = at t(x, t ) with at t(x, t ) being a step
function (e.g. for classrooms with different numbers of students at different periods of
the day) or any function representing the number of people in the POI per time (e.g.,
point-of-sale data for restaurants);

• If the attractivity varies for different people or categories of people, Sx,n(t ) = at tn(x, t )
with different attractivity functions at tn(x, t ) for different individuals n (e.g., a classroom
has different attractivities for employees and students on a campus).

With the potential attractivity measure properly defined, the prior can be built based on it.
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The prior P (a1:™) is derived assuming that successive activity episode a√ are independent, for
all √.

P (a1:™) =
™Y

√=1
P (a√) (3.7)

=
™Y

√=1
P (x√, t°√, t+√) (3.8)

=
™Y

√=1

Sx√,n(t°√, t+√)
P

x2POI Sx,n(t°√, t+√)
(3.9)

The prior probability is proportional to the potential attractivity measure Sx√,n(t°√, t+√). We
use this expression in the following case study. Another possible specification of the prior
probability could be an exponentially increasing function exp(µSx√,n(t°√, t+√)) of the potential
attractivity measure Sx√,n(t°√, t+√):

P (a1:™) =
™Y

√=1

exp(µSx√,n(t°√, t+√))
P

x2POI exp(µSx,n(t°√, t+√))

where µ   0 is a scale parameter. The scale parameter µ controls for the link between the
potential attractivity measure Sx√,n(t°√, t+√) and the prior probability P (a1:™): if µ= 0, the prior
probability is uniform among all activity-episode sequences a1:™; if µ!1, the prior prob-
ability concentrates on the activity-episode sequence with the highest potential attractivity
measure.

We define four specifications of the prior based on different assumptions on the available data:
uniform, aggregate, disaggregate and diary.

Uniform If no information about the attractivity is available, a default assumption has to be
used, and attractivity is fixed for all POI (similar to µ= 0 in the exponentially increasing
function specification). The corresponding prior is called “uniform”.

Aggregate If information about attractivity and schedule is available, the quality of the prior
depends on the level of anonymity of the network traces. Without personal information,
a single aggregate prior is defined using the same time constraints for all individuals to
define the potential attractivity measure for each location.

Disaggregate Disaggregate information about schedules may be available without knowing
the identity of the individual: travelers (with trip schedules) and non-travelers in a
transport hub, employees (with working hours) and visitors in a shop, etc. These infor-
mation define one “disaggregate” prior per group. They come either directly from the
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network traces (see Section 3.2.1) or from pattern recognition (e.g., in a railway station,
individuals directly arriving on a platform are automatically travelers coming from a
train).

Diary Finally, individual schedules can be used to define a “diary” prior. Due to respondent
burden, individual schedules from activity schedule surveys are particularly difficult
to collect (see, e.g., Chen et al.; 2010). This prior is important for establishing the
consistency of our approach.

3.3.2 Generation of activity-episode sequences

The probabilistic measurement model presented in Section 3.3.1 computes the likelihood of
a given activity-episode sequence a1:™. This section focuses on the generation of candidate
activity-episode sequences. An algorithm is proposed to generate candidates from localization
data and pedestrian semantically-enriched routing graph. At each new measurement m̂ j of
m̂1:J , we build a list of candidates for the activity-episode location x and corresponding start
and end times t° and t+.

Generating episode location

Inspired by the methodology developed by Bierlaire et al. (2013) for smartphone GPS data, we
generate candidate episode locations for each measurement using the concept of domain of
data relevance (DDR) originally introduced by Bierlaire and Frejinger (2008).

We define the DDR as a physical area in space where a measurement location is relevant.
The definition of the area can be different depending on the precision of the measurement,
i.e., the DDR depends on the type of data. In a pedestrian context, this area could even be
in 3D, covering several floors. A point of interest x 2 POI is considered to be in the DDR of
measurement location x̂ if the probability P (x̂|x)   µ, with µ a given threshold. This probability
is a function of the location x of the POI and the measurement location x̂, similar to Eq. 3.5.

Using the domain of data relevance DDR j for each measurement m̂ j , we generate all possible
activity episodes for each individual in DDR j . Each point of interest in this domain of data
relevance, x j 2 POI \DDR j , represents a possible episode location. It is connected with
all possible next episode locations contained in the domain of data relevance DDR j+1 of
the following measurement in time, m̂ j+1. A simple example with two DDRs containing
respectively 3 and 2 points of interest is presented in Fig. 3.2. Note that two successive DDRs
can overlap, resulting in common points of interest; the generated episode location can be the
same, x j = x j+1, and corresponds to two measurements from the same place.

For a list m̂1,m̂2, ...,m̂J of measurements associated with a given individual, the result of this
process is a network structure with path in this network with length J . Each path in the
network corresponds to a sequence x1:J of potential episode locations. This network is built
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DDR j

DDR j+1

x̂ j

x̂ j+1
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j+1
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Figure 3.2 – The symbolic representation of two domains of data relevance DDR j and DDR j+1

corresponding to measurements m̂ j and m̂ j+1 following each other chronologically (in gray).
In this simple example, we assume DDR j contains 3 possible episode locations x1

j , x2
j , x3

j ,

and DDR j+1 contains 2 possible episode locations x1
j+1, x2

j+1 (x1
j , x2

j , x3
j , x1

j+1, x2
j+1 2 POI ) (in

black).

recursively. For each measurement m̂ j , j = 1, ..., J for a particular individual in chronological
order, we consider all possible episode locations, i.e., all POI in SERG , in the domain of data
relevance DDR j . At each new measurement m̂ j , the network structure of activity episodes is
extended with all locations associated with m̂ j (Fig. 3.3).

root

x1
j

x1
j+1 x2

j+1

x2
j

x1
j+1 x2

j+1

x3
j

x1
j+1 x2

j+1

Figure 3.3 – A tree representation of the network corresponding to the two measurements in
Fig. 3.2. Each path from the root to a leaf of the tree represents a possible activity-episode
sequence.

If a measurement is imprecise and the corresponding DDR is huge (e.g., in an area with low
WiFi coverage the size of the confidence interval can be of the order of magnitude of the whole
pedestrian infrastructure), the prior is defining alone the most probable location as the point
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of interest with the highest attractivity in the pedestrian infrastructure. An upper bound for
the size of the DDR might be needed in these cases in order to limit the candidate activity-
episode location, for efficiency. The activity episodes corresponding to these measurements
containing little information will then be eliminated (see Section 3.3.3).

Generating episode start and end times

Once a sequence x1:J of potential episode locations is defined, the episode start and end times
t° and t+ at these locations need to be generated.

Given two consecutive measurements m̂ j and m̂ j+1 and their corresponding timestamps t̂ j

and t̂ j+1, a trip between the two generated positions x j and x j+1 of the consecutive activity
episodes a j and a j+1 is assumed to take place. This trip defines both the end time t+j from
episode a j and the start time t°j+1 of episode a j+1. The departure of the trip occurs after
measurement m̂ j and before the latest possible departure time, i.e., the time that allows
to reach the next episode location through the shortest path. Similarly, the arrival occurs
before the next measurement m̂ j+1 and after the trip from the episode location of the previous
measurement (Fig. 3.4).

t̂ j t+j

t°j+1 t̂ j+1

Time

Position

x j

x j+1

t tx j ,x j+1

Figure 3.4 – Time-space representation of two consecutive activity episodes j and j +1.

The travel time used by a pedestrian to walk from x j to x j+1 is approximated by the ratio
between the shortest path distance between x j and x j+1, and the speed of 1.34 m/s (see
Buchmüller and Weidmann; 2006). In this way, the episode end time t+j is defined as t+j 2
[t̂ j ,max(t̂ j , t̂ j+1 ° t tx j ,x j+1 )] and the next episode start time t°j+1 is defined as t°j+1 2 [min(t+j +
t tx j ,x j+1 , t̂ j+1), t̂ j+1]. The maximum and the minimum in the bounds of the intervals manage
the situation when t̂ j   t̂ j+1 ° t tx j ,x j+1 or t+j + t tx j ,x j+1   t̂ j+1. This may happen when the
pedestrian was much faster than what we assume, or when a measurement was generated
while walking (no stop, thus no time spent at this location).

No information is available about the exact time when the trip actually happens between the
bounds for start and end times, and so a uniform distribution is used in all case studies in this
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thesis. In the following mathematical developments, we assume that t̂ j < t̂ j+1 ° t tx j ,x j+1 and
that t+j + t tx j ,x j+1 < t̂ j+1, i.e., the end time t+j and the start time t°j+1 have values in intervals
larger than zero. The end time t+j is uniformly distributed, t+j ª U(t̂j, t̂j+1°ttxj ,xj+1 ), with density
function

f (t+j ) = 1

t̂ j+1 ° t tx j ,x j+1 ° t̂ j
.

The start time t°j+1 is uniformly distributed between t+j + t tx j ,x j+1 and t̂ j+1. Since t+j is itself
uniformly distributed, the density function of t°j+1 is

f (t°j+1) = 1

t̂ j+1 ° t tx j ,x j+1 ° t̂ j
ln

t̂ j+1 ° t tx j ,x j+1 ° t̂ j

t̂ j+1 ° t°√+1

(and expected value is E(t°j+1) =
t̂ j+t tx j ,x j+1+3·t̂ j+1

4 ) (see Appendix A.1 for a derivation). In the
cases when t̂ j   t̂ j+1 ° t tx j ,x j+1 or t+j + t tx j ,x j+1   t̂ j+1, t+j and t°j+1 are fixed with value t̂ j and
t̂ j+1 respectively.

3.3.3 Intermediary measurements

The duration of an activity episode is assumed to have a lower bound Tmin. Any episode with
an expected duration E(t+)°E(t°) < Tmin is rejected. It is assumed that the corresponding
measurement has been generated while the pedestrian was walking, and therefore does not
correspond to an activity episode.

Removing intermediary measurements also deals with outliers measurements. When a mea-
surement error happens, a distant measurement is observed and an activity episode is gener-
ated. Because it is an outlier and it is not realistic, the distance to reach this activity episode
from the previous one is long and therefore the travel time is long. The activity episode
duration is consequently short and the wrongly generated activity episode is rejected.

In the case of very imprecise measurements, the DDR might be bounded for efficiency (see
Section 3.3.2). It also avoids accumulated activity probability on a location with a strong prior
based on no localization evidence (very weak measurement). It creates false activity episodes,
artificially close to the measurement location. Then, if there is no confirmation from another
measurement in this area, the time spent at this activity episode will be very short and thus
this activity episode will be eliminated.

3.3.4 Sequence elimination procedure

The number of paths in the network grows exponentially with the number of measurements.
For each measurement m̂ j , j = 1, ..., J , all the elements of the corresponding DDR, |DDR j |,
have to be connected with all the previous candidates, resulting in

QJ
j=1 |DDR j | candidates.

In practice, it is not possible to consider all possible combinations. Therefore, the proposed
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implementation of the procedure imposes an upper bound L on the number of candidates.
Whenever the number of candidates exceeds L, the least likely candidates (according to
Equation 3.1) are eliminated to enforce the maximum number of paths in the network (Fig. 3.5).
This procedure performs better deterministically (keeping the L most likely candidates) than
stochastically (drawing L candidates based on the activity probability). Indeed, accumulation
over several measurements generates an activity episode. When randomly picking a candidate,
there is a risk to have several activity episodes with a small duration. They will be considered
as intermediary measurements and eliminated.

root

a1
j

a1
j+1 a2

j+1

a2
j

a1
j+1 a2

j+1

a3
j

a1
j+1 a2

j+1

0.1 0.05 0.3 0.2 0.15 0.2

Figure 3.5 – Illustration of the sequence elimination procedure. The tree of Fig. 3.3 with the
probability for each leaf to be the correct one. If L = 5, we eliminate the candidate represented
by the dotted line, as it is associated with the lowest probability.

The processes described in Section 3.3.1, 3.3.2, 3.3.3 and 3.3.4 define Algorithm 1. It is illus-
trated in Fig. 3.6. The algorithm runs in O(J · |DDR| ·L · |E | · |N | · log(|N |)). Computational
burden mainly comes from the shortest path algorithm. The number of shortest path com-
putations depends on the size of the DDR (controlled by the modeler) and on the number of
candidates L (also controlled by the modeler).

The network traces bring the dynamics in the process by allowing to track a pedestrian during
all the journey in the pedestrian infrastructure. The prior is a way to add information about
time constraints and attractivity. Finally, the pedestrian semantically-enriched routing graph
(SERG) has two roles in the process. First, it allows to link the network traces (coordinates
in a continuous space) to time constraints and attractivity of POI in the prior (places and
landmarks in a discrete space). Second, shortest path in SERG being bigger than Euclidean
distance between two POI, it corrects for anisotropy in the pedestrian infrastructure. It impacts
the elimination procedure through the computation of shortest paths.

The proposed probabilistic measurement model computes the probability of performing an
activity-episode sequence while generating measurements. It assumes that each measurement
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Algorithm 1: Generation of activity-episodes sequences.
for each ID do

for measurement m̂ j = (x̂ j , t̂ j ), j = 1, ..., J O(J ) do
Define the corresponding Domain of Data Relevance, DDR j O(|DDR| log(|N |));
for each x 2 DDR j O(|DDR|) do

Compute the measurement likelihood ;
if T empty then

Initialize the network structure for activity-episodes sequences T with x1 = x, t°1 = t+1 = t̂1 ;
Update the activity probability with the measurement likelihood and the prior ;

else
for each a1:√ of T O(L) do

if x√ = x then
Update the definition of the episode end time: t+√ = t̂ j ;

Update the prior for a√ ;
Update the activity probability of a1:√ with the measurement likelihood and the prior ;

else
Compute the shortest path between x√ and x, and the travel time t tx√,x

O((|E |+ |N |)log (|N |));
Define the last episode end time: t+√ ª U(t̂j°1, t̂j ° ttx√,x) ;

Define the new episode start time: t°√+1 ª U(t̂j°1 + ttx√,x, t̂j) ;

a√+1 = (x, t°√+1, t̂ j ) ;

if a√ is an intermediary measurement then
Connect a√°1 with a√+1 in T ;
Compute the prior for a√+1 ;
Update the activity probability of a1:√+1 with the new measurement likelihood
and prior, but without the prior for a√ ;

else
Connect a√ with a√+1 in T ;
Update the prior for a√ and compute it for a√+1 ;
Update the activity probability of a1:√+1 with the new measurement likelihood
and priors ;

Sequence elimination procedure: keep the L most likely paths of the network T O(L|DDR| log(L|DDR|))

corresponds to an activity episode. In reality, some measurements are generated while walking,
and are then eliminated (see Section 3.3.3). If the measurements are dense enough, a possible
extension of the proposed model consists in applying a probabilistic map matching approach
such as Bierlaire et al. (2013) for measurements related to walking. Route choice models, and
in particular for pedestrians, could then be applied and associated with the activity modeling.

3.4 A case study on EPFL campus

We conduct an experiment on the EPFL campus. We assume that the only mode on campus is
walking, even if some people outside of the campus could be detected, either within a car on
the road or within public transportation.
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Figure 3.6 – Illustration of the full detection methodology, including the Bayesian probabilistic
measurement model, the generation of activity episodes, intermediary measurements and
sequence elimination procedure. The first measurement m̂1 = (x̂1, t̂1) takes place at t̂1 = 19:45.
Its DDR contains only one POI, x1. It is connected with the two elements x A

2 and xB
2 of the DDR

of measurement m̂2 = (x̂2, t̂2 = 19:47). At 19:47, there are two candidates, (a1, a A
2 ) and (a1, aB

2 ).
Let’s assume a A

2 is twice more attractive than aB
2 , and x A

2 and xB
2 are in the same distance of

the measurement location x̂2. Thus, (a1, a A
2 ) is twice more likely than (a1, aB

2 ). If L = 1, only
(a1, a A

2 ) is kept, and then associated with x3. With travel times from the picture, start and end
times for a A

2 are generated: t°2 ª U(19:45+1’,19:47), t+2 ª U(19:47,19:59°2’). Estimated time
spent at a A

2 is 5’30. If L = 2, both (a1, a A
2 ) and (a1, aB

2 ) are kept and associated with x3. Then,
start and end times for aB

2 are generated: t°2 ª U(19:45+2’,19:47), t+2 ª U(19:47,19:59°4’), for
an expected time spent at aB

2 of 4’. As it is less than 5’, aB
2 is eliminated and the two candidates

are now (a1, a A
2 , a3) and (a1, a3). (a1, a3) is the most likely sequence since the measurement

likelihoods are the same but the priors are P (a1, a3) > P (a1, a A
2 , a3).

In Section 3.4.1 and 3.4.2, localization data and a pedestrian semantically-enriched routing
graph of the campus are presented. We show how they comply with the data requirement
defined in Section 3.2. Then, in Section 3.4.3, the potential attractivity measure used to
generate the prior distribution is described. Results are presented in Section 3.4.4. Finally, in
Section 3.4.5, sensitivity analysis is performed on the different parameters, in particular the
ones defining the DDR, the prior and the density of measurements.

3.4.1 EPFL WiFi data

The data used for this case study have been collected with the Cisco Context Aware Mobility API
with the Cisco Mobility Services Engine (MSE) (Cisco; 2011). Based on the signal strength from
the 789 existing access points on campus, it uses triangulation to generate a measurement
m̂ = (x̂, t̂ ). Therefore, in this case study, the location of the device x̂ is continuous in space. A
confidence factor cF defines a square around each x-y coordinates (see Fig. 3.7 and Cisco;
2011). The device is estimated to be inside this confidence square centered at the measurement
x̂ with sides 2 ·cF with 95 % probability. cF is calculated assuming that the device is located
on the correct floor (Cisco; 2011). These data correspond to the localization data requirement

51



Chapter 3. Detecting activity-episode sequences

defined in Section 3.2.1.

x̂

cF

cF

cF cF

Figure 3.7 – 95 % confidence square provided by the localization tool (Cisco; 2011).

For the measurement equation as defined in Section 3.3.1, we assume that the errors in
latitude and longitude are independently and normally distributed. We decompose both
the measurement x̂ and the activity location x in latitude and longitude x̂l at , x̂l ong , xl at and
xlong . Assuming the errors in latitude and longitude are independent, P (x̂|x) = P (x̂l at |xl at ) ·
P (x̂l ong |xl ong ) with:

P (x̂l at |xl at ) = 1

æ
p

2º
exp

√

° (x̂l at °xl at )2

2æ2

!

(3.10)

P (x̂long |xlong ) = 1

æ
p

2º
exp

√

°
(x̂long °xlong )2

2æ2

!

(3.11)

where æ= cF
2 . This is equivalent to assume a Rayleigh distribution for the distance between

the measurement x̂ and the activity location x (Chen; 2013).

We collected 2’392’973 network traces (Fig. 3.8). The raw data are available in Danalet (2015).
The confidence factor has a mean of 206 meters, with a minimum of 16 meters and a maxi-
mum of 1480 meters. The distribution of cF is shown in Fig. 3.9. Fig. 3.10 shows the spatial
distribution of cF . Measurements with low precision are mostly outdoor.

3.4.2 EPFL pedestrian semantically-enriched graph

The EPFL website proposes an orientation tool for the campus, http://map.epfl.ch. It
provides locations of offices and points of interest (such as restaurants and classrooms) on
campus (Fig. 3.11). It also generates itineraries between two such locations. It consists of
a semantically-enriched graph (SERG) as defined in Section 3.2.2, containing |N | = 50131
nodes, |E | = 56655 edges, and |POI | = 5387 points of interest.

The network as described above corresponds to the minimum data requirement as defined
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Figure 3.8 – EPFL WiFi data (background: ©OpenStreetMap contributors, CC BY-SA).

in Section 3.2.2. However, more information is provided. Similarly to road networks for car
driving, each edge is associated with a hierarchical status. Based on this hierarchical status,
weights are defined in the routing tool of EPFL website as shown in Algorithm 2. The higher
the weight is, the less likely the link is to be selected for the shortest path.

3.4.3 Potential attractivity measure on campus

On campus, each point of interest, x 2 POI , belongs to one of seven categories: offices,
classrooms, laboratories, restaurants, shops, library, and other points of interest. For each
POI , we define attractivity at t (x, t ) depending on the category it belongs to.

For each office, attractivity is equal to the aggregate work rates of employees provided by the
human resources management software. For classrooms, attractivity equals the number of
students who subscribed for a course at the beginning of the semester. This number varies
with the time of the day. For restaurants and the library, we use the number of seats as a proxy.
For shops on campus, no information is available and we arbitrarily assume that attractivity
corresponds to a capacity of 20 people. Finally, for all other points of interest, we arbitrarily
assume an attractivity of one, since we have no information about it.

Time constraints ±x,n(t ) as defined in Section 3.3.1 are based on class schedules for classrooms,
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Figure 3.9 – Histogram of the different values of the confidence factor cF (in meters), based on
2’392’973 measurements.

and opening hours for restaurants, the library and shops. For offices, we assume no time
constraint, and thus ±x,n(t ) = 1 8t .

3.4.4 Results

Knowing the actual activity-episode sequence for the author

The methodology presented in Section 3.3 is tested with traces from the author. 76 measure-
ments were generated on Monday May 14, 2012 (Fig. 3.12).

With EPFL WiFi data, a confidence square is defined assuming that the device is located on
the correct floor. In order to account for floor error, we also consider the below and top floors,
using a square with side 2 · r on these floors. We define F as the probability of being in the
detected floor, and 1°F

2 the probability of being on the below or top floor. Both r and F are not
provided and must be fixed by the modeler.

With this definition and given the high density of potential episode locations in the pedestrian
network (in particular for offices, see Fig. 3.11), the number of locations in DDR is large (a
mean of 712.0 with r = 25m). The most distant episode locations of the DDR have a very low
measurement likelihood. Decreasing the size of the DDR decreases the computation time.
Moreover, very weak measurements generate huge DDRs and create a risk of giving too much
importance to the prior. We define a maximum distance R in meters for taking potential
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Figure 3.10 – Spatial distribution of the different values of the confidence factor cF (each point
has a 95 % transparency; background: ©OpenStreetMap contributors, CC BY-SA).

episode locations in consideration, cFtrunc = min(cF,R).

The sequence of activity episodes has been recorded manually by the author and is shown in
Table 3.1 and Fig. 3.13. He first went in a classroom from 8:32 to 10:30 for a course, then in his
office until 11:47. For lunch break, he arrived in a restaurant on campus at 11:55. He came
back to his office around 13:00 and went for a coffee around 14:00. Finally he came back in his
office until the end of his working day, around 19:45.

The results are presented in Table 3.2, with R = 80m, r = 25m and F = 0.6. At each iteration,
only the best candidate is kept (L = 1). The potential attractivity measure is using the individual
disaggregate class schedules. ¢x is the shortest walking path between the episode location
from the model and the one from the activity log in the semantically-enriched routing graph.

Compared to the mean confidence factor cF = 124.2m, the spatial error (¢x) is low. The last
activity episode, the metro stop, is not covered by WiFi. It is at the border of the campus. Thus,
the error is big in this case. 3 out of 7 activity episodes are perfectly detected, and 3 more have
a correct category. The number of episodes is correctly detected, as well as the floor of each
activity episode. The temporal precision seems coherent with the diary. Results are presented
on a map in Fig. 3.14.
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Figure 3.11 – EPFL pedestrian semantically-enriched graph with points of interest and pedes-
trian network.

As the precision of the WiFi data is low and attractivity measure does not perfectly correct
for this imprecision, the number of candidates L in the sequence elimination procedure
(Section 3.3.4) can be increased to represent this uncertainty. L must be defined by the analyst
to balance between algorithm speed and representation of uncertainty in the data. Figure 3.15
shows results with L = 100 candidates. Some activity episodes are present in each of the 100
candidates, expressing the absence of ambiguity at this time of the day (episodes 3 and 5,
restaurant and cafeteria). In other cases, a strong ambiguity, both in horizontal error and
activity-episode category, is present (episode 1, classroom). Measuring this uncertainty allows
for corrections in further analysis.

Individual and aggregate results for campus members

The same methodology was applied to 3490 employees and 767 students of campus (with
L = 20 and F = 0.99). Data were limited to 5 weekdays, from May 17 to May 23, 2012. Campus
users authenticate themselves on the WiFi network through WPA (WiFi Protected Access) using
a Radius server. Accounting is one of the process on the Radius server. It allows to associate a
MAC address with a username (Koo et al.; 2003). The username was associated with employee
or class attribute through LDAP (Lightweight Directory Access Protocol) requests. Then, both
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Algorithm 2: Weight definition procedure for each edge in the pedestrian network
if door = closed then

weight = 1;
else

if Major Route then
hierarchical factor = 1;

else if Inter-building Route then
hierarchical factor = 1.2;

else if Intra-building Route then
hierarchical factor = 1.5;

else if Access to Offices then
hierarchical factor = 2.0;

floor factor = 1;
if Up then

if Ramp then
floor factor = 3;

if Stairs then
floor factor = 15;

if Down then
if Ramp then

floor factor = 2;
if Stairs then

floor factor = 12;

lift factor = 0;
if Elevator then

elevator factor = 40;

weight = length · hierarchical factor · floor factor + elevator factor;

Activity log
Time spent Floor Location

8.32am-10.30am 1 Classroom
Until 11.47am 3 Author’s office
From 11.55 am 1 Restaurant
Around 1pm 3 Author’s office
Around 2pm 2 Cafeteria
Until around 7.45pm 3 Author’s office

Table 3.1 – Sequence of activity episodes as reported by the author. It contains 6 activity
episodes.

the MAC address and the username were deleted to guarantee privacy. This process generates
anonymized network traces with known category of users on campus.

Figures 3.16, 3.17 and 3.18 show the activity patterns of two employees and one student. The
POIs are aggregated per category in these figures. Figure 3.16 shows an arrival on campus
between 8:05 and 8:10. The employee visits two offices first, then a restaurant, then an office
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Figure 3.12 – WiFi traces generated by the author on Monday May 14, 2012 (violet) and the
pedestrian network (blue).

Model with disaggregate prior Activity log ¢x
Arrival time Departure time Floor Location Time spent Floor Location (in m.)

8:35-8:35 10:38-10:38 1 Classroom 8.32am-10.30am 1 Classroom 0
10:40-10:40 11:51-11:51 3 Office Until 11.47am 3 Author’s office 9
11:54-11:54 12:47-12:53 1 Restaurant From 11.55 am 1 Restaurant 0
12:51-12:58 13:03-13:44 3 Office Around 1pm 3 Author’s office 9
13:06-13:47 13:53-14:02 2 Cafeteria Around 2pm 2 Cafeteria 0
13:55-14:04 19:40-19:44 3 Office Until around 7.45pm 3 Author’s office 9

Table 3.2 – Comparison between the most likely output of the model and the activity log as
reported by the author.

and a lab in the morning. During lunch break, the employee visits two different restaurants.
Then the employee visits a lab again, a restaurant, and finally the last episode is a lab with
probability around 80 % and an office with probability around 20 %. Between 13:36 and 14:01,
there is no destination where the measurements are stable for more than 5 min. This output
seems realistic.

Figure 3.17 shows that WiFi devices are not necessarily mobile. Here, the device is accessing
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Figure 3.13 – Sequence of activity episodes as reported by the author. The dots represent
activity episodes. The black thick lines represent the weighted shortest paths presented in
Section 3.4.2. They use the pedestrian network and connect the activity episodes.

the WiFi all day long and not moving from one office. It is likely to be a fixed equipment. We
remove such outputs in Appendix A.2.

A student’s device activity pattern is shown on Fig. 3.18. The student’s device was in a restaurant
during lunch break and following courses in the afternoon. The “other” activity type in the
morning represents here the campus bike service. It is very likely to be a measurement error
since there is a class two floors up and 10 m away. Our measurement equation does not take
into account more than one floor error, so the actual classroom is not in the domain of data
relevance. The limitation of the size of the domain of data relevance increases the speed of the
algorithm but also excludes some points of interest that could be realistic.

At a more aggregate level, we can observe from the output of Algorithm 1 that people on
campus are performing 3 activity episodes on average. At an average they spend 1 h and 37
min on each activity. Focusing on the restaurants, Fig. 3.19 shows the number of devices
detected in restaurants per quarter of an hour during the 5 weekdays. We observe a peak of
transactions around noon, which is expected.

There are no data about the real behavior of people for validating the number of episodes,
their duration or the proportion of people going to restaurants.
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Figure 3.14 – Activity-episode sequence of the most likely output of the model with disaggregate
prior on EPFL Campus pedestrian network. Episode locations are connected with the weighted
shortest path presented in Section 3.4.2. Destinations are represented in green if in the correct
category of POI and red otherwise. Only the last destination, the metro stop, not covered by
WiFi, does not have the correct category.

3.4.5 Sensitivity analysis

Based on results from the author (Section 3.4.4), the sensitivity of the results to the parameters,
the prior and the density of measurements are measured in terms of spatial and temporal
precisions of each activity episode and more globally at the sequence level, quantitatively
and qualitatively. Four criteria of stability are defined to evaluate the impact of the changes:
the number of episodes that are detected by the algorithm (“Nb episodes”), the walking
distance between the episode location from the model and the activity log one (“Delta dist.”,
in meters), the mean absolute difference between the activity log schedule and the schedule
defined by the model (“Delta duration”, in minutes), and the number of correct destinations
categories (“Nb OK”). The reported walking distance, “Delta dist.”, is the shortest path between
the episode location from the model and the activity log one in the semantically-enriched
routing graph. This criteria is more relevant than Euclidean distance since a small difference
in localization may have a big impact on the actual distance in the pedestrian graph for the
tracked individual. The reported episode start and end times are not very precise, in particular
in the afternoon, and thus we only consider here the 5 start and end times with a sufficient
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Figure 3.15 – Activity-episode sequence of the L = 100 most likely output of the model with
disaggregate prior on EPFL Campus pedestrian network. Destinations are represented in
green if in the correct category of POI and red otherwise. The surface of each point represents
the normalized probability of this destination being the correct one (Equation 3.1). The two
restaurants are detected in all 100 activity-episode sequences. The author’s office is not always
perfectly detected and variations can be observed, but the category is always correct. The
classroom, in the beginning of the day, is not correctly detected, and the destination category
is wrong in some cases. The actual classroom is detected in a minority of cases. In some of the
100 sequences, there is a seventh episode, but their likelihood is too small to be seen on the
picture.

precision in the activity log schedule: t°1 , t+1 , t+2 , t°3 , t+6 . The number of correct categories is
important, since the detection of the exact office is not necessary for understanding mobility
patterns, while knowing the kind of destination is crucial.

In the next sections, the impact of the changes in different parameters, the impact of the prior
and the impact of the density of measurements are shown.

Sensitivity to the parameters

There are mainly four parameters that need to be defined in the model. First, the maximum
radius R of the DDR, allowing to limit the computational burden related to some very imprecise

61



Chapter 3. Detecting activity-episode sequences

Figure 3.16 – Activity pattern for one employee’s device on May 23, 2012. The x-axis represents
the time of the day. The colors/patterns represent the different categories of the points of
interest. The y-axis is the probability to be the correct point of interest based on Equation 3.1.

Figure 3.17 – Same representation than in Fig. 3.16 for another employee on the same day.
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Figure 3.18 – Activity pattern for one computer science master student’s device on May 23,
2012. The x-axis represents the time of the day. The colors/patterns represent the different
categories of the points of interest. The y-axis is the probability to be the correct point of
interest based on Eq. 3.1.

measurements; second, the probability F of being in the detected floor. Since the precision
is expressed in the horizontal plan, a vertical precision needs to be set up; third, we also
define the minimum time spent at destination Tmin in minutes; and finally the number L of
candidates that are kept during the sequence elimination procedure.

We use as a base case R = 80m, F = 1.0 and Tmin = 5min, as in the previous results, and we
fix L = 40. The expected values for the criteria of stability are used based on the normalized
activity probability from Eq. 3.1.

Figure 3.6 showed the impact of L on a small illustration, with L = 1 and 2. With real data,
the same effect is appearing for the last episode. It shows than L = 1 should be avoided
(Fig. 3.20). By fixing the number L of candidates to 1 at each iteration, only the most likely last
activity episode is kept at each measurement. This does not allow for explicit management
of ambiguity of the measurement and does not provide memory to the process. With L > 1,
results are stable.

Varying Tmin defines the time length of intermediary measurements. For some large values of
Tmin (9,10,11,12min), it is possible that performing several activity episodes of less than Tmin

is more likely than performing the actual activity episode. It explains the low values for “Nb
episodes” and “Nb OK” in Fig. 3.21. Reasonable values for Tmin represent the expected error
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Figure 3.19 – Number of devices detected in restaurants per quarter of an hour. The x-axis
represents the time of the day (quarters of hour). The y-axis represents the cumulated number
of people detected in the restaurants of the campus over 5 days from the WiFi traces (de-
vices/quarter). Since 20 activity-episode sequences are generated per individual, each one is
weighted by its probability to be the correct one based on Eq. 3.1.

in the travel time between two episodes, because of slower walking speed or longer distance
than the shortest path (see Fig. 3.22), i.e., less than 9 min. In these cases, results are stable.
Tmin should also be bigger than 1. In this case, very short and unrealistic activity episodes on
the way between two actual activity episodes are more likely than the actual ones.

In our particular example, if R is small (R = 30,40), the ambiguity for the first episode (see
Fig. 3.15) disappeared. It is case specific. In general, with small R, destinations are missed by
the algorithm. For large values (R = 90,100) or no limitation (R =1), the geographical infor-
mation provided by the WiFi measurement is almost flat. In this case, the activity probability
depends on prior only and the prior is bigger for less activity episodes. It explains the low
number of activity episodes in Fig. 3.23. The output is stable for R = 60,70 and 80m.

In our example, 10 of the 76 measurement are not on the correct floor (13 %). Only one of
them corresponds to an activity episode (the 9 others are measurements related to the metro
stop, not covered). Figure 3.24 shows that the interfloor probability F has a very small impact
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Figure 3.20 – Sensitivity to the number L of candidates kept between each measurement,
L = 1,2,3,5,10,20,30,40,50,60,70,80,90,100.

in this specific example, if F is in the order of magnitude of the error (0.9). Still, the vertical
imprecision in a multifloor environment must be taken into account. In particular, when the
device is next to windows, stairwells or mezzanines, the signal could cross the floor separation.

As an extra example, the author had a class on March 27, 2012. 2 of the 14 measurements
corresponding to this activity episode are detected on the floor below the actual episode
location (Fig. 3.25). These two consecutive measurements happened in more than 5 min
difference and thus are not considered as intermediary measurements. Moreover, they happen
after the beginning of the activity episode. With F = 1, three activity episodes are detected:
on the correct floor, then downstairs, then on the correct floor again. With F = 0.9, only one
activity episode is detected.
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Figure 3.21 – Sensitivity to the minimum time spent at destination Tmin, Tmin =
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15min.

Effect of the prior

In Fig. 3.26, we present results with the different priors defined in Section 3.3.1 to show their
effects:

• uniform;

• aggregate for all campus members, using the same class attractivity for all students;

• disaggregate for a class, meaning that we know the exact class schedule for the tracked
pedestrian; and
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Position
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Figure 3.22 – Time-space representation of one activity episode √ with short time spent at
it, t+√° t°√ … 2 minutes. The dashed line represents the assumed trip, with mean speed and
shortest path. The dotted line is the actual trip, with slower walking speed or longer distance
than the shortest path.

• diary, based on the recorded sequence presented in Table 3.1.

We observe first that the total number of episodes in the day is estimated correctly from the 76
measurements with each different prior (Fig. 3.26). Using a threshold of 5min spent at episode
locations, we reach the same number of episodes as the activity log. It means that without
extra information, with a uniform prior, the WiFi data are already providing information about
the number of episodes in the day. On the other hand, with a uniform prior, only 4 out of 7
activity episodes have correct category. This information is crucial for understanding and
modeling activity choice.

We can observe that the aggregate prior is not precise enough (Fig. 3.26). The number of
episodes is stable, as well as the number of correct categories (“Nb OK”) compared to a
uniform prior, and spatial precision is worse. The aggregate prior does not improve the results.
A deeper analysis of the results shows that including class schedules for all pedestrians, even
those to whom these schedules are not relevant, is giving too much importance to classrooms
compared to offices and other points of interest. It creates a bias towards classes by applying
the same time constraints to everyone, even when these schedules are wrong for a particular
individual.

Applying the correct time constraints needs class schedules, and thus lower anonymity level
of the WiFi data. The disaggregate prior does not require the student identity but to which
class the student belongs to. It detects almost all destinations perfectly, with correct categories.
The individual anonymity is kept, while the attractivity and time constraints allow to correctly
detect the category of the episode. Spatial error (“Delta dist.”) is almost as good as the diary
prior.
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Figure 3.23 – Sensitivity to the maximum radius R of the DDR, R = 30,40,50,60,70,80,90,100
meters and R =1.

The diary prior allows to correctly detect only 6 out of the 7 activity episodes since the metro
stop is not covered by WiFi and out of the confidence square. It corresponds to the best
possible results with our approach, when the value of the prior is 1 for the point of interest
corresponding to the correct activity episode location (i.e., the POI that was actually visited by
the device of the tracked individual) and 0 for the other points of interest in the DDR (the POIs
that were not visited by the device of the tracked individual). In practice, it is impossible to
collect enough data in order to build a diary prior. The exact same results, i.e. the best possible
results, are also reached with an attractivity of 3 for the point of interested corresponding to
the correct activity episode location and 1 for the other POI. It shows the needed order of
magnitude of the prior to overcome WiFi data imprecision in a pedestrian infrastructure with
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Figure 3.24 – Sensitivity to the probability F of being in the detected floor, and not in the
upper or lower floor, F = 0.8,0.9,0.95,0.99,1.0. F=1.0 means that only the detected floor is
considered.

dense points of interest and detect correct categories: the visited points of interest should
have an attractivity 3 times larger than the attractivity of the non-visited POIs.

A prior with more information does not necessarily improve the results. Individual attractivity
and time constraints allow to detect the correct categories of activity episodes and to reach a
better spatial precision, while maintaining anonymity of the tracked pedestrians.
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Figure 3.25 – Example of vertical imprecision. The violet diamonds represent the signals.
There are 12 signals upstairs and 2 signal downstairs. The orange diamond is the location
of the activity episode, on the upper floor. The orange line is the shortest path connecting
the activity episodes. The green diamonds are classrooms. The white lines represent the
pedestrian network. Offices are not shown for clarity (image: Lopez-Montenegro Ramil et al.
(2013)).

Sensitivity to the density of signals

To evaluate the sensitivity of the model to the density of measurements, some data were
artificially removed. 5 %, 10 %, 15 %, 20 %, 25 % and 30 % of the data were randomly removed.
The model ran 100 times for each case. Results are shown in Fig. 3.27. We observe that the
model is very stable until -15 % and then start to have variations, particularly in the difference
of walking distance between the activity log and the model. This variation more frequently
improves the difference of distance, which is good since the precision is better, but is less
stable. Results with -25 % and -30 % of the full dataset show less stability, with variations in
distances between the activity log and the models and also in the number of episodes and the
number of correct destination categories.

As a general recommendation, 76 measurements cover properly an almost 12-h journey
on a campus. Results are still stable and trustworthy with -15 % of measurements, i.e. 65
measurements, which corresponds to a mean of 5.4 measurements per hour.
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Figure 3.26 – Sensitivity to the prior, with uniform, aggregate, disaggregate and diary prior.

3.5 Conclusion

In this chapter, we propose a methodology detecting the different activity locations visited
by a device using its network traces supported by knowledge of the underlying pedestrian
map and attractivity, in particular time constraints. Semantics is extracted from raw data:
activity-episode sequence, with start and end times, activity type and destination. We present
an empirical study on a campus.

Our approach accounts for the fact that pedestrian networks are traditionally denser than
other mobility networks and localization is often sparse, in particular indoor. The methodology
presented here is flexible and tunable. It allows for introducing a priori knowledge on the
activities and information on the pedestrian map structure. In particular, time constraints
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Figure 3.27 – Sensitivity to datasets with less data, with the full dataset as a base case.

(such as schedules for trains in a railway station, for planes in an airport, or for classes on a
campus, or opening hours for shops or restaurants) can be added in the model. Moreover, the
usage of a pedestrian network corrects for anisotropy in the facility.

This methodology also uses the concept of domain of data relevance. By using domains of
data relevance, if access points are changing very often from one to another while the device
is in fact static, the true activity location is contained in both domains of data relevance and
does not change. Therefore, this methodology avoids the pingpong effect observed in other
studies. The avoidance of the pingpong effect is reinforced by the prior, focusing on specific
points of interest in the domain of data relevance.

This methodology is robust for low density measurements. Finally, ambiguity is explicitly
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stated through the likelihood of each activity-episode sequence.

This approach has limitations. First, it works in pedestrian facilities and does not account for
mode detection. Also, we emphasize the importance of a good knowledge of the map behind
the technical infrastructure. As results show, more data in the prior does not necessarily mean
better results, and a careful definition of attractivity and time constraints is needed. Finally,
R, the bound for the size of the DDR, must be fixed by the analyst and may cause a wrong
number of detected episodes.

The representation of points of interest may have an impact on the detection of activity
episodes. When they are represented as points and for points of interest with a large surface,
the measurement may take place in the facility but its domain of data relevance does not
intercept the point representing the point of interest. In the case study on campus, offices,
labs and classrooms are represented as surfaces. Restaurants, shops, libraries and other points
of interest are represented as points. Figure 3.28 exemplifies the problem in EPFL library in
the Rolex Learning Center.

Figure 3.28 – Map of the Rolex Learning Center, with the library in the top right corner of the
building. The point of interest “Library” is represented as a point, but the surface of the library
is large (working tables in yellow) and it is possible to be detected in the library (measurement
with cF = 16m) and not be associated with the “Library” point of interest (background: EPFL
Library image)
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Future works involve applying this methodology with different sensors and in different con-
texts. It can be used with other network traces, such as Bluetooth tracking. In other contexts,
such as train stations, hospitals, festivals or airports, attractivity measures and time constraints
are different. Also, more data can be included in the model, regarding the measurement equa-
tion, the prior, the shortest path, the first and last activity episodes, and the estimation of the
parameters. The measurement equation may be improved by determining the source of prop-
agation errors such as obstacles or walls. The prior could be further extended with models on
activity choice or with more precise data about attractivity. The shortest path algorithm may
describe big obstacles to increase length-optimality of the shortest path algorithm, or consider
one-way paths similarly to street networks. The first and last episodes in the studied area are
particular in the sense that they represent the access to the area. In our experiment, access
to campus can be detected using prior knowledge, like studies about mode choice to access
campus. The methodology can be extended by using the probabilistic map matching method
developed by Bierlaire et al. (2013) for intermediary measurements. If exact activity-episode
sequences are available for a large sample, e.g., from surveying pedestrians or from cameras,
they can be used for Bayesian estimation of parameters such as F and r .
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4 A path choice approach to activity
modeling

4.1 A general model for activity-episode sequences

Our approach to activity-based travel demand modeling decomposes the modeling of behavior
in two steps (see Fig. 1.1, page 5). First, a path choice approach models how people choose
their activity type in time, taking into account the type of activities, their sequence and their
timing/duration. Once the activity type, sequence and timing are chosen, a second step
consists in modeling destination choice (e.g., choosing a restaurant, knowing the activity type:
eating).

There are mathematical and behavioral motivations for this decomposition of behavior model-
ing in activity and destination choices. Mathematically, the problem is complex. The number
of possible destinations in a given area is usually large. The number of sequences of destina-
tions is larger. Including the duration spent at destination makes the problem definitively too
large and intractable. Behaviorally, the choice of activity type and time of day precedes the
choice of destination (e.g., Bowman and Ben-Akiva; 2001; Arentze and Timmermans; 2004;
Abou-Zeid and Ben-Akiva; 2012; Kang and Recker; 2013).

Formally, we model the sequence a1:™ of activity episodes a1, ..., a√, ..., a™, where an activity
episode a√ = (x√, t°√, t+√) is defined as a location x√, a start time t°√ and an end time t+√.
The probability of reproducing the observation of a sequence of J measurements m̂1:J =
m̂1, ...,m̂ j , ...,m̂J of individual n is decomposed as a measurement equation P (m̂1:J |a1:™) and
the probability to choose an activity-episode sequence, P (a1:™) (Eq. 4.1). The measurement
equation computes the probability that the performed episodes generated the observed
measurement sequence. By assuming localization error only, the measurement equation
can be decomposed as a product of the localization error for each measurement location x̂ j ,
QJ

j=1 P (x̂ j |x j
√), where x j

√ is the activity episode location corresponding to measurement m̂ j .
The probability P (a1:™) of performing an activity-episode sequence a1:™ is decomposed in a
model P (A1:™) of the choice of an activity pattern A1:™ and a model P (x|A1:™) of the choice of
destination x conditional on the activity pattern P (A1:™) (Eq. 4.2). Here, an activity pattern
A1:™ = (A1, ..., A√, ..., A™) is a sequence of activities A√ = (Ak , t°, t+) defined as an activity type
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Ak and start and end times.

Pi (m̂1:J ) =
X

a1:™2C

P (m̂1:J |a1:™) ·P (a1:™) (4.1)

=
X

a1:™2C

JY

j=1
P (x̂ j |x j

√) ·P (A1:™) ·
™Y

√=1
P (x√|A1:™) (4.2)

Figure 4.1 illustrates this decomposition in a train station. Assume a measurement m̂ at an
equal distance d from three points of interest in the domain of data relevance (DDR, see
Bierlaire and Frejinger; 2008 and Ch. 3): two cafés, A and B , and a platform, platform 1. The
probability of generating this measurement is in this case:

P (m̂) = 1
2ºæ2 exp

µ
° d 2

2æ2

∂√

P (Café) ·
≥
P (Café A|Café)+P (Café B|Café)

¥
+

P (Platform) ·P (Platform 1|Platform)

!

assuming that the errors in latitude and longitude are independently and normally distributed
(see Ch. 3).

DDR

m̂

Café B
Platform 1

Café A

Figure 4.1 – A measurement m̂ at an equal distance from three points of interest in the domain
of data relevance (DDR): two cafés, A and B , and a platform, platform 1.

We present the choice of location for a given activity type later in this dissertation, in Ch. 5.
Here, in this chapter, we propose a model for the choice of an activity-episode sequence.
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4.2. Methodology

We simultaneously model the choice of activity types, order, start times and durations of
activity episodes in a sequence. The activity-episode sequence is modeled as a path in an
activity network defining the activity type, duration and time of day. We develop a framework
for choice set generation. The large dimensionality of the choice set is managed through a
strategic sampling using a Metropolis-Hastings algorithm.

The activity-based approach is motivated by the fact that the choice of an activity pattern
triggers the choice of locations (e.g. Bhat and Singh; 2000; Bowman and Ben-Akiva; 2001;
Bierlaire and Robin; 2009). It is relevant for transportation policy simulation such as congestion
pricing, toll lanes, and changing schedules for work or shops (Davidson et al.; 2007). It is
also relevant in models of pedestrian movement (Papadimitriou et al.; 2009). The impact of
timetables and platform allocations have been identified as a major challenge in pedestrian
facilities such as train stations (Daamen; 2004, ch. 2). The impact of changes in train schedules
and ticket purchase needs in a station is exemplified in Fig. 4.2.

Several models accounting for interactions that shape participation in different activities have
been proposed (see Section 2.3). Activity scheduling models over an entire-day framework
are a mixture of rule-based algorithms, duration models and discrete choice frameworks. The
main drawback of most of these models is the postulated rules: they are structured on home
and tours from home, with models applied sequentially according to priorities of activity types.
Very often, the large dimensionality of the problem (activity types, continuous time, number
of episodes in the day) implies aggregation or hierarchy of dimensions (broad periods of time,
mandatory vs non mandatory, primary vs secondary).

Our modeling approach is not tour-based and do not assume any priorities between activities.
It can be applied to weekdays, weekends in urban contexts, or activities in a pedestrian
facility, such as an airport or a supermarket. The chosen alternative is one sequence of activity
episodes; utility is associated with the full pattern. Represented as a path in a network, the
sequence is a single choice, contrary to Pinjari and Bhat (2010) who consider the activity-
episode sequence as multiple choices of activity types and duration.

The methodology is developed in Section 4.2 and exemplified with WiFi traces on EPFL campus
in Section 4.3.

4.2 Methodology

We present the concepts of activity network and activity path in Section 4.2.1 and the choice
set generation using importance sampling in Section 4.2.2, with sampling correction of the
utility in Section 4.2.3.
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activity type

time

platform

ticket pur-
chase

shop

t§1t§2t§3

(a) Base case

activity type

time
t§1t§2t§3

(b) Little earlier train

activity type

time

platform

ticket pur-
chase

shop

t§1t§2t§3

(c) Much earlier train

activity type

time
t§1t§2t§3

(d) No ticket needed

Figure 4.2 – Adjustments of the activity-episode sequence and activity-episode durations to a
modification in train schedules and ticket purchase needs. Fig. 4.2a represents the base case
where the individual goes for shopping and then to buy a ticket, and finally on platform to
take the train scheduled at t§1 . Fig 4.2b represents a small modification of the train schedule
from t§1 to t§2 : the individual still has time to go shopping and modifies the time spent for
shopping and waiting on the platform accordingly to the time budget defined by the schedule.
In Fig. 4.2c, the schedule is modified again, from t§2 to t§3 , and the individual does not have
enough time for shopping: this activity episode is canceled. The need to buy a ticket modifies
the activity-episode sequence in Fig 4.2d: the individual arrives later in the train station.
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4.2. Methodology

4.2.1 Representation of activity patterns: activity network and path

An activity network represents the choice set and contains all possible activity patterns. It is
discrete with respect to activity types A1,A2, ...,AK and time ø 2 1,2, ...,T . It is composed of
links and nodes. Nodes Ak,ø represent the performance by the individual of an activity type
k for a unit of time ø. At a given unit of time ø, the number of nodes represent the available
activity types K . There are two special nodes, start node s and end node e. They represent the
beginning and the end of the observed activity pattern. In total, the activity network contains
K T +2 nodes. Edges connect some nodes and represent the fact that they are successively
performed. s is connected to all nodes at the first time unit. All nodes at the last time unit are
connected to e. All nodes of a given time unit t are connected with the nodes corresponding
to the next time unit t +1; it represents the choice of changing activity type or maintaining
the activity type for one more time unit. In total, the activity network contains 2K +K 2(T °1)
edges.

· · ·

· · ·

...
...

. . .
...

· · ·

s e

A1

A2

...

Ak

Activity types Activity network

1 2 · · · T Time units

Figure 4.3 – The activity network

The activity network is a representation of the universal choice set. The first and last time
units represent the period of time under observation (e.g., 4am and midnight for a day).

Activity paths A1:T are the representation of activity patterns in an activity network. Activity
paths are the alternatives of the choice process.

4.2.2 Choice set generation

The universal choice set contains K T alternatives. With a large temporal resolution T , a
complete enumeration of all paths and the estimation of a choice model with the universal
choice set is infeasible. Different sampling strategies exist. Simple random sampling (SRS) is
technically possible but the generated activity path are dominated alternatives and the model
overfits the generated choice set (see Section 4.3).
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Alternatively, importance sampling allows to estimate discrete choice models in the case of an
extremely large choice set by including in the choice set alternatives that are more relevant.
The sampling probabilities used for importance sampling must be known in order to get
consistent estimators. With a very large number of elements, normalization is computationally
impossible, since it would require the enumeration of all the possible paths. In the following
subsections, we propose to generate a choice set for importance sampling using a Metropolis-
Hastings algorithm for the sampling of paths, where the sampling strategy is defined by the
utility (“strategic sampling”).

The Metropolis-Hastings sampling of paths and the strategic sampling are described below.
The utility function used to correct for importance sampling is later described in Section 4.2.3.

Metropolis-Hastings sampling of paths

The Metropolis-Hastings algorithm defined by Flötteröd and Bierlaire (2013) samples paths
according to a given distribution. For the sampling of paths, the Metropolis-Hastings algorithm
does not require a normalized distribution. It only requires an unnormalized version of the
distribution, that we call target weight in the following discussion. A Markov chain with a
predefined stationary distribution is generated by randomly modifying paths between an
origin and a destination. Splice and shuffle operations on the paths (see Fig. 4.4) are made
such that the paths appear with the frequency specified by the target weights.

origin a

b

v

c destination

D
ra

g

Fix here Fix here

Sp
lic

e
op

er
at

io
n

Shuffle operation

Figure 4.4 – Schematic figure of the splice and shuffle operations of the Metropolis-Hastings
algorithm for sampling paths by Flötteröd and Bierlaire (2013). A state is a path ° and three
nodes a,b,c on this path. The “shuffle” operation maintains ° but randomly modifies the
three nodes a,b,c on the path. The “splice” operation randomly replaces the middle node b
of the state by a new one v and connect nodes a and c with this newly inserted node v using
shortest paths.

Metropolis-Hastings algorithms require the definition of a state variable, of a target distri-
bution, and of a proposal distribution. In this category of algorithms, a proposal transition
from one state to another is drawn from the proposal distribution and then accepted with a
certain probability in order to reach a stationary distribution defined by the unnormalized
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4.2. Methodology

target distribution. Here, the state is defined as a path ° and three nodes a,b,c on it.

The proposal distribution is a combination of the insertion probability Pinsert(v) and of the
“shuffle” distribution Pshuffle. The insertion probability is defined as

Pinsert(v) = e°µ̃
°
±SP (origin,v)+±SP (v,destination)

¢

P
w2N e°µ̃

°
±SP (origin,w)+±SP (w,destination)

¢ (4.3)

where µ̃ is a scale parameter, ±SP is the shortest path cost, and N is the set of all nodes.
Shortest paths are used in the insertion probability for efficiency. Moreover, this probability is
state independent and can be computed once for all nodes and does not need to be computed
for each new state. Shortest path efficiency requires a link-additive cost definition for the
proposal distribution. The “shuffle” operations leave the path unaffected and uniformly
distribute a,b and c along the path.

The target weight does not need to be link-additive and can be defined by attributes related to
the full path, such as primary activity (i.e., majority activity type) in the activity path. The target
weight is defined as an exponentially decreasing function e°µ±(°), where µ is a scale parameter
and ±(°) a cost function for the path °. Both scale parameters µ and µ̃ in target weight and
proposal distribution, respectively, represent the variability of paths: µ, µ̃ = 0 corresponds
to uniform probability or weights, while µ, µ̃! 0 does not consider anything else than the
shortest path or the path with highest weight. For more details about the Metropolis-Hastings
sampling of paths, see Flötteröd and Bierlaire (2013).

The main challenge in setting up the Metropolis-Hastings algorithm comes from the proper
definition of the target weight (and a corresponding proposal distribution). As explained in
Frejinger and Bierlaire (2010), “the sample should include attractive alternatives” in order to
provide efficient estimators. In the context of activity choice modeling, a proper definition
of target weight is not straightforward and cannot be defined from a priori knowledge about
behavior. Moreover, once a target weight is defined, a corresponding proposal distribution
must be found. If the proposal distribution does not vary enough and is concentrated around
the shortest path, similar paths are generated and many draws are required for covering
the relevant part of the state space according to the target weight; on the other hand, if the
proposal distribution varies too much, many paths are irrelevant according to the target weight
and are rejected.

Strategic sampling

We propose to use the utility function from a previously estimated model as target weight,
similarly to what Lemp and Kockelman (2012) did on synthetic data. In this way, no assump-
tion about the utility structure is made and we let the data speak. Regarding the proposal
distribution, it must approximate the target distribution and be node-additive. We propose to
estimate a model only with the node-additive attributes, i.e., with the time-of-day attributes,
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on the same data and choice set than the initial model. The cost of each node, used in the
shortest path computation, is the additive inverse of the utility and the insertion probability
(Eq. 4.3) becomes the logit probability of the node-additive model.

In the estimation of both the initial model for target weights and the time-of-day model for
the proposal distribution, the scale parameters are fixed to 1 for identification purpose. In the
application of the model for strategic sampling in the Metropolis-Hastings algorithm, we fix
µ= µ̃= 1.

4.2.3 Sampling correction in the utility

We assume the choice set to be the universal choice set containing all possible paths between
s and e in the activity network. The sampling strategy for choice set generation presented in
Section 4.2.2 requires the deterministic part of the utility to be corrected in order to estimate
unbiased parameters (McFadden; 1978). According to Frejinger et al. (2009), a sampling
correction term ln k°n

q(°) must be added to the utility function for activity path °, where k°n is
the number of times activity path ° is drawn in Ci and q(°) is the sampling probability of path
°.

The sampling probability q(°) is available using the unnormalized target weights b(°) but
require full enumeration for normalization: q(°) = b(°)P

°02U b(°0) . In practice, the normalizing sum
cancels out in the logit formulation and b(°) can be used instead of q(°).

The utility usually includes the time of day preference, the satiation effect and the schedule
delay, as described in Section 2.3.5. In this case, the path utility depends on the utilities of
individual nodes Ak,ø and on the utilities of the activity episodes a of the activity path. The
utility V (Ak,ø) of a node Ak,ø represents the individual marginal utility from allocating one
time unit to a certain activity type. It corresponds to the time-of-day utility and depends on
both the activity type k and the time interval ø. It can be generally expressed as Øk,øIk,ø, where
Ik,ø is a dummy variable (with value 1 if the activity path include node Ak,ø and 0 otherwise)
and Øk,ø is the corresponding parameter. In practice, some Ø’s might be equal. The utility V (a)
of an activity episode a includes the satiation effect and the schedule delay.

Our modeling framework also gives the opportunity to add attributes that are not link-additive
nor related to activity episodes, such as the repetition of certain activity types in the activity
path, the structure of the activity path, the primary activity type, etc. Parameters can be
interacted with socioeconomic variables.

The deterministic part of the utility correcting for the sampling of alternatives is:

µ

√
KX

k=1

TX

ø=1
V (Ak,ø)+

X

a2A1:T

V (a)+V (°)

!

+ ln
k°n

b(°)
. (4.4)
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Concrete instances of node utility V (Ak,ø), activity-episode utility V (a) and activity path utility
V (°) are presented in the case study below.

4.3 Pedestrian case study on EPFL campus

The choice of an activity pattern also triggers people’s behavior in pedestrian facilities (Bierlaire
and Robin; 2009). Demand management measures can be applied in pedestrian facilities, such
as changing schedules (train in train stations, planes in airports, concerts in music festivals
or class schedules in universities). Our model is particularly suitable for pedestrian facilities,
since it does not assume a tour structure nor a “home” activity type.

In particular, transport hubs (e.g., train stations or airports) are key nodes of a multimodal
transport system (with buses, metro, car and bike sharing). Train stations are located in the
city centers and include shops and services. All these activities combined with the growth in
the number of passengers increase pedestrian flows and threaten the functioning of the train
station. Understanding demand for activities is of utmost importance to define appropriate
planning policies.

As a proof of concept, we apply our methodology to WiFi traces collected on the EPFL campus.
EPFL campus approximately hosts 13’000 people per day. Similarly to transport hubs, some
of them follow schedules (class schedules instead of train schedules) and perform several
different activities, such as going to class, having lunch, etc.

Section 4.3.1 describes the data used in this case study, Section 4.3.2 describes the choice set
generation process and the choice model, and results are presented in Section 4.3.3.

4.3.1 Data source and activity network

We collected data as defined in Ch. 3. Campus users authenticate themselves on the WiFi net-
work through WPA using a Radius server. Accounting is one of the process on the Radius server.
It allows to associate a MAC address with a username. Each measurement was associated with
a unique identifier and a category, such as employee or civil engineering student, bachelor.
Data were then anonymized by deleting the MAC address. Details about the data collection
campaign and data cleaning can be found in Appendix A.2 and raw data are available in
Danalet (2015).

The Bayesian approach described in Ch. 3 was then applied to the raw WiFi traces in order to
detect activity-episode sequences. It merges WiFi traces with data from the map of the campus,
measures of attractivity of each destination and time constraints. The precise definition of
these data, and in particular of attractivity measures, can be found in Appendix A.2.

We assume 8 activity types: classrooms, shops, offices, restaurant, library, lab, other and not
being detected. The types “Office”, “Classroom” and “Lab” are based on norm DIN 277 defined
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by the Deutsches Intitut für Normung. The types “Shops”, “Restaurant”, “Library” and “Other”
are extracted from a list of points of interest from http://map.epfl.ch.

There are T = 12 time units in the activity network, from 7am to 7pm, at each hour.

4.3.2 Choice set and choice model

The full choice set cannot be enumerated (812 paths) in this case study. As described in
Section 4.2.2, the Metropolis-Hastings algorithm uses the utility of a first model estimated
from a choice set generated with simple random sampling (Table 4.1) as target weights and
a time-of-day, node-additive model (Table 4.2) as proposal distribution. We adapted the
Java code1 from Flötteröd and Bierlaire (2013) to our needs (in particular non-link additive
weights), with Psplice = 0.75.

Given the randomly generated choice set, the first model assigns a probability of almost 1 to
the chosen alternative, and a probability of almost 0 for the other elements of the choice set. It
results in a final log-likelihood of almost 0 (-47.218). Extra attributes cannot be added in this
specification, identified and be significant because the log-likelihood is flat, given all other
attributes.

The deterministic part of the utility used for the estimation of this first model is an instance
of Eq. 4.4. Node utility V (Ak,ø), activity-episode utility V (a) and activity path utility V (°) are
defined as follows:

V (Ak,ø) = ØAkø, group k,ø group (4.5)

V (a) = ¥Ak ln(|a|) A(a)=Ak (4.6)

V (°) = Ø|°|Ak |°|Ak
(4.7)

where |a| is the duration of activity episode a, A(a) is the activity type of activity episode a
and |°|k is the number of activity episodes in activity path °with activity type k. The first 14
attributes ØAkø, group in Table 4.1 represent time-of-day preferences, with Ak 2 {lab, library,
office, restaurant, shop, NA}, ø 2 {7, ...,18} and group 2 {students, employees}. The different
¥’s represent the satiation parameters. They multiply the logarithm of the duration of the
activity episode a and are specific to an activity type ( A(a)=Ak has value 1 if activity episode
a corresponds to activity type Ak and 0 otherwise). Finally, the different Ø|°|Ak

represent a
preference for a given number of activity episodes in the full activity path for different activity
types. Specifically, Ø3+ lab episodes, Ø3+ resto episodes, Ø2 NA episodes and Ø3 NA episodes represent the
preference for 3 or more activity episodes being “Lab”, 3 or more being “Restaurant” and 2
being “not being detected”, respectively.

The time-of-day preferences have expected signs in Table 4.1. Employees work in labs

1Available on http://people.kth.se/~gunnarfl/bioroute.html.
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Robust
Coeff. Asympt.

Description estimate std. error t-stat

Ølab 14-19, students -3.12 0.563 -5.55
Ølab 12-14, students -9.17 1.39 -6.59
Ølab 7-12, 14-19, employees 1.65 0.271 6.08
Ølibrary 7-12, employees -2.08 0.422 -4.93
Øoffice 7-12, 14-19, employees 1.69 0.393 4.30
Ørestaurant 12-14, employees 1.22 0.502 2.43
Ørestaurant 7-12, 14-19, employees 1.51 0.249 6.06
Øshop 12-14, students -7.36 1.24 -5.92
Øshop 7-12, 14-19, students -1.16 0.538 -2.16
ØNA 7-8, students 4.27 0.995 4.29
ØNA 8-12, students 1.40 0.498 2.82
ØNA 17-19, students 1.75 0.568 3.08
ØNA 9-17, employees 1.43 0.296 4.84
ØNA 7-9, 17-19, employees 3.34 0.554 6.02
¥Office, Lab, Classroom 5.22 0.764 6.83
¥Restaurant, Library, Other 7.85 1.11 7.10
¥Shop 7.33 0.894 8.20
¥NA 2.75 0.393 7.00
Ø3+ lab episodes -5.03 0.952 -5.28
Ø3+ resto episodes -2.50 0.759 -3.29
Ø2 NA episodes 5.09 1.01 5.02
Ø3 NA episodes 3.71 1.17 3.16

Number of observations = 1087
Number of estimated parameters = 22
L (Ø0) = °5016.636
L (Ø̂) = °47.218

Ω2 = 0.991
Ω̄2 = 0.986

Table 4.1 – First model, estimated using simple random sampling. It is used as target weight in
the Metropolis-Hastings algorithm.
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(Ølab 7-12, 14-19, employees > 0), while students don’t (Ølab 14-19, students,Ølab 12-14, students < 0). The
library does not attract employees (Ølibrary 7-12, employees<0), because they are often in their
office (Øoffice 7-12, 14-19, employees > 0) or in restaurants (Ørestaurant, employees’s > 0). Students are
not often shopping (Øshop 12-14, students, Øshop 7-12, 14-19, students < 0). Finally, people are likely
not to be on campus at any time of the day, more in the early morning for students (between
7:00 and 8:00, before classes start) and more outside office hours for employees (office hours
are defined here as from 9:00 to 17:00). The satiation parameters are positive, expressing the
preference for longer activity episodes as compared to the randomly generated activity paths
in the choice set.

The time-of-day, node-additive model presented in Table 4.2 corresponds to a deterministic
part of the utility containing only elements as in Eq. 4.5.

Each successive state of the Metropolis-Hastings algorithm is very likely to be similar to the
previous one. This similarity stabilizes with the distance d between iterations. Stabilization
means independence of the sampled paths. A similarity measure is defined in Flötteröd and
Bierlaire (2013):

¡(d) = 1
K

KX

∑=1

|°k \°k+d |
1
2 (|°k |+ |°k+d |)

(4.8)

where |°k \°k+d | is the number of identical nodes in the paths generated in iterations k and
k +d . Fig. 4.5 shows that the similarity stabilizes at 0.47 after a warming-up period. Similarly
to Flötteröd and Bierlaire (2013), we fit a linear regression model on 10 consecutive similarity
values ¡(d), ...,¡(d +9) for consecutive distances d , ...,d +9. We assume the sampled paths to
be independent when the absolute slope of the linear model is below 10°3. Distance to reach
independence with the utility function for employees is presented in Fig. 4.5 for µ= 1.0.

We estimate a logit model using a choice set containing 100 activity paths for each observation
based on the Metropolis-Hastings sampling of paths, sampling one path every d iterations,
with µ= 1. The generated paths are assumed to be independent from each other but are still
similar to each other. Out of the 1730400 (100£1734 observations) generated paths, 1000776
are different from each other. Sampling correction is included in the utility as described in
Section 4.2.3.

4.3.3 Estimation results

A model is estimated with choice sets of 100 alternatives generated with the Metropolis-
Hastings sampling of paths. For comparison between simple random sampling and strategic
sampling, we use the specification of the model used as target weight in the Metropolis-
Hastings algorithm (Fig. 4.1). The final log-likelihood using strategic sampling is -1044.266,
lower than with simple random sampling (-47.218). It shows that strategic sampling allows to
decrease the final log likelihood and thus to increase the number of explanatory variables for
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Robust
Coeff. Asympt.

Description estimate std. error t-stat

ØNA, 17-19, employees 0.263 0.0302 8.70
ØNA, 14-17, students -0.222 0.191 -1.16
ØNA, 7-8, students 0.349 0.0281 12.44
ØNA, 7-9, employees 0.326 0.0262 12.43
ØNA, 17-19, students 1.14 0.187 6.09
ØNA, 12-14, students 0.333 0.247 1.35
ØNA, 8-12, students 0.141 0.0180 7.84
ØNA, 9-17, employees 1.11 0.213 5.20
Øclassroom, 14-19, employees 0.335 0.294 1.14
Øclassroom, 14-19, students -0.351 0.183 -1.92
Øclassroom, 12-14, employees 0.00915 0.460 0.02
Øclassroom, 12-14, students -0.336 0.337 -1.00
Øclassroom, 7-12, employees -0.723 0.397 -1.82
Øclassroom, 7-12, students 0.598 0.262 2.28
Ølab, 14-19, employees 1.05 0.248 4.21
Ølab, 14-19, students -2.97 0.806 -3.68
Ølab, 12-14, employees 0.915 0.264 3.47
Ølab, 12-14, students -3.40 1.09 -3.13
Ølab, 7-12, employees 1.01 0.229 4.40
Ølibrary, 14-19, employees -0.624 0.553 -1.13
Ølibrary, 14-19, students -0.848 0.235 -3.61
Ølibrary, 12-14, employees -0.575 0.481 -1.20
Ølibrary, 12-14, students -0.859 0.345 -2.49
Ølibrary, 7-12, employees -1.57 0.508 -3.09
Ølibrary, 7-12, students -0.0229 0.293 -0.08
Øoffice, 14-19, employees 1.41 0.246 5.73
Øoffice, 14-19, students 0.0890 0.132 0.67
Øoffice, 12-14, employees 1.40 0.249 5.62
Øoffice, 12-14, students 0.501 0.290 1.73
Øoffice, 7-12, employees 1.12 0.228 4.92
Øoffice, 7-12, students 0.708 0.216 3.27
Ørestaurant, 14-19, employees 0.920 0.255 3.60
Ørestaurant, 14-19, students -0.410 0.185 -2.21
Ørestaurant, 12-14, employees 0.136 0.0259 5.26
Ørestaurant, 12-14, students 0.665 0.286 2.32
Ørestaurant, 7-12, employees 0.563 0.218 2.58
Ørestaurant, 7-12, students -0.151 0.267 -0.57
Øshop, 14-19, employees -0.194 0.342 -0.57
Øshop, 14-19, students -2.13 0.280 -7.64
Øshop, 12-14, employees -0.0553 0.472 -0.12
Øshop, 12-14, students -2.65 0.810 -3.27
Øshop, 7-12, employees -0.473 0.354 -1.34
Øshop, 7-12, students -1.83 0.594 -3.09

Number of observations = 1087
Number of estimated parameters = 43
L (Ø0) = °5016.636
L (Ø̂) = °453.225

Ω2 = 0.910
Ω̄2 = 0.901

Table 4.2 – The time-of-day, node-additive model used as proposal distribution in the
Metropolis-Hastings algorithm. The shortest path for connecting the insertion node in the
splice operation of the Metropolis-Hastings algorithm is based on a time-of-day model, as
described in Section 4.2.2.
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Figure 4.5 – Similarity measure as a function of the distance. 106 paths were generated using
strategic sampling, with µ= 1.0. Distance to reach independence is represented by the dashed
line, with its numerical value.

the choice of activity type, duration, time of the day and order of the episodes. Table 4.3 shows
the estimated parameters for a model using strategic sampling with µ= 1. Compared to the
initial model with simple random sampling (Table 4.1), the number of estimated parameters
significantly different from zero increases from 22 to 39.

The final log-likelihood L (Ø̂) is not close to zero anymore (-400.633) with the new model
(Table 4.3) and the adjusted rho-square Ω̄2 is not close to 1 (0.912), compared to the model
estimated with simple random sampling (Table 4.1). It indicates that the sampled choice
sets are not dominated anymore by the chosen alternative. The current choice set is not fully
dominated by the observed choice, given the choice model. Extra variables, such as schedule
delay, have not been included simply because they were not significantly different from zero.

4.3.4 Validation

Models obtained through simple random sampling (Table 4.1) and strategic sampling (Ta-
ble 4.3) are validated by estimating each model on the observations corresponding to a random
selection of 80 % of the individuals and applying the model with the estimated parameters to
the observations of the remaining 20 % of the individuals. The predicted probabilities for the
chosen alternative are presented in Fig. 4.6.
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Figure 4.6 – Boxplot of the predicted probabilities for the chosen alternative, both using simple
random sampling and strategic sampling with 10 elements in the choice set and 10 replications
each (µ= 1). The blue crosses are outliers. The mean and the quartiles are almost 1 in both
cases.
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Robust
Coeff. Asympt.

Description estimate std. error t-stat

ØNA 7-12, students 2.33 0.285 8.17
ØNA 12-14, students 2.76 0.497 5.54
ØNA 14-17, students 2.90 0.392 7.41
ØNA 17-19, students 2.83 0.343 8.24
ØNA 7-9, 17-19, employees 2.91 0.303 9.60
ØNA 9-17, employees 1.96 0.251 7.81
Øclassroom 14-19, employees 1.71 0.312 5.47
Øclassroom 7-12, students 0.478 0.238 2.01
Ølab 14-19, employees 1.46 0.158 9.19
Ølab 7-12, employees 1.22 0.152 8.02
Øoffice 7-12, employees -0.269 0.107 -2.51
Øother 7-19, employees -0.699 0.168 -4.17
Ørestaurant 12, students 2.69 0.527 5.10
Ørestaurant 12-14, employees -0.540 0.138 -3.93
Øshop 14-19, employees 1.46 0.343 4.27
Øshop 12-14, students 1.17 0.114 10.30
Øshop 7-12, employees 1.10 0.330 3.32
¥office, lab, classroom -6.85 0.379 -18.09
¥restaurant, library, other -6.58 0.360 -18.31
¥shop -3.72 0.278 -13.40
¥NA -7.63 0.541 -14.12
Ø0 NA episode 10.8 1.34 8.08
Ø1 NA episode 7.90 0.955 8.27
Ø2 NA episodes -2.22 0.840 -2.65
Ø3 NA episodes -5.32 0.874 -6.08
Ø0 classroom episode, employees 10.3 0.887 11.65
Ø1 classroom episode, employees 6.52 0.823 7.92
Ø1 classroom episode, students -0.840 0.370 -2.27
Ø0 lab episode, employees 6.05 0.557 10.87
Ø0 lab episode, students 7.22 0.748 9.65
Ø1 lab episode, employees 2.17 0.363 5.98
Ø0 library episode, employees 2.72 0.335 8.10
Ø0 library episode, students 4.77 0.495 9.64
Ø0 office episode, employees 4.05 0.422 9.59
Ø1 office episode, employees 1.42 0.307 4.62
Ø0 restaurant episode 4.11 0.365 11.28
Ø1 restaurant episode 1.46 0.221 6.58
Ø1 shop episode -3.87 0.573 -6.76
Ø2+ shop episodes -3.49 1.08 -3.24

Number of observations = 1087
Number of estimated parameters = 39
L (Ø0) = °5016.636
L (Ø̂) = °400.633

Ω2 = 0.920
Ω̄2 = 0.912

Table 4.3 – Model estimated using strategic sampling.
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For simple random sampling and strategic sampling, the predicted probabilities for the chosen
alternative are mostly close to one; it validates both approaches, since they both properly
predict most of the choices. In the case of simple random sampling, alternatives in the
choice set are purely random and not realistic. Consequently, the model (Table 4.1) is a
crude approximation. It evaluates the tradeoffs between realistic alternatives (the chosen
alternatives) and unrealistic alternatives (the choice set). Some outliers are not properly
predicted (probabilities down to almost 0 for some of them). With strategic sampling, the
model (Table 4.3) is improved and outliers in predictions for the 20 % of the population are
systematically removed. It shows an improvement of the model by using importance sampling;
it also means that the generated choice set using strategic sampling is not realistic enough to
decrease the probability of the chosen alternative.

4.4 Conclusion

Our approach models the choice of activity sequences of individuals and evaluates the pref-
erences for different activity types in time, the satiation effect for each activity type, primary
activity and schedule delay effects. Our model is not home-based, nor tour-based. It can
adapt to different contexts and activity types. The large dimensionality of the problem is
managed through importance sampling techniques, using a Metropolis-Hastings sampling of
path associated with strategic sampling.

An important feature of our approach is that it allows to add in the utility function variables
that are not specific to time-of-day preferences or activity episodes, but are related to the path
itself. Patterns (e.g., a office-restaurant-office pattern for employees for lunch) or primary
activity can be included in the utility function for the day.

One key issue of this approach concerns the choice set. The choice set is extremely large and
the universal choice set cannot be used. Consideration choice set is very difficult to define.
Importance sampling seems the best strategy to define a choice set but needs proper weights.
In this paper, we use strategic sampling, i.e., the choice probabilities of a first model as weights.
This strategy works and allows to include more parameters in the model than simple random
sampling. It has been validated and used for forecasting.

For estimation, we need to generate several elements in the choice set per observation. Many
activity paths need to be generated and the distance between states to reach independence in
the Metropolis-Hastings algorithm is in the order of d = 105 in our case study (Section 4.3.2).
The computational burden was manageable in our case study. However, the Metropolis-
Hastings sampling of paths was originally developed for route choice models and future
research on its efficiency might improve its usability for large scale activity path choice models.
We suggest to develop a Metropolis-Hastings sampling of activity paths that drags an activity
episode instead of a point. The state space would consists of tuples (°, a,bt° ,bt+ ,c), where bt°

and bt+ are the new activity episode bounds. The splice operation generates a new activity
episode between vt° and vt+ for activity type k, as described in Fig. 4.7. This future algorithm
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would match more closely the observed behavior in activity path choice set generation.
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Figure 4.7 – Schematic figure of the splice and shuffle operations of the Metropolis-Hastings
sampling of activity paths
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5 Location choice with panel effect

In collaboration with Loïc Tinguely and Matthieu de Lapparent

5.1 Introduction

In this chapter, we explore the second modeling step presented in Fig. 1.1 and in Ch. 4.1. Once
the activity path has been chosen (i.e., the activity type and the start and time of the episode,
see Chapter 4), the location choice happens. In a train station, an example of decomposition of
behavior would be an activity-episode sequence starting by buying a ticket at a ticket machine.
Chapter 4 models when the individual is going to buy a ticket, before or after which other
activities in the sequence. Here, we model at which specific ticket machine the individual is
going to buy the ticket.

Destination choice models rely mostly on static frameworks with cross-sectional data, col-
lected at one point in time (e.g., Ben-Akiva and Lerman; 1985; Zhu and Timmermans; 2011;
Scott and He; 2012; Kalakou et al.; 2014). Panel data are difficult and expensive to collect (Yang
and Timmermans; 2015), and sometimes inexistant, e.g., for the analysis of induced trafic at an
aggregate level (Weis and Axhausen; 2009). In absence of actual panel data, pseudo panel data
are constructed by grouping individuals from cross sectional sectional data into cohorts and
by considering behavior of cohorts as individuals (Deaton; 1985; Weis and Axhausen; 2009;
McDonald; 2015). However, actual panel data from technology-based data are more and more
common in the literature (e.g., Carrion et al.; 2014; Kazagli et al.; 2014). Network traces (e.g.,
WiFi traces or cell tower data) are increasingly available and used for location choices (see
Section 2.4). Compared to traditional surveys, network traces follow individuals on a longer
period (see Section 2.2.1). Thus, it becomes possible to collect activity-episode sequences
covering several days, weeks or months. Location choice models must adapt to these new data.
This chapter specifically develops a modeling framework to account for panel data in location
choices. It allows to understand people’s habits in their decision process, while correcting for
serial correlation.
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We present the methodology in Section 5.2 and apply it to a pedestrian case study in Section 5.3,
including validation and forecasting. We conclude in Section 5.4.

5.2 Methodology

We consider that an individual n repeatedly visits locations. For each individual n, we assume
a sequence of events {1, ..., tn , ...,Tn}. This sequence is exogenous and individual specific. At
each event, a location choice is made. The indicator yi ntn is 1 if individual n selects location i
for event tn . The time interval between two events vary, as well as the number Tn of events per
individual. To make the notation light, we use t instead of tn in the following developments.

A sequence of events with varying time intervals between the decisions is typical for the choice
of buying or selling for investors in the stock market (e.g., Robin and Bierlaire; 2012). It is also
common when considering the activity location choice conditional on an activity type (e.g.,
Kalakou et al.; 2014; Ton; 2014). The modeling and forecasting of choices of activity type and
time intervals between events is covered in Ch. 4.

We use a logit model for the choice of a location i . We consider an individual n and the
sequence of its activities during a day: a1:™n = (a1, a2, ..., a√n , ..., a™n ), where a√n = (i , t°, t+) is
an activity episode at location i with start time t° and end time t+. In this section, we present
three models: a static model, a dynamic model without agent effect model and a dynamic
model with agent effect.

We associate a utility Ui nt with a location i :

Ui nt =Vi nt +"i nt (5.1)

where i 2Cnt and Cnt is the choice set of all available locations at time t for individual n. This
model is simple to estimate when we assume that "i nt

i i dª EV (0,1) across i ,n and t , i.e., a static
logit model. It ignores two aspects: dynamics and serial correlation.

First, the choice at a certain time t may depend on previous choices. Individuals tend to have
state dependence towards already visited locations. For simplification purpose, we make three
additional assumptions. First, we assume a dynamic process of order one: the current level
of utility of location i partly depends on the previously chosen location for the same type
of activity. Second, the state dependence is location specific: utility for a location depends
only on previous choice of this location. Third, we assume that the weight Ω of this state
dependence is the same for every individuals n and every locations i (the assumption is
restrictive and could be relaxed by considering variations across locations and individuals):

Ui nt =Vi nt +Ωyi n(t°1) +"i nt (5.2)

where yi n(t°1) is a dummy variable with value one if location i was chosen by individual n
as the previous location in the previous activity episode with the same activity type, and 0
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otherwise. The coefficient Ω measures the effect of previous experience of the location on its
current utility. It can be interacted with the time of day, e.g., the choice of a catering location for
a coffee break in the afternoon depends on the previous location choice for the same activity
(catering) in the afternoon, ignoring the catering activity episodes for lunch in-between.

We assume that the time interval between two events does not change the impact of the
previous experience, i.e., the memory of the previous activity location choice. The choice
probability of an activity location is only influenced by a previous visit at the same activity
location. Duration between two events does not affect choice probability.

We initially assume that the previous choice yi n(t°1) is independent of the error term "i nt

(strict exogeneity assumption) and that "i nt are independent and identically distributed across
i ,n and t . We term such a model a dynamic model without agent effect.

The error terms "i nt model the unobserved factors. In the static and the dynamic model
without agent effect, we assume that they are independently distributed over time, individuals
and locations. In practice, it is very likely that they share time-invariant components associated
with the decision-maker, thereby generating serial correlation. This raises the second issue
of the static model. For example, in the successive choice of a restaurant, taste for healthy
food is usually unobserved (Burton et al.; 2014; Chen and Yang; 2014). In our context, it can be
considered as an unobserved time-invariant factor1.

As a consequence, the lagged variable yi n(t°1) and the unobserved factors "i nt are correlated
since they both depend on the time-invariant factor, also known as agent effects. This is called
endogeneity. It has to be taken into account to avoid bias in the estimation of the parameters
of the model.

We relax the independence assumption of error terms "i n(t°1) and "i nt by replacing the original
single error term "i nt by the sum of two error terms: Æi n +"0i nt . Æi n is the agent effect. It is
time-invariant and represents the long-term preferences of individual n over time for location
i . The agent effect Æi n does not vary over time but varies across individuals (inter-individuals
variability). "0i nt is the unobserved heterogeneity and represents the short-term variation of
preferences of individual n (intra-individual variability). "0i nt are independent across time
and individuals. The utility function becomes:

Ui nt =Vi nt +Ωyi n(t°1) +Æi n +"0i nt . (5.3)

In classical dynamic panel data models with agent effects and lagged dependent variables,
solving endogeneity bias in estimation by some maximum likelihood techniques requires
the computation of the marginal/steady state choice probability for the first observed out-
come of the dependent variable (Wooldridge; 2005, p.40: “use the joint distribution of all

1We agree that taste may change in the lifecycle of an individual, but not during the time horizon of the data we
use for the application.
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outcomes on the response—including that in the initial time period—conditional on unob-
served heterogeneity and observed strictly exogenous explanatory variables”). This is often
referred as the initial conditions problem in econometrics (Heckman; 1981; Hsaio; 2003; Train;
2003; Wooldridge; 2005). Computation of such marginal probability is intractable except for
some simple binary models (see Bhargava and Sargan; 1983, Hsaio; 2003 (Section 4.3) and
Wooldridge; 2005). Several authors have proposed circumventing strategies to solve this prob-
lem (see Hsaio; 2003 and Wooldridge; 2005 for reviews). We here build up on the Wooldridge
(2005) correction method.

5.2.1 Correcting endogeneity for dynamic discrete choice models

In general, endogeneity must be corrected to get consistent estimates (Train; 2003, Ch. 13).
Control functions capture the relationship between the unobserved factors and the observed
variables and “absorb” endogeneity (Heckman; 1978).

Wooldridge (2005) proposes to model the distribution of the agent effect Æi n conditional on
the initial value and any exogenous explanatory variables:

Æi n = a +byi n0 + c 0x̄n +ªi n (5.4)

where ªi n is normally distributed, ªi n ª N (0,ßÆ), with ßÆ is a matrix of parameters to be esti-
mated2, and x̄n is a vector of time-invariant explanatory variables (i.e., long-term preferences,
socioeconomic characteristics). The utility of the dynamic model with agent effect is:

Ui nt =Vi nt +Ωyi n(t°1) +a +byi n0 + c 0x̄n +ªi n +"0i nt . (5.5)

The endogeneity issue is addressed with this utility function, given that the assumption in
Eq. 5.4 is valid (see Wooldridge (2005) for a detailed discussion). The contribution of a series
of observations yi nt at times t = 1, ...,T for individual n to the likelihood function, conditional
on the initial value yi n0 and the agent effects Æn = {Æi n ,8i }, is:

P (yi n1, yi n2, ..., yi nt |yi n0,Æn) =
TY

t=1
P (yi nt |yi n0, yi n(t°1),Æn). (5.6)

Note that we do not model the first choice yi n0. Given our assumptions, it turns out that our
estimator is a conditional maximum likelihood estimator. It is asymptotically equivalent to
the full information maximum likelihood estimator. Only efficiency is affected.

When integrating out the agent effectsÆn 2Rdi m(i ), as for any mixture model, Eq. 5.6 becomes:

2Note that Wooldridge (2005) is more general in his approach and other distributions might be used. Here
we assume ßÆi =æ2

Æi
I . In the current developments, the parameters of the normal distribution æÆi are location

specific, but the i subscript is omitted to keep the notation simple.

98



5.3. Pedestrian case study for EPFL catering locations

P (yi n1, yi n2, ..., yi nt |yi n0) =
Z

Æn

TY

t=1
P (yi nt |yi n0, yi n(t°1),Æn) f (Æn |yi n0, x̄n)dÆn . (5.7)

Here, P (yi nt |yi n0, yi n(t°1),Æn) is a logit model. f (Æn |yi n0, x̄n) is normally distributed, following
Eq. 5.4. Endogeneity is corrected.

Table 5.1 summarizes the three different models presented in Section 5.2.

Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

Ω = 0 Ω 6= 0 Ω 6= 0
a,b,c,æ2

Æ = 0 a,b,c,æ2
Æ = 0 a,b,c,æ2

Æ 6= 0

Table 5.1 – Description of static model, dynamic model without agent effect and dynamic
model with panel effect graphically and as a function of Eq 5.5.

5.3 Pedestrian case study for EPFL catering locations

We present results for the three models presented in Section 5.2, summarized in Table 5.1, in
the context of location choice on the EPFL campus. We focus on the choice of catering facilities
during their opening hours. The choice set C contained 21 alternatives corresponding to the
services available in 2012 (Fig. 5.1). We use the output of Ch. 3 as data for estimation and
forecasting, with L = 1. Data and a dynamic model specification for Pythonbiogeme (Bierlaire;
2003; Bierlaire and Fetiarison; 2009) are available in Tinguely and Danalet (2015).

5.3.1 Model specification and estimation

The explanatory variables used for the location choice are (1) attributes varying with the
alternatives: distance from the previous activity episode in the sequence, duration, cost, time
of the day, opening hours, quality evaluation of the catering location, its capacity, its type
of offer, and (2) characteristics describing the choice context, constant across alternatives:
weather conditions, day of the year, socio-economic attributes. Descriptive statistics on the
collected data are available in Appendix A.3.

Two lagged variables yi n(t°1) are defined in the dynamic models, one for the morning and one
for the lunch break. Thus, the dynamic Markov process is over individuals and periods of the
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Figure 5.1 – Catering facilities on EPFL campus with different categories: self-services, cafete-
rias, restaurants, caravans (fast food) and others. The alternatives in red circles did not exist in
2012, when WiFi traces were collected. Image: Tinguely (2015).

day. Equations 5.2 and 5.3 become:

Ui nt = Vi nt +Ωmorning ymorning
i n(t°1) +Ωlunch y lunch

i n(t°1) +"i nt (5.8)

Ui nt = Vi nt +Ωmorning ymorning
i n(t°1) +Ωlunch y lunch

i n(t°1) +Æ
morning
i n +Ælunch

i n +"0i nt (5.9)

The specification of the agent effect distribution must be correct to get consistent estimates
(Wooldridge; 2005). Therefore, we propose two different specifications for Æi n . The first
specification corresponds to c = 0 in Eq. 5.4. We assume the agent effect to depend only on
the first choice:

Æi n = a +byi n0 +ªn . (5.10)

The second specification for the agent effect includes the count ycount
i nt of previous choices of

alternative i by individual n up to the event t of the current choice: ycount
i nt =Pt°1

t 0=1 I (yi nt 0). Note
that in the definition of the count of previous choices, the first observation yi n0 is not included
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and the summation start at t 0 = 1. It allows to avoid biases (Rabe-Hesketh and Skrondal; 2013).

Eq. 5.4 becomes:

Æi n = a +byi n0 + c ycount
i nt +ªn . (5.11)

Since the lagged variable yi n(t°1) is interacted with the period of the day, the count of previous
choices is also specified for each period of the day.

Consequently, we estimate 4 models: the static model (utility defined in Eq. 5.1), a dynamic
model without agent effect (utility defined in Eq. 5.2) and two dynamic models with agent
effect: one with a first choice agent effect specification (Eq. 5.10) and one with a first choice
and frequency specification (Eq. 5.11).

Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

First choice First choice and frequency

Ω = 0 Ω 6= 0 Ω 6= 0 Ω 6= 0
a = 0 a = 0 a 6= 0 a 6= 0
b = 0 b = 0 b 6= 0 b 6= 0
c = 0 c = 0 c = 0 c 6= 0
æ2
Æ = 0 æ2

Æ = 0 æ2
Æ 6= 0 æ2

Æ 6= 0

Table 5.2 – Description of static model, dynamic model without agent effect and two dynamic
models with panel effect used in the case study as a function of Eq 5.5.

We use a linear specification for the different models, whose variables are described in Table 5.3.
Table 5.4 describes the estimation results for the 4 models of Table 5.2. In this model, habits
are assumed only for the morning and lunch break.

Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

First choice
First choice

and frequency
Parameters Value t-test Value t-test Value t-test Value t-test

ASCLe Klee °3.26 °5.52 °2.91 °4.82 °4.90 °3.75 °5.24 °3.83
ASCCafétéria BC 0.387 0.97§ 0.481 1.12§ °1.09 °1.62§ °0.682 °0.88§

ASCBM 0.450 1.29§ 0.453 1.33§ °0.147 °0.24§ °0.320 °0.49§

ASCCafétéria ELA °0.823 °2.42 °0.579 °1.59§ °1.08 °1.68§ °0.919 °1.67§

ASCCafétéria INM °2.19 °3.97 °1.82 °3.13 °1.64 °1.52§ °1.81 °1.75§

ASCCafétéria MX °0.461 °1.22§ °0.514 °1.23§ °1.89 °2.05 °1.78 °2.57
ASCPH 1.28 3.48 1.11 2.99 0.298 0.62§ 0.704 1.39§

ASCL’Arcadie °0.738 °2.08 °0.684 °1.85§ °1.98 °1.85§ °1.70 °1.81§

ASCL’Atlantide °0.143 °0.47§ °0.285 °0.88§ °1.23 °2.21 °0.731 °1.23§

ASCLe Copernic 2.83 2.04 2.67 2.29 2.59 0.75§ 1.88 1.25§

ASCLe Corbusier °0.278 °2.05 °0.259 °1.74§ °1.05 °2.52 °0.585 °2.28
ASCLe Giacometti 0.323 1.12§ 0.398 1.26§ 0.760 1.47§ 0.685 1.34§

continued . . .
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Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

First choice
First choice

and frequency
Parameters Value t-test Value t-test Value t-test Value t-test

ASCLe Parmentier °0.846 °3.22 °0.883 °3.14 °1.44 °3.63 °1.60 °3.61
ASCLe Vinci °4.11 °5.77 °3.81 °5.35 °8.24 °2.58 °4.97 °3.42
ASCL’Esplanade 0.0 - 0.0 - 0.0 - 0.0 -
ASCL’Ornithorynque °0.631 °4.81 °0.641 °4.55 °1.26 °6.48 °1.24 °5.74
ASCCaravan Pizza °1.97 °3.40 °1.84 °3.23 °2.47 °2.89 °1.91 °2.79
ASCCaravan Kebab °2.73 °4.42 °2.51 °4.16 °3.12 °3.39 °2.64 °3.21
ASCBar Satellite °1.60 °4.34 °1.42 °3.72 °2.27 °3.51 °2.65 °4.52
ASCLe Hodler 0.995 2.07 0.954 2.10 2.40 3.33 2.76 3.86
ASCTable de Vallotton 4.25 2.10 4.02 2.56 0.987 0.67§ 1.34 0.80§

Ødist, lunch, cafet °0.00689 °13.47 °0.00612 °11.64 °0.00406 °6.37 °0.00397 °6.71
Ødist, lunch, rest °0.00138 °0.63§ °0.00127 °0.62§ °0.000498 °0.29§ 0.00166 0.75§

Ødist, lunch, self °0.00638 °15.45 °0.00543 °12.88 °0.00394 °8.91 °0.00400 °9.32
Ødist, lunch, fast food °0.00953 °9.55 °0.00881 °9.06 °0.00672 °5.50 °0.00676 °5.31
Ødist, lunch, other °0.00187 °2.20 °0.00100 °1.40§ 0.000738 0.79§ 0.000190 0.17§

Ødist, morning °0.00557 °5.74 °0.00448 °4.59 °0.00405 °3.88 °0.00390 °3.60
Ødist, after lunch °0.000453 °0.76§ °0.00107 °1.84§ °0.00101 °1.67§ °0.00107 °1.72§

Øno dist °5.07 °12.70 °4.48 °11.79 °3.82 °6.98 °3.66 °7.66
Øeval, cafet 1.18 12.27 1.10 11.91 1.92 10.59 1.90 7.72
Øeval, self 1.21 9.25 1.09 8.45 2.12 8.28 2.02 6.55
Øeval, fast food 1.69 11.81 1.60 11.85 2.71 10.78 2.58 8.65
Øcost, student °0.245 °3.50 °0.189 °3.01 °0.471 °4.00 °0.538 °4.47
Øcost, employees °0.128 °2.26 °0.102 °1.97 °0.352 °3.20 °0.368 °3.64
Øbeer 0.722 4.07 0.539 3.02 1.05 3.85 1.14 3.93
Ødinner 1.04 3.34 1.03 3.39 0.997 2.60 0.795 2.01
Øcapacity 0.00680 2.62 0.00749 2.69 0.0104 2.71 0.0119 2.82
Ωmorning 0.0 - 3.06 17.48 0.591 1.09§ 0.476 1.69§

bmorning 0.0 - 0.0 - 1.80 3.10 1.46 4.82
cmorning 0.0 - 0.0 - 0.0 - 0.450 2.76
Ωlunch 0.0 - 1.78 15.45 0.644 4.36 0.355 1.95§

blunch 0.0 - 0.0 - 1.19 5.50 1.07 5.22
clunch 0.0 - 0.0 - 0.0 - 0.618 3.36
æKlee, morning 0.0 - 0.0 - °2.55 °3.51 2.17 3.28
æBC, morning 0.0 - 0.0 - 1.76 5.91 1.61 3.90
æBM, morning 0.0 - 0.0 - °0.578 °1.04§ 0.195 0.51§

æELA, morning 0.0 - 0.0 - 1.72 2.69 1.14 2.80
æINM, morning 0.0 - 0.0 - °1.01 °2.31 0.725 0.87§

æMX, morning 0.0 - 0.0 - °0.0850 °0.18§ 1.17 1.91§

æPH, morning 0.0 - 0.0 - 0.246 0.79§ °0.352 °1.44§

æArcadie, morning 0.0 - 0.0 - 1.41 1.77§ °0.726 °1.19§

æAtlantide, morning 0.0 - 0.0 - °1.85 °6.59 1.21 4.39
æCopernic, morning 0.0 - 0.0 - °0.922 °0.40§ 0.378 0.86§

æCorbusier, morning 0.0 - 0.0 - 1.85 2.74 °1.74 °2.59
æGiacometti, morning 0.0 - 0.0 - °0.00721 °0.02§ °0.147 °0.49§

æParmentier, morning 0.0 - 0.0 - 0.967 1.69§ °1.43 °1.98
æVinci, morning 0.0 - 0.0 - °0.0815 °0.23§ 0.396 0.74§

æEsplanade, morning 0.0 - 0.0 - 0.0 - 0.0 -
æOrnithorynque, morning 0.0 - 0.0 - 0.0261 0.05§ 0.237 0.59§

æPizza, morning 0.0 - 0.0 - 1.60 2.74 °0.932 °6.03
æKebab, morning 0.0 - 0.0 - 1.82 5.98 °1.79 °5.59
æSatellite, morning 0.0 - 0.0 - 2.02 5.35 °2.32 °6.41
æHodler, morning 0.0 - 0.0 - 1.71 2.42 0.290 0.41§

æVallotton, morning 0.0 - 0.0 - 0.578 0.53§ 0.292 0.75§

æKlee, lunch 0.0 - 0.0 - °2.59 °5.44 2.71 7.08

continued . . .
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Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

First choice
First choice

and frequency
Parameters Value t-test Value t-test Value t-test Value t-test

æBC, lunch 0.0 - 0.0 - 2.06 6.11 °2.20 °7.48
æBM, lunch 0.0 - 0.0 - 2.33 3.52 °2.50 °4.18
æELA, lunch 0.0 - 0.0 - °1.05 °3.92 °0.789 °2.60
æINM, lunch 0.0 - 0.0 - 0.883 1.47§ °1.33 °2.83
æMX, lunch 0.0 - 0.0 - °2.06 °6.27 1.66 9.55
æPH, lunch 0.0 - 0.0 - 2.63 7.13 °2.30 °3.39
æArcadie, lunch 0.0 - 0.0 - 2.97 5.74 2.46 5.25
æAtlantide, lunch 0.0 - 0.0 - 1.85 5.44 °1.54 °6.82
æCopernic, lunch 0.0 - 0.0 - 5.78 2.92 6.06 4.32
æCorbusier, lunch 0.0 - 0.0 - °1.27 °3.89 °0.855 °3.16
æGiacometti, lunch 0.0 - 0.0 - °1.31 °6.13 1.24 6.35
æParmentier, lunch 0.0 - 0.0 - 0.961 3.75 °1.19 °2.57
æVinci, lunch 0.0 - 0.0 - 3.56 1.91§ °1.37 °1.36
æEsplanade, lunch 0.0 - 0.0 - 0.0 - 0.0 -
æOrnithorynque, lunch 0.0 - 0.0 - 0.128 0.49§ °0.258 °1.23§

æPizza, lunch 0.0 - 0.0 - °1.24 °5.42 1.29 5.15
æKebab, lunch 0.0 - 0.0 - 0.677 3.00 °1.11 °4.48
æSatellite, lunch 0.0 - 0.0 - 0.776 5.26 °1.20 °4.13
æHodler, lunch 0.0 - 0.0 - 1.05 3.51 °0.910 °1.91§

æVallotton, lunch 0.0 - 0.0 - 10.7 5.52 °10.8 °7.20
Nb of observations 1868
L (0) °5037.914
Nb estim. param. 36 38 80 82
L (Ø̂) °3446.109 °3092.106 °2631.929 °2623.843
Adjusted rho square Ω̄2 0.309 0.379 0.462 0.480
Likelihood ratio test 354.003 (> 5.99) 920.354 (> 58.12) 16.172 (> 5.99)

Table 5.4 – Summary of estimation results for the 4 models of Table 5.2. 1868 observations
are used for estimation. Parameters without stars are significantly different from zero with a
95 % confidence level. A likelihood ratio test is performed between the static model and the
dynamic model without agent effect, between the dynamic model without agent effect and
the dynamic model with agent effect (first choice specification), and between the dynamic
model with agent effect (first choice specification) and the dynamic model with agent effect
(first choice and frequency). The numbers in parenthesis for the likelihood ratio tests are the
percentiles of the ¬2 distribution.

Lagged variables Ωlunch and Ωmorning have positive signs, showing habits and repeated choices.
Their value decreases when the dynamic model includes the agent effect (as compared to the
model when it is considered exogenous). It has been reported in Monte Carlo simulations
that Ω is overestimated in dynamic models without agent effect as compared to dynamic
models with agent effect (Akay; 2012). This is due to the double nature of the lagged variable
Ω: the previous choice impacts the current choice because the past experience modifies the
current preferences and because the past and current choices both depend on the same
time-persistent unobserved parameters. These two factors are called true state dependence
and spurious state dependence, respectively, by Heckman (1978, 1981) (see also Hsaio; 2003,
Section 7.5.4). The agent effect, and in particular the first choice and frequency version of it, is
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Parameters Variables Description of the variable

ASCi 1i Alternative specific constant for catering location i

Ødist, cat,ToD distcat,ToD Distance from the previous activity episode

Øno dist 1dist N A Variable for missing data about distance

Øeval evali Evaluation of catering location from survey data (grade
between 1 and 6)

Øcost, student coststudents Cost of the cheapest meal for students

Øcost, employees costemployees Cost of the cheapest meal for employees

Øbeer 1beer Availability of beer after 14:00

Ødinner 1dinner Availability of dinner

Øcapacity capacityoutdoor Number of seats in the catering location

ΩToD yi t (t°1),ToD Indicator variable with value 1 if the previous catering
location in the same time of day (ToD) is the same as the
current catering location

cToD ycount
i nt Variable counting the frequency of visit to catering loca-

tion i in the same time of day (ToD)

æi ,ToD 1ToD Variance of ª for each time of day (ToD) and each cater-
ing location i

Table 5.3 – Description of the variables in the catering location choice model. Some variables
are interacted with the category of catering location (cat), i.e. the categories of restaurant
presented in Fig. 5.1, or are interacted with time of day (ToD), divided in morning (until
11:29), lunch break (11:30-13:59), afternoon (14:00-17:59), dinner (18:00-19:59) and night
(from 20:00).

absorbing the time-persistent unobserved preferences.

The parameters have expected signs. Indoor capacity (number of seats) has a positive impact
on the choice of visiting a catering location. Distance from the previous activity episode has a
negative impact on the propensity to visit a catering location. This effect is strong in the morn-
ing and during lunch time for cafeterias, while it is not significant in the afternoon and during
lunch time for restaurants (there are not many restaurants on campus, and consequently
longer distances to walk). The cost parameters have a negative sign and their magnitude is
larger for student than for employees. This is explained by the fact that employees have salaries
and thus a higher purchasing power and a lower sensitivity to price. Annual evaluations by
students (as a proxy for average quality), offering meals for dinner and beers after 14:00 all
have a positive impact on the choice of catering locations.

The dynamic model without agent effect, the dynamic model with agent effect (first choice
correction) and the dynamic model with agent effect (first choice and frequency correction) are
unrestricted versions of the previous, simpler model in Table 5.2 (i.e., static model, dynamic
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model without agent effect, dynamic mode with agent effect (first choice correction), resp.).
Table 5.4 shows the results of three likelihood ratio tests. In all cases, we can reject the null
hypothesis at a 95 % confidence level and the unrestricted model is preferred to the restricted
one.

5.3.2 Validation

Cross-validation has been performed, partitioning the data in an estimation dataset con-
taining past observations i1, i2, ..., iTn°1 of individuals n and a validation dataset with their
most recent choice iTn . Models presented in Section 5.3.1 are applied to observations in
the morning and during lunch break, in order to test the dynamics. The estimation dataset
contains 1512 observations. The model is then applied to the validation dataset (containing
144 observations), using the parameter estimates from the previous step. Aggregate average
number of visits across individuals’ most recent choices from observations and from the
model output are compared in Table 5.5.

In order to compare the performance of the different models over all catering locations in
Table 5.5, we compute the sum of the squares of the errors: Sm =P

i (Oi °Ei ,m)2, where Oi is
the observed average number of visits for location i and Ei ,m is the expected average number
of visits based on the choice probabilities for location i assuming model m.

Observed and predicted average number of visits show similar tendencies, even for the static
model, meaning that the specification of the model is generally good. The model minimizing
the sum of the squares of the errors is the dynamic model with agent effect using the first
choice and the frequency. It is also the model that fits the data the best (Table 5.4). It is an
evidence that Wooldridge’s approach is valid, and it performs better when the specification of
the agent effect distribution includes the frequency of visits.

5.3.3 Elasticity to price

Aggregate direct elasticity of cost denotes the percent change in the number of visits for
each catering location with respect to a change of 1 % in the cost of a meal. Aggregate direct
elasticities of cost are presented for each restaurant, for students and employees, in Table A.4
in Appendix A.4. Figure 5.2 summarizes the distribution of aggregate direct elasticities of cost
as box-plots for each model, across students and employees.

Demand for catering locations for students is more elastic to a change in the cost of a meal
as compared to employees. This is explained by the higher purchasing power of employees.
With the static model and the dynamic model without agent effect, employees mostly show a
inelastic demand (< 1 in absolute value) and students show an elastic demand (> 1 in absolute
value). With the dynamic models with agent effect, using the first choice and the frequency of
choices, the absolute values of elasticities increase and employees have an elastic demand
with respect to the cost of a meal. Generally, models ignoring the dynamics are less sensitive to
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Observed Predicted

Static model
Dynamic model

without agent effect
Dynamic model
with agent effect

First choice
First choice

and frequency
Catering locations Nb % Nb % Nb % Nb % Nb %

Cafet. Le Klee 0 0.0 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2
Cafet. ELA 14 9.7 7.6 5.3 6.9 4.8 8.0 5.5 8.0 5.6
Cafet. INM 1 0.7 1.2 0.9 1.1 0.8 2.2 1.5 2.1 1.4
Cafet. MX 6 4.2 6.3 4.4 6.4 4.4 5.3 3.7 5.8 4.0
Cafet. L’Arcadie 6 4.2 1.4 1.0 2.4 1.7 1.5 1.1 1.7 1.2
Cafet. Le Giacometti 13 9.0 12.0 8.3 11.8 8.2 12.8 8.9 12.2 8.5
Cafet. Satellite 5 3.5 7.2 5.0 7.6 5.3 7.8 5.4 7.5 5.2
Self BC 15 10.4 9.7 6.7 9.5 6.6 10.8 7.5 10.8 7.5
Self L’Atlantide 7 4.9 10.8 7.5 10.6 7.4 8.2 5.7 8.1 5.6
Self Le Corbusier 4 2.8 12.6 8.7 10.6 7.4 9.4 6.5 10.8 7.5
Self Le Parmentier 8 5.6 13.1 9.1 12.9 9.0 13.1 9.1 13.2 9.1
Self Le Vinci 1 0.7 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1
Self L’Esplanade 23 16.0 26.1 18.2 25.9 18.0 24.2 16.8 24.4 17.0
Self L’Ornithorynque 15 10.4 15.0 10.4 16.4 11.4 15.6 10.8 15.7 10.9
Self Le Hodler 6 4.2 5.2 3.6 6.1 4.3 5.7 4.0 6.2 4.3
Rest. Le Copernic 1 0.7 1.0 0.7 1.4 1.0 3.4 2.4 3.3 2.3
Rest. Table de Vallotton 1 0.7 1.3 0.9 1.1 0.8 0.6 0.4 0.5 0.3
Caravan Pizza 6 4.2 4.2 2.9 4.5 3.1 4.5 3.1 4.8 3.4
Caravan Kebab 5 3.5 3.6 2.5 3.7 2.6 3.5 2.4 3.8 2.6
Other BM 1 0.7 1.8 1.2 1.2 0.8 1.6 1.1 1.3 0.9
Other PH 6 4.2 3.2 2.2 3.6 2.5 3.3 2.3 3.3 2.3

Sm 232.95 204.01 184.16 173.85

Table 5.5 – Aggregate average number of visits of the observations and of the different models,
from the 144 most recent observations for each individual in the morning and during lunch
break. For the observations and for each model, the number of visitors (“Nb”) and the propor-
tion of visitors (“%”) are presented for each catering location. “Rest.” stands for restaurant,
“Self” for self-service, “Cafet.” for cafeteria.
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Figure 5.2 – Distribution of aggregate direct elasticities of cost for different models, for students
and employees.

cost. A possible analogy is the presence of unobserved variables, such as quality of the service
or of the meal (Train; 2003, ch. 13). Decision makers prefer cheap meals, but also like quality
meals. When endogeneity is not corrected for, Øcost absorbs both effects and its absolute value
is attenuated. When endogeneity is accounted for, Øcost is more negative, including only the
taste for cheap meals. Here, in the static model and the model without agent effect, Øcost

absorbs a taste for cheap meals and other unobserved factors positively correlated with cost,
such as a warm atmosphere or any attribute of quality for a meal. In the models with agent
effect, unobserved factors are absorbed by the agent effect.

5.3.4 Forecasting visits when opening a new catering location

Data used for estimation have been collected in 2012. We forecast the average number of visits
for 2013 after the opening of a new self-service.

In this scenario, habits regarding the new catering location are not considered. The new
alternative is not part of people’s habits in the model: the previous catering location and the
frequency of visits are null (yi n(t°1) = 0 and ycount

i nt = 0 when i is the new catering location).
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A new self-service, L’Epicure, opened in October 2013. The four models of Table 5.2 are applied
to this new choice set. The parameters for the new self-service are the same as Le Giacometti,
since it is the most similar existing catering location on campus and no stated preference is
available.

The error term of the new alternative and the error term of the most similar existing alternative
might be correlated. Indeed, if the new catering location does not share any unobserved
attribute with the most similar catering location, a logit specification is valid. On the contrary,
if unobserved attributes are shared, the two locations should be included in a nest and a
nested logit specification is used for forecasting. Since we don’t know the value of the nest
parameter µ, an interval of values is used from 1 (i.e., logit model and independent error terms)
to +1 (i.e., perfectly correlated error terms) when applying the model to forecast average
number of visits. Results are presented in Fig. 5.3.

When using a static model, the predicted average frequency of visits varies between 0.7 % and
2.0 % for the full day. When correcting for endogeneity and using frequency of visits in the
specification of the agent effect, the predicted average frequency of visits varies between 0.4 %
and 1.1 %. It shows that correcting for endogeneity when using panel data has a significant
impact when predicting the destination choices of people. The effect of the unknown level
of correlation between the new catering location and its most similar alternative also seems
lower when using the dynamic models with agent effect.

According to point-of-sale data collected from October 21 to 23, 2013, the frequency of finan-
cial transactions in the new self-service is 1.5 %, that has a level of magnitude consistent with
the values predicted by the model.

Results presented here are only valid in the short term, since the model has been applied
only once. For forecasting in the long term, accounting for the habits and routines, the model
should be applied several times so that habits for the new location are establishing as an
output of the model.

5.4 Conclusion

In this chapter, we model location choice conditional on the choice of activity type in activity
episodes from WiFi traces. WiFi traces provide panel data. We estimate dynamic models,
including lagged variables. They express the habits that could appear in repeated choices.

Including lagged variables in a discrete choice model generates endogeneity. The error term
and the explanatory variable representing the previous choice are serially correlated. The
so-called initial conditions problem is solved using a control function proposed by Wooldridge
(2005). The error term is decomposed in an agent effect and an independent error term. The
conditional distribution of the agent effect, knowing the first choice, is approximated.

The approach of Section 5.2 has been applied to a case study on a campus (Section 5.3), based
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Figure 5.3 – Average frequency of visits for the new self-service for the different models, as a
function of µ.

on actual WiFi traces, preprocessed as in Chapter 3. Campus members tend to visit catering
locations that are closer, with large capacities, that offer beers and serve meals for dinner.
Students are more sensitive to cost than employees. The previous choice significantly impacts
the choice of the current catering location in the morning and in the lunch break in a dynamic
model without agent effect, without the correction for endogeneity. When controlling for true
state dependence and spurious state dependence, time-persistent unobserved effects are
detected and the previous choice becomes not significant anymore. A likelihood ratio test has
been performed between the different models, and the null hypothesis of a restricted model
can always be rejected when comparing two consecutive models in terms of complexity: a
dynamic model without agent effect (without correction for endogeneity) is preferred to a
static model, a dynamic model with agent effect is preferred to the dynamic model without
agent effect, and an agent effect including the first choice and the frequency in its specification
is preferred to an agent effect specified with the first choice only.

Models are validated in Section 5.3.2 and the models seem correctly specified, reproducing
the observations of the validation dataset. In terms of predictive power, dynamic models
outperform static models, and the agent effect including the first choice and the frequency of
visits performs the best.
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Elasticity to the cost of a menu and forecasting in the case of the opening of new catering
locations are presented in Section 5.3.3 and 5.3.4, respectively. Elasticity to the cost of a menu
increases with dynamic models with agent effect. In the scenario of the opening of a new
catering location, predicted average number of visits correspond to point-of-sale data of the
first week of opening.

This model can be applied in pedestrian facilities to estimate demand for specific locations.
Wooldridge’s approach is easy to implement for discrete choice models with many alternatives
and improves the estimation and predictive power of the model. Our model specification
could be extended towards more complex discrete choice models (e.g., a nested logit where
categories of catering locations would be the nests in our case study). Collection of more
socioeconomic data would also improve the specification and prove useful for marketing
purposes. On campuses, in transportation hubs or music festivals, information on congestion
at location (i.e., queues for a service) is likely to be significant in explaining people’s behavior.
Endogeneity in the model due to congestion could also be corrected, using the occupation
rates for each location as measures of queues and congestion at these locations. Some en-
dogeneity could also be related to group effects, when a group chooses a location together
instead of each individual independently (Louviere et al.; 2005, Section 2). This could be
corrected using proximity as a measure of social networks. Finally, space syntax has been used
in recent research and could help in formalizing intuitions such as “visibility” in public spaces.
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6 Conclusion

In this concluding chapter, we first present empirical findings and discuss theoretical and
policy implications in Section 6.1, then we outline future research directions and describe
some limitations in Section 6.2.

6.1 Empirical findings, theoretical and policy implications

This thesis proposes an activity-based model of pedestrian demand using WiFi traces. Stop and
activity at the stop are extracted by merging the WiFi localization data with other data sources.
Then, the choice of activity type, duration and time of day is simultaneously modeled. Finally,
a dynamic model of location choice among all alternatives for a given activity type includes
panel effect. The different steps to reach a complete activity-based pedestrian demand model
are presented in Fig. 1.1, page 5.

The empirical findings of this dissertation show that it is possible to detect and model pedes-
trian activity-episode sequences from WiFi traces. In this section, we summarize these empiri-
cal findings. We evaluate the impact of our contributions on existing models, for pedestrian
behavior and more generally for activity-based modeling. We also provide policy implications
of the empirical findings for pedestrian facilities.

6.1.1 Detecting stops and activities performed at these stops

In Ch. 3, the different activity locations visited by a device are detected from imprecise lo-
calization data with dense points of interest. A Bayesian approach integrates information
from time constraints, such as schedules, and from aggregate measures of occupation, such
as point-of-sale data. Our contributions include defining activity performed at the stop from
map data, dealing with overlapping antenna coverage and improving localization using other
data sources.

111



Chapter 6. Conclusion

Defining activity performed at the stop from map data

When using sensors data in pedestrian context, the activity location is often associated with
the sensor. Delafontaine et al. (2012) associate a letter in a sequence with each Bluetooth
sensor and Versichele et al. (2012) locate the Bluetooth sensors in strategic locations and
consider that the device is located at the sensor location. In the WiFi literature, the goal is
specifically to detect movements between access points (APs) (see Section 2.2.3). Contrarily
to the rest of the WiFi literature, Yoon et al. (2006) aggregate APs at the building level and
consider the building as the stop. At the urban scale, using GPS or GSM data, land-use data
are also used to detect the activity purpose (Miller; 2014), but face the issue of mixed land-use
compared to the precision of the measurement (Rieser-Schüssler; 2012).

In Ch. 3 of this dissertation, we assume that a sensor can cover several possible activity loca-
tions. We collect this information from the map. It is then associated with the measurements
using a priori knowledge of their occupation (potential attractivity measure) and distance to
the measurement (measurement equation). We believe this approach has more behavioral
meaning. Our approach is formally well defined and does not need participant input or
manual checks. It also does not need to locate the sensors at specific locations but allows
to use already installed sensors. It removes the bias of locating the sensors in strategic loca-
tions defined by the analyst. Our approach, mixing localization data with map data and time
constraints, could also be used at the urban scale.

Dealing with overlapping antenna coverage

When considering the sensor as the activity location, the device can rapidly change to which
sensor it connects. This does not correspond to real movements but to technical changes in
the signal strength. In the pedestrian context, Delafontaine et al. (2012) propose to decompose
the time in units of 3 min and consider the sensor with the maximum share of this time
unit as being the activity location. In WiFi literature, this is called the ping pong effect (see
Section 2.2.3) and similar strategies have been used (moving average weighted by time spent
at destination in Yoon et al.; 2006).

Our methodology avoids the pingpong effect by associating points of interest to localization
measurements. We assume the device to be in an area (the domain of data relevance) sur-
rounding the localization measurement. If localization measurements move (due to ping
pong effect or measurement errors) while the device is in fact static, the true activity location
is contained in both domains of data relevance and does not change.

Improving localization using other data sources

Mobile phone tracking data from already deployed WiFi networks are cost effective and do
not require the installation of access points (see Section 2.1.1). However, they suffer from
low precision. Other pedestrian counting data are used: manual counts, mechanical counts,
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video counts, smart card data, etc. (see Section 2.1). These two types of data are usually
studied separately. Kholod et al. (2010) use RFID data to track people in a grocery store
and compare these results with point-of-sale data to study purchase behavior. In land-use
planning literature, accessibility measures are common and represent the same idea as count
data: a measure of the “size of the activity” (Hansen; 1959). Miller (2010) more recently adds
constraints in a new definition of accessibility. To our knowledge, such data have not been
associated with localization traces.

We define a potential attractivity measure for pedestrian facilities merging count data (e.g.,
point-of-sale data) and time constraints (e.g., schedules or opening hours). The potential
attractivity measure is used as a prior in a Bayesian approach. An empirical study on the EPFL
campus shows that this Bayesian approach makes up for the localization weakness and the
dense pedestrian map. This methodology is robust for low density measurements. It is still
theoretically valid in other contexts, such as for merging GSM data with land-use data at the
urban scale.

6.1.2 Modeling the full activity pattern

In Ch. 4, we model the choice of a full activity pattern, represented as a path in a network.
Our contributions include simultaneously modeling time of day preferences, duration and
number of episodes, and overall pattern structure, managing the large choice set of activity
paths and getting rid of home-based, tour-based structure and a priori assumptions.

Simultaneously modeling time of day preferences, duration and number of episodes, and
overall pattern structure

For pedestrian behavior, Borgers and Timmermans (1986b) sequentially model the choice of
a destination in time. Their approach does not include the preference an individual might
have for a certain number of destinations in the sequence, preferences for certain durations,
schedule constraints, or preferences for a certain order of activities. One possible approach
to model the order of activities consist in comparing all possible combinations of activities.
Hoogendoorn and Bovy (2004) propose such an approach and define an activity scheduling
cost to impose mandatory activities, schedule constraints and the order of activities. Duration
and number of activities are not considered. Section 2.3.3 reviews the large variety of models
for activity-based model for a day, at the urban scale. Ettema et al. (2007) simultaneously model
time-of-day preferences and duration, without considering the order in which activity episodes
are performed. Habib (2011) models the scheduling of activities but not their planning, such
as priorities of activities. Pinjari and Bhat (2010) model duration of activities but not their
order. The activity-schedule approach (among others Shiftan and Ben-Akiva; 2011; Abou-Zeid
and Ben-Akiva; 2012; Gupta and Vovsha; 2013) models time-of-day preferences, duration,
priorities of activity and their order in different submodels.
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We simultaneously model the choices of activity type, duration and time-of-day. We associate
a utility with an activity path in an activity network, representing all possible combinations
of time units and activity types. It allows to specify elements of the utility related to the full
pattern, typically preferences for a primary activity, schedule delay effects, or patterns (e.g.,
a ticket purchase-platform pattern). The case study presents preferences for time of day,
duration and number of episodes. It can include schedule delay effect, order constraints,
primary activity and notions of priorities, such as mandatory activities. All these elements are
estimated simultaneously.

Managing the large choice set of activity paths

Considering different orders for the activity episodes quickly increases the number of possible
alternatives to be chosen. In a pedestrian context, Hoogendoorn and Bovy (2004) present
an example with 2 consecutive activities. Liu, Usher and Strawderman (2014) define 3 time
intervals. At the urban scale, Ettema et al. (2007) divide the day in three periods and assume
work as the main central activity. In Pinjari and Bhat (2010) and Habib (2011), the order
of activity episodes is not explicitly modeled. The activity-schedule approach sequentially
models the order of activities and the detailed tours (see Section 2.3.3).

Modeling activity paths includes the order and the duration in a unique model. The large
choice set is managed through recent developments in route choice modeling and in impor-
tance sampling strategies. Metropolis-Hastings sampling of paths (Flötteröd and Bierlaire;
2013) associated with strategic sampling (Lemp and Kockelman; 2012) generates a choice set
of activity paths for importance sampling. The case study shows that our approach allows to
include more parameters in the model than simple random sampling.

Getting rid of home-based, tour-based structure and a priori assumptions

Existing models assume postulated rules. The activity-schedule approach is structured on
home and tours from home, with models applied sequentially according to priorities of activity
types. Tours are motivated by one primary trip purpose, i.e., a main activity type per tour
(Shiftan; 1998; Limanond et al.; 2005). Doherty and Mohammadian (2011) show that the
decomposition between mandatory (e.g., work or school) and discretionary activity is not
supported by data; they estimate an ordered response logit for activity sequences and show
that duration explains activity planning more than activity type.

By managing the large choice set of activity paths, we do not assume tours nor priorities
between activities. The utility of an activity path can include or not a home activity, a tour
structure or a primary activity. Mandatory and discretionary can be characteristics of activity
types but do not need to be defined and can be tested for significance.
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6.1.3 Modeling location choice

Chapter 5 models location choice conditional on the activity-episode sequence using the
panel data from WiFi traces. The methodology is applied to the choice of catering location on
the EPFL campus. Our contributions consist in including lagged variables and correcting for
serial correlation.

Including lagged variables

In pedestrian context, Ton (2014) and Kalakou et al. (2014) propose location choice models.
They do not include the previous choice as an explanatory variable of the current choice. At
a larger scale, Sivakumar and Bhat (2007) include a lagged variable in the choice of location.
It represents a learning effect, due to update in preferences, delayed effects, variety seeking,
habit persistence or loyalty behavior. In tourism literature, Grigolon et al. (2014) include the
previous vacation length choice in the choice of the current vacation length. They compare a
logit, a mixed logit and a dynamic mixed logit and show that the dynamic mixed logit is the
best in estimation and forecasting.

We include lagged variables in the modeling of pedestrian activity location. Including pre-
ceding choice is possible due to the availability of activity-episode sequences for several days
from WiFi traces. In terms of predictive power, dynamic models outperform static models

Correcting for serial correlation

Only few dynamic models of location choice exist in the literature, and none of them to our
knowledge correct for serial correlation. Sivakumar and Bhat (2007) and Grigolon et al. (2014)
do not consider this issue. In their dynamic mixed logit, by assuming that the error term is
independent of the variables (i.e., exogenous), and in particular independent of the lagged
variable, they assume that unobserved attributes do not persist over time for a given individual.

Including lagged variables in a discrete choice model generates endogeneity. The error term
and the explanatory variable representing the previous choice are serially correlated in dy-
namic models. We apply Wooldridge (2005) method to deal with this endogeneity problem.
The model correcting for endogeneity outperforms models not correcting for it. Predicted mar-
ket shares of the new catering location, not open when WiFi traces were collected, correspond
to point-of-sale data of the first week of opening.

6.1.4 Policy implication

Results show that we can detect and model activity episodes using existing tracking data. With
a growing number of visitors, such methodologies are necessary for pedestrian infrastructures
for
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• testing scenarios when modifying or building pedestrian infrastructures, designing
public transit timetable or optimizing the spatial distribution of facilities;

• counting visitors, their duration of stay and their daily and hourly patterns of visits;

• marketing and evaluating the economic viability of facilities; and

• managing congestion.

In particular, multimodal transport hubs, such as airports or train stations, face increas-
ing demand and increasing commercial and leisure activities. Investments to modify them
are considerable and potential conflicts between traveling and shopping activities must be
avoided.

Network traces such as WiFi signatures are cheap to collect and easily cover the full infrastruc-
ture for long periods. Other sources of data are also available, such as point-of-sale data, train
occupation or any aggregate measures of occupation.

Our methodology to detect activity-episode sequences is useful to merge the different data
sources generated by pedestrian facilities. It allows to give behavioral sense to WiFi traces and
observe activity-episode sequences in facilities. The activity path approach we propose allows
to model the preference for certain activity types at certain times of day, the duration of activity
episodes and their number. It provides information on the patterns performed by visitors,
e.g., in train stations. Moreover, by including schedule delay effect in the model, it predicts
activity pattern shifts related to a change in schedules, e.g., the impact of new timetables in
train stations. The activity location choice model can predict the number of visitors in a future
new location, as showed in the case study. It can also describe the preferences driving people’s
choice of location, such as the impact of price, distance, or general quality levels.

6.2 Future work and limitations

The methodology proposed for detection of activity-episode sequences in Ch. 3 should be
applied in another setting than a campus, typically in a train station, where congestion and
localization of facilities are important issues for daily management (e.g., an extension of
Hänseler et al.; 2015 from two pedestrian underpasses to the full train station, using WiFi
traces). It could also be applied to a larger scale, merging GSM data and land-use data (e.g.,
Bengtsson et al.; 2011 and Elwood et al.; 2012 in Haiti).

In Ch. 4, choice set generation and forecasting for activity path use a Metropolis-Hastings
algorithm for the sampling of paths. The algorithm was originally developed for route choice
and implicitly assume that the main attribute of the choice is distance. Activity path choice
cannot be mostly explained by node-additive variables, i.e., time-of-day preferences. The
dense activity network with constraints about the number of activity episodes requires to
generate a large number of activity paths and discard a lot of similar paths to be able to assume
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independence. The algorithm therefore needs time to generate choice sets. A useful future
work would be to develop a more efficient Metropolis-Hastings algorithm for sampling of
activity paths. It would drag an activity episode instead of a node. It could increase the time
efficiency of the choice set generation process.

A strong assumption of the activity path approach in Ch. 4 is the usage of the logit model.
The logit model is restricted by the Independent from Irrelevant Alternative (IIA) property. It
might not be appropriate in the activity path approach since activity paths share unobserved
attributes due to overlaps. Overlaps correspond to performing the same activity type at the
same time and might be correlated. The well-known Path Size correction term in route choice
modeling cannot be applied here. The choice of an activity path can be seen as an aggregation
of alternatives (about aggregation of alternatives, see Ben-Akiva and Lerman; 1985, ch.9). The
elemental alternatives are the activity paths, and the aggregate alternatives are the nodes in
the activity network. In the route choice context, the Path Size formulation defines the size
of an aggregate alternative (here, a link) as the number of paths using the link (Frejinger and
Bierlaire; 2007). The motivation for this definition of size is related to the assumption that a
physical overlap “measures” shared unobserved attributes. In the activity path context, the
number of paths using a node is constant, K T°1, due to the structure of the activity network,
and so the Path Size formulation from route choice leads to a constant correction term for
each alternative and consequently no correction. Fundamentally, this result comes from the
symmetry of the activity network and the hypothesis that duration of the same activity type
at the same time of day is a measure of similarity, i.e., one replaces physical shared length
(overlap) from the route choice context by shared time length (duration) for a given activity
type at a given time of day. Deterministic corrections of the utility for correlation, similar to
the Path Size, should be developed to replace the Path Size logit in the context of activity path
choice, e.g., based on the assumption that similarity for activity patterns is measured through
shared primary activity purpose and pattern (Bowman; 1998). Stochastic corrections such as
cross-nested logit could also be estimated (see Lai and Bierlaire; 2015).

In this dissertation, we decompose the modeling of activity-episode sequences in an activity
path choice and a conditional activity location choice. Activity episodes are grouped into
activity types in the activity network. Future work could model destination path choice,
merging these two models. A destination path choice would define a destination network,
i.e. the simultaneous choice of a series of activity episodes described by their time unit and
activity location. The choice set would be larger than in the activity path choice.

The modeling results in Ch. 4 and 5 are based on the output of Ch. 3 considering only the
most likely activity-episode sequence, i.e. with L = 1. It would be interesting to increase the
number L of activity-episode sequences detected for one individual and one day and evaluate
the impact on estimation of the activity path and activity location choices.

In future research and application, this thesis will generally help detect stop and activities
performed at these stops merging localization data and land-use data. The methodologies
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Chapter 6. Conclusion

presented in this thesis also provide a framework for modeling the full activity pattern and for
modeling location choice with longitudinal data.
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A Appendix

A.1 Derivation of the distribution of t°i+1

Let’s first assume t̂i … t̂i+1 ° t txi ,xi+1 and t+i + t txi ,xi+1 … t̂i+1 to get rid of the maximum and
the minimum in the bounds of the intervals, and thus simplify the notation (if these two
conditions are not met, the two random variables t+i and t°i+1 are fixed and the derivation is
obvious).

The end time t+i is uniformly distributed, t+i ª U(t̂i, t̂i+1 ° ttxi,xi+1 ), with density function
ft+i

(x) = 1
t̂i+1°t txi ,xi+1°t̂i

for x 2 [t̂i , t̂i+1°t txi ,xi+1 ] and 0 otherwise. The start time t°i+1 is uniformly

distributed between t+i + t txi ,xi+1 and t̂i+1. Its density for a given value of t+i is ft°i+1|t
+
i =x (y) =

1
t̂i+1°t+i °t txi ,xi+1

for y 2 [x + t txi ,xi+1 , t̂i+1] and 0 otherwise. Now, the density of t°i+1 is:

ft°i+1
(y) =

Zt̂i+1°t txi ,xi+1

x=t̂i

ft°i+1|t
+
i =x (y) · ft+i

(x)d x (A.1)

=
Zy°t txi ,xi+1

x=t̂i

ft°i+1|t
+
i =x (y) · ft+i

(x)d x (A.2)

=
Zy°t txi ,xi+1

x=t̂i

1

t̂i+1 °x ° t txi ,xi+1

· 1

t̂i+1 ° t txi ,xi+1 ° t̂i
d x (A.3)

= 1

t̂i+1 ° t txi ,xi+1 ° t̂i
ln

≥ t̂i+1 ° t txi ,xi+1 ° t̂i

t̂i+1 ° t°i+1

¥
(A.4)

The modification of the upper bound of the integral between Eq. A.1 and Eq. A.2 is explained
by the support of y : y 2 [x + t txi ,xi+1 , t̂i+1], i.e., x + t txi ,xi+1 … y . Note that x … y ° t txi ,xi+1 …
t̂i+1 ° t txi ,xi+1 .

Expected value is E(t°i+1) = t̂i+t txi ,xi+1+3·t̂i+1

4 .
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A.2 Data collection campaign, data cleaning and data representa-
tiveness

Visitors from University of Lausanne (UNIL) have a unique user name for all users (unil.ch).
For members of the campus, the username was associated with employee or class attribute
through LDAP requests. First, 317 employees were randomly selected, 501 students were
selected from 6 random classes1 and 729 UNIL students visiting EPFL campus. For a party on
campus, Vivapoly (http://vivapoly.epfl.ch/), the lists of employees and students were modified.
4493 employees were selected, corresponding to all employees who recently connected to the
WiFi, and similarly all students in the selected classes, resulting in 298 IDs. After the party,
the lists for students and visitors remained the same, but the list of employees returned to
its original 317 IDs. The output of this process is anonymized network traces with known
category of users on campus.

Data were grouped in text files on 11 different days2, and were collected every day at a fixed
time. Each time, historical data were collected individually from the CWS system of the Cisco
Context Aware Mobility API with the Cisco Mobility Services Engine (MSE) Cisco (2011) that
was lent to us. It was impossible to extract all data at once. This was done sequentially, MAC
address by MAC address. It resulted in 2’392’973 network traces. For some users and some
days, the 11 data collection campaigns would overlap over time. We cleaned the data to avoid
broken daily traces related to the time of grouping in text files: if the last signal of a text file for
a given individual does not appear in the next text file for the same user, we delete all signals
related to this day. Similarly, for the very first signal of the first text files, we remove all signals
till 3am. This way, we ensure to have complete days, and no partial sequences of signals for a
day. Table A.1 shows the number of signals, IDs and days for raw data (without duplicates),
and for cleaned data (without partial days).

Table A.1 – Number of network traces

Employees Students Visitors
SV-BA2 IN-BA4 GC-BA4 MA-BA2 IN-MA2 PH-BA2 UNIL

Raw data 963’294 204’516 111’199 164’203 178’339 127’911 162’954 446’344
# IDs 4140 221 125 153 168 190 176 729

# days 51 51 50 51 47 49 50 52
Clean data 203’713 110’432 162’583 177’159 127’198 161’930

# IDs 209 114 138 152 178 158
# days 51 50 51 47 49 50

We applied the algorithm described in Ch. 3 to all measurements related to students with L = 1.

1Life Science, 1st year students (SV-BA2), Computer Science, 2nd year (IN-BA4), Civil Engineering, 2nd year
(GC-BA4), Mathematics, 1st year (MA-BA2), Computer Science, Master students (IN-MA2), Physics, 1st year
students (PH-BA2).

2May 23, 2012, 18:58:36; May 24, 17:10:33; May 25, 16:45:17; May 31, 10:42:24; June 8, 8:42:06; June 14, 13:06:45;
June 21, 11:37:40; June 27, 10:20:43; July 2, 10:58:31; July 4, 16:31:49; July 5, 10:33:33.
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A.2. Data collection campaign, data cleaning and data representativeness

The potential attractivity measure as defined in Ch. 3 is based on different data sources:

• for offices, the attractivity is based on the cumulative work percentage of the different
employees of a given office, e.g., if there are 2 full time employees and one working 80%
of a full time, the attractivity is defined as 2.8. No schedule is applied on offices, so this
attractivity is the same all day long. These data have been provided by EPFL human
resources, using SAP softwares.

• for classrooms with classes, the attractivity equals to the number of registered students
to this class. The attractivity is valid only between the start and end time of the class.
These data are provided by EPFL registrar’s office. For the language classes, the number
of registered students is not known but EPFL language center provided an estimation of
13 students per class.

• for the library and the multimedia room of the language center, the attractivity equals
to the capacity, i.e., the number of seats, during opening hours. These data have been
provided by EPFL library and EPFL language center.

• for the restaurants, the point-of-sale data are aggregated per quarter of hour and used
as attractivity. These data have been provided by EPFL Vice Presidency for Resources
and Infrastructure (Operating Support unit). Note that this is different than in Ch. 3,
where the attractivity for restaurants was their capacity, i.e., their number of seats.

The attractivity and time constraints for other points of interest are not available and have to
be imputed by the modeler:

• the attractivity of an office for a student must be non-zero and has been fixed to 0.1.

• the attractiviy of classrooms with classes for employees has been fixed to 2 during the
class.

• the attractivity of conference rooms has been fixed to 3.

• the attractivity of the post office has been fixed to 13 during opening hours and 3 when
only the ATM is available.

• the attractivity of the student union has been fixed to 3.

• the attractivity of all other points of interest has been fixed to 1, by default.

The methodology described in Ch. 3 was applied with these data and L = 1.

Figure A.1 shows the time spent on campus for employees based on the generated activity-
episode sequences. A group of observations have a realistic duration of 8 to 9 hours. Some
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Figure A.1 – The distribution of length of activity path from activity-episode sequences gen-
erated from WiFi measurements. Y-axis represents the number of activity path with a given
length.

observations have a short length, about 1 hour, or a long one, up to 24 hours. These observa-
tions are probably due to the source of data, i.e., people turning their device off in office or fix
devices.

A web-based mobility survey shows that the shortest activity sequence for students and
employees on campus is 2h30 per day (Tzieropoulos; 2012). In consequence, we remove all
observations from WiFi traces that represent less than 2h30 on campus. Shorter observations
from WiFi are assumed to be devices that are turned off part of the day, such as laptops.

Chapter 3 concludes that a density of 5.4 measurements per hour is the minimum density
of measurements for generating stable and trustworthy activity-episode sequences with re-
spect to the number of episodes, their activity type, their duration and their exact location.
Consequently, we also remove activity-episode sequences with a lower mean density.

Figure A.2 shows the distribution of length of the activity-episode sequences from WiFi traces
without the short sequences and without the low density observations, as described before.
We see that the activity-episode sequences from WiFi traces are shorter than declared activity
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sequences from the mobility survey. This might be related to an underrepresentation of
short-time visitors in the web-based survey. Respondents of the mobility survey might also
have declared longer activity sequences than what they really did. Cognitively incongruent
answers are common for declared preferences (Bertrand and Mullainathan; 2001). Students
and employees want to show a work-intensive day in their answer to the survey. It might also
be that the respondents were asked to answer about a “typical day” in the recent past.

Figure A.2 – The distribution of length of activity paths from activity-episode sequences
generated from WiFi measurements is represented as blue bars. The left Y-axis represents
the number of activity path with a given length from WiFi measurements. The distribution of
length from the mobility survey on campus (Tzieropoulos; 2012) is represented as dots and
green lines. The right Y-axis represents the number of individuals with a given length from
Tzieropoulos (2012). Activity sequences of less than 2h30 are removed. Activity sequences
with a mean density of measurements lower than 5.4 are removed.

Figure A.3 shows when people are present on campus during the day. Blue bars describe the
number of people on campus per quarter of an hour based on activity-episode sequences
from WiFi traces. The green line describes the number of people on campus based on the
web-based mobility survey (Tzieropoulos; 2012). People arrive earlier on campus based on the
mobility survey than based on WiFi measurements.
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Figure A.3 – The time-of-day distribution of activity-episode sequences per quarter of an hour
generated from WiFi measurements is represented as blue bars. The left Y-axis represents the
number of people present at this quarter of an hour from WiFi measurements. The time-of-day
distribution from (Tzieropoulos; 2012) is represented as dots and green lines. The right Y-axis
represents the number of individuals at a given quarter of an hour from (Tzieropoulos; 2012).

A.3 Descriptive statistics of the WiFi traces for catering locations

As described in Danalet et al. (2014), WiFi traces have been anonymized but the category of
people has been collected. Table A.2 shows the number of daily observations and the total
number of individuals observed per category. Employees are overrepresented in the sample.

The number of times each catering location is chosen is described in Table A.3. The most
visited catering location is L’Esplanade, very central on the campus. Le Parmentier and Le
Vinci are very close and share the same kitchen; their counts of being chosen from WiFi traces
are biased towards Le Parmentier, with a larger capacity and therefore a larger attractivity (see
Danalet et al.; 2014). Number of visits in catering locations in the Rolex Learning Center (RLC),
Le Hodler and Le Klee, are most probably underestimated due to the large attractivity of the
library (see again Danalet et al.; 2014).

The walked distance to reach a catering location (Fig. A.4) is computed used a weighted
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Category
Number of

observations
Number of
individuals

Employees 1219 145
Students, among which... 649 66

Civil engineering, Bachelor, 4th semester 131 12
Computer science, Bachelor, 4th semester 87 6
Computer science, Master, 2nd semester 53 6
Mathematics, Bachelor, 2nd semester 108 13
Life science and technology, Bachelor, 2nd semester 138 11
Physics, Bachelor, 2nd semester 132 18

Total 1868 211

Table A.2 – Number of observations and of individuals per categories of individuals.

shortest path (Danalet et al.; 2014). It takes into account the pedestrian network and the
different floors on the campus. In 478 cases, distance could not be computed (previous
location to the catering destination is not properly connected to the network).

Figure A.4 – Walked distance to reach a catering location, in meters.

125



Appendix A. Appendix

Count of chosen alternatives
Catering locations Morning Lunch After lunch Total

Cafeteria Cafe Le Klee 1 1 2 4
Self-service BC 46 60 40 146
Other BM 11 13 22 46
Cafeteria ELA 38 38 49 125
Cafeteria INM 3 3 7 13
Cafeteria MX 39 15 30 84
Other PH 38 7 34 79
Cafeteria L’Arcadie 19 11 8 38
Self-service L’Atlantide 73 11 51 135
Restaurant Le Copernic 0 6 0 6
Self-service Le Corbusier 17 56 0 73
Cafeteria Le Giacometti 47 44 85 176
Self-service Le Parmentier 14 68 53 135
Self-service Le Vinci 1 1 0 2
Self-service L’Esplanade 104 102 206 412
Self-service L’Ornithorynque 30 69 0 99
Caravan Pizza 18 24 22 64
Caravan Kebab 13 11 30 54
Cafeteria Satellite 37 11 87 135
Self-service Le Hodler 13 22 0 35
Restaurant Table de Vallotton 0 7 0 7
Total 562 580 728 1868

Table A.3 – Number of time each catering location is chosen in the dataset. Morning represents
visits starting before 11:30, lunch visits starting between 11:30 and 14:00, and after lunch visits
starting after 14:00.

More descriptive statistics about the data used in this case study are available in Tinguely
(2015).
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A.4 Elasticity of choice probabilities to price: detailed results

Static model
Dynamic model

without agent effect
Dynamic model with

agent effect correction

Catering locations First choice
First choice

and frequency

L’Arcadie
Employees °1.23989 °0.985452 °3.39526 °3.57178
Students °2.38484 °1.83835 °4.57827 °4.75158

L’Atlantide
Employees °1.13413 °0.895157 °3.18069 °3.32638
Students °2.27122 °1.77387 °4.44407 °4.625

BC
Employees °0.936438 °0.739586 °2.61785 °2.7033
Students °1.57302 °1.2261 °3.08235 °3.15199

Le Copernic
Employees °2.35353 °1.87112 °6.41268 °6.68158
Students °4.51551 °3.47645 °8.64327 °8.90621

Le Corbusier
Employees °0.929999 °0.735688 °2.61505 °2.70122
Students °1.54962 °1.20379 °2.97714 °3.07526

ELA
Employees °0.684047 °0.547564 °1.87449 °1.9601
Students °1.27976 °0.972102 °2.4586 °2.52925

L’Esplanade
Employees °0.815134 °0.656035 °2.19422 °2.36297
Students °1.27379 °0.959653 °2.35676 °2.441

Le Giacometti
Employees °0.693894 °0.553458 °1.8864 °1.96811
Students °1.31332 °1.00551 °2.49273 °2.58709

Le Hodler
Employees °1.7247 °1.37671 °4.73638 °4.96936
Students °3.24068 °2.47713 °6.3035 °6.46166

INM
Employees °0.763795 °0.607341 °2.08843 °2.17938
Students °1.45722 °1.1218 °2.79651 °2.87987

Kebab
Employees °0.864627 °0.689636 °2.37133 °2.46379
Students °1.6376 °1.25415 °3.1567 °3.2466

Le Klee
Employees °0.794574 °0.631613 °2.17519 °2.27434
Students °1.51289 °1.16528 °2.91007 °3.00368

MX
Employees °0.971626 °0.767171 °2.70928 °2.8277
Students °1.62567 °1.26778 °3.19163 °3.31779

Ornithorynque
Employees °0.84435 °0.664995 °2.24917 °2.37491
Students °1.67028 °1.30676 °3.25905 °3.3904

Le Parmentier
Employees °0.871571 °0.695141 °2.37836 °2.49491
Students °1.47515 °1.12795 °2.73667 °2.8268

Pizza
Employees °0.977648 °0.777131 °2.66259 °2.79363
Students °1.8736 °1.44253 °3.58497 °3.72084

Sat
Employees °0.596256 °0.474232 °1.63987 °1.69052
Students °1.12653 °0.866874 °2.1905 °2.22546

Table de Vallotton
Employees °3.9529 °3.14098 °10.5511 °10.9123
Students °7.58275 °5.83644 °14.3337 °14.7175

Le Vinci
Employees °1.02426 °0.81411 °2.80212 °2.93623
Students °1.70861 °1.31617 °3.21097 °3.33883

Table A.4 – Average sample elasticities of choice probabilities to price
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