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Abstract
This thesis is devoted to the computational study of the electronic and transport properties

of monolayer and bilayer graphene in the presence of disorder arising from both topological

and point defects. Among the former, we study grain boundaries in monolayer graphene

and stacking domain boundaries in bilayer graphene, whereas among the latter we study

hydrogen atoms covalently bound on the graphene crystal lattice. The electronic spectrum

of disordered graphene has been studied within a tight-binding framework, which has been

coupled to the Landauer-Büttiker theory and Green’s function techniques in order to have

access to the properties of coherent transport of graphene charge carriers. We assess the

low-energy equilibrium structures of defective graphene by a combination of ab initio density

functional theory, classical potentials, and Monte Carlo methods.

We study periodic grain boundaries in monolayer graphene and individuate two classes

of defects with opposite effects in terms of scattering of low-energy charge carriers. One

class, unexpectedly, is highly reflecting in the limit of low defect density, whereas another is

highly transparent. Subsequently, we study disordered grain boundaries in order to predict

the intrinsic conductance of realistic polycrystalline graphene samples. In two related works,

conducted in collaboration with experimentalists, we identify the atomic structure of periodic

grain boundaries imaged by scanning tunneling microscopy, and discuss the valley-filtering

capabilities of a line defect of graphene that can be grown in a controllable manner.

Next, we investigate the electronic transport of graphene with realistic hydrogen adsorbates,

whose equilibrium configurations are obtained by means of Monte Carlo simulations. We find

that the conductance of graphene dramatically increases upon formation of cluster adatoms,

which we predict to happen spontaneously at room temperature. This is due to the non-

resonant nature of a large fraction of hydrogen clusters in the room-temperature distribution,

which we further elucidate by means of an analytical solvable model.

Finally, we study the behavior, in terms of structural and electronic properties, of twisted

bilayer graphene in the limit of zero twist angle. We find a critical angle below which the system

arranges in a triangular superlattice of Bernal-stacking domains, separated by a hexagonal

network of stacking domain boundaries. The presence of stacking domain boundaries is at the

base of our interpretation of an experiment reporting oscillations in the electrical conductance

of bilayer graphene subjected to mechanical indentation.

Keywords: graphene, bilayer graphene, disorder, topological defects, grain boundaries, hy-

drogenated graphene, stacking domain boundaries, electronic transport, Landauer-Büttiker,

Green’s function, Monte Carlo
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Sommario
Questa tesi è dedicata allo studio, condotto attraverso tecniche computazionali, delle proprietà

elettroniche e di trasporto di carica del grafene a singolo e doppio strato in presenza di

disordine. Abbiamo considerato disordine originato da difetti sia topologici che puntuali.

All’interno della prima categoria, abbiamo studiato i bordi di grano del grafene a singolo strato

e le interfacce tra regioni del grafene a doppio strato con diversa traslazione relativa dei due

strati (“stacking domain boundaries”). Tra i difetti puntuali, ci siamo interessati agli adatomi

di idrogeno che formano legami covalenti con gli atomi di carbonio del grafene a singolo

strato.

Lo spettro elettronico del grafene disordinato è stato studiato attraverso il metodo del “legame

stretto” (Tight Binding). Tale teoria è stata associata a quella di Landauer e Büttiker e ai

metodi basati sulla funzione di Green per estrarre le proprietà di trasporto di carica del

grafene. Le configurazioni strutturali di equilibrio del grafene disordinato sono state ottenute

combinando metodi ab initio, potenziali classici e metodi Monte Carlo. Tra i bordi di grano

periodici del grafene a singolo strato abbiamo individuato due classi caratterizzate da opposte

proprietà di scattering nei confronti dei portatori di carica di bassa energia. Mentre i bordi di

grano appartenenti alla prima classe prevalentemente riflettono i portatori di carica, quelli

della seconda classe sono praticamente trasparenti. Dopodiché, abbiamo studiato bordi di

grano disordinati per calcolare le conduttanza intrinseca di esemplari realistici di grafene

policristallino. La parte dedicata ai bordi di grano si chiude con due lavori realizzati in

collaborazione con gruppi sperimentali. Nel primo abbiamo identificato la struttura atomica

di alcuni bordi di grano periodici le cui immagini sono state ottenute attraverso la microscopia

a effetto tunnel, mentre nel secondo abbiamo discusso le proprietà di selezione di valle di un

difetto lineare che può essere introdotto nel grafene in maniera controllata.

In seguito, abbiamo studiato il trasporto elettronico nel grafene contenente adsorbati di

idrogeno. Abbiamo trovato che la conduttanza del grafene aumenta in maniera considerevole

contestualmente alla formazione di piccoli aggregati di adatomi di idrogeno, che abbiamo

previsto formarsi spontaneamente a temperatura ambiente. Questo effetto è dovuto alla

natura non risonante di una larga frazione degli aggregati di idrogeno, che abbiamo delucidato

anche attraverso un modello analitico.

Successivamente, abbiamo studiato dal punto di vista strutturale ed elettronico il grafene

a doppio strato in presenza di un angolo di rotazione relativo tra i due strati, specialmente

nel limite di piccolo angolo. Abbiamo trovato un angolo critico al di sotto del quale gli atomi

del sistema si dispongono formando un reticolo di regioni triangolari nelle quali i due strati
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esibiscono l’allineamento relativo di minore energia (“Bernal stacking”). Le interfacce tra tali

regioni formano una maglia esagonale precedentemente documentata negli esperimenti. Per

finire, la presenza spontanea di simili interfacce è alla base della nostra interpretazione di un

esperimento nel quale sono state misurate oscillazioni della conduttanza elettrica nel grafene

a doppio strato sottoposto a deformazione meccanica.

Parole chiave: grafene, grafene a doppio strato, disordine, difetti topologici, bordi di grano,

grafene idrogenato, trasporto elettronico, Landauer-Büttiker, funzione di Green, Monte Carlo
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Résumé
Cette thèse est dédiée à l’étude computationnelle des propriétés électroniques et de transport

du graphène à une et deux couches, en présence de défauts ponctuels et topologiques. Parmi

ces derniers, on étudie les joints de grains dans le graphène monocouche ainsi que les inter-

faces entre les régions du graphène à deux couches avec différentes translations relatives des

deux couches (“stacking domain boundaries”). Parmi les défauts ponctuels, on s’intéresse à

l’effet d’atomes d’hydrogènes liés de façon covalente au réseau cristallin. Ces études ont étés

réalisées dans l’approximation des liaisons fortes, couplée à la théorie de Landauer-Büttiker

et à des techniques de fonctions de Green, afin d’avoir accès aux propriétés de transport

cohérent des porteurs de charge. On évalue la structure d’équilibre du graphène avec des

défauts à l’aide d’une combinaison de la théorie de la fonctionnelle de la densité, de potentiels

classiques ainsi que de méthodes de Monte Carlo.

On étudie les joints de grains périodiques dans le graphène monocouche et on identifie deux

classes de défauts, avec des effets opposés en termes de diffusion des porteurs de charge.

Une classe correspond aux défauts qui, de façon surprenante, sont fortement réfléchissants

dans la limite de faible densité de défauts, alors que la deuxième correspond à des défauts

fortement transparents. Par la suite, on étudie les joints de grains désordonés afin de prédire la

conductance intrinsèque d’échantillons réalistes de graphène polycristallin. Dans deux études

conduites en collaboration avec des expérimentateurs, on identifie la structure atomique

de joints de grains périodiques visualisée par microscopie à effet tunnel et on discute des

capacités de filtrage de vallée d’un défaut linéaire dans le graphène qui peut être introduit

dans le graphène de manière contrôlée.

Ensuite, on examine le transport dans le graphène avec des adsorbats d’hydrogène réalistes,

dont les configurations d’équilibre sont obtenues à l’aide de simulations de Monte Carlo. On

trouve que la conductance du graphène augmente de manière significative lors de la forma-

tion de clusters d’adatomes d’hydrogène, formation dont on prédit l’occurence spontanée à

température ambiante. Cela est dû à la nature non-résonante d’une large fraction des clusters

d’hydrogène dans la distribution à température ambiante, que l’on explique avec un modèle

soluble analytiquement.

Finalement, on étudie le comportement, en termes de propriétés structurelles et électroniques,

du graphène à deux couches qui presentent un angle de pivotage entre eux, notamment, dans

la limite où cet angle tend vers zéro. On trouve un angle critique en-dessous duquel le système

s’ordonne dans un super réseau triangulaire de domaines avec empilement graphitique

séparés par un réseau hexagonal de joints entre domaines avec empilement inéquivalent. La
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présence de ces derniers est à la base de notre interprétation d’une expérience reportant des

oscillations de la conductance électrique de graphène à deux couches sujet à indentation

mécanique

Mots clés : graphène, graphène à deux couches, désordre, défauts topologiques, joints de

grains, graphène hydrogéné, stacking domain boundaries, transport électronique, Landauer-

Büttiker, fonctions de Green, Monte Carlo
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Introduction

Graphene is the first truly two-dimensional material ever synthesized. It is one of the several

allotropic form of carbon, namely, a single layer of atoms arranged in a honeycomb lattice.

The aim of this introduction is to retrace the fundamental steps that have led to the isolation

of graphene, and to sketch briefly the state of the art of the research on graphene and its

applications. Finally, I will summarize what has been my (humble) contribution to this

immense scientific field.

One question should be addressed before diving into the Physics of graphene. What is the

unfulfilled curiosity that has stimulated researchers to look for graphene over the years? My

personal answer is that physicists like to play with dimensionality, namely, the number of

space (or space-time) dimensions needed to describe a physical system. A common procedure

taught in freshmen courses to approach a physical problem is to reduce its dimensionality

by discarding non-relevant dimensions. We know, for example, that the orbit of a planet

around the sun is planar because of angular momentum conservation, so that two spatial

degrees of freedom are enough to describe it. In the 20th century, the first theories where

dimensionality was enlarged rather than reduced entered the stage. One of the early attempt

to unify Quantum Field Theory and General Relativity was made by Kaluza and Klein in

the 20’s, who conjectured the existence of a fourth unobservable spatial dimension. This

prompted a multitude of modern unification theories based on a large number of rolled-up

dimensions of the space-time (early Bosonic String Theory developed in the late 60’s and

early 70’s had 25 spatial dimensions!). Perhaps, the acme of the “game of dimensions” was

reached by ’t Hooft and Veltman, who proposed to treat dimensionality in Quantum Field

Theory as a continuous parameter in order to eliminate the divergences of certain Feynman

integrals (“dimensional regularization”). Despite its audacity, this is an important technique

of Quantum Field Theory and has been worth a Nobel Prize in 1999. Dimensionality has a

fundamental role in universally accepted Physics theories. Although Newton’s mechanics does

not radically change with the dimensionality of the system under study, the same cannot be

said about Classical Field Theories and is even less true for Quantum Mechanics, which offers

a long list of dimensionality-dependent phenomena. Think of Bose-Einstein Condensation,

Anderson Localization or the quantization of energy in presence of magnetic fields (Quantum

Hall Effect), just to mention few but outstanding examples.

This overview of the role of dimensionality in Physics serves to justify the efforts that has been
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put in the realization of physical systems with non-trivial dimensionality. Of course, as it is

unlikely that we will ever be able to realize a system with more than three spatial dimensions,

research focused on systems with less than three dimensions. This challenge already started

in the late 60s, as the improving techniques in semiconducting manufacturing allowed highly

controlled fabrication of heterostructures. Devices such as quantum wells (based, for example,

on AlAs/GaAs/AlAs heterostructures) and field-effect transistors (FET) operated in inversion

mode confine electrons in a thin region of space with a thickness of the order of 10nm, giving

rise to what is called a two-dimensional electron gas (2DEG). Besides the strong technological

implications that these devices have nowadays, especially for optical applications (diode

lasers, infrared photodetectors, etc.), the study of the 2DEG has revealed rich and, sometimes,

unexpected fundamental phenomena. Two examples are the Quantum Hall Effect and the

ballistic propagation of charge carriers with ultra high mobilities.

And now we come to graphene. Clearly, the lower limit for the thickness of a condensed

matter system is represented by a one-atom thick layer. In this respect, it has seemed natural

to start from a well-known layered material such as graphite to isolate an individual layer

of atoms, that is, graphene. Ironically, it seems that the isolation of graphene was achieved

in 1969 [May, 1969], three years before the realization of the first heterostructure quantum

well. Even more ironically, this was done by a theoretician, namely, John May. He analyzed

low-energy diffraction data obtained by exposing a metal surface to hydrocarbons at high

temperature (chemical vapor deposition) that had been published few years before [Hagstrom

et al., 1965; Lyon and Somorjai, 1967; Morgan and Somorjai, 1968]. These data remained

unassigned until May suggested they had been originated by “monolayer graphite” deposited

on a substrate. This had little notice until the 90’s, when several groups started wondering how

to exfoliate graphite or to use other bottom-up approaches to produce graphene. One proof of

this wide interest is the 1995 decision of the International Union of Pure Applied Chemistry

to register the term “graphene” to define monolayer graphite. Two years later, Oshima and

Nagashima reported on epitaxial growth of few-layer graphite samples, among which, proba-

bly, also monolayers [Oshima and Nagashima, 1997]. Anyway, the first unambiguous report

of graphene isolation was published in 2004 by Novoselov and Geim [Novoselov et al., 2004],

who have received the Nobel Prize in 2010 for this discovery. The “Scotch taping” method

they used to isolate graphene is at the same time simple and ingenious. By peeling the surface

of a block of graphite with a piece of Scotch tape, they managed to obtain graphene flakes

of micrometer size. Moreover, they built field-effect transistor devices based on graphene

in order to provide a first characterization of the electronic transport properties of such a

new material. The isolation of graphene proved that two-dimensional crystals actually exist,

thus fostering an intense search for similar materials. This search has turned out to be very

fruitful and at the time I am writing, several dozens of two-dimensional compounds have

been already isolated spanning a large range of different physical properties (see Ref[Geim

and Grigorieva, 2013] for a perspective about this field).

The scientific discoveries that have rapidly came out during the first years of the “graphene era”

have been spectacular (see Ref. [Novoselov, 2011] for a review). First of all, it was confirmed the

2
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theoretical prediction that the low-energy excitations of graphene are massless Dirac fermions

with linear dispersion and zero-dimensional Fermi surface. A remarkable signature of such an

unconventional nature is the Anomalous Quantum Hall Effect, found in experiments only one

year after the discovery of graphene. Moreover, the charge carriers of graphene are endowed

with the property of chirality, which protect them from backscattering and is responsible

for their insensitiveness to electrostatic potential variations (Klein tunneling). This is one

of the reasons for ballistic conduction of electrons in graphene over distances up to tens of

micrometers. A related phenomenon is the Universal Minimal Conductivity, namely, graphene

exhibits finite conductivity even at vanishing charge-carrier concentration. Here is a (perhaps

non-exhaustive) list of the graphene records: besides being the material with the highest

intrinsic mobility at room temperature reaching up to 106 cm2/(V∗ s) at low temperature,

graphene has the highest known Young modulus (1 TPa), tensile strength for a crystal (130 GPa,

stretching up to 25% of its length), thermal conductivity (5300 W/(m∗K)), and it is one of the

most impermeable material, as only protons pass across graphene’s lattice.

Such a variety of amazing properties has made graphene very promising for applications (see

Ref. [Novoselov et al., 2012] for a review). Since its discovery there has been a large interest in

field-effect transistors made of graphene, taking advantage of its high charge-carrier mobility.

Analog transistors based on graphene in few years have reached a cut-off frequency about

300 GHz comparable to those based on inorganic III-V semiconductors, thus raising inter-

est in radio-frequency applications. Unfortunately, the absence of bandgap makes intrinsic

graphene not an ideal choice for digital transistors, since the on-off ratio in the best case is 3 or-

ders of magnitude lower than what achieved with silicon. In this respect, the large effort spent

to induce a bandgap in graphene has not given the expected results. Conceiving graphene

as a conductor rather than a semiconductor is bringing to more promising applications, at

least in the short term. For example, touch screen displays and LEDs might take big advantage

of the simultaneous transparency and high charge-carrier mobility of graphene. These two

properties, combined with an exceptional flexibility, are expected to enable the realization

of rollable e-paper, flexible solar cells, etc. Yet, in digital electronics, graphene might be

successfully employed for interconnects, or thermal dissipation. Prototypes of simple logic

circuits where graphene is integrated with other two-dimensional layered materials have been

already realized [Yu et al., 2014]. Definitely, combining different two-dimensional materials

in heterostructures will lead to unpredictable technological developments. Among the other

innumerable applications of graphene that are being studied let us mention graphene ink,

obtained from liquid exfoliation, for realizing conductive or anti-corrosion coating, combina-

tions of graphene and carbon fibers to be used as reinforcement in constructions, chemical

sensors that take advantage of graphene impermeability, etc. At the same time, we are assist-

ing to a rapid evolution of graphene production techniques, whose scalability is crucial to

turn graphene devices into commercial reality. At present, we count about a dozen different

production techniques, though the scalable ones are many less. It is hard to say if and when

graphene will replace another material in available technologies. The disruption and cost of

changing established industrial processes will be justified only if the use of graphene will offer
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significant improvements in terms of costs and technological performance. Most probably,

graphene will realize its full potential in novel applications, such as flexible electronic devices,

where no established competing material exists at the moment.

The main subject of this thesis is the theoretical study of electronic transport properties of

graphene. As I hope to have efficiently conveyed, the investigation of electronic transport in

graphene is motivated by both fundamental Physics and practical applications. Specifically, I

have studied with computational techniques the effect of several types of defects on coherent

transport of charge carriers in graphene.

The thesis is structured as follows: The first chapter is meant to provide the reader with the

basic knowledge of the electronic structure of monolayer and bilayer graphene. The next two

chapters have been conceived to motivate my almost four years of work in this field. The

second chapter is a review of the phenomenology of electronic transport in graphene, in which

I try to give equal relevance to the theoretical and experimental aspects. The main aim of this

chapter is to discuss the scattering mechanisms that limit the electronic mobility of graphene

charge carriers. The third chapter is an excursus on the various kinds of defects that are found

in graphene, with a special focus on the experiments that imaged and systematically studied

the defects. Moreover, I briefly review the early experimental and theoretical studies that have

addressed the electronic transport properties of graphene in presence of grain boundaries.

The fourth chapter is a review of the computational methods that I have employed to obtain

the results presented in further chapters. This presentation is unavoidably limited to the

fundamental concepts of all the methods (Density Functional Theory, Monte Carlo, classical

potentials, minimization techniques, Landauer-Büttiker formalism). Differently, an extensive

treatment would have required a thesis itself. Nevertheless, I hope to be able to convey at

least the underlying physical ideas so that the reader can understand how I have employed

these methods in my work. Chapters from five to seven present my original contribution

to the field, whose authorship I share entirely with Prof. Oleg Yazyev and partially with Dr.

Gabriel Autès. The fifth chapter is a collection of our studies about grain boundaries in

graphene. First, I present an investigation of the coherent electronic transport across periodic

grain boundaries based on Landauer-Büttiker theory. Second, I expose a study where I have

employed a Monte Carlo technique to explore the configurational space of graphene grain

boundaries in order to address the problem of electronic transport across disordered grain

boundaries. In the last sections, I report on two projects carried out in collaboration with

experimentalists. The first consists in the identification, based on ab initio simulations, of

the atomic structure of periodic grain boundaries imaged by Scanning Tunneling Microscopy,

whereas the second is an investigation of the valley-filtering capabilities of a line defect that

can be controllably grown in graphene. In the sixth chapter, I present a study of the electronic

transport in graphene with realistic hydrogen adsorbates, conducted by lifting the usual

assumption of adatom diluteness. Importantly, the equilibrium distribution of hydrogen

atoms are obtained by means of Monte Carlo simulations. The main results of the chapter,

obtained employing computational techniques, are complemented by an analytic study of

the resonant or non-resonant nature of cluster of hydrogen atoms adsorbed on graphene.
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The works presented in the seventh and last chapter regards topological defects in bilayer

graphene. I expose an investigation of the behavior of twisted bilayer graphene in the limit of

zero twist angle, performed by means of large-scale simulations, and I link this system to a

particular arrangement of stacking domain boundaries found in experiments. Finally, I review

briefly an unexpected experimental finding of oscillations in the electrical conductance of

bilayer graphene subjected to mechanical indentation. Supported by numerical calculations,

we have provided an interpretation of this phenomenon that relies on the presence of stacking

domain boundaries in the inspected samples.
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1 The electronic structure of graphene

1.1 Electronic configuration of carbon atoms in graphene

The atomic number of carbon is Z=6 and its electronic configuration is 1s22s22p2. However,

the four valence orbitals 2s and 2px ,2py ,2pz often combine to form so-called hybrid orbitals.

The hybridization found in layered carbon structures, such as graphene, is sp2 that means

that one 2s orbital and two 2p orbitals mix to form three hybrid sp2 orbitals whose axes are

contained into one plane (the x y plane, conventionally) and form three angles of 120◦, see

fig. 1.1(a). In layered crystals, the sp2 orbitals of the carbon atoms couple to each other to form

the σ (bonding) band and theσ? (antibonding) band. The states of theσ band are responsible

for the strong planar covalent bond between carbon atoms in graphene. The fourth p electron

of each carbon atom (pz , conventionally) is oriented orthogonally to the crystal plane and

forms the π and π? bands due to the weaker coupling with its neighbor pz orbitals.

Both in graphene and graphite, the π and π? bands touch each other at the Fermi level,

whereas the σ and σ? bands are separated by a gap of ' 6 eV, see fig. 1.1(b). The stacking

of several graphene layers is enabled by the weak van der Waals interaction arising from

dynamical correlations of π electrons in neighbor layers, thus making x y planes natural

cleavage planes. This property of graphite can be experienced whenever a pencil is rubbed

over a sheet of paper, where it leaves a stroke made of graphitic layers cleaved from the lead.

Importantly, the cleavability of graphite is also the reason why individual graphene layers can

be singled out of a graphitic surface by scotch taping [Novoselov et al., 2004].

1.2 The lattice

sp2 carbon atoms in graphene are arranged in a two-dimensional honeycomb lattice, see

Fig. 1.2(a). This consists in an equilateral triangular lattice with two atoms per cell. The vectors

which define the periodicity of the lattice are a1 = a/2
(
3,
p

3
)

and a1 = a/2
(
3,−p3

)
where

a = 1.42Å is the carbon-carbon bondlength. a1 and a2 form a 60◦ angle, whence the equilateral

triangular lattice. The area of the unit cell is As = |a1| |a2|
p

3/2 = 3
p

3a/2. The two atoms in the
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Chapter 1. The electronic structure of graphene

Figure 1.1 – sp2 hybridization of carbon atoms. (a) The three sp2 states are contained in the
layer plane, whereas the pz atomic orbital is perpendicular to the crystal plane. (b) Sketch
of the σ and π bands. Bonding and antibonding bands π and π? cover a continuous energy
range which crosses the Fermi energy E f . Differently, bonding and antibonding bands σ and
σ? are separated by an energy gap and are far from the Fermi energy.

unit cell (often labeled A and B) are identical and define two equivalent triangular sublattices.

This equivalency is at the basis of what is called the “bipartite lattice symmetry”.

Figure 1.2 – (a) Graphene 2D honeycomb lattice. Atoms owing to different sublattices are
shown in different colors. The lattice vectors a1and a2 and the unit cell (dashed line) are
shown. (b) First Brillouin zone of the 2D honeycomb lattice. The reciprocal vectors b1and b2

and the primitive cell (dashed line) are shown. The high symmetry points Γ, M, K and K′ are
indicated.

The primitive vectors of the reciprocal space b1 and b2 are found according to the rule ai ·b j =
2πδi j , giving b1 = 2π/3a

(
1,−p3

)
and b2 = 2π/3a

(
1,
p

3
)
. The Brillouin zone (BZ), defined as

the set of those points which are closest to the center the reciprocal space than to any other

vector mb1 +nb2 with (m,n) 6= (0,0), is an hexagon, as shown in Fig. 1.2(b). The area of the BZ

is derived from that of the unit cell of the direct lattice as AB Z = (2π)2 /AS. Although the BZ

contains size vertices, only two are inequivalent, K = 2π/3a
(
1,
p

3
)

and K ′ = 2π/3a
(
1,−p3

)
,

since each vertex is shared among the BZ and two of its periodic replicas. As will be shown in

Section 1.3, the low-energy Physics of graphene takes place at points K and K ′.
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1.3. The tight-binding model for graphene

The addition of a second layer gives rise to the system called “bilayer graphene”, see Fig. 1.3(a-

b). Both the direct and the reciprocal lattice stay unaltered, but an additional degree of

freedom is needed to exhaustively define its geometry: the stacking vector ∆u. This is defined

as the in-plane component of the rigid shift of one layer with respect to another. In the stable

configuration called AB stacking, one layer is in-plane shifted with respect to the opposite

layer by one bond-length, as shown in Fig. 1.3(a). As a consequence, two atoms of the unit cell

lying in opposite layers are on top of each other, whereas the other two atoms are misaligned.

On the contrary, in the AA stacking there is no in-plane shift and all atoms of one layer

are aligned to their equivalent in the opposite layer, see Fig. 1.3(b). The interlayer distance

for AB bilayer graphene is ∆zAB = 3.4 Å, whereas for AA stacking is ∆zAA = 3.6 Å. Graphite

is a periodic stacking of graphene layers, which in the low-energy structural configuration

follow the pattern ABABAB. . . , see Fig. 1.3(c) (Ref. [Bernal, 1924; Dresselhaus and Dresselhaus,

2002]). The additional crystal axis in the stacking direction, denoted as c, has a length 6.7 Å,

approximately twice as long as ∆zAB.

Figure 1.3 – Structure of bilayer graphene and graphite. (a) Planar and three-dimensional
ball-and-stick representation of AB bilayer graphene. (b) Three-dimensional representation of
AA bilayer graphene. (c) Three-dimensional representation of AB graphite.

The stacking order has a strong effect on the electronic structure of bilayer graphene and, in

general, on multilayer graphene.

1.3 The tight-binding model for graphene

The tight-binding (TB) model of graphene was introduced for the first time in 1947 in the con-

text of a description of the low-energy band structure of graphite [Wallace, 1947]. Later, several

refinements to the original model have been introduced, ending up into the Slonczewski-

Weiss-McClure model [Slonczewski and Weiss, 1958; McClure, 1957, 1960].

As seen in the previous section, σ and σ? bands are further in energy than π and π? bands.

Moreover, since pz orbitals are odd with respect to a planar mirror symmetry, their coupling

with sp2-orbitals, which are even, is zero. For this reasons, the description of the low-energy

excitations in graphene can be limited to pz orbitals. The minimal TB Hamiltonian only
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Chapter 1. The electronic structure of graphene

considers first-neighbor coupling between pz orbitals [Wallace, 1947; Slonczewski and Weiss,

1958; Pisanty, 1991]:

H =−t
∑
〈i , j〉

a†
i b j +b†

i a j (1.1)

where the operators a†
i (b†

i ) and ai (bi ), respectively, create or annihilate a pz -electron at the

i -th site in the A(B) sublattice. The only non-zero matrix element t couples first-neighbor

atoms in opposite sublattices and is invariant due to translational and sublattice symmetry.

The estimates for t vary in the range [2.5,3.2]eV [Castro Neto et al., 2009; Dresselhaus and

Dresselhaus, 2002; Das Sarma et al., 2011; Foa Torres et al., 2014; Slonczewski and Weiss, 1958].

Throughout the present thesis, we assume t = 2.7 eV, unless explicitly stated otherwise. We

further assume that pz -orbitals form an orthogonal set, that is, we neglect the overlap
〈

pi |p j
〉

between distinct atoms.

Since the system is periodic, we can define creation and annihilation operators in reciprocal

space:

ak = 1p
Ncell

∑
i

e−i Ri kai bk = 1p
Ncell

∑
i

e−i Ri kbi (1.2a)

a†
k = 1p

Ncell

∑
i

e i Ri ka†
i b†

k = 1p
Ncell

∑
i

e i Ri kb†
i , (1.2b)

where k varies in the BZ and Ncell is the total number of unit cells composing the system.

Eventually, the limit Ncell →∞ will be taken. Eqs. 1.2a and 1.2b can be inverted, giving

ai = 1p
Ncell

∑
e i Ri kak bi = 1p

Ncell

∑
e i Ri kbk (1.3a)

a†
i =

1p
Ncell

∑
e−i Ri ka†

k b†
i =

1p
Ncell

∑
e−i Ri kb†

k. (1.3b)

By substituting eqs. 1.3a into eq. 1.1, H can be expressed as

H =− t

Ncell

∑
k

∑
k′

∑
〈i , j〉

(
e−i kRi e i k′R j a†

kbk +e−i kRi e i k′R j b†
kak

)
=

− t

Ncell

∑
k

∑
k′

∑
〈i , j〉

(
e−i(k−k′)Ri e i k(R j−Ri )a†

kbk +e−i(k−k′)Ri e i k(R j−Ri )b†
kak

)
. (1.4)

At this point we exploit the identity e−i(k−k′)Ri = Ncellδkk′ and notice from Fig. 1.2(a) that the

vectors R j −Ri connecting the cell of one atom in A(B) sublattice to those of its neighbors are

0, −a1 (a1) and −a2 (a2). Hence, we have

H =
(

a†
k

b†
k,

)
H (k)

(
ak bk

)
(1.5a)

10



1.3. The tight-binding model for graphene

Figure 1.4 – Energy spectrum of the first-neighbor TB model graphene. In panel (b) the
spectrum is zoomed around the K point.

H (k) =−t

(
0 f ∗ (k)

f (k) 0

)
, (1.5b)

where the function f (k) is defined as

f (k) = 1+e i ka1 +e i ka2 . (1.6)

The peculiar form of Hamiltonian 1.5b is a consequence of the so-called “bipartite symmetry”

of the graphene lattice, which express the fact that electrons of one sublattice only couple with

electrons of the opposite sublattice. The eigenvalues of H (k) are given by

E± (k) =±t
∣∣ f (k)

∣∣=±t

√√√√3+2cos
(p

3ky a
)
+4cos

(p
3

2
ky a

)
cos

(
3

2
ky a

)
. (1.7)

The existence of two bands symmetric with respect to E = 0 is a direct consequence of the

bipartite symmetry and goes under the name of electron-hole symmetry. Given the spin

degeneracy of each band, the Fermi energy E f for an undoped system lies exactly at zero.

It can be verified that the two bands touch at K and K′ (and only at these points) where the

energy E± (k = K) = E±
(
k = K′) = E f = 0, see Fig. 1.4. As a consequence, no gap separates

the valence and conductance band, although the Fermi surface, rather than being a one-

dimensional object, reduces to a set of two inequivalent points. For this peculiarity graphene

is identified as a semi-metal or a zero-gap semiconductor.

To first order approximation, the dispersion of low-energy states is linear. For low momentum

q = k−K with
∣∣q∣∣¿|K| eq. 1.7 can be Taylor expanded as

E±
(
q
)= E± (K)+ ∂E±

∂k

∣∣∣∣
k=K

·q+O
((

q/K
)2

)
'±~v f

∣∣q∣∣+O
((

q/K
)2

)
, (1.8)
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Chapter 1. The electronic structure of graphene

with the Fermi velocity v f = 3t a/2~' 106m/s. Eq. 1.8 means that the low-energy excitations

of graphene are described by massless quasiparticles with linear dispersion and constant

Fermi velocity. This represents one of the most striking differences between graphene and

ordinary semiconductors. Though not immediately recognized with graphene’s discovery,

the peculiar nature of low-energy excitation has been demonstrated in 2005 [Novoselov et al.,

2005; Zhang et al., 2005] (remarkably, graphene was initially proposed to have a tiny overlap

between valence and conduction bands [Novoselov et al., 2004]).

An expansion up to quadratic terms of eq. 1.7 leads to an angle dependent distortion of the

dispersion cone called “trigonal warping” (from the angular periodicity of 2π/3 ) [Ando et al.,

1998; Dresselhaus and Dresselhaus, 2002; Castro Neto et al., 2009]:

E±
(
q
)=±~v f

∣∣q∣∣± 3t a2

8
sin

(
3θq

)∣∣q∣∣2 +O
((

q/K
)3

)
(1.9)

where θq = arctan
(
qy /qx

)
.

The density of states (DOS) ρ (E) = ´BZ

∑
n δ

(
E −E n

k

)
dk, where the index n = 1,2 runs over the

two bands of the present model, is shown in Fig. 1.5(a,c). Due to electron-hole symmetry ρ (E)

is an even function of the energy. As a consequence of the low-energy linear dispersion eq. 1.8,

ρ (E) can be approximated around E = 0 as

ρ (E) ' 4AS

2π

|E |(
~v f

)2 . (1.10)

The exact analytic expression of ρ (E) can be found in Ref. [Castro Neto et al., 2009]

The inclusion of coupling terms beyond first neighbors leads to a breakdown of the bipartite

symmetry since diagonal terms appear in H (k). The inclusion of second-neighbor terms

defines the Hamiltonian

H =−t
∑
〈i , j〉

a†
i b j +b†

i a j − t ′
∑

〈〈i , j〉〉
a†

i a j +b†
i b j . (1.11)

As there is no established consensus about the value of t ′, we just state the most likely range

0.02t < t ′ < 0.25t [Reich et al., 2002; Grüneis et al., 2008; Dresselhaus and Dresselhaus, 2002].

By applying Fourier transform, eq. 1.11 becomes

H (k) =−t

(
t ′
t g (k) f ∗ (k)

f (k) t ′
t g (k)

)
, (1.12)

where g (k) =∑
〈〈i , j〉〉 e i k(R j−Ri ). Therefore, the spectrum contains a momentum-dependent

correction proportional to t ′/t :
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1.4. Dirac fermions

Figure 1.5 – Density of states of graphene as a function of energy calculated within the TB
model. Panel (a) refers to the first-neighbor Hamiltonian defined in eq. 1.1. Panel (b) refers to
the Hamiltonian defined in eq. 1.11, including up to second neighbor interaction

(
t ′/t = 0.1

)
.

Panels (c-d) show the same as panels (a-b) zooming in the energy range [−0.4,0.4] t . Energies
are expressed in units of t .

E (k) =±t


√√√√3+2cos

(p
3ky a

)
+4cos

(p
3

2
ky a

)
cos

(
3

2
ky a

)

− t ′

t

(
2cos

(p
3ky a

)
+4cos

(p
3

2
ky a

)
cos

(
3

2
ky a

))]
. (1.13)

As shown in Fig. 1.5(b,d), for a finite ratio t ′/t the density of states ρ (E) is no longer electron-

hole symmetric and the Fermi energy is shifted to E f = 3t ′/t . Nevertheless, the low-energy

linear dispersion (eq. 1.8) stays unaltered as the first non-vanishing momentum-dependent

correction is proportional to
∣∣q∣∣2.

1.4 Dirac fermions

The fact that low-energy excitation in graphene are akin to massless Dirac particles was found

in 1984 [Semenoff, 1984]. The Hamiltonian defined in eq. 1.5b is an operator acting in the 2×2

sublattice space containing momentum k as a parameter. Given that the three Pauli matrices
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Chapter 1. The electronic structure of graphene

{σi }i=x,y,z complemented by the identity σ0:

σx =
{

0 1

1 0

}
, σy =

{
0 −i

i 0

}
, σz =

{
1 0

0 −1

}
, σ0 =

{
1 0

0 1

}
(1.14)

represent a basis for the 2×2 matrix space, eq. 1.5b can be expressed as

H (k) = Re f (k)σ1 + Im f (k)σ2. (1.15)

The function f
(
k = K+q

)
can be expanded for

∣∣q∣∣¿|K| as

f
(
K+q

)=−3

2
a

(
i qx +qy

)+O
((

q/K
)2

)
, (1.16)

whence

H
(
k = K+q

)= ~v f
(−qyσx +qxσy

)
. (1.17)

Performing a unitary transformation in sublattice space, the Hamiltonian can be rewritten as

H
(
k = K+q

)= ~v f
(
qxσx +qyσy

)= ~v f q ·σ σ= (
σx ,σy

)
, (1.18)

where the linear dispersion is evident. To express the last equation in real space, it suffices to

replace momentum q by the operator p̂ =−i
−→∇ :

HK = ~v f p̂ ·σ=−i~v f
−→∇ ·σ. (1.19)

As the Hamiltonian defined in eq. 1.18 is valid for small momenta q or, equivalently, long

wavelength, the real space Hamiltonian 1.19 describes electrons over lengths larger than the

lattice spacing, disregarding features at the atomic level. In other words, the Dirac equation

only allows for a continuous description of graphene low-energy excitations. In the vicinity

of K′ the low-energy Hamiltonian is obtained by the substitution qy →−qy in eq. 1.18, thus

obtaining

H
(
k = K′+q

)= ~v f
(
qxσx −qyσy

)= ~v f q ·σ∗ σ∗ = (
σx ,−σy

)
(1.20)

and the corresponding real-space Hamiltonian

HK = ~v f p̂ ·σ∗ =−i~v f
−→∇ ·σ∗. (1.21)

Equations 1.18 and 1.20 are two realizations of the Dirac equation for massless relativistic

particles in two dimensions. It is worth stressing that the role of spin in the original Dirac

equation is played here by the sublattice degree of freedom, called “pseudospin” for this reason.
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1.5. The tight-binding model for bilayer graphene

In fact, the wavefunction in momentum space in proximity of K is a two-component spinor:

Ψ±,K
(
q
)= 1p

2

(
e iθq/2

±e−iθq/2

)
, (1.22)

where the ± sign refers, respectively, to the conduction and the valence band and θq is the

same angle appearing in 1.9. In proximity of K ′ the wavefunction isΨ±,K ′
(
q
)=Ψ∗

±,K

(
q
)

, as K

and K ′ are connected by time-reversal symmetry. Finally, as a spinor, the wavefunction 1.22

acquires a phase of π (that is, changes sign) upon a rotation of 2π in the sublattice space.

The Dirac Hamiltonian (eq. 1.15) is proportional to the chirality operator, that is, the projection

of pseudospin along the momentum direction

ĥ = p̂∣∣p∣∣ ·σ. (1.23)

Therefore, chirality is a good quantum number and the wavefunction 1.22 is an eigenstate

of the operator ĥ with eigenvalue +1(−1) for conductance (valence) band, meaning that its

momentum is parallel (antiparallel) to its pseudospin. At K ′ the eigenvalues of the chirality

for valence and conduction band are inverted. Although the nature of pseudospin hardly

allows a geometrical representation, chirality has a profound consequence on many of the

electronic properties of graphene such as the absence of backscattering in pristine graphene,

a phenomenon previously discussed in the context of carbon nanotubes [Ando et al., 1998]. In

order to reverse its momentum (i.e. changing p →−p), a chiral charge carrier needs to flip its

pseudospin, otherwise chirality would not be conserved. This means that backscattering is

forbidden, unless a term capable of inducing a pseudospin flip is added to the Hamiltonian.

The two valley K and K ′ can be treated independently in all those situations where intervalley

scattering can be neglected. In this case, the full Hamiltonian is the tensor product of the two

single-valley Hamiltonians:

H = HK ⊗HK ′ (1.24)

and the full wavefunction is the four-component object (ΨK ,ΨK ′)t (bispinor). The valley

degree of freedom ξ=±1 , respectively, for K and K ′, can be treated similarly to pseudospin.

Given three Pauli-like matrices {τi }i=x,y,z and the identity τ0 acting in the 2×2 space of valley,

H can be expressed as [Mesaros et al., 2009]

H = ~v f
(
p̂x ·σx ⊗τ0 + p̂y ·σy ⊗τz

)
. (1.25)

1.5 The tight-binding model for bilayer graphene

The minimal coupling between two graphene layers in the TB description takes into account

a single interlayer hopping parameter γ1 between two atoms that have the same in-plane
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Chapter 1. The electronic structure of graphene

Figure 1.6 – TB model for bilayer graphene. (a) Schematic representation of the hopping
terms defining the TB model of bilayer graphene with AB stacking. Atoms in different colors
belong to opposite sublattices. (b-c) Band structure obtained with the minimal coupling
model (γ1 = 0.15t , γ3 = γ4 = 0) for (b) intrinsic bilayer graphene and (c) bilayer graphene in
presence of a layer symmetry breaking term V = 0.1t .

coordinates (also said to form a “dimer”), as shown in fig. 1.6(a) [McCann and Fal’ko, 2006;

McCann and Koshino, 2013; Castro Neto et al., 2009; Das Sarma et al., 2011]. A commonly

accepted value of γ1 is ' 0.15t [Dresselhaus and Dresselhaus, 2002; Grüneis et al., 2008]. The

additional hopping terms illustrated in fig. 1.6(a) have typical values γ3 ' 0.12t and γ4 ' 0.015t .

However, their effect on the electronic structure is relatively less important than that of γ1.

In particular, the effect of γ4 is very small and will not be discussed in the present section

[McCann and Koshino, 2013; Castro Neto et al., 2009].

Because of the misalignment between the layers, γ1 couples two atoms of the same unit cell

but in opposite sublattices, thus preserving electron-hole symmetry. The wavefunction in

reciprocal space is the four-component spinor ψ= (
ψA1,ψA2,ψB1,ψB2

)
where subscripts 1,2

identify each layer. Once introduced the operatorΨk = (a1k,b1k, a2k,b2k), the TB Hamiltonian

is [McCann and Koshino, 2013; Castro Neto et al., 2009]

H = Ψ̂†
k


0 −t f ∗ (k) 0 0

−t f (k) 0 −γ1 0

0 −γ1 0 −t f ∗ (k)

0 0 −t f (k) 0

Ψ̂k, (1.26)

where the interlayer coupling is momentum independent because it couples atoms in the

same unit cell. The resulting four bands follow the dispersion relations

E 2 (k) = t 2
∣∣ f (k)

∣∣2 + γ2
1

2
±

√√√√(
γ2

1

2

)2

+γ2
1t 2

∣∣ f (k)
∣∣2, (1.27)

which are plotted in Fig. 1.6(b). The two lower-energy bands obtained from eq. 1.27 touch at

k = K,K′ where E
(
k = K/K′)= 0, meaning that intrinsic bilayer graphene is a gapless system as

its monolayer counterpart. For the two higher-energy bands E
(
k = K/K′)=±γ1. In the region
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1.5. The tight-binding model for bilayer graphene

of reciprocal space where
∣∣q∣∣= |K |, we have

∣∣ f (k)
∣∣' ~v f q and, therefore,

E 2 (
q
)' (

~v f q
)+ γ2

1

2
±

√√√√(
γ2

1

2

)2

+γ2
1

(
~v f q

)2 (1.28)

which can be further approximated for the two lowest bands by the quadratic dispersion

E
(
q
) = ±v2

f q2/γ1 in the regime q ¿ γ1/~v f . For larger q such that γ1/~v f ¿ ∣∣q∣∣ ¿ |K | the

dispersion approaches the linear function E
(
q
)
=
√

1−γ/t~v f q . In this regime, the effect of

the finite interlayer coupling γ1 reduces to a renormalization of the monolayer graphene

Fermi velocity.

If the two layers are kept at a different chemical potential - for example, as a consequence of

an applied constant electric field orthogonal to the layers - without loss of generality we can

assume that the layers have opposite chemical potentials µ1 =V and ,µ2 =−V . This can be

achieved by conveniently setting the origin of the energy scale. If the imbalance is due to a

constant transverse electric field of intensity ε, we would have µ1 −µ2 = 2V = ε∆z. Therefore,

non-zero diagonal elements must be included in the Hamiltonian [McCann, 2006]:

H = Ψ̂†
k


V −t f ∗ (k) 0 0

−t f (k) V −γ1 0

0 −γ1 −V −t f ∗ (k)

0 0 −t f (k) −V

Ψ̂k. (1.29)

In this situation, the dispersion law is

E 2 (k) =V 2 + ∣∣ f (k)
∣∣2 + γ2

1

2
±

√√√√(
γ2

1

2

)2

+γ2
1

∣∣ f (k)
∣∣2 +4V 2

∣∣ f (k)
∣∣2 (1.30)

which is still electron-hole symmetric but has a gap at K and K′, see Fig. 1.6(b). For small

momenta q and V ¿ γ1 eq. 1.30 can be expanded as

E (k) =±
(

V − 2V

γ2
1

(
~v f q

)2 +
(
~v f q

)4

2γ2
1V

)
, (1.31)

which has an energy gap Eg = 2V
(
1−2V 2/γ2

1

)
at momentum qg such that q2

g = 2V 2/
(
~v f

)2.

Experiments have demonstrated the possibility to induce a tunable band gap in double-gate

bilayer graphene field effect transistors, where the potential of the two layers can be changed

independently [Castro et al., 2007]. Previous experiments on epitaxial bilayer graphene sam-

ples grown on SiC exploited the dipole field generated in the depletion layers of the SiC surface

to break the sublattice symmetry and induce a gap [Ohta et al., 2006].

The inclusion of finite hopping γ3 between “non-dimer” atoms couples different unit cells,

see Fig. 1.6, and modifies the bilayer graphene Hamiltonian as follows [McCann and Fal’ko,
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Chapter 1. The electronic structure of graphene

Figure 1.7 – Low-energy bands obtained by solving Hamiltonian 1.32 including a finite γ3. (a)
Isoenergetic lines drawn in proximity of the K point, with energy (momenta) expressed in units
of εL (pL). (b) Three-dimensional representation of the low-energy dispersion. Reproduced
with permission from Ref. [McCann and Koshino, 2013], ©2013 IOP Publishing.

2006; Castro Neto et al., 2009]:

H =Ψ†
k


0 −t f ∗ (k) 0 −γ3 f (k)

−t f (k) 0 −γ1 0

0 −γ1 0 −t∗ f (k)

−γ3 f ∗ (k) 0 −t f (k) 0

Ψk (1.32)

The main effect of the inclusion of a finite γ3 is a low-energy trigonal warping characterized

by the emergence of 4 linear-dispersion Dirac points in proximity of K and K ′ point. This

so-called “Lifschitz transition” takes place below the critical energy εL = γ1/4
(
γ3/t

)2 ' 1.5meV

[Lifshitz, I. M., 1960]. In this regime, the isoenergetic lines break into one circular “central”

pocket and three elliptical “leg” pockets at momenta such that q ' pL = γ1γ3/
(
3at 2/2

)
and

θq = 0,±2π/3, see Fig. 1.7. Because of its small characteristic energy scale, the four-pocket

splitting has been detected only recently [Varlet et al., 2014].

The low-energy electronic structure of bilayer graphene can be efficiently described by a

two-bands Hamiltonian acting on the space spanned by the non-dimer components of the

wavefunction χ= (
ψA1,ψB2

)
that are predominant at low energy. Once introduced the opera-

tor π= px +i py , the low-energy Hamiltonian in valley K is [McCann and Fal’ko, 2006; McCann

and Koshino, 2013]

HK =
 V (~v f )2

γ1

(
π†

)2 +3γ3aπ
(~v f )2

γ1
π2 +3γ3aπ† −V

 , (1.33)
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1.5. The tight-binding model for bilayer graphene

Figure 1.8 – Density of states for bilayer graphene calculated within the TB model. (a) Compari-
son between the DOS obtained within the minimal coupling model (γ1 = 0.15t , γ3 = γ4 = 0) for
intrinsic bilayer graphene (red curve) and including a chemical potential imbalance between
the two layers 2V = 0.2t (blue curve). (b) Effect of an additional coupling term γ3 = 0.12t on
the DOS of intrinsic bilayer graphene.

which for γ3 =V = 0 reduces to

HK =
 0 (~v f )2

γ1

(
π†

)2

(~v f )2

γ1
π2 0

=
(
~q

)2

2m
n2 ·σ. (1.34)

In the last equation, we have introduced the effective mass m = γ1/v2
f and the axis n2 =

−(
cos

(
2θq

)
,ξsin

(
2θq

))
. This Hamiltonian has the advantage of making evident that the low-

energy charge carriers of bilayer graphene are eigenstates of the chirality operator n2 ·σ.

However, upon rotation of momentum q, chirality of bilayer-graphene charge carriers turns

twice as quick as in monolayer graphene.

We conclude this section on bilayer graphene discussing the low-energy density of states

within the different models that have been treated. In the simplest situation where V = γ3 = 0

the density of states has a constant finite value in a narrow central energy region, then becomes

linear, as a consequence of the quadratic-to-linear crossover of the bands, see Fig. 1.8(a). At

energy E =±γ1, a finite discontinuity appears because of the onset of the second pair of bands.

When a potential V 6= 0 breaks the layer symmetry a gap in the DOS appears surrounded by

two van Hove singularities resulting from the fourth-power term of eq. 1.31. Finally, as shown

in Fig. 1.8(b), accounting for a non-zero value of γ3 produces van Hove singularities at E =±εL

because of flat bands interpolating between the four Dirac cones.
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2 Electronic transport in graphene

2.1 Ballistic transport

Ballistic transport is the regime of electrical conduction where charge carriers flow in a medium

with negligible scattering. This requires that all sources of scattering, namely, impurities

and imperfections of the crystal lattice, interaction with phonons and other electrons are

largely eliminated. Indeed, ballistic transport is achieved at low temperature and density

of charge carriers, in order to limit, respectively, electron-phonon and electron-electron

interactions. In this regime, electrical resistance is mostly due to scattering off the contacts.

Therefore, the mean free path is limited by the channel length of the device used to probe

transport. Ballistic transport was initially reported in two-dimensional electron gas embedded

in semiconductor heterostructures. Nowadays, continuous advances in synthesis methods

and in the engineering of electronic devices have allowed to realize ballistic transport also

in graphene, see Fig. 2.1. When the number of phase breaking events (prevalently due to

electron-phonon scattering) is very low, the time evolution of charge carriers is essentially

coherent, so that phenomena connected to the conservation of the phase emerge, such as

interference effects. In graphene, such phenomena are very important and deserve to be

briefly revised.

Figure 2.1 – Experimental mean free path of graphene charge carriers Lmfp as a function of
device size. Adapted with permission from [Wang et al., 2013] © 2013 American Association for
the Advancement of Science
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Chapter 2. Electronic transport in graphene

2.1.1 Klein tunnelling

One of the, perhaps unexpected, consequences of graphene’s discovery has been to transform

what was considered just a “gedanken” experiment into a real implementable one. The Klein

paradox - mostly known as Klein tunneling after its verification - was conceived in 1929 in the

context of relativistic fermions described by the Dirac equation [Klein, 1929].

Consider the situation of a free particle impinging on a sharp potential barrier that is higher

than the particle’s energy. Contrarily to classical particles which would just be reflected,

non-relativistic quantum particles have a finite probability to tunnel through the barrier

because the incident and transmitted waves are connected by an evanescent wave within the

barrier. Transmission probability decays exponentially as a function of the barrier’s width, but

is, strictly speaking, never zero. Differently from both cases, Dirac particles can either have

positive energy (electrons) or negative energy (positrons, holes). Upon crossing a barrier’s edge

an electron state can transform into a hole state still maintaining its propagating character.

However, one constraint applies to massive Dirac particles: the height of the barrier must be

at least twice larger than the rest energy me c2 = 0.51MeV in order to connect electron and

positron states. The insurmountable difficulty to produce such an intense potential, which

must set in over a distance of the order of the Compton length (~/me c ' 2∗10−12m), has

made an experimental verification of Klein tunneling unlikely, whence the common opinion

of “gedanken” experiment. However, in graphene, the absence of an energy gap separating

electron and hole states does not impose such a condition. In other words, independently of

the height of the barrier, incident electrons can turn to holes and get back to their original

nature once the barrier is overcome.

We expose now a theoretical treatment of Klein tunneling following Ref. [Katsnelson et al.,

2006]. A very similar derivation can be found in Refs. [Tworzydło et al., 2006a,b]. Consider

a massless Dirac particle with energy E described by the Hamiltonian 1.19 impinging on a

square potential barrier of height V and width D . With reference to fig. 2.2(a), we assume that

the particle comes from region I and is partially reflected into region I and partially transmit-

ted to region I I I . The first step is to write down the wavefunction in the three regions I , I I , I I I .

Since the whole system is assumed to be periodic along y , the corresponding momentum com-

ponent qy is conserved, that is, q I
y = q I I

y = q I I I
y = qy . In contrast, the momentum components

along x inside and outside the barrier must differ : q I
x = q I I I

x = qx 6= q I I
x . The momentum of

the incident particle
(
qx , qy

)
is an independent parameter of the problem and determines the

incidence angle θ = arctan
(
qy /qx

)
as well as the energy E = ~v f (q2

x +q2
y )0.5. The refraction

angle inside the barrier is φ= arctan
(
qy /q I I

x

)
. The wavefunction of the incoming particle is

obtained by eq. 1.22 including the Bloch phase:

Ψ
(
x, y

)= 1p
2L

(
1

se−iθq

)
e i (qx x+qy y), (2.1)

where the index s = sign(E) denotes electron or hole states and L is a normalization factor

taking into account the geometry of the system. In region I I the wavefunction is a solution of
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2.1. Ballistic transport

Figure 2.2 – Klein tunneling in monolayer and bilayer graphene. (a) Energy levels in regions
I , I I , and I I I corresponding to n, p, and n doping, respectively. In each region momentum
and pseudospin (σ) of the charge carriers are shown. (b) Transmission at normal incidence as
a function of the barrier’s width D for monolayer graphene, bilayer graphene and a gapless
non-chiral semiconductor. The barrier height is 450 meV for monolayer graphene and 240 meV
for the other two materials. (c-d) Polar plots of the transmission as a function of the incidence
angle θ for (c) monolayer graphene and (d) bilayer graphene. In both cases the width of the
barrier is 100 nm. Panels (b-d) adapted with permission from [Katsnelson et al., 2006] © 2006
McMillan publisher Ltd.

the Dirac equation(
0 ~v f

(
q I I

x − i qy
)

~v f
(
q I I

x + i qy
)

0

)(
ΨI I

A

ΨI I
B

)
= (E −V0)

(
ΨI I

A

ΨI I
B

)
(2.2)

and, correspondingly, one has

q I I
x =

√√√√(
E −V0

~v f

)2

−q2
y , (2.3a)

tan
(
φ

)= qy√(
E−V0
~v f

)2 −q2
y

. (2.3b)
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Chapter 2. Electronic transport in graphene

The complete wavefunction can be written in terms of incident and reflected waves:

ΨI (
x, y

)= 1p
2L

[(
1

se−iθ

)
e i (qx x+qy y) + r

(
1

se−i (π−θ)

)
e i (−qx x+qy y)

]
, (2.4a)

ΨI I (
x, y

)= 1p
2L

[
a

(
1

s′e−iφ

)
e i (q I I

x x+qy y) +b

(
1

s′e−i(π−φ)

)
e i (−q I I

x x+qy y)

]
, (2.4b)

ΨI I I (
x, y

)= tp
2L

[(
1

se−iθ

)
e i (qx x+qy y)

]
, (2.4c)

where s′ = sign(E −V0). The overall spatial continuity of the wavefunction requires

ΨI (
0, y

)=ΨI I (
0, y

)
, (2.5a)

ΨI I (
D, y

)=ΨI I I (
D, y

)
(2.5b)

from which we find that

r = i e iθ sin
(
qx D

)(
sinθ− ss′ sin

(
φ

))
sin

(
qx D

)+−s′
[
sin(θ)sin

(
φ

)
sin

(
qx D

)− i cos(θ)cos
(
φ

)
cos

(
qx D

)] . (2.6)

Transmission probability is obtained from the last equation imposing probability conservation:

T (θ) = t t∗ = 1−r r∗ = cos2
(
φ

)
cos2 (θ)

cos2
(
qx D

)
cos2

(
φ

)
cos2 (θ)+ sin2

(
qx D

)(
1− ss′ sin(θ)sin

(
φ

))2 . (2.7)

In the limit of very high barrier |V |À |E | one has φ→ 0 and eq. 2.7 simplifies to

T (θ) = cos2 (θ)

cos2
(
qx D

)
cos2 (θ)+ sin2

(
qx D

) = cos2 (θ)

1−cos2
(
qx D

)
sin2 (θ)

, (2.8)

which means perfect transparency (T = 1) at normal incidence (θ = 0) or at whatever angle if

the resonance condition qx D/π= 0,±1,±2. . . is met. The result of eq. 2.8 must be compared to

the transmission probability of non-relativistic particles in ordinary gapless semiconductors.

For the latter the transmission amplitude at θ = 0 is

t = 4qx q I I
x(

q I I
x +qx

)2
e−i q I I

x D − (
q I I

x −qx
)2

e i q I I
x D

, (2.9)

meaning that T = 1 is achieved only if qx D/π = 0,±1,±2. . . , in contrast to massless chiral

fermions for which at normal incidence a barrier of whatever width would be transparent.

Transmission probability in the two cases is shown in Fig. 2.2(b).

Klein tunneling can be understood as a consequence of chirality conservation of massless

Dirac particles. As previously discussed in Section ??, backscattering is suppressed in absence

of a mechanism that induces a net pseudo-spin flip. The case of a potential step of height
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2.1. Ballistic transport

V > E (p-n junction) bears some similarities to Klein tunneling, such as full transmission at

normal incidence and has been discussed in details in Ref. [Cheianov and Fal’ko, 2006]. Notice

that the assumption of square barrier requires the Fermi wavelength λ f to be much larger

than the smearing width of the barrier edges, but the latter must be larger than the lattice

constant in order not to introduce high-momentum scattering between the two valleys that

would flip pseudo-spin.

Experimental confirmations of Klein tunneling came few years after its prediction, first using

p-n junction devices [Williams et al., 2007],and later in n-p-n junctions[Stander et al., 2009;

Young and Kim, 2009].

In bilayer graphene tunneling through a potential barrier has radically different features with

respect to monolayer graphene. Consider the Hamiltonian

H =
(
~v f

)2

γ1

(
0

(
π†

)2

π2 0

)
(2.10)

corresponding to eq. 1.33 where γ3 = 0. This Hamiltonian describes particles with energy

εL ¿ |E | ¿ t . Similar steps as those followed for monolayer graphene lead to the following

expression for transmission at qy = 0

T = 4
(
qx q I I

x

)2(
q2

x +
(
q I I

x
)2

)
sinh2 (

q I I
x D

)+4
(
qx q I I

x
)2

, (2.11)

where

qx =
√

γ1(
~v f

)2
|E |, q I I

x =
√

γ1(
~v f

)2
|E −V0|. (2.12)

The expression of eq. 2.11 decays exponentially upon an increase of either the width or the

height of the barrier. Notably, for a potential step (D →∞) T is exactly 0. Once more the

argument of chirality conservation gives some insight into the physics behind this “anti-

Klein-tunneling” behavior. As shown in Section 1.5, upon turning momentum of a particle

in bilayer graphene by an angle π, the chirality stays unchanged, differently from monolayer

graphene. This means that no selection rule applies to prevent backscattering. Moreover,

the wavefunction of a particle propagating with momentum qx in region I is coupled to the

wavefunction of a hole in region I I having imaginary momentum i q I I
x , that is, an evanescent

wave, whence the exponential decay of T [Katsnelson et al., 2006].

2.1.2 Universal minimal conductivity

In the presentation of the tunneling through a potential barrier of mass-less chiral particle

we have surreptitiously assumed that momentum q I I
x inside the barrier is a well defined

real quantity. This is true when |E −V | > ~v f qy , which is always fulfilled when the barrier is
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Chapter 2. Electronic transport in graphene

sufficiently high. If the last condition is not satisfied, q I I
x is a pure imaginary quantity and

the wavefunction is an evanescent wave Ψ∝ exp
(±q I I

x x
)
. These are not physical states in

infinite space because of exponential divergence, but they became well-defined in confined

regions such as inside a potential barrier. In the previous section, the wavefunction for

monolayer graphene’s particles has been constructed disregarding evanescent states as they

give a negligible contribution to transmission compared to propagating states. On the other

hand, for bilayer graphene their inclusion is essential to obtain a finite transmission since

propagating states inside and outside the barrier are not coupled.

However, also for monolayer graphene there exists a situation where the contribution to trans-

mission originating from evanescent states largely overtakes that originating from propagating

states. This is the case of a two-probe conductivity measurement performed on an intrinsic

graphene sample attached to two metallic contacts with high density of states. Since at the

charge neutrality point the density of states of graphene vanishes, the charge carriers coming

from the leads do not couple to any propagating state of the sample, thus one would simply

expect zero conductivity. However, this is too naive and, indeed, in 2006 the universal minimal

conductivity σmin ' 4e2/hπ for undoped graphene was predicted. This finite conductivity is a

consequence of evanescent waves present in a finite-length sample[Tworzydło et al., 2006b;

Katsnelson, 2006; Tworzydło et al., 2006a].

The present derivation follows Ref. [Katsnelson, 2006]. With reference to Fig. 2.3 consider

a graphene sheet of finite length Lx that is attached along x to two leads made of n-doped

graphene where the Dirac energy lies at V < 0. The whole system (leads plus sample) is

periodic along y with periodicity Ly and, consequently, the wavefunctions have quantized

allowed moment ky = 2π/Ly (0,±1,±3. . . ). This assumption simplifies the derivation but is,

strictly speaking, unphysical and its effects must be minimized by taking Ly À Lx .

The two-dimensional Dirac equations in real space 1.18 at E = 0 have the form(
∂

∂x
− i

∂

∂y

)
ΨA = 0 (2.13a)(

∂

∂x
+ i

∂

∂y

)
ΨB = 0 (2.13b)

and its solutions are analytic functions of the conjugate variables z = x + i y and u = x − i y :

ΨA
(
x, y

)=ΨA
(
x + i y

)
(2.14a)

ΨB
(
x, y

)=ΨB
(
x − i y

)
. (2.14b)

Since the dependence on y is enclosed in the Bloch phase exp
(
i qy y

)
, the wavefunction

in region I I must be ΨA/B ∝ exp
(±qy x

)
exp

(
i qy y

)
. Proceeding in the same way as in the
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2.1. Ballistic transport

Figure 2.3 – Sketch of the ideal two-probe transport setup for the measurement of graphene
minimal conductivity. A rectangular sample of undoped graphene of size Lx ×Ly is attached
to two semi-infinite contacts of n-doped graphene. The overall system is periodic along y .

Incoming electrons have energy E and momentum q f =
√(

q2
x +q2

y
)
. The energy diagram and

the wavefunction shape of each region is illustrated in the panel above.

derivation of Klein tunneling, the complete wavefunction is

ΨI (
x, y

)= (
ΨI

A

(
x, y

)
ΨI

B

(
x, y

) )
= 1p

2L

[
e i qx x

(
1

e iθ

)
+ r e−i qx x

(
1

e i (π−θ)

)]
e i qy y (2.15a)

ΨI I (
x, y

)= (
ΨI I

A

(
x, y

)
ΨI I

B

(
x, y

) )
= 1p

2L

[
aeqy x

be−qy x

]
e i qy y (2.15b)

ΨI I I (
x, y

)= (
ΨI I I

A

(
x, y

)
ΨI I I

B

(
x, y

) )
= 1p

2L

[
te i qx x

(
1

e iθ

)]
e i qy y (2.15c)

where tanθ = qy /qx , qx =
√

q2
f −qy , k f = q f /~ = V /~v f is the Fermi wave vector of the in-

coming particles and we have assumed that the leads are n-doped, that is, electron-type

wavefunction have been used (see eq. 1.22). By imposing continuity conditions, the transmis-
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Chapter 2. Electronic transport in graphene

sion probability is obtained:

T
(
qy

)= t t∗ = cos2
(
φ

)
cosh2 (

qy Lx
)− sin2φ

(2.16)

which can be further simplified as

T
(
qy

)= 1

cosh2 (
qy Lx

) (2.17)

assuming φ' 0 which is justified for high doping of the leads V0 . The total transmission is

obtained by summing over the ky modes:

T =
i=+∞∑
i=−∞

T

(
2πi

Ly

)
' Ly

2π

ˆ
dqy

1

cosh2 (
qy Lx

) = Ly

πLx
. (2.18)

Anticipating the main result of the Landauer-Büttiker theory which is treated in Section 4.5.1,

the conductance is G = (4e2/h)T , including the spin and valley degeneracy factor gs gv =
4. Hence, the conductivity is σ = GLy /Lx = 4e2/hπ. A similar derivation accounting for

closed boundary conditions leads to the same result in the limit Ly À Lx [Tworzydło et al.,

2006b]. Numerical calculations based on tight-binding model have confirmed the result of the

analytical derivation [Cresti et al., 2007]. Although the existence of some universal minimal

conductivity has never been questioned, early experiments measured values clustering around

4e2/h, roughly three times larger than the theoretical value [Novoselov et al., 2005; Geim

and Novoselov, 2007]. This so-called “mystery of the missing pie” motivated the graphene

community to propose alternative mechanisms responsible for the minimal conductivity.

Indeed, a quasi-universal conductivity of 4e2/h in “dirty” samples was predicted [Stauber

et al., 2007]. The disputation ended in 2007, when an experiment on very clean graphene

samples confirmed the minimal conductivity 4e2/πh, pointing out that a large aspect ratio

(Ly /Lx ' 8 in the experiment) is crucial to measure such a value [Miao et al., 2007; Danneau

et al., 2008].

2.2 Diffusive transport at high charge concentration

Diffusive transport takes place in graphene samples having a length L larger than the mean free

path lmfp. Typical values of lmfp in graphene range from 50−200 nm for graphene deposited on

a substrate [Berger et al., 2006] up to 1−5µm for suspended or encapsulated samples [Bolotin

et al., 2008; Wang et al., 2013]. It must be stressed that mean free path and conductivity strongly

depend on temperature and charge-carrier concentration. The main scattering mechanism

for electronic transport in graphene has been debated since the very first days of the graphene

era. The experimental starting point is that conductivityσ depends linearly on the gate voltage∣∣Vg
∣∣ in field-effect devices built on graphene samples, as shown in Fig. 2.4(a,c). For Vg & 1 eV,

28



2.2. Diffusive transport at high charge concentration

the charge concentration grows linearly with the gate voltage:

n
(
Vg

)=Cg
(
Vg −VD

)
/e, (2.19)

where Cg is the graphene-substrate capacitance, e is the fundamental charge and VD is the

voltage corresponding to the minimum of resistivity.

Figure 2.4 – Experimental dependence of graphene conductivity σ as a function of charge
carrier concentration n or, equivalently, gate voltage Vg . In all plots the zero of the gate voltage
axis corresponds to the charge neutrality point. (a) σ

(
Vg

)
for a graphene sample obtained by

mechanical cleavage. (b)σ
(
Vg

)
for graphene exposed to potassium at different exposure times.

(c)σ
(
Vg

)
for five graphene samples with different amount of impurities. (d)σ (n) for graphene

samples exposed to atomic hydrogen. In panels (c-d) the amount of impurities increases
going downward in the data series. Concentration n is measured with respect to the charge
neutrality point. Reprinted with permission from (a) [Novoselov et al., 2005] c, 2005 McMillan
publisher Ltd, (b) [Chen et al., 2008], c, 2008 McMillan publisher Ltd, (c) [Tan et al., 2007]
c, 2007 American Physical Society, (d) [Ni et al., 2010] c, 2010 American Chemical Society.

Therefore, it can be deduced that σ∝ n or, equivalently in the framework of Drude theory,

one has µ=σ/en = const. Notice that graphene’s capacitance bears a significant quantum

contribution Cq ∝ Vg at low Vg [Xia et al., 2009]. Remarkably, graphene exhibits an almost
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Chapter 2. Electronic transport in graphene

perfect ambipolar behavior due to its gapless and approximately electron-hole symmetric

nature, see Fig. 2.4(a-d). This scenario is quite different from 2D electron gas found in thin

layers of standard semiconductors (e.g. Si, Ge, GaAs) where the conductivity shows a rather

complicated evolution from low to high charge-carrier concentration regime. The most

prominent difference is, of course, that the presence of a band gap in a 2DEG prevents from

immediate switching from an electron metal to a hole metal. For sufficiently large value of

Vg that allow to overcome the band gap, conductivity shows first a superlinear trend upon

an increase of the carrier density σ∝ nα with 1 <α< 2 until mobility µ reaches a maximum,

then it increases sublinearly such that µ progressively drops [Das Sarma et al., 2011].

Moreover, differently from standard semiconductors, it was found for graphene deposited on a

SiO2 substrate thatµweakly depends on the temperature - no more than a few percents change

from T = 0K to T = 300K [Morozov et al., 2008]- so that electron-phonon interaction cannot be

the main source of scattering. Three main scattering mechanisms involving impurity disorder

have been proposed to explain the properties of diffusive transport of graphene: i) Scattering

from long-range charged impurities located either in the substrate or on the exposed graphene

surface, ii) Short-range neutral point defects, and iii) Resonant scattering from low-energy

localized states due to realistic impurities such as adsorbates.

The total conductivity can be calculated in the semiclassical Boltzmann-Drude framework as

σ= e2

2

ˆ
dερ (ε)v2

kτ (ε)

(
−∂ f

∂ε

)
, (2.20)

where τ (ε) is the relaxation time at energy ε, vk = dεk/dk, and f is the Fermi-Dirac distribution

[Economou, 2006; Das Sarma et al., 2011]. In the limit T → 0, the last equation becomes the

Drude formula

σ=
e2v2

f

2
ρ

(
E f

)
τ
(
E f

)
. (2.21)

The relaxation time can be calculated by means of the Fermi’s golden rule:

1

τ (εk)
= 2π

~
ni

ˆ
d2k′

(2π)2 ,
∣∣〈Vk,k′

〉∣∣2 (
1−cosθk,k′

)
δ (εk′ −εk) , (2.22)

where ni is the concentration of scattering centers, εk is the dispersion law, θk,k′ is the angle

formed by the incoming and outcoming momenta k and k′, and Vk,k′ is the scattering potential

in Fourier space. The potential Vk,k′ in Eq. 2.22 is, actually, the first term of the Born series

that defines the T matrix, see Section 4.5.2. A more accurate estimate of the scattering time is

obtained by including the full knowledge of the T matrix [Economou, 2006]:

1

τ (εk)
= 2π

~
ni

ˆ
d2k′

(2π)2 ,
∣∣〈Tk,k′ (εk)

〉∣∣2 (
1−cosθk,k′

)
δ (ε−εk) . (2.23)
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2.2. Diffusive transport at high charge concentration

The scattering time depends on the type of defect considered. The potential of charged

impurities can be described by a Thomas-Fermi screened Coulomb potential generated at

position ri by Nimp identical impurities at position r j

U (r) =UTF

Nimp∑
j=1

e−ξTF|ri−r j |∣∣ri − r j
∣∣ , (2.24)

where UTF and ξTF are parameters describing the strength and the decay length of the scat-

tering centers [Foa Torres et al., 2014]. Adam et al. employed a self-consistent method in the

random phase approximation (RPA) and found to the leading order [Adam et al., 2007]

σLR =C
4e2

~
n

ni
, (2.25)

where C ' 5 if the dielectric constant of a SiO2 substrate is considered [Das Sarma et al., 2011].

Eq. 2.25 is consistent with the experimental findings and would lead to identify Coulomb

scatterers as the one responsible for diffusive transport in graphene. Moreover, Chen et al.

showed that under a controlled addition of potassium adsorbates, graphene’s conductivity

conserves the behavior σ ∝ n and µ is roughly inversely proportional to the amount of

adsorbates [Chen et al., 2008], see Fig. 2.4(b). Such adatoms can be considered charged

impurities, due to the weak electronegativity of potassium. Indeed, the Dirac point shifts to

lower energies as a result of the charge donated to the system by potassium adatoms. It was

found that the product of mobility and impurity concentration roughly equals a constant

C =µni = 5×1015 (Vs)−1. However, if a substrate with a high dielectric constant (e.g. SrTiO2)

is used instead of SiO2, the change in mobility is very weak [Couto et al., 2011; Ponomarenko

et al., 2009]. This evidence has weakened the arguments in favour of Coulomb scattering as

the mechanism that governs electronic transport at high charge-carrier concentration.

For point defects at position ri described by the potential

U (r) =
Nimp∑
j=1

U jδ
(
r−r j

)
(2.26)

the Boltzmann conductivity is found to be independent of charge concentration [Foa Torres

et al., 2014]:

σSR = 4e2

h

2
(
~v f

)2

ni

〈
U 2

j

〉 . (2.27)

This result rules out generic short-range defects as the main scattering source at high density.

However, the sublinear behavior of µ observed at low concentration of charge-carrier in

very high-mobility samples, that are affected by a low concentration of charged impurities,

has been attributed to a relative stronger role of short range disorder [Tan et al., 2007], see

Fig. 2.4(c).
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Chapter 2. Electronic transport in graphene

Finally, we discuss the role of resonant scattering, that is, scattering from quasi-localized states

in the vicinity of the Dirac point (also called “midgap states” in analogy with ordinary semicon-

ductors). The signature of such states is a peak in the density of states - a resonance, indeed

- in correspondence of their energy. Such states naturally arise in case of unreconstructed

vacancies [Pereira et al., 2006] but, on the other hand, it is very unlikely that vacancies are

naturally present in graphene if not created intentionally [Chen et al., 2009]. However, it has

been predicted that adsorbed hydrogen or small organic radicals such as CH3, C2H5 and OH

groups produce resonances within 30meV away from the Dirac point [Wehling et al., 2010,

2009a]. A T -matrix approach based on a TB model for graphene with adsorbates leads to the

following expression for conductivity

σ= e2

hπ

n

ni
ln2 (ne ) , (2.28)

where ne = 2n As is the number of carriers per carbon atom [Wehling et al., 2010; Stauber et al.,

2007]. This equation mimics the linear dependence on n at sufficiently high concentrations

that has been also found for charged impurities. Moreover, it naturally contains the sublinear

behavior for low n which is found in experiments on clean graphene samples. The conductivity

measured in graphene samples where vacancies are intentionally created by ion bombardment

is well fitted by eq. 2.28 [Chen et al., 2009]. A similar trend of σ (n) has been found in graphene

samples exposed to atomic hydrogen, see Fig. 2.4 [Ni et al., 2010]. It has been argued that a

non-negligible concentration of resonant scatterers is present in graphene deposited on a

substrate, as revealed by a weak D peak in Raman spectra, which is a signature of intervalley

scattering induced by atomic-scale defects. For this reason, resonant scatterers have been

proposed to be the main factor limiting carrier mobility in graphene [Ni et al., 2010]. In

particular, a small concentration of such scatterers ne < 10−4 would be sufficient to limit

mobility down to 2∗104cm2/Vs, somewhat more efficiently than charge impurities.

2.2.1 Phonon scattering

The role of extrinsic disorder is particularly important when graphene is deposited on a

substrate. Generally, electron-phonon scattering, that is the main factor limiting mobility

in standard semiconductors at room temperature, is expected to be negligible in graphene

because of the high frequency of its optical phonons [Mounet and Marzari, 2005]. However, in

suspended graphene the contribution of low-energy acoustic phonons cannot be neglected

as it generally dominates with respect to the contribution of extrinsic scatterers. For such

samples, similarly to graphene on substrate, experiments have shown that conductivity is

proportional to the charge-carrier density σ= eµn and that the dependence of mobility on

temperature is described by the law

µ−1 (T ) =µ−1 (T = 0)+γT 2, (2.29)
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2.2. Diffusive transport at high charge concentration

as shown in Fig. 2.5(c) [Castro et al., 2010]. In the last equation, the constant µ−1 (T = 0) is due

to intrinsic defects and the coefficient γ depends on the measured sample.

Figure 2.5 – Temperature dependence of resistivity in graphene ρ (T ). (a) Theoretical contri-
bution to resistivity of flexural (continuous blue line) and in-plane (dashed red line) acoustic
phonons for an unstrained sample. (b) Same as panel (a) for different amount of strain as indi-
cated by percentages. The crossover from a low-temperature ρ∝ T 4 to a high-temperature
ρ∝ T 2 behavior appears in the curves with larger strain. In both panels the charge-carrier
concentration is n = 1012cm−2. (c) Experimental resistivity for varying temperature measured
on three different samples. Lines have been drawn by fitting eq. 2.29 on the experimental data.
Reprinted with permission from Ref. [Castro et al., 2010], c, 2010 American Physical Society.

Theoretical studies have found that scattering due to flexural phonons leads to σ∝ n consis-

tently with experiments, whereas in-plane phonon scattering leads to a conductivity inde-

pendent of n [Castro et al., 2010]. For unstrained systems above the cross-over temperature

Tc ' 57K∗n/1012cm−2, the dominant scattering process is due to flexural phonons. The

relaxation time of the latter depends on the temperature as

1

τ
∝ T 2 ln

(
T

T ∗

)
. (2.30)

In eq. 2.30, T ∗ is a free parameter arising from the infrared cut-off below which anharmonic

effects become important. An estimate based on Ginzburg’s criterion gives T ∗ ' 70K [Za-

kharchenko et al., 2010]. The complete expression for the relaxation time can be found in

Ref. [Castro et al., 2010]. Notice that at sufficiently high temperature the functional depen-

dence expressed in eq. 2.30 becomes indistinguishable from that of eq. 2.29. Figure 2.5(a)

shows that at T = 300K the relative contribution to resistivity due to flexural phonons largely

overtakes that of in-plane phonons. However, in the low temperature regime T < Tc the

in-plane phonon scattering becomes dominant and the scattering time rather behaves as

1/τ∝ T . Strain can have a beneficial effect on mobility since an expansion of the sample

suppresses flexural phonons. It has been shown that even a small strain below 1% can in-

crease the room-temperature mobility by up to an order of magnitude, see Fig. 2.5(b) [Castro

et al., 2010]. To the best of our knowledge the record value of mobility achieved in suspended

graphene is 2.3∗105cm2/Vs at T = 5K and n = 2∗1012cm−2 corresponding to a mean free
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Chapter 2. Electronic transport in graphene

path lmfp ' 1.2µm [Bolotin et al., 2008]. For completeness, we report that higher mobili-

ties have been achieved in ultra-clean graphene samples encapsulated in boron nitride and

with one-dimensional metallic contacts to the graphene edges [Mayorov et al., 2011; Wang

et al., 2013]. Encapsulation suppresses out-of-plane flexural modes and mobility is limited by

in-plane longitudinal phonons, thus scaling as µ∝ 1/T n, while one-dimensional contacts

reduce the contact resistance (as low as 100Ωµm) [Wang et al., 2013]. At room temperature a

mobility of 1.4∗105cm2/Vs has been measured for low carrier concentration n ' 1011cm−2,

whereas at low temperature the record mobility of 106cm2/Vs at concentration n ' 3∗1012

has been achieved. For samples whose width is comparable to the mean free path lmfp 'µm,

the conductivity is limited by scattering at the sample boundaries rather than in graphene

bulk. We conclude pointing out that flexural phonon scattering in bilayer graphene leads to a

behavior analogous to monolayer graphene both in the temperature dependence of mobility

and in the concentration dependence of conductivity [Ochoa et al., 2011].

2.3 Anomalous Quantum Hall Effect

The massless Dirac fermion nature of graphene charge carriers has peculiar signature in the

quantum Hall effect. Consider a uniform magnetic field B = Bez applied perpendicularly to the

graphene plane x y and described by the vector potential A =−yBex . The Dirac Hamiltonian

in presence of magnetic field is obtained by replacing the operator p̂ = (~/i )~∇ by p̂+ (e/c)A =
(~/i )~∇+ (e/c)A. In proximity of K, the Hamiltonian reads

~v f

[
0 −i ∂

∂x + ∂
∂y − eB

~c y

−i ∂
∂x − ∂

∂y − eB
~c y 0

]
Ψ= EΨ. (2.31)

Because of the gauge choice, the wavefunction has the form Ψ = exp(i kx)φ
(
y
)
, which,

substituted in the Hamiltonian, leads to

~v f

 0 k + ∂
∂y − 1

l 2
B

y

k − ∂
∂y − 1

l 2
B

y 0

φ(
y
)= Eφ

(
y
)

, (2.32)

where we have introduced the magnetic length lB =p
~c/eB . We remind that φ represents the

two-component spinor
(
φA,φB

)
. Once introduced the adimensional variable ξ= lBk − 1

lB
y , let

us define the operators â and â†, akin to 1D harmonic-oscillator creation and annihilation

operators,

â = 1p
2

(
∂

∂ξ
+ξ

)
(2.33)

and

â† = 1p
2

(
− ∂

∂ξ
+ξ

)
, (2.34)
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2.3. Anomalous Quantum Hall Effect

Figure 2.6 – Quantum Hall effect in graphene. Shubnikov-de Haas oscillations in longitudinal
conductivityσxx and plateaus in transverse conductivityσx y measured as a function of charge
carrier concentration n. Reprinted with permission from [Novoselov et al., 2005], c, 2005
McMillan publisher Ltd..

which satisfy the commutation relation
[
â, â†

]= 1. Thus, eq. 2.32 becomes

~ωc

[
0 â

â† 0

](
φA

φB

)
= E

(
φA

φB

)
, (2.35)

where the cyclotron frequency ωc is given by
p

2v f /lB =
√

2ev2
f B/~c. From the first row of

eq. 2.35 we get φA = E/~ωcâφB, which, substituted into the second row, leads to

â†âφB =
(

E

~ωc

)2

φB. (2.36)

From the commutation properties of â and â†, we know that the energy spectrum is found

from (E/~ωc)2 = N , with N = 0,1,2 . . . , whence the Landau levels are given by [McClure, 1956]

E± (N ) =±~ωc

p
N =±v f

p
2e~B

p
N . (2.37)

The corresponding eigenfunctions are found by solving eq. 2.35(
φA

N

φB
N

)
=

(
±ψN−1

ψN

)
, (2.38)

whereψN (ξ) = 1/
p

2N N !exp
(−ξ2/2

)
HN (ξ), with HN being a Hermite polynomial, is the eigen-

function corresponding to the N -th eigenvalue of the 1D harmonic oscillator. The sublattice

asymmetry of the wavefunctions (eq. 2.38) depends on the particular gauge chosen. For the

opposite point K′, the energy spectrum is exactly the same, so that considering spin degen-

eracy, each energy level has degeneracy gL = 4. The spectrum given by eq. 2.37 differs from
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the classical Landau level spectrum in two aspects: i) the presence of an N = 0 state, and ii)

the unequal spacing between the levels EN+1 −EN ∝p
N +1−p

N . These peculiarities are

responsible for the anomalous quantum Hall effect in graphene.

In presence of disorder, Landau levels develop a finite broadening and mobility edges appears,

namely, the states close to the original Landau states are delocalized and those in the gap

between two states are localized at the edges of the sample. When the chemical potential

lies inside a region of localized states, the longitudinal conductivity σxx = 0 and the Hall

conductivityσx y assumes quantized values. Differently, when the chemical potential lies close

to the center of a Landau level, σxx assume a finite value and σx y varies continuously between

two quantized values. As shown by Laughlin, the quantized values of σx y for 2D free elec-

trons in a perpendicular magnetic field are an integer multiple of the conductance quantum

σx y =±(
e2/h

)
M , where plus (minus) sign applies when charge-carriers are electrons (holes)

[Laughlin, 1981]. Ultimately, M corresponds to the number of Landau levels, occupied or

unoccupied, with respect to the charge neutrality point of the system. From a naive extension

of this argument to massless Dirac fermions one would expect σx y =±gL
(
e2/h

)
N , where N

is the index of the highest occupied Landau level. However, the charge neutrality point of

undoped graphene lies at E = 0, namely, in correspondence of the N = 0 Landau level. We

assume that, upon disorder-induced broadening, this level hosts an equal number of electron

and hole states. Therefore, the conductivity of the undoped system at E f = 0 must lie in the

middle of two Hall plateaus σx y = ±gL/2(e2/h) so that, by symmetry, σx y
(
E f = 0

) = 0. In

general, Hall conductivity in graphene assumes shifted (but still integer) values

σx y =±gL
e2

h

(
N + 1

2

)
, (2.39)

as shown in Fig. 2.6. This anomalous quantum Hall effect in graphene has been confirmed

in experiments by two independent - and almost simultaneous - experiments [Zhang et al.,

2005; Novoselov et al., 2005]. As a consequence of the Landau level spectrum 2.37, the energy

spacing between Landau levels ∆n = En −En−1 = ~ωc
(p

n +1−p
n

)
can be rather large for

low n. For example, assuming a field B = 10T, one has ∆1 ' 114meV and ∆2 = 47meV, well

above the room-temperature kbT , which is the ultimate requirement for the observation

of Landau levels. To the best of our knowledge, graphene is the only material that exhibits

QHE at room temperature [Novoselov et al., 2007]. Finally, the spectrum of Landau levels in

bilayer graphene can be derived starting from the Hamiltonian (eq. 1.34) by implementing

the substitution p̂ ← p̂+ (e/c)A. The spectrum contains two degenerate levels with energy

E0 = E1 = 0 and, defining the cyclotron frequency ωc = eB/mc with m = v2
f /γ1, the energy of

the other states is given by

E± (N ) =±~ωc

√
N (N −1) N ≥ 2, (2.40)

for B and N low enough to fulfill |E ± (N )|¿ γ1. The degeneracy of the E = 0 Landau level is

2gL = 8, whereas the degeneracy of the other states is simply gL. Thus, the Hall conductivity
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must exhibit plateaus at quantized values

σx y =±gL
e2

h
N , (2.41)

which was confirmed experimentally [Novoselov et al., 2006]. Differently from monolayer

graphene, where the plateau spacing is constantly gLe2/h, the spacing between the first

electron and hole plateaus of bilayer graphene is 2gLe2/h, twice larger than the spacing

between all other levels.

2.4 Anderson Localization

Anderson localization is a phenomenon taking place in disordered systems described by single-

particle Hamiltonians. Traditionally, Anderson localization has been studied by employing

tight-binding Hamiltonians with the inclusion of random diagonal terms εm distributed in the

interval [−W,W ]

H = ∑
m 6=n

tm,n |m〉〈n|+∑
m
εm |m〉〈m| . (2.42)

As demonstrated by Anderson [Anderson, 1958], a finite amount of disorder W 6= 0 is responsi-

ble for the appearance of regions of localized states in the spectrum of Hamiltonian 2.42. Such

regions are separated from those of delocalized states (scattered Bloch states) by so-called

“mobility edges”. For increasing disorder, the localized regions grow at the expense of delocal-

ized ones, which may eventually disappear if the disorder strength exceeds a threshold W ?

characteristic of the system. In absence of extended states, electrons cannot diffuse into an

originally metallic system, which turns into an insulator. In other words, disorder may induce

a metal-insulator transition (Anderson MIT).

The classical scaling theory of Anderson localization [Abrahams et al., 1979] predicts that, while

for systems with dimensionality d > 2 the threshold strength of disorder is W ? > 0, for systems

with d ≤ 2 one has W ? = 0. This means that, in systems with reduced dimensionality, whatever

non-vanishing amount of disorder triggers the localization of the whole spectrum. Moreover,

these results were claimed to hold universally, regardless the nature of the disorder potential.

However, it was soon realized that several universality classes of Anderson localization exist,

prevalently identified by the symmetry of the disordered Hamiltonian. In this scenario, the

universality class described by the classical scaling theory, nowadays referred to as Wigner-

Dyson orthogonal class, is only one possibility. Importantly, none of the other universality

classes shows full localization for 2D systems.

The classification of disordered Hamiltonians by means of random-matrix theory has been

accomplished in the 90’s (see Ref. [Evers and Mirlin, 2008] for a historical perspective of the

field), leading to the discovery of ten different symmetry classes. However, the connection be-

tween symmetry class of random Hamiltonian and universality class of Anderson localization
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is not strictly one-to-one and, within the same symmetry class, Anderson localization may

manifest in different forms [Evers and Mirlin, 2008]. This is, indeed, the case for graphene. The

low-energy states of graphene in presence of long-range random scatterers are described by

two decoupled Dirac Hamiltonian (one for each valley) with the addition of a random diagonal

potential U (r). An example is correlated Gaussian disorder [Bardarson et al., 2007]

〈
U (r)U

(
r′

)〉= K0

(
~v f

)2

2πξ2 exp

(−|r− r|2
2ξ2

)
. (2.43)

The resulting Hamiltonian

H = ~v f σ · p̂+U (r) (2.44)

is invariant under the transformation σy Hσy = H∗ and belongs to the symplectic Wigner-

Dyson class, similarly to the disordered electron gas with spin-orbit coupling [Das Sarma et al.,

2011]. For the latter, numerical studies have shown that Anderson metal-insulator transition

takes place also in 2 dimensions [Markoš and Schweitzer, 2006]. By contrast, several studies of

Hamiltonian 2.44 have shown that Dirac fermions do not undergo Anderson localization at

all, so that graphene remains metallic [Bardarson et al., 2007; Nomura and MacDonald, 2007;

Tworzydło et al., 2008].

However, as was pointed out in Ref. [Suzuura and Ando, 2002], the presence of atomically

sharp potentials, such as those induced by a vacancy or a hydrogen adatom, introduce inter-

valley scattering and drive the system into the Wigner-Dyson orthogonal class. This means

that intervalley scattering induces full localization of the spectrum and graphene with atom-

ically sharp defects becomes an insulator. From the experimental point of view, Anderson

localization is difficult to identify with electronic transport measurement for several reasons:

i) phase-coherency over long distances is required to unveil Anderson localization, ii) localiza-

tion length ξ must be shorter than the size of the sample L, and iii) experimental conditions

such as the presence of a substrate, the non-planarity of graphene etc. may play an important

role in defining the localization behavior of Dirac fermions [Adam et al., 2008; Bostwick et al.,

2009; Song et al., 2011; Jayasingha et al., 2013].
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3.1 Introduction

Defects in crystalline solids play a major role in determining electronic, transport, optical and

mechanical properties just to mention few. In systems with reduced dimensionality, such as

graphene, carbon nanotubes etc. defects have even a stronger effect on electronic transport

properties with respect to three-dimensional solids. This can be understood with the following

qualitative argument. If a vacancy is introduced in a linear chain of atoms, the conductance

through the chain is strongly suppressed, namely vanishing if the only relevant hopping

takes place between neighboring atoms. This would not be the case if the current flow had

more available dimensions to find alternative paths, for example in two or three-dimensional

systems. Of course, the case of a linear atomic chain with a vacancy is very special. However,

given a d-dimensional system in presence of a d ′-dimensional defects (d ′ < d), the effect of

the latter on the electronic transport properties of the system can be assessed on the basis on

the difference ∆d = d −d ′. At a very qualitative level, it can be stated that the smaller ∆d , the

stronger the role that defects have on the charge-carrier flow.

Graphene has a large variety of possible defects which depend on the method and the condi-

tions of its production. Nevertheless, a general property of graphene is that it is relative inert

and has a small amount of point defects due to their high formation energy. Moreover, contrar-

ily to three-dimensional crystals where impurities are often buried inside the bulk, graphene’s

contaminants are exposed and can be efficiently eliminated by means of techniques such as

temperature annealing, current-induced cleaning, oxygen plasma cleaning [Moser et al., 2007;

Avouris and Dimitrakopoulos, 2012]. This is one of the reason why graphene has very high

performances in terms of charge-carrier mobility. Before reviewing the most common defects

of graphene, it is important to give a brief classification of the type of defects.

A first distinction is between intrinsic and extrinsic defects. The former break the lattice order

without involving atomic species that are not naturally present in the material, e.g. vacancies,

structural defects. Conversely, extrinsic defects contain at least one species that is not present

in the material, e.g. substitutional impurities, adsorbed atoms or molecules.
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The second distinction is between local and topological defects. In the former, the perfect

crystalline order can be restored by local modifications of the atomic structure. For example,

a vacancy or a substitutional impurity can be eliminated by adding or replacing one single

atom, respectively. On the other hand, a grain boundary, that is, the interface between two

misoriented crystalline domains would stay unavoidably there if one would try to rearrange

the atoms that compose the grain boundary. The only way to get rid of such a defect would be

to detach the two domains, re-orient and stitch them together. This procedure is inherently

non-local. Topological defects are associated to topological invariants, that is, observables

which do not change upon local atomic modifications.

3.2 Local defects

Throughout this section, all the information for which no explicit reference is given, is taken

from from Ref. [Banhart et al., 2011].

Figure 3.1 – Experimental images of point defects in graphene. (a) TEM image of a Stone-Wales
defect formed by two pentagons and two heptagons contoured in red and green, respectively.
(b) TEM image of a vacancy. After reconstruction a pentagon (green contour) and a nine-
membered ring (red contour) are present. (c) STM image of a vacancy in graphite surface and
(d) STS measurement of LDOS on top of a single vacancy in graphite surface (red dots) and on
pristine graphite (black dots). (e-f) TEM image of two possible reconstruction of divacancy
in graphene. The reconstruction shown in (f) has lower energy. (g) STM image of hydrogen
adatoms on graphene. (h) STM image of Ni adatom on graphene. Reprinted with permission
from (a-b) Ref. [Meyer et al., 2008], © 2008 American Chemical Society, (c-d) Ref. [Ugeda et al.,
2010], © 2010 American Physical Society, (e-f) Ref. [Kotakoski et al., 2012], © 2012 American
Chemical Society, (g) Ref. [Balog et al., 2010], © 2010 Mcmillan Ltd., (h) Ref. [Eelbo et al., 2013],
© 2013 American Physical Society
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Structural defects One of the simplest defects is a vacancy, that is, a single atom missing

from a lattice site. The knock-on energy for a carbon atom in sp2 carbon nanostructures

is about 18−20eV, as found in early transmission electron microscopy experiments (TEM)

of carbon nanotubes under irradiation [Banhart, 1999] and from theoretical calculations

on graphene [Yazyev et al., 2007]. Once created in non-equilibrium conditions, vacancies

reconstruct forming a structural defect composed by one pentagon and one nine-membered

ring containing one undercoordinated atom, see Fig. 3.1(b) [Meyer et al., 2008]. The formation

energy of a vacancy calculated in DFT is about Ev = 7.5eV, mostly due to the presence of

one unsaturated bond. This value is larger than in other materials such as silicon for which

Ev = 4.0eV. This makes unlikely the spontaneous presence of vacancies in graphene in

equilibrium conditions. However, multiple vacancies can have a lower energy per missing

atom. Indeed, divacancies can reconstruct forming two pentagons and one octagon (V2(5-8-5))

getting rid of undercoordinated atoms, see Fig. 3.1(e) [Kotakoski et al., 2012]. The calculated

energy per missing atom is E2v = 4.0eV. Another possible reconstruction for a divacancy

consists in a defect formed by three pentagon-heptagon pairs arranged in the flower shape

shown in Fig. 3.1(f) (V2 555-777 defect)[Kotakoski et al., 2012]. The formation energy of this

defect is about 3eV per missing atom. As a general trend, vacancies with an even number

of missing atoms are energetically favorable as they fully reconstruct leaving no dangling

bonds, whereas vacancies with an odd number of missing atoms are always left with at least

one unsaturated bond. However, dangling bonds are in general very reactive and tend to be

saturated with foreign atoms or small groups which lower the energy of the defect.

As seen in the case of vacancies, the honeycomb lattice can accommodate non six-membered

rings such as pentagons or heptagons. This allows the existence of structural defects which

do not require any missing atom. One example is the Stone-Wales (SW) defect where four

hexagons are transformed into two pentagons-heptagons pairs by the rotation of a C-C bond

by 90◦, see Fig. 3.1(a) [Stone and Wales, 1986]. The formation energy of such a defect is

ESW = 5.0eV and the barrier for rigidly rotating a bond by 90◦ is about 10eV [Banhart et al.,

2011]. Similarly to vacancies, the spontaneous creation of Stone-Wales defects at equilibrium

conditions for typical experimental temperature below 1000◦C has a negligible probability

and, indeed, SW defects have been imaged and studied in non-equilibrium conditions (e.g.

under electron irradiation in TEM instruments). Importantly, it has been found in simulations

that SW defects start appearing around T = 3800K and are the precursors of the structural

modifications that lead to the melting of graphene at T = 4900K [Zakharchenko et al., 2011].

Adsorbates Extra carbon atoms attached on the graphene lattice represent the simplest

form of adsorbates for graphene. We point out that interstitial carbon atoms do not exist in

graphene, due to the extremely high energy required to place an additional carbon atom in

any in-plane position. Indeed, an extra carbon atom would preferentially bind in a bridge

configuration forming covalent bonds with two atoms of the graphene lattice. The binding

energy of such a defect is of the order of 1.5-2.0 eV. Carbon adatoms have a migration barrier

of about 0.4 eV - one of the lowest among graphene defects - which makes them very mobile
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at room temperature. For this reason, though carbon adatoms are predicted to be one of the

most common defects in synthesized graphene, they are not visible in experimental images.

Another consequence of the mobility of carbon adatoms is that they can recombine with

vacancies, thus further lowering the equilibrium vacancy concentration at room temperature.

Extrinsic (non-carbon) adsorbates are mainly a result of the decomposition of the organic

molecules used as precursors in CVD growth of graphene. Among those we mention H

and O atoms, OH groups and small organic groups such as CH3 and C2H5. Other species

such as metal adatoms are rarely found in standard samples and, in order to be studied

are intentionally deposited on graphene. The properties of adsorbates of graphene strongly

depend on their bonding. Depending on the strength of the interaction, the character of the

bonding can vary from prevalently van der Waals (weak interaction) to prevalently covalent

(strong interaction). Hydrogen atoms form covalent bonds placing on top of a carbon atom as

predicted by theory and found in experiments, see Fig. 3.1(g), and represent the prototypical

monovalent adsorbate. In order to form an extra σ-bonding with an hydrogen adatom, the

carbon partner changes its hybridization from sp2 to sp3, thus breaking the π-bonds with its

nearest carbon neighbors [Yazyev and Helm, 2007; Boukhvalov et al., 2008]. The situation is

very similar for other monovalent impurities (e.g. CH3, C2H5, F) , whereas divalent impurities

such as O atoms preferentially bind in bridge configuration between two carbon atoms whose

hybridization is intermediate between sp2 and sp3. Besides the qualitative similarities, the

calculated binding energy of monovalent impurities vary in a wide range, going from 0.27 eV

for CH3 to 1.99 eV for F [Wehling et al., 2009b].

Alkali metal atoms such as Li, Na, K bind ionically to graphene sitting in the center of the

hexagons, with binding energies in the range 0.48-1.08 eV [Wehling et al., 2009b]. Remarkably,

as strong charge transfer is responsible for ionic bonding, this class of adatoms induce doping

and act as Coulomb scatterers for the charge carriers of graphene [Chen et al., 2008]. Halogen

atoms (Cl, I, Br) with the exception of F, form ionic bonding too, but bind preferentially in

top or bridge positions [Wehling et al., 2009b]. Moreover, they induce opposite doping with

respect to alkali atoms.

Transition metal adatoms have on average weaker interaction with the graphene substrate,

which leads to low binding energies (in a calculated range of 0.14-0.8 eV [Wehling et al., 2009b])

and low migration barriers (the measured diffusion barrier of Au is about 0.26 eV). Typical

configurations are on top of a carbon atom (e.g. Co) or at the center of an hexagon (e.g. Ni)

[Eelbo et al., 2013]. The experimental STM picture of Ni and Co atoms absorbed on graphene

are shown in Fig. 3.1(h).

Substitutional impurities Boron and nitrogen, the neighbor elements of carbon in the

periodic table, are natural dopants for graphene. Besides inducing a shift of the Fermi energy,

such dopants can significantly alter the electronic structure of graphene. Experiments have

also shown the possibility to introduce transition metal atoms in graphene vacancies, thus
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effectively creating a substitutional impurity. Finally, all the mentioned dopants have been

predicted to have a high formation energy 2-8 eV due to the formation of strong covalent

bonding.

Properties of point defects As a general trend, adatoms bind more strongly in proximity of

structural defects as the latter increase the local reactivity of the π-electron system. This is

due to an effective attractive interaction between the adatoms and the strain field induced

by structural defects. This suggests that a controlled introduction of structural defects in

graphene could be used as a way to facilitate its chemical functionalization or even to use

graphene as a catalytic subtrate.

From the point of view of the electronic properties, impurities and structural defects may

lead to localized states, as a consequence of breaking the crystal order. This is the case of

monovalent impurities, which induce localized states close to the charge neutrality point of

the undoped system, leading to a zero-energy peak in the density of states (resonant states)

[Pereira et al., 2006; Wehling et al., 2007; Adam et al., 2007; Yazyev and Helm, 2007; Wehling

et al., 2009b]. These states are very similar to those induced by vacancies in graphitic surfaces

which, differently from vacancies in graphene, do not reconstruct. Figs. 3.1(c-d) show the

STM image of such a localized state and the corresponding zero-energy peak of the local

density of state measured in proximity of the vacancy. As already mentioned in Section 2.2,

scattering off resonant states strongly decreases the mobility of charge carriers in graphene

and has been proposed as the main scattering mechanism that determines the electronic

transport properties [Wehling et al., 2010]. Point defects, especially covalently bound adatoms

and structural defects, give rise to a localized potential with high momentum components

which is responsible for intervalley scattering. This is revealed by the characteristic D peak of

Raman spectra [Ferrari et al., 2006; Ni et al., 2010].

Although pristine graphene is a diamagnetic system, carbon atoms with an unpaired number

of electrons can give rise to a net magnetic moment. This is the case of undercoordinated

atoms in proximity of defects such as single vacancies, or binding partners of monovalent

adatoms [Yazyev and Helm, 2007; Yazyev, 2010; Nair et al., 2013]. Alternatively, paramagnetism

can be induced by magnetic adsorbates such as Fe and Co atoms [Eelbo et al., 2013].

Finally, point defects, especially vacancies are expected to degrade the mechanical properties

of graphene, reducing the Young modulus and the mechanical strength. Nevertheless, the

efficient reconstruction of vacancies in graphene should minimize these effects.

3.3 Topological defects

Two classes of topological defects are found in monolayer graphene, namely grain boundaries

and dislocations. The former are inherent to polycrystalline materials since they accommodate

the mismatches of the lattice orientation. Early-day samples of graphene obtained with
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mechanical exfoliation had a typical size of the order of few µm and were prevalently single-

crystalline. Technological applications require a large-scale industrial production of graphene,

which makes mechanical exfoliation of graphene unsuitable. In this respect, chemical vapor

deposition has become the standard method for producing graphene. In this technique carbon

atoms originating from the high temperature decomposition of hydrocarbon gas, usually CH4,

assemble on a metal surface, most commonly a Cu substrate, into what will eventually become

the graphene layer. Graphene single-crystalline grains with random orientation grow starting

from multiple nucleation centers and eventually coalesce, thus forming a continuous layer

of polycrystalline graphene. CVD gives rise to large graphene samples with small amount of

disorder (except for the presence of GBs) and is a low-cost and scalable technique (we refer to

Ref. [Yan et al., 2014] for review of the advances of CVD production of graphene). For these

reasons, the study of GBs and how they affect nearly all properties of graphene has become of

paramount importance.

We will first go through the theoretical construction of grain-boundary models, introducing

the concept of topological invariant. Then, we will revise the first experiments which demon-

strated polycrystallicity in graphene and studied the characteristics of GBs. Finally, we will end

this chapter with a brief survey on how GBs affect the properties of graphene, with a special

focus on electronic transport.

Throughout this section, all the information for which no explicit references are given, are

taken from Ref. [Yazyev and Chen, 2014].

3.3.1 The topological defect hierarchy in graphene

Following the Read-Schockley approach [Read and Shockley, 1950], grain boundaries can be

described in terms of array of dislocations that, in turn, are formed by pairs of disclinations.

Disclinations are obtained by the addition, or removal, of a semi-infinite wedge of material

in an ideal 2D lattice. The corresponding topological invariant is the wedge angle s, taken

positive (negative) if the wedge is added (removed). As illustrated in Fig. 3.2(a), in graphene’s

honeycomb lattice, positive s = 60◦ and negative s =−60◦ disclination are realized by replacing

one hexagon by, respectively, a heptagon or a pentagon.

Unlike 3D materials, where several type of dislocations exist, in graphene only edge disloca-

tions are allowed. This class of dislocations consists in the insertion of an extra semi-infinite

line of atoms in the crystal. An edge dislocation is equivalent to a pair of disclinations with

s = +60◦ and s = −60◦ and, therefore, the core of a dislocation in graphene consists of a

pentagon-heptagon pair. The topological invariant of a dislocation is the Burgers vector,

which is a proper translational vector of the lattice and describes the width of the embedded

strip of material. The example of dislocation illustrated in the upper panel of Fig. 3.2(b) is

realized by the closest possible arrangement of the two disclinations and corresponds to

the smallest Burgers vector b = (1,0). Larger distances between disclinations correspond to

longer Burgers vectors, as shown in the lower panel of Fig. 3.2(b). It can be proved that the
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Figure 3.2 – Models of topological defects in graphene crystal lattice (disclinations, dislocations,
GBs) and illustration of the corresponding topological invariants (wedge angle, Burgers vector,
misorientation angle). Non six-membered rings are highlighted in blue (heptagons) and red
(pentagons). (a) Positive (upper model) and negative (lower model) disclinations with wedge
angle s =∓60◦ (b) Dislocations in graphene with Burgers vector b = (1,0) (upper model) and
b = (1,1) (lower model). (c) Large-angle GBs formed by periodic arrays of the dislocations
shown in (b). The misorientation angle is θ = θL+θR = 21.8◦(32.3◦) for the upper (lower) model.
Reprinted with permission from (a-c) Ref [Yazyev and Chen, 2014], © 2014 Mcmillan Ltd.

distance between the two disclinations strictly corresponds to the modulus of the Burgers

vector [Yazyev and Louie, 2010b].

As pointed out by Read and Shockley, GBs are equivalent to an array of dislocations [Read

and Shockley, 1950]. The topological invariant for GBs is the misorientation angle θ = θL +θR

(0◦ < θ < 60◦), as shown in Fig. 3.2(c). When a GB is formed by a periodic arrangement of

identical dislocations, θ can be directly determined by the Frank’s equations which involve the

Burgers vector b and the periodicity d . For b = (1,0) dislocation, the Frank’s equation reads:

θ = 2arcsin

( |b|
2d

)
, (3.1)

whereas for b = (1,1) one has

θ = 60◦−2arcsin

( |b|
2d

)
. (3.2)

The GB model shown in the upper panel of Fig. 3.2(c) is formed by an array of b = (1,0)

dislocations, whereas the building block of the model shown in the lower panel is a pair of
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rotated b = (1,0) dislocations. Both are examples of large-angle grain boundaries, respectively,

with θ = 21.8◦ and θ = 32.2◦. We stress that these hierarchical rules allow to build atomic

structures of dislocations ad GBs containing only three-fold coordinated atoms.

The formation energies of periodic grain boundaries has been investigated by means of density

functional theory and empirical classical potentials [Yazyev and Louie, 2010b; Carlsson et al.,

2011]. These estimates are of fundamental importance to determine the configurations of

GBs at thermodynamic equilibrium. Graphene models can be either constrained to be flat,

mimicking the situation where graphene strongly adhere on a substrate, or can be free to

displace in the out-of-plane direction, an assumption which is suitable for modeling free-

standing graphene. DFT calculated formation energies γ of periodic GBs as a function of

misorientation angle θ are reported in Fig. 3.3(a). The different series of data refer to two

classes of GBs built by aligning b = (1,0) or a pair of rotated b = (1,0) and b = (0,1) dislocations.

A general trend is that buckled configurations have lower γ with respect to GBs which are

constrained to be in-plane, with the relevant exceptions of the two large-angle GBs with

θ = 21.8◦ and θ = 32.2◦, for which no buckled stable configuration exist. In particular, these

configurations have particularly low γ of, respectively, 0.34eV/Å and 0.29eV/Å. The latter, in

particular, represents a local minimum of γ (θ). Out-of-plane deformations efficiently ’screen’

the in-plane strain field produced by individual dislocations, thus lowering the formation

energy. A different effect takes place when dislocations are densely packed, as in large-angle

GBs, where the strain fields induced by individual dislocations mutually cancel each other,

thus leading to flat GBs. This transition from flat large-angle GBs to buckled low-angle GBs has

recently received experimental confirmation from STM studies of polycrystalline graphene

epitaxially grown on SiC [Tison et al., 2014]. As can be seen from eqs. 3.1,3.2, the low-angle

regimes θ → 0◦ and θ → 60◦ correspond to large periodicity d that is equivalent to a low

density of dislocations. This explains the decrease of γ in the low-angle regime. Notably, the

behavior of γ for flat GBs in the low-angle regime can be described by the Read-Shockley

equation γ= A (θ− lnθ), represented by the continuous line in Fig. 3.3(a), where the constant

A depends on the elasticity constants of graphene and the radius of the dislocation core [Read

and Shockley, 1950]. In this regime, out-of-plane displacement lead to a strong corrugation

of the region around the defects. For instance, b = (1,0) dislocations assume the shape of

a prolate hillock, shown in Fig. 3.3(b). In fact, corrugation leads to finite formation energy

for isolated dislocations (e.g. γ= 7.5eV, for b = (1,0)), which would otherwise diverge, as in

three-dimensional bulk materials.

3.3.2 Experimental studies of topological defects

The first experimental investigations of dislocations in sp2-carbon materials trace back to

TEM studies of dislocations in graphitic surfaces in the early 1960s [Amelinckx and Delav-

ignette, 1960]. An atomic model of tilt GBs in graphite based on pentagon-heptagon pairs

was proposed in 1966 [Roscoe and Thomas, 1966]. Few years after the observation of a single

dislocation [Hashimoto et al., 2004], the first atomic-scale investigation of GBs in graphene
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Figure 3.3 – (a) Formation energy γ of symmetric periodic GBs as a function of misorientation
angle θ. The color of the markers represents the basic dislocation which constitute the GBs.
The configurations corresponding to filled symbols are constrained to be planar, whereas
those corresponding to open symbols are buckled. In the ranges of misorientation angle
corresponding to shaded areas, buckled configurations are energetically favorable over planar
ones. The solid curve represents the formation energies calculated by means of the Read-
Shockley equation assuming a dislocation core radius r0 = 1.2Å. The dashed curve represents
the formation energy calculated assuming a finite energy per dislocation of 7.5 eV. (b) Buckling
of the graphene lattice induced by the introduction of an individual b = (1,0) dislocation.
Reprinted with permission from (a-b) Ref [Yazyev and Chen, 2014], © 2014 Mcmillan Ltd. (c)
Ref. [Coraux et al., 2008], © 2008 American Chemical Society.

appeared [Huang et al., 2011]. By filtering the TEM diffraction pattern originating from a

polycrystalline graphene sample, Huang et al. obtained a false-color image which reveals

the location, the size and the orientation of the individual grains composing the sample, see

Fig. 3.4(a-b). In their work, the grain distribution is approximately an exponentially decay-

ing function of the size with a negligible number of grains larger than 1µm. On the other

hand, misorientation angles between adjacent grains shows a rather complex multimodal

dsitribution. As reported by other works, both the size and the misorientation angle dis-

tribution depend on the specific methodology employed to produce graphene. From the

morphological point of view, the large-angle GBs investigated by Huang et al. consist in

chains of alternating pentagons and heptagons containing only three-coordinated atoms, see

Fig. 3.4(c), thus confirming the theoretical predictions. Differently, other works found the

presence of undercoordinated atoms, whose dangling bonds are expected to be saturated

by extrinsic adsorbates. Although most large-angle GBs imaged at the atomic scale reveal a

meandering non-periodic shape, an example of periodic large-angle GB in epitaxial graphene

has been recently reported [Ma et al., 2014; Yang et al., 2014; Tison et al., 2014]. Low-angle

grain boundaries constituted of disperse b = (1,0) dislocations were imaged using STM, see

Fig. 3.4(d) [Coraux et al., 2008]. Although the dislocations found in this experiment did not

form a periodic aligned sequence, the angle of the grain boundary was well reproduced by

eq. 3.1 taking for d the average inter-dislocation distance. Moreover, the local height measured

by STM confirmed the predicted corrugation of disperse dislocations.
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Figure 3.4 – Experimental studies of polycrystalline graphene. (a) TEM diffraction pattern
originated by a polycrystalline graphene sample. Several sets of six-fold-symmetric Bragg
peaks appear indicating the presence of various misoriented crystalline domains. (b) False-
colored dark-field TEM image revealing individual crystalline domains. Grains are colored
according to the corresponding set of Bragg peaks appearing in the diffraction pattern shown
in (a). (c) Annular dark-field scanning transmission electron microscopy (ADF-STEM) image
with atomic resolution showing two graphene grains with a relative rotation of 27◦ stitched
by a grain boundary. (c) Experimental STM image showing two dislocations in a graphene
sample grown on Iridium substrate. The square outlines a b = (1,0) dislocation appearing
as a bright protrusion. Domains A and B are misoriented by θ = 2.1◦ which corresponds,
applying eq. 3.1 and assuming that the GB contains only b = (1,0) dislocations, to an average
interdislocation distance of r = 6.8nm, in agreement with the distance measured in the
image (6.2±1.3nm). (e) STM image of a periodic line-defect in graphene grown on Ni, with
the corresponding structural model overlaid. (f) TEM image of a grain-boundary forming
a “flower-shaped” closed path. (g) TEM image of a grain-boundary with irregular shape.
Reprinted with permission from (a-c) Ref. [Huang et al., 2011], © 2011 Mcmillan Ltd., (d)
Ref. [Coraux et al., 2008], © 2012 American Chemical Society., (e) Ref. [Lahiri et al., 2010],
© 2010 Mcmillan Ltd., (f-g) Ref. [Kurasch et al., 2012], © 2012 American Chemical Society.,

Several cases of degenerate GB, that is, line defects interfacing two grains with the same

orientation, have been reported. In particular, Lahiri et al. observed an extended line defect

made by a regular alternation of an octagon and a pair of pentagons in graphene grown on

Ni(111) substrate, see Fig. 3.4(e) [Lahiri et al., 2010]. More recently, Chen et al. managed to

engineer such a degenerate GB in a controlled way [Chen et al., 2014]. When GBs form closed

loops they lose their topological nature, being equivalent to point defects. Such loops show a

large variety going from small ordered examples, see Fig. 3.4(f), to larger disordered ones, see
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Fig. 3.4(g).

Due to their increased reactivity, the atoms owing to dislocations and GBs are thought to be

preferential sites for the absorption of external atoms. It was proposed that GBs can serve as

pathways for spatially controlled functionalization with hydrogen or other dopants (B and N)

[Brito et al., 2011, 2012].

Similarly to non-topological structural defects, the motion of individual dislocations and

grain boundaries has been imaged using TEM in non-equilibrium conditions. The two basic

steps of dislocation motion, a glide and a climb, are realized, respectively, by means of a C-C

bond rotation and removal of two carbon atoms. These two mechanisms imply high energy

barriers of, respectively, 5 and 20 eV [Lehtinen et al., 2013]. Similar high energy barriers have

been calculated for the motion of grain boundaries with closely packed non-hexagonal rings

[Kurasch et al., 2012]. Therefore, the typical topological defects of graphene can be considered

immobile for systems at room temperature and close to equilibrium.

Besides TEM and STM imaging techniques, Raman spectroscopy must be mentioned as a

cheap and relatively simple tool to recognize GBs due to increased intensity of the D peak

activated by the intervalley scattering induced by GBs [Yu et al., 2011; Duong et al., 2012].

3.3.3 Electronic transport in polycrystalline GBs

There is, nowadays, a large amount of studies concerning that effect of GBs on virtually all the

properties of graphene. We focus here on how GBs affect electronic transport properties, as

graphene is a very promising material for electronics due to the outstanding mobility of its

charge carriers. In this section we define the experimental and theoretical contest which will

serve as the basis for much of the work of the next chapters.

Polycrystallicity does not alter the nature of low-energy charge carrier of graphene which still

show half-integer quantum Hall effect typical of massless Dirac fermions (see Section 2.3).

However, the strong intervalley scattering induced by GBs changes the magnetotransport

regime from weak anti-localization typical for ultra-pure single-crystal samples to weak local-

ization (see Section 2.4).

On the other hand, there is experimental evidence that graphene GBs scatter back charge

carriers, thus degrading the electronic conductivity of graphene. STM studies of the elec-

tronic states in proximity of GBs have imaged the standing wave pattern originating from the

interference of the incident and the reflected wavefunctions [Koepke et al., 2013]. GBs also

reflect collective charge oscillations due to plasmonic excitations induced by infrared laser, as

shown by means of near-field optical microscopy [Fei et al., 2013]. Consequently, the electron

mobilities measured on polycrystalline samples of graphene are lower than those measured

on single-crystal samples, although samples with larger grain sizes have higher electron mo-

bilities. Two-probe transport measurements in CVD samples obtained by the controlled

coalescence of two grains, have shown that both the transport within each grain and across
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Figure 3.5 – Electronic transport across individual GBs of graphene. (a) Chemical potential map
of a sample where a voltage V = 4mV is established between the two boundaries. The latter are
inside two distinct crystalline domains separated by a GB crossing the sample. The potential
drop is largely concentrated around the GB due to its large resistivity. (b) Multi-electrode
device for electronic transport measurements built on a CVD-grown sample composed by
two coalesced grains. (c) Characteristic I -V curves measured for different choice of the two
electrodes among those shown in (b). When the two electrodes are such that the charge carrier
flow crosses the GB the resistance is larger. (d) False-color TEM images of CVD polycrystalline
graphene grown under two different set of conditions denominated “Growth A” and “Growth
C” (see Ref. [Tsen et al., 2012] for details). (e) Resistivity (measured in kΩµm) of individual GBs
found in samples of the same study as those shown in (d). Reprinted with permission from (a)
Ref. [Clark et al., 2013], © 2013 American Chemical Society, (b-c) Ref. [Yu et al., 2011], © 2011
Mcmillan Ltd., (d-e) Ref [Tsen et al., 2012], © 2012 American Association for the Advancement
of Science.

the GB have ohmic character [Yu et al., 2011]. However, the measured inter-grain resistivity

ρGB = 5000Ω/� was much larger than the intra-grain resistivity (ρG = 400−2000Ω/�), see

Fig. 3.5(b-c). Chemical potential maps measured by scanning tunneling potentiometry (STP)
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when a DC current is driven orthogonally to an individual GB shows that the majority of the

potential drop takes place in the vicinity of the GB, see Fig. 3.5(a) [Clark et al., 2013]. In these

experiments the resistivity measured for different individual grain-boundaries varies can vary

by up to a factor 3, very much depending on the width of the disordered region around the GBs.

Tsen et al. investigated simultaneously the morphology (though not at the atomic level) of

CVD-grown polycrystalline graphene by means of TEM and its transport properties, showing

that the growth protocol used to produce graphene is essential to determine the resistivity

of individual GBs [Tsen et al., 2012]. With reference to Fig. 3.5(e), the method called “A” by

the authors gives rise to well-stitched polygonal grains with an average size of 1µm, whereas

method “C” produces larger flower-shaped grains with average size of 50µm. The overall lower

density of GBs in “C” samples is counterbalanced by the higher resistivity of individual GBs

which is, on average, one order of magnitude larger than that of “A” samples, see Fig. 3.5(e).

Interestingly, in the same study the inter-grain resistivity measured in some samples was lower

than the intra-grain one. This effect was explained assuming a finite overlapping between

the layers of the two adjacent grains, as also suggested by the TEM images. The temperature

dependence of mobility in polycrystalline graphene samples is, practically, negligible as the

amount of scattering due to GBs largely overtakes that due to phonons. Finally, we remark

that the interpretation of experimental data is complicated by the fact that GBs, similarly to

other structural disorder, can contain various species of contaminants that further degrade

conductivity and mask the intrinsic effect of GBs.

One of the first theoretical studies of electronic transport across periodic GBs derived a

momentum-based selection rule which allow to sort periodic GBs in the two classes, as

illustrated in Fig. 3.6 [Yazyev and Louie, 2010a]. The transmission probability for low-energy

charge carriers to come across GBs owing to the first class is typically high (T ' 1), whereas

the members of the second class completely reflect the charge carrier in an energy range

determined by the periodicity d of the GB. The width of such a transport gap - not to be

confused with a band gap - is obtained by the simple relation ETG = 1.38eV/d.

Based on the experimental evidence that GBs are prevalently n-doped, whereas the bulk of

the grains are rather p-doped, it was proposed that the potential barrier occurring at the

GBs acts as an additional source of scattering [Song et al., 2012]. Importantly, simulations

performed on large-scale models of polycrystalline graphene demonstrated that conductivity

scales linearly with the size of the grains, that is, inversely proportional to the density of GBs

[Van Tuan et al., 2013]. This indicates that coherence effects due to scattering off multiple GBs

are not significant and the transport regime is diffusive. Finally, it has been proposed that

the grain-boundary shown in Fig. 3.4(c) can filter charge-carriers owing to a specific valley

according to their incidence angle, leading to strong valley polarization [Gunlycke and White,

2011].
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Figure 3.6 – Transmission across periodic GB. (a) Model of periodic GB interfacing two
graphene domains with misorientation angle θ = θL +θR. The chirality of each domain is
defined as the components of the periodicity vector d in the reference system of each lattice.
(b) The Brillouin zones (BZs) of the left and right domains are rotated with respect to each
other by θ. The K points of the left and right BZ are projected on either Γ or K of the 1D
mini-Brillouin zone of the periodic GB, according to their chirality (n,m). (c) If the K points
of both domains are projected in the same point of the 1D-BZ, states in the left and right
domains overlap and there exist transmission channels in the whole energy range (Class I
GBs). Conversely, if the K points of the two domains are projected onto different points of the
1D-BZ, a transport gap appears in the energy range where the projected states do not overlap
(Class II GBs). Figures reprinted with permission from Ref. [Yazyev and Louie, 2010a], © 2010
Mcmillan. Ltd.

3.3.4 Stacking domain boundaries in bilayer graphene

In bilayer graphene, the relative interlayer shift represents an additional degree of freedom

with respect to monolayer graphene. As said in Chapter 1, the so-called Bernal stacking

represents the configuration that minimizes the interlayer energy. However, Bernal stacking

comes in two inequivalent realizations that conventionally go under the name of AB and BA

(sometimes referred to as AC), and are connected by a rotation of 60◦ of the whole system,

see Fig. 3.7(a). Of course, these two stacking orders have the same interlayer energy per

atom, so that in one sample of bilayer graphene regions with inequivalent Bernal stacking

can coexist. This situation has turned out to be very common in micro-meter scale bilayer

graphene samples where the whole surface is tiled by domains with inequivalent stacking,

see Figs. 3.7(b-c) [Brown et al., 2012; Lin et al., 2013; Alden et al., 2013]. Regions with definite

Bernal stacking have a size varying from few tens to hundreds of nanometers and the transition

between two adjacent AB and BA stacking domains is confined in regions with a typical width
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of ' 10nm, called stacking domain boundaries. Such defects have a topological nature and

their topological invariant is the difference of the vectors representing the interlayer shift of

the two interfacing domains. At a closer inspection, stacking domain boundaries appear as

strain solitons with shear or tensile character, as shown in Figs. 3.7(d-e). Solitons with hybrid

tensile-shear character have also been found in experiments [Alden et al., 2013]. Equivalently,

stacking domain boundaries can be described as partial dislocations, that is, dislocations with

a Burgers vector which is a fraction of a translational vector of the bilayer graphene lattice

[Butz et al., 2014]. Finally, stacking domains can arrange in a relatively regular hexagonal

pattern, as shown in Fig. 3.7(c) [Alden et al., 2013]. In Chapter 7, this pattern will be shown to

be the relaxed configuration of bilayer graphene samples with a small rotation angle between

the two layers.

Figure 3.7 – Experimental images of stacking domain boundaries in bilayer graphene. (a)
False-color dark field-TEM image of bilayer graphene. Bright and dark areas correspond to
inequivalent AB or BA stacking. (b) False-color dark field-TEM image of bilayer graphene. In
large part of the sample stacking domains arrange in a hexagonal network. (c-d) Scanning
TEM images of stacking domain boundaries. In particular, the defect in (c) is a shear soliton,
whereas the defects in (d) is a tensile soliton. Reprinted with permission from (b) Ref. [Lin
et al., 2013], © 2013 American Chemical Society, (c-e) Ref. [Alden et al., 2013], © 2013 National
Academy of Science.
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4.1 Density functional theory

Density Functional Theory (DFT) is a mean field theory for the ground state of a system of

interacting particles. Very often the system under study is represented by the electrons of a

molecules or a solid, once the electronic degrees of freedom have been separated from the

nuclear ones by means of the Born-Oppenheimer approximation. The key object of DFT is the

density n (r) of a system of N particles, defined such that

ˆ
n (r)dr = N . (4.1)

The two fundamental theorems of DFT are due to Hohenberg and Kohn (Nobel Prize in 1998)

[Hohenberg and Kohn, 1964]. We state them omitting the proof:

1. The ground state density n0 (r) of a system of interacting particles uniquely determines

the external potential vext (r) acting on the particles except for a constant shift. An

immediate corollary is that the ground state density fixes the Hamiltonian of the system,

which, in turn, determines the many-body wavefunction for all states and, ultimately,

all the properties of the system. In most practical cases, vext is the potential generated

by the nuclei in a certain spatial configuration.

2. The total energy E is given by a universal functional E (n) of the ground state density.

For a specific system, defined by a particular potential vext (r), the exact ground state

density n0 minimizes the value of the functional E (n). So the search for the ground state

density is reduced to a variational problem.

A more clear expression of E (n) is obtained by writing its contributions explicitly:

E [n (r)] = T [n (r)]+Vee [n (r)]+
ˆ

drvext (r)n (r) , (4.2)
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where T is the kinetic energy, Vee the energy of the mutual interaction between the particles,

and
´

dr vext (r)n (r) is the contribution due to the interaction with the external potential. The

exact knowledge of E [n (r)] would allow to determine the ground state energy and density.

Unfortunately, there are two main limitations to DFT: i) the functional E (n) is not known

and ii) DFT’s basic formulation tells little about the excited states which, on the other hand,

can be of great interest. As an example, the optical properties of a system are inherently

excited-state properties. Besides its limitations, DFT leads to an enormous simplification of

quantum mechanics: it allows to treat a many-body system by handling a real field with 3

degrees of freedom (the density) instead of a complex field with 3N degrees of freedom (the

many-body wavefunction). The ansatz proposed by Kohn and Sham represented a further

important step for practical applications of DFT [Kohn and Sham, 1965]. This consists in

introducing an auxiliary system of N independent particles described by an orthonormal set

of wavefunctions
{
φi (r)

}N
i=1, having the same ground-state density as that of the interacting

system under study:

n (r) = n (r)KS =
∑

i

∣∣φi (r)
∣∣2 . (4.3)

More specifically, the energy functional can be written as

EKS [n (r)] = Ts [n (r)]+
ˆ

drvext (r)n (r)+EHartree [n (r)]+Exc [n (r)] . (4.4)

Due to the Kohn-Sham ansatz, the kinetic energy is

Ts [n (r)] =−1

2

∑
iocc

drφ∗
i (r)∇2φi (r) . (4.5)

Moreover, in eq. 4.4, the energy due to the mutual interaction of the particles has been broken

in two terms: the classical Coulomb contribution

EHartree [n (r)] = 1

2

ˆ
n (r)n

(
r′

)
|r− r′| drdr′ = 1

2

ˆ
n (r) v̂H (r)dr, (4.6)

with

v̂H =
ˆ

n
(
r′

)
|r− r′|dr′, (4.7)

and the exchange-correlation energy Exc [n (r)] that contains purely quantum many-body

contributions to the total energy and is defined by eq. 4.4 itself.

By applying the variational principle to eq. 4.4, together with the orthonormality conditions

ˆ
drφi (r)φ j (r) = δi j , (4.8)
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a set of Schrödinger-like equations, the so-called Kohn-Sham equations can be derived:

HKSφi =
(
−1

2
∇2 + v̂s

)
φi = εiφi , (4.9)

v̂s = v̂ext + v̂H + v̂xc.

It is important to stress that both the φi s and the eigenvalues εi have no physical meaning, as

the former are the wavefunctions of a fictitious system of non-interacting particles and the

latter are Lagrange multipliers used to implement the constraint 4.8.

Over the years, a large theoretical effort has been devoted to the search of reliable approxima-

tions to the functional Exc [n]. The two most common classes of approximations are the local

density approximation (LDA), and the generalized gradient approximation (GGA). In the LDA,

the exchange-correlation density is a local functional of the density :

E LDA
xc [n] =

ˆ
drn (r)εxc (n (r)) , (4.10)

where εxc is often a function parametrized in order to reproduce the exchange-correlation

energy of a homogeneous electron gas, calculated to great accuracy by Monte Carlo methods

[Ceperley and Alder, 1980]. GGA denotes a large variety of functionals devised to account for

non-smooth variations of the density. For this reason, the gradient ∇n explicitly enters the

definition of the functional:

E GGA
xc [n] =

ˆ
drn (r)εxc (n (r) , |∇n|) . (4.11)

GGA functionals represent a wide range of functionals due to the freedom in the definition

of εxc (n (r) , |∇n|). One of the most (if not the most) popular GGA functional is due to Perdew,

Burke and Enzerhof (PBE) [Perdew et al., 1996]. In this thesis, we have used the PBE functional

for all the calculations concerning monolayer graphene.

More recently, fully non-local corrections to the exchange-correlation functional have been

proposed. The main purpose of such corrections is to describe long-range interactions such as

van der Waals forces that have an intrinsic non-local nature. The general form of a non-local

functional is:

E nl
c =

Ï
drdr′n (r)Φ

(
n (r) ,n

(
r′

)
, |∇n (r)| , ∣∣∇n

(
r′

)∣∣ ,r,r′
)

n′ (r) . (4.12)

Once more, the arbitrariness of the kernel Φ leaves a large freedom in the definition of the

non-local correction E nl
c . Among all the functionals taking advantage of non-local corrections,

we mention the revised version of the functional proposed by Vydrov and van Voorhis (revised

VV10, or rVV10) [Vydrov and Voorhis, 2010; Sabatini et al., 2013]. In this thesis, we have used

the rVV10 functional for all calculations concerning bilayer graphene, due to its capability of

describing accurately the van der Waals interaction between graphene layers.
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To conclude this simplified presentation of DFT, we give some details about actual calculations

based on the solution of the Khon-Sham equations 4.9. The variational search of the ground-

state Khon-Sham wavefunction is performed in a restricted Hilbert space. This is typically

the space generated by a basis set of wavefunctions. The choice of the basis set is between

plane waves or some set of localized wave functions. Plane waves are endowed with many

convenient properties: they form an orthonormal and complete basis (or at least arbitrarily

completable), and they can naturally form Bloch states for periodic systems. On the other

hand, a large number of wavefunctions may be needed to correctly reproduce the atomic-

like density in proximity of the nuclei. Localized basis sets of atomic-like orbitals have the

advantage of describing rather accurately the density close to the nuclei. Moreover, codes

based on localized basis sets need generally a smaller amount of computational resources. On

the other hand, atomic-like orbitals do not form a complete basis and are less efficient than

plane waves in reproducing the density in the interatomic region.

A simplification of Kohn-Sham equations comes from the pseudopotential approach, first

introduced in 1934 by Hellmann in a more general context of many-body problems [Hell-

mann, 1935]. The introduction of a pseudopotential has a double aim: first, to limit the

complexity of the problem by treating explicitly only valence electrons. For this reason, the

combined effect of the nucleus and the core electrons on the valence electrons of an atom is

described by introducing an effective potential, a pseudopotential indeed. When doing this,

the “frozen-core” approximation is assumed, which implies that the core-electron distribution

does not change upon physical or chemical stimuli. The validity of this assumption is crucial

to ensure pseudopotential transferability, that is, the capability to describe the effect of the

core electrons for different states of the valence electrons. Transferability allows to use the

same pseudopotentials for different purposes, such as describing atoms in gas phase, ion-

ized, forming chemical bonds, etc. The second aim is to replace the wavefunctions of the

valence electrons by smoother pseudo-wavefunctions, especially in the regions close to the

nuclei. This is achieved by taking advantage of the intrinsic arbitrariness in the definition of

pseudopotentials.

The pseudopotentials used in this thesis own to two classes: norm-conservative [Hamann

et al., 1979] and ultrasoft [Vanderbilt, 1990]. The former ensure that the norm of the pseudo-

wavefunctions ψi coincides with the all-electron wavefunctions φi , beyond a cut-off ratio

rc. Norm-conserving pseudopotentials have the advantage of preserving the form of the

Kohn-Sham equations 4.9. However, in the Hamiltonian HKS, the external potential v̂ext is

replaced by the pseudopotential:

HKS = v̂pseudo + v̂H + v̂xc (4.13)

In ultrasoft pseudopotentials, the rigid constraint on the norm of the pseudo wave-functions

is lifted at the expense of transforming the Kohn-Sham problem, eq. 4.9, in a generalized
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eigenvalue problem:

HKSΨi = εi SΨi , (4.14)

where the overlap operator S is defined such that
〈
Ψi |S|Ψ j

〉= δi j . A thorough treatment of

the pseudopotential theory can be found in the textbook of R. Martin [Richard M. Martin,

2013].

For the DFT calculations reported in this thesis, we have employed two established open-

source codes, both based on pseudopotentials: QUANTUM ESPRESSO [Giannozzi et al., 2009]

and SIESTA [Soler et al., 2002]. The two codes differ mainly, but not exclusively, in the basis

set used to expand wavefunctions: QUANTUM ESPRESSO employs plane waves, whereas

SIESTA employs localized atomic-like orbitals. Moreover, SIESTA can only take advantage of

norm-conserving pseudopotentials, whereas QUANTUM ESPRESSO allows to choose between

several classes of pseudopotentials, among which norm-conserving and ultrasoft.

4.2 Minimization methods

One problem that will occur several times during the following chapters is the search of the

equilibrium configuration of a system of interacting atoms. This problem is also called a

geometry optimization or a structural relaxation. As long as the mutual interactions between

particles are described by classical forces, an equilibrium state is defined as a state where the

total force acting on each atom is zero. In case of conservative force, this problems reduces

to the search of the minimum of the potential energy E (x) with respect to the positions of N

particles, collected in the 3N -dimensional vector x.

A large set of numerical methods has been developed to tackle the problem of minimizing

a function, though it must be stressed that none of them guarantees to find an absolute

minimum. These methods are rather conceived to find a local minimum, often the closest

minimum to the starting configuration x0. For this reason, an educated guess of x0, based on

physical arguments, remains the key for a successful and efficient structural relaxation.

Minimization methods can be also applied to structural relaxations of quantum systems.

However, instead of the potential energy, one should rather minimize the total energy of the

system, which contains also contributions of kinetic and exchange nature. Therefore, those

methods which intrinsically rely on total energy calculations, such as DFT, are very suitable

for structural relaxation.

We now give a short introduction of the two methods that we have mostly employed in this

thesis: conjugate gradient (CG) and fast inertia relaxation engine (FIRE). These are the two

methods that we have employed for all structural relaxations of graphene structures based on

classical potentials, performed by using the code LAMMPS [Plimpton, 1995; LAMMPS]. Con-

cerning relaxations based on ab initio calculation of total energies, we have used the default
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methods implemented in SIESTA and QUANTUM ESPRESSO that are, respectively, conjugate

gradient and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. A presentation of the

latter method can be found in Ref. [Fletcher, 2013].

4.2.1 Conjugate gradient

The original conjugate gradient method is an algorithm to find the numerical solution x of

a linear system defined by a real, symmetric, and positive definite N × N matrix A, and a

N -dimensional real vector b [Hestenes and Stiefel, 1952]:

Ax = b. (4.15)

However, its importance resides in its extension to the minimization of nonlinear functions

[Fletcher and Reeves, 1964]. Due to the positive-definiteness of A, solving eq. 4.15 is equivalent

to search for the minimum of the quadratic form

f (x) = 1

2
xTAx−bTx+ c, (4.16)

where c is a real constant. Suppose we know a complete set of independent vectors
{

pi
}N

i=1,

with the property of being conjugated, that is, mutually orthogonal with respect to the scalar

product defined by A:

pT
i Ap j = 0 i 6= j . (4.17)

The solution x of the system 4.15 can be expanded in the basis
{

pi
}N

i=1 as

x =
N∑

i=1
αi pi . (4.18)

The problem is solved if the coefficients αi are known, but this can be achieved by left-

multiplying eq. 4.18 by A :

Ax =
N∑

i=1
αi Api = b (4.19)

and left-multiplying, again, by the vectors pk :

pT
k Ax =

N∑
i=1

αi pT
k Api = pk b ⇐⇒αk = pT

k b

pT
k Apk

. (4.20)

So the problem is recast in the construction of the conjugate basis
{

pi
}N

i=1. If one starts from a

set of linearly independent vectors {ui }N
i=1 , a conjugate basis can be obtained by a procedure
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similar to the Gram-Schmidt orthogonalization algorithm, that gives

pk = uk −
∑
i<k

pT
i Auk

pT
i Api

pi . (4.21)

The main drawback of this procedure is that the number of operation required to generate

the basis
{

pi
}N

i=1 has complexity O
(
N 4

)
. However, it turns out that a particular choice of

the vectors uk reduces the time complexity to O
(
N 3

)
. Once defined xk = ∑k

i=1αk pk , uk is

taken as the residual rk = b−Axk−1. It can be shown that the residual rk has the property to be

conjugate to all vectors pi for i < k−1. This property enormously simplifies the Gram-Schmidt

orthogonalization formula that becomes

pk+1 = rk+1 −
pT

k Ark+1

pT
k Apk

pk = rk+1 +
rT

k+1rk+1

rT
k rk

pk , (4.22)

where the last equality is another consequence, though not evident, of the conjugacy of the

residuals. The coefficients αk are calculated from eq. 4.20:

αk = pT
k b

pT
k Apk

= rT
k rk

pT
k Apk

. (4.23)

The last equality in eq. 4.23 is, again, a consequence of residuals’ conjugacy.

We have now all the ingredients to extract an algorithm out of the mathematics. We only need

to set the starting point of the search. Let us assume that the starting guess for the solution is

x0 = 0, which can always be assumed if the original system is replaced by Ax̄ = b−Ax0. Thus,

the initialization of the algorithm is:

r1 = b−Ax0 = b, p1 = r1. (4.24)

Then, the iterative block is formed by the instructions:

1. Calculation of the Fourier coefficient αk , by using eq. 4.23,

2. Update of the solution xk = xk−1 +αk pk ,

3. Update of the residual rk+1 = rk −αk Apk ,

4. Construction of the next conjugate direction pk+1, by using eq. 4.22.

The conjugate gradient method assures that the exact solution of a linear system is found

within N iterations, in absence of round-off errors. Indeed, the latter makes that at each

iteration k, the new direction pk+1 is not exactly conjugate to all the previous ones. This

implies that the N -dimensional space of the problem is not fully spanned after N iterations.

61



Chapter 4. Methods

Therefore, reaching the exact solution within a fixed numerical precision often requires more

than N steps.

An important property of coefficients α1,α2, . . .αn calculated by means of eq. 4.23 is that

∀n < N , they minimize the function f (x) in the subspace generated by the vectors
{

pk
}n

k=1:

f

(
x =

n∑
k=1

αk pk

)
= min

(ᾱ1,ᾱ2,...ᾱn )∈Rn
f

(
x =

n∑
k=1

ᾱk pk

)
. (4.25)

Therefore, each coefficient αk minimizes f (x) along the conjugate direction defined by pk :

f
(
xk = xk−1 +αk pk

)= min
ᾱ

f
(
xk = xk−1 + ᾱpk

)
, (4.26)

whence

∂ f
(
xk+1 = xk + ᾱpk+1

)
∂ᾱ

= 0 ∀k < N . (4.27)

Obviously, the minimization problems which typically arise during the structural relaxation

of an atomic system are far from being linear. However, in proximity of a minimum x̄, the

potential energy surface E (x) can be approximated by the quadratic form

E (x) ' E (x̄)+ 1

2
(x− x̄)T H (x− x̄)+o

(|x− x̄|3) , (4.28)

where H is the Hessian matrix calculated at x̄. For the quadratic form, eq. 4.16, the following

two identities hold:

∇ f (x) = Ax−b =−r, (4.29)

and

Hi j = ∂2 f

∂xi∂x j
= Ai j . (4.30)

These suggest that the conjugate gradient method can be extended to non-quadratic functions

by implementing the following two substitutions:

rk ←−∇E (xk ) , (4.31)

and

Ak ← H (xk ) . (4.32)

However, conjugacy of the search direction partially loses its power because the Hessian

matrix changes at any update of the position x. As the calculation of the Hessian matrix H (xk )

is an expensive operation, eq. 4.23 is not the choice of preference to calculate the optimal
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coefficients αk . From eq. 4.27, it follows that the coefficients αk can be found by minimizing f

along the direction xk−1+αk pk . The advantage is that many of the available methods used to

minimize one-variable functions only require first derivative (see Ref. [Dennis and Schnabel,

1996] for a detailed discussion).

For the update of the conjugate direction, eq. 4.22 is often replaced by

pk+1 = rk+1 +βk+1pk βk+1 = max

{
0,

rT
k+1 (rk+1 − rk )

rT
k rk

}
(4.33)

which is equivalent to eq. 4.22 for quadratic forms. This variant, due to Polak and Ribière, is

thought to be the most effective CG choice for the majority of nonlinear problems [Polak and

Ribière, 1969]. The nonlinear conjugate gradient method is constituted by two nested loop: i)

an external loop where the “pseudo-conjugate” search direction is updated and ii) an internal

loop where coefficientsα are calculated by means of a line-search method, which is inherently

iterative. Unlike the linear case, there is no guarantee for the number of steps required to

converge to the solution, even in absence of round-off errors. We refer to the manual page of

LAMMPS, http://lammps.sandia.gov/, for details of the implementation of conjugate gradient

as well as line-search methods.

4.2.2 Fast Inertia Relaxation Engine (FIRE) method

Minimization methods based on molecular dynamics (MD methods) use some modified form

of Newton’s equations for the atomic coordinates x, conceived to drive the system toward a

minimum of the potential energy surface E (x). Given an initial position in the configuration

space x0 = x (t = 0) , the trajectory x (t ), solution of the Newton-like equations, approaches

asymptotically the position x̄ of a minimum of E (x):

lim
t→∞x (t ) = x̄. (4.34)

The trajectory x (t ) may be calculated numerically by employing one of the well-established

integrators used in molecular dynamics (see Ref. [Frenkel and Smit, 2001], for example).

One of the best performing MD methods is the so-called “fast inertia relaxation engine” (FIRE)

[Bitzek et al., 2006]. This method is defined by the equation of motion:

v̇ (t ) = F (t )

m
−γ (t ) |v (t )|(v̂ (t )− F̂ (t )

)
, (4.35)

where v (t ) is the velocity, F =−∇E (x) is a conservative force, the hat indicate a unit vectors and

γ (t ) is a free positive parameter of the method. With respect to Newton’s equation, eq. 4.35

contains an additional term which is maximum in modulus when v and F have opposite

directions and is strictly zero when v and F are aligned. In other words, when the system

moves in the direction of F, it is governed by standard Newtonian dynamics. In the most
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undesired situation where the system is moving uphill, the additional force acts as a viscous

damper. In the more common case when v and F are neither parallel nor antiparallel, the

additional force helps in realigning the velocity to the acceleration. The logic behind this

method is traditionally explained by analogy to a “blind skier” who is skiing on a mountain

profile which is unknown to him and wants to reach the bottom of the valley. He only feels

whether the total force acting on him is parallel to the direction of his motion and, if this is

not the case, he can steer, that is, generates an additional force in order to redirect his motion

toward the steepest descent, or can even slow down, if he is going uphill.

In our experience, the FIRE method turned out to be very useful to refine a first estimate

of the energy minimum obtained by the conjugate-gradient method. This fine search was

useful in those situations where conjugate gradient stopped because the line-search step of

the algorithm returned a value of α comparable with the precision of the machine.

4.3 Long-range Carbon Bond-Order Potential (LCBOP)

Classical potentials are a common tool to treat the interactions of the atoms that compose a

system. It must be clear that classical potentials represent a computational tool, as the nature

of atomic interactions is inherently quantum. The problem is that treating atomic systems in a

fully quantum way, that is, solving the many-body Schrodinger equation is an impossible task,

except for extremely simple systems. Even after the breakthrough represented by DFT, the

search for the ground state properties of an atomic system is a realistic purpose only as long as

the number of atoms is kept within the order of magnitude of a thousand. On the other hand,

the advantages of a classical rather than quantum representation of the atomic interactions

are evident. First, the dynamics of the system is governed by Newton’s law, and the equilibrium

configurations of the system correspond to minima of the total potential energy Ep . The latter

simply becomes the sum of the contributions Vi j due to the interaction of each pair of atoms(
i , j

)
:

Ep = 1

2

∑
i

∑
j 6=i

Vi j (4.36)

The computational effort to calculate those observables that can be consistently defined

in a classical picture (for example, the lattice constant of a crystal, but not the band gap),

is considerably smaller than a quantum treatment, even when this latter contains severe

approximations.

There is no established functional form for a classical potential. Once an analytic expression

is proposed, the parameters that define the potential are fitted to a selected database of

observables (formation energy, bondlengths, elastic coefficients, etc.). This database may be

derived from experiments or from ab initio theoretical methods, that is, with no adjustable

parameters. In this sense, classical potentials are also called empirical potentials. The entries of

a good fitting database contain multiple observables for a relatively wide range of structures. A
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good database for carbon should contain observables for systems with different hybridizations

and dimensionality, such as diamond, graphite, graphene, nanotubes, etc. As a general

requirement, classical potentials must have the two following features:

• Transferability: once the potential has been optimized in its parameters, it should be

able to reproduce data for observables and systems beyond the fitting database. For

example, in this thesis, classical potentials have been used to study topological defects

in graphene.

• Computational effciency: The potential must perform better than any quantum method

in calculating a specific observable, from the point of view of computational resources.

Given the absence of a recipe for defining a potential, it should not surprise that many different

potentials exist for carbon. In this section, we describe the Long-Range Carbon Bond-Order

Potential (LCBOP) [Los and Fasolino, 2003], mostly following the presentation of Ref. [Ghir-

inghelli, 2006]. The LCBOP belongs to the more general class of bond order potentials (BOP).

The general form for the bond-order potential energy of two atoms, labeled by i and j , at the

distance ri j , is

Vi j =V R (
ri j

)−bi j V A (
ri j

)
, (4.37)

where V R
(
ri j

)
and V A

(
ri j

)
are pair-additive positive terms representing, respectively, the

repulsion of core electrons and the attractive contribution of valence electrons. In most BOPs,

V R
(
ri j

)
and V A

(
ri j

)
are exponentially decaying functions of ri j . The bond order coefficients

bi j are a function of the local environment of atoms i and j . In chemistry language, the bond

order represents the multiplicity of the bond between two atoms. A non-integer value of bi j

also accounts for partial bonds. The choice of the bond-order function is not unique and

represents one of the main ingredients that define a specific BOP potential.

The LCBOP is built by adding a short-range (anisotropic) V SR
(
ri j

)
term, describing interaction

between bonded atoms, and a long-range (isotropic) V LR
(
ri j

)
term, describing interactions

between non-bonded atoms. The total potential energy of a system reads as follows:

Eb = 1

2

∑
i

∑
j 6=i

(
V SR (

ri j
)+V LR (

ri j
))

. (4.38)

The short-range term is defined by eq. 4.37 where

V R (
ri j

) = f c
i j Ae−αri j , (4.39)

V A (
ri j

) =
(
B1e−β1ri j +B2e−β2ri j

)
, (4.40)

bi j = 1

2

[
b̄i j + b̄ j i + f c

i j F conj
i j

]
. (4.41)
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f c
i j is a cut-off function of the form

f c
i j = θ (−x)+θ (x)θ (1−x)e

γx

x3−1 , (4.42)

where x=
(
ri j − r1

)
/(r2 − r1) and γ> 0. f c

i j is worth 1 for r < r1 , 0 for r > r2 and some interme-

diate value for r1 < r < r2. The underlying idea is to choose r1 close to the average radius of

the first coordination sphere in carbon systems and r2 slightly shorter than the average radius

of the second coordination sphere. This way, a pair of bonded atoms will have f c
i j = 1 and

strictly non-bonded atoms will have f c
i j = 0. Moreover, “fractional neighbors” with 0 < f c

i j < 1

are allowed. The non-symmetric bond-order coefficients b̄i j are defined as

b̄i j =
f c

i j√
1+∑

k 6=i , j f c
i kG

(
cosθ j , i k

)
H

(
δr j , i k

) . (4.43)

As shown in Fig. 4.1(a-b), the functions G and H are positive, so that b̄i j ≤ 1. Notably, for

two covalently bonded atoms with no other neighbors, the bond order would be b̄ = 1, that

is, a carbon dimer is assigned one perfect σ-bond (b̄ = 1). Consider, now, atoms with higher

coordination. If two atoms, j and k, are both neighbors of atom i , they compete to form bonds

with the latter, with the result that both bonds are weakened with respect to the dimer case.

In addition, we expect that if one atom, say j , is further from atom i than atom k, it induces

a weakening of the bond which is lower than the case where the two neighbors have the

same distance. This justifies the introduction of the factor H
(
δr j , i k

)
which depends on

the difference δr j i k = ri j − rk j . The function H (δr ) is plotted in Fig. 4.1(b) and the explicit

functional form of H (δr ) can be found in Ref. [Los and Fasolino, 2003]. The angular factor G (θ)

is needed to introduce an energy penalization for structures that are far from the ideal angular

configuration in a perfect lattice. This allows, for example, to differentiate the energy of two

lattices with the same coordination such as the diamond lattice and the planar square lattice.

G (θ) results from a cubic spline connecting five fixed points G
(
{θ}5

i=1

)
based on reference

data. In practice, once chosen a value θi (e.g. the bond angle in graphite or diamond), G (θi ) is

fixed in order to optimize observables such as binding energy and elasticity constants. The

final interpolated function G (θ) is shown in Fig. 4.1(a).

The term F conj
i j accounts for the degree of conjugation between atoms i and j . Conjugation

is defined as the coupling between free p-orbitals of unsaturated neighbor carbon atoms,

namely atoms having less than four neighbors. This coupling is responsible for the formation

of π bonds which, though weaker thanσ-bonds, are particularly strong in carbon compared to

other IV group elements (Si, Ge, ...) since carbon has the smallest radius in the group. Due to

the very complicated and non-fully analytic form of F conj
i j , we will omit its definition. However,

just to give an idea of how it behaves for different carbon structures, in diamond F conj
i j = 0 due

to the absence of unsaturated atoms. In graphite, where each atom formπ-bonds with its three

neighbors, F conj
i j = 4/3, that it, each π-bond contributes 4/9 of a σ-bond in the bond-order
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Figure 4.1 – (a-b) Bond order functions (a) G (cosθ) and (b) H (δr ), appearing in the short-range
term of the LCBOP potential. Solid lines (dashed lines) are obtained including (disregarding)
the long-range contribution V LR in the definition 4.38. Circles in panel (a) are the fixed points
for the interpolation of G (θ) . (c) (solid line) Long-range potential defined in eq. 4.44 and
(dotted line) Lennard-Jones potential as a function of interatomic distance r . (d) Interlayer
interaction energy in graphite El as a function of interlayer distance dl calculated by means of
(solid line) eq. 4.44 and (dotted line) Lennard-Jones potential. The crosses represent El (dl )
calculated within DFT/LDA. Figure adapted with permission from Ref. , © 2003 American
Physical Society.

coefficient defined by eq. 4.41.

The long-range potential V LR (r ) has the form of a double Morse potential:

V LR (r ) =
(
1− f c

i j

)
f c,LR

i j

[
θ (r0 − r )V M

1 +θ (r − r0)V M
2 (r )

]
, (4.44)

where

V M
i = εi

(
e−2λi (r−r0) −2e−λi (r−r0)

)
+ vi , (4.45)

f c,LR
i j represents a long-range cutoff:

f c,LR
i j =

[
1+cos

(
π

r − r LR
1

r LR
2 − r LR

1

)]
/2, (4.46)
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and the factor 1− f c
i j switches off the long-range interaction between bonded atoms. The pa-

rameters εi and vi must be set in order to assure continuity of V M
i up to the second derivative.

The parameters defining V LR are set by fitting DFT/LDA estimates of the interlayer binding

energy of graphite El as a function of the distance dl , defined as

El (dl ) = 1

2

′∑
i

∑
j

V LR
i j

(
ri j

)
. (4.47)

In the last expression, the index i runs over the atoms of one unit cell of a layer and the index

j runs over all atoms of all graphitic planes except that to which atom i belongs. The result

of the fit is shown in Fig. 4.1(c-d). Once fixed the long-range potential, the parameters of

the short range part are determined by fitting several observables such as bond distances,

bond energies and stretching force constants calculated from ab initio for various carbon

structures. The value of all parameters of the LCBOP potential can be found in Refs. [Los and

Fasolino, 2003; Ghiringhelli, 2006]. After its first formulation LCBOP has been improved by

adding a coordination-dependent middle-range attractive term for bond distances between

1.7 Å and 4.0 Å as well as other minor modifications (LCBOPII) [Los et al., 2005]. Among other

advantages, the introduction of the middle range term allows to reproduce the dissociation

energy curves for single and multiple bonds, thus improving the description of the reactive

properties of carbon. In this work we have always used the first formulation of the LCBOP,

since we were not interested in the chemical reactions of carbon.

Unfortunately, the LCBOP fails in the correct description of the interlayer binding of multilayer

graphene and graphite both in the magnitude of the binding energy and in its dependence on

the stacking order, i.e. the relative shift of the layers. This has been ascertained by comparison

with higher accuracy methods, such as DFT plus non local functionals and Quantum Monte

Carlo [Spanu et al., 2009; Reguzzoni et al., 2012; Lebègue et al., 2010]. As just mentioned, the

long-range term VLR is conceived to reproduce LDA binding energies, despite the fact that

van der Waals interaction is poorly described by local functionals. To tackle this problem, Kol-

mogorov and Crespi proposed a long-range potential composed of a Lennard-Jones attractive

contribution and an exponentially-decaying repulsive contribution with the crucial feature

to be registry dependent, namely, to depend on the relative position of the atoms owing to

different layers [Kolmogorov and Crespi, 2005]. We give the explicit definition as well as our

reparametrization of the Kolmogorov-Crespi potential in Section 7.1.5.b, in the context of the

study of stacking faults in bilayer graphene.

4.4 Electronic transport

4.4.1 Drude theory of diffusive transport

The problem of electronic transport deals with the description of the flow of electrons and,

more generally, charged particles in materials. In a conductor, a portion of electrons is free

to move across the material, and under non-equilibrium conditions it can give rise to a net
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charge current. The classic case study used to illustrate electronic transport is represented

by a conducting wire of length L and constant cross section S in presence of a longitudinal

electric field E or, equivalently, a potential difference V applied between the two ends. It is

indeed the electric field E that drives the system out of equilibrium and sets a current density

J across the conductor. In the classic Drude model, a linear relation between field and current

is assumed:

J =σE, (4.48)

where the conductivity σ is constant everywhere in the conductor. More generally, it can be

assumed that the current is related to the field in a non-local and history-dependent manner.

Eq. 4.48 can be generalized as

jµ =
∑
ν

ˆ t

−∞
dτ

ˆ
dr′σµν

(
r,r′; t −τ)Eν

(
r′,τ

)
, (4.49)

where the introduction of the conductivity tensor σµν also takes into account situations where

the induced current is not parallel to the direction of the field. Eqs. 4.48 and 4.49 are the local

and geometry-independent version of the Ohm’s laws:

V = RI , (4.50)

and

R = 1

G
= ρL

S
, (4.51)

where I is the total current flowing into the sample, R the resistance, and G the conductance.

What justifies the linear dependence between current and field, from the phenomenological

point of view? The basic assumptions of Drude’s theory are that electrons flowing in the

conductors experience collisions that continually change the momentum of the electrons and

make them flow with uniform average velocity v. The nature of collisions, which may be due

to impurities, other electrons, ionic vibrations, is of little importance. What matters is that

collisions are independent, and that electrons lose memory of their own trajectory after each

collision. This implies that the average velocity immediately after a collision is 〈v0〉 = 0. In the

time interval τ, the momentum variation of the electrons is on average

dp

d t
= mv

τ
. (4.52)

Between two collisions, electrons are accelerated by the field and their momentum changes

according to

dp

d t
= eE, (4.53)
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where e is the electron charge. At a steady state, the momentum gained from the field and lost

in collisions must be equal, so that

mv

τ
= eE, (4.54)

whence, using the definition j = nev,

σ= 1

ρ
= ne2τ

m
. (4.55)

The only unknown quantity at the right hand side of eq. 4.55 is the relaxation time τ. In fact,

an experimental measurement of the conductivity σ, allows to determine τ. In typical metallic

wires, relaxation times are of the order of 10−14 s, and are in large part dictated by inelastic

scattering off ionic vibrations (phonons). A related concept is the mean free path λ = |v|τ,

that is, the average distance traveled by electrons between two collisions. Assuming for |v| the

typical values of the Fermi velocity for metals, vF , of the order of 108 cm/s, one has λ of the

order of 100 Å.

The validity condition of Drude’s theory ultimately relies on a comparison of time scales,

namely τ and the time needed for electrons to travel across the conductor T . If T À τ, each

electron undergoes many collisions, the average velocity v is a well-defined quantity and the

steady state condition 4.53 holds. Equivalently, in terms of length scales, the application of

Drude’s theory is justified if the distance traveled by electrons is much larger than the mean

free path, that is, L Àλ. In these conditions, the transport regime is said to be diffusive. For

systems where L ¿ λ, one rather says that electronic transport takes place in the ballistic

regime. As will be shown in the next sections, the signature of ballistic transport is that the

conductance is an integer multiple of the conductance quantum G0 = (25.8 kΩ)−1.

4.5 Coherent vs. non-coherent transport

In Drude’s theory, collisions are events that change the momentum of the electrons flowing in

a conductor. Collisions can be grouped in two classes:

• Elastic: collisions induce momentum change, but the total energy is conserved. This is

the case of scattering off impurities and structural defects. In a many-body picture, also

electron-electron scattering is an energy conserving process.

• Inelastic: both momentum and energy change after the collision. This is the case of

scattering off thermal phonons.

An additional relaxation time τE can be introduced, defined as the average time interval

between two successive collisions that change the single-particle energy. If τE À T , the energy

of the single electrons is to a good approximation conserved, and it is commonly assumed
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that the phase of the corresponding time-dependent wavefunctions evolves with a constant

frequency. The phase relaxation time τφ is defined as the average time between two collisions

that change the phase of the electron wave-function. In reality, although one cannot have

dephasing without energy change at all, τE and τφ are not strictly equal, and may even differ by

several order of magnitudes. For example, dephasing induced by low-energy phonons in bulk

systems may be orders of magnitude faster than energy relaxation [Massimilano Di Ventra,

2008]. Electronic transport is said to be coherent (incoherent), if the phase of the electron is

(not) conserved during their motion.

We end this brief discussion highlighting the relation between the different transport regimes,

which is sometimes a source of confusion. Ballistic and coherent transport as well as diffusive

and incoherent transport are not synonymous. As in ballistic transport the number of colli-

sions, both elastic and inelastic, is very low, there is high chances that the transport regime is

also coherent. Nevertheless, if processes are introduced in the system, which induce sizable

dephasing but negligible change in energy and momentum, the transport regime is no longer

coherent. Dephasing itself does not hinder the electronic transport and can even increase

the conductance of a system, for example preventing quantum localization. On the other

hand, diffusive transport may well take place in coherent regime, provided that the condition

τ¿ T ¿ τE is fulfilled. This is the case of systems with high amount of structural disorder,

such as amorphous solids, kept at sufficiently low temperature where phonons, which are the

main source of inelastic scattering, are quenched.

4.5.1 Landauer-Büttiker theory of coherent transport

The present subsection briefly exposes the transport theory developed by Landauer and

Büttiker and is based on Ref. [Massimilano Di Ventra, 2008].

Figure 4.2 – Scheme of the system in Landauer-Büttiker theory.

The assumptions In Landauer-Büttiker theory, the calculation of the conductance of a

system is achieved by solving a scattering problem [Landauer, 1957; Büttiker et al., 1985]. Let

us consider the system sketched in Fig. 4.2. We are interested in determining the transport

properties of region C, called channel or scattering region, which is attached to regions L and
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R, called leads or electrodes. Electronic transport takes place along the x axis. Although region

C is sketched as a nanojunction, it represents whatever sample of which we are interested in

calculating the resistance. The leads are attached to two reservoires which provide the particles

flowing across the system. The reservoirs are constantly at thermodynamic equilibrium,

namely they have a well-defined chemical potential µL/R and temperature TL/R, despite of

the loss or gain of particles due to the electron flow. We assume that the distribution of the

electrons in the reservoir over the energy states is given by Fermi-Dirac function

f
(
E −µL/R,TL/R

)= 1

e(E−µL/R)/kb TL/R+1
, (4.56)

where kb is the Boltzmann constant. For simplicity we will assume TL = TR = T . The leads

are conducting objects where electrons scatter negligibly compared to the central region

and where the electron wavefunctions have propagating character, such as Bloch waves. In

all the calculations based on Landauer-Büttiker theory reported in this thesis, the leads are

constituted by semi-infinite regions of pristine graphene.

The situation that we have in mind is the following: electrons are prepared from reservoirs in

the distant past and far from the central region into wave-packets that propagate through the

leads, without being scattered. When electrons reach the central region, they are elastically

scattered and move away toward the leads, such that in the distant future they are again

described by propagating wave-packets, which do not scatter further. This assumption is

referred to as “scattering boundary conditions”. In practice, the leads must be long enough

such that electrons coming from the far past evolve without feeling the potential of the

scattering region. Another assumption is that the bias, that is, the voltage ideally measured

between the two reservoirs, is

V = (
µL −µR

)
/e. (4.57)

The Hamiltonian HS of the system leads plus scattering region does not contain two-particle

operators, namely the interaction between electrons is treated at a mean-field level (for

example, within Tight Binding or Density Functional Theory). The eigenstates of HS form an

orthogonal set of scattering states |E ,α〉 , identified by their energy E and by the label α, which

includes all other quantum numbers. The states |E ,α〉 satisfy the equation

HS |E ,α〉 = E |E ,α〉 . (4.58)

Each of these states is called a channel. A fundamental assumption of Landauer-Büttiker

theory is that the electrons injected by the reservoirs evolve immediately into a set of indepen-

dent channels such that correlations between different states can be neglected. This means

that electrons are described by a diagonal density matrix ρS. Electrons originating from the

left reservoir populate the channels |ΨL〉, according to the equilibrium distribution f
(
E −µL

)
,

as well as electrons injected from the right reservoir populate the channels |ΨR〉 according to

the equilibrium distribution f
(
E −µR

)
. We conclude that the density matrix of the electrons
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flowing through the system has the form

ρS =
∑
L
|ΨL〉 f

(
E −µL

)〈ΨL|+
∑
R
|ΨR〉 f

(
E −µR

)〈ΨR| . (4.59)

With the last equation, we have implicitly assumed that the system reaches a steady state

and ρS is time-independent. Thus, the stationary current I , defined as the mean value of the

operator Î , is

I = eTr
{
ρS Î

}= const. (4.60)

However, the system is not at equilibrium, due to its openness, unless the two reservoirs have

the same chemical potential, but in this case the net current would be zero.

The scattering problem Though not necessary, in order to simplify the discussion we as-

sume that the leads are identical, translationally invariant in the x direction and confined in

the plane y z by some potential VL/R (r⊥). This is, for example, the case of a carbon nanotube.

However, the generalization to systems that are translationally invariant in the plane y − z is

straightforward. Deep into the leads, the asymptotic form of HS is

lim
x→−∞HS = HL =− ~2

2m∗∇2 +VL (r⊥) , (4.61)

and

lim
x→∞HS = HR =− ~2

2m∗∇2 +VR (r⊥) . (4.62)

We have assumed that the effect of the periodic potential along x has been accounted for by

introducing the effective mass m∗. The wavefunctions in the leads have the form

ψi k = 1p
Lx

e i kx ui (r⊥) , (4.63)

with energy

Ei (k) = εi + (~k)2

2m∗ . (4.64)

In eq. 4.63, i is the subband index and the length Lx has been introduced for normalization

convenience. Consider, now, a state injected from the left reservoirΨL with energy E that at

x →−∞ was in an eigenstate ψi ki of HL with the same energy E (actually, we could consider a

combination of all the eigenstates of HL having the same energy E , but this would not change

the substance of the discussion). Deep into the right lead the state, ΨL evolves into a linear

combinations of eigenstates ψ f k f of HR that have the same energy E and positive momentum
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k f :

ΨL →
NR∑
f =1

ti f ψ f k f x →∞, (4.65)

where NR is the number of states with energy E of HR. Since the incoming electrons may be

scattered back into the left lead, we expect that in stationary conditions the wavefunction

deep into the left lead is a combination of the incoming wave and all states that have energy E

and negative momentum −k f :

ΨL →ψi (ki (E))+
NL∑

f =1
ri f ψ f

(−k f (E)
)

x →−∞, (4.66)

where NL is the number of eigenstates of HL with energy E . The current operator Î is defined

as the integral over the transverse directions of the current density operator Ĵ:

Î (x) =
ˆ ∞

−∞
dy

ˆ ∞

−∞
dz Ĵ (r) =

ˆ ∞

−∞
dy

ˆ ∞

−∞
dz

1

2m∗
{
δ (r− r̂) p̂+ p̂δ (r− r̂)

}
. (4.67)

For a stateΨ f k f =
p

1/Lx e i k f x u f (r), the current is independent of the position:

I f =
〈
Ψ f k f

∣∣Î
∣∣Ψ f k f

〉
= ~k f

m∗Lx
= v f

(
k f

)
Lx

, (4.68)

where we have defined the velocity v f
(
k f

)= dE/dk f = ~k f /m∗. The total current, deep into

the left lead, is

IL = I (x →−∞) = Ii −
NL∑

f =1

∣∣ri f
∣∣2 ∣∣I f

∣∣= Ii

(
1−

NL∑
f =1

Ri f

)
, (4.69)

where we have defined the reflection probability

Ri f =
∣∣ri f

∣∣2

∣∣I f
∣∣

|Ii |
. (4.70)

The total current deep into the right lead is

IR = I (x →∞) =
NR∑
f =1

∣∣ti f
∣∣2 I f =

NR∑
f =1

Ti f Ii . (4.71)

Again, we have defined the transmission probability

Ti f (E) = ∣∣ti f
∣∣2

∣∣I f
∣∣

|Ii |
. (4.72)
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Since in a steady state the currents ILand IR must be the same, the transmission and reflection

probabilities, for a particle incident from the left lead, satisfy particle flux conservation

NR∑
f =1

Ti f +
NL∑

f =1
Ri f = 1 ψi ki ∈ left lead. (4.73)

The last relation holds also for a particle incident from the right lead:

NL∑
f =1

Ti f +
NR∑
f =1

Ri f = 1 ψi ki ∈ right lead. (4.74)

Let us calculate now the total current flowing into the right lead. In a steady-state situation

the current would have two contributions: i) that due to the reflected wave of the electrons

injected from the right, given by eq. 4.70, and ii) that due to the transmitted wave of the

electrons injected from the left lead, given by eq. 4.72. We need to sum the contribution of

all states with energy E , and to take into account the density matrix ρS given by eq. 4.59. The

total current I Total
R is given by:

I Total
R = eTr

{
ρS (x →∞) Î

}= (4.75)

−e

ˆ
dE f

(
E −µR

)NR(E)∑
i=1

Di (E)

[
Ii (E)−

NR(E)∑
f =1

∣∣ri f (E)
∣∣2 I f (E)

]
(4.76)

+e

ˆ
dE f

(
E −µL

)NL(E)∑
i=1

Di (E)

[
NR(E)∑

f =1

∣∣ti f (E)
∣∣2 I f (E)

]
= (4.77)

−e

ˆ
dE f

(
E −µR

)NR(E)∑
i=1

Di (E) Ii (E)

[
NL(E)∑

f =1

∣∣ti f (E)
∣∣2

∣∣∣∣ I f (E)

Ii (E)

∣∣∣∣
]

(4.78)

+e

ˆ
dE f

(
E −µL

)NL(E)∑
i=1

Di (E) Ii (E)

[
NR(E)∑

f =1

∣∣ti f (E)
∣∣2

∣∣∣∣ I f (E)

Ii (E)

∣∣∣∣
]

, (4.79)

where Di (E) = (Lx /2π)dki /dE = Lx /(2π~v (ki )) = 1/(2π~Ii (E)) is the density of states of the

i -th subband at energy E , and in the last equality we have used eq. 4.74. Notice that we have

added an explicit dependence on E to all the quantities appearing in the right hand side of

eq. 4.78, including the number of states in the leads which may vary as a function of energy.

Eq. 4.78 can be rewritten as

IR = e
1

2π~

ˆ
dE

[
f
(
E −µL

)
TLR (E)− f

(
E −µR

)
TRL (E)

]
, (4.80)

where the total transmission coefficients have been defined as

TL→R (E) =
NL(E)∑

i=1

NR(E)∑
f =1

∣∣ti f (E)
∣∣2

∣∣I f (E)
∣∣

|Ii (E)| (4.81)
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TR→L (E) =
NR(E)∑

i=1

NL(E)∑
f =1

∣∣ti f (E)
∣∣2

∣∣I f (E)
∣∣

|Ii (E)| . (4.82)

Consider, now, the situation where the traveling states of the two leads are kept at the same

chemical potential µL =µR =µ. Eq. 4.80 becomes

IR = e
1

2π~

ˆ
dE f

(
E −µ)

[TLR (E)−TRL (E)] = IL = 0, (4.83)

where the last equality holds because the system is at equilibrium. Due to the arbitrariness of

µ, we deduce that the flux is conserved at any specific energy, so that

TL→R (E) =TR→L (E) =T (E) . (4.84)

For non-zero bias, V , the two leads are populated differently, and a non-zero current flows

into the system. The current is

I = e

h

ˆ
dE

[
f
(
E −µL

)− f
(
E −µR

)]
T (E) . (4.85)

In the limit of zero bias we can approximate the difference of the two lead populations as

f
(
E −µL

)− f
(
E −µR

)' (
µL −µR

) ∂ f
(
E −µ)
∂µ

∣∣∣∣
µ=(µL+µR)/2

. (4.86)

In the limit of small bias, the quantity
(
µL +µR

)
/2 is very close to the Fermi energy E f of the

system in absence of bias. Hence, for the current, we have

I = e

h

(
µL −µR

)ˆ
dE

∂ f
(
E −µ)
∂µ

∣∣∣∣
µ=E f

= e2

h
V

ˆ
dE

∂ f
(
E −µ)
∂µ

∣∣∣∣
µ=E f

, (4.87)

meaning that, for small bias, the current is proportional to the tension, namely, the statement

of the first Ohm’s law. In the limit kbT ¿V , f
(
E −µ)

becomes a step function ( f
(
E −µ)= 1(0),

for E −µ< 0(> 0)), so that

I = e2

h
T

(
E f

)
V. (4.88)

Despite its simplicity, eq. 4.88 states that the current, far for being an equilibrium property,

can nevertheless be calculated from the quantum properties of the electrons at the Fermi level

of a system at equilibrium. Eq. 4.88 is, ultimately, a fluctuation-dissipation relation.

From eqs. 4.73 and 4.74 one has that,
∑NL

f =1 Ti f ≤ 1 and
∑NR

f =1 Ti f ≤ 1, where the equal sign

holds in absence of reflection. If the latter is the case, the total transmission coefficient is

TLR (E) = NL (E) and TLR (E) = NR (E). Since we have assumed that the leads are identical, we

have NL (E) = NR (E) = NC (E), consistently with TLR (E) =TRL (E) =T (E). This means that a
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necessary condition for the system to be reflectionless, is that the leads have the same number

of states at a given energy E . Consider, for example, a system lead-sample-lead represented by

a perfect translationally invariant wire. Electrons are nowhere scattered and T (E) just counts

the number of states at energy E , which is univocally defined all over the system.

Finally, we derive the expression of conductance within the Landauer-Büttiker theory. To

evaluate the conductance of a system, the knowledge of the electrostatic potential drop

between the two leads is required. In most cases, when the voltage probes are placed deep

inside the leads, the potential drop is very close to the difference of chemical potential in the

reservoirs. For small bias and very low temperature, the conductance is

G = I

V
= e2

h
T

(
E f

)=G0T
(
E f

)
, (4.89)

where the constant G0 = e2/h = (25.8kΩ)−1 is the quantum of conductance. In perfect

reflection-less samples, the conductance is an integer multiple of G0.

In different conventions, the definition of G0 may include a factor of 2, due to spin degeneracy.

In the present derivation, spin degeneracy rather adds a factor of 2 to the transmission coeffi-

cient T (E). The quantization of conductance was found, for the first time, in the 2D electron

gas obtained at the interface of GaAs-AlGaAs heterojunctions [van Wees et al., 1988].

4.5.2 Green’s function method for the calculation of transmission

A brief introduction on Green’s functions Consider a physical system described by the

single-particle Hamiltonian H , with a discrete spectrum formed by the states |Ψα〉, satisfying

the equation

H |Ψα〉 = Eα |Ψα〉 , (4.90)

and continuum spectrum formed by the states |λ〉, satisfying the equation

H |λ〉 =λ |λ〉 . (4.91)

The discrete and continuum spectrum together form a complete single-particle Hilbert state.

It holds

1 =∑
α

|Ψα〉〈Ψα|+
ˆ

dλ |Ψλ〉〈Ψλ| . (4.92)

The Green’s function G (z), associated to H , is an operator that depends on the complex

variable z, defined by

G (z) = (z1−H)−1 z ∈ C. (4.93)
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G (z) is, usually, defined in the complex plane as the analytic continuation of the Green’s

function defined on the real axis G (E), with E ∈ R. Indeed, the most interesting Green’s

function are the retarded one

G+ (E) =G
(
E + iη

)
η→ 0+, (4.94)

and the advanced one

G− (E) =G
(
E − iη

)
η→ 0+. (4.95)

G (z) can be represented in any basis, notably in the position basis:

G (z) =
ˆ

drdr′ |r〉〈r|G (z)
∣∣r′〉〈

r′
∣∣= ˆ drdr′ |r〉G

(
r,r′; z

)〈
r′

∣∣ . (4.96)

Alternatively, G (z) can be expressed in terms of the eigenstates of the Hamiltonian H by means

of the so-called Lehmann representation:

G (z) =
∑
α

|Ψα〉〈Ψα|
z −Eα

+
ˆ

dλ
|Ψλ〉〈Ψλ|

z−λ . (4.97)

The density of states D (E), which counts the number of states at energy E , can be derived

directly from the Green’s function. Given the definition

D (E) =
∑
α
δ (E −Eα)+

ˆ
dλδ (E −λ) , (4.98)

it can be shown that D (E) is related to the advanced or retarded Green’s function as follows:

D (E) =± 1

π
TrImG∓ (E) . (4.99)

The trace operation is basis-invariant, consistently with the fact that D (E) is a scalar quantity.

If the right hand side of eq. 4.99 is evaluated in the basis of the position, we have

D (E) =± 1

π

ˆ
dr ImG∓ (r,r;E) =

ˆ
drD (r,r;E) . (4.100)

The quantity D (r,r;E) counts the number of states with energy E at a given point r, and is

called local density of states (LDOS).

As an example, we write down the Green’s function G+
0

(
r,r′;E

)
for the lead Hamiltonians HL/R

defined in eqs. 4.61 and 4.62. By substituting the eigenstates given by 4.63 into eq. 4.97, and

integrating over the continuous spectrum, we obtain:

G+
0

(
r,r′;E

)= m

i~
∑
α

u∗
α (r⊥)uα

(
r′⊥

) e i k|x−x ′|
k

, (4.101)

where E = Eα (k) = εα+~2k2/2m, and k is taken positive.
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Consider now a system described by the Hamiltonian H = H0 +V . For our purpose, it is

convenient to think of H0 as the Hamiltonian of the leads and V as an operator containing

the Hamiltonian of the scattering region as well as the coupling between the leads and the

scattering region. Next, we define the Green’s functions G0 = (E −H0)−1 and G = (E −H)−1.

We consider an incident state
∣∣Ψ0

in (E)
〉

that in the distant past was governed by H0, say a state

injected into the left lead.
∣∣Ψ0

in (E)
〉

experiences the scattering potential V and evolves into the

state
∣∣Ψ+ (E)

〉
. The incoming and final states are related by the so-called Lippmann-Schwinger

equation∣∣Ψ+ (E)
〉= ∣∣Ψ0

in (E)
〉+G+ (E)V

∣∣Ψ0
in (E)

〉
. (4.102)

Notice that we have employed the retarded Green’s function G+ (E), since we have considered

a state which evolves from the distant past. If G− (E) were used, equation 4.102 would rather

describe the evolution due to V of an outgoing state coming from the distant future.

Consider now the Hamiltonian H , which is the sum of two operators

H = H0 +V. (4.103)

The Green’s functions G0 (E) = (E −H0)−1 and G (E) = (E −H)−1 are related by the so-called

Born series

G =G0 +G0T G0 (4.104)

In the last equality we have introduced the T-matrix operator

T =V +V G0 (E)V +V G0 (E)V G0 (E)V +·· · =V +V G (E)V. (4.105)

The Born series is of fundamental importance for scattering problems where H0 is, usually,

the Hamiltonian of free-propagating particles and V is a scattering potential.

Green’s function and self-energy in the Landauer problem Let us consider the following

partition of the Hamiltonian HS that describes the system leads plus sample

HS = HC +HL +HR +VLC +V †
LC +VCR +V †

CR. (4.106)

As illustrated in Fig. 4.3, HL and HR are the Hamiltonians of the isolated leads, and HC is the

Hamiltonian of the isolated scattering region. VLC and VCR are the coupling between the left

lead and the central region, and between the central region and the right lead, respectively.

We assume that there is no direct coupling between regions L and R. This is a condition always

achievable by defining region C arbitrarily large. Finally, VLC and VCR are short-ranged and do

not overlap in the scattering region. The Schrödinger equation can be written in matrix form
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Figure 4.3 – Partitioning of the system. The meaning of building blocks of the Hamiltonian
4.107 is illustrated.

as  HL VLC 0

V †
LC HC VCR

0 V †
CR HR




∣∣φL
〉∣∣φC
〉∣∣φR
〉

= E


∣∣φL

〉∣∣φC
〉∣∣φR
〉

 , (4.107)

where the total wavefunction
∣∣φ〉

has been spatially partitioned in
∣∣φL

〉
,
∣∣φC

〉
, and

∣∣φR
〉

. This

partition is very clear when HS is built within a tight-binding model, so that
∣∣φ〉

is a linear

combinations of atomic orbitals. Thus,
∣∣φL

〉
contains all the components of

∣∣φ〉
which come

from atomic orbitals of the left lead, and similarly for
∣∣φC

〉
and

∣∣φR
〉

. Moreover, in the tight-

binding model, the orbitals of an atom are coupled to the orbitals of a finite number of

neighbor atoms, so that VLC and VCR are intrinsically short-ranged. From the first and third

rows of eq. 4.107 we obtain the following equations:

(E −HL)
∣∣φL

〉 = VLC
∣∣φC

〉
(4.108)

(E −HR)
∣∣φR

〉 = V †
CR

∣∣φC
〉

, (4.109)

whence

∣∣φL
〉 = GL (E)VLC

∣∣φC
〉

(4.110)∣∣φR
〉 = GR (E)V †

CR

∣∣φC
〉

, (4.111)

where GL/R are the Green’s function associated to HL/R. The last two equations, substituted in

the third row of eq. 4.107, give

(E −HC −ΣL (E)−ΣR (E))
∣∣φC

〉= 0, (4.112)
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where we have introduced the self-energy operators

ΣL (E) =V †
LCGL (E)VLC (4.113)

and

ΣR (E) =VCRGR (E)V †
CR. (4.114)

We have implicitly added a small imaginary part to E in eqs. 4.113 and 4.114, which define both

the retarded self-energies Σ+
L/R (E) = ΣL/R

(
E + iη

)
and the advanced self-energies Σ−

L/R (E) =
ΣL/R

(
E − iη

)
. From eq. 4.112, we can derive the Green’s function G (E) for the scattering region

in presence of a finite coupling to the leads:

G (E) = 1

E −HC −ΣL (E)−ΣR (E)
= 1

E −HC −Σ (E)
, (4.115)

where we have defined the total self-energy

Σ (E) =ΣL (E)+ΣR (E) . (4.116)

The interpretation of Σ (E) is the following: the eigenenergies εk of HC are shifted by ReΣ (εk ) =
ReΣL (εk )+ReΣR (εk ) and develop an imaginary part ImΣ (εk ) = ImΣL (εk )+ ImΣR (εk ). The

latter is associated to a finite lifetime of the original state with energy εk , which, strictly

speaking, is no longer an eigenstate of the full Hamiltonian HS. To first order approximation,

the lifetime due to elastic tunneling into the leads is given by

τel (εk ) = ~∣∣Im
[
Σ±

L (εk )+Σ±
R (εk )

]∣∣ . (4.117)

Finally, we introduce the coupling operators relative to the left and right lead ΓL/R (E):

ΓL/R (E) = i
(
Σ+

L/R (E)−Σ−
L/R (E)

)=∓2ImΣ±
L/R (E) . (4.118)

The coupling operators are inversely proportional to τel , consistently with the intuitive picture

that a larger coupling corresponds to a shorter lifetime of the electrons of the scattering region.

From the practical point of view, due to the infinite extension of the leads, the operators

HL/R and GL/R are represented by matrices of infinite size. This represents a problem when

self-energies are calculated by means of eqs. 4.113 and 4.114. However, since VLC and VCR are

short-ranged, GL/R is needed only at the interface between the leads and the scattering region.

This restriction of GL/R is called surface Green’s function. Several recursive and semi-analytical

techniques, taking advantage of the translational invariance of the leads, have been developed

to calculate the surface Green’s functions [Sancho et al., 1984; Umerski, 1997; Autès, 2008].
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Transmission from the Green’s function We now explain very briefly the connection be-

tween the Green’s function and the Landauer-Büttiker theory. The total Hamiltonian HS can

be partitioned as

HS = H0 +V , (4.119)

where H0 represents the leads and V contains everything is not included in the H0. Consider

an incident state coming from the left lead ψi ,ki (r) with energy Ei (ki ) given by eq. 4.64. The

final stateΨL (r) can be obtained from the Lipmann-Schwinger equation 4.102. In the position

representation we have

ΨL (r) =ψi ki (r)+
ˆ

dr′G
(
r,r′;Ei (ki )

)
V

(
r′

)
ψiki

(
r′

)
. (4.120)

The knowledge of G
(
r,r′

)
allows to deriveΨL (r) , and the asymptotic form of the latter gives

the transmission and reflection coefficients. It turns out that the coefficients 4.65 and 4.66

are proportional to the elements Ti f of the T-matrix defined in eq. 4.105. In particular, the

reflection coefficients are given by

ri f =
Lx

i~v
(
k f

)Ti f , (4.121)

where f labels left-moving states with momentum k f < 0. The transmission coefficients are

given by

ti f = δi f +
Lx

i~v
(
k f

)Ti f , (4.122)

where f labels right-moving states with momentum k f < 0. We can introduce the matrix

τi f = ti f

√∣∣∣∣ v f

vi

∣∣∣∣= (
δi f +

Lx

i~pv f vi
Ti f

)
, (4.123)

such that the asymptotic form of the wavefunction of a state coming from the left lead is

lim
x→∞Ψi ki (r) =

NR∑
f =1

τi f

√∣∣∣∣ vi

v f

∣∣∣∣ψ f k f (r) (4.124)

and the total transmission probability is

TL→R =
NL∑
i=1

NR∑
i= f

ti f t∗i f

∣∣∣∣ v f

vi

∣∣∣∣= NL∑
i=1

NR∑
i= f

τi f τ
∗
i f = Tr

{
ττ†

}
. (4.125)
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Furthermore, if HS can be partitioned as 4.106, TL→R can be evaluated by means of the formula

[Fisher and Lee, 1981]

TL→R (E) = Tr
[
ΓRG+ΓLG−]

. (4.126)

Similarly, for TR→L (E) it holds

TR→L (E) = Tr
[
ΓLG+ΓRG−]

. (4.127)

As shown before, TL→R (E) =TR→L (E) =T (E), so that the current is given by

I = e

h

ˆ
dE

(
fL − fR

)
Tr

[
ΓRG+ΓLG−]= e

h

ˆ
dE (fL − fR)Tr

[
ΓLG+ΓRG−]

. (4.128)

4.6 Monte Carlo method for thermodynamical averages

Importance sampling Let us consider a system of N interacting particles at thermodynamic

equilibrium with a bath at temperature T . We assume that the total energy is a function of

the configuration specified by the collection of the positions of each particle {ri }N
i=1. More

generally, each vector ri can represent the whole set of degrees of freedom of the i -th particle.

Suppose we want to calculate the thermodynamic average of an observable A
(
{ri }N

i=1

)
, defined

as

〈A〉 =
´

A
(
{ri }N

i=1

)
exp

(−βE
(
{ri }N

i=1

))
ΠN

i=1 dri´
exp

(−βE
(
{ri }N

i=1

))
ΠN

i=1 dri
, (4.129)

where E
(
{ri }N

i=1

)
is the total energy corresponding to a specific configuration and we have

introduced the Boltzmann factor β = (kBT )−1 . The denominator of eq. 4.129 defines the

partition function

Z =
ˆ

exp
(−βE

(
{ri }N

i=1

))
ΠN

i=1 dri , (4.130)

so that the average 〈A〉 can be written more clearly as a weighted average

〈A〉 =
ˆ

A
(
{ri }N

i=1

)
W

(
{ri }N

i=1

)
ΠN

i=1 dri , (4.131)

where we have introduced the Boltzmann weight

W
(
{ri }N

i=1

)= exp
(−βE

(
{ri }N

i=1

))
Z

. (4.132)

An evaluation of 4.131 by means of any discretization method is simply unfeasible even for

systems composed of few tens of particles. As an example, consider a system of N = 10 particles

and assume that the total energy depends only on the particles’ positions. If the range of any
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degree of freedom is discretized by using 10 points, then the product A
(
{ri }N

i=1

)
W

(
{ri }N

i=1

)
must be evaluated 103N ' 1030 times.

A valid alternative would come from the Monte Carlo method. To simplify the discussion,

consider the one-dimensional integral

I =
ˆ b

a
f (x) dx, (4.133)

average
〈

f (x)
〉

as

I = (b −a)
〈

f (x)
〉

. (4.134)〈
f (x)

〉
can be approximated by evaluating f (x) over a large number L of x values randomly

distributed in the range [a,b]

〈
f (x)

〉= lim
L→∞

1

L

L∑
i=1

f (xi ) . (4.135)

Due to the finiteness of L, the estimate of I has an intrinsic statistical error that can be

quantified by the variance σI . This can be estimated by propagating the intrinsic variance of

f (x)

σ2
f = (b −a)−1

ˆ b

a

(
f 2 (x)−

ˆ
f (x) dx/(b −a)

)
dx (4.136)

through eqs. 4.135 and 4.134. We obtain

σ2
I = (b −a)

1

L

(
1

L

L∑
i=1

σ2
f

)
= (b −a)

1

L2σ
2
f . (4.137)

This means that the error on I is, obviously, reduced by increasing L, but also that it depends

on how much f (x) drifts from a constant function - the only case where σ f = 0. Unweighted

averages are also not suitable when the integrand is close to zero over a large portion of

the whole space, since a large part of the random evaluations f (xi ) would just negligibly

contribute to the average. This is, indeed, the case of those integrals containing the Boltzmann

factor, such as 4.129.

The efficiency of the Monte Carlo evaluation of I would be largely improved if the integral in

eq. 4.133 could be replaced by an equivalent one containing a smoother integrand. Consider

a function u (x) with positive derivative w (x) = u′ (x) > 0, u (x = a) = 0, and u (x = b) = 1. By

substitution, we have

I =
ˆ b

a

f (x)

w (x)
w (x)dx =

ˆ b

a

f (x)

w (x)
u′ (x)dx =

ˆ u(x=b)=1

u(x=a)=0

f (x (u))

w (x (u))
du (4.138)
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' 1

L

L∑
i=1

〈
f (x (ui ))

w (x (ui ))

〉
.

The problem of evaluating I is recast into the generation of random values for u uniformly

distributed in the range [0,1] and successive evaluations of the function f /w . The variance of

I is

σ2
I =

1

L
σ2

f /w , (4.139)

which can be drastically reduced if w (x) is chosen in order to approximately reproduce the

shape of f (x), so that f (x)/w (x) is as close as possible to 1. Anyway, we stress that the

applicability of this method requires a function w (x) that must be integrated analytically to

obtain u (x), which, in turn, must be invertible analytically.

Alternatively, if one would be able to generate random values xi distributed according to

w (x) (for instance, this is easily done for Gaussian distributions), then the integral would be

evaluated simply as

I ' (b −a)
L∑

i=1

f (xi )

w (xi )
. (4.140)

Sampling by a Markov chain and Metropolis algorithm As we wish to apply importance

sampling to perform the thermodynamic average 4.129, the natural choice for w (x) would

be the Boltzmann weight W
(
{ri }N

i=1

)
defined in 4.132. Unfortunately, the Boltzmann weight

itself is unknown, for its definition contains the partition function Z , which is defined by

an integral over the whole configuration space. However, as we will show in a moment,

the a priori knowledge of the absolute probabilities W is not strictly necessary, as it can be

reconstructed by the relative probabilities of any two configurations {ri }N
i=1 and

{
r′i

}N
i=1

, given

by W
(
{ri }N

i=1

)
/W

({
r′i

}N
i=1

)
= exp

[
−β

(
E

(
{ri }N

i=1

)−E
({

r′i
}N

i=1

))]
.

The goal is achieved by a Markov chain, that is, a sequence of configurations where each steps

depends exclusively on the previous one, in a probabilistic sense. To be more explicit, consider

two neighbor configuration in the chain, which we label Ro and Rn , then the probability

P (Ro →Rn) is exclusively a function of Ro and Rn . Now, suppose the Markov chain is

initiated at a configuration Rstart, which we know to have a non-zero probability W (Rstart). It

is convenient to think of a large number M of Markov chains run in parallel (Markov walkers),

each one initiated at a different starting configuration. Provided that the Markov walkers

will eventually reach the equilibrium configuration given by the Boltzmann weights W ’s, the

condition which allows to maintain it over further evolution of the system is∑
Ro

W (Ro)P (Ro →Rn) =
∑
Rn

W (Rn)P (Rn →Ro) , (4.141)
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namely, the total number of walkers reaching the configuration Rn equals the number of

walkers departing from it. Usually, a more strict condition called “detailed balance” is required

W (Ro)P (Ro →Rn) =W (Rn)P (Rn →Ro) . (4.142)

This is the only set of constraints that applies to the, otherwise arbitrary, set of probabilities

P (Rn →Ro). Enforcing a balance condition assure that the only distribution which can be

maintained over the time is the Boltzmann one. In other words, if the Markov walkers reach

an equilibrium distribution, it can only be the Boltzmann distribution.

A step in a Markov chain consists in two moves. First, a trial move is performed accord-

ing to a probability distribution α (Ro →Rn), which we assume to be a symmetric matrix:

α (Ro →Rn) =α (Rn →Ro). Second, the move is accepted or rejected according to the prob-

ability acc(Ro →Rn), in which the information on the equilibrium distribution is encoded.

As the resulting probability is

P (Ro →Rn) =α (Ro →Rn) acc(Ro →Rn) , (4.143)

eq. 4.142 becomes

acc(Ro →Rn)

acc(Rn →Ro)
= W (Rn)

W (Ro)
= exp

{−β [E (Rn)−E (R0)]
}

, (4.144)

where we have used the symmetry of α. The choice suggested by Metropolis, Rosenbluth and

Teller [Metropolis et al., 1953] is the following:

acc(Ro →Rn) =
W (Rn)/W (Ro) = exp

{−β [E (Rn)−E (Ro)]
}

E (Rn) > E (Ro)

1 E (Rn) < E (Ro)
. (4.145)

It can be easily checked that this choice fulfills the detailed balance condition. Once equilib-

rium is reached, 〈A〉 is obtained as an unweighted average over the ensemble of configurations

of the Markov walkers {Ri }M
i=1

〈A〉 = 1

M

M∑
i=1

A (Ri ) . (4.146)

Although over the years other choices for acc(Ro →Rn) have been proposed, the original

Metropolis scheme outperforms most of its alternatives in terms of sampling efficiency. The

matrixα remains unspecified, except that it is symmetric. There is indeed an inherent freedom

in the choice of α that can be exploited to accelerate the sampling. However, the set of

probabilities P (Ro →Rn) must guarantee ergodicity, that is, each accessible point of the

configuration space must be reachable in a finite number of Markov steps from any other

point. Ergodicity allows to lift the requirement of having a large number of Markov walkers,
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which can be replaced by a single longer sampling, with an enormous benefit in practical

calculations. There is, however, a subtle conceptual difference: when dealing with a single

walker, the configurations explored during the entire chain are distributed according to the

Boltzmann function, whereas with a large number M of walkers we assume that the Boltzmann

distribution is reproduced at each step by the ensemble of configurations of the walkers.
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5 Electronic transport across grain
boundaries in graphene

As discussed in Chapter 3, production of graphene for industrial applications

requires manufacturing processes that can be robustly scaled up, for exam-

ple, based on chemical vapor deposition. The output of such a technique is

mostly polycrystalline samples and there is large evidence that the presence of

grain boundaries strongly affects the electronic transport properties of graphene.

However, a connection between polycrystals’ morphology and electronic con-

ductance posed on a quantitative basis is lacking. In the first two sections

of this chapter, we study the problem of the electronic transport across grain

boundaries in graphene by employing the Landauer-Büttiker theory.

In the first section, we systematically investigate the transmission of charge

carriers across periodic grain boundaries. For GBs built from dislocations with

the smallest Burger’s vector b = (1,0) (see Section 3.3.1), our calculations reveal

an unexpected suppression of low-energy transmission upon decreasing the dis-

location density. This counterintuitive behavior is a consequence of low-energy

localized states of topological origin introduced by individual dislocations that

backscatter the charge carriers.

In the second section we extend the scope of our investigation to include disor-

dered grain boundaries. We perform a Monte Carlo sampling of the configura-

tional space of GBs, thus generating ensembles of realistic models of disordered

interfaces between misoriented domains of graphene. All along the simulations,

transmission across GBs has been calculated, thus enabling us to establish a

connection between average transmission and invariant misorientation angle.

In the last sections, we present two works performed in collaboration with

experimental groups. In the third section, we describe a study demonstrating

the controlled growth of a line defect in graphene formed by an array of 5-5-8

defects (two pentagons and one octagon), as revealed by transmission electron

microscopy. This line defect can be thought as a GB with vanishing misori-
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entation angle. By means of ab initio electronic transport calculations, we

confirm earlier theoretical prediction suggesting that such defect acts as a valley

filter. However, we find a strong energy dependence of the valley polarization

of the charge carriers transmitted through the GB. Inspired by these findings,

we propose an electrostatically operated “valley-valve” device based on two

5-5-8 defects. Such device would represent a fundamental building block for

valleytronics logical circuits.

In the fourth section, we describe a study of grain boundaries in epitaxial

graphene on SiC substrate performed using scanning tunneling microscopy-

/spectroscopy, which remarkably found periodic GBs, among the others. In

particular, one highly ordered GB with misorientation angle θ = 33±2◦ was rec-

ognized as the previously proposed model shown in the lower panel of Fig. 3.2(c).

To achieve this identification, we performed ab initio simulations of STM im-

ages, finding strong qualitative resemblance to the experimental ones.

5.1 Electronic conductance across periodic grain boundaries

The work presented in this section has been published in Nano Letters, 14, 250 (2014), whose

manuscript was entirely written by Fernando Gargiulo. The reader will find a considerable

overlap between the article and the present section.

5.1.1 Introduction

As discussed in Section 3.3.1, in the Read-Shockley model, grain boundaries in two-dimensional

crystals are equivalent to one-dimensional arrays of dislocations [Read and Shockley, 1950]. In

graphene, the low-energy configurations of the cores of dislocations are composed of pairs of

pentagons and heptagons, and the resulting Burgers vector depends on their mutual positions

[Carpio et al., 2008; Liu and Yakobson, 2010; Yazyev and Louie, 2010b; Carlsson et al., 2011].

In Section 3.3.3, we have reported a theoretical study predicting that, for a certain class of

periodic GBs, the conservation of momentum results in a complete suppression of the trans-

mission of low-energy charge carriers [Yazyev and Louie, 2010a]. However, it is important

to understand the factors determining the charge-carrier transmission probability in a more

general situation when no symmetry-related selection applies.

In this section, we report a systematic study of the charge-carrier transmission across grain

boundaries in graphene by means of the Landauer-Büttiker approach. We find that the

structural topological invariant of dislocations, the Burgers vector b, plays a crucial role in

determining the transport properties. In particular, in the case of grain boundaries formed

by the minimal Burgers vector b = (1,0) dislocations, we find an unexpected suppression of

the transmission of low-energy charge carriers in the limit of small misorientation angles (or

equivalently small dislocation densities). This counter-intuitive behavior is explained from
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5.1. Electronic conductance across periodic grain boundaries

the point of view of resonant back-scattering involving localized states of topological origin,

which arise due to the gauge field created by dislocations characterized by b = (n,m) with

n −m 6= 3q (q ∈ Z). The b = (1,1) dislocations are shown to behave as ordinary scattering

centers with very weak effects on the electronic transport.

5.1.2 Methods and models

In our study, we employ the nearest-neighbor tight-binding model Hamiltonian

H =−t
∑
〈i , j 〉

[c†
i c j +h.c.], (5.1)

where ci (c†
i ) annihilates (creates) an electron at site i and 〈i , j 〉 stands for pairs of nearest-

neighbor atoms. The hopping integral t = 2.7 eV is assumed to be constant. We verified

by means of explicit calculations that including the dependence of the hopping integral

on the variation of the interatomic distance due to the elastic strain field produced by the

dislocations has only minor effect on the low-energy charge-carrier transmission. The tight-

binding results also agree with the results of first-principles calculations, as shown previously

[Yazyev and Louie, 2010a]. Coherent transport across grain boundaries in graphene is studied

within the Landauer-Büttiker formalism, which relates conductance G(E) at a given energy

E to transmission T (E) as G(E) =G0T (E), with G0 = 2e2/h being the conductance quantum

[Büttiker et al., 1985]. As a consequence of the periodicity of our models, transmission is

also a function of the momentum component k∥ parallel to the GB. In the following, the

explicit dependence of physical quantities on E and k∥ is omitted for the sake of compact

notation, whenever clearness is preserved. Transmission is evaluated by means of the Green’s

function approach using two-terminal device configurations, with contacts represented by

semi-infinite ideal graphene leads. Here, we briefly summarize the main formulas used in the

calculations. For a detailed treatment of the Landauer-Büttiker theory we refer to Section 4.5.1.

Transmission is calculated using the formula

T = Tr[ΓLG†
SΓRGS]. (5.2)

The scattering region Green’s function GS is calculated as

GS = [E+I −HS −ΣL −ΣR]−1 (5.3)

employing the coupling matrices ΓL(R) for the left (right) lead given by

ΓL(R) = i [ΣL(R) −Σ†
L(R)]. (5.4)

In these expressions HS is the Hamiltonian for the scattering region, ΣL(R) are the self-energies

that couple the scattering region to the leads and E+ = E + iηI (η→ 0+). The self-energies are

calculated by means of the recursion technique described in Ref. [Sanvito et al., 1999]. As the

system under study is time-reversal symmetric, T
(
k∥,E

)
=T

(−k∥,E
)
, allowing to consider only
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Figure 5.1 – (a) A generic example of asymmetric periodic grain boundary composed of
b = (1,0) dislocations. This grain-boundary structure is characterized by rotation angles
θL = 30◦ and θR = 10.9◦, and the pair of matching vectors (0,3)|(1,2). The periodicity vector d
and the Burgers vector b are shown. (b-c) Structures of symmetric grain boundaries formed
by (b) b = (1,0) and (c) b = (1,1) dislocations. (d) Degenerate grain boundary (θ = 0◦) with the
Burgers vector of the constituent dislocations oriented along the grain-boundary line (shown
as dashed line).

k∥ ∈ [0,π/d ].

We consider grain-boundary models constructed as periodic arrays of dislocations following

the Read-Shockley model [Read and Shockley, 1950]. Only dislocations formed by pentagons

and heptagons are investigated as these structures preserve the three-fold coordination of

sp2 carbon atoms thus ensuring energetically favorable configurations of defects. This con-

struction is consistent with experimental atomic resolution images of grain boundaries in

polycrystalline graphene [Huang et al., 2011; Kim et al., 2011]. The relative position of pen-

tagons and heptagons defines the Burgers vectors of the constituent dislocations. The Burgers

vectors, their orientation with respect to the grain boundary line, and the distance between

dislocation cores define the grain boundary’s structural topological invariant, misorientation

angle θ = θL +θR, see Section 3.3.3. This relation allows constructing arbitrary grain boundary

models. Alternatively, periodic grain boundaries can be defined in terms of a pair of match-

ing vectors (nL,mL)|(nR,mR), introduced in Ref. [Yazyev and Louie, 2010a], see Fig. 5.1(a).

Throughout this section, however, we shall constrain our discussion to the Burgers vectors b
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Figure 5.2 – Electronic transport across periodic grain boundaries in graphene formed by the
b = (1,0) dislocations. (a),(b) Transmission probability as a function of energy E and transverse
momentum k∥ across symmetric grain boundaries characterized by d = 6.51 Å and d = 36.2 Å,
respectively. (c) Transmission probability close to the Dirac point (E = 10−3t ) as a function of
q∥ for different values of d . (d) Low-energy transmission of normally-incident charge carriers
as a function of inter-dislocation distance d for symmetric, asymmetric and degenerate grain
boundaries. The inset shows the same data in logarithmic scale.

and the inter-dislocation distance d in order to simplify the discussion. Figure 5.1(a) shows

a generic example of an asymmetric grain boundary formed by b = (1,0) dislocations. Fig-

ures 5.1(b),(c) depict examples of symmetric (θL = θR) periodic grain boundaries formed by

b = (1,0) and b = (1,1) dislocations, respectively. Figure 5.1(d) shows an example of a degener-

ate grain boundary (θ = 0◦) with the Burgers vector of the constituent dislocations oriented

along the grain boundary line. In our study, we focus only on those models that do not result

in transport gaps due to selection by momentum. Only periodic structures characterized by

marching vectors (nL,mL)|(nR,mR) such that either both nL −mL = 3p and nR −mR = 3q , or

both nL −mL 6= 3p and nR −mR 6= 3q (p, q ∈Z) are considered [Yazyev and Louie, 2010a].

5.1.3 Results and discussion

We first focus on symmetric periodic grain boundaries formed by b = (1,0) (b = 2.46 Å) dis-

locations. Such grain boundaries are defined by pairs of matching vectors belonging to the

(l , l +1)|(l +1, l ) series (l ∈N). Hence, d = a0
p

3l (l +1)+1, where a0 = 2.46 Å is the lattice con-
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stant of graphene. Figure 5.2(a) shows the transmission probability T as a function of energy

E and transverse momentum k∥ for the first member of this sequence (l = 1) characterized

by d = 6.51 Å see Fig. 5.1(b). One clearly observes a projected Dirac cone in the irreducible

half of the one-dimensional Brillouin zone corresponding to the periodic grain-boundary

structure. This model shows T (k∥,E). 1, in agreement with previous calculations [Yazyev

and Louie, 2010a]. Figure 5.2(b) shows T (k∥,E) for a grain boundary characterized by l = 8

and, hence, a larger periodicity d = 36.2 Å. The most evident difference between the two is

the occurrence of multiple conductance channels as a result of band folding over a smaller

Brillouin zone. The striking feature, however, is the clear reduction of transmission (and,

consequently, conductance) close to the Dirac point energy E = 0. This counter-intuitive

decrease of transmission, or equivalently enhancement of scattering upon decreasing the

density of dislocations, suggests the topological origin of the discussed transport behavior.

Figures 5.2(c-d) further investigate the details of charge-carrier transmission at very low energy

(E = 10−3t). One clearly observes a monotonic decrease of T (q∥) (with q∥ = k∥− (2π)/(3d)

being the transverse momentum relative to the location of the projected Dirac point) as d

increases, see Fig. 5.2(c). The transmission probability of normally incident charge carriers

(q∥ = 0) exhibits an inverse power scaling law T ∝ d−γ, with an exponent γ≈ 0.5, see dashed

lines in Fig. 5.2(d). Moreover, the observed scaling law is independent of the orientation

of the Burgers vectors of dislocations relative to the grain-boundary line. This was explic-

itly demonstrated using several models of asymmetric and degenerate configurations , see

Fig. 5.2(d).

The observed transport anomaly is further investigated by analyzing the local density of states

(LDOS) at each site n calculated as

LDOSn (E) =− d

π2

ˆ π/d

0
Im

(
GS

(
E ,k∥

))
n,n dk∥. (5.5)

Figure 5.3(a) shows the density of states (DOS) calculated by summing the LDOS over atoms

located in the grain-boundary region of 40 Å width. One clearly observes the presence of

sharp van Hove singularities both in the valence and conduction bands superimposed on

the linear contribution of pristine graphene. The peak positions converge to the Dirac point

energy as the distance between dislocations d increases, see Fig. 5.3(b). These DOS peaks can

be attributed to the emergence of electronic states localized at the dislocations, as indicated

by Figure 5.3(c). The presence of localized states results in resonant back-scattering at low

energies, similar to dopants and covalent functionalization defects in graphene [Choi et al.,

2000; Titov et al., 2010; Wehling et al., 2010; Yuan et al., 2010; Ferreira et al., 2011; Radchenko

et al., 2012].

The origin of these localized states is related to the topological nature of defects in polycrys-

talline graphene. Charge carriers of momentum k encircling a dislocation with Burgers vector

b gain a phase ϕ = k ·b [S. V. Iordanskii, 1985]. The aforementioned b = (1,0) dislocations

thus give rise to ϕ = +2π/3 and ϕ = −2π/3 for charge carriers in valleys ξ = +1 and ξ = −1,

respectively. Starting from the Dirac equation for a massless particle the effect of a dislocation
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Figure 5.3 – (a) Density of states (DOS) in the interface region computed for the grain bound-
aries formed by b = (1,0) dislocations with different values of d . (b) Positions of the DOS
peaks as a function of d . The labels refer to peaks in panel (a) shown for the d = 23.5 Å grain
boundary. (c) Local density of states (LDOS) at E = 10−3t for the d = 61.8 Å grain boundary.
Circle areas are proportional to the LDOS. (d) LDOS as a function of distance from the defect
core δ calculated at E = 10−3t for the d = 385 Å grain boundary. Solid lines indicate two trends
consistent with the results of Ref. [Mesaros et al., 2010].

is accounted for by means of a gauge field A ∝ k ·b [Lammert and Crespi, 2000; Cortijo and

Vozmediano, 2007; Mesaros et al., 2009; Vozmediano et al., 2010]:

H = (
px − i Ax

)
σx +

(
py − i Ay

)
ξσy , . (5.6)

Using this continuum model Mesaros et al. predicted that an isolated b = (1,0) dislocation

gives rise to quasi-localized modes at E = 0 [Mesaros et al., 2010]. The continuous model for

b = (1,0) has two low-energy solutions with the LDOS decaying as ∝ δ−2/3 and ∝ δ−4/3, where

δ is the distance from the defect core. These analytic results are confirmed by our numerical

calculations on a grain-boundary model with a very large distance between dislocations

(d = 61.8 Å). In particular, the two solutions coexist on opposite sublattices of the graphene

lattice, see Fig. 5.3(d).

In order to gain a qualitative understanding of the dependence of transmission on d , see

Figs. 5.2(c-d), one has to appreciate the fact that a finite distance between the dislocations

forming a grain boundary is responsible for the hybridization of the localized states. As a
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Figure 5.4 – Electronic transport at finite energy across periodic GB composed by b = (1,0)
dislocations. (a) Transmission probability at E = ±0.1t . as a function of inter-dislocation
distance d . (b) Momentum-averaged transmission as a function of E calculated for different
values of d . In this plot, transmission has been renormalized by that of pristine graphene
samples.

result, LDOS peaks at positive and negative energies emerge instead of the E = 0 peak that is

typical of isolated dislocations. As the distance between dislocations d increases, the degree

of hybridization diminishes, thus reducing the peak energies, see Figs. 5.3(a-b) and resulting

in the progressive decrease of the transmission close to E = 0. At finite energies, however, the

minimum of transmission is achieved at certain distance between dislocations. Fig. 5.4(a)

shows the normal-incidence transmission across b = (1,0) grain boundaries as a function of

the inter-dislocation distance d at E =±0.1t . Upon increase of d , we first observe a decrease

of transmission similar to what seen at lower energies, then a first minimum followed by a

sudden rise, a second minimum and, finally, an asymptotic approach to T = 1. This trend

can be understood by tracking the energy position of the LDOS peaks as a function of d . For

increasing d , the two LDOS peaks are shifted toward E = 0 and the energy value |E | = 0.1t

lies, respectively, in the first peak (first minimum of T ), between the two peaks (rise of T ),

into the second peak (second minimum of T ), and, finally, beyond the peaks (asymptotic

approach to T = 1). For higher energies the position of the two minima is expected to move

to shorter distances d . Fig. 5.4(b) shows the overall energy behavior of momentum-averaged

transmission T (E) defined as

T (E) = d

π

ˆ π/d

0
T (E ,k∥) dk. (5.7)

Overall there is a large energy ' [−0.5,0.5] eV window where GBs with large angle (high

defect density) are more transparent than small-angle GBs (low defect density). Outside this

energy window, small-angle GBs are more transparent, thus recovering the intuitively expected

behavior.

It is worth stressing that despite the fact that our conclusions are based on periodic models of

dislocations, there is no strict requirement of periodicity, in contrast to the case of suppressed

conductivity due to momentum conservation [Yazyev and Louie, 2010a]. This has been explic-
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Figure 5.5 – Electronic transport across grain boundaries composed of b = (1,1) dislocations.
(a) Transmission probability close to the Dirac point (E = 10−3t) as a function of q∥ for the
grain boundaries characterized by different values of d within the l 6= 3p family. (b) Low-
energy transmission of the normally-incident charge carriers as a function of inter-dislocation
distance d . Two families of grain boundaries are distinguished.

itly verified by means of supercell calculations which show that transmission is insensitive to

perturbation of the periodic arrangement of dislocations in grain boundaries.

More generally, all dislocations characterized by Burgers vectors b = (n,m) with n −m 6= 3q

(q ∈ Z) have a similar effect on graphene charge carriers because of equal values of k ·b.

However, dislocations with n−m = 3q are expected to behave as ordinary (topologically trivial)

scatterers since k ·b = 4π. We verify this hypothesis by investigating the transmission through

grain boundaries formed by b = (1,1) (b = 4.23 Å) dislocations, see Fig. 5.1(c). Following the

convention defined earlier, these grain boundaries are defined by pairs of matching vectors

belonging to (1, l +1)|(l +1,1) series (l ∈N). Figure 5.5(a) shows that already the first members

of this family exhibit transmission probabilities close to 1, which further increase as the

inter-dislocation distance d increases. Furthermore, one can distinguish two families of

grain-boundary structures characterized by l = 3p and l 6= 3p (p ∈N), see Fig. 5.5(b). Within

both families the effect of dislocations can be described in terms of scattering cross-sections,

σl=3p ≈ 0.5 Å and σl 6=3p ≈ 0.01 Å. The first value is significantly larger since both Dirac points

correspond to k∥ = 0, thus enabling intervalley scattering upon transmission across the GB.

The LDOS calculated for these grain boundary configurations shows no localized states at low

energies (not shown here).

5.1.4 Conclusions

The study reported in the present section reveals an intriguing aspect of charge-carrier trans-

port in topologically disordered graphene. We predict anomalous scattering in small-angle

grain boundaries (d À|b|) composed of dislocations with the minimal Burgers vector b = (1,0).

These dislocations are dominant in realistic samples due to their reduced elastic response,

and may even occur within seemingly single-crystalline domains of graphene [Coraux et al.,
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2008]. Dilute dislocations act as resonant scattering centers, similarly to covalently bound

adatoms, see Section 2.2 [Titov et al., 2010; Wehling et al., 2010; Yuan et al., 2010; Ferreira et al.,

2011; Radchenko et al., 2012], but unlike adatoms, dislocations cannot be easily eliminated

from the sample due to their topological nature and high diffusion barriers, see Section 3.3.2.

5.1.5 Additional calculations

In order to further validate the choice of the first-neighbor TB Hamiltonian defined in eq. 5.1,

which we have employed to obtain all the results reported so far, we repeat some of the

important calculations using the third-neighbor TB model defined in Ref. [Lherbier et al.,

2011]. In such a model, the second- and third-neighbor hopping term are, respectively,

t ′ =−0.064t and t ′′ = 0.052t .

The comparison between first- and third-neighbor TB model is shown in Fig. 5.6.

Figure 5.6 – Charge-carrier transmission probability across b = (1,0) grain boundaries at low
energy (E = 10−3t ) as a function of q∥ calculated using (a) the first-neighbor TB model (eq. 5.1)
and (b) the third-neighbor TB model proposed in Ref. [Lherbier et al., 2011]. (c) Low-energy
transmission of normally-incident charge carriers as a function of d calculated using first-
and third-neighbor TB models, labeled NN and 3NN, respectively. Panels (d-f) show the same
quantities as (a-c) calculated for b = (1,1) grain boundaries.
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5.2 Electronic transport across disordered grain boundaries

5.2.1 Introduction

In the previous section, we have studied the effect of periodic GBs on electronic transmission,

also accounting for slight perturbation to the periodicity, and predicted anomalous low-energy

scattering for small-angle GBs.

In this section, we address the problem of evaluating the conductance of disordered grain

boundaries. Having a collection of realistic grain boundaries for a given misorientation angle is

propaedeutic to the calculation of any physical observable. We have chosen to employ a Monte

Carlo simulation in order to explore the configuration space of the interface between two

misaligned domains. This has provided ensembles of defect structures not selected randomly

but weighted by their formation energy with respect to the corresponding ordered low-energy

configuration. Thereafter, we have sampled several observables to have a complete picture of

both the morphology (number of atoms of the rings, atomic coordination, formation energy),

and spectral and transport properties (DOS, transmission, conductance). The statistical

analysis of the data allowed us to put on a quantitative basis the connection between the

average conductance of a single grain boundary and its misorientation angle.

As discussed in Section 3.3.3, it has been shown that the presence of multiple grain boundaries,

which is expected in polycrystals, leads to a simple law of direct proportionality between the

conductance of the sample and the average linear size of individual grains grains [Van Tuan

et al., 2013]. This can be easily interpreted as the emergence of ohmic behavior induced by

the presence of multiple grain boundaries. At this point, our quantitative estimates for the

conductance across a single grain boundary combined with the knowledge of the transport

regime let us glimpse the opportunity for a multiscale determination of the intrinsic trans-

port properties in large area polycrystalline samples. A very minimal, although meaningful,

illustrative example is given at the end of this section.

5.2.2 Description of the work

In Fig. 5.7(a), we illustrate a prototypical initial setup constituted by two domains misaligned

by θ = θL +θR = 21.2◦ merging at the center, where they form a GB. The rectangular periodic

supercell has 10.9 nm width and 5.2 nm height with 2044 atoms in total. The green regions in

Fig. 5.7(a) represent regions of pristine graphene that are kept fixed during the simulation.

In order to perform a Monte Carlo simulation two ingredients are necessary: the basic move

and the acceptance criterion. We have chosen the Wooten-Winer-Waeire move [Wooten et al.,

1985] that consists in the rotation of an atomic bond by 90◦, as illustrated in Fig. 5.7(b). The

system is therefore relaxed by minimizing the LCBOP classical potential [Los and Fasolino,

2003]. Within a pristine area of graphene, this move results in the creation of the so-called

Stone-Wales defect, see Fig. 5.7(b), characterized by a high formation energy of about 5eV [Li
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et al., 2005], see Section 3.2. When the rotation is performed in the vicinity of a dislocation (i.e.

a pentagon-heptagon pair), it often represents an energetically low-cost move, see Fig. 5.7(c).

In the proximity of a grain boundary, the move can even lead to a structure with a lower energy,

thus allowing the exploration of the configuration space. Therefore, our final choice is to

rotate bonds that connect at least one atom belonging to the GB. We adopt the Metropolis

scheme as an acceptance criteria [Metropolis et al., 1953]. It is important to say that, for our

purpose, the MC simulation is not intended as a tool to obtain a thermodynamics ensemble

of configurations. In fact, the growth of the grains in a chemical vapor deposition, which

leads to the formation of boundaries, takes place in conditions that are out of thermodynamic

equilibrium. In our case, the MC simulation rather consists in a tool to collect realistic grain

boundary configurations. In this spirit, it must not confuse that the main temperature chosen

for the simulation T = 5000K is close to the melting temperature for graphene [Zakharchenko

et al., 2011]. In fact, our simulations involve only few degrees of freedom in the boundary

region, and the energy equivalent of the simulation temperature (= 0.43 eV) divided by the

average distance between two carbon atoms (1.42 Å) is comparable to the typical formation

energy of a GB (0.2−0.8 eV/Å). In other words, the temperature has been chosen so that the

system has a significant probability to assume distinct configurations along the simulation.

The starting structural models are periodic rectangular supercells containing one GB, as

shown in Fig. 5.7(a). The periodicity along the direction parallel to the GB, W , is in the

range [5.2,6.0] nm, except for one asymmetric model with θ = 30◦, where W = 11.0 nm,

whereas the periodicity along the direction orthogonal to the GB, H , is comprised in the

range [8.95,10.2] nm. The total number of atoms lies between 1848 and 2144, except for the

asymmetric θ = 30◦ model that has 3758 atoms. All the starting configurations can be found in

Figs. 5.13.

Initially, all systems have been relaxed in both the atomic and the cell degrees of freedom. After

each move, the structure has been relaxed keeping the cell parameters fixed. Relaxations have

been achieved by minimizing the total energy calculated by means of the Long-Range Carbon

Bond Order Potential (LCBOP) [Los and Fasolino, 2003], as implemented in the open source

code LAMMPS [Plimpton, 1995; LAMMPS], see Section 4.3. The LCBOP has been selected

among available alternatives after the comparison of the formation energies of several defects

(both local and topological) with DFT results.

After each move, the system is relaxed and the minimized energy is employed in the Metropolis

scheme, see Section 4.6. For the description of low-energy charge carriers we have adopted a

next-neighbor tight-binding Hamiltonian restricted to pz orbitals in which the hopping term

t is set to 2.7 eV, see Sections 1.3 and 5.1.2.

The coherent conductance across the GB is calculated numerically by means of the Landauer-

Büttiker theory, see Section 4.5.1. We use a two-terminal device configuration including

translationally invariant semi-infinite leads made of ideal graphene. The connection between

the leads and the scattering region is ensured by the regions of immobile atoms highlighted in
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Figure 5.7 – Simulation setup and MC move outcomes. (a) Initial configuration of a two-
domains system with misorientation angle θ = θL +θR = 21.2◦. The system is periodic in both
the directions parallel and orthogonal to the GB. Atoms in green regions are kept fixed along
the simulation. (b) Bond rotation in a pristine graphene region resulting in the formation
of a Stone-Wales defect. (d) Three relevant outcomes of a bond rotation around a 5-7 pair:
(1) creation of an additional 5-7 pair, (2) glide, and (3) a higher energy defect including an
eight-membered ring.

green in Fig. 5.7(a). Transmission is a function of transverse momentum k∥ (defined for the

supercell) and energy E , and has been evaluated as T = Tr[ΓLG†
SΓRGS], where we have omitted

explicit dependences on energy and momentum for brevity. The Green’s function of the scat-

tering region is defined as GS(k‖,E ) = [
E+I −HS(k‖,E)−ΣL(k‖,E)−ΣR(k‖,E)

]−1, the coupling

matrices Γ for the left and right lead are given by ΓL(R)(k‖,E) = i
[
ΣL(R)(k‖,E)−Σ†

L(R)(k‖,E)
]

,

HS(k‖,E) is the Hamiltonian of the scattering region Fourier-transformed along direction ||,
ΣL(R) are the self-energies coupling the scattering region to the leads, and E+ = E + iη (η→ 0+).

The self-energies,ΣL(R), have been calculated by means of the recursion technique described in

Ref. [Sanvito et al., 1999]. Given a finite bias V =VL −VR, where VL(R) is the chemical potential
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Figure 5.8 – Observables sampled during the simulation of the θ = 21.2◦ GB. (a) Evolution of
the formation energy and the conductance integrated between −0.5eV and 0.5eV. (b) Ground
state and three representative low-energy configurations extracted from the simulation. The
corresponding energies are indicated in the upper plot by red circles. (c) The main frame
contains a scatter plot of conductance v s. formation energy. The upper (side) histogram shows
the formation energy (transmission) distribution. All conductances are normalized by the
value pertaining to a pristine graphene sheet of the same size of the polycrystalline sample.

of the left(right) lead, and assuming that temperature T is such that kBT ¿V , conductance G

has been calculated as G =G0
´ VR

VL
dE
´

1B Z T
(
k∥,E

)
. In order to evaluate the latter integral, 11

independent k-points and 48 energy-points have been used, respectively.

The DOS has been calculated as DOS(E) =−W
π2

´
Im(GS

(
E+,k∥

)
) dk∥ and the integral has been

discretized over a 21 k-points grid.

5.2.3 Results and discussion

We have performed simulations starting from 8 symmetric GBs covering a range of misorien-

tation angles θ ∈ [7.3◦,51.5◦], and one asymmetric GB with θ = 30◦. The data collected along a

typical simulation are presented in Fig. 5.8. The starting configuration is the left one sketched

in Fig. 5.8(b0), consisting in a θ = 21.2◦ GB made of 8 pentagon-heptagon pairs.

The evolution of the formation energy, plotted in Fig. 5.8(a) shows that there are several low-

energy configuration occurring frequently. Three of these disordered GBs are sketched in

Fig. 5.8(b1-3). From a comparison with the initial ordered configuration, it can be seen that
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each of them results from a combination of glides, creations or annihilations of pentagon-

heptagon pairs. These transformations have been recognized as those responsible for the

life cycle of dislocations and for the evolution of grain boundaries [Lehtinen et al., 2013;

Kurasch et al., 2012]. Along the simulation, defective rings made of 5 and 7 members represent,

respectively, 50.1% and 49.7% of the non-six-membered rings. The remaining 0.2% is given

exclusively by 8 membered rings. The absence of rings with less than 5 members and the rare

occurrence of 8-membered rings has to be put in connection with the high energy cost of

those defects [Liu et al., 2012; Liu and Yakobson, 2010; Yazyev and Louie, 2010b]. A mismatch

between the number of pentagons and heptagons of a GB also implies a higher formation

energy. As a general fact, in all our simulations, the GBs lying in the low energy region,

are formed exclusively by 5- and 7-membered rings in equal number. In addition, along

all our simulations, the coordination number of the carbon atoms was identically equal

to 3, except for few very high-energy (and rare) configurations in which four-coordinated

atoms appeared. Even for high-energy configuration the typical shape of the GBs tended to

be meandering but continuous. This is in accordance with what was found in experimental

atomic resolution imaging of GBs [Huang et al., 2011; Kim et al., 2011]. Together with formation

energy, Fig. 5.8(a) shows the evolution of the conductance calculated for a bias voltage V = 1V.

In all our simulations, except two, the lowest-energy was achieved by an ordered periodic

configuration, see Figs. 5.13 and 5.14. For the sake of clearness, the conductance of graphene

samples containing a grain boundary, G , has been normalized by the conductance of a pristine

graphene sample of the same size of the sample employed in the simulation, GP. Fig. 5.8(c)

shows a statistical analysis of the data. The conductance histogram is characterized by a broad

distribution, although it shows the persistence of high-transmission configurations. The main

panel clearly indicates the existence of some inverse correlation between conductance and

energy, meaning that, on average, a higher energy corresponds to a lower conductance. This

can be explained by appreciating the fact that configurations with a high formation energy

correspond to more disordered GBs with a larger number of non six-membered rings, that is,

a larger number of scatterers for the charge carriers.

A movie of the simulation of the θ = 21.2◦ GB, performed at T = 7000 K in order to accelerate

the sampling, is available at this url (online version).

Fig. 5.9 reports the distribution of G for different misorientation angles. Going through increas-

ing misorientation angles, one sees that the distributions evolve almost continuously with a

sudden change registered between 21.8◦ and 30◦, giving an indication for an abrupt transition

in the conductance trend. This strong suppression of the conductance cannot be attributed

to the asymmetry of the θ = 30◦ GBs. In fact, the GBs with the closest misorientation angle

θ = 32.2◦ have a similar distribution, but are symmetric. This suggests that the misorientation

angle θ must be considered as the main parameter which determines the transport across the

GBs. It is interesting to notice that, as discussed in Section 3.3.1, the GB formation energy has

an analogous trend, showing a minimum around θ = 30◦ [Yazyev and Louie, 2010b].

When conductance is evaluated at energy E close to the Fermi energy E f (E −E f = 0.02eV), its
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Figure 5.9 – Distributions of the conductance for different systems characterized by the mis-
orientation angle θ, as indicated in the panels. The units adopted for the conductance are the
same as in Fig. 5.8

distributions are broader, although the average conductance is slightly higher (not shown here).

This instability at the Fermi level is reduced when the conductance is integrated over an finite

energy interval. The existence of correlations between formation energy and conductance is

also more evident after the integration.

A more detailed picture of the effect of the presence of disorder is obtained by looking at

transmission and density of states (DOS) as a function of energy, reported in Fig. 5.10. For

systems with 0◦ < θ < 30◦, independently of the energy, disorder-averaged transmissions

are significantly reduced with respect to those of the ordered GB configuration, namely, the

effect of disorder in GBs is to add further charge carrier backscattering. For systems with

0◦ < θ < 30◦, where the ordered configurations have already a low transmission compared to

pristine graphene, disorder-averaged conductances do not differ significantly. The effect of

disorder on the averaged DOS can be summarized in two tendencies. First, the characteristic

peaks of the ground-state ordered configurations are smeared out for most misorientation

angles. Second, as a result of the disorder average, the DOS shows an increase of the spectral

weight around E = 0.

The conductance of disordered GBs has a clear, although not trivial, dependence on the mis-
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5.2. Electronic transport across disordered grain boundaries

Figure 5.10 – Disorder-average transmission (upper panels) and density of states (lower pan-
els) as a function of energy for all simulations. The dashed lines represent the observables
calculated for a pristine graphene sheet of the same size, the black solid lines represent the
observables calculated for the lowest-energy configuration found in the simulation, and the
red curves are the simulation averages of the observables.

orientation angle θ. This dependence has been put in evidence in Fig. 5.11 for two situations.

In panel (a), the average conductance at low energy (E = 0.02eV) is plotted as a function of

θ. In order to make a comparison possible with the case of ordered GBs, we have added an

analogous curve for the conductance of ordered small-angle GBs (dashed line). As discussed

in Section 5.1, the latter is suppressed upon a reduction of the misorientation angle. It is

evident that this trend is inherited by the average conductance of disordered GBs, which

shows a maximum at θ = 21.8◦ and drops for smaller angles. On the other hand, the region

30◦ < θ < 60◦ exhibits a less clear trend, as conductance is affected by large relative fluctuations

of the order of 20−50%. Such a low-energy instability is sensibly improved by calculating

conductance in presence of a finite bias V = 1.0 V, as shown in Fig. 5.11(b). Although the

values of average conductance are now lower for most of the misorientation angle range,
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Figure 5.11 – Conductance as a function of misorientation angle θ. Conductance (a) calculated
at low energy E = 2.7meV, and (b) integrated between −0.5eV and 0.5eV. The red points are
the simulation averages. The width of the gray area corresponds to the standard deviation
of the distributions. The black dashed lines represent the conductance for the ground-state
configurations in the small-angle regime.

fluctuations are reduced by approximately a factor 2 making it possible to identify two well

separated trends. Again, starting from the maximum achieved for θ = 21.8◦ and going toward

small angles, the conductance decreases, reproducing the behavior of ordered GBs. Although

computational limitations prevent us from reducing the misorientation angle further, we

expect that the average conductance will approach the conductance of the ordered GBs in the

limit of zero angle. In this limit, indeed, the ordered low-energy GBs are predominant since

they are constituted by largely separated pentagon-heptagon pairs and any deviation from

the ordered structure has a high energy cost. As a consequence, the average conductance is

dominated by the contribution of the ordered configurations. A different trend characterizes

the region 30◦ < θ < 60◦. After a minimum for θ = 30◦, the conductance increases before

stabilizing around G ' 0.45Gp , Gp being the conductance of a pristine sample of the same size.

In this region, the overall effect of disordered GBs is to reduce the conductance to about the

40% of the conductance of pristine graphene.

Based on the knowledge of the conductance (or, equivalently, resistance) of a single grain

boundary one can calculate the effect on electronic transport of a distribution of grain bound-

aries typical of a polycrystalline sample. As discussed in Section 3.3.3, the effects of many

individual grain boundaries add up incoherently, meaning that quantum interference effects

are negligible and the resistance due to individual GBs is additive [Van Tuan et al., 2013].

The resistance of a two-terminal configuration R = G−1 can be viewed as arising from two

contributions [Datta, 1997]:

R = RP +RGB =G−1
P +G−1

P

(
Gp −G

G

)
, (5.8)

where RP is the resistance due to reflectionless contacts (i.e. the resistance of a pristine

sample) and RGB is the resistance of the scattering source - the GB in our case. Importantly,
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RGB has the property of being additive. Since the resistance is inversely proportional to

the transverse width W , it is convenient to introduce a width-independent grain-boundary

resistance ρGB = RGB ∗W [Tsen et al., 2012]. Our results, recast in terms of ρGB (see Fig. 5.12),

show an even stronger dependence on the misorientation angle. We point out that the values of

ρGB presented in Fig. 5.12 should be considered as lower boundary estimates since they do not

account for additional scattering due to potential barriers occurring at the grain boundaries

[Tapasztó et al., 2012; Koepke et al., 2013; Ihnatsenka and Zozoulenko, 2013] , adsorbates

bound to the atoms belonging to GBs (see Section 3.3.2), etc.

Figure 5.12 – Width-independent resistance ρGB as a function of the misorientation angle θ
calculated for a bias V = 1 eV.

Finally, if one introduces an average angle-independent
〈
ρGB

〉' 80 kΩ∗nm, a rough estimate

for the intrinsic resistance of a polycrystalline sample of width W and length L with a linear

density of grain boundaries n is given by

R = nL

W

〈
ρGB

〉
(5.9)

This formula neglects all details of the angle distribution in realistic GBs. Nevertheless, it

provides an order of magnitude for the contribution of the coherent backscattering off GBs to

the resistance of polycrystalline graphene. For a square sample with a density n = 0.1nm−1,

this contribution amounts to ρGB ' 8kΩ.

5.2.4 Conclusions

In the study reported in the present section, we addressed the issue of electronic trans-

port across disordered grain boundaries combining Monte Carlo simulation to obtain grain-

boundary configurations, and transport calculations based on the Landauer-Büttiker theory.

The disorder-averaged conductance exhibits a clear dependence on the topologically-invariant

misorientation angle. We identified a small-angle and a large-angle behavior of conductance,

separated by a local minimum at θ = 30◦. The small-angle behavior is similar to what found in

periodic GBs, namely, conductance drops upon a reduction of θ. In the large-angle behavior,

conductance reaches an approximately constant value.
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Figure 5.13 – Atomic structures of the starting configurations of the simulations. Notice that for
the GBs characterized by θ = 30◦ and θ = 51.4◦ the starting configuration does not correspond
to the lowest energy (see Fig. 5.14).
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Figure 5.14 – Atomic structures of the lowest-energy configurations achieved in the simulation
for θ = 51.4◦ and the asymmetric θ = 30.0◦ GBs. A comparison with Fig. 5.13 shows that low-
energy 51.4◦ GB is formed by four equidistant pairs of pentagons and heptagons, whereas the
asymmetric 30◦ GB consists in a continuous alternation of adjacent pentagons and heptagons
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5.3 Controlled growth of a line defect in graphene with valley filter-

ing properties

The work presented in this section has been done in collaboration with the group of Prof. Alex

Zettl, University of California at Berkeley. The results of our collaboration have been published

in Physical Review B89, 121407 (2014).

In this section, we report an experimental study that demonstrates the possibility of introduc-

ing highly regular line defects in graphene in a controlled manner. These defects are formed by

a periodic array of minimal blocks consisting in two pentagons and one octagon (5-5-8 defect).

Previous theoretical work suggested that such defect acts as a valley filter for charge carriers in

graphene, namely, it selectively transmits the charge carriers of one valley, depending on their

incidence angle and energy [Gunlycke and White, 2011].

Fig 5.15(a) shows the Transmission Electron Microscopy (TEM) image of a 5-5-8 line defect

originated in proximity of a hole intentionally patterned in the sample. In fact, such line defects

nucleate from an isolated pentagon which can be found only at a free edge, as discussed in

section 3.3.1. The growth of the defect is induced by a current driven such to traverse the hole.

This produces local Joule heating, which leads to the removal of a pair of carbon atoms from

the pentagon. The consequent local rearrangement of the atomic structure creates a 5-5-8

block terminated by a new 5-6 block (a pentagon and a hexagon) which acts as a seed for

continuing the growth of the defect into the bulk.

With the help of the scheme in Fig. 5.15(b), one can see that the line defect is constituted by

Figure 5.15 – (a) Transmission electron microscopy of a 5-5-8 line defect in graphene. The
image was reconstructed from a series of 80 snapshots at different focus. (b) Ball-and-stick
model of the atomic structure of the line defect. Adapted with permission from Ref. [Chen
et al., 2014], © 2013 American Physical Society.
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identical 5-5-8 blocks and has different terminations at the two ends. The right end terminates

with a 7-7-5 block (two heptagons and one pentagon) and does not evolve during the process.

Indeed, the growth takes place at the left end that is terminated by a 5-6 block at every step. The

5-6 termination has a rather high formation energy (1.5eV larger than the 7-7-5 termination)

and is unstable under current flow. This instability causes the expulsion of a pair of carbon

atoms, thus being the ultimate reason which, under appropriate conditions, determines the

growth of the line defect. We remark that this line defect can be considered as a degenerate GB,

as it represents the interface between two crystalline domains having the same orientation.

On the base of symmetry arguments, it was argued that a 5-5-8 line defect act as a valley filter,

namely, it allows the charge carriers of only one valley to cross the grain boundary, depending

on the nature of the charge carries (electrons or holes) and on their angle of incidence θ

[Gunlycke and White, 2011]. To have a deeper insight into the valley filtering properties, we

performed simulations of the electronic transport within DFT. However, we preliminarily

discuss the band structure of a graphene system containing a 5-5-8 line defect, shown in

Fig. 5.16(a). We remark the presence of two almost flat bands crossing the Dirac point of the

projected band structure of pristine graphene (shaded area), which corresponds to the Fermi

energy of the undoped system. These two bands correspond to electronic states localized at

the line defect.

Transmission probability was calculated within the Landauer-Büttiker theory coupled to DFT,

as implemented in the TRANSIESTA code [Soler et al., 2002]. In our calculations, the transport

direction was orthogonal to the line defect and the whole system was assumed to be periodic

in the direction parallel to the line defect. Therefore, transmission T
(
k∥,E

)
is a function of

parallel momentum k∥ as well as energy E . Furthermore, we assumed semi-infinite leads made

of pristine graphene. Due to time reversal symmetry, one has T
(
k∥,E

) = T
(−k∥,E

)
, so that

we can calculate transmission only for positive value of k∥. Fig. 5.16(b) shows that T
(
k∥,E

)
has a significant suppression at the Dirac point as the charge carriers undergo resonant

backscattering off the localized states discussed previously. This low-energy suppression of

transmission affects the valley polarization behavior of the defect, which differs from what

was predicted in Ref. [Gunlycke and White, 2011]. From a quantitative point of view, the

angle-dependent valley polarization is defined as

P (θ,E) = Tξ=1 (θ,E)−Tξ=−1 (θ,E)

Tξ=1 (θ,E)+Tξ=−1 (θ,E)
, (5.10)

where ξ = ±1 represents the valley index and Tξ (θ,E) is the transmission probability of a

carrier with energy E and incidence angle θ. Following this definition, positive (negative)

values of polarization mean that charge carriers with valley index ξ= 1 are transmitted more

(less) than those with ξ=−1.

Valley polarization for electrons and holes is shown in Figs. 5.16(c-d), respectively. As ex-

pected, at low energy |E | < 0.2eV our results radically differ from the functional form P (θ,E) =
sign(E)sin(θ) predicted for low energy particles from symmetry arguments [Gunlycke and
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Figure 5.16 – Electronic and transport properties of the periodic 5-5-8 line defect calculated
within DFT. (a) Electronic band structure calculated for momenta k = (

k∥,k⊥ = 0
)
, where k∥

(k⊥) is the component parallel (orthogonal) to the direction of the line defect. The shaded area
represents the projection of the 2D band structure of pristine graphene on the k⊥ = 0 direction.
The zero of the energy has been aligned to the Fermi energy of the system. (b) Transmission
probability across the line defect for charge carriers with energy E and momentum k∥. (c-d)
Valley polarization as a function of incidence angle of the charge carriers for (c) electrons and
(d) holes at several energies. The dashed lines represents the predictions based on symmetry
arguments of Ref. [Gunlycke and White, 2011].

White, 2011]. However, the predicted trend is restored for electrons with sufficiently high

energy to overcome the resonances.

These results suggest that the energy dependence can be exploited to control the valley polar-

ization of the charge carriers. This capability is of fundamental importance for valleytronics,

that is, the manipulation of the valley degree of freedom of charge carriers. Other valleytronics

devices based on graphene and exploiting different physical phenomena have already been

proposed [Rycerz et al., 2007; Akhmerov and Beenakker, 2007]. However, differently from

previously proposed devices, we suggest a scheme for a valley-valve that is operated by two

line defects endowed with electrostatic gates. As shown in Fig. 5.17, the valley valve consists

in a graphene sample containing two parallel 5-5-8 line defects and attached to source and

drain electrodes. The device is operated by independently setting the Fermi energy at each

of the two defects, changing the voltage of the local gates. Once fixed the incidence angle to,
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Figure 5.17 – Scheme of a valley valve based on a pair of parallel 5-5-8 line defects endowed
with two independent local gates. An unpolarized beam of electrons is injected with a specific
incidence angle θ from the source electrode, processed by the defects and collected by the
drain electrode. The local voltage of the first defect (filter) determines the valley degree of
freedom of the transmitted charge-carriers (ξ=−1 in this scheme), whereas the local voltage
of the second defect (detector) determines the intensity of the current collected by the drain
electrode. reproduced with permission from Ref. [Chen et al., 2014], © 2013 American Physical
Society.

say, θ = 30◦, by changing the energy of the first defect from 0.1eV to 0.8eV the polarization

of initially unpolarized charge carriers is switched from P = −0.44 (i.e. majority of ξ = −1

charge carriers) to P = 0.68 (i.e. majority of ξ= 1 charge carriers). The second line defect acts

as a valley polarization detector, switching from a low-resistance state (valley closed) to a

high-resistance state (valley open) upon a change of its Fermi energy.

5.4 Periodic grain boundaries in graphene on SiC substrate

The work presented in this section has been done in collaboration with the group of Prof. Vincent

Repain, University Paris Diderot. The results of our collaboration have been published in Nano

Letters, 14, 6382 (2014).

In this section, we report an experimental and theoretical study of a large-angle grain bound-

ary in graphene showing well-defined periodicity. The investigation of this grain boundary

was part of a comprehensive investigation based on scanning tunneling microscopy (STM)

and scanning tunneling spectroscopy (STS) of GBs in graphene epitaxially grown on SiC. Sim-

ulations of STM pictures based on DFT allowed us to assign the GB to the structure dubbed

LAGBII in Ref. [Yazyev and Louie, 2010b].

Fig. 5.18(a) shows a representative topographic STM image of the polycrystalline graphene

sample under study, which reveals three single-crystalline domains with different lattice

orientation. The grain boundary separating domains B and C has a misorientation angle

θ = 33.2◦ and shows a high degree of regularity, with an evident periodic and symmetric

113



Chapter 5. Electronic transport across grain boundaries in graphene

Figure 5.18 – Periodic grain boundary in graphene. (a) STM image of a sample of epitaxial
graphene grown on SiC, containing three misoriented crystal domains (labeled A,B, and C). The
image has been recorded at positive bias voltage U = 0.75V and constant current I = 500pA.
(b-c) Atomic models of the grain boundary separating domains B and C, shown in (a). Both
models have misorientation angle θ = 32.2. The model in (b) is symmetric and periodic over
its whole extension with periodicity d = 8.97Å, whereas the model in (c) accommodates a 60◦

turn. Panel (a) courtesy of Vincent Repain, University Paris Diderot.

pattern. Constant-current STM measurements found a typical height in correspondence of

the GB of 0.7Å, taking as reference the height measured in the center of a single-crystalline

domain, that is, the GB is practically flat. The measured periodicity is dexp = 9.1nm. By

searching among symmetric and periodic models of grain boundaries having a misorientation

angle compatible with the measured one, we have identified the model shown in Fig 5.18(b)

as a candidate to be the GB actually found in the experiments. This model, already proposed

in Ref. [Yazyev and Louie, 2010b], is defined by the matching vectors (3,1) and (1,3) and

has a periodicity d = 8.97Å. It consists in an alternating chain of edge-sharing pentagons

and heptagons where all atoms maintain the three-fold coordination typical of sp2 carbon.

Moreover, it naturally accommodates a 60◦ turn by merging two half-periodic branches,

leaving unaltered the misorientation angle, the alternation of non six-membered rings, and

the atomic coordination, as shown in Fig. 5.18(c). As several such turns can be seen in the

experimental image, this is another element in favor of the proposed model.

A comparison between atomic-resolution experimental images of the GB and the simulated

ones provided the final confirmation of our hypothesis. Fig. 5.19(a) shows the d I /dV spectrum

measured in different positions of the sample, as indicated in the inset. The spectra measured

on the linear segments of the GB shows intense peaks, which are common among GBs in

graphene. These features stand out from the spectra measured inside each single-crystalline

domain that show a V-shaped curve reminiscent of pristine graphene DOS. The origin of these

peaks is due to electronic states localized on the linear segments of the GB. Figs. 5.19(b-d)
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5.4. Periodic grain boundaries in graphene on SiC substrate

Figure 5.19 – (a) d I /dV spectra measured at the positions indicated in the inset. In particular,
the blue curve corresponds to the spectrum measured in the middle of the upper branch
of the θ = 33.2±2◦ grain boundary. The inset shows a conductance map recorded at 0.75
V. (b-d) Topographic STM images of the θ = 33.2±2◦ grain boundary recorded at different
bias voltages indicated by the labels. (e) Calculated density of states for the θ = 32.2◦ model,
shown in Fig. 5.18(b). (f) Simulated STM image with positive bias U = 0.75V. (g-h) Simulated
d I /dV maps at the energies of the peaks labeled P1 and P2 in panel (e). Panels (a-d) courtesy
of Vincent Repain, University Paris Diderot.

shows the topographic images obtained at different bias voltages. The positive values of the

bias have been chosen to match the energy of the peaks observed in the d I /dV spectrum

of the GB. At positive bias the periodic pattern observed on the GB is the same, differently

from the motif seen at negative bias. In order to theoretically simulate STM images we

employed the Tersoff-Hamann theory, which states that, to first order approximation, the

tunnel current recorded in STM is proportional to the local density of states of the sample

[Tersoff and Hamann, 1985]. The simulated STM images shown in Figs. 5.19(f-h) have been

obtained from the local density of states calculated within DFT for the model proposed in

Fig. 5.18(b). The calculations have been performed by means of the code SIESTA [Soler et al.,

2002]. Fig. 5.19(f) shows an image simulated assuming a bias U = 0.75V that is in strong

qualitative agreement with its experimental counterpart shown in Fig. 5.19(d). In particular, at

the GB we note an array of opposed boomerang-shaped areas of intense signal with bright

spots inside. From the calculated DOS, shown in Fig. 5.19(e), we observe a pair of van Hove

singularities at energies E = −0.55eV (P1 peak) and E = 0.25eV (P2 peak). The positions of

the peaks do not agree with the d I /dV spectrum shown in Fig. 5.19(a), as the experimental

peaks seem to be shifted to higher absolute energies compared to first-principle calculations.
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In particular, the experimental counterpart of peak P1 is likely to be out of scale. We believe

that this disagreement is due to multiple reasons: i) tip-induced effects and ii) role of the

substrate, which are not accounted for in the simulations, and iii) energy scale compression

characteristic of DFT.

Nevertheless, the simulated dI/dV maps shown in Fig. 5.19(g-h) show localized states that

are likely to be the main contributions to the features seen in experiments. Notably, the map

corresponding to peak P2 is qualitatively very similar to the STM images measured at positive

bias, whereas the map corresponding to peak P1 shows a narrower profile analogous to what

seen in STM image measured at bias −1.0V.

For the sake of completeness, we conclude mentioning that the experimental study which

imaged the periodic GB discussed in this section [Tison et al., 2014], has also confirmed the

previously predicted transition between buckled low-angle GBs to flat large-angle GBs [Yazyev

and Louie, 2010b]. In particular, the critical angle for the transition was assigned to θc = 19±2◦

and its symmetric counterpart θc = 41±2◦, in good agreement with theoretical predictions.
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6 Electronic Transport in Graphene
with Hydrogen Adatoms

In this chapter, we study the properties of hydrogen adsorbates on graphene. As

discussed in Sections 2.2 and 2.4, adatoms bound to graphene act as resonant

scattering centers affecting the electronic transport properties and inducing

Anderson localization.

In the first section, we show the existence of an effective attractive interaction be-

tween hydrogen adatoms on graphene. This interaction, together with the high

diffusion mobility of hydrogen on graphene, fully eliminates isolated adatoms

and increases the population of adatom aggregates with larger size. We find

that such spatial correlation influences the electronic transport properties of

partially hydrogenated graphene. Indeed, by performing a scaling analysis,

we show that such aggregation of adatoms increases conductance by up to

several orders of magnitude and results in significant extension of the Anderson

localization lengths. This is due to the non-resonant nature of a large subset

of the adatom clusters in the room-temperature equilibrium configurations.

Finally, we introduce a simple definition of effective adatom concentration x?

that unifies the description of the transport properties of random and corre-

lated distributions of hydrogen adatoms on graphene across a broad range of

concentrations.

The second section contains an analytic study of the scattering problem of a

cluster of vacancies in a honeycomb lattice. Specifically, we investigate under

which conditions these defects introduce localized states at the Dirac energy

(resonances) by studying the analytic properties of the Green’s function of the

entire system. We confirm what found numerically in the first section, namely,

that cluster with an equal number of adatoms on the two-sublattices are non-

resonant, whereas cluster of adatoms with sublattice imbalance are resonant.
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6.1 Electronic transport in graphene with aggregated hydrogen

adatoms

The work presented in this section has been done in collaboration with the group of Prof.

Tim Wehling, University of Bremen, and has been published in Physical Review Letters 113,

246601 (2014), whose manuscript was written by Fernando Gargiulo in all of its parts, except

those concerning the Kernel Polynomial method (not discussed here). The reader will find a

considerable overlap between the article and the present section.

6.1.1 Introduction

Resonant scattering impurities, such as chemical functionalization defects and topological

defects, show the most pronounced effects on charge-carrier transport in graphene, see

Sections 2.2 and 5.1). Hydrogen adatoms represent a prototypical resonant scattering impurity,

which can be experimentally introduced in a controlled fashion [Ni et al., 2010] and allows for

a simple theoretical description [Wehling et al., 2007]. A hydrogen adatom covalently binds to

a single carbon atom of graphene resulting in rehybridization into sp3 state, thus effectively

removing that site from the honeycomb network of pz orbitals. This gives rise to a zero-energy

state localized around the defect and results in resonant scattering of charge carriers.

At a fundamental level, the classical scaling theory of Anderson transition predicts complete

localization of the electronic spectrum in two dimensions, regardless of the amount of disorder.

Although 2D massless Dirac fermions escape Anderson localization when disorder leaves

the two valleys decoupled, in the presence of short-range scatterers that enable intervalley

coupling, such as vacancies or hydrogen adatoms, Anderson localization is expected to set

in also in graphene [Evers and Mirlin, 2008] (see Section 2.4 for a more detailed discussion).

However, no unanimous consensus has been reached since experiments on hydrogenated

graphene point towards metal-insulator transition, theoretically justified by the presence of

electron-hole puddles (2D percolation class) [Bostwick et al., 2009; Song et al., 2011; Jayasingha

et al., 2013; Adam et al., 2008]. We also stress that, in 2D systems, localization lengths can be

strongly energy-dependent and, possibly, very large.

Early works treating finite concentrations of resonant impurities in graphene assumed that the

total scattering cross-section deviates little from the incoherent addition of individual cross-

sections, for example, as in the Boltzmann equation framework [Shon and Ando, 1998]. This

picture is valid for low defect concentrations, low charge-carrier densities and random adatom

distributions. A better description requires including the effect of coherent superposition of

wavefunctions scattered by distinct adatoms [Wehling et al., 2010, 2009b; Ferreira et al., 2011;

Cresti et al., 2013]. This is particularly important when impurities are in proximity to each other,

with the limiting case being the formation of compact clusters in which hydrogen adatoms

populate neighboring carbon atoms [Palacios et al., 2008; Leconte et al., 2011; Trambly de

Laissardière and Mayou, 2013]. Indeed, the overall short-range attractive interaction between
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6.1. Electronic transport in graphene with aggregated hydrogen adatoms

Figure 6.1 – Low-temperature STM image showing hydrogen atoms adsorbed on graphene
grown on SiC(0001̄) spontaneously arranging in dimers. Unpublished results, courtesy of
Prof. Ivan Brihuega, University of Madrid.

individual hydrogen adatoms on graphene [Boukhvalov et al., 2008; Lin et al., 2008], combined

with their relatively high diffusion mobility at room temperature [Yazyev, 2008; Herrero and

Ramírez, 2009; Moaied et al., 2015], suggests a high degree of spatial correlation between

adatoms. Recent experimental studies using STM to image hydrogenated graphene have

revealed a tendency of hydrogen to spontaneously form dimers, as shown in Fig. 6.1. In this

section, we address the effects of spatial correlation of resonant impurities on electronic

transport in graphene. The equilibrium configurations of hydrogen adatoms are obtained

by means of Monte Carlo simulations, and show a strong tendency toward aggregation into

small clusters, essentially eliminating isolated adatoms. Landauer-Büttiker calculations show

that hydrogen aggregation dramatically increases both the conductivity and the localization

length. Finally, we propose a unified framework to account for the effects of spatial correlation

of resonant scattering centers on electronic transport in graphene.

6.1.2 DFT study of effective hydrogen interaction

Upon adsorption, a hydrogen adatom covalently binds to a single carbon atom of graphene

changing its hybridization state to sp3 and its coordination sphere to tetrahedral as shown in

Fig. 6.2(a) [Yazyev and Helm, 2007]. The covalent binding of a second adatom to the nearest

neighbor carbon atom partially releases the elastic energy due to the change of coordination

sphere, thus resulting in effective attractive interaction between adatoms [Boukhvalov et al.,

2008; Lin et al., 2008]. This suggests that the interaction between adatoms can be accurately

described using a short-ranged pair potential. In our study, we expand an Ising-like interaction

energy E up to the second nearest-neighbor term

E = γ1
∑
〈i , j 〉

si s j +γ2
∑

〈〈i , j 〉〉
si s j , (6.1)
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Figure 6.2 – (a) Atomic structure of a hydrogen adatom covalently bound to graphene. (b)
Structures of small clusters of hydrogen adatoms used for fitting the pair potential of eq. (6.1)
(c) Interaction energy Ẽ calculated from eq. 6.1 vs first principle interaction energy EDFT for
the set of adatom clusters shown in panel (b).

where γ1 and γ2 are the corresponding first and second nearest-neighbor parameters. Here,

si = 1 if a carbon atom i is populated by an adatom, otherwise si = 0. The optimal values of

γ1 and γ2 are obtained by fitting the interaction energies calculated from first principles for

the set of small adatom aggregates shown in Fig. 6.2(b). Under the assumption of single-side

functionalized graphene, the obtained parameters γ1 =−1.182 eV and γ2 = 0.484 eV signify a

considerable first-nearest-neighbor attraction alongside a weaker second-nearest-neighbor

repulsion. As seen in Fig. 6.2(c), the excellent agreement between the interaction energy

Ẽ , estimated using the fitted γ1 and γ2, and the first-principles values EDFT, confirms the

applicability of the short-range pair potential form, eq. 6.1, for describing small clusters.

Technical details of calculation, together with the results of the fit in the case of hydrogen

adsorption on both sides of graphene, are discussed in Section 6.1.7.a.

6.1.3 Equilibrium configuration of adsorbed hydrogen

In order to assess the effect of the interaction between adatoms on their spatial distribution we

perform Monte-Carlo simulations (see Section 4.6 for methodological details). We considered

models of hydrogenated graphene containing up to NC = 106 carbon atoms (165×165 nm2)

and adatom concentrations x = NH/NC ranging from 0.1% to 10%. The starting configu-

ration of hydrogen adatoms was totally random. The trial Monte Carlo move consisted in

the displacement of a randomly selected adatom to a random carbon atom not bound to

any hydrogen. This move insures the fulfillment of detailed balance. After each move, the

interaction energy was recalculated using the pair potential defined in eq. 6.1 and the move

was accepted or rejected according to the Metropolis criterion [Metropolis et al., 1953]. The
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6.1. Electronic transport in graphene with aggregated hydrogen adatoms

Figure 6.3 – Representative configurations of (a) randomly distributed and (b) correlated
hydrogen adatoms on graphene at x = 5% concentration. (c) Comparison of random and
correlated adatoms cluster size distributions P (n) at x = 5% concentration. (d) Cluster size
distributions P (n) of correlated hydrogen adatoms at different concentrations. All correlated
configurations are obtained by means of Monte-Carlo simulations carried out at T = 300 K.

temperature in all our simulations was T = 300 K. At the beginning of each simulation, we

performed a number of steps Neq disregarded from Monte Carlo averages in order to let the

system reach thermodynamic equilibrium. Neq varied in the range [106,1.6×107], depending

on the adatom concentration (larger concentrations needed more equilibration steps). The

total number of steps in our simulations varied between 107 and 3×107. We have checked

that P (n)s obtained from Monte-Carlo simulations performed with and without temperature

annealing showed negligible differences.

In Figs. 6.3(a-b), a representative configuration of randomly distributed adatoms is compared

with a configuration of correlated adatoms issued from a Monte-Carlo simulation at x = 5%.

In addition, Fig. 6.3(c) shows the comparison of the cluster size distributions P (n). The

cluster size n is determined by assigning adatoms populating neighboring carbon atoms to

the same cluster. In the case of a random distribution, most adatoms are isolated (n = 1),

while the occurrence of clusters (n > 1) is merely a probabilistic effect. In contrast, no isolated
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adatoms are found in the presence of interactions, with the most abundant species being

adatom dimers (n = 2). The size distribution for the correlated case shows a longer tail

with a significant probability of observing up to n = 6 clusters. As shown in Fig. 6.3(d), the

dependence of P (n) on the adatom concentration, x, is relatively weak. Finally, in the case

of hydrogen absorption on both sides of graphene, the resulting cluster size distributions,

however, are very close to those obtained for single-side adsorption, see Section 6.1.7.a.

6.1.4 Electronic spectrum

We now focus on electronic and transport properties calculated using the nearest-neighbor

tight-binding Hamiltonian for pz orbitals

H =−t
∑
〈i , j 〉

[c†
i c j +h.c.] (6.2)

with the hopping integral constant t = 2.7 eV, see Section 1.3. An adsorbed hydrogen atom is

modeled by excluding the pz orbital of the carbon atom to which it is bound as a consequence

of sp3 hybridization, making it similar to a vacancy defect [Pereira et al., 2006; Yazyev and

Helm, 2007; Yazyev, 2008]. We stress that adatoms do not introduce coupling between the sites

owing to the same sublattice of the bipartite lattice of graphene, thus maintaining electron-

hole symmetry of the electronic spectrum. Figures 6.4(a,b) compare the density of states (DOS)

of graphene with random and correlated distributions of adatoms at different concentrations.

In the case of a random distribution one observes a strong peak at E = 0 due to the resonant

modes originating from isolated adatoms [Pereira et al., 2006; Wehling et al., 2009b]. The

corresponding wave function is localized on the sublattice opposite to that of the carbon

atom binding the adatom and decays from the defect position [Pereira et al., 2006; Basko,

2008]. At high adatom concentrations, x > 1%, the E = 0 peak is accompanied by flat density

regions at higher energies with a noticeable overall renormalization of the DOS, in agreement

with previous calculations [Pereira et al., 2006]. In comparison, the DOS calculated for the

correlated impurity configurations shows a less intense peak at E = 0 and an increased weight

for −0.9t < E < 0.9t that is more evident at higher concentrations. This change is a direct

consequence of different cluster size distributions. The dominant cluster type in the case

of the correlated adatom distribution is the dimer (n = 2), which is expected to be non-

resonant, meaning that no localized states is added to the continuous spectrum at any energy,

see Section 6.2 [Wehling et al., 2007; Trambly de Laissardière and Mayou, 2013]. The local

density of states (LDOS) calculated on neighboring atoms of an isolated single adatom shows

a singularity at E = 0, see Fig. 6.4(c). In contrast, some enhancement of the LDOS in a broad

energy region −t < E < t , which cannot be considered as an authentic peak, is observed on

certain carbon atoms in the vicinity of the adatom dimer, see Fig. 6.4(d). We have checked by

means of numerical calculations that only those cluster populating different number of sites in

the two sublattices, namely all odd-n aggregates and certain configurations of even-n clusters,

lead to resonant modes at E = 0 akin to isolated adatoms. Based on these observations and

judging on the cluster size distributions shown in Fig. 6.3(d), we conclude that the residual
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Figure 6.4 – Density of states of graphene in the presence of (a) randomly distributed and (b)
correlated hydrogen adatoms at different concentrations. Local density of states (LDOS) on
carbon atoms in the vicinity of (c) an isolated hydrogen adatom and (d) a dimer of hydrogen
adatoms. In panels (c,d), LDOS referred to as “analyt.” have been obtained using analytic
Green’s function calculations illustrated in Section 6.2.

peak at E = 0 in the case of correlated distribution is due to n > 2 adatom aggregates, with the

largest contribution coming from adatom trimers.

6.1.5 Electronic transport

The previous discussions suggest that adatom aggregation has strong effects on the electronic

transport properties, because of the reduction of the weight of resonant states. We investigate

the electronic transport properties by performing a scaling analysis of conductivity, g , using

the Landauer-Büttiker approach [Landauer, 1957; Büttiker et al., 1985], see Section 4.5.1 . We

assume a two-terminal device configuration with a scattering region of width W = 40 nm

perpendicular to the current direction, and of variable length 1 nm < L < 60 nm. The scattering

region is attached to pristine graphene contacts and populated by adatoms according to the

statistical distributions discussed above. Further details of our methodology are given in the

Section 6.1.7.b.
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Figure 6.5 – Averaged conductivity gtyp for (a) random and (b) correlated adatoms distributions,
respectively, as a function of scattering region length L at different energies E and at x = 5%
concentration.

We remind that the characteristic functional laws for the conductivity g = G ×L/W in the

ballistic, diffusive and localized transport regimes are, respectively, g ∝ L, g = const and g ∝
exp(−L/ξloc), where ξloc is the localization length. In the localized regime, ln(g ) follows a broad

positively-skewed distribution, which means that g can show strong fluctuations depending

on the exact configuration of defects, especially in the presence of strong localization [Choe

and Chang, 2012]. An estimate of the mean value for such a distribution is given by the so-

called “typical conductivity” gtyp = exp〈ln(g )〉 [Choe and Chang, 2012; Uppstu et al., 2014].

In our scaling analysis, gtyp has been obtained averaging over 9600 disorder realizations.

Figure 6.5(a,b) shows gtyp as a function of L at different energies for random and correlated

impurity distributions, both at x = 5% concentration. We observe a short transition from

ballistic to diffusive and subsequently to localized regime within the first 10 nm. The crossover

lengths are expected to be of the order of the elastic mean free path ξel and localization length

ξloc, respectively. The general trend is that the localized regime is accentuated at low energy,

whereas at higher energy the onset of exponential decay occurs at larger L and the absolute

slope of the conductance curves is smaller. The scaling of g also depends strongly on the

concentration of impurity. For adatom concentrations (x . 0.5%) the onset of the localized

regime is only observable in the vicinity of the Dirac energy (see 6.1.7.b for complete results).

We stress that the conductance curves vary smoothly in the whole range of E and x, never

showing singularities which would indicate a phase transition such as the metal-insulator

transition (MIT). Thus, we ascribe the non-observance of the localized regime to an insufficient

scattering region length of our model, which is shorter than ξloc for some choices of E and

x, as also pointed out in Ref. [Schubert and Fehske, 2012]. From Fig. 6.5(a,b) it follows that

the presence of spatial correlation between adatoms enhances the conductance by up to

five orders of magnitude in the vicinity of the Dirac point (E = 2.7 meV). This is a direct

consequence of the suppressed weight of low-energy resonant states, as explained above. A

closely related effect is a significant increase of the localization length ξloc at all energies upon
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Figure 6.6 – (a) Localization length ξloc as a function of charge-carrier energy E for the case of
random and correlated adatom distribution at x = 5%. (b) Charge-carrier localization length
ξloc at low energy (E = 10−3t = 2.7 meV) as a function of real concentration x and effective
concentration x? for random and correlated distributions.

adatom aggregation. ξloc was obtained by fitting the conductance curves to the expected law

gtyp ∝ exp(−L/ξloc) [Lee and Ramakrishnan, 1985], and is shown in Fig. 6.6(a). At x = 5%, the

localization length is well defined for the entire range of investigated energies −1 eV < E < 1 eV,

whereas at lower concentrations it is well defined only in proximity of the Dirac point, see

Section 6.1.7.b. However, as long as a finite positive ξloc can be determined, it proves to be

up to an order of magnitude larger for the correlated adatom distribution compared to the

random case.

On the basis of the identification of resonant adatom clusters we introduce an effective

concentration

x? = 1

NC

∑
i

Ni |nA
i −nB

i |, (6.3)

where Ni is the number of instances of the cluster configuration i , and nA
i (nB

i ) is the number

adatoms bound to carbon atoms in sublattice A(B) in this configuration. As discussed above,

the main contribution to x? comes primarily from adatom trimers, the smallest clusters with

sublattice imbalance. We assume that the contribution of non-resonant clusters to the total

scattering cross-section can be neglected. We stress that this approach is probably the simplest

one to account for the diverse scattering effect of different clusters. In order to validate the

applicability of the effective concentration x?, we compare ξloc(x) with ξloc(x?) at low charge-

carrier energy for the correlated impurity case, see Fig. 6.6(b). One can see that replacing x

with the effective concentration x? brings ξloc(x?) evaluated for correlated impurities in good

agreement with ξloc(x) calculated for the random impurities. The agreement is particularly

good in the low concentration regime where randomly distributed impurities consist almost

exclusively of isolated monomers. Deviations at higher adatom concentrations can be as-

cribed to inter-cluster interference effects, which become important at short average distance

between the clusters.
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6.1.6 Conclusions

To summarize, spatial correlation between resonant scattering impurities, such as hydro-

gen adatoms, has pronounced effects on the electronic transport properties of disordered

graphene. Hydrogen adsorbed on graphene has a strong tendency toward aggregation, re-

sulting in the formation of small clusters and fully eliminating isolated adatoms. Some of the

larger clusters, notably trimers, are responsible for the residual resonant scattering, but the

overall conductance and localization length dramatically increase upon aggregation. Within

the range of parameters investigated in our work, we find no metal-insulator transition, with

the graphene spectrum being fully localized. The predicted effects of adatom aggregation

can be investigated experimentally by varying the temperature regime, since the diffusion

of hydrogen adatoms occurring at normal conditions can be effectively suppressed at low

temperatures. Alternatively, time-resolved transport measurements should evince a rise in

conductivity upon formation of adatom clusters.

6.1.7 Methodological details and additional calculations

6.1.7.a First-principles calculations of the energies of hydrogen adatom clusters

First-principles calculations of the interaction energies of hydrogen adatoms on graphene

have been performed within the density functional theory (DFT) framework employing the

generalized gradient approximation (GGA) to the exchange-correlation functional [Perdew

et al., 1996]. Ultrasoft pseudopotentials [Vanderbilt, 1990] for carbon and hydrogen atoms

have been used in combination with a plane-wave basis set, using a kinetic energy cutoff of

30 Ry for the wavefunctions and 160 Ry for the density. Models of hydrogen adatom clusters

are based on a graphene 6×6 supercell with 15 Å of vacuum separating the periodic replicas.

We used a 2×2×1 Monkhorst-Pack k-point mesh for the Brillouin zone integration [Monkhorst

and Pack, 1976]. All hydrogen adatom cluster models were relaxed until a maximum force of

0.15 eV/Å on individual atoms was reached. We verified that the chosen parameters provide

sufficiently accurate total energies. All calculations have been performed using the PWSCF

code of the QUANTUM ESPRESSO package [Giannozzi et al., 2009].

The interaction energy of a cluster of hydrogen adatoms calculated from first principles EDFT

is defined as

EDFT = Egr+nH −Egr −n
(
Egr+H −Egr

)
, (6.4)

where Egr+nH, Egr and Egr+H are the total energies of graphene with a cluster of n hydrogen

adatoms, pristine graphene and graphene with a single hydrogen adatom, respectively.

When hydrogen adatoms are deposited on a single side of graphene, the values of the fitted

parameters in eq. 6.1 are γ1 =−1.182 eV and γ2 = 0.484 eV. This scenario is relevant to the case

of graphene on a substrate, however, in the situation of suspended graphene, both sides of
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Figure 6.7 – (a) Interaction energy Ẽ calculated from eq. 6.1 vs first principle interaction energy
EDFT for the set of adatom clusters shown in Fig. 6.2(a) with adatoms alternatively adsorbed
on either side of graphene. (b) Comparison of the cluster size distributions P (n) resulting
from Monte Carlo simulations in the cases of single-side and both-sides adatom adsorption at
x = 5% concentration and T = 300 K.

graphene are available for binding adatoms. We investigated this situation by studying the

same set of adatom clusters shown in Fig. 6.2(b) but with adatoms placed on opposite sides

of graphene sheet when functionalized carbon atoms belong to different sublattices. The

fitted interaction parameters are γ1 =−1.461 eV and γ2 = 0.342 eV. The excellent agreement

between the estimated interaction energies Ẽ and the first-principles values EDFT is illustrated

in Fig. 6.7(a). This case is characterized by a stronger attractive contribution and a weaker

repulsion compared to the single-side adsorption, thus reflecting the known tendency of

forming more stable adatom aggregates upon adsorption on both sides [Lin et al., 2008;

Boukhvalov et al., 2008]. The cluster size distributions P (n) calculated for single-side and

both-sides adsorption at adatom concentration x = 5% simulated at T = 300 K are compared in

Fig. 6.7(b). After realizing that the two distributions are qualitatively very similar, nevertheless,

one notices that both-sides adsorption exhibits a somewhat stronger tendency to form larger

clusters.

6.1.7.b Landauer-Büttiker electronic transport calculations and scaling analysis of con-

ductivity

In order to investigate the transport properties of graphene with resonant scattering impurities

we perform Landauer-Büttiker calculations in a two-terminal configuration with a scattering

region composed of hydrogenated graphene attached to two semi-infinite leads of pristine

graphene, as shown in Fig. 6.8. The overall configuration is periodic along the transverse

direction y . For such a setup, the conductance as a function of energy, G(E), is given by

G(E) = W

2π

ˆ π
W

− π
W

T (E ,k∥)dk∥, (6.5)
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Figure 6.8 – Schematic drawing of the two-terminal configuration employed for investigating
the transport properties of graphene with hydrogen adatoms. The transport direction corre-
sponds to the x axis while the system is periodic along the y axis with periodicity W = 40 nm.
The unit cells of the semi-infinite periodic leads made of pristine graphene are indicated by
blue lines. The scattering region is populated by adatoms either randomly or according to
the configurations produced by Monte Carlo simulations (in the case of correlated adatom
distributions). Green dashed line highlights one of the principal layers (PLs) of the scattering
region.

where T (E ,k∥) is the transmission probability and k∥ is the momentum along y . Due to the

large width W = 40 nm of the model employed, transmission is only evaluated at k∥ = 0.

In order to calculate T (E) we decompose the scattering region into principal layers (PLs),

namely, whose atoms are coupled at farthest to those located in the neighbor layers. Since

our tight-binding model is limited to first-nearest-neighbor interactions and the transport

direction is oriented along zig-zag direction, see Fig. 6.8, the minimal width of the PL is dPL =p
3

2 dCC, where dCC = 1.42 Å is the carbon-carbon bond length. The Hamiltonian restricted to

the i -th principal layer is Hi , while ti is the tight-binding hopping matrix connecting the i -th

and i +1-th principal layers. We introduce an imaginary cleavage plane between the n-th

and n +1-th principal layers dividing the system into two independent parts. We define g L
n

and g R
n+1 as the surface Green’s functions of the two decoupled semi-infinite systems located,

respectively, at the left and at the right of the cleavage plane. Following Ref. [Mathon and
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6.1. Electronic transport in graphene with aggregated hydrogen adatoms

Umerski, 2001], the transmission is given by

T (E) = Tr[Tn Im(g L
n)T †

n Im(g R
n+1)], (6.6)

where Tn is defined as

Tn = tn(1− g R
n+1t †

n g L
n tn)−1. (6.7)

The choice of the position of the cleavage plane is immaterial because of current conservation.

Surface Green’s functions g L
n and g R

n can be related to the preceding (successive) surface

Green’s functions g L
n−1 (g R

n+1) by applying the Dyson equations [Umerski, 1997]

g L
n = (E −Hn − t †

n−1g L
n−1tn−1)−1 (6.8)

and

g R
n = (E −Hn − tn g R

n+1t †
n)−1. (6.9)

Further iterations of Eqs. 6.8 and 6.9 reduce the problem to the knowledge of the Green’s

functions at the surfaces separating the scattering region from the left and right leads, g LL

and g RL, that we calculated according to the analytic solution described in Ref. [Sanvito et al.,

1999]. The time complexity of the Green’s function calculation for each lead with respect to the

number Nlead of orbitals in the lead unit cell is O(N 3
lead) [Umerski, 1997]. On the other hand, as

follows from eqs. 6.8 and 6.9, the complexity of repeatedly applying Dyson’s equation to reach

the cleavage plane is O(M ×N 3
layer), where M and Nlayer are the number of principal layers and

the number of orbitals in each layer, respectively. Consequently, the overall complexity of the

method is cubic with respect to the width and linear with respect to the length of the system.

In order to perform our conductance scaling analysis we vary the length of the scattering

region in the range [1,60] nm by steps of 8 PLs, corresponding to ∆L ≈ 1 nm. At each step

the right lead is moved rightwards whereas the left lead is kept fixed, see Fig. 6.8. The values

of conductance G(E) are averaged over an ensemble of Nens=9600 disorder realizations for

proper statistical sampling. The conductivity g calculated for the entire investigated range

of concentrations is presented in Fig. 6.9(a,b). The overall enhancement of conductivity

upon adatom aggregation is a common feature at all the investigated concentrations. This is

particularly visible in the strong localization regime, that is, at low energies E and large L. The

localization length, ξloc, can only be determined for the g (L) curves that exhibit a well-defined

negative slope in region of high L. This is the case for ξloc < 60 nm, which is the maximum

scattering region length considered in our study. This does not imply that the system does not

undergo localization, but rather that a longer scattering region is needed in order to estimate

ξloc correctly. For this reason many values of localization length ξloc at x < 5%, especially in

the case of correlated impurities, are missing in Fig. 6.9(c).
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Chapter 6. Electronic Transport in Graphene with Hydrogen Adatoms

Figure 6.9 – Scaling analysis of conductivity g and localization length ξloc for concentrations
x = 0.25%...10%. (a,b) Conductivity g as a function of scattering region length L calculated for
graphene with random and correlated adatom distributions, respectively, at charge-carrier
energies 0 eV < E < 1 eV. (c) Localization length ξloc as a function of charge-carrier energy E .
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Figure 6.10 – (a,b) Conductivity g as a function of scattering region length L for graphene with
randomly distributed adatoms at x = 5%. The charge neutrality point of the leads has been
shifted by (a) ∆EL =−0.5 eV and (b) ∆EL =−1.0 eV, respectively. (c) Localization length ξloc as
a function of charge-carrier energy E for the two investigated lead doping levels compared to
undoped leads ∆EL = 0 eV.

Figure 6.10(a,b) shows the conductivity curves g (L) for x = 5% concentration of randomly

distributed adatoms obtained by shifting the charge neutrality point of leads by ∆EL =−0.5 eV

and ∆EL =−1.0 eV, respectively. The effect of the doping of leads is two-fold. First, the DOS of

pristine graphene increases away from the charge neutrality point. Hence, upon doping, the

number of transport channels increases, which may result in larger values of conductance g .

This is particularly important when the scattering region has an enhanced DOS at low energy,

such as graphene with resonant impurities. A comparison of Fig. 6.10(a) and Fig. 6.9(a) for

x = 5% shows that conductivity is indeed enhanced at low energies with a crossing of the g (L)

curves at L ≈ 10 nm. Second, doping results in a mismatch between the Fermi wavelength of

the leads and that of the scattering region, which has a detrimental effect on conductance

g . This effect is expected to be more pronounced at higher doping and high energy, where

localization plays a smaller role. Indeed, at higher doping (∆EL =−1.0 eV) and high energy

(E = 1.0 eV) conductivity is reduced, notably at short length L < 10 nm, see Fig. 6.10(a,b).

On the other hand, at large distances a general increase of the conductance is progressively

restored since the conductivity becomes predominantly determined by the localization of the

wavefunction and by the increased number of available states. Finally, as shown in Fig. 6.10(c),

localization lengths ξloc are practically unaffected by doping the leads, as it is an intrinsic

property of the scattering region.

6.2 Resonant and non-resonant nature of cluster of vacancies in

the honeycomb lattice

6.2.1 Preliminary theory

We address the problem of a single hydrogen atom covalently bound on graphene in a Green’s

function framework. In the following, we use two different systems to label graphene atoms.
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Chapter 6. Electronic Transport in Graphene with Hydrogen Adatoms

Figure 6.11 – (a) Honeycomb lattice generated by the basis vectors a1 and a2. The unit cells
with two atoms defining the two sublattices A and B are bounded in red. For each cell the
crystal coordinates are indicated. (b) Alternative atoms identification by a single integer. (c-d)
Honeycomb lattice with one (two) defect(s) in positions labeled by H. For the atom highlighted
in red the LDOS is calculated.

In one system, we specify the coordinates (m,n) defining a cell vector l = ma1 +na2 and the

sublattice label A,B , see Fig. 6.11(a). In the other system, we employ a single index 1,2,3. . .

which univocally defines the atom position in the lattice, see Fig. 6.11(b). We choose each time

the approach that guarantees the clearest notation. We consider the Hamiltonian:

H = H0 +H1. (6.10)

In this equation, H0 is the ideal graphene Hamiltonian

H0 =−t
∑
〈i , j 〉

a†
i b j +h.c., (6.11)
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where a†
i (b†

i ) and ai (bi ), respectively, create and annihilate a pz electron on the site i in

the sublattice A (B). H1 is the perturbation due to the defects. For a single defect, which we

assume to be localized on site l , in sublattice A we have

H1 = εa†
l al , (6.12)

that is, we model the defect by introducing a shift of the on-site energy. This perturbation

can arise, for example, by a substitutional impurity. In the case of covalently bound hydrogen

we assume ε→∞ such that no electron can be on the defect site due to the absence of pz

orbital. For the case of an hydrogen dimer we consider two defect located in the same cell l,

respectively, on sublattice A and B , see Fig.6.11 (c). The Hamiltonian reads

H = H0 +H1 +H2 H2 = εb†
l bl . (6.13)

The spectral properties are best derived from the Green’s function

G(z) = (z −H)−1 z ∈C. (6.14)

The symmetries of the graphene honeycomb lattice are inherited by the free Green’s function

G0(z). Translational invariance gives, for any integers (m,n), G0(0,s) = G0(ma1 +na2,s+
ma1 +na2). The equivalence of the two sublattices gives G A A

0 (0,s) =GBB
0 (0,s) and G AB

0 (0,s) =
GB A

0 (0,−s). The rotational C6 invariance with respect to the center of any hexagon gives

G0(r,s) =G0(R(nπ/3)r,R(nπ/3)s) where n represents any integer and R(α) is a matrix which

represents a rotation by angle α. In the notation shown in Fig. 6.11 (b), we have, for example,

G12
0 =G23

0 =G51
0 .

By introducing the t-matrix

T (z) = H1(z)+H1(z)G0(z)H1(z)+H1(z)G0(z)H1(z)G0(z)H1(z)+ . . . , (6.15)

the Green’s function G can be expressed in terms of the pristine graphene Green’s function

G0(z) = (z −H0)−1

G(z) =G0(z)+G0(z)T (z)G0(z). (6.16)

The exact Green’s function for an honeycomb lattice with next-neighbor hopping has been

calculated in Ref. [Horiguchi, 1972]. In the following, we will be mostly interested in G A A(0,0; z)

and G AB (0,0; z). For the diagonal matrix element of G0(z) we have

G A A(0,0; z) = zGt ((z −3)/2), (6.17)

where

Gt (s) = 1

2π
g (s)K̃ (k(s)), (6.18)
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g (s) = 8

[(s +3)1/2 −1]3/2[(s +3)1/2 +3]1/2
, (6.19)

K̃ (k) =



K (k) for Imz > 0 and Imk < 0

or Imz < 0 and Imk > 0

K (k)+2i K ′(k) for Imz > 0 and Imk < 0

K (k)−2i K ′(k) for Imz < 0 and Imk < 0,

(6.20)

k(s) = 4(s +3)1/4/[(s +3)1/2 −1]3/2[(s +3)1/2 +3]1/2. (6.21)

G AB
0 (0,0; z) can be derived from G A A

0 (0,0; z). By taking the expectation value of the identity

(z −H0)G0(z) = I on the state |0, A〉, which represents a pz state at the site l on sublattice A,

one obtains:

〈0, A|z|0, A〉〈0, A|G0(z)|0, A〉 (6.22)

−〈0, A|H0|0,B〉〈0,B |G0(z)|0, A〉 (6.23)

−〈0, A|H0|a1, A〉〈a1, A|G0(z)|0, A〉 (6.24)

−〈0, A|H0|a2, A〉〈a2, A|G0(z)|0, A〉 = 1 (6.25)

zG A A(0,0; z)+ tGB A(0,0; z)+ tGB A(a1,0; z)+ tGB A(a2,0; z) = 1 (6.26)

GB A(0,0; z) = 1− zG A A(0,0; z)

3t
(6.27)

where in the last step the rotational symmetry has been employed.

6.2.2 Single impurity

By applying eq. 6.15 to the Hamiltonian defined by eq. 6.12, one can derive for the single

impurity t-matrix T1 [Economou, 2006]

T1 = |l, A〉 ε

1−εG A A
0 (l, l)

〈l, A|, (6.28)

where G A A
0 (l, l) = 〈l, A|G0(z)|l, A〉 and |l, A〉 represents a pz state at the site l on sublattice A,

that is, the position of the defect.

As a general property, the poles in the complex z-plane of G(z) represent the discrete eigenval-

ues of H . Since eq. 6.16 holds, the poles of G(z) are given by those of T (z). In the limit ε→ 0
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Figure 6.12 – Graphical solution of eqs. (6.29 and 6.36). (a-b) Real (red curve) and imaginary
(blue curve) part of (a) eq. 6.29 and (b) eq. 6.36. Simultaneous zeros of real and imaginary part
represent discrete states of the overall spectrum. A small negative imaginary part has been
added to the energy.

our problem reduces to finding the solution of

G A A
0 (l, l; z) =G A A

0 (0,0; z) = 0 (6.29)

The zeros of G A A(0,0; z) are found at z = 0 as shown in Fig. 6.12(a). The defect induces a bound

state at E = 0 which is responsible for a singularity in the DOS.

The Local Density of States at energy E on the site 1, LDOS(1;E) (see Fig. 6.11 (b), atom

highlighted in red), is given by

LDOS(1;E) =− 1

π
Im(G11(E)) =− 1

π
Im(GBB (0,0;E)) (6.30)

where E is meant to approach the real axis from the upper complex half-plane (ImE → 0+).

Taking into account eqs. 6.16 and 6.28, we have

LDOS(1;E) =− 1

π
Im(GBB (0,0;E)) = (6.31)

− 1

π
Im(GBB

0 (0,0;E)+〈0,B |G0(E)T (z)G0(E)|0,B〉) = (6.32)

− 1

π
Im(GBB

0 (0,0;E)−〈0,B |G0(0,0;E)
|0, A〉〈0, A|

G A A
0

G0(E)|0,B〉) = (6.33)

− 1

π
Im(G A A

0 (0,0;E)− |GB A
0 (0,0;E)|2

G A A
0 (0,0;E)

). (6.34)

The analytic solution for the LDOS has been compared with the numerical result based on

a different assumption to model the defect. In the numerical model, indeed, rather than

introducing an infinite site energy, a missing pz orbital in correspondence of the hydrogen is
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Figure 6.13 – (a-b) LDOS calculated for the atom highlighted in red in Fig. 6.11(b-c). Numerical
and theoretical estimate show perfect agreement. The translationally invariant LDOS for a
carbon atom of pristine graphene is included as reference.

assumed. Fig. 6.13 (a) shows a perfect agreement between analytic and numerical estimates.

This is another confirmation that the two models are equivalent.

6.2.3 Impurity dimer

With reference to the Hamiltonian defined in eq. 6.13, we consider H01 = H0 +H1 as the free

Hamiltonian perturbed by H2. Similarly to the single impurity we obtain

G =G01 +G01|l,B〉 ε

1−εGBB
01 (l, l)

〈l,B |G01, (6.35)

where G01(z) = (z−H01)−1. The poles of T = |l,B〉 ε
1−εGBB

01
〈l,B | correspond to additional discrete

states induced by the defect. Combining eqs. 6.16, 6.28, and 6.35, in the limit of ε→ 0, the

equation for the poles of the dimer t-matrix becomes

G A A
0 (0,0; z)2 = |G AB

0 (0,0; z)|2. (6.36)

Eq. 6.36 can be solved graphically. The equation for the real and imaginary part are Im[G A A
0 (z)2] =

0 and Re[G A A
0 (z)2] = |G AB

0 (z)|2. As shown in Fig. 6.12(b), no solutions are found in the inter-

val [−3t ,3t ], meaning that no discrete states are induced by the dimer. The LDOS on site 3

indicated in Fig. 6.11(c) can be calculated taking into account eq. 6.16. We have

LDOS(3;E) =− 1

π
ImG33(z) =G33

01 −
G31

01G13
01

G11
01

(6.37)

G11
01 =G33

01 =G33
0 − G32

0 G23
0

G22
0

(6.38)
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G31
01 =G13

01 =G13
0 − G12

0 G23
0

G22
0

(6.39)

For the pristine honeycomb GFs we have G33
0 =G11

0 =G22
0 =G A A

0 (0,0) and G32
0 =G23

0 =G12
0 =

G21
0 =G AB

0 (0,0). In order to calculate G13
0 we start form the identity (z −H)G(z) = I and take

the matrix element 〈1|(z −H0)G0(z)|2〉 = 0. One obtains:

〈1|(z −H0)G0|2〉 = 〈1|zG0|2〉−〈1|H0G0|2〉 = 0 (6.40)

zG12
0 + t (G22

0 +G52
0 +G62

0 ) = 0 (6.41)

zGB A
0 (0,0)+ tG A A

0 (0,0)+2tG31
0 = 0 (6.42)

G31
0 =− z

2t
GB A

0 (0,0)− G A A(0,0)

2
(6.43)

LDOS(3;E) obtained both analytically and numerically are plotted in Fig. 6.13(c) showing

perfect agreement.
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7 Stacking domain boundaries in bi-
layer graphene

In this chapter, we study defects in the stacking order of bilayer graphene. As

already discussed in Section 3.3.4, such defects arise at the interface between

domains with different stacking order, thus assuring the overall continuity of

covalently bonded crystalline lattice.

In the first section, we investigate one fascinating realization of stacking disor-

der where triangular domains with well-defined Bernal stacking are delimited

by a hexagonal network of strain solitons acting as stacking domain bound-

aries. First, we show by means of realistic scale simulations that this is nothing

but a consequence of a structural transition of the Moiré pattern of twisted

bilayer graphene, taking place for small twist angles θ < θ? ' 1.2◦. Next, we

investigate the effect of stacking domain boundaries on massive Dirac fermions

typical of bilayer graphene. We demonstrate the breakdown of the current low-

twist-angle picture consisting in a flat zero-energy band of localized states that,

indeed, only holds for rigidly twisted bilayer graphene. In the limit of θ→ 0◦,

we rather find an overall almost homogeneous charge density with atomic scale

modulations determined by the local stacking.

The second section reports on a joint experimental and theoretical work on bi-

layer graphene integrated in a Nanoelectromechanical System (NEMS), namely,

a system based on the interplay between mechanical and electrical properties

of the constituting materials. NEMS are employed, for instance, to study fun-

damental phenomena taking place at the nanoscale such as electron-phonon

interaction but also in applications such as bandgap engineering or to produce

a large variety of sensors. The experiments reported herein measure oscillations

in the electrical response of bilayer graphene deformed by an AFM tip. We pro-

pose a theoretical model suggesting that these oscillations arise from quantum

mechanical interference taking place due to the stacking domain boundaries

introduced by the mechanical deformation.
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Chapter 7. Stacking domain boundaries in bilayer graphene

Figure 7.1 – Experimental images of topological defects in bilayer graphene. (a) TEM images
of bilayer graphene taken at different diffraction angles (shown in the inset) are overlaid in
red, blue, and green, allowing to image individual stacking domain boundaries. Regions
with univocally defined Bernal stacking have equal contributions from different colors, thus
appearing almost white. (b) Enlarged region taken from panel (a) showing that adjacent stack-
ing domains have inequivalent Bernal stacking AB/BA. (c) TEM of twisted bilayer graphene
showing superlattice periodicity. Reproduced with permission from (a-b) Ref. [Alden et al.,
2013] © 2013 National Academy of Science, (c) Ref. [Lu et al., 2013] © 2013 American Chemical
Society

7.1 Stacking domain boundaries in twisted bilayer graphene

7.1.1 Introduction

As introduced in Chapters 1 and 2, bilayer graphene differs from monolayer graphene bearing

peculiar properties such as the massive nature of its charge carriers [Castro Neto et al., 2009],

the possibility of inducing a tunable bandgap by applying a transverse electric field [Ohta

et al., 2006], and quantum Hall valley ferromagnetism [Lee et al., 2014]. These properties are

essentially due to a weak though finite coupling between the two layers.

With respect to monolayer graphene, an additional degree of freedom is needed to fully

characterize the structure of bilayer graphene: the relative position of the two layers, i.e. the

stacking order. Not surprisingly, the latter is not immune to disorder which can manifest itself,

for example, in a finite rotation between the two layers (twisted bilayer graphene, TBG) [Li

et al., 2010; Brown et al., 2012; Beechem et al., 2014] or in boundaries which connect two

domains with energetically degenerate but geometrically inequivalent stacking order (stacking

domain boundaries), see Section 3.3.4 [Lalmi et al., 2014; Lin et al., 2013; Butz et al., 2014;

Gong et al., 2013].

Both these classes of topological defects have been intensively imaged and studied in recent

years. Stacking domain boundaries are realized by strain solitons, that is, segments character-

ized by a typical width where the strain generated by interfacing two inequivalent stacking

domains is confined. Solitons are free to move and can be displaced by the action of an STM

tip, yet conserving their form due to their topological nature [Yankowitz et al., 2014; Lalmi

et al., 2014]. From the theoretical point of view, strain solitons have been described within
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the 2D Frenkel-Kontorova model predicting a typical width of ' 12nm [Popov et al., 2011].

As shown in Fig. 7.1(b-c), one way solitons manifest themselves in bilayer graphene is by

forming a hexagonal network that delimits triangular domains showing alternating AB/BA

Bernal stacking [Alden et al., 2013; Lalmi et al., 2014]. Another form of topological defect

is the presence of a finite rotation angle between the layers found, for example, in epitaxial

graphene on SiC substrate [Hass et al., 2008] or in bilayer graphene obtained by chemical

vapor deposition [Lu et al., 2013], see Fig. 7.1(c). Rotational disorder was already documented

in the uppermost layers of highly ordered pyrolitic graphite (HOPG) [Pong and Durkan, 2005].

In case of finite twist angle, the stacking order cannot be univocally defined on the whole

surface of the sample since the two layers cannot be superimposed by a rigid shift. As shown

in Fig 7.2(a), when crossing a Moiré supercell of twisted bilayer graphene the local stacking

evolves through the high-symmetry configurations AA, AB, SP, BA and, finally, gets back to AA

(see Fig. 7.2(b) for naming conventions). Remarkably, as pointed out in Ref. [Alden et al., 2013],

this sequence corresponds to that encountered in the triangular lattice of stacking domains

reported in experiments.

In this work, we have simulated Twisted Bilayer Graphene in the limit of small twist angle θ

and show that, while for θ& 1.2◦ the equilibrium structure does not differ sensibly from a rigid

twist of the two layers, for angles below θ ' 1.2◦ a structural transition takes place and the

samples progressively relax forming a triangular lattice of alternating AB/BA stacking domains

separated by shear strain solitons forming a hexagonal network. The electronic structure

is profoundly affected by the emergence of this structural phase and exhibits characteristic

features determined by the local stacking field. In contrast to the picture valid for low-angle

TBG that consists in low-energy states quasi-localized in AA regions, we find that the charge

density in AB/BA domains resembles that of pristine AB bilayer graphene. On the other hands,

the hexagonal network has a distinct charge density signature which makes it detectable by

STM.

7.1.2 Simulation of low-angle Twisted Bilayer Graphene

The underlying physical mechanism responsible for the transition is rooted in the interplay

between van der Waals forces, responsible for binding the two graphene layers, and in-plane

elasticity forces. As shown in Fig 7.2(b), the binding energy calculated within DFT+vdW is

minimal for AB/BA stacking, whereas AA stacking is energetically less favorable by 12.2meV

per atom. In the path connecting AB and BA, one additional high-symmetry stacking SP corre-

sponds to a local energy maximum of about 1.33meV per atom. This results in finite in-plane

forces that drive atoms toward AB-stacking. However, the in-plane atomic rearrangement

is hindered by the strain generated by the atomic displacement itself. The ultimate relaxed

structures result from the balance between the minimization of the interlayer energy and the

reaction of the strain field.

Our simulations consist in relaxing models of twisted bilayer graphene by treating atomic
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Figure 7.2 – (a) Ball-and-stick representation of twisted bilayer graphene. The Moiré supercell
is highlighted by black lines. Along the black line the stacking evolves through AA, AB, SP, BA,
AA-stacking configurations defined in (b). (b) Interlayer binding energy of bilayer graphene
Eb calculated within DFT+vdW as a function of the interlayer lateral displacement ∆X (see
ball-and-stick schemes where atoms with different colors belong to opposite layers). The layer
distance is fixed to ∆z = 3.417Å. The energy axis zero is Eb (∆X =±0.5dCC)corresponding to
AB/BA stacking.

interactions within a classical potential. Previous DFT studies of TBG have been performed

within LDA or GGA functionals, which, unfortunately, disregard dynamical charge correlations

responsible for van der Waals interaction [Hass et al., 2008; Uchida et al., 2014; Trambly de

Laissardière et al., 2010]. As we aim to treat models with up to N = 3∗105 atoms, an ab initio

DFT treatment is out of computational capabilities. Currently available implementations

of classical potentials for carbon do not reproduce correctly the interlayer energy of layered

structures based on sp2-hybridized carbon atoms [Spanu et al., 2009; Lebègue et al., 2010; Los

and Fasolino, 2003; Brenner et al., 2002; Kolmogorov and Crespi, 2005; Reguzzoni et al., 2012].

For example, AIREBO and LCBOP potentials do reproduce with a good accuracy the formation

energy of local and topological defects in monolayer graphene, but lack a correct description of

the interlayer energy of graphite as a function of interlayer distance or shift [Brenner et al., 2002;

Los and Fasolino, 2003; Reguzzoni et al., 2012]. We define a new potential VLCBOP/KC =VSR+VLR

which has a short range contribution VSR inherited from LCBOP [Los and Fasolino, 2003] and

a long-range registry-dependent contribution VLR which is a reparametrized version of the

Kolmogorov-Crespi potential [Kolmogorov and Crespi, 2005]. The parameters of VLR have been

fitted in order to reproduce observables calculated within DFT+vdW. In our DFT calculations,

the interlayer distance of graphite is 3.36Å and the in-plane bond length is 1.42Å. For bilayer

graphene we find that the atomic bond-length is dCC = 1.419Å and the equilibrium interlayer

distances of AB, AA, and SP configurations are, respectively, ∆zAB = 3.417Å, ∆zAA = 3.599Å,

and ∆zSP = 3.439Å.

Supercells of twisted bilayer graphene are built according to established rules derived by

imposing commensurability conditions [Shallcross et al., 2008; Lopes dos Santos et al., 2007].
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Figure 7.3 – Atomic relaxation of a twisted bilayer graphene commensurate supercell with
θ = 0.235◦ and L = |t1| = 59.8nm (w = 140). (a) Representation of the initial model with rigidly
rotated layers. Pairs of atoms in opposite layers whose planar projections are closer than
∆d = 0.2Å are colored in red, otherwise in blue. AA-stacked regions contain only red atoms,
whereas atoms in AB-stacked regions are alternatively blue and red. Regions with neither
AA nor AB stacking exclusively contain blue atoms. This representation allows to recognize
distinct stacking domains at a glance. (b) Representation of the relaxed structure with the same
color-coding procedure as in (a). (c) Interlayer distance ∆z for the relaxed system along the
path AMBΓ defined in (b). (d) Modulus of the displacement that atoms along the path AMBΓ
undergo upon relaxation. The distance between the two symmetric maxima with respect
to M is referred to as WD. The dependence of WD on the L is shown in (e). (f) Shear soliton
separating AB and BA domains arising from structural relaxation. ∆u represents the shear
strain, namely, parallel to the axis of the soliton.

In particular, one class of supercells is defined by an integer w which determines the supercell

periodicity vectors t1 = wa1+(w+1)a2 and t2 =−(w+1)a1+(2w+1)a2, with a1 and a2 (|a1/2| =p
3dCC) being the crystal vectors of the graphene honeycomb lattice, and the corresponding

twist angle is defined by cosθ = (3w2+3w +1/2)/(3w2+3w +1) [Lopes dos Santos et al., 2007].

t1 and t2 form a 60◦ angle and the Moiré pattern has C3 symmetry, see Fig. 7.2(a). Notably, in

the limit w →∞ the twist angle and the supercell linear size are inversely proportional: θ−1 ∝
|t1| = L. The initial interlayer distance is set as ∆zAB = 3.417Å. We have relaxed models up to

w = 160 corresponding to θ = 0.206◦, L = 68.4nm, and total number of atoms N = 309124.

Fig. 7.3(a,b) show the initial and the relaxed structure of a TBG model with θ = 0.235◦. The

colors of the atomic representation allow to recognize the transformation that the system

has undergone. Upon relaxation, AB(BA) regions have extended assuming an approximately

triangular shape with a side' 40nm, AA regions have dramatically reduced their extension now
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covering just few atoms. The segments separating AB/BA domains form a hexagonal network

whose vertices correspond to AA cores. The atomic in-plane displacement ∆d generated by

relaxation along a high-symmetry path is shown in Fig. 7.3(d). Departing from the centers A

or B toward M, atoms increasingly need to displace to restore the AB/BA favorable stacking.

Because of opposite value of ∆d along AM and BM strain accumulates in the vicinity of M.

When the energy gained by creating a AB/BA domain is compensated by the local strain

energy, ∆d reaches maxima before abruptly falling to zero. The distance WD between the

two symmetric maxima converges to a constant value W ?
D = 10.5nm, upon increasing the

cell size L. This explains the emergence of a (shear) strain soliton separating two stacking

domains. As shown in Fig. 7.3(f), the amount of shear is |∆u| = 1.42Å. A similar reasoning is

valid for the path BΓ. Additionally, atoms displace in the out-of-plane direction, as shown in

Fig. 7.3(c). Out-of-plane relaxation of TBG has been intensively investigated within DFT/LDA

for θ > 2◦ [Uchida et al., 2014]. It was found that for θ < 3◦ the system develops an out-of-plane

corrugation described by a sine function. Recently, a work based on classical potential similar

to the one employed in the present work investigated TBG in the regime 0.46◦ < θ < 2.1◦ [van

Wijk et al., 2015]. Similarly to what reported in the latter work, we find that ∆z relaxes to ∆zAB

in correspondence of AB/BA stacking domains giving rise to the plateaus seen in Fig. 7.3(c)

and it locally adapts to ∆zSP and ∆zAA, respectively, at M and Γ, consistently with the local

stacking. Therefore, a small corrugation is present in correspondence of the solitons and the

AA cores (tilt of the normal vectors α< 0.2◦).

To get a deeper insight in the Moiré pattern resulting from the relaxation, we have studied the

stacking vector field u, defined as the in-plane component of the minimal shift that must be

applied to one layer to make it coincide locally to the opposite layer, see Fig. 7.4(a).

Fig. 7.4(b) allows to appreciate the extension of the triangular domains with almost constant

stacking |u| = 1.42Å (white regions). By inspecting the local stacking field around A and B

(side panels in Fig. 7.4(b)) one can see the confluence of three vector orientations differing by

120◦. This discontinuity is immaterial as the vector u for AB(BA)-stacking has three degenerate

representations forming an angle of 120◦ with each other. However, when going from one

stacking domain to its neighbor (e.g. from point A to point B), u rotates by 60◦, that is, the

stacking changes from AB to BA or vice versa. The variation ∆u = u′ − u (|u| = 1.42Å) is

orthogonal to the strain soliton and coincides with its shear vector. These stacking domain

boundaries are topological defects and ∆u is assigned as their topological invariant. In the

following, the denominations “strain soliton” and “stacking domain boundary” will be used

interchangeably.

As shown in Fig. 7.3(c), along the path AMB |u| has a minimum at M, corresponding to SP

stacking (|u| = 1.23Å). Upon increasing L, the FWHM WS of this dip saturates to W ?
S = 9.5nm,

a value close to W ?
D = 10.5nm. We choose to use W ?

S to define the width of the stacking

domain boundaries since its determination does not require comparison with the non-relaxed

structure. The calculated widths of the solitons are in good accordance with the experiments

[Alden et al., 2013; Lin et al., 2013; Butz et al., 2014]. For the sake of comparison |u| is reported
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Figure 7.4 – Representation of the stacking vector field u of relaxed TBG with θ = 0.235◦,
L = 59.8nm (w = 140). (a) Illustration of u for high-symmetry stackings. (b) Color coded
representation of the field u. Hue and saturation at each point represent, respectively, the
direction and the intensity of the local value of u. Fully saturated colors correspond to AA
(|u| =1.42Å), white regions (vanishing saturation) correspond to AB (|u| =1.42). The center of
the solitons showing SP stacking (|u| =1.23Å) are half-saturated. Hue varies with a period of
180◦ as shown in the wind rose. Lateral panel show the stacking vector field in the vicinity
of B and A. (c) Modulus of u along the path AMBΓ defined in (b) for relaxed and rigidly (non-
relaxed) TBG. The FWHM of the minimum in M is referred to as WS and used as definition of
the soliton width. The dependence of WS on the system size L is shown in (d).

also for rigidly TBG showing smooth change between AB(BA) and SP stacking along the path

AM(BM) as well as linear change between AB and AA stacking along the path BΓ. The vertex of

the hexagonal network (Γ) where six stacking domain boundaries merge are topological point

defects with u = 0 and non-zero winding number, that is, the field u rotates by 360◦ along a

closed path that encompasses Γ [Mermin, 1979].

Intuitively, we expect that a transition involving strain soliton generation takes place when

the TBG supercell is larger than W ?
S such that strain can be efficiently accommodated. The

dependence of several observables on θ (or L) reveals further details of the transition. As shown

in Fig. 7.5(a), for θ = 21.8◦ the distribution of the interlayer distance ∆z has a minimal spread

∆zMAX −∆zMIN = 0.01Å . Upon a reduction of θ, ∆zMAX and ∆zMIN increasingly differentiate

and saturate around θ = 2◦ to ∆zMAX=∆zAA and ∆zMAX=∆zAB, consistently with what shown in

Fig. 7.3(c). At this stage,out-of-plane relaxation competes with the bending rigidity of graphene
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Figure 7.5 – Structural transition of twisted bilayer graphene in the limit of small angle. (a)
Largest (lowest) interlayer distance ∆zMAX(/MIN) and (b) maximum atomic displacement as a
function of twist angle θ. (c) Density of twist energy γ as a function of supercell size L. The
constant and inversely proportional regions are fitted, respectively, by the red and the blue
lines (notice the bilogarithmic scale) intersecting at L∗ = 11.9nm (θ∗ = 1.2◦).

whose coefficient is estimated to be BM = 1.44eV [Wei et al., 2013]. For lower values of θ, in-

plane relaxation becomes sizable. Notice that in-plane displacement is upper-bounded by

one bond length dCC/2 = 0.71Å since two inequivalent stacking vectors are connected by

|∆u| < dCC and the displacement must be equally shared by the two layers. The transition

is best revealed by the functional dependence of the twist energy on the cell size γ (L) =
(E (L)−EAB)/AS , where E (L) is the total energy for a supercell of length L, EAB is the energy

of a AB bilayer graphene supercell having the same surface area AS = L2
p

3/2, see Fig. 7.5(c).

For small supercells the difference E (L)−EAB is proportional to the number of atoms i.e. to

the surface of the system and the twist energy equals a constant γ (L) = γA = 1.2meV/Å2. On

the other hand, for large cells with well-defined stacking domains only the soliton network

contributes to E (L)−EAB. As the width of the solitons asymptotically approaches the constant

value WS, the twist energy is given by γ= 3γSL/AS ∝ 1/L, where γS is the energy per soliton

unit length and the factor 3 counts the number of solitons in the supercell. We estimate

γS = 42meV/Å. The cross-over length L? = γS/γA = 11.9nm (corresponding to θ? = 1.2◦) is

defined as the intersection of the constant line and the curve ∝ 1/L fitting the two distinct

regimes, as shown in Fig. 7.5(c). Finally, we can pose on a rigorous basis why the transition

takes place for large supercells. Regardless the values of γS and γA, the quadratic “rigid” regime

is favorable for L < L?, whereas the linear “solitonic” regime is favorable for L > L?. For this

reason the transition is robust to an uncertainty on the effective interatomic potential.

7.1.3 Electronic structure

As known for several years, the low-energy states for TBG with large to intermediate twist

angles 3◦. θ. 15◦ can be described by a model that treats perturbatively the coupling of the

graphene layers [Lopes dos Santos et al., 2007; Bistritzer and MacDonald, 2011; Koshino, 2013].

This model predicts the existence of low-energy massive Dirac fermions with θ-dependent

Fermi velocity and a pair of Van Hove singularities slightly asymmetric with respect to the

146



7.1. Stacking domain boundaries in twisted bilayer graphene

Figure 7.6 – Electronic band structure and density of states (DOS) for rigidly twisted and
relaxed TBG. (a) Model with θ = 3.8◦ (L = 3.6nm, w = 8). (b) Model with θ = 1.2◦ (L = 12.1nm,
w = 28). Band structure and DOS calculated for AB graphene are reported for comparison.
The zero of the energy axes represents the Fermi energy.

Dirac point. These predictions have been experimentally confirmed [Li et al., 2010; Luican

et al., 2011]. For smaller twist (1◦ < θ < 3◦), the TBG has been predicted to develop a flat band

responsible for a zero-energy peak in the DOS [Trambly de Laissardière et al., 2010; Uchida

et al., 2014]. This peak is due to states localized in AA regions as a result of the super-periodic

potential induced by the Moiré pattern. However, these results cannot be extrapolated to

lower θ, since we expect that the prominent structural relaxation sensibly affects the electronic

structure.

We investigate the low-energy electronic properties of equilibrium structure of twisted bilayer

graphene in the limit θ→ 0◦ by means of a tight-binding model which takes into account

2pz orbitals with hopping parameters depending on the orbital center distance as well as the

relative orientation of the orbitals. The latter is achieved by means of Slater-Koster theory, see

Section 7.1.5.d . This is particularly important in order to correctly describe the interactions

in the soliton region where the relative position of atoms in opposite layers changes contin-

uously. Since the relaxed structures do not show considerable corrugation, in-plane orbital

interactions are prevalently of the ppπ type. For pairs of atoms in opposite layers that are

stacked on top of each other, such as those appearing in AA stacking, the orbital interaction is

purely of ppσ character. However, when atoms are misaligned such as in SP or AB stacking,

the interaction is a mixture of ppσ and ppπ, see Section 7.1.5.d.

In Fig. 7.6(a), the band structure for a model with θ = 3.8◦ shows two degenerate Dirac cones

projected on the K point of the supercell BZ, in contrast with the parabolic dispersion of AB

graphene [Lopes dos Santos et al., 2007; Shallcross et al., 2008; Hass et al., 2008]. A finite

coupling between the states in the two Dirac cones is responsible for flat bands around the M

point, whence the appearance of two low-energy van Hove singularities in the DOS [Lopes dos

Santos et al., 2007]. We find that the relaxation has negligible effects on the Dirac fermions,

except lifting the degeneracy of low-energy bands. As the twist angle decreases, the positions

of van Hove singularities become closer to the Dirac energy, eventually merging for θ ' 2◦. In

this regime, the Fermi velocity is zero and the low-energy states are localized in AA-stacking
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Figure 7.7 – (a) Density of states (DOS) as a function of energy measured from the Fermi
energy (E − E f ) for twisted bilayer graphene with θ = 0.235◦. The DOS for relaxed and
rigidly twisted bilayer graphene are compared. As reference, the DOS of AB bilayer
graphene (θ = 0◦) is shown (dashed line). The inset presents the same data zooming in
the interval[−0.5,0.5] eV. The regions L, C and R individuate, respectively, the energy intervals
[−0.25,−0.038] eV,[−0.038,0.043] eV and [0.043,0.26] eV. The zero of the energy axes repre-
sents the Fermi energy. (b-c) LDOS integrated in the energy intervals L,C, and R for rigidly
twisted (b) and relaxed TBG (c). (d) LDOS within 1 nm2 squares centered around M, B and Γ.

regions. By further reducing θ, the Fermi velocity starts oscillating and vanishes at “magic”

angles θn ' 1.05◦/n, where n is an integer [Bistritzer and MacDonald, 2011]. However, the

Dirac cone is restored only in a very small energy range ' 10 meV [Trambly de Laissardière

et al., 2012]. As shown in Fig. 7.6(b), at the transition angle θ? = 1.2◦ the DOS for rigidly TBG

shows a trio of low energy peaks (E'−0.06,0,0.07eV) corresponding to the flat low-energy

bands observable in the band structure. We find that the relaxation is responsible for lifting

the degeneracy of the central band and shifting the side peaks further from the Fermi energy,

however, without altering the main electronic features.

Fig. 7.7(a) shows the DOS of a model with θ = 0.235◦, that is, well below the transition angle

θ?. The DOS for rigidly TBG still shows a zero-energy peak with two satellite hills, though

the reduced computational resolution make them appear quenched. The nature of low-

energy states is revealed by the inspection of local density of states (LDOS) integrated in the

energy regions around each of the three peaks, see Fig. 7.7(b). In all cases the charge density

is localized around AA regions, in accordance with previous predictions, and extends on a

fraction of surface η' 5% for the central peak and η' 25% for satellites, which we have verified

to be largely independent of the Moiré periodicity L.

This scenario changes radically upon relaxation. The DOS of relaxed TBG is overall closer to AB

bilayer graphene and, in particular, the central peak is suppressed below the computational

resolution. Moreover, the nature of the low energy states is reminiscent of the hexagonal

network of solitons arising from relaxation. The LDOS in the central energy region C shows a
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higher degree of localization on the AA core (Fig. 7.7(c), central map). The absolute real space

extension of these states is independent of L, being determined exclusively by the radius of

the AA core that converges to a fraction of nm in the limit L →∞. The effect of structural

relaxation is even more dramatic in the side energy ranges (Fig. 7.7(c), maps L and R) that show

a radically different charge density distribution with respect to rigidly TBG. Indeed, charge

density is partially depleted on AA cores and AB/BA domains show an overall homogeneous

distribution, whereas solitons exhibit a slightly larger charge density. A closer inspection at

the center of an AB domain (point B in Fig. 7.7(d)) shows an alternation of bright and dark

atoms which is a consequence of broken sublattice symmetry. This is typical of AB-stacked

graphene layers as demonstrated by STM images of HOPG [Pong and Durkan, 2005]. The

charge at the center of the solitons and at the vertices of the network does not show oscillation

on the atomic scale. This is consistent with the sublattice symmetry of the local stacking that

in the center of the soliton and in the vertices is, respectively, SP and AA. (Fig. 7.7(d), points M

and Γ). This holds true in the whole inspected range of energy [−0.25,0.26] eV, as it is due to

the presence/absence of sublattice symmetry.

7.1.4 Conclusions

We have investigated the equilibrium low-energy structure of twisted bilayer graphene in

the limit of vanishing twist angle
(
θ& 0.2◦) by means of simulations based on a classical

potential capable to describe the dependence of graphene layers’ binding energy on the

layers’ relative position. In-plane atomic rearrangement acts to maximize the extension of

energetically favorable AB/BA stacking domains that assume a triangular shape. In-plane

strain field is confined in a hexagonal network of shear solitons with a characteristic width

WS ' 9.5nm constituting a framework for alternating AB and BA stacking domains. This

structural transition takes place for θ < θ? = 1.2◦ when developing such a hexagonal network

becomes energetically favorable for TBG. In the limit θ→ 0◦, the equilibrium geometry of

TBG does converge though not uniformly to that of θ = 0◦ in the sense that the relative

abundance of AB-stacking surface approaches 1, but the soliton network never disappears due

to its topological nature. The transition has major consequences on the low-energy charge

distribution in the Moiré superlattice. Differently from the range 1.2◦ < θ < 2◦ where the

DOS of TBG hosts three low-energy peaks due to flat bands of states localized on AA regions,

relaxed structures of TBG with θ < 1.2◦ show a DOS increasingly closer to that of AB bilayer

graphene with a low-energy charge density which can be directly inferred from the local

stacking. In AB/BA domains the charge density approaches that of AB bilayer graphene, that

is, overall uniform but with a strong unbalance between the two inequivalent sublattices in

each layer. The solitons and the network vertices show no atomic fluctuation of the charge as

the sublattice symmetry is re-established. Analogously to the stacking, the relative extent of

the regions where the charge density differs from AB bilayer graphene asymptotically vanishes

for θ→ 0◦. STM/STS experiments are awaited to confirm our predictions.

149



Chapter 7. Stacking domain boundaries in bilayer graphene

7.1.5 Methodological details and additional calculations

7.1.5.a DFT study of interlayer interaction in bilayer graphene

All our DFT calculations are based on the non-local rVV10 functional [Vydrov and Voorhis,

2010; Sabatini et al., 2013] implemented in QUANTUM ESPRESSO [Giannozzi et al., 2009]

to account for van der Waals interactions. We have employed a pseudopotential generated

with revised pw86 functional [Murray et al., 2009]. In fact, at the time the present work started

this was the available pseudopotential based on the closest functional to rVV10. However,

non-local contribution are expected to not alter significantly the effective potential generated

by ions and core electrons. As already found for graphite by the authors of the rVV10 functional,

relatively high values of wavefunction and charge-density cutoff are required to accurately

describe sp2-carbon systems. We have used Ewf = 80Ry and Eρ = 574Ry together with a

16×16×1 Monkhorst-Pack kpoint grid to obtain converged structural quantities. Periodic

replicas of the system are separated by 24 Å of vacuum to guarantee negligible interaction.

The interlayer binding energy Eb is calculated from the total energy Etot, the energy of two

isolated layers Emono, and the number of atoms in the unit cell Nc as follows

Eb =− 1

Nc
(Etot −2Emono) (7.1)

As reported in Ref. [Sabatini et al., 2013] and confirmed by our calculations, the atomic bond

length of graphite is 1.42Å and the interlayer distance ∆zgraph = 3.36Å in accordance with

established value [Bacon, 1951]. Table 7.1 reports the interlayer distance and binding energy

for bilayer graphene calculated at fixed bond length a = 1.42Å.

Table 7.1 – Structural quantities calculated within DFT/rVV10 for graphite and bilayer
graphene.

Graphite
[Sabatini et al., 2013]

Bilayer graphene - AB Bilayer graphene - AA

∆z
(
Å
)

3.36 3.41 3.59
Eb (meV/atom) 39 30.2 25.7

Interestingly, we have found for AB bilayer graphene an interlayer distance ∆zAB = 3.412Å,

about 1.5% larger than for graphite. For AA stacking the equilibrium distance is ∆zAA = 3.588Å.

The dependences of Eb on ∆z and on the interlayer shift ∆X are shown in Fig. 7.8(a,b).

7.1.5.b Determination of the classical carbon-carbon potential

The classical pair potential for carbon atoms that we employed in structural relaxations

consists in the sum of a short-range contribution VSR and a long-range contribution VLR de-

scribing, respectively, covalent bonds and van der Waals interactions between sp2-hybridized

carbon atoms. VSR is the short-range term of the LCBOP potential defined in Ref. [Los and

Fasolino, 2003] imported with no modifications, see Section 4.3.
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Figure 7.8 – (a) Interlayer binding energy Eb as a function of interlayer distance ∆z for AA and
AB-stacked bilayer graphene. (b) Binding energy as a function of interlayer shift, ∆X, defined
in Fig. 7.2(a). The zero of the energy axis is set at Eb (∆X =±0.5dCC) corresponding to AB/BA
stacking. Dots correspond to DFT estimates, whereas continuous lines correspond to classical
potential estimates.

The long-range term VLR is a reparametrized version of the registry-dependent potential

proposed in Ref. [Kolmogorov and Crespi, 2005]. For a pair of atoms at positions ri and r j ,

with ni (n j ) being the normal vector to the sp2 hybridization plane at the position ri (r j ), VLR

is defined as

VLR
(
ri j ,ni ,n j

)= e−λ(ri j−z0) (
C + f

(
ρi j

)+ f
(
ρ j i

))− A

(
ri j

z0

)−6

,

ρi j =
(
r 2

i j − (ni · ri j )
)1/2

, ρ j i =
(
r 2

i j − (n j · ri j )
)1/2

,

f
(
ρ
)= e−(ρ/δ)2 ∑

C2n(ρ/δ)2n n = 0,1,2, (7.2)

ri j = ri − r j .

We make the approximation that normal vectors n are directed along the z axis. Consequently

we can simplify ρi j = ρ j i =
((

r x
i j

)2 +
(
r y

i j

)2
)1/2

. This assumption is justified by the inspection of

the corrugation of the relaxed structures where normal vectors form an angle α< 0.2◦ with the

z axis. Although the original paper of Kolmogorov and Crespi provides a set of parameters for

the potential, we have reparametrized it by fitting eq. 7.2 to three data sets calculated within

DFT+vdW. The first two datasets are the binding energy Eb as a function of the interlayer

distance ∆z for AB and AA-stacked bilayer graphene (see dot data series in Fig. 7.8 and the

third dataset is Eb as a function of the interlayer shift ∆X (see Fig. 7.2(b) for definition) at

fixed interlayer distance ∆z = (
∆zDFT

AA +∆zDFT
AB

)
/2 = 3.50Å (red dots in Fig. 7.8(b)). The fit has

been performed employing the non linear optimizer DAKOTA [Adams et al., 2009]. Table 7.2

compares the parameters reported in the original reference and those resulting from our fit.

Fig. 7.8 shows a remarkable accordance between observables calculated within DFT (dotted
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Table 7.2 – Parameters for Kolmogorov-Crespi potential.

C
(meV)

C0

(meV)
C2

(meV)
C4

(meV)
z0(
Å
) δ(

Å
) λ(

Å−1
) A(

Å
)

Ref.
[Kolmogorov and Crespi, 2005]

3.030 15.71 12.29 4.933 3.34 0.578 0.578 10.238

This work 7.183 9.806 5.365 4.266 3.516 0.590 3.039 13.17

data series) and KC potential (continuous curves). In particular, the equilibrium distances

calculated by means of the reparametrized KC potential are∆zKC
AA = 3.599Å and∆zKC

AB = 3.416Å,

and the binding energies for AA and SP stacking calculated at ∆z = 3.412Å taking AB energy

as reference are, respectively, E AA
b = 12.2meV/atom and E SP

b = 1.22meV/atom. Finally, the

in-plane bond-length is 1.419Å.

7.1.5.c Structural relaxations

The full potential V =VSR+VLR has been implemented in LAMMPS [Plimpton, 1995; LAMMPS].

TBG structures have been initially relaxed by means of conjugate gradient plus quadratic line

search method and fine minimization was obtained using fast inertia relaxation method, see

Section 4.2. The supercell vectors have been kept fixed. At the end of the relaxation the highest

force component acting on any atom was weaker than 3meV/Å. In Fig. 7.9, the full maps of

the interlayer distance and in-plane displacement are shown. With respect to Fig. 7.3(c-d), the

full maps allow to appreciate the whole set of symmetries. ∆z is almost constantly equal to

∆zKC
SP = 3.439Å along the soliton axes and to ∆zKC

AB = 3.416Å in AB/BA domains.

Figure 7.9 – Maps of (a) interlayer distance ∆z and (b) modulus of the atomic displacement
∆d upon relaxation of TBG with θ = 0.235◦ corresponding to L = 59.8 nm. The upper bound
for the displacement modulus is dCC/2 = 0.71Å, as explained in Section 7.1.2.

152



7.1. Stacking domain boundaries in twisted bilayer graphene

7.1.5.d Electronic structure calculations

In this section we present details of the electronic structure calculations. The tight-binding

model Hamiltonian for bilayer graphene is taken from Ref. [Trambly de Laissardière et al.,

2010] (see also Ref. [Trambly de Laissardière et al., 2012] for thorough electronic structure

calculations of rigidly twisted bilayer graphene). In this model only pz−orbitals for carbon

atoms are considered:

H = ∑
i 6= j

V a†
i a j , (7.3)

where the operator a†
i (ai ) creates (annihilates) an electron in a pz -orbital of the atom at

position Ri . The off-diagonal matrix elements V are obtained by combining σ and π-type

Slater-Koster parameters Vppσ and Vppπ in the approximation that the axes of pz -orbitals are

parallel, akin to the assumption that the normal vectors of the two graphene layers are parallel

as well:

V =Vppπ sin2 (θ)+Vppσ cos2 (θ) , (7.4)

where θ is the angle between the orbital axes and the the vector Ri j = Ri −R j that connects

the two orbital centers [Slater and Koster, 1954]. For a pair of atoms in the same layer θ ' 90◦

and Vppπ dominates. Vppπ and Vppσ depend exponentially on the distance between the two

orbital centers r

Vppπ (r ) =V 0
ppπeqπ(1−r /aπ), Vppσ (r ) =V 0

ppσeqσ(1−r /aσ). (7.5)

Following Ref. [Trambly de Laissardière et al., 2010] we take V 0
ppπ =−2.7eV, V 0

ppσ = 0.48eV,

aπ = 1.419Å, qπ = 3.1454. However, in order to be consistent with the interlayer distance for

AB stacking calculated in the present work, we take aσ = 3.417Å and qσ = 8.200. The long

distance cut-offs for Vppσ (r ) and Vppπ (r ) are fixed, respectively, at r̄σ = 3.5Å and r̄π = 5Å.

We have verified that further increasing the cut-offs does not affect sensibly the calculated

observables. In all our calculations the neutrality point is located at E f = 0.82eV.

Density of states is calculated as follows

DOS(E) =
ˆ

BZ
dk

∑
nk

δ
(
E −Enk

)
, (7.6)

with nk running over all the eigenvalues at position k in reciprocal space. For computational

needs the δ-function appearing in eq. 7.6 is replaced by a Lorentzian function:

δ
(
E −Enk

)→ 1

π

η(
E −Enk

)2 +η2
, η→ 0+. (7.7)

The local density of states on the i -th atom at position Ri , integrated in the energy range
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[E1,E2], is calculated as follows

LDOS(i;E1,E2) =
ˆ E2

E1

dE

ˆ
BZ

dk
∑
nk

δ
(
E −Enk

) |〈i |nk 〉|2 =
ˆ

BZ
dk

∑
E1<Enk

<E2

|〈i |nk 〉|2 , (7.8)

where |i 〉 represents the pz orbital of the i -th atom. Spin is not explicitly considered in our

calculations.

Integrations over the Brillouin zone are performed introducing a discrete grid. The band

structure shown in panels (a) and (b) of Fig. 7.6 has been calculated with a Monkhorst-Pack

grid of 25×25 and 5×5 k-points, respectively. The density of states of the largest model shown

in Fig. 7.7 has been calculated using the high-symmetry points Γ and M of the hexagonal B.Z.,

taking advantage of the fact that the Hamiltonian represented in reciprocal space H (k = M,Γ)

is a real matrix.

Matrix diagonalizations are performed employing the Eigenvalue Solvers for Petaflop Applica-

tions library (ELPA) [Marek et al., 2014]. This allowed us to diagonalize a N ×N real matrix

with N = 236884 in about 2.5 hours using 1024 cores.

7.2 Electromechanical Oscillations in Bilayer Graphene

The work presented in this section has been done in collaboration with the group of Prof. Andras

Kis, Electrical Engineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), and has

been published in Nature Communications 6, 8582 (2015)

In this section, we report an experimental study of the interplay between mechanical and

electrical properties of mono- and bilayer graphene, and propose a simple theoretical model

to explain the resistance oscillations measured in bilayer graphene devices subjected to the

action of the tip of an Atomic Force Microscope (AFM).

The systems investigated in the present study go under the more general class of devices that

integrate electrical and mechanical functionalities, called nanoelectromechanical systems

(NEMS). The realization of NEMS based on suspended graphene has been already exploited to

fabricate nanoresonators [Bunch et al., 2007]. However, to the best of our knowledge, bilayer

graphene has not been integrated into NEMS yet. In this study, mono- and bilayer graphene

nanoribbons (GNR) have been integrated into a NEMS to investigate the effect of strain on

their electronic transport properties. As illustrated in Fig. 7.10, the NEMS devices consisted of

field-effect transistors based on suspended mono- and bilayer graphene nanoribbons with

widths between 60 nm and 300 nm subjected to the action of an AFM tip. The latter served for

both high-resolution imaging and controlled deformation of the GNRs. Electrical conductance

of the suspended GNR was measured simultaneously with mechanical deformation of the

ribbon. After the GNR was positioned and imaged, the insulating AFM tip was located on top

of it. The deformation and successive relaxation of the GNR was induced by moving the stage

154



7.2. Electromechanical Oscillations in Bilayer Graphene

Figure 7.10 – Experiment setup. (a) Scanning electron microscope (SEM) image of a typical
device. A graphene nanoribbon is suspended above the SiO2 substrate and contacted by
electrodes. The scale bar is 0.5 µm. (b) Sketch of the NEMS. Reprinted with permission from
Ref. [Benameur et al., 2015], © 2015 Mcmillan Ltd.

upwards against the cantilever of the AFM and downwards far from it. During the deformation

cycle, the current IS and the cantilever deflection Dcantilever as a function of the position of

the stage, Zpiezo were simultaneously measured. During the experiment, the current flow

was assured by an AC bias of 4 meV with a frequency of 8 kHz, while the back-gate voltage

was connected to the ground, namely, Vg = 0 V. Fig. 7.11(a) shows the electromechanical

response of a monolayer GNR. It was checked that the electrical and mechanical responses

were reproducible for both the extension and the retraction cycles. This proves that: i) GNRs

are deformed in the elastic regime, ii) no structural defects are introduced in the GNRs, and iii)

the GNRs are tightly anchored to the metallic pads (no slipping).

Let us now focus on the behavior of the current upon mechanical deformation of mono-

layer graphene. The width of the investigated devices varied in the range [60,300] nm with

resistances in the range [10,100] kΩ. During the approach cycle and before mechanically

contacting the GNRs, the current was constant. The current underwent variations only once

the GNR was deformed, thus ensuring that the observed current variations were of electrome-

chanical origin. A linear decrease of the current was observed in samples under strain, and

was quantified by the gauge factor GF =∆R/R0/ε, where ε is the strain. The samples exhibited

a positive gauge factor, with the highest value being 3.2. Such strain-induced increase of the

resistance agrees with previous reports and is due to the decrease of the Fermi velocity under

strain (piezoresistivity) [Smith et al., 2013]. Finally, no opening of a bandgap was observed in

the deformation regime.

Let us now turn to bilayer graphene devices. The electromechanical measurements were

performed on two nanoribbons with widths of 200 nm and 300 nm, and resistances of 50 kΩ

and 40 kΩ, respectively. Similarly to the samples of monolayer graphene, the mechanical

response of bilayer devices is reversible, reflecting the mechanical stability of the suspended

bilayer GNRs. Fig. 7.11(b-c) shows that the electromechanical response of bilayer GNRs
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Figure 7.11 – Electromechanical response of monolayer and bilayer graphene. (a) Results of the
simultaneous measurements of the current (upper panel) and the cantilever’s deflection (lower
panel) as a function of the vertical coordinate of the stage zpiezo for a monolayer graphene
sample. (b) Analogous results for a bilayer graphene sample. Reprinted with permission from
Ref. [Benameur et al., 2015], © 2015 Mcmillan Ltd.

exhibits two main features: i) As in monolayer GNRs, a global linear increase in the resistance

is observed. ii) this linear response is convoluted with pronounced oscillations that have the

same qualitative behavior in the extension and in the retraction cycles. The amplitude of

the oscillations is about 4%. The current before and after deformation remains unchanged,

thus confirming that the device has not deteriorated during deformation and proving the

electromechanical origin of the observed oscillations. The overall linear increase of resistance

can be explained as a piezoresistivity effect, analogously to the case of monolayer devices.

Clearly, interlayer interactions are at the origin of the observed electromechanical oscillations.

We propose a simple theoretical model capable of quantitatively reproducing the oscillatory

behavior of resistance. Our model assumes that the AFM tip pressure causes finite relative

lateral displacement (sliding) of the individual graphene layers. This lateral displacement is

expected due to the weak van der Waals force between the two graphene layers [Gong et al.,
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2013; Brown et al., 2012]. As mentioned in the previous section, there is extensive evidence

in the literature that lateral displacement of graphene layers with respect to each other takes

place in various types of scanning probe microscopies. In the present experiment, the AFM

tip deforms the bilayer GNRs, which leads to an increase in the elastic energy of the system.

Therefore, the necessity to lower the energy of the system results in the relative displacement

of the layers. The lateral displacement, however, alters the AB-stacking of the two layers

which is the energetically preferred configuration of bilayer graphene. As predicted by the

Frenkel-Kontorova model, the system then reduces the interlayer binding energy through

formation of a “domain wall” transition region separating two AB-stacked domains [Popov

et al., 2011]. As mentioned in Sections 3.3.4 and 7.1.1, such boundaries occurring between

AB- and BA-stacked regions have recently been observed in multilayer graphene by a number

of studies. We assume that the transition region in our system has the shape of a bulge, see

Fig. 7.12(a). The width of these transition regions, typically few nanometers according to

experimental observations [Alden et al., 2013], is defined by the balance between the total

strain energy and the interlayer binding energy [Popov et al., 2011]. The displacement of

stacking domain boundaries as well as manipulations and creation of wrinkles in scanning

tunneling microscopy (STM) has been also demonstrated [Xu et al., 2009; Yankowitz et al.,

2014; Lalmi et al., 2014]. Displacement and removal of wrinkles with an AFM tip was also

shown experimentally [Camara et al., 2009]. We note, however, that the effective width of

the transition region within the two individual graphene layers is different. Moreover, this

effective width difference∆W will vary as the two graphene layers slide against each other due

to the action of the AFM tip. If no transition region was initially present in the sample, ∆W

corresponds to the lateral displacement of one graphene layer with respect to another upon

indentation. In the transition region, the layers are electronically decoupled either due to

their incommensurate stacking for small values of ∆W , or due to enlarged interlayer distance

for larger ∆W . We suggest that the observed electromechanical oscillations can be explained

from the point of view of quantum interference phenomena due to path difference ∆W of the

charge carriers in the decoupled graphene layers. Increasing the strain leads to higher amount

of local corrugation and changes ∆W , thus causing constructive or destructive interference.

In order to verify this hypothesis, we perform numerical simulations of electronic transport in

a model bilayer graphene device. Our simulations are performed in the assumption of coher-

ent regime because of the few nanometers width of the transition region. The methodology

is based on a tight-binding Hamiltonian and Landauer-Büttiker approach, see Section 4.5.1.

The Hamiltonian only takes into account the hopping term t = 2.7 eV that couples pz orbitals

of first-neighbor atoms within the same layer, and the hopping term γ1 = 0.15 t that couples

atoms in opposite layers forming a dimer, see Section 1.5. Without loss of generality, the

individual graphene layers are assumed to be fully decoupled (γ1 = 0) in the transition region.

Our model device is a bilayer graphene with the zigzag direction aligned to the transport

direction and is periodic in the perpendicular (armchair) direction [Gong et al., 2013]. We

investigated armchair direction of domain boundaries as this orientation was found to be

dominant for the case of closely related AB-BA stacking domain boundaries extensively inves-
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Figure 7.12 – Theoretical calculations of electronic transport properties. (a) Schematic illustra-
tion of the reciprocal lateral shift of the graphene layers as a result of the action of the AFM tip.
AB-stacked graphene regions are separated by a transition region with different effective width,
where individual layers are decoupled either due to the enlarged interlayer distance or due to
their incommensurate stacking [Lopes dos Santos et al., 2007]. (b) Transmission probability
across a region of decoupled layers as a function of energy E and transverse momentum
k∥. The maps of the different panels are calculated for different value of the charge-carrier
path differences ∆W expressed in lattice units a. The dashed lines in the second and last
panel correspond, respectively, to the contour of the quadratic bands of bilayer graphene and
linear bands of monolayer graphene. (c) Relative variation of the electrical resistance ∆R/R0

calculated for a 50 nm wide bilayer GNR subjected to a bias voltage Vbias = 4 mV for different
charge-carrier path differences, ∆W , expressed in lattice units a. The line is a guide to the eye.
Adapted with permission from Ref. [Benameur et al., 2015], © 2015 Mcmillan Ltd.

tigated using transmission electron microscopy. We assume that the sample is large enough

that edge effects do not affect significantly transport properties. Furthermore, considering

the in-plane isotropic elasticity of graphene, the crystallographic orientation of the transport

channel does not affect the electromechanical behavior. Fig. 7.12(b) shows the calculated

charge-carrier transmission probabilities as a function of energy E and momentum parallel to

the transition region, k∥, for various carrier path differences ∆W = na, with a = 0.246 nm the

lattice constant of graphene and n an integer number. The trivial case of ∆W = 0 (no transi-

tion region, i.e. pristine bilayer graphene) reveals the massive character of Dirac fermions in

bilayer graphene. Finite path differences ∆W result in significant amount of backscattering

developing a clear sub-band sequence resulting from the quantum confinement of massless

Dirac fermions in the transition region. Most importantly, configurations characterized by

∆W = 3ma (m ∈ N) show enhanced transmission due to constructive interference as the

wavenumber of Dirac fermions in graphene k = 4π/3a. Therefore, one period of oscillations
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corresponds to a deformation-induced lateral displacement of 3a = 0.74 nm.

To gain further insight, we compare the calculated resistance with the experimental observa-

tion. A quantitative comparison requires accounting for the role of contacts as well as for the

diffusive transport in the rest of device. Both factors, below collected in a single value Rc , act

as a “bottleneck” in a realistic device and are responsible for most of its total resistance. We ob-

tained Rc = 41 kΩ by fitting both the average value of the calculated resistance and the relative

magnitude of the oscillations to the experimental data. In Fig. 7.12(c), oscillations of resistance

can be seen clearly with a constant period of 3a. The amplitude of the calculated oscillations

is of the order of 5% in agreement with experiments, except for the fact that calculated resis-

tance for ∆W = 0 corresponds to a minimum of resistance (no backscattering), whereas in

experiments the resistance minimum occurs at some finite deformation, see Fig. 7.11(c). This

implies that the stacking domain boundary was already present before indentation. In other

words, the origin in experimental resistance curves corresponds to a finite value of ∆W in

Fig. 7.12(c).

In summary, the electromechanical response of mono- and bilayer graphene nanoribbons

has been investigated. Both systems show an overall increase of resistance under strain as

a consequence of an effective reduction of the Fermi velocity. In addition, bilayer graphene

shows oscillations in resistance superposed on the linear response. These oscillations are

explained in the framework of a theoretical model as an interference phenomenon taking

place between the two layers.
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Outlook

Eleven years after the discovery of graphene, the Physics of two-dimensional materials is one

of the “hottest” topics in Condensed Matter Physics, and there is widespread recognition that

such materials will represent the basis of many future technologies. However, regarding the

research in the fundamental Physics of graphene, it is likely that the main discoveries have

been already accomplished and future research will focus increasingly on the applications of

graphene in order to harvest the fruits of all the hard work of the first decade of the “2D era”.

Possibles outlook of the research reported in this thesis should be discussed keeping in mind

this perspective. I remind that the main aim of our work has been to address the role of both

topological and local disorder on the electronic transport properties of monolayer and bilayer

graphene.

Our studies have revealed important topological aspects of the transmission of charge carri-

ers across periodic grain boundaries in monolayer graphene, which are largely retained by

disordered grain boundaries. As soon as atomically-resolved imaging of grain boundaries

of real graphene samples will be available together with electronic transport measurements,

our predictions might receive important confirmations. For an accurate comparison, it will

be important to go beyond the tight-binding description of electrons in order to account for

electron-electron interaction, which we expect to be sizable due to the charge accumulation

in the vicinity of the GBs (self-doping), already reported in experiments. Electron correlation

can be included at mean-field level (Hubbard model, Density Functional Theory). Also, the

constant progress in the realization of electronic circuits based on graphene might, eventually,

unveil the valley-filtering capabilities of grain boundaries.

Moreover, we have investigated the electric conductance of graphene in presence of realistic

aggregates of hydrogen adatoms, focusing on Anderson localization aspects that in two-

dimensional systems are particularly important. The crucial technique that we used to study

Anderson localization, a scaling analysis of the Landauer-Büttiker conductance, can be applied

to other classes of defects with the aim of exploring other categories of Anderson-localization

universality classes. These include different adsorbates (carbon, alkali metals, transition met-

als), substitutional impurities, multiple grain boundaries, etc. Despite an incredibly intense

study of the electronic transport in graphene, a conclusive experimental characterization of

Anderson localization is still lacking. Especially in early experiments, the isolation of samples

with a single type of defects was particularly challenging. Nowadays, however, the increasing
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availability of ultra-pure graphene samples where defects can be introduced in a controlled

manner is creating the ideal playground for studying Anderson localization, and I expect a

renovated interest in the investigation of such an elusive phenomenon. The analytic Green’s

function approach employed to predict the resonant or non-resonant nature of clusters of

hydrogen adatoms on graphene can also be extended to other classes of point defects, e.g.

substitutional impurities.

Our study of topological defects in bilayer graphene, namely, stacking domain boundaries

arising from a twist between the graphene layers and manifesting as shear solitons, relies on a

classical potential that we have optimized to describe both covalent bonding and interlayer

van der Waals interaction. In the short term, the availability of this potential will allow us

to study other type of stacking domain boundaries (tensile solitons) as well as other kinds

of topological disorder such as ripples and wrinkles in both mono- and bilayer graphene.

The next natural step will be to investigate electronic transport properties across topological

defects of bilayer graphene, especially ripples, which are considered the fundamental defects

setting the intrinsic mobility of graphene. Finally, another intriguing perspective would be to

develop an interatomic classical potential to describe the interaction of carbon atoms with

atoms of the neighbor species in the periodic table, boron and nitrogen, in order to study the

realistic equilibrium structures of the increasingly popular heterostructures of graphene and

two-dimensional boron nitride. One example is represented by the Moiré pattern occurring in

graphene deposited on or encapsulated within hexagonal boron nitride layers as a result of

the lattice constant mismatch.
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