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Abstract. Motivated by the advantages of using elliptic curves for dis-
crete logarithm-based public-key cryptography, there is an active re-
search area investigating the potential of using hyperelliptic curves of
genus 2. For both types of curves, the best known algorithms to solve the
discrete logarithm problem are generic attacks such as Pollard rho, for
which it is well-known that the algorithm can be sped up when the target
curve comes equipped with an efficiently computable automorphism. In
this paper we incorporate all of the known optimizations (including those
relating to the automorphism group) in order to perform a systematic
security assessment of two elliptic curves and two hyperelliptic curves of
genus 2. We use our software framework to give concrete estimates on the
number of core years required to solve the discrete logarithm problem
on four curves that target the 128-bit security level: on the standardized
NIST CurveP-256, on a popular curve from the Barreto-Naehrig family,
and on their respective analogues in genus 2.

1 Introduction

In the last couple of decades, the use of elliptic curves, or genus 1 curves, has
become a popular and standardized choice to instantiate public-key cryptogra-
phy [25, 29]. The security of these cryptographic schemes relies on the difficulty
of the elliptic curve discrete logarithm problem (ECDLP). Currently, the best
known algorithms to solve this problem are the so-called “generic” attacks, such
as the parallelized version [37] of the Pollard rho algorithm [33], which has been
used to solve large instances of the ECDLP (cf. [22, 12, 8, 2]). It is well-known
that this algorithm can be optimized by a constant factor when the target curve
comes equipped with an efficiently computable group automorphism [39, 15].
For example, all elliptic curves can efficiently compute the inverse of a point and
this negation map can be used to speed up the run-time by at most a factor√
2. When the cardinality of the automorphism group is larger, such as for the

elliptic curves proposed in [18], a higher speedup is expected when solving the
ECDLP.

Jacobians of hyperelliptic curves of genus 2 have also been considered for
cryptographic applications [26] (also see [5, 27]). Just as with their elliptic curve
? Most of this work was done while the third author was an intern in the Cryptography
Research group at Microsoft Research.



counterpart, the best known algorithms to solve the discrete logarithm in such
groups are the generic ones. The practical potential of genus 2 curves in public-
key cryptography has recently been highlighted by the fast performance numbers
presented in [7]. For cryptographically interesting curves over large prime fields,
it is possible to achieve larger automorphism groups in genus 2 (see [15]). This
not only aids the cryptographer (e.g. [17, 7]), but also the cryptanalyst: one can
expect a larger speed-up when computing the (H)ECDLP on curves from these
families [15].

In this paper we investigate the practical speed-up of Pollard rho when ex-
ploiting the automorphism group. We use the methods presented in [9, 6] for
situations where only the negation map is available, and extend these techniques
to curves with a larger group automorphism. As examples in the elliptic case, we
use two curves that target the 128-bit security level: the NIST Curve P-256 [36]
and a BN-curve [3] – the automorphism groups on these two curves are of size
two and six respectively, which are the minimum and maximum possible sizes
for genus 1 curves over large prime fields. To mimic these choices in the hyper-
elliptic case1, we use two curves from [7], where the automorphism groups are
of size two and ten – these are the minimum and maximum possible sizes for
cryptographically interesting genus 2 curves over large prime fields. We imple-
mented efficient field and curve arithmetic that was optimized for each of these
four curves, and derived the best parameters to make use of the automorphism
optimization.

We obtain security estimates for these four curves using parameters and im-
plementations that were devised to minimize the practical inconveniences arising
from the group automorphism optimization. When taking the standardized NIST
Curve P-256 as a baseline for the 128-bit security level, we show that curves with
a larger automorphism group (of cardinality m > 2) indeed sacrifice some secu-
rity. The constant-factor speedup, however, is lower in practice than the often
cited

√
m. Nevertheless, using both theoretical and experimental analysis, we

provide parameters which push the performance of the Pollard rho algorithm
close to what can be achieved in practice.

2 Preliminaries

General group elements. We use JC to denote the Jacobian group of a curve
C over a finite field Fq, where q > 3 is prime. For our purposes, C and JC
can be identified when C is an elliptic curve, where our group elements are all
points (x, y) ∈ Fq × Fq satisfying C/Fq : y2 = x3 + ax + b, together with
the identity element O. In genus 2, our curves are assumed to be of the form
C/Fq : y

2 = x5 + f3x
3 + f2x

2 + f1x+ f0. In this case we write general elements

1 The fact that the BN curve is pairing-friendly, while our chosen genus 2 “analogue”
is not, does not make a difference in the context of our ECDLP Pollard rho analysis.
We wanted curves with large automorphism groups, and we choose the BN curve as
one interesting example.



of the Jacobian group (i.e. weight 2 divisors) in their Mumford representation as
(u(x), v(x)) = (x2+u1x+u0, v1x+v0) ∈ Fq[x]×Fq[x], such that u(x1) = u(x2) =
0, v(x1) = y1 and v(x2) = y2, where (x1, y1) and (x2, y2) are two (not necessarily
distinct) points in the set C(Fq), and where y1 6= −y2. The canonical embedding
of C into JC maps (x1, y1) ∈ C(Fq) to the divisor with Mumford representation
(x − x1, y1) – we call such divisors degenerate. Since #C ≈ p and #JC ≈ p2,
the probability of encountering a degenerate divisor randomly from JC is O( 1p );
this is also the probability that the sum of two random elements in JC is a
degenerate divisor [31, Lemma 1]. Combining these probabilities with standard
Pollard rho heuristics allows us to ignore the existence of degenerate divisors in
practice – in all of the cases considered in this work, it is straightforward to see
that an optimized random walk is more likely to solve the discrete logarithm
problem than it is to walk into a degenerate divisor. Note that in the unlikely
event one encounters a degenerate divisor, such that our general-case formulas
compute divisors which are not on the Jacobian, this can be dealt with at almost
no additional cost by performing a sanity check on all active walks, once in a
while. Another solution is to perform such a sanity check on the distinguished
elements only (see the description of the parallel Pollard rho algorithm below)
and to discard such incorrect elements.

The Pollard rho algorithm. The Pollard rho algorithm [33] can be used to
compute discrete logarithms in arbitrary groups, but here we give a description
that is specific to our context of Jacobian groups. Suppose we are given P ∈ JC
that generates a group of large prime order n: given some Q ∈ 〈P 〉, the (hyper-)
elliptic curve discrete logarithm problem (H)ECDLP is to find k ∈ Z/nZ such
that Q = [k]P . At the highest level, the idea is to compute pseudo-random
elements of the form Pi = [ai]P + [bi]Q for known non-zero ai, bi ∈ Z/nZ, such
that if a collision Pi = Pj is found with bi 6= bj , then taking k := (aj − ai)/(bi−
bj) ∈ Z/nZ is a solution to the (H)ECDLP. The birthday paradox implies that we
can expect to find such a collision after computing around

√
πn
2 group elements

Pi, provided they are chosen independently and uniformly at random [23]. In
practice we use the so-called r-adding walk, which starts with r precomputed
group elements Sj = [cj ]P+[dj ]Q, for non-zero cj , dj ∈ Z/nZ and 0 ≤ j < r. On
input of a group element Pi, we use a partition function ` : 〈P 〉 → {0, 1, . . . , r−1}
to define an iteration function f : 〈P 〉 → 〈P 〉, which computes the next element
as Pi+1 = f(Pi) = Pi + S`(Pi). Put simply, the iteration function chooses one of
the r precomputed elements to add to Pi in order to step to Pi+1. On top of the
minor costs of evaluating ` and updating the ai, bi ∈ Z/nZ, each such step comes
at the cost of a single Jacobian group operation. Keeping every group element
encountered in the walk imposes exponential (and therefore infeasible) storage
requirements, which is why the parallel Pollard rho algorithm [37] stores only a
small fraction of the elements we come across: the so-called distinguished points.
Storage of O(log n) group elements suffices when roughly

√
n log n out of n group

elements are distinguished [16, Exercise 14.2.15]. In practice one can use a simple
check to determine whether the group element Pi is classed as distinguished, in
which case it is reported to a central location, along with the corresponding ai



and bi. Only these distinguished ‘points’ need to be cross-checked against one
another for collisions; when two walks coincide at a non-distinguished point and
this collision goes undetected, the deterministic iteration function guarantees
that these walks continue along the same path until they arrive at the same
distinguished point.

Affine additions with amortized inversions. As mentioned above, each
step of a random walk requires the addition of two distinct Jacobian group
elements. In the context of scalar multiplications, additions on the Jacobian
are usually performed in projective space, where all inversions are avoided until
the very end, at which point the result is normalized via a single inversion.
In the context of Pollard rho however, it is preferred to work in affine space
for two main reasons. Firstly, we need a way to suitably define and efficiently
check a distinguished point criterion on every group element that is computed;
since there are many distinct tuples of projective coordinates corresponding to
a unique affine point, there is currently no known method to do this efficiently
when working in projective space. Secondly, optimized versions of Pollard rho run
many concurrent random walks to take advantage of Montgomery’s simultaneous
inversion method [30]. If enough concurrent walks are used, then the amortized
cost of each individual field inversion becomes roughly 3 field multiplications –
this makes affine Weierstrass coordinates the fastest known coordinate system to
work with for cryptanalysis. On elliptic curves, such amortized point additions
require 5 Fq multiplications, 1 Fq squaring and 6 Fq additions; on genus 2
curves, these additions cost 20 Fq multiplications, 4 Fq squarings and 48 Fq
additions [14] – see Table 1 in Section 4.

Exploiting automorphisms. The Pollard rho algorithm can be sped up by a
constant factor if the presence of automorphisms on C is exploited [39, 15]. Let
m denote the cardinality of the automorphism group, Aut(C), which we assume
is cyclic2 with generator ψ; in genus 2, ψ extends in the natural way to JC
under the canonical embedding described above. For all R,R′ ∈ 〈P 〉, define an
equivalence relation ∼ on 〈P 〉 by R ∼ R′ if and only if R = ψi(R′) for some
0 ≤ i < m. Note that there are around n/m such equivalence classes in 〈P 〉,
and that m ≥ 2 since Aut(C) contains (at least) the identity map id and the
negation/involution map “−”. We write R̃ for the unique representative of the
class containing R, i.e. R̃1 = R̃2 if and only if R1 ∼ R2. An efficient way of
choosing such representatives is imperative to an optimized implementation of
the Pollard rho algorithm, so we give the fine-grained details for each of the
curves under consideration in Section 4. The important point is that each time
the iteration function computes a new group element Pi+1 via an addition, it now
immediately computes the representative element P̃i+1, thereby accounting for
m elements at a time. This effectively reduces the size of the set on which we walk
by a factor ofm, which theoretically reduces the expected time to a collision by a
constant factor

√
m. In practice however, computing these representatives incurs

2 This is always the case for curves of cryptographic interest over large prime fields
with g ≤ 2 (see [15]).



an overhead which reduces the actual speedup obtained; one of the contributions
of this work is to optimize parameter selection in a variety of scenarios to see
how close we can get to this theoretical

√
m improvement.

3 Handling Fruitless Cycles

It is well known that certain practical issues are encountered when exploiting
the automorphism optimization [39, 18, 15, 9, 6]. Walks will end up in fruitless
cycles – endless small loops where many fruitless collisions are found over-and-
over again (the collisions are fruitless because they have the same ai and bi). At
a high level, these collisions occur because the automorphism ψ, which gener-
ates Aut(C), has a minimal polynomial of small degree; for all scenarios in this
paper, ψ satisfies

∑d
i=0 eiψ

i = 0 for ei ∈ Z and where d ≤ 5. Since each step in
a walk involves the addition of an element from a relatively small fixed table, it
is possible that the same table element (or a very small subset of them) is added
multiple times in succession, and that these contributions to the walk are anni-
hilated by unfortunate linear combinations of powers of ψ (which sum to zero).
The most simple and frequently occurring example is when the negation map
sends the walk into a fruitless 2-cycle: the partition function will choose the same
table element twice in a row (i.e `(Pi) = `(Pi+1) = `(Pi+S`(Pi))) with probabil-
ity 1/r, and the representative P̃i+1 of the equivalence class {Pi+1,−Pi+1} will
be P̃i+1 = −Pi+1 = −(Pi+S`(Pi)) with probability 1/2, meaning that P̃i+2 = P̃i
with probability 1/(2r). This is analyzed in more detail for different cycle lengths
and values of m = #Aut(C) in [15].

In this section we summarize the current literature and discuss how to re-
duce the occurrence of fruitless cycles, how to detect when they occur, and
subsequently how to deal with a walk that is stuck in such a cycle.

3.1 Cycle Reduction

In [39], a ‘look-ahead’ technique is described to reduce the event of 2-cycles. This
method starts by computing a candidate point P̂ for Pi+1 as usual, i.e. computing
P̂ = Pi + S`(Pi); if `(P̂ ) 6= `(Pi), then we set Pi+1 = P̂ and continue, otherwise
we discard the point P̂ and compute another candidate point by adding the next
lookup table element S`(Pi)+1 mod r to Pi. Note that the probability that r lookup
elements result in invalid candidates is extremely low, i.e. r−r. As analyzed in [9],
using this look-ahead technique lowers the probability to enter a 2-cycle from 1

2r
to 1

2r3 + O( 1
r4 ). This technique can be generalized to longer cycles as well [39,

9]. Note that if a point gets discarded, it means that we have computed the
group operation but did not take a step forward in our pseudo-random walk. We
refer to this event as a fruitless step due to cycle reduction. In this work we use
a 2-cycle reduction technique that slightly modifies the above approach, as we
detail in Section 3.3.



3.2 Escaping Fruitless Cycles

Even if the probability of a fruitless cycle is lowered using the look-ahead strategy
in Section 3.1, the walks will still eventually enter a fruitless cycle, which clearly
must be dealt with. The first step towards a remedy is to detect that a walk is
trapped; the next step is to then escape the fruitless cycle in a deterministic way,
such that if any other walk encounters the same cycle, they both end up exiting
using the exact same point. The idea described in [18] is to occasionally store a
sequence of points and to check for repetitions by comparing new points to these
stored points. If a cycle has been detected, then one can escape by applying a
modified iteration function to a representative of the cycle – in [18], the point
with smallest x- or y-coordinate is proposed to be the representative. In [9] it
is observed that many modified iteration functions used to escape the cycle are
insufficient, and can result in the walk recurring to the same fruitless cycle soon
after it “escapes”. As observed in [15, 9], one example of how to properly escape
cycles is to double the representative of the fruitless cycle – our implementations
use this approach.

3.3 Handling Fruitless Cycles in Practice

In this subsection we compute a lower-bound on the number of fruitless steps we
expect to perform in order to state an upper-bound on the (theoretical) speedup.
For this analysis, we measure the cost of the additional (fruitless) computations
we have to perform in order to deal with cycles. To analyze this cost, we use a
function c which expresses the cost of certain operations in terms of the num-
ber of modular multiplications. We summarize which strategy we use in our
implementation and outline how we select the various parameters, based on our
analysis, to perform cycle reduction and cycle escaping.

In [9], different scenarios and varied parameters for both cycle reduction and
cycle escaping techniques are implemented and compared. The recommenda-
tions are to use medium sized values of r (since larger values might decrease the
performance by introducing cache-misses), to reduce the event of 2-cycles only
(not any higher cycles), and to escape cycles by doubling the cycle’s representa-
tive. This combination of choices was able to achieve a 1.29 times speedup over
not using the negation map on architectures supporting the x64 instruction set,
while from a theoretical perspective a speedup of 1.38 should be possible (both
speedups are slightly below

√
2). A follow-up paper [6] takes a different approach

on the single instruction, multiple data (SIMD) Cell processor. Since multiple
walks are processed by the same instructions, all of which must follow identical
computational steps, the cycle reduction technique is completely omitted. In-
stead, the walk is modified to occasionally check for fruitless cycles – different
cycle lengths are detected at different points in time, but if a cycle is detected,
this is resolved by escaping from it by again doubling the cycle’s representative.

We now analyze the maximum expected speedup in more detail. Assume we
perform w > 0 steps, and that at every step we can enter a cycle with probability
p, if we are not in a cycle already. Once we enter a cycle at step 0 < i ≤ w,



all subsequent w − i steps are fruitless. Hence, after w steps we expect to have
computed W (w, p) fruitless steps where

W (w, p) =

w−1∑
i=0

p(1− p)i(w − i) = (1− p)w+1 + p(w + 1)− 1

p
. (1)

Using this simple analysis (which is similar to the analysis from [6]), one can
compute the ratio between the number of fruitful steps and the number of total
steps. For example, the implementation described in [6] uses r = 2048, checks
for 2-cycles every 48 iterations, and checks for larger cycles much less frequently.
Since 2-cycles occur with probability 1

2r , the expected number of multiplications
due to fruitful steps (per 48 iterations) is c(f) · (48−W (48, 1

2·2048 )), where c(f)
is the cost to compute the iteration function expressed in multiplications, which
in this setting is c(f) = 6. The total number of multiplications computed is
then 48 · c(f) + c(D), where the latter is the cost for point doubling in order
to escape the 2-cycle, which is c(D) = 7 in the elliptic curve case. Ignoring the
various implementation overheads, this analysis shows that a speedup of at most
0.97
√
2 is expected when taking only 2-cycles into account.

In our implementations, we chose to follow an approach closer to that which
is described in [9]. The reason is that we do want to use the cycle reduction
technique to lower the probability for walks to enter 2-cycles (at the price of
occasionally computing fruitless cycles due to cycle reduction). We remark that
in a SIMD setting, such as that considered in [6], an approach without cycle
reduction might be more efficient in practice. We note that using the 2-cycle
reduction technique also reduces the event of 3-cycles, which can only occur if
3 | #Aut(C), for which the BN curve is the only such scenario in this paper.
As shown in [15], 3-cycles occur only if we add representatives from the same
partition three times in a row – this repetition is exactly what we aim to avoid
using the 2-cycle reduction technique.

We check for cycles every α steps by recording the β points {α, α+1, . . . , α+
β − 1} (or an appropriate subset of these points), and checking if the (α+ β)th
point occurs in the list of recorded points. If it does, then we select a fruitless
cycle representative and use this point to double out of this fruitless cycle: this
heuristically eliminates recurring cycles [9].

We modify the cycle reduction technique from [39, 9], as described in Sec-
tion 3.1. In order to avoid, with probability r−r, the scenario where all of the r
lookup table elements give rise to an invalid next point, we simply add a point
from another precomputed lookup table f̃ (which also contains r elements), as
follows:

pi+1 =

{
pi + f`(pi) if `(pi) 6= `(pi + f`(pi)),

pi + f̃`(pi) otherwise.
Following the analysis from [9], this reduces the probability to enter a 2-cycle
from (mr)−1 to approximately 4

(mr)3 . For practical values of r, this makes 4-
cycles the most likely event to occur, with probability approximately (mr)−2

(assuming independence of the precomputed values Si). Due to this cycle reduc-
tion technique, we expect that one out of r steps is fruitless (since the probability



that `(pi) = `(pi + f`(pi)) is
1
r ). Hence, the fraction of all steps that are fruitful

is r−1
r .

4 Target Curves and their Automorphism Groups

In this section we discuss our chosen target curves and the associated parame-
ter choices and optimizations in the context of Pollard rho. The computational
costs for divisor addition, computing the equivalence class representative, and
updating the ai and bi values are summarized in the worst and average case
in Table 1. The average case costs are used in our analysis, but we include the
worst case costs for settings (like parallel architectures) where all the walks must
always perform the same (worst-case) computational steps.

We choose to target two curves in genus 1 and two curves in genus 2. All four
of these curves have a prime order between 254 and 256 bits. The two elliptic
curves have m = 2 and m = 6, which are the respective minimum and maximum
values of m = #Aut(C) for cryptographically interesting genus 1 curves over
prime fields; likewise, the two hyperelliptic curves have m = 2 and m = 10,
which are the respective minimum and maximum values of m = #Aut(C) for
genus 2 curves of cryptographic interest over prime fields.

In each case we also outline our parameter choices for handling fruitless
cycles. We follow the analysis and notation as outlined in Section 3.3, with a
primary goal that less than one percent of the steps we compute are fruitless.
We assume that the cost of a modular multiplication and modular squaring are
equivalent: if required, the analysis can be trivially adjusted to reflect any other
cost ratio. In order to sufficiently reduce the probability of cycles to occur, we
always take r ≥ 1024 (we did not use the idea from [6] to reduce the storage of
the r precomputed points). Furthermore, in order to detect much longer (and
much less likely) cycles, we take β = 32, so that we can detect and deal with
cycles up to length 32. More precisely, given a probability p to enter a cycle at
every step, and a value for α (we check for cycles every α steps), we estimate
the fraction of all computation that is fruitful using Eq. (1), as

c(f) · (α−W (α, p))

α · c(f) + c(D)
· r − 1

r
, (2)

where the first fraction is due to the cycle detection and escaping (we assume that
we always compute a doubling to escape), and the second fraction incorporates
the fruitless steps due to the cycle reduction technique. Although we give the
costs of updating the ai and bi, we omit these from our analysis – the correct ai
and bi can be recovered when needed, when each path starts at a random point
derived from a random seed, as described in [2].

4.1 Target Curves in Genus 1

NIST CurveP-256. Let q = 2256−2224+2192+296−1, and define E/Fq : y2 =
x3 − 3x + b, with b=0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B.



This curve has a 256-bit prime order n and is defined in NIST’s Digital Signature
Standard [36]. In this case Aut(E) = {id,−}, meaning that (x, y) ∼ (x,−y), so
we take the representative of each class to be the point with the odd y-coordinate
(when 0 ≤ y < q). In the worst case, the cost of computing this representative
is a negation in Fq, and updating the corresponding (ai, bi) pair costs two nega-
tions in Z/nZ. On average though, these costs are halved, since we have already
computed (and detected) the representative half of the time.

In order to derive parameters for the cycle detection, we use p = (2r)−2 as
the probability to enter a 4-cycle, which (due to the cycle-reduction technique)
is higher than the probability to enter a 2-cycle – see Section 3.3. The elliptic
curve group operation costs are taken as c(f) = c(A) = 6 and c(D) = 7. Using
the parameters r = 1024, α = 7 · 104 and β = 32, we expect that around one
percent of the computed steps are fruitless: Eq.(2) evaluates to 0.9907.

BN254. Let q be the 254-bit prime obtained when u = −(262 + 255 + 1) is
plugged into q(u) = 36u4 + 36u3 + 24u2 + 6u + 1. The Barreto-Naehrig (BN)
curve [3] E/Fq : y2 = x3 + 2 has a 254-bit prime order n, and has been used
in several of the “speed-record” papers for pairing computations that target the
128-bit security level (e.g. [1, 21]). Since q ≡ 1 mod 3, there exists ζ 6= 1 ∈ Fq
such that ζ3 = 1, meaning that E(Fq) has additional automorphisms, e.g. φ :
E → E, (x, y) 7→ (ζx, y). In fact, Aut(E) = {id,−, φ,−φ, φ2,−φ2}, so that the
points (x, y), (x,−y), (ζx, y), (ζx,−y), (ζ2x, y) and (ζ2x,−y) are all equivalent
under ∼. We take the representative of each equivalence class to be the point
whose x-coordinate has least absolute value and whose y-coordinate is odd.
In the worst case, computing this representative costs one multiplication, two
negations and one addition in Fq, and updating the corresponding (ai, bi) pair
costs two multiplications in Z/nZ; we exploit ζ2x = −(ζ + 1)x to compute the
x-coordinate of φ2(P ) from the x-coordinates of φ(P ) and P without any further
multiplications. On average however, we only need the negation to get the odd
y-coordinate half of the time; to update the (ai, bi), we compute the two Z/nZ
multiplications two thirds of the time, while in the remaining one third of the
cases, we average a single Z/nZ addition.

In order to derive parameters for the cycle detection, we use p = (6r)−2

as the adjusted probability to enter a 4-cycle (taking the group automorphism
into account). In this case the elliptic curve group operation costs are taken as
c(f) = c(A) = 7 and c(D) = 8, where both costs incorporate the additional
multiplication to compute the representative. Using r = 1024 and β = 32, we
find that a corresponding α value (for which we expect that around one percent
of the computed steps is fruitless) as α = 6 · 105, which is almost an order of
magnitude larger than in the NIST CurveP-256 setting: in this case, evaluating
Eq. (2) gives 0.9911.

4.2 Target Curves in Genus 2

Generic1271. Let q = 2127 − 1 and C/Fq : y
2 = x5 + a3x

2 + a2x
2 + a1x +

a0 with a3 = 0x1A237F07B8BB79AEBA5011C3FA697D2D, a2=0x63D7B6834F8A4F3DBDBD141CE55EA675,



a1=0x44642D7B9E492BE2E3C4F8A36F0C4236, a0=0x504351F67810EFACF06E3A6E5C532F0. This curve
was recently used in [7] as a “generic” instance of a (degree 5) genus 2 curve,
since it has no special structure and the order of its Jacobian is a 254-bit
prime n. Here Aut(C) = {id,−}, which extends to JC to give that the divi-
sors (x2 + u1x + u0, v1x + v0) and (x2 + u1x + u0,−v1x − v0) are equivalent
under ∼. Thus, we take the representative of each class to be the divisor whose
v0-coordinate is odd. In the worst case, the cost of computing this representative
is two negations in Fq, and updating the corresponding (ai, bi) pair costs two
negations in Z/nZ. On average these costs are again halved since we already
have the correct representative half of the time.

In order to derive parameters for the cycle detection, we use exactly the same
parameters as in the NIST CurveP-256 setting, since the automorphism groups
are the same, and only the costs of the group operations differ: c(f) = c(A) = 24
and c(D) = 28 in this case: Eq.(2) evaluates to 0.9907 (when α = 7 · 104, β = 32
and r = 1024).

4GLV127-BK. Let q = 264 · (263 − 27443) + 1. The Buhler-Koblitz [11] curve
C/Fq : y

2 = x5+17 gives rise to a Jacobian whose group order is a 254-bit prime
n. Since q ≡ 1 mod 5, there exists ζ 6= 1 in Fq such that ζ5 = 1, which gives
rise to additional automorphisms on C, e.g. φ : C → C, (x, y) 7→ (ζx, y). The
map φ extends to weight-2 divisors as φ : JC → JC , (x2 +u1x+u0, v1x+ v0) 7→
(x2+ ζu1x+ ζ

2u0, ζ
4v1x+v0). Here Aut(C) = {id,−, φ,−φ, . . . , φ4,−φ4}, so we

take the representative of each class to be the divisor whose u1-coordinate has
least absolute value and whose v0-coordinate is odd. In the worst case, the cost
of finding this representative is six multiplications, one squaring, three additions
and two negations in Fq; it takes three multiplications, three additions and a
negation (this time we use ζ4 = −(ζ3 + ζ2 + ζ + 1) to save a multiplication)
to first determine the minimum value in {ζiu1} for 0 ≤ i ≤ 4, another two
multiplications to compute the corresponding ζ2iu0 and ±ζ4iv1, and finally one
negation for the v0-coordinate. To comply with the formulas in [14], we must also
recompute the two extended coordinates u1u0 and u21, which additionally incurs a
multiplication and a squaring. Updating the (ai, bi) pair costs two multiplications
in Z/nZ. On average though, we only need the three Fq multiplications and one
Fq squaring for u0, v1, u1u0 and u21 in eight of the ten cases (one of the ten needs
only one Fq negation, the other case needs no computation), and we only need
to negate v0 in five of the ten cases. For updating (ai, bi) on average, we need
two Z/nZ multiplications in eight of the ten cases, two Z/nZ negations in one
of them, while the remaining case leaves (ai, bi) unchanged.

Taking the size of the automorphism group into account gives p = (10r)−2

as the adjusted probability to enter a 4-cycle. Including the average number of
additional multiplications to compute the representative of the equivalence class
in the iteration function, the costs become c(f) = 30 1

5 and c(D) = 34 1
5 . An

α value for which we expect that around one percent of the computed steps is
fruitless is α = 106: this is over an order of magnitude larger compared to the
Generic1271 setting: evaluating Eq.(2) gives 0.9943 in this case (when β = 32
and r = 1024).



Table 1. Cost of the Pollard rho iteration for the selected genus g curves, where
m = #Aut and q is the prime field characteristic. We denote modular multiplications,
modular squarings and modular additions/subtractions with M, S and a respectively.
When updating the ai and bi values, we compute modulo n instead of modulo q.

cost of one step
curve g m divisor compute representative update ai, bi

addition worst average worst average
CurveP-256 1 2 5M+ S+ 6a 1a 1

2
a 2an 1an

BN254 1 6 5M+ S+ 6a 1M+ 3a 1M+ 5
2
a 2Mn

4
3
Mn + 1

3
an

Generic1271 2 2 20M+ 4S+ 48a 2a 1a 2an 1an

4GLV127-BK 2 10 20M+ 4S+ 48a 6M+ 1S+ 5a 27
5
M+ 4

5
S+ 3

5
a 2Mn

8
5
Mn + 1

5
an

4.3 Other Curves of Interest

In this subsection we briefly mention the application of the Pollard rho algorithm
to other popular curves that have appeared in the literature and that target the
128-bit security level.

Other genus 1 curves. Bernstein’s Curve25519 [4] and Hisil’s ecfp256e [24]
both facilitate fast timings for scalar multiplications without the existence of
additional morphisms, so besides the faster modular arithmetic that is possible
over these pseudo-Mersenne primes, the application of Pollard rho to these two
curves is identical to the case of CurveP-256. There are other j-invariant zero
curves (that are not pairing-friendly) which have been put forward for fast ECC
using the Gallant-Lambert-Vanstone (GLV) technique [18]: the prime order curve
E/Fq : y

2 = x3+2 with q = 2256−11733 was used by Longa and Sica [28], while
the prime order curve E/Fq : y2 = x3 + 7 with q = 2256 − 232 − 977 is proposed
in the SEC standard [13] and is subsequently used in Bitcoin [32]. In both of
these cases, the automorphism group is the same as that for BN254, so Pollard
rho is optimized identically.

There exist numerous families of curves that come equipped with non-trivial
morphisms which are useful in the context of scalar multiplications, but which
are not useful in the context of Pollard rho. This is often the case for curves that
contain efficiently computable endomorphisms which are not automorphisms,
like the families of Q-curves recently proposed by Smith [34]. On the other hand,
Galbraith-Lin-Scott (GLS) curves [17] do facilitate a constant-factor speedup in
Pollard rho, since the GLS endomorphism gives rise to small orbits and is typi-
cally much faster than a group operation (it usually involves one multiplication
by a fixed constant).

Other genus 2 curves. The authors of [7] recently used the Kummer surface
found by Gaudry and Schost [20] to achieve fast scalar multiplications in genus 2.
Interestingly, there is no known way to exploit the fast arithmetic on the Kummer
surface in Pollard rho, since only pseudo-additions exist there. Discrete logarithm
instances must therefore be mapped back to the full Jacobian group, where,
besides the smaller prime subgroup resulting from the imposed cofactor of 16 on



Kummer1271, the optimal application of Pollard rho is identical to the case of
Generic1271.

In addition to BK curves of the form y2 = x5 + b, the performance of 4-
dimensional scalar decompositions on curves of the form C/Fq : y

2 = x5 + ax
was also recently investigated [7]. Similar to the BK curves, the endomorphisms
on these curves are very efficient in comparison to a group addition, so they
facilitate significant speedups in Pollard rho. Here we have m = 8, so it would
be interesting to see how close we can get to a

√
8 speedup in this case.

As is the case in the elliptic curve setting, there are several genus 2 families
that possess maps which are useful to the cryptographer, but which offer no
known benefit to the cryptanalyst – see [19] for some examples of endomorphisms
which are not automorphisms. Thus, the application of Pollard rho to these
families is identical to the case of Generic1271.

5 Performance Results

In order to systematically compare the security of the genus 1 and genus 2 curves
from the previous section, we designed and implemented a software framework
for 64-bit platforms supporting the x64 instruction set. This modular design is
capable of switching various features on or off: for example, using the automor-
phism optimization, employing different techniques for handling fruitless cycles,
using different finite fields, or using different curve arithmetic. We implemented
dedicated modular arithmetic for the special prime fields considered in this work
(see Section 4); for each curve, we optimized the modular multiplication by hand
in assembly, which resulted in a significant performance speedup compared to
compiling our native C-code. All of the experimental results presented in this
section have been obtained using an Intel Core i7-3520M (Ivy Bridge), running
at 2893.484MHz, and with the so-called turbo boost and hyper-threading features
disabled.

We do not claim that the performance numbers reported in this section are
the best possible. In a real attack, which focuses on a single curve target, the
curve arithmetic and the arithmetic in the finite field should be optimized even
further in assembly – we spent a moderate amount of time per curve to achieve
good performance. We expect however, that the relative timings between the
curves would remain roughly invariant under such further optimizations.

5.1 Correctness

In order to make sure that our software framework works correctly and behaves
as expected, we searched for curves defined over the same base fields as our target
curves (as outlined in Section 4), but with smaller (around 45-bit) prime-order
subgroups (we note that ψ stabilizes these prime-order subgroups in all cases).
We ran our implementations and enabled all the “statistic-gathering” options:
this slows down the cost of a single step, but does not alter the behavior of the
algorithm. We computed 10 batches of 103 Pollard rho computations for solving



Table 2. Summary of the number of steps required when solving the DLP in a prime
order subgroup n (2N−1 < n < 2N ) on the four (modified) curves we consider in this
work. We computed 10 batches of 103 discrete logarithms and we display the minimum
and maximum number of average steps out of these 10 batches, as well as the overall
average. We used a 32-adding walk and a distinguished point property with d = 8,
which we expect to occur once every 28 steps. The expected estimate is derived using
Eq. (4).

curve N min avg max expected
NIST CurveP-256 45 6 528 891 6 703 125 6 959 881 6 702 814
BN254 47 12 766 948 13 130 659 13 353 056 13 114 481
Generic1271 45 6 936 215 7 087 854 7 311 815 7 137 587
4GLV127-BK 45 5 339 249 5 489 583 5 668 256 5 489 249

discrete logarithm instances in these subgroups, both with and without the use
of the automorphism optimization.

Pollard rho without the group automorphism optimization. Assume we
use an r-adding walk without the automorphism optimization (we take m = 1,
where m is the cardinality of the group automorphism that is used). Experimen-
tal results from [35] suggest that using a larger r-value, such as r ≥ 16, results
in practical behavior that is closer to a truly random walk and gives a run-time
that is close to the expected

√
πn
2 . This is in agreement with the heuristic anal-

ysis from [2, Appendix B], which refines the arguments from [10], where it is
shown that the average number of pseudo-random group elements required to
find a collision (and solve the DLP) using an r-adding walk is√

πn

2m(1− 1
r )
, (3)

where n is the size of the prime order subgroup. We use the parallel (i.e. distin-
guished point) version of Pollard rho, such that approximately one out of every
2d points is distinguished. When computing w walks concurrently, Eq. (3) can
be adjusted to √

πn

2m(1− 1
r )

+ w · 2d−1. (4)

This is because we need to perform an additional w · 2d−1 steps after two walks
arrive at the same point: on average, 2d−1 steps are required to reach the next
distinguished point, where both walks will be sent to the central database and
the collision will be detected. For each scenario, Table 2 summarizes the average
minimum, average and maximum steps of these 10 batches together with the
theoretical number of steps we expect to take to solve the DLP. In all four cases,
the average number of steps observed in practice matches the expected number
of steps almost exactly: the difference is below one percent.

Pollard rho with the group automorphism optimization. When using
the group automorphism with m = #Aut(C), we can encounter two types of



Table 3. A comparison of the expected (exp.) and real number of fruitless steps
(FS) and fruitful steps when computing 10 batches of 103 discrete logarithms (as
in Table 2) but using the group automorphism optimization. The genus-g curves have
m = #Aut(C) and we check for cycles up to length β every α steps.

NIST P-256 BN254 Generic1271 4GLV127-BK
(g,m) (1, 2) (1, 6) (2, 2) (2, 10)

(α, β) (7 · 104, 32) (6 · 105, 32) (7 · 104, 32) (106, 32)

exp. # of fruitful steps (Eq.(4)) 4 668 485 5 274 669 4 971 221 1 712 170
real # of fruitful steps (s) 4 643 787 5 271 219 5 010 354 1 723 756

exp. # of trapped FS (Eq. (5)) 38 537 41 671 41 538 8185
real # of trapped FS 33 349 28 526 42 122 4835

exp. # of cycle reduction FS 4535 5148 4893 1683
real # of cycle reduction FS 4582 5173 4911 1687

fruitless steps: those due to the 2-cycle reduction technique and those which are
performed when a walk is trapped in fruitless cycles. Due to the cycle reduction
technique we use (see Section 3.3), the probability of 2-cycles and 3-cycles (if
the latter can occur) have been reduced significantly. In fact, the probability to
enter a 4-cycle becomes the most likely event by far, so we use the approximation
p = 1/(mr)2 (see Section 3.3) for the probability of entering any cycle. We check
for cycles every α steps, where α depends on the curve (see Section 4), and we
escape these cycles if necessary. If s is the expected number of steps required
to solve the DLP, then the expected number of fruitless steps spent in fruitless
cycles is

s

α
·W (α, (mr)−2), (5)

where W is as in Eq. (1).
Table 3 summarizes the results of running Pollard rho with the group au-

tomorphism optimization, where it is clear that the number of fruitful steps
observed is very close to what we expect. Hence, we can expect to achieve a
speedup if the practical cost of the iteration function is not increased too much.
We note that the number of fruitless steps due to the 2-cycle reduction technique
is also consistent with the prediction.

Interestingly, for the two curves with a larger automorphism group (i.e. with
m > 2), the number of trapped fruitless cycles is lower than the expected value,
which can be explained as follows. Since we expect fruitless cycles to occur much
less frequently, the α parameter has been chosen significantly larger than for the
curves with m = 2. In our benchmark runs, we solve the smaller DLP instances
that are outlined in Table 2; if one of the walks gets trapped in a fruitless
cycle, then, with overwhelming probability, one of the other concurrent walks
will solve the DLP before this trapped walk has computed all of the fruitless
α + β steps that are required to escape from this fruitless cycle. This behavior
is not incorporated in our estimate for the total number of trapped fruitless
steps. We ran larger instances of the DLP and, as expected, the total number of
trapped fruitless steps increased.



Table 4. The performance of our implementations expressed in the number of cycles
per step without (32-adding walk) and with (1024-adding walk) the usage of the group
automorphism running 2048 walks concurrently. For each curve, the expected speedup
(which takes into account the additional cost of computing the equivalence class rep-
resentative) and the speedup found in practice are stated together with the expected
number of single-core years to solve a discrete logarithm. The security of each curve is
given when taking NIST CurveP-256 as the baseline for the 128-bit security level.

curve performance speedup core sec
without with exp. real years

NIST CurveP-256 1129 1185
√
2 0.947

√
2 3.946 · 1024 128.0

BN254 1030 1296 6
7
·
√
6 ≈ 0.857

√
6 0.790

√
6 9.486 · 1023 125.9

Generic1271 986 1043
√
2 0.940

√
2 1.736 · 1024 126.8

4GLV127-BK 1398 1765 120
151
·
√
10 ≈ 0.795

√
10 0.784

√
10 1.309 · 1024 126.4

5.2 Implementation Results

In order to optimize performance, we conducted several experiments to find
the best parameters for instantiating the Pollard rho algorithm in practice: we
varied the number of partitions in the adding walks (but restricted to r ≥ 1024
when using the group automorphism optimization) and the number of concurrent
walks. For all four curves, we found that 2048 concurrent walks resulted in
low costs for amortized inversions and gave the best performance. Using 2048
concurrent walks contradicts the advice from [9], which might be explained by
the fact that our platform has a large cache so that “cache-misses” will only
occur for a much larger number of concurrent walks. In regards to the optimal
size of the lookup table, our benchmark runs showed that using 32-adding walks
are best when the automorphism optimization is not used, and that 1024-adding
walks are best when it is.

In Table 4 we state the performance numbers using the parameters above.
We save computation by exploiting the fact that one does not need to update
the ai and bi values [2]: this is especially significant for the curves with m > 2.
Note that the number of computer cycles per step, when not using the group
automorphism optimization, is lower for the BN254 curve compared to CurveP-
256. This is surprising since the BN254 curve does not use a special prime.
A partial explanation is that the CurveP-256 arithmetic is relatively slow, es-
pecially compared to the other NIST curves, and the addition of two residues
might result in a carry occupying an additional word, which slows down the
computation. On the other hand, the BN254 curve is defined over a 254-bit
prime, such that subtraction-less Montgomery multiplication [38] can be used
to save a conditional subtraction in every modular multiplication. Furthermore,
the addition of two residues does not result in a carry occupying another word,
which saves instructions. We suspect, however, that a hand-tweaked assembly
implementation of NIST’s CurveP-256 can be made slightly more efficient than
the subtraction-less Montgomery arithmetic using the x64 instruction set.



Table 4 states the expected speedup of Pollard rho using the automorphism
(which takes into account the additional cost of choosing representatives), as
well as the speedup we observed. This experimental speedup is consistently five
to seven percent lower than the expected one, except for the 4GLV127-BK curve
– such differences can be expected, as our analysis did not take extra modular
additions, subtractions and negation into account, nor did we consider various
overheads due to the usage of additional memory latencies. In the case of the
BK curve, these additional factors constitute a much smaller fraction of the
factors that were included in the analysis, which is why our experiments results
match the expected numbers even closer. For each curve, Table 4 also reports
the expected number of single Intel Core i7-3520M core years required to solve
a discrete logarithm instance. This estimate assumes that we use the group
automorphism optimization and takes into account that we have to perform
slightly more steps, increasing the estimate from Eq. (3) such that we take
fruitless cycles into account, in line with the analysis from Section 4. Based
on this estimate, we also give the security level for each curve using the NIST
CurveP-256 as the baseline for 128-bit security. Hence, this security estimate
takes into account the different available optimizations for each curve, as well as
the varying performance for the base field arithmetic.

6 Conclusions

We analyzed the practical security of elliptic curves and genus 2 hyperelliptic
curves over prime fields using the Pollard rho algorithm. We developed a soft-
ware framework implementing the state-of-the-art techniques to make use of the
group automorphism optimization, which is targeted at 64-bit architectures that
support the x64 instruction set. We detailed optimized parameter selection when
dealing with practical issues, such as reducing, detecting and escaping fruitless
cycles; in particular, we analyzed these choices for curves with large automor-
phism groups, which have not yet received a detailed analysis in the literature.

We studied the performance of the Pollard rho algorithm on two elliptic
curves and two genus 2 curves of cryptographic interest, all of which are es-
timated to provide around 128 bits of security. Our first conclusion is that,
reassuringly, the practical security of all four curves considered is almost equiv-
alent. Our second conclusion is that curves having large a large group automor-
phism of cardinality m > 2 can not achieve a speedup of

√
m: one has to pay

a penalty for finding the representative of the equivalence class. Nevertheless, a
constant-factor improvement is possible when dealing with fruitless cycles, and
our analysis shows how to optimize this improvement in practice.
Acknowledgments. We thank Michael Naehrig for pointing out further opti-
mizations and the anonymous reviewers for their insightful comments.
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