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Abstract In this paper we review various numerical homogenization methods for
monotone parabolic problems with multiple scales. The spatial discretisation is
based on finite element methods and the multiscale strategy relies on the heteroge-
neous multiscale method. The time discretization is performed by several classes of
Runge-Kutta methods (strongly A−stable or explicit stabilized methods). We dis-
cuss the construction and the analysis of such methods for a range of problems,
from linear parabolic problems to nonlinear monotone parabolic problems in the
very general Lp(W 1,p) setting. We also show that under appropriate assumptions, a
computationally attractive linearized method can be constructed for nonlinear prob-
lems.

1 Introduction

Parabolic problems with multiple scales enter in the modelling of a wide range of
problems, e.g., thermal diffusion in composite materials, flow problems in heteroge-
neous medium, etc. We are interested in problems in which the microscopic hetero-
geneities occur at a much smaller scale than the macroscopic length scale of interest
that describes the physical phenomenon of interest. For such problems mathemati-
cal homogenization [18, 42] gives the adequate theoretical framework to describe an
effective solution originating from the limit of the fine scale solution when the size
of the small scales tends to zero. An effective equation for this effective solution can
also be established. However, except for special cases, there are no explicit expres-
sions for the effective coefficients (diffusion tensor) of the upscaled equation. The
aim of numerical homogenization is to construct computational strategy to compute
an approximation of these effective equations and sometimes to capture fine scale
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oscillations of the multiscale solution. The theory of homogenization is at the root
of two classes of numerical methods that we briefly discuss

• methods based on oscillatory basis functions built into a coarse FE space: this
idea goes back to Babuška and Osborn [16] and is based on solving local fine
scale problems within each macroscopic element of the coarse FE space. Elab-
oration and generalization have been developed within the multiscale finite ele-
ment method (MsFEM) [40, 15];

• methods supplementing upscaled data for resolving the effective equation:
this idea has been widely used by engineer (see e.g., the references in [34])
and turned into a general framework in the heterogeneous multiscale method
(HMM) [29, 3]. In the finite element context, this latter method is called the
finite element heterogeneous multiscale method (FE-HMM) and is based on a
macroscopic finite element method with input data given by microscopic sam-
pling of the original fine scale problem in patches of size proportional to the
fine scale oscillation.

These two classes of methods use either in their formulation or in their analysis the
theory of homogenization in an essential way. Further related to homogenization
theory we mention the sparse tensor product FEM based on the two-scale conver-
gence theory and its generalization [50, 14] and the projection based numerical ho-
mogenization [20, 33] using successive projection of a fine scale discretization of
the multiscale equation into a lower dimensional space and iteratively eliminating
the fine scale component of the numerical solution.

We also mention multiscale methods that share some similarities with numeri-
cal homogenization methods and have been used for homogenization problems. We
start with the variational multiscal method [41]. In this approach one starts from a
coarse finite element space that cannot resolve the multiscale structure of the fine
scale problem. This coarse space is supplemented by a fine scale space and one
seeks a numerical solution in the form of a coarse and fine scale components. The
fine scale component is obtained by solving localized fine scale problems. Once
these problems solved one can solve the coarse scale approximation. Using local
quasi-interpolation and an orthogonal decomposition of the coarse and fine spaces,
exponential decay of the localisation error has been first proved in [48] (see also
[39]). This new approach of the variational multiscale method is called Localised
Orthogonal Decomposition (LOD). Finally we also mention methods based on har-
monic coordinates [51]. The idea of this method is to compute an appropriate change
of coordinates (based on the full fine scale problem) so its composition with the fine
scale problem is a slowly varying function that can be approximated in a coarse
space. This approach share some similarity with the MsFEM proposed in [15].

In this article, we review several numerical homogenization methods based on
the HMM for the solution of the following class of monotone parabolic multiscale
problems in a finite time interval (0,T )

∂tuε(x, t)−div(A ε(x,∇uε(x, t))) = f (x) in Ω × (0,T ),
uε(x, t) = 0 on ∂Ω × (0,T ), uε(x,0) = g(x) in Ω ,

(1)
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with initial source and initial conditions f and g. The maps A ε : Ω ×Rd → Rd are
defined on a domain Ω ×Rd , where Ω ⊂ Rd d ≤ 3, and A ε(·,ξ ) : Ω → Rd are
Lebesgue measurable for every ξ ∈ Rd . The indexing by an (abstract) parameter
ε > 0 indicates that these maps are subject to rapid variations on a very fine scale
relative to the size of the domain Ω . For the finite element method we will assume
that Ω is a polygonal domain and we will sometimes assume that it is convex. For
simplicity neither time dependent source terms f (x, t) or time-dependent maps of
the form A ε(x, t,∇uε(x, t)) are considered but we note that many of the results
presented in this review can be extended for these situations.

Let us briefly review the literature on multiscale methods for the parabolic prob-
lems (1). For linear problems, most of the methods described above can be used. We
mention [31] for MsFEM type methods, [6, 49] for HMM type methods, [47] for
LOD type methods. While most of the numerical method have been analysed for the
Euler explicit or implicit time discretization, a fully discrete a priori error analysis
in space and time for several classes of implicit and explicit Runge-Kutta methods
has been given in [12]. For nonlinear monotone parabolic problems, the literature is
much more scarce and only methods supplementing upscaled data for resolving the
effective equation have been analyzed. In [32] monotone problems with stochastic
heterogeneities have been analysed however without convergence rates and for non-
discretized micro-problems. In [8, 9] a priori error analysis (in space and time) for
two different types of HMM is established under general assumption on the non-
linearity. We close this review by mentioning that for elliptic problems, a posteriori
error estimates have been obtained for an HMM type method in the strongly mono-
tone and Lipschitz case in [38] and a priori error estimates for general numerical
quadrature methods have been derived in [7]. Finally in [35] numerical homoge-
nization methods (both of HMM and MsFEM types) for monotone PDEs associated
to minimization problems have been studied. We note in contrast that for the class
of problems (1) discussed in this review, we make no assumptions of an associated
scalar potential for A ε .

In this paper we aim at reviewing the numerical homogenization methods based
on the HMM that have been developed in [12, 8, 9] for parabolic problems (1).
We aim at giving a unified description of various error estimates and numerical
discretization variant of the FE-HMM

• for linear problem the spatial discretisation based on the FE-HMM is coupled
with general classes of Runge-Kutta methods (strongly A−stable and explicit
stabilized methods), and fully-discrete space-time analysis is proposed for this
family of space-time multiscale solvers [12];

• for nonlinear monotone problems a fully discrete space-time method that cou-
ples the FE-HMM in space with the backward Euler method in time is shown to
converge in the Lp(W 1,p) and C 0(L2) norms towards the homogenized solution
u0 for Problem 1 under the general assumptions. Space-time convergence rates
are established for strongly monotone and Lipschitz maps [8];

• for strongly monotone and Lipschitz maps A ε a new linearized scheme that re-
lies only on linear micro and macro finite element (FE) solvers is proposed
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and analyzed. A fully discrete space time analysis is also provided for this
scheme [9].

We briefly sketch the type of convergence rates that we aim at deriving in this
paper: under appropriate assumptions on the tensor A ε , the family of solutions uε

converges, up to a subsequence, to a homogenized solution u0 solution of a homog-
enized equation similar to (1) but with A ε replaced by an effective map A 0 that is
unknown explicitly (see Section 2). In the context of an FE-HMM method, the goal
is to derive an error estimate of the type

max
1≤n≤N

∥∥u0(·, tn) −uH
n
∥∥

L2(Ω)
+

(
N

∑
n=1

∆ t
∥∥∇u0(·, tn)−∇uH

n
∥∥2

L2(Ω)

)1/2

(2)

≤C
[
(∆ t)r +Hs +

(
h
ε

)q

+ rmod +
∥∥g−uH

0
∥∥

L2(Ω)

]
,

where C is independent of ∆ t,H,h and rmod . Here H is the size of a macroscopic
triangulation that is used in the FE-HMM to approximate the effective solution u0

and h is the mesh size of a microscopic triangulation used on a patch Kδ around
macroscopic quadrature points. The diameter of the patch Kδ is of size δ typically
δ =O(ε). As h must resolve the fine scale oscillation we have h < ε ≤ δ . We notice
two important facts

• as h/ε = 1/Nmic, where Nmic is the number of points per oscillation length and
the quantity h/ε in the estimate (2) is thus independent of ε and measure the
degrees of freedom used to resolve the oscillation; if ε → 0, so does the patch
Kδ hence we solve the fine scale only on small fraction of the macroscopic
computational domain and the overall computational cost is independent of ε;

• the quantities, ∆ t,H,h are discretisation parameters while rmod quantifies the er-
ror due to the upscaling procedure, i.e., by replacing the true homogenized map
A 0 by a map computed from some microscopic models. The coupling condition
(periodic, Dirichlet), the size of the sampling domain enter in this modelling er-
ror that is not influenced by the macro or micro discretisation parameter H,h.
In the most favourable case (e.g., locally periodic homogenization), rmod can be
shown to vanish.

In view of the above prototypical error estimate in this paper we will speak about
fully discrete spatial error estimates when we have an estimate in terms of both the
macroscopic and microscopic spatial mesh H,h and a fully discrete space-time error
estimate when we derive an estimate in terms of H,h and ∆ t.

Several difficulties arise when analyzing a numerical homogenization method:
first as the effective data are only available at quadrature points, we necessarily rely
on a FEM with numerical quadrature on the macroscale and have to deal with vari-
ational crimes. Second, as the upscaled data are obtained from micro solvers (FEM)
one has to precisely quantify the propagation of the errors across scales. Finally the
modelling error that originates from the averaging procedure designed to recover
the effective data need also to be quantified. To close this introduction, we review
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several important contributions concerning FE methods for single scale nonlinear
monotone problems and contrast these results with the numerical homogenization
literature. Using quasi-norm techniques, convergence rates have been derived in
[17, 27] in the Lp(W 1,p) setting for single scale parabolic monotone problems with
the following p-structure

|A (ξ )−A (η)| ≤ L(κ1 + |ξ |+ |η |)p−2|ξ −η |,
(A (ξ )−A (η)) · (ξ −η)≥ λ (κ2 + |ξ |+ |η |)p−2|ξ −η |2, ∀ξ ,η ∈ Rd

including for example the p-Laplacian. Note however that under the most general
assumptions on the map A ε under which homogenization results are proved (see
e.g. [52]) and under which we can show convergence of an FE-HMM method [8],
we have have a p-structure if and only if the map A ε is strongly monotone and
Lipschitz.

This review is organized as follows. In Section 2 we briefly review the homog-
enization theory for the class of parabolic problems considered and introduce the
numerical homogenization method. In Section 3 we review the coupling of the FE-
HMM with various families of Runge-Kutta methods and explain the techniques
used to derive a fully-discrete space-time error analysis. Convergence of a fully-
discrete numerical method for general nonlinear monotone parabolic problems is
discussed in Section 4 and a linearized method is presented in Section 5.

2 Assumptions and homogenization

We consider Problem 1 and the “evolution triple” W 1,p(Ω) ⊂ L2(Ω) ⊂W 1,p(Ω)′,
f ∈ Lp′(Ω), g ∈ L2(Ω). Very general hypotheses for the maps A ε under which ho-
mogenization for (1) can be established, see [21, 52] are the following assumptions
assumed to hold uniformly in ε > 0 for all ξ1,ξ2 ∈ Rd and almost every x ∈Ω . For
1 < p < ∞ and p > 2d/(d +2) we assume

(A0) there is some C0 ≥ 0 such that |A ε(x,0)| ≤C0 for almost every (a.e.) x ∈Ω ;
(A1) there exist κ1 ≥ 0, L > 0 and 0 < α ≤min{p−1,1} such that

|A ε(x,ξ1)−A ε(x,ξ2)| ≤ L(κ1 + |ξ1|+ |ξ2|)p−1−α |ξ1−ξ2|α ;

(A2) there exist κ2 ≥ 0, λ > 0 and max{2, p} ≤ β < ∞ such that

(A ε(x,ξ1)−A ε(x,ξ2)) · (ξ1−ξ2)≥ λ (κ2 + |ξ1|+ |ξ2|)p−β |ξ1−ξ2|β .

Then under the assumptions (A0−2) the problem (1) has a unique solution uε ∈ E
for any ε > 0

E = {v ∈ Lp(0,T ;W 1,p
0 (Ω)) |∂tv ∈ Lp′(0,T ;(W 1,p

0 (Ω))′)}, (3)
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endowed with the norm ‖v‖E = ‖v‖Lp(0,T ;W 1,p
0 (Ω))

+‖∂tv‖Lp′ (0,T ;(W 1,p
0 (Ω))′)

(see e.g.,
[57, Theorem 30.A]).

The aim of homogenization is to find a limiting effective solution for the family
of oscillatory solutions {uε} and an equation for this effective solution involving a
parabolic PDE, where the small scales have been averaged out. We briefly describe
this procedure. First, observe that the solution satisfies the bound

‖uε‖p
Lp(0,T ;W 1,p

0 (Ω))
+‖∂tuε‖p′

Lp′ (0,T ;(W 1,p
0 (Ω))′)

≤C((L0 +κ1 +κ2)
p +‖ f‖p′

Lp′ (Ω)
+‖g‖2

L2(Ω)),

independently of ε and {uε} is a bounded sequence in E. By compactness, there
exists a subsequence, still denoted by {uε}, and some u0 ∈ E, such that

uε ⇀ u0 in Lp(0,T ;W 1,p
0 (Ω)) and ∂tuε ⇀ ∂tu0 in Lp′(0,T ;(W 1,p

0 (Ω))′)
(4)

for ε → 0.
The question answered in the framework of homogenization theory is that of

a limiting equation for u0. For the above parabolic problems, one refers to the so
called G-convergence of parabolic operators, sometimes called PG for strong G-
convergence ([54, 52]).

The following compactness result can be shown: there exists a subsequence of
{uε} (still denoted by {uε}) and a map A 0 : Ω ×Rd → Rd , such that uε weakly
converges to u0 in the sense of (4) and the corresponding maps A ε(x,∇uε) ⇀

A 0(x,∇u0) weakly converges in Lp′(0,T ;(Lp′(Ω))d). The homogenized solution
u0 ∈ E is the solution of the following homogenized problem

∂tu0(x, t)−div(A 0(x,∇u0(x, t))) = f (x) in Ω × (0,T ),

u0(x, t) = 0 on ∂Ω × (0,T ), u0(x,0) = g(x) in Ω ,
(5)

where A 0 satisfies (A0−2) (with possibly different constants C0,κ1,κ2,λ and L)
with Hölder exponent γ = α/(β −α) in (A1). We note that γ = α , if and only if
p = 2, α = 1, β = 2. Convergence of the whole sequence {uε} to u0 can be obtained
under additional structure of the maps A ε , for example if A ε(x,ξ ) = A (x/ε,ξ ),
where A (y,ξ ) is a Y = (0,1)d-periodic function in y. In this case one can also derive
a description of A 0 in terms of the solutions of a boundary value problems in the
reference domain Y . When the maps A ε depend on both a slow and a fast variable,
i.e. A (x,x/ε,ξ ), the boundary value problems depends on x∈Ω . For completeness
we introduce the weak formulation of the homogenized problem, by introducing the
map B0 : W 1,p

0 (Ω)×W 1,p
0 (Ω)→ R given by

B0(v;w) =
∫

Ω

A 0(x,∇v(x)) ·∇w(x)dx, v,w ∈W 1,p
0 (Ω), (6)
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We will also sometimes need a discrete weak form based on a quadrature formula
{xK j ,ωK j}J

j=1 defined in the next section that reads

B̂0(vH ;wH) = ∑
K∈TH

J

∑
j=1

ωK jA
0(xK j ,∇vH(xK j)) ·∇wH(xK j), vH ,wH ∈ S1

0(Ω ,TH),

(7)

provided A 0(·,ξ ) has a continuous representative for every ξ ∈ Rd .

2.1 Multiscale methods: the finite element heterogeneous
multiscale methods

We give in this section a general formulation of the FE-HMM for parabolic problem.
The method relies on

• a macroscopic FE method based on a macroscopic spatial discretization of Ω ;
• a microscopic solver defined in sampling domains around sampling points x ∈

Ω , where an approximation of the map A 0(x) is required;
• a time discretization method.

Macro discretization. Let TH be a family of macro partitions of the polygonal do-
main Ω consisting of conforming, shape-regular meshes with simplicial elements.
2 The macro elements K ∈TH are open and such that ∪K∈TH K̄ = Ω . Let diamK be
the diameter of K ∈ TH we define by H = maxK∈TH diamK the macroscopic mesh
size and consider the macro finite element space

S`0(Ω ,TH) = {vH ∈W 1,p
0 (Ω) |vH |K ∈P`(K),∀K ∈TH}, (8)

where P`(K) is the space of polynomials on K ∈ TH of degree at most `. We also
consider within each macro element K ∈TH quadrature points xK j ∈ K and weights
ωK j for j = 1, . . . ,J. We assume that {xK j ,ωK j}J

j=1 are obtained from a quadrature
formula {x̂ j, ω̂ j}J

j=1 by xK j = FK(x̂ j), ωK j = ω̂ j|det(∂FK)|, j = 1, . . . ,J where FK is
the affine mapping such that K = FK(K̂). We will make the following assumption
on the quadrature formula

(Q1)
∫

K̂ p̂(x̂)dx̂ = ∑ j∈J ω̂ j p̂(x̂ j), ∀p̂(x̂) ∈Pσ (K̂), where σ = max(2`−2, `).

These requirements on the quadrature formula ensure that the optimal convergence
rates for elliptic FEM hold when using numerical integration [23].
Multiscale method. The FE-HMM method for parabolic problems can be defined
as follows. Find uH ∈ [0,T ]×S`0(Ω ,TH)→ R such that

2 We concentrate on simplicial elements for simplicity but note that many results presented in this
paper can be extended to rectangular elements (see for example [12]).
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(∂tuH ,vH)+BH(uH ,vH) = ( f ,vH) ∀vH ∈ S`0(Ω ,TH)

uH = 0 on ∂Ω × (0,T ) (9)
uH(x,0) = uH

0 ,

where

BH(vH ;wH) = ∑
K∈TH

J

∑
j=1

ωK jA
0,h

K j
(∇vH(xK j)) ·∇wH(xK j) vH ,wH ∈ S`0(Ω ,TH)

(10)

and A 0,h
K j

(·) is a numerically upscaled tensor defined in (13).
Micro solver. We see that for the map BH in (9), we need to a procedure to
recover the effective data A 0,h

K j
(∇vH(xK j)). This rely on micro solvers in each

sampling domain Kδ j , j = 1, . . . ,J, associated to a macro element K ∈ TH . Let
Kδ j = xX j + δ I, I = (−1/2,1/2)d , δ ≥ ε be discretized by micro meshes Th con-
sisting of simplicial elements T ∈Th, with size h is defined by h=maxT∈Th diamT .
We then consider the micro finite element spaces

Sq(Kδ j ,Th) = {vh ∈W (Kδ j) |v
h|T ∈Pq(T ),∀T ∈Th}, (11)

where Pq(T ) is the space of linear polynomials on T ∈Th and W (Kδ j)⊂W 1,p(Kδ j)

is some Sobolev space. The choice of the space W (Kδ j) sets the coupling condition
between the macro and micro solver, e.g.,

• W (Kδ j) = W 1,p
per (Kδ j) = {v ∈W 1,p

per (Kδ j) |
∫

Kδ j
vdx = 0} (periodic coupling);

• W (Kδ j) =W 1,p
0 (Kδ j) (Dirichlet coupling).

For ξ ∈Rd and Kδ j ⊂ K ∈TH , we introduce the function χ
ξ ,h
K j

as the solution to the

variational problem: find χ
ξ ,h
K j
∈ Sq(Kδ j ,Th) such that∫

Kδ j

A ε(x,ξ +∇χ
ξ ,h
K j

) ·∇wh dx = 0, ∀wh ∈ Sq(Kδ j ,Th). (12)

Based on the functions χ
ξ ,h
K j

we can compute the effective data by

A 0,h
K j

(ξ ) =
1∣∣∣Kδ j

∣∣∣
∫

Kδ j

A ε(x,ξ +∇χ
ξ ,h
K j

)dx. (13)

We also define an auxiliary flux useful for the analysis

¯A 0
K j
(ξ ) =

1∣∣∣Kδ j

∣∣∣
∫

Kδ j

A ε(x,ξ +∇χ̄
ξ

K j
)dx, (14)
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where χ̄
ξ

K j
∈W (Kδ j) solve (12) in the infinite dimensional space W (Kδ j).

Upscaling error. We define the upscaling error, called rHMM , as the total error made
by approximating the effective flux A 0 by the numerics flux A 0,h

K j
, precisely for any

vH ∈ S`0(Ω ,TH) we define

rHMM(∇vH) =

(
∑K∈TH ∑

J
j=1 ωK j

∣∣∣A 0(xK j ,∇vH(xK j))−A 0,h
K j

(∇vH(xK j))
∣∣∣p′) 1

p′
,

(15)

where p′ = p/(p− 1) is the dual exponent of 1 < p < ∞. Thanks to the auxiliary
flux, we can further decompose rHMM into two components

rmic(∇vH) =

(
∑K∈TH ∑

J
j=1 ωK j

∣∣∣ ¯A 0
K j
(∇vH(xK j))−A 0,h

K j
(∇vH(xK j))

∣∣∣p′) 1
p′
,

(16a)

rmod(∇vH) =

(
∑K∈TH ∑

J
j=1 ωK j

∣∣∣A 0(xK j ,∇vH(xK j))− ¯A 0
K j
(∇vH(xK j))

∣∣∣p′) 1
p′
.

(16b)

We observe that using the Minkowski inequality we get rHMM(∇vH)≤ rmic(∇vH)+
rmod(∇vH) for every vH ∈ S1

0(Ω ,TH). The first term rmic(∇vH) quantifies the er-
ror made by solving the micro problems (12) in Sq(Kδ j ,Th). The second term rmod
quantifies the error due to the upscaling procedure used to replace the true homoge-
nized flux A 0 by (14). The coupling condition (periodic, Dirichlet), the size of the
sampling domain enter in this modelling error that is not influenced by the macro
or micro discretisation parameter H and h. In the most favourable case (e.g., locally
periodic homogenization), when δ/ε ∈ N∗ and periodic coupling is used we can
have rmod(∇vH) = 0 (see [11]).
Existence and uniqueness of the micro nonlinear problem. The assumptions
(A0)-(A2) are sufficient to guarantee existence and uniqueness of a solution to the
nonlinear problem (12). To treat both the exact and the FE approximation of this
nonlinear problem we consider the more general problem: find z ∈ X such that

aξ

K j
(z;w) :=

∫
Kδ j

A ε(x,ξ +∇z) ·∇wdx = 0, ∀w ∈ X , (17)

where X is any closed linear subspace of the Banach space W (Kδ j).

Lemma 1. Assume that A ε satisfies (A0−2). Then problem (17) has a unique solu-
tion.

Sketch of the proof. Unless specified otherwise, all the constants below depend on
κ1, |Kδ |,ξ ,L and C0 (see (A0−2)). Using a Hölder inequality and (A0) yield for any
z ∈ X the bound |aξ

K(z;w)| ≤C(z)‖w‖Lp(Kδ )
for a constant C depending on z, hence
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the nonlinear operator M : X→X∗ defined by 〈Mz,w〉= aξ

K(z;w) is well-defined and
the problem (17) is equivalent to the problem Mz = 0. We next list the properties of
the operator M:
1) Using (A1) and a Hölder inequality yields

‖Mz−Mw‖X∗ ≤C(‖z‖Lp(Kδ j
),‖w‖Lp(Kδ j

))‖z−w‖α

Lp(Kδ j
),

and M is continuous.
2) Thanks to (A2) we have 〈Mz−Mw,z−w〉 > 0 for all z 6= w and the operator M
is strictly monotone.
3) Finally the bound [26, Lemma 3.1]

‖∇z−∇w‖Lp(Kδ j
) ≤
[

κ

∣∣∣Kδ j

∣∣∣ 1
p
+‖∇z‖Lp(Kδ j

)+‖∇w‖Lp(Kδ j
)

] β−p
β

(∫
Kδ j

(κ + |∇z|+ |∇w|)p−β |∇z−∇w|β dx

) 1
β

,

for any z,w∈ X that holds for 1 < p < ∞, β ≥ p and κ ≥ 0 together with (A2) yields

〈Mz,z〉 ≥C1‖∇z‖p
Lp(Kδ j

)
−C2

where C1,C2 in addition also depends on κ2,β , p,λ and the operator M is coercive.
Hence we can apply the Browder-Minty theorem that ensure that the equation Mz =
0 with the operator M that continuous, strictly monotone and coercive, has a unique
solution. �

We next list several properties of the map BH(vH ;wH) that follows from the as-
sumption A ε (we refer to [8] for a detailed derivation).

Lemma 2. Assume that A ε satisfies (A0−2). Let vH ,wH ,zH ∈ S`0(Ω ,TH) then the
nonlinear map BH defined in (10) satisfies the following properties∣∣BH(vH ;wH)

∣∣≤C
[
Cd +

∥∥∇vH∥∥
Lp(Ω)

]p−1∥∥∇wH∥∥
Lp(Ω)

, (18)∣∣BH(vH ;zH)−BH(wH ;zH)
∣∣≤C

[
Cd +

∥∥∇vH∥∥
Lp(Ω)

+
∥∥∇wH∥∥

Lp(Ω)

]p−1−γ

∥∥∇vH −∇wH∥∥γ

Lp(Ω)

∥∥∇zH∥∥
Lp(Ω)

, (19)

BH(vH ;vH −wH)−BH(wH ;vH −wH)> 0 for vH 6= wH (20)

BH(vH ;vH)≥ λc
∥∥∇vH∥∥p

Lp(Ω)
−C(Cd)

p, (21)

where C may depend on on p, α , β , λ , L and the measure of Ω , with λc > 0 depend-
ing only on p, β , λ and L and Cd = L0 +κ1 +κ2, γ = α/(β −α).
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The above properties are sufficient to guarantee the existence and uniqueness
of a solution to the problem (9). We note that while (20) is sufficient to ensure
the strict monotonicity of BH(·, ·) for the error estimate we will need the following
monotonicity estimate

∥∥∇vH −∇wH∥∥
Lp(Ω)

≤C
[
1+
∥∥∇vH∥∥

Lp(Ω)
+
∥∥∇wH∥∥

Lp(Ω)

] β−p
β

× (BH(vH ;vH −wH)−BH(wH ;vH −wH))
1
β , (22)

where C depends on Cd ,λc, |Ω |, p and β .

Theorem 1. Assume that (A0−2) hold and that f ∈ Lp′(Ω). Then, for any parameter
H,h,δ > 0, there exists a unique numerical solution of (9) that satisfies

‖uH‖Lp(W 1,p
0 )
≤C, ‖uH‖C0(L2) ≤C, (23)

where C is independent of H,h,ε .

Proof. The map B : S`0(Ω ,TH)→ S`0(Ω ,TH), defined by
〈
BvH ,wH

〉
= BH(vH ;wH)

is (strictly) monotone (20), hemicontinuous (the map vH→
〈
BvH ,wH

〉
is continuous

for all wH ∈ S`0(Ω ,TH) thanks to (19)), coercive (21) and satisfies a growth con-
dition ‖Bv‖

(W 1,p
0 )∗
≤ c1 + c2‖vh‖p−1

W 1,p
0

. Hence the ordinary differential equation (9)

satisfies the hypothesis of the Caratheodory theorem that guarantees the existence
and uniqueness of a solution [57, Lemma 30.4]. The monotonicity and coercivity of
B yield the a priori bound. �

3 Fully discrete space-time error estimates for linear parabolic
problems

In this section we consider linear parabolic multiscale problems for which A ε(x,ξ )=
aε(x)ξ . We assume aε(x)∈ (L∞(Ω))d×d and for all ξ ∈Rd and a.e. x∈Ω , t ∈ (0,T )
there exists λ ,L > 0 such that, uniformly for all ε > 0

λ |ξ |2 ≤ aε(x)ξ ·ξ , |aε(x)ξ | ≤ L|ξ |. (24)

The maps A ε then satisfy (A0−2) for p = 2, α = 1, β = 2 and with constants
C0 = 0 and λ ,L given by the ellipticity and continuity constants. For simplicity we
consider tensors aε(x) independent of time but all the results of this section can be
generalised for time dependent tensors [12]. The numerical method that we consider
is still given by (9) but we have now the following explicit expression for the flux

A 0,h
K j

(ξ ) =
1∣∣∣Kδ j

∣∣∣
∫

Kδ j

aε(x)(ξ +∇χ
ξ ,h
K j

)dx.
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Now since ∇vH = ∑
d
i=1 ei∂ivH , where ei i = 1, . . . ,d is the canonical basis of Rd , it

is easy to see that A 0,h
K j

(∇vH(xK j)) = a0,h(xK j)∇vH(xK j), where the i−th row of the

matrix a0,h(xK j) is given by

a0,h(xK j) =
1∣∣∣Kδ j

∣∣∣
∫

Kδ j

aε(x)(I +∇χ
h
K j
)dx. (25)

Here I is the d×d identity matrix and χh
K j

is a d×d matrix with column given by

∇χ
ei,h
K j

, where χ
ei,h
K j

are the (linear) solution of (12). We can thus rewrite the bilinear
form (10) as

BH(vH ,wH) = ∑
K∈TH

J

∑
j=1

ωK j a
0,h(xK j)∇vH(xK j) ·∇wH(xK j), (26)

for all vH ,wH ∈ S`0(Ω ,TH). We will also use below the bilinear form

B0,H(vH ,wH) = ∑
K∈TH

J

∑
j=1

ωK j a
0(xK j)∇vH(xK j) ·∇wH(xK j), (27)

where a0 is the (usually unknown) exact homogenized tensor that is known to satisfy
similar bound (24) as aε . The solution of the homogenized problem (5) will be
denoted by u0(t) and the corresponding bilinear by

B(v,w) =
∫

Ω

a0(x)∇v ·∇wdx. (28)

We next mention classical estimates for FEM with numerical quadrature that are
needed in the analysis below [23, Thms 4,5]. Assuming (Q1) and appropriate reg-
ularity of the homogenised solution u0 we have for all vH ,wH ∈ S`0(Ω ,TH) (where
µ = 0 or 1),

|B(vH ,wH)−B0,H(vH ,wH)|≤CH‖vH‖H1(Ω)‖w
H‖H1(Ω), (29)

|B(IHu0,wH)−B0,H(IHu0,wH)|≤CH`‖u0(t)‖W `+1,p(Ω)‖w
H‖H1(Ω), (30)

|B(IHu0,wH)−B0,H(IHu0,wH)|≤CH`+µ‖u0(t)‖W `+1,p(Ω) (31)

·
(

∑
K∈TH

‖wH‖2
H2(K)

)1/2
, (32)

where IH : C0(Ω)→ S`0(Ω ,TH) is the usual nodal interpolant.
For linear parabolic problems, we can derive fully discrete convergence results

in both space and time. Furthermore we can perform this a priori convergence anal-
ysis for various class of time integrators including “explicit stabilized Runge-Kutta
method”. The strategy is to first derive fully discrete error estimates in space. In a
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second step, using semigroup techniques, fully-discrete space time error estimates
can be obtained. In contrast fully discrete space-time estimates could be obtained at
once starting directly from a time-discrete numerical method instead of first consid-
ering (9). With such a strategy we need however new error estimates for each new
time-integrator while with the former approach we can derive error estimates for
classes of time integrators “at once”. In this section we follow the finding of [12].

3.1 Fully discrete a priori convergence rates in space

The starting point of the analysis is to define an appropriate elliptic projection: for
all t ∈ (0,T ), let ΠHu0(t) ∈ S`0(Ω ,TH) be the solution of the problem

BH(ΠHu0(t),zH) = B(u0(t),zH), ∀zH ∈ S`0(Ω ,TH), t ∈ (0,T ), (33)

where u0(t) is the solution of the homogenized problem (5). Thanks to the ellipticity
and continuity of BH , the above problem is well-posed. Using (33), denoting by
IHu0 the standard nodal interpolant of u0 we get for all zH ∈ S`0(Ω ,TH),

BH(ΠHu0−IHu0,zH) = B(u0−IHu0,zH)

+ B(IHu0,zH)−B0,H(IHu0,zH)

+ B0,H(IHu0,zH)−BH(IHu0,zH). (34)

Assuming enough regularity of the homogenized solution, the first two terms of the
above inequality are bounded by CH`‖u0(t)‖W `+1,p‖zH‖H1(Ω) using the continuity
of B and standard results for nodal interpolant [22] (first term) and (30) (second
term). In view of (26) and (27), the definition (15) for p= p′ = 2 and the assumption
(Q1) on the quadrature formula we have for the third term

|B0,H(IHu0,zH)−BH(IHu0,zH)| ≤ rHMM(∇IHu0)‖∇zH‖L2(Ω). (35)

We note that we can further decompose rHMM(∇IHu0) as

rHMM(∇IHu0)≤ sup
K∈TH ,xKj∈K

‖a0(xK j)−a0,h(xK j)‖F‖∇IHu0‖L2(Ω),

where ‖ · ‖F denotes the Frobenius norm of a matrix. We first have the following
lemma.

Lemma 3. Let u0(t) be the solution of (5) and ΠHu0(t) be the elliptic projection
defined in (33). Assume that (A0−2) and (Q1) hold. Assume further that the homog-
enized tensor satisfies a0

i j ∈ C 0([0,T ]× K̄) for all K ∈ TH and all i, j = 1, . . . ,d.
Assume further for µ = 0 or 1 and ` > d/p that
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u0,∂tu0 ∈ L2(0,T ;W `+1,p(Ω)),

a0
i j,∂ta0

i j ∈ L∞(0,T ;W `+µ,∞(Ω)), ∀i, j = 1 . . .d.

Then we have for k = 0,1

‖∂ k
t
(
ΠHu0−u0)‖L2(0,T ;H1(Ω)) ≤ C(H`+ rHMM(∇IHu0)), (36)

‖∂ k
t
(
ΠHu0−u0)‖L2(0,T ;L2(Ω)) ≤ C(H`+µ + rHMM(∇IHu0)) µ = 0,1, (37)

where we assume that Ω is convex for the estimates (37) with µ = 1. The constant
C is independent of H,h and δ .

Proof. In view of (34) and the bound of the different terms of the right-hand side of
this equality, taking zH = ΠHu0−IHu0, using the ellipticity of BH and integrating
from 0 to T we obtain ‖ΠHu0−IHu0‖L2(0,T ;H1(Ω)) ≤ C(H` + rHMM(∇IHu0))).
The estimate (36) for k = 0 follows by using the triangle inequality and the esti-
mate ‖u0−IHu0‖L2(0,T ;H1(Ω)) ≤CH`. The estimate (36) for k = 1 is obtained by
differentiating (34) and following the same arguments.

For the estimate (37) k = 0 we use the classical Aubin-Nitsche duality argument
and consider for almost every t ∈ (0,T ) the solution ϕ(t) ∈ H1

0 (Ω) of the problem

B(z,ϕ(t)) = (v(t),z), ∀z ∈ H1
0 (Ω). (38)

Taking v(t) = z = ΠHu0−u0 using the elliptic projection (33) yields for all ϕH

(ΠHu0−u0,ΠHu0−u0) = B(ΠHu0−u0,ϕ−ϕ
H)

+ B(ΠHu0−IHu0,ϕH)−BH(ΠHu0−IHu0,ϕH)

+ B(IHu0,ϕH)−BH(IHu0,ϕH). (39)

We take ϕH = IHϕ(t) use the continuity of B, (29) and (32) to obtain

(ΠHu0−u0,ΠHu0−u0) ≤ C(H + rHMM(∇IHu0))

· ‖ΠHu0(t)−u0(t)‖H1(Ω)‖ϕ(t)‖H2(Ω)

+ (H`+µ + rHMM(∇IHu0)))‖u(t)‖H`+1(Ω)‖ϕ(t)‖H2(Ω).

Using ‖ϕ‖L2(0,T ;H2(Ω)) ≤C‖ΠHu0− u0‖L2(0,T ;L2(Ω)) that holds thanks to the regu-
larity a ∈ (L∞(0,T ;W 1,∞(Ω)))d×d of the tensor and the convexity of the polygonal
domain Ω gives (37) for k = 0. The estimate (37) for k = 1 is obtained by differen-
tiating (39) and following the same arguments. �

Remark 1. Under the assumptions of Lemma 3 the Sobolev embedding H1(0,T ;X)
into C 0([0,T ];X) (for a given Banach space) allows to deduce

‖ΠHu0−u0‖C 0(0,T ;H1(Ω)) ≤ C(H`+ rHMM(∇IHu0))), (40)

‖ΠHu0−u0‖C 0(0,T ;L2(Ω)) ≤ C(H`+µ + rHMM(∇IHu0))). (41)
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We state now fully discrete a priori convergence rate in space for the FE-HMM

Theorem 2. Let u0(t) be the solution of (5) and uH the solutions of (9). Assume the
hypotheses of Lemma 3. Then we have the L2(H1) and C 0(L2) estimates

‖u0−uH‖L2([0,T ];H1(Ω)) ≤ C(H`+ rHMM(∇IHu0)+‖g−uH
0 ‖L2(Ω)), (42)

and if µ = 1

‖u0−uH‖C 0([0,T ];L2(Ω)) ≤ C(H`+1 + rHMM(∇IHu0)+‖g−uH
0 ‖L2(Ω)). (43)

If in addition, the tensor is symmetric, then we have the C 0(H1) estimate

‖u0−uH‖C 0([0,T ];H1(Ω)) ≤C(H`+ rHMM(∇IHu0)+‖g−uH
0 ‖H1(Ω)). (44)

The constants C are independent of H,rHMM(∇IHu0).

Proof. To simplify the notation, we use rHMM = rHMM(∇IHu0) in the proof.
Step 1: Estimation of ‖uH −ΠHu0‖L2(0,T ;H1(Ω))+‖uH −ΠHu0‖C 0([0,T ];L2(Ω)).

We set ξ H(t) = uH(t)−ΠHu0(t), t ∈ [0,T ]. In view of the elliptic projection (33),
(5) and (9) we have for all zH ∈ S`0(Ω ,TH),

(∂tξ
H ,zH)+BH(ξ

H ,zH) = (∂tu0,zH)− (∂tΠHu0,zH). (45)

We set zH = ξ H integrate this equality from 0 to t using the coercivity of BH(·, ·)

‖ξ H(t)‖2
L2(Ω)+ c1

∫ t

0
‖ξ H(s)‖2

H1(Ω)ds ≤ ‖ξ H(0)‖2
L2(Ω) (46)

+ c2

∫ t

0
‖∂tu0−∂tΠHu0‖2

L2(Ω)ds. (47)

Using the decomposition ξ (0) = (u0−ΠHu0)(0)+(uH
0 −g), (41) and (37) yields

‖ξ (0)‖L2(Ω) ≤C(H`+µ + rHMM)+‖uH
0 −g‖L2(Ω). (48)

Using (48) and (37) gives the L2(H1) estimate and taking the supremum with respect
to t gives the C 0(L2) estimate. We thus obtain

‖uH −ΠHu0‖C 0([0,T ];L2(Ω)) + ‖u
H −ΠHu0‖L2(0,T ;H1(Ω)) (49)

≤ C(H`+µ + rHMM)+‖uH
0 −g‖L2(Ω).

This last estimate together with Lemma 3 and the triangle inequality gives (42) and
(43).

Step 2: Estimation of ‖uH −ΠHu0‖C 0([0,T ];H1(Ω)).
For ξ H(t) = uH(t)−ΠHu0(t), t ∈ [0,T ], we set zH = ∂tξ

H in (45). Using the sym-
metry of the tensor, and integrating from 0 to t, we obtain for 0≤ t ≤ T
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2
∫ t

0
‖∂tξ

H(s)‖2
L2(Ω)ds+BH(ξ

H(t),ξ H(t)) = BH(ξ
H(0),ξ H(0))

+ 2
∫ t

0
(∂tu0−∂tΠHu0,∂tξ

H)ds.

Similariy to (46) we obtain∫ t

0
‖∂tξ

H(s)‖2
L2(Ω)ds+ c1‖ξ H(t)‖2

H1(Ω) ≤ c2(‖ξ H(0)‖2
H1(Ω)+

∫ t

0
‖ξ H(s)‖2

H1(Ω)ds)

+
∫ t

0
‖∂tu0(s)−∂tΠHu0(s)‖2

L2(Ω)ds. (50)

As before we set ξ H(0) = (u0−ΠHu0)(0)+(uH
0 −g) and (40) gives

‖ξ H(0)‖H1(Ω) ≤C(H`+ rHMM +‖uH
0 −g‖H1(Ω)). (51)

Taking the suppremum with respect to t in (50), and using (51),(49) (36), we deduce

‖uH −ΠHu0‖C 0([0,T ];H1(Ω)) ≤C(H`+ rHMM +‖uH
0 −g‖H1(Ω)).

This together with (40) concludes the proof of (44). �

The last step to obtain fully discrete estimates in space is to quantify rHMM .
Remember the decomposition rHMM ≤ rmod + rmic (see (16a),(16b)). We can again
rewrite

rmod(∇IHu0)≤ sup
K∈TH ,xKj∈K

‖a0(xK j)− ā0(xK j)‖F‖∇IHu0‖L2(Ω), (52)

rmic(∇IHu0)≤ sup
K∈TH ,xKj∈K

‖ā0(xK j)−a0,h(xK j)‖F‖∇IHu0‖L2(Ω), (53)

where we recall that ā0(xK j) is defined similarly as a0,h(xK j) (see (25),(14)) but

based on exact micro functions, i.e., when χ
ξ

K j
is solution of (12) in W (Kδ j). These

terms have first been quantified for elliptic problems in [2] and [30, 11]. Using the
definition of the cell problem (12) it is not hard to show (for linear problem) that for
symmetric tensors aε(x) one has

|(ā0(xK j)−a0,h(xK j))mn| (54)

=
∣∣∣ 1
|Kδ j |

∫
Kδ j

aε(x)
(

∇χ
en
K j
(x)−∇χ

en,h
K j

(x)
)
·
(

∇χ
em
K j
(x)−∇χ

em,h
K j

(x)
)

dx
∣∣∣.

Next assuming |χen
K j
|Hq+1(Kδ j

) ≤ C ε−q
√
|Kδ j |, where C is independent of ε , the

quadrature points xK j , and the domain Kδ j one obtains

rmic(∇IHu0)≤C
(

h
ε

)2q

, (55)
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when using the micro finite element space (11). The justification of the above reg-
ularity assumption depends on the boundary conditions used for (11). For Dirichlet
boundary conditions and for q = 1 the regularity assumption can be established us-
ing classical H2 regularity results [44, Chap. 2.6] provided |aε

mn|W 1,∞(Ω) ≤ Cε−1

for m,n = 1, . . . ,d. For periodic boundary conditions the above regularity as-
sumption can be established for any given q, provided aε = a(x,x/ε) = a(x,y) is
Y -periodic in y, δ/ε ∈ N, and aε is sufficiently smooth, by following classical reg-
ularity results for periodic problems [19].

We finally come to the modelling error: here we need to assume some structure
for the oscillatory tensor such as periodicity or random stationarity. For locally pe-
riodic problems assuming aε = a(x,x/ε) = a(x,y) Y = (0,1)d-periodic in y, that
the sampling domain size is such that δ/ε ∈ N and that periodic micro boundary
conditions are used, we have rmod ≤Cδ [2, 11]. Furthermore, if we assume a ten-
sor a(xK j ,x/ε) collocated in the slow variable x = xK j for the micro and the macro
problem, one can show that rmod = 0. For Dirichlet boundary condition assuming
δ > ε the bound rmod ≤C(δ + ε

δ
) can be established [30].

We note that for non-symmetric problems, an expression similar to (54) can still
be established [28, 13], replacing the second parenthesis in the right-hand side of
(54) by

(
∇χ̄

em
K j
(x)−∇χ̄

em,h
K j

(x)
)
, where ∇χ̄

em
K j
, χ̄em,h

K j
are exact, respectively FE so-

lutions of the adjoint problem of (12). The rest of the discussion is then similar.
Finally we mention that by using a perturbed micro-problem, using a zeroth order
term, higher order rates have been obtained in [36] for the modeling error.

3.2 Fully discrete a priori convergence rates in space and time

In this section we analyse the time-discretization error, when using various classes
of time-integrators for the parabolic problems. We will concentrate on strongly
A(θ)-stable implicit Runge-Kutta methods and explicit stabilized (Chebyshev) meth-
ods.

Consider a basis {φ j}M
j=1 of S`0(Ω ,TH) and denote by UH the column vector of

the coefficients of uH = ∑
M
j=1 U j(t)φ j in this basis. This allows to rewrite (9) as an

ordinary differential equation

d
dt

UH(t) = AHUH(t)+GH(t) = F(t,UH(t)), UH(0) =U0, (56)

where AH = M−1ÂH and GH(t) = M−1PH . The matrice ÂH is defined by the map
ÂH : S`0(Ω ,TH)→ S`0(Ω ,TH), where (−ÂHvH ,wH) =BH(vH ,wH), the mass matrix
M is given by M = ((φ j,φi))

M
i, j=1 and PH corresponds to the source term. Of course

in practical computations we never invert the matrix M, but instead solve a linear
system. In some situation we can also use mass lumping techniques that transform
M into a matrix that is trivial to invert [55]. As mentioned in the beginning of Section
3, the FE-HMM method and the spatial convergence results can be generalised for
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time-dependent tensors aε(t,x) and time-dependent right-hand side f (t,x). In this
situation we would have BH(vH ,wH), AH = AH(t) and PH = PH(t) (see [12] for
details).
Resolvent and α-accretive operator. To apply semi-group techniques to estimate
the error when applying a Runge-Kutta method to (56), we need bound on the resol-
vent of −AH . For the type of ODE (56) originating from a spatial discretisation of
a parabolic problem, it can be shown that −AH (see for example [24]) is a so-called
α-accretive operator, i.e., there exist 0≤ α ≤ π/2 and C > 0 such that for all z /∈ Sα ,
the operator zI +AH(t) is an isomorphism and

‖(zI +AH(t))−1‖L2(Ω)→L2(Ω) ≤
1

d(z,Sα)
for all z /∈ Sα , (57)

where d(z,Sα) is the distance between z and Sα = {ρeiθ ; ρ ≥ 0, |θ | ≤ α}. We
note that the operator AH can be extended straightforwardly to a complex Hilbert
space based on S`0(Ω ,TH) equipped with the complex scalar product (u,v) =∫

Ω
u(x)v(x)dx which is an extension of the usual L2 scalar product. If we denote

by γ1,γ2 the coercivity and continuity constant of the bilinear form BH(·, ·), it can
be shown that α ≤ arccos(γ1/γ2). Hence AH generates an analytic semi-group in Sα

(see [43]).
Runge-Kutta methods. For the time discretisation of (56) we consider an s-stage
Runge-Kutta method

Un+1 =Un +∆ t
s

∑
i=1

biKni, Uni =Un +∆ t
s

∑
j=1

γi jKn j, (58)

Kni = F(tn + ci∆ tUni), i = 1 . . .s. (59)

where γi j,b j,ci with i, j = 1 . . .s are the coefficients of the method (with ∑
s
j=1 γi j =

ci) and tn = n∆ t. We further define

Γ = (γi j)
s
i, j=1, b = (b1, . . . ,bs)

T , c = (c1, . . . ,cs)
T = Γ 1, 1 = (1, . . . ,1)T .

The method is said to have “order r” if the error after one step between the exact
and the numerical solutions (with the same initial condition) satisfies

U1−U(t1) = O
(
∆ tr+1) , for∆ t→ 0,

for all sufficiently differentiable systems of differential equations. We recall that the
rational function R(∆ tλ ) = R(z) = 1+zbT (I−zΓ )−11 obtained after one step ∆ t of
a Runge-Kutta method applied to the scalar problem dy/dt = λy, y(0) = 1, λ ∈ C
is called the stability function of the method.
Strongly A(θ)-stable methods. We consider a subclass of implicit Runge-Kutta
methods which are of order r and whose stage order (the accuracy of the internal
stages) is r−1. We further recall that a Runge-Kutta method is strongly A(θ)-stable
with 0 ≤ θ ≤ π/2 if I − zΓ is a nonsingular matrix in the sector |arg(−z)| ≤ θ

and the stability function satisfies |R(z)| < 1 in |arg(−z)| ≤ θ . Notice that all s-
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stage Radau Runge-Kutta methods satisfy the above assumptions (with θ ≥ π/2).
In particular, for s = 1, we retrieve the implicit Euler method. We refer to [37, Sect.
IV.3,IV.15] for details on the stability concepts mentioned here.

Under the assumptions of Theorem (2) we have the following theorem.

Theorem 3. Let u0(t) be the solution of (5) and let uH
n be a strongly A(θ) sta-

ble Runge-Kutta approximation of order r and stage order r − 1 of (56) with
time step ∆ t. Assume the hypotheses of Theorem (2), (55), that rMOD = 0 and
aε ∈ C r([0,T ],L∞(Ω)d×d), ‖∂ r

t uH(0)‖L2(Ω) ≤C. Then,

max
0≤n≤N

‖uH
n −u0(tn)‖L2(Ω) ≤C

(
H`+1 +

(h
ε

)2q
+∆ tr

)
.

Assuming in addition ‖uH(0)−g‖H1(Ω) ≤C(H`) and aε is symmetric, then

N−1

∑
n=0

∆ tn‖uH
n −u0(tn)‖2

H1(Ω) ≤C
(

H`+
(h

ε

)2q
+∆ tr

)2

.

All the above constants C are independent of H,h,ε,∆ t.

The idea of the proof is to consider the decomposition: uH
n − u0(tn) = (uH

n −
uH(tn))+ (uH(tn)− u0(tn)). Then the first term is estimated using semigroup tech-
niques (for time independent operators) + perturbation techniques (following [46]).
The second term is estimated using Theorem 2. We note that the analysis for implicit
methods covers variable time step methods under some mild assumptions on the se-
quence of time-steps [12]. Finally we mention that the bound ‖∂ r

t uH(0)‖L2(Ω) ≤C
can be established provided that we assume an inverse assumption H

HK
≤ C for all

K ∈TH and all TH for the macroscopic finite element mesh and appropriate regular-
ity of ∂ k

t u0, k = 1, . . . ,r. We refer to [12] for a detailed proof of the above theorem.
Chebyshev methods. Chebyshev methods are a subclass of explicit Runge-Kutta
methods with extended stability along the negative real axis suitable for parabolic
(advection-diffusion) problems. Such methods have been constructed for order up
to r = 4 [10, 1, 56, 45]. They are based on s-stage stability functions satisfying

|Rs(x)| ≤ 1 for x ∈ [−Ls,0] (60)

with Ls =Cs2, where the constant C depends on the order of the method. First order
methods are based on

Rs(x) = Ts(1+ x/s2), (61)

where Ts(·) denotes the Chebyshev polynomial of degree s and Ls = 2s2. The cor-
responding Runge-Kutta method can be efficiently implemented by using the three-
term recurrence relation of the Chebyshev polynomials [56]. For stiff diffusion prob-
lems, such methods are much more efficient than classical explicit methods. Indeed
let ρH be the spectral radius of the discretized parabolic problem (depending on the
macro spatial meshsize H) and let ∆ t be the stepsize to achieve the desired accu-
racy. Using a classical explicit method such as the forward Euler method requires
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a stepsize δ t satisfying the CFL constraints δ t ≤ 2/ρH . The number of function
evaluations per time-step ∆ t (taken here a the measure of the numerical work) is
therefore ∆ t/δ t ≥ (∆ tρH)/2. Using a Chebyshev method (of order one) with sta-
bility function (61) we choose the number of stages s of the method to ensure sta-
bility ∆ tρH ≤ 2s2. As for Chebyshev methods, there is one new function evalua-
tion per stage the total number of function evaluations per time-step ∆ t is given by
s =

√
(∆ tρH)/2.

Chebyshev method are usually used in a slightly modified form obtained by
changing the stability function (61) to

Rs(z) =
Ts(ω0 +ω1z)

Ts(ω0)
, with ω0 = 1+

η

s2 , ω1 =
Ts(ω0)

T ′s (ω0)
, (62)

we obtain the “damped form” of the Chebyshev method. For any fixed η > 0 (called
the damping parameter) we obtain a damped stability function satisfying

sup
z∈[−Ls,−γ],s≥1

|Rs(z)|< 1, for all γ > 0. (63)

This modification also ensure that a strip around the negative real axis is contained
in the stability domain S := {z ∈ C; |Rs(z)| ≤ 1}. The growth on the negative real
axis for the damped form is reduced but remains quadratic [53],[37, Chap. IV.2].
For the analysis we assume the order of the Chebyshev method is r ≥ 1 for linear
problem, precisely,

lim
z→0

∣∣∣∣ez−Rs(z)
zr+1

∣∣∣∣< ∞ for all s≥ 1. (64)

We also assume that the stability functions are bounded in a neighbourhood of zero
uniformly with respect to s, precisely, there exist δ > 0 and C > 0 such that

|Rs(z)| ≤C for all |z| ≤ δ and all s. (65)

This can be checked for the Chebyshev methods with stability functions (61), (62).

Theorem 4. Let u0(t) be the solution of (5) with f = 0 and a time-independent
symmetric tensor aε . Let uH

n be a Runge-Kutta-Chebyshev approximation of the cor-
responding discretized problem (56) with timestep ∆ t. Assume that the method sat-
isfies (64) (order r), (63) (strong stability) and (65). Assume in adddition that the
stage number s of the Chebyshev method is chosen such that ρH∆ t ≤ Ls holds. As-
sume the hypotheses of Theorem 2 with µ = 1, (55) and that rMOD = 0. Then,

max
0≤n≤N

‖uH
n −u0(tn)‖L2(Ω) ≤C

(
H`+1 +

(h
ε

)2q
+∆ tr

)
.

where C is independent of H,h,ε,∆ t.
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The ideas of the proof are as follows. Consider again the decomposition uH
n −

u0(tn) = (uH
n −uH(tn))+ (uH(tn)−u0(tn)). The second term is estimated as before

using Theorem 2.
For the first term we follow ideas developed in [25, 24] for implicit methods,

adapted here for stabilized methods. Using the symmetry of AH , there exists an
orthonormal basis where the operator AH is in diagonal form. Define next ϕn,s(z) =
enz−Rs(z)n. Then we have

‖ϕn,s(∆ tAH)‖L2(Ω)→L2(Ω) = sup
z∈sp(AH )

|ϕn,s(∆ tz)|,

where sp(AH) denotes the spectrum of AH . Using (63),(64),(65) we show that
|ϕn,s(z)| ≤ C1n−r for all z ∈ [−δ ,0], where C1 is independent of n and s. For the
case z ∈ [−Ls,−δ ] we denote by ρ < 1 the quantity in the left-hand side of (63). We
can then estimate

|ϕn,s(z)| ≤ e−n|z|+ρ
n ≤ e−nγ + e−n(1−ρ) ≤ (r/e)r(γ−r +(1−ρ)−r)

nr =C2n−r,

where we used twice the estimate e−x ≤ ( r
ex )

r (valid for x ≥ 0). We have thus
|ϕn,s(z)| ≤Cn−r for all z ∈ [−Ls,0], hence

‖uH
n −uH(tn)‖L2(Ω) = ‖ϕn,s(∆ tAH)uH

0 ‖L2(Ω) ≤Cn−r‖uH
0 ‖L2(Ω),

where C is independent of n,s. By noting that n≤ T/∆ t we get the result.

4 Fully discrete space-time error estimates for nonlinear
monotone parabolic problem

In this section we describe convergence and error estimates for the numerical
method (9) applied to the general problem (1). We focus here on a simple time
integrator, namely the implicit Euler method and take piecewise linear macro and
micro FEM. We consider a uniform subdivision of the time interval (0,T ) with time
step ∆ t = T/N and discrete time tn = n∆ t for 0≤ n≤ N and N ∈N>0. The method
then reads as folows: for 0≤ n≤ N−1 find uH

n+1 ∈ S1
0(Ω ,TH) such that

∫
Ω

uH
n+1−uH

n

∆ t
wHdx+BH(uH

n+1;wH) =
∫

Ω

f wHdx, ∀wH ∈ S1
0(Ω ,TH), (66)

with the nonlinear macro map BH given by

BH(vH ;wH) = ∑
K∈TH

|K|A 0,h
K (∇vH(xK)) ·∇wH(xK), vH ,wH ∈ S1

0(Ω ,TH),

(67)
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where A 0,h
K is given by (13) with micro problems (12) computed in S1(Kδ ,Th).

Here we have just one quadrature point and sampling domain Kδ located at the
barycenter of each macro element K. We note that we will sometimes use the short-
hand notation ∂̄tvn = (vn+1− vn)/∆ t. The proof of the existence and uniqueness of
a numerical solution can be establish similarly to the proof of Theorem 1. Further,
the numerical solution {uH

n }N
n=1 satisfies the bound

max
1≤n≤N

∥∥uH
n
∥∥2

L2(Ω)
+

N

∑
n=1

∆ t
∥∥∇uH

n
∥∥p

Lp(Ω)
≤C(1+‖ f‖p′

Lp′ (Ω)
+
∥∥uH

0
∥∥2

L2(Ω)
), (68)

where C only depends on p,β ,λL, ,L0,κ1,κ2, the measure of Ω and the Poincaré
constant CP on Ω .

4.1 General estimates in the W 1,p setting

For the scheme (66),(67) in the general nonlinear monotone setting we have the
following fully discrete convergence result.

Theorem 5. Let u0 ∈ E be the solution to the homogenized problem (5) and uH
n

the HMM solution obtained from (66) with initial conditions uH
0 satisfying ‖g−

uH
0 ‖L2(Ω) → 0 for H → 0. Assume that A ε satisfies (A0−2). Let A 0 be Hölder

continuous in space, i.e., there exists 0 < γ̃ ≤ 1 such that∣∣A 0(x1,ξ )−A 0(x2,ξ )
∣∣≤C|x1− x2|γ̃(1+(κ1 + |ξ |)p−1), ∀x1,x2 ∈Ω ,∀ξ ∈ Rd .

(69)

Assume in addition that the coupling is such that rmod = 0. Then we have the con-
vergence

lim
(∆ t,H)→0

lim
h→0

[
max

1≤n≤N

∥∥u0(·, tn)−uH
n
∥∥

L2(Ω)
+
∥∥∇u0−∇uH∥∥

L̃p(Lp(Ω)),

]
= 0.

where

∥∥∇u0−∇uH∥∥p
L̃p(Lp(Ω))

=
N−1

∑
n=0

∫ tn+1

tn

∥∥∇u0(·,s)−∇uH
n+1
∥∥p

Lp(Ω)
ds.

We sketch the proof of this result.
Step 1: Approximation by smooth function. Due to the low regularity of the true so-
lution we can only rely on a weak approximation in time. Indeed, for u0 we can only
use the formulation

∫ tn+1
tn

〈
∂tu0(·,s),wH

〉
ds instead of

∫ tn+1
tn

∫
Ω

∂tu0(x,s)wH(x)dxds
that only make sense with additional regularity. We therefore consider U ∈ E with
U ∈ C 0([0,T ],W 1,p

0 (Ω)) and ∂tU ∈ C 0([0,T ],L2(Ω)). Further, let U H(·, t) ∈
S1

0(Ω ,TH) be an approximation of U (·, t) for t ∈ [0,T ] and define U H
n =U H(·, tn)

for 0≤ n≤ N. We will then decompose the error as
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n
∥∥

L2(Ω)
≤
∥∥u0(·, tn)−U H

n
∥∥

L2(Ω)
+
∥∥θ

H
n
∥∥

L2(Ω)
(70)∥∥∇u0−∇uH∥∥

L̃p(Lp(Ω)
≤
∥∥∇u0−U H∥∥

L̃p(Lp(Ω))
+(

N−1

∑
n=0

∆ t‖∇θ
H
n+1‖

p
Lp(Ω)

)1/p, (71)

where θ H
n = uH

n −U H
n .

Step 2: Density argument, weak approximation in time. To bound the first terms in
(70),(71) we use that U ,∂tU ∈ C 0([0,T ],W 1,p(Ω)) to obtain fo tn ≤ s≤ tn+1

‖∇U (·, tn+1)−∇U (·,s)‖Lp(Ω) =

∥∥∥∥∫ tn+1

s
∂t∇U (·,τ)dτ

∥∥∥∥
Lp(Ω)

(72)

≤ ∆ t‖∂t∇U ‖C 0([0,T ],Lp(Ω)). (73)

Now if we take U H
n = IHU (·, tn) the above inequality together with standard in-

terpolation results yields (72) in time we get that for s ∈ [tn, tn+1] and 0≤ n≤ N−1∥∥∇U (·,s)−∇U H
n+1
∥∥

Lp(Ω)
≤ C(∆ t +H)

(
‖U ‖C 0([0,T ],W 2,p∗ (Ω)) (74)

+ ‖∂t∇U ‖C 0([0,T ],Lp(Ω))

)
. (75)

We also have

max
1≤n≤N

∥∥u0(·, tn)−U H
n
∥∥

L2(Ω)
≤CE

∥∥u0−U
∥∥

E +CH‖U ‖C 0([0,T ],W 2,p∗ (Ω)), (76)

where we used the embeddings E ↪→ C 0([0,T ],L2(Ω)) (with operator norm CE ),
W 1,p(Ω) ↪→ L2(Ω) and standard interpolation estimates. We then choose U ∈
C∞(Ω × [0,T ]) such that U (·, t) ∈C∞

0 (Ω) for any t ∈ [0,T ] and ‖u0−U ‖E < η/2.
Then, using (72),(74) we find that for each η > 0 there exists D(η) such that for all
∆ t,H ≤ D1(η) we have∥∥∇u0−∇U H∥∥

L̃p(Lp(Ω)
≤ η , max

1≤n≤N

∥∥u0(·, tn)−U H
n
∥∥

L2(Ω)
≤ (CE +1)η . (77)

Step 3: Macro discretization error. We next need to estimate θ H
n = uH

n −U H
n , 0 ≤

n≤ N. Hölder inequality and the monotonicity estimate (22) gives

N−1

∑
n=0

∆ t
∥∥∇θ

H
n+1
∥∥p

Lp(Ω)
≤ R(uH

n ,U
H

n )
p(β−p)

β (78)

·

(
N−1

∑
n=0

∆ t(BH(uH
n+1;θ

H
n+1)−BH(U

H
n+1;θ

H
n+1))

) p
β

,

(79)

where
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R(uH
n ,U

H
n ) = γ

−p/β
c (C+

(
N−1

∑
n=0

∆ t
∥∥∇uH

n+1
∥∥p

Lp(Ω)

) 1
p

+

(
N−1

∑
n=0

∆ t
∥∥∇U H

n+1
∥∥p

Lp(Ω)

) 1
p

),

(80)

with C depending on Cd ,T, |Ω |. We observe that

R(uH
n ,U

H
n )≤C, (81)

where C is idependent of U ,η ,∆ t,H (for small enough discretization parameters).
Indeed, using (68) and ‖g− uH

0 ‖L2(Ω) → 0 for H → 0 we can find H0 such that

for all H ≤ H0 we have
(

∑
N−1
n=0 ∆ t

∥∥∇uH
n+1

∥∥p
Lp(Ω)

) 1
p ≤ C independently of the ini-

tial approximation uH
0 . Using (74) we find that

(
∑

N−1
n=0 ∆ t

∥∥∇U H
n+1

∥∥p
Lp(Ω)

)1/p
≤∥∥u0

∥∥
E +1 for all ∆ t,H ≤min{H0,D1(η0)}.

We need next to estimate BH(uH
n+1;θ H

n+1)−BH(U H
n+1;θ H

n+1). This is done by a
decomposition

N−1

∑
n=0

∆ t(BH(uH
n+1;θ

H
n+1)−BH(U H

n+1;θ
H
n+1)) =

N−1

∑
n=0

Btot
n −

N−1

∑
n=0

∆ t
∫

Ω

∂̄tθ
H
n θ

H
n+1dx

(82)
where Btot

n contains a number of terms that represent the contribution to the error
due to the weak approximation in time, the macroscopic numerical discretization,
the time discretization, the quadrature error, the micro and the modelling error [8,
Sect. 5.1]. We also have in view of

1
2

∂̄t
∥∥θ

H
n
∥∥2

L2(Ω)
≤
∫

Ω

∂̄tθ
H
n θ

H
n+1dx, for 0≤ n≤ N−1, (83)

that

−
N−1

∑
n=0

∆ t
∫

Ω

∂̄tθ
H
n θ

H
n+1dx≤ 1

2

∥∥θ
H
0
∥∥2

L2(Ω)
− 1

2

∥∥θ
H
N
∥∥2

L2(Ω)
. (84)

The initial error θ H
0 in (84) can be bounded by using interpolant estimates and the

embedding E ↪→ C 0([0,T ],L2(Ω)) as∥∥θ
H
0
∥∥

L2(Ω)
≤
∥∥g−uH

0
∥∥

L2(Ω)
+CE

∥∥u0−U
∥∥

E +CH‖U ‖C 0([0,T ],W 2,p∗ (Ω)). (85)

Next it can be shown, in view of (85) and the properties of U derived in step 2, that
for ∆ t,H ≤D2(η), with D2(η) small enough we have (see [8, Sect. 5.2] for details)(

N−1

∑
n=0

Btot
n −

N−1

∑
n=0

∆ t
∫

Ω

∂̄tθ
H
n θ

H
n+1dx

) 1
β

≤Cη (86)
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Step 3: Upscaling error. First as rmod = 0 we have rHMM(∇U H
n+1) = rmic(∇U H

n+1),
where rmic is given by (16a). Let the macro mesh size H > 0, the time step size
∆ t > 0 and the micro finite element space in (12) be given. Then, assuming that A ε

satisfies (A0−2) it can be shown that for any sequence {U H
n }1≤n≤N ⊂ S1

0(Ω ,TH)

for which ∑
N−1
n=0 ∆ t‖∇U H

n+1‖
p
Lp(Ω)

is bounded independently of the micro mesh size
h, we have

lim
h→0

(
N−1

∑
n=0

∆ t rmic(∇U H
n+1)

p′
) 1

p′

= 0.

This result follows from a density argument, classical FE interpolation results and
the general estimate obtained from (A2)

rmic(∇vH)≤C
[
Cd +

∥∥∇vH∥∥
Lp(Ω)

]p−1−γ

×

(
∑

K∈TH

|K|
|Kδ |

inf
zh∈S1(Kδ ,Th)

∥∥∥∇χ̄
∇vH (xK)
K −∇zh

∥∥∥p

Lp(Kδ )

) γ

p

,

for any vH ∈ S1
0(Ω ,TH), where χ̄

ξ

K solves (12) inW (Kδ j) and C is independent of
H, h, δ and ε .
Step 4: Assembling the pieces: convergence in Lp(W 1,p) and C 0(L2) norm. In view
of (79),(81),(86) if we set 0 < D3(η) ≤ min{D1(η0),H0,D2(η)} then for ∆ t,H ≤
D3(η) we have

lim
h→0

(
N−1

∑
n=0

∆ t
∥∥∇θ

H
n+1
∥∥p

Lp(Ω)

) 1
p

≤Cη , (87)

where C is independent of U ,η ,H,∆ t,δ and h. Combining this inequality with (71)
and the density estimates of step 2 yields the convergence in the Lp(W 1,p) norm.

Next to derive a bound in the C 0(L2), we first observe that (83) together with the
monotonicity estimate (22) yield

1
2

∂̄t
∥∥θ

H
n
∥∥2

L2(Ω)
≤
∫

Ω

∂̄tθ
H
n θ

H
n+1dx+BH(uH

n+1;θ
H
n+1)−BH(U

H
n+1;θ

H
n+1), (88)

Summing this inequality for n = 0, . . . ,K − 1, taking the maximum over K, us-
ing (83) and the monotonicity of BH from Lemma 2 we get

1
2

∥∥θ
H
K
∥∥2

L2(Ω)
− 1

2

∥∥θ
H
0
∥∥2

L2(Ω)
≤

K−1

∑
n=0

Btot
n ,

where Btot
n is defined in (82). Using then (85) and an estimate similar to (86) we

find that
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lim
h→0

( max
1≤n≤N

∥∥θ
H
n
∥∥

L2(Ω)
)≤Cη , (89)

for all ∆ t,H small enough, where C is independent of U ,η ,H,∆ t,δ and h. Hence
together with (77) this shows the C 0(L2) estimate of Theorem 5.

4.2 Convergence for strongly monotone and Lipschitz nonlinear
maps

Optimal convergence rates can be derived for p = 2 and α = 1, β = 2 in (A1−2),
i.e., when the nonlinear map A ε(x,ξ ) is Lipschitz continuous with respect to its first
argument and strongly monotone. In this case we can derive optimal macroscopic,
microscopic and temporal error estimates without any structural assumptions such
as local periodicity or random stationarity of A ε . Explicit bounds of the modelling
error are however derived only for locally periodic data A ε .

Theorem 6. For the case p = 2 assume that A ε satisfies (A0−2) with α = 1, β = 2.
Let u0 be the solution to the homogenized problem (5) and uH

n the numerical solution
obtained from (66) with initial condition uH

0 . Provided in addition that

u0,∂tu0 ∈ C 0([0,T ],H2(Ω)), ∂
2
t u0 ∈ C 0([0,T ],L2(Ω)), (90a)

A 0(·,ξ ) ∈W 1,∞(Ω ;Rd) with
∥∥A 0(·,ξ )

∥∥
W 1,∞(Ω ;Rd)

≤C(L0 + |ξ |), ∀ξ ∈ Rd ,

(90b)

then, the following discrete C 0(L2) and L2(H1) error estimate holds

max
1≤n≤N

∥∥u0(·, tn) −uH
n
∥∥

L2(Ω)
+

(
N

∑
n=1

∆ t
∥∥∇u0(·, tn)−∇uH

n
∥∥2

L2(Ω)

)1/2

(91)

≤C
[

∆ t +H + max
1≤n≤N

rHMM(∇IHu0(·, tn))+
∥∥g−uH

0
∥∥

L2(Ω)

]
,

where IHu0 denotes the nodal interpolant of u0 and C is independent of ∆ t,H and
rHMM .

Remark 2. Under additional regularity assumptions, assuming elliptic regularity and
quasi-uniform meshes, one can derive the following improved (discrete) C 0(L2)
error estimate

max
1≤n≤N

∥∥u0(·, tn)−uH
n
∥∥

L2(Ω)
≤C

[
∆ t +H2 + max

1≤n≤N
rHMM(∇ũH,0(·, tn))+

∥∥g−uH
0
∥∥

L2(Ω)

]
,

where ũH,0 is given by an elliptic projection and C is independent of ∆ t,H and rHMM
(see [8, Thm. 4.4]).
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We sketch the proof of Theorem 6.
Owing to regularity assumptions for u0 , we can use a strong formulation in time∫
Ω

∂tu0(x, t)wdx+B0(u0(·, t);w) =
∫

Ω

f wdx, ∀w ∈W 1,2
0 (Ω),∀ t ∈ (0,T ].

Hence the argument density used in Section 4.1 is not needed here. We can then
directly define U H

n = IHu0(·, tn) and with θ H
n = U H

n − uH
n we obtain instead of

(82) the following error propagation formula∫
Ω

∂̄tθ
H
n wH dx+

[
BH(uH

n+1;wH)−BH(U
H

n+1;wH)
]

=
∫

Ω

[
∂tu0(x, tn+1)− ∂̄tu0(x, tn)

]
wHdxds (92a)

+
∫

Ω

[
∂tu0(x, tn)− ∂̄tU

H
n
]

wHdx (92b)

+
[
B0(u0(·, tn+1);wH)−B0(U H

n+1;wH)
]

(92c)

+
[
B0(U H

n+1;wH)− B̂0(U H
n+1;wH)

]
(92d)

+
[
B̂0(U H

n+1;wH)−BH(U
H

n+1;wH)
]
. (92e)

In the above formula the term (92a) is due to the time discretization error, the
terms (92b) and (92c) account for the finite element error at the discrete time lev-
els tn. The influence of the quadrature formula is captured by (92d). Finally the
components (92a) – (92d) are independent of the temporal and macro spatial error,
while last term (92e) is only due to the upscaling strategy and averaging techniques
used to define and compute numerically the upscaled tensor. All these terms can be
estimated quantitatively [8]. If we set wH = θ H

n+1 use the inequality (83) we obtain

1
2

∂̄t
∥∥θ

H
n
∥∥2

L2(Ω)
+λ

∥∥∇θ
H
n+1
∥∥2

L2(Ω)

≤C∆ t
∥∥∂

2
t u0∥∥

C 0([0,T ],L2(Ω))

∥∥θ
H
n+1
∥∥

L2(Ω)

+CH
∥∥u0∥∥

C 0([0,T ],H2(Ω))

∥∥θ
H
n+1
∥∥

L2(Ω)

+CH
∥∥u0∥∥

C 0([0,T ],H2(Ω))

∥∥∇θ
H
n+1
∥∥

L2(Ω)

+ rHMM(∇U H
n+1)

∥∥∇θ
H
n+1
∥∥

L2(Ω)
. (93)

Multiplying the above inequality by ∆ t and summing first from n = 0, . . . ,K−1 ≤
N−1 and taking the maximum over K yields

max
1≤n≤N

∥∥θ
H
N
∥∥2

L2(Ω)
+λ

N

∑
n=1

∆ t
∥∥∇θ

H
n
∥∥2

L2(Ω)

≤
∥∥θ

H
0
∥∥2

L2(Ω)
+C(∆ t +H + max

1≤n≤N
rHMM(∇U H

n ))2. (94)
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The classical estimates for nodal interpolant ‖IHz− z‖H1(Ω) ≤ CH‖z‖H2(Ω) for
u0(·, tn)−U H

n together with the regularity of (90a) and the triangle inequality gives
finally the estimate of Theorem 6.
Fully discrete space-time result. Recall that rHMM(·) ≤ rmod(·) + rmic(·) (see
(16a),(16b)). Following the results for linear problems (with additional technical-
ities due to the nonlinear micro-problems) we can estimate both rmod(·) and rmic(·).
First under the assumptions of Theorem 6 and assuming that the exact solution of
Problem (12) satisfies χ̄

ξ

K ∈ H2(Kδ ) and
∣∣∣χ̄ξ

K

∣∣∣
H2(Kδ )

≤ Cε−1(L0 + |ξ |)
√
|Kδ | we

have the following error estimate for the micro error

rmic ≤C
h
ε
,

where C is independent of ∆ t,H,h,ε,δ . By defining a appropriate linear adjoint
auxiliary problem derived from (12) and assuming W 1,∞(Kδ ) regularity of the solu-
tions of these (linear) problems one can get the optimal micro error

rmic ≤C
(

h
ε

)2

, (95)

with the same rate as for linear problem [2].
For the modelling error we need structural assumptions and assume that A ε(x,ξ )=

A (x,x/ε,ξ ) where A (x,y,ξ ) is Y -periodic in y, i.e., A ε is locally periodic. Then,
for any vH ∈ S1

0(Ω ,TH), the modelling error rmod(∇vH) defined in (16b) is bounded
by

rmod(∇vH)≤


0, if W (Kδ ) =W 1

per(Kδ ),δ/ε ∈ N and
A ε = A (xK ,x/ε,ξ ) collocated at xK ,

C1
mod δ , if W (Kδ ) =W 1

per(Kδ ),δ/ε ∈ N,
C2

mod(δ +
√

ε/δ ), if W (Kδ ) = H1
0 (Kδ ),δ > ε,

(96)

with C1
mod and C2

mod given by

C1
mod =C(L0 +‖∇vH‖L2(Ω)), C2

mod =C(C1
mod + max

K∈TH
‖χ̄∇vH (xK)(xK , ·)‖W 1,∞(Y )),

where χξ (xK , ·), for ξ ∈Rd , K ∈TH , denote the exact solutions to the homogeniza-
tion cell problems find χ̄ξ (x, ·) ∈W 1

per(Y ) such that∫
Y

A (x,y,ξ +∇χ̄
ξ (x,y)) ·∇zdy = 0, ∀z ∈W 1

per(Y ), (97)

and C is independent of ∆ t,H,h,ε,δ and vH . We refer to [8] for a detailed proof
of these micro and modelling a priori error estimates. We observe that the first two
estimates for the modelling error are similar as for linear problem (see Section 3.1).
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A better estimate can however be derived for linear problem for the third case for
which it is possible to derive the estimate (δ + ε/δ ) (see again Section 3.1).

5 A linearized method

We consider again nonlinear monotone problems of the type (1) with strongly
monotone and Lipschitz continuous maps A ε(x,ξ ), i.e., for the case p = 2 and
α = 1, β = 2 in (A1−2). We further assume that the nonlinear map is of the form
A ε(x,ξ ) = aε(x,ξ )ξ . We first rewrite the method (66) in a slightly different form:
find uH

n+1 ∈ S1
0(Ω ,TH) such that

∫
Ω

uH
n+1−uH

n

∆ t
wHdx+BH(uH

n+1;wH) =
∫

Ω

f wHdx, ∀wH ∈ S1
0(Ω ,TH), (98)

with the nonlinear macro map BH given by

BH(vH ;wH) = ∑
K∈TH

|K|
|Kδ |

∫
Kδ

aε(x,∇v̂h
K)∇v̂h

Kdx ·∇wH(xK), vH ,wH ∈ S1
0(Ω ,TH),

(99)

and the micro functions vh
K are given similarly to (12) by the following problem:

find v̂h
K such that v̂h

K− vH = vh
K ∈ S1(Kδ ,Th) and∫

Kδ

aε(x,∇v̂h
K)∇v̂h

K ·∇whdx = 0, ∀wh ∈ S1(Kδ ,Th). (100)

The equivalence of the above formulation and the one in (66) with micro problems
given by (12) is easy to check. Following [5] we propose a linearized scheme. The
idea is to decouple the micro-solutions in (99) and to consider

BH(ẑ;vH ,wH) = ∑
K∈TH

|K|
|Kδ |

∫
Kδ

aε(x,∇zh
K)∇v̂h,zh

K
K dx ·∇wH(xK), vH ,wH ∈ S1

0(Ω ,TH)

(101)

where for given {zh
K} ∈ ∏K∈TH S1(Kδ ,Th), v̂h,zh

K
K is such that v̂h,zh

K
K − vH = vh,zh

K
K ∈

S1(Kδ ,Th) and solution of the linear micro problem∫
Kδ

aε(x,∇zh
K)∇v̂h,zh

K
K ·∇whdx = 0, ∀wh ∈ S1(Kδ ,Th). (102)

To formalize the numerical method we consider the product of FE spaces

S H,h = S1
0(Ω ,TH)× ∏

K∈TH

S1(Kδ ,Th), (103)
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and define ẑ = (zH ,{zh
K}) ∈S H,h. Next for a given û1 = (uH

1 ,{uh
1,K}) ∈S H,h we

define one step of the method as a map S H,h 7→S H,h given by ûn = (uH
n ,{uh

n,K}) 7→
ûn+1 = (uH

n+1,{uh
n+1,K}). To compute this map we implement the following two

steps:

1. update the macroscopic state: find uH
n+1 ∈ S1

0(Ω ,TH), the solution of the linear
problem∫

Ω

1
∆ t

(uH
n+1−uH

n )wHdx+BH(ûn;uH
n+1,w

H) =
∫

Ω

f wHdx, ∀wH ∈ S1
0(Ω ,TH);

(104)

2. update the microscopic states: for each K ∈ TH , compute v̂
h,uh

n,K
K such that

v̂
h,uh

n,K
K − uH

n+1 ∈ S1(Kδ ,Th) and solution of (102) with parameter uh
n,K and up-

date uh
n+1,K := v̂

h,uh
n,K

K −uH
n+1.

To completely describe the algorithm we still need to discuss the initialization
procedure, i.e., how to define û1 = (uH

1 ,{uh
1,K}) ∈ S H,h given the approximation

uH
0 ∈ S1

0(Ω ,TH) of the initial condition g(x) of (5). We suggest to use one step of
the nonlinear method (66) to set û1. This choice allows to prove optimal convergence
rates. In turns out that the trivial initialisation obtained by setting û0 = (uH

0 ,{0}) and
using one step of the linearised method to define û1 deteriorates the accuracy of the
linearised scheme [9]. It is also shown in [9] that the above linearised method is up
to 10 times faster than the fully nonlinear method 66-67.

Well-posedness of the linearized method can be proved assuming that aε(x,ξ ) is
uniformly elliptic and bounded, i.e.,

λa|η |2 ≤ aε(x,ξ )η ·η , |aε(x,ξ )η | ≤Λa|η |, ∀ξ ,η ∈ Rd , a.e. x ∈Ω ,ε > 0.

It then follows from similar argument as for linear elliptic problem [2] that

BH(ẑ;vH ,vH)≥ λa
∥∥∇vH∥∥2

L2(Ω)
,
∣∣BH(ẑ;vH ,wH)

∣∣≤ Λ 2
a

λa

∥∥∇vH∥∥
L2(Ω)

∥∥∇wH∥∥
L2(Ω)

.

Combining the above estimate for BH with the existence and uniqueness of the non-
linear initialisation obtained in Section 4 allows to prove existence and uniqueness
of a solution to (104) and an a priori estimate similar to (68) with a right-hand side
simply given by C(‖ f‖L2(Ω)+

∥∥uH
0

∥∥
L2(Ω)

).

5.1 A priori error estimates

Fully discrete a priori error estimates of the linearized method can be established
following the steps of Section 4.2, with nontrivial modifications due to the lineari-
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sation procedure. It will be convenient in the sequel to introduce the two following
semi-norm on the space S H,h. For ẑ = (zH ,{zh

K}) ∈S H,h we therefore define

‖∇ẑ‖S H,h =

(
∑

K∈TH

|K|
|Kδ |

∥∥∥∇ẑh
K

∥∥∥2

L2(Kδ )

)1/2

, ‖∇ẑ‖
S H,h

∞
= max

K∈TH

∥∥∥∇ẑh
K

∥∥∥
L∞(Kδ )

,

where ẑh
K = zh

K + zH on Kδ . In fact due to the Poincaré (or Poincaré-Wirtinger) in-
equaliy, ‖·‖S H,h is a norm. Observe that since

∫
Kδ

∇zh
Kdx ·∇zH(xK) = 0 for mi-

cro spaces S1(Kδ ,Th) with periodic and Dirichlet boundary conditions we have∥∥∇ẑh
K

∥∥2
L2(Kδ )

=
∥∥∇zH(xK)

∥∥2
L2(Kδ )

+
∥∥∇zh

K

∥∥2
L2(Kδ )

, which yield for all ẑ=(zH ,{zh
K})∈

S H,h the inequality
∥∥∇zH

∥∥
L2(Ω)

≤ ‖∇ẑ‖S H,h .

Next consider the numerical solution obtained by the linearized multiscale
method (104) ûn = (uH

n ,{uh
n,K}) ∈ S H,h and set ûh

n,K = uH
n + uh

n,K on Kδ . We
also define the nodal interpolation associated to the homogenized solution U H

n =
IHu0(·, tn) and consider Ûn = (U H

n ,{U h
n,K})∈S H,h such that Û h

n,K =U h
n,K +U H

n
is the solution to the nonlinear micro problem (100). Define for 0 ≤ n ≤ N and
K ∈TH

θ̂n = ûn− Ûn, i.e., θ
H
n = uH

n −U H
n , θ̂

h
n,K = ûh

n,K− Û h
n,K . (105)

A formula similar to (92) leads to

1
2

∂̄t
∥∥θ

H
n
∥∥2

L2(Ω)
+λa

∥∥∇θ̂
H
n+1
∥∥2

S H,h

≤C(∆ t +H + rHMM(∇U H
n+1))

∥∥∇θ̂
H
n+1
∥∥

L2(Ω)
+
∣∣Ln(∇θ̂n+1)

∣∣, (106)

where the additional term involves a function; Ln : S H,h→ R defined by

Ln(∇ŵ) = ∑
K∈TH

|K|
|Kδ |

∫
Kδ

[
aε(x,∇Û h

n,K)−aε(x,∇ûh
n,K)
]

∇Û h
n,K ·∇ŵh

Kdx. (107)

This term arises from the linearization error and it can be bounded by

|Ln(∇ŵ)| ≤Ln
∥∥∇θ̂n

∥∥
S H,h‖∇ŵ‖S H,h , (108)

where Ln will be discussed below. Hence using Young’s inequality we obtain

1
2

∂̄t
∥∥θ

H
n
∥∥2

L2(Ω)
+λa

∥∥∇θ̂
H
n+1
∥∥2

S H,h

≤C(∆ t2 +H2 + rHMM(∇U H
n+1)

2)+
L 2

n

λa

∥∥∇θ̂n
∥∥2

S H,h +
λa

2

∥∥∇θ̂n+1
∥∥2

S H,h . (109)

Recall that we use the fully nonlinear method for the first step. Hence the conver-
gence results of Section 4.2 yield
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H
1
∥∥2

L2(Ω)
−
∥∥θ

H
0
∥∥2

L2(Ω)
+λ∆ t

∥∥∇θ
H
1
∥∥2

L2(Ω)
≤C∆ t

(
∆ t2 +H2 + rHMM(∇U H

1 )2),
(110)

where λ is the monotonicity constant of A ε .
Similarly to (94) summing (109) from n = 1 to n = N−1, adding the term (110)

and using the inequality
∥∥∇zH

∥∥
L2(Ω)

≤ ‖∇ẑ‖S H,h gives

max
1≤n≤N

∥∥θ
H
n
∥∥2

L2(Ω)
+λ∆ t

∥∥∇θ
H
1
∥∥2

L2(Ω)
+CL ∆ t

N

∑
n=2

∥∥∇θ
H
n
∥∥2

L2(Ω)
(111)

≤C
(

∆ t2 +H2 + max
1≤n≤N

rHMM(∇U H
n )2

)
+
∥∥θ

H
0
∥∥2

L2(Ω)
+

2
λa

∆ tL 2
1
∥∥∇θ̂1

∥∥2
S H,h .

where CL = λa− 2
λa

max2≤n≤N−1 L 2
n . Recall that θ̂ h

1,K = ûh
1,K − Û h

1,K where ûh
K,1

and Û h
K,1 are solutions to the nonlinear micro problem (100) constrained by uH

1 and
U H

1 , respectively. The difference of two such micro solutions can be estimated by
the difference of their respective macro constraints as∥∥∥∇θ̂

h
1,K

∥∥∥
L2(Kδ )

≤ L
λ

√
|Kδ |

∣∣∇uH
1 (xK)−∇U H

1 (xK)
∣∣, (112)

hence
∥∥∇θ̂1

∥∥
S H,h ≤ L

λ

∥∥∇θ H
1

∥∥
L2(Ω)

. Assuming L1 is bounded and CL > 0 we ob-
tain

max
1≤n≤N

∥∥θ
H
n
∥∥2

L2(Ω)
+∆ t

N

∑
n=1

∥∥∇θ̂n
∥∥2

L2(Ω)
(113)

≤C
(

∆ t2 +H2 + max
1≤n≤N

rHMM(∇U H
n )2

)
+C
∥∥θ

H
0
∥∥2

L2(Ω)
. (114)

Finally as
∥∥θ H

0

∥∥
L2(Ω)

≤
∥∥uH

0 −g
∥∥

L2(Ω)
+
∥∥g−U H

0

∥∥
L2(Ω)

using the bound
∥∥g−U H

0

∥∥
L2(Ω)

≤ CH gives an estimate similar to (94). In view of (113), classical estimates
for nodal interpolants give under the assumptions of Theorem 6, provided L1 is
bounded and CL > 0, the error estimate (91).

We briefly discuss the additional assumptions on L1 and CL . These assump-
tions can be derived in two ways [9]. Under some regularity assumptions on the ex-
act solutions of the micro problems (100), assuming that u0 ∈ C 0([0,T ],W 2,∞(Ω))
and maxt∈[0,T ]

∣∣u0(x, t)
∣∣
W 1,∞(Ω)

is small enough (smallness assumption), then there
exist H0,h0 such that for any H < H0,h < h0, CL > 0 and L1 is bounded. Al-
ternatively we can prove the boundedness of L1 and the positivity of CL with-
out a smallness assumption on u0 and without the additional regularity assumption
C 0([0,T ],W 2,∞(Ω)) on u0 if in addition to the assumptions of Theorem 6 we have

max
K∈TH

1≤n≤N−1

‖en,K‖(L∞(Kδ ))
d×d <

λa

2
√

2
, (115)
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where the error term en,K ∈ (L∞(Kδ ))
d×d is given by

en,K(x) = aε(x,∇ûh
n,K)−

∫ 1

0
aε(x,∇ûh

n,K− τ∇θ̂
h
n,K)dτ, a.e. x ∈ Kδ . (116)

The term (116) represent the linearization error. It has been shown numerically for
tensors with various ellipticity constant λa that (116) holds if the spatial and tem-
poral discretization parameters are small enough [9]. Optimal (discrete) C 0(L2) can
also be derived under the same additional assumptions as for the fully nonlinear
method. Finally fully discrete results, i.e., quantitative estimates for the component
rmic and rmod of rHMM can be obtained similarly as in Section 4.2, with similar rates.

6 Conclusion

We have presented a unified framework and analysis for the FE-HMM applied to
monotone parabolic problems. We have shown that under the most general assump-
tions for which homogenization can be established, we can construct an FE-HMM
and establish its convergence. Under more restrictive assumptions, e.g. Lipschitz
continuous and strongly monotone maps, fully discrete space time a priori error es-
timates can be derived and in some situation an efficient linearized scheme can be
constructed and analyzed. Finally for linear problems we have shown that the FE-
HMM can be coupled with classes of Runge-Kutta methods (Radau or Chebyshev
methods) and analyzed by combining fully discrete spatial estimates with semi-
group techniques in a Hilbert space framework. We have neither discussed imple-
mentation issue nor given numerical experiments. This is carefully documented in
[12, 8, 9], where the issue of choosing the right coupling of the micro and macro
solvers (i.e., the micro boundary conditions) and the size of the sampling domains
are discussed. Numerical experiments for non-periodic problems (e.g., log-normal
stochastic field) [12] and degenerate problems [9] illustrate the robustness of the
numerical homogenization strategy.
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21. V. CHIADÒ PIAT, G. DAL MASO, AND A. DEFRANCESCHI, G-convergence of monotone
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47. A. MÅLQVIST AND A. PERSSON, Multiscale techniques for parabolic equations,

arXiv:1504.08140, (2015).
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