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Model selection for partial least squares
calibration and implications for analysis of
atmospheric organic aerosol samples with
mid-infrared spectroscopy

Satoshi Takahamaa� and Ann M. Dillnerb

In developing partial least squares calibration models, selecting the number of latent variables used for their con-
struction to minimize both model bias and model variance remains a challenge. Several metrics exist for incorporating
these trade-offs, but the cost of model parsimony and the potential for underfitting on achievable prediction errors
are difficult to anticipate. We propose a metric that penalizes growing model variance against decreasing bias as
additional latent variables are added. The magnitude of the penalty is scaled by a user-defined parameter that is for-
mulated to provide a constraint on the fractional increase in root mean square error of cross-validation (RMSECV)
when selecting a parsimonious model over the conventional minimum RMSECV solution. We evaluate this approach
for quantification of four organic functional groups using 238 laboratory standards and 750 complex atmospheric
organic aerosol mixtures with mid-infrared spectroscopy. Parametric variation of this penalty demonstrates that
increase in prediction errors due to underfitting is bounded by the magnitude of the penalty for samples similar to
laboratory standards used for model training and validation. Imposing an ensemble of penalties corresponding to
a 0–30% allowable increase in RMSECV through sum of ranking differences leads to the selection of a model that
increases the actual RMSECV up to 20% for laboratory standards but achieves an 85% reduction in the mean error in
predicted concentrations for environmental mixtures. Partial least squares models developed with laboratory mix-
tures can provide useful predictions in complex environmental samples, but may benefit from protection against
overfitting. © 2015 The Authors. Journal of Chemometrics published by John Wiley & Sons Ltd.
Additional supporting information may be found in the online version of this article at the publisher’s web site
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1. INTRODUCTION

When the relationship between measured instrumental signals
and response variables becomes difficult to decode, statistical
methods of multivariate calibration can be used to develop mod-
els for quantitative prediction [1]. This challenge is particularly
salient for characterization of organic functional group abun-
dances in atmospheric aerosol samples (containing an ensemble
of particles within a designated size range) by mid-infrared (MIR)
spectroscopy [2]. These complex mixtures consisting of tens to
hundreds of thousands of different types of organic molecules
originate from the combination of directly emitted compounds
and products of atmospheric photooxidation in the gas and
condensed phases and pose challenges for characterization by
any measurement technique [e.g., Hallquist et al. 3]. For Fourier
transform infrared spectroscopy (FTIR) analysis, the challenge is
manifested in broad absorption profiles originating from strong
overlap of contributions from various functional groups present
in the sample.

Despite the complex structure of the spectroscopic signal, MIR
spectra of such samples contain a wealth of information and have
been used to infer contributions from various source classes and

extent of atmospheric processing of organic aerosol composi-
tion [4–6]. Estimation of functional group abundances in these
samples is the first step in reconstructing estimates of the total
organic aerosol burden and is relevant for interpreting the con-
tribution from emission sources and atmospheric chemistry to a
geographical location or region. In such applications, partial least
squares (PLS) regression [1,7] has been used to develop mod-
els for quantitative calibration [8–11]. A necessary assumption
is that such models developed from simpler standards prepared
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Figure 1. Example absorbance spectra for 12 laboratory standards and 20 ambient samples. For this illustration, an averaged spectrum of 54 blank
samples have been subtracted to reduce the influence of scattering and absorption (still visible as strongly sloping background and interference near
1200 cm–1) from the polytetrfluoroethylene substrates used in sample collection.

in the laboratory, where reference values are known and can
be extrapolated to these complex samples that differ signifi-
cantly in composition (i.e., number and types of molecules) and
spectral structure.

In cases where laboratory standards used for calibration and
environmental samples differ significantly (illustrated in Figure 1),
it is conceivable that the effects of model misspecification can
be amplified. Minimizing the prediction error against reference
samples in the form of root mean square error (RMSE) is com-
monly used as an objective for model selection [12]. However, the
true predictive performance of a model for new samples can be
overestimated in that the RMSE metrics capture variations in bias
but do not adequately account for the growth of variance as a
function of model complexity, leading to selection of overly fitted
PLS models containing more than the necessary number of latent
variables (LVs) [13,14].

Researchers have previously proposed attainment of parsi-
monious models through consideration of the bias–variance
trade-off in various forms. Alongside bias measures (e.g., RMSE
calculated against various validation samples), model complexity
or variance has been characterized in the form of effective rank
[15,16], pseudo degrees of freedom [17,18], or some property
of the regression vector (coefficients), for example, its two-norm
magnitude [14,19] or ‘jaggedness’ introduced by oscillations
[20,21]. These opposing measures have been evaluated along
a Pareto curve [22,23] or combined together in a single metric
[e.g., 14,18,21,24].

In this manuscript, we address the implications of model mis-
specification on prediction errors of laboratory standards and
complex environmental mixtures, and methods for its preven-
tion. We revisit the development of PLS calibration models for the
quantification of functional groups in ambient aerosol samples
previously described by [11] and explore the sensitivity of model
selection on the formulation of metrics targeting parsimony. In
this objective, we propose a modification of a metric described
by [21] and [18]. We introduce a parameter to scale an arbitrary
indicator of variance and penalize its growth against a measure of

decreasing bias. The magnitude of this penalty is defined relative
to the minimum RMSE of cross-validation (CV), such that the cost
of parsimony can be anticipated against the available estimate
of achievable prediction error. We vary the penalty on the vari-
ance measure (magnitude computed from vector of regression
coefficients is used in this work) to generate a large set of model
performance curves and report on the resulting complexity and
prediction errors for the selected models. Prediction errors and
sensitivity of predicted concentrations to penalization are evalu-
ated for functional groups in laboratory standards and in ambient
samples with compositions lying outside of the mixture space of
the calibration model. For ambient samples in which we lack true
reference values, we additionally compare an aggregate estimate
of organic carbon (OC) estimated by the sum of FTIR functional
groups with the measurements of OC obtained by a different but
widely used analytical technique. A set of models selected from
an ensemble of model performance curves generated by our pro-
posed metric and combined by sum of ranking differences (SRD)
[25,26] are validated against an independent randomization test
[27], and we further evaluate their suitability for application to
laboratory and ambient samples.

2. METHODS

2.1. Multivariate calibration and model selection

2.1.0.1. Partial least squares. We use PLS implemented by the
pls library [28] in the R statistical package [29] to estimate
regression vectors Ob for predicting univariate responses of func-
tional group concentrations Oy from a set of spectra arranged in a
row-wise matrix X :

Oy = X Ob (1)

We use the NIPALS algorithm with 10-fold venetian blinds CV on
calibration samples (Section 2.2) sorted according to the known
concentration of the response variable. In this way, the distribu-
tion of concentrations in validation and test sets are arranged to
be similar to each other in each permutation during CV.
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2.1.0.2. Prediction error. Root mean square error is a common
metric used to evaluate the difference between estimated (Oy) and
observed values (y) in the response variable:

RMSEk =

r
1

N
kOyk – yk2 (2)

k � k is used to denote the two-norm of a vector (also written as
k � k2, but we omit the subscript by convention), and the sub-
script k indicates the value computed using k LVs. RMSE is often
defined more specifically in terms of RMSEC, the RMSE of cal-
ibration defined by the overall fit of models to samples in the
training set; RMSEV, the RMSE with respect to samples in a valida-
tion set; RMSECV, the RMSE of CV evaluated within the calibration
set (comprising the training and validation sets); and RMSEP, the
RMSE of prediction reserved for new samples used for evaluation
(the ‘test set’). In the conventional method of model selection,
RMSECV is computed for models generated with 1, 2, : : : , � LVs,
and the optimal number of LVs (k*) is selected by a criterion
of minimum RMSECV to establish the base case. Alternatively,
RMSEV can be used in place of RMSECV to determine k*; we use
RMSECV and a value of � = 120 in this work. We denote the
solution corresponding to the minimum RMSECV as RMSECVk* =
mink{RMSECVk}. The mean error is another metric used to assess
the prediction error and is defined as

Mean errork =
1

N
kOyk – yk1 (3)

k � k1 is used to denote the one-norm of a vector. While we do not
use the mean error for model selection, we report its value along-
side the RMSEP for model evaluation as it is a common metric
used in the atmospheric modeling community [30].

2.1.0.3. Metrics. The metric outlined by Gowen et al. [21] and
Kalivas and Palmer [18] weighs a scaled measure of bias (i.e.,
RMSE) against a scaled ‘regression vector measure’ (RVM) that
characterizes the magnitude of variance according to some prop-
erty of the regression vector (as we refer to the vector of regres-
sion coefficients in this work). This metric is denoted M1 in this
manuscript and computed over k = 1, 2, : : : , � models:

M1k =

�
RMSEk – mink {RMSEk }

maxk {RMSEk } – mink {RMSEk }

�
+

�
RVMk – mink {RVMk }

maxk {RVMk } – mink {RVMk }

�
(4)

where {xk} denotes the set of values for all models {xk : k =
1, 2, : : : , �}. M1 is dependent on maxk{RVMk}, which effectively
determines the largest number of LVs considered in the set of
solutions because RVM generally increases with the number of
LVs. Therefore, � is considered to be a free parameter on which
the metric is defined. Model selection according to M1 is more
sensitive to � than for the minimum RMSECV criterion (where the
determination of k* is insensitive to � given that it is sufficiently
high), and yet what value of � to be used is not clear a priori. Fur-
thermore, the effect on prediction error due to underfitting by
the newly selected model is uncertain.

We therefore propose a reformulation of M1 that parameterizes
the RVM penalty relative to the minimum RMSE value:

M2k =

�
RMSEk

mink{RMSEk}

�
+ �

�
RVMk – mink{RVMk}

maxk{RVMk} – mink{RVMk}

�
(5)

For this metric, the minima and maxima are defined for the set
{xk : 1, 2, : : : , � = k*}, where k* is determined a priori by RMSECV
or RMSEV. Using this metric, we define the number of LVs selected

by this metric as k� = arg mink{M2k}. This formulation shares
some similarities with the objective function to be minimized
by ridge regression or canonical Tikhonov regularization [31,32],
which can be written with regularization parameter � as

L(b) = kXb – Oyk2 + �2kbk2 = N � RMSE2 + �2kbk2 (6)

The essential commonality between M2 and L is the penalization
of a fidelity term by an RVM scaled with a weighting coefficient.
While b is found directly through minb L in ridge regression
(without projection onto LVs) according to the magnitude of �,
we propose for PLS that b should be selected from a set of can-
didate solutions constructed from the k� LVs determined by the
magnitude of � prescribed in M2.

The appealing property of the scaled formulation of M2 is
that � fixes the allowed RVM penalty as a fraction or factor of
mink{RMSEk} and bound the increase on prediction error due to
underfitting when a more parsimonious model is chosen. Fur-
thermore, by defining �* = maxk{RMSEk}/mink{RMSEk} – 1, we
can bound the anticipated increase in RMSEk� with respect to the
estimated magnitude of reduction in prediction errors achievable
through incorporation of additional LVs (Section S1). Written in
the notation defined earlier,

RMSEk�

mink{RMSEk}
� M2k� � 1 + � (7)

RMSEk� – mink{RMSEk}

maxk{RMSEk} – mink{RMSEk}
�
�

�*
(8)

Also, by specification of � = �*, we obtain the same solution k�

that would be selected by using M1 when � = k* (Section S1),
while we obtain the conventional solution k� = k* when � = 0.

The primary difference between M1 and M2 is that the latter
defines the RVM penalty by scaling the structure of growth in
RVM from 1 to k*, rather than 1 to � � k*. It is unclear whether
additional information contained in the RVM from k* to � is rele-
vant for selecting a more parsimonious model containing fewer
than k* LVs; it is hoped that the benefits of defining a new metric
that can bound the increase in RMSE due to underfitting will out-
weigh the cost of this omission. Model selection by M2 in this way
closely follows another heuristic of accepting an alternate solu-
tion corresponding to a fixed increase in RMSE (e.g., 10%, [33])
but additionally considers the dependence of model complexity
and increased prediction variance on the number of LVs. Physi-
cally plausible values of �may possibly be reasoned out based on
an estimated uncertainty in RMSECV or RMSEV. In this work, we
vary � parametrically from 0 to �* and examine predictions from
the models selected.

2.1.0.4. Specification of root mean square error and regression vec-
tor measure. For both M1 and M2, any of RMSECV, RMSEV, or
RMSEP can be used. Using M1, Gowen et al. [21] found that using
RMSECV for a fixed value of � = 20 indicated instances of under-
fitting for their data set; [18] suggests that similar results are
obtained with either metric. Using RMSECV can result in a value
of k� that is systematically less than or equal to the value selected
in the scenario where RMSEC is used, but can be compensated
by the selection of a larger � (for M1) or smaller � (for M2). To
facilitate comparisons across all metrics, in this work we specify
RMSECV as the bias measures of M1 and M2 to be consistent with
the determination of k* = arg mink{RMSECVk} as stated earlier.
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As introduced in Section 1, the properties of a vector as embod-
ied by RVM can be defined by magnitude (kObk), jaggedness
(k� Obk1), or Durbin–Watson statistic [18,20,21], among other
characteristics. We choose to use kObk as this magnitude has
been shown to be proportional to the prediction variance [19]
and related to the sensitivity and detection limit of the calibra-
tion model [14]. In our models, k�bk1 increases monotonically
with kObk (Figure S4), so the main conclusions for this work are
expected to be insensitive to this choice.

2.1.0.5. Ensemble and randomization approach to model selection.
We further employ two techniques to assess the number of LVs
for each of our calibration models. Given the uncertainty in selec-
tion of � for M2, we adapt an ensemble scoring approach to
consider the most suitable model according to a range of� values
together. SRD described by Héberger and co-workers [25,34,35] is
a method recently applied in the context of model or parameter
selection for PLS and Tikhonov regularization [26]. In this work,
we use the modern MATLAB implementation of SRD provided by
Kalivas et al. [26]. In SRD, each metric or ‘merit’ is rescored accord-
ing to its respective ranking against the target solution, which
we designate as the minimum value of M2 [26]. M2 is calculated
for each fold of PLS CV (number of folds is V = 10 in this work),
for a common number of LVs determined as the maximum value
of k* computed across all folds. This leads to a block or matrix
with dimensions of V � k* for a single value of �, and � is var-
ied to generate multiple merit blocks. For validating SRD ranking
results, we use V-fold CV with V = 10. We select as our solution
the minimum value of the mean normalized SRD and designate
the number of LVs as k� to differentiate from k� used to denote
the solution obtained with a single realization of � used with M2.
A paired Wilcoxon signed rank test between the k = k� solution
and all others can be performed to find an alternate number of
LVs for which the normalized SRD scores are not statistically sig-
nificantly different [26]. However, we find that this approach can
undermine the constraint on the growth of RMSECV imposed by
�, so it is not used in this work.

A randomization test for PLS has been described by Wiklund
et al. [27] and used in similar contexts of model selection [e.g.,
Gowen et al. 21]. We adapt the ‘randtest’ function provided by the
mdatools package in R [36] for use with the centered NIPALS
algorithm provided by the pls library [28] and calculate our test
statistic from P = 1000 permutations for each component. In this
test, the order of samples in the response or residual vector y
is permuted P number of times, and the conditional test statis-
tic (covariance between PLS scores and y vector obtained after
extraction fitted components) is compared with its correspond-
ing value obtained for the original response or residual vector
without permutations [27]. The exceedances of the reference
value over the P permutations are referred to as the ‘overfit-
ting risk’ in this work and are expressed as a percentage. The
value of this percentage is compared with a significance level
by close analogy to p-values used in standard statistical tests
[36]. The overfitting risk is estimated by the empirical cumulative
probability distribution in mdatools, and the cumulative prob-
ability distribution is additionally calculated using the inverse
Gaussian function fitted to the test statistic using the statmod
[37] and fitdistrplus [38] libraries in R. As the overfitting
risk estimated by the two methods were practically identical for
our interpretation, we only present one value of the risk that
corresponds to the empirical cumulative probability distribution
estimate. Wiklund et al. [27] report that randomization tests on

spectra without pre-treatment can result in extraction of model
components that are not in order of decreasing relevance, effec-
tively leading to observations of erratic estimates of the over-
fitting risk. As discussed in Section 2.2, the signal contribution
from the substrate in comparison with analyte is substantial in
our samples and is not removed with pre-treatment for this anal-
ysis. Therefore, we interpret the results from this randomization
test only with a qualitative appreciation; to guard against erratic
significance values, we determine the maximum number of LVs
by finding a consecutive sequence of length two or greater for
which the significance of the test statistic is less than or equal to
5% and 10% significance levels, and take the largest number of
components from this sequence.

2.2. Data set

2.2.0.6. Mid-infrared spectra. The set of infrared spectra used
in this work (examples shown in Figure 1) is particulate matter
samples collected and analyzed on polytetrafluoroethylene fil-
ter substrates as previously described by Ruthenburg et al. [11]
and Dillner and Takahama [39]. The set consists of 238 labora-
tory standards (single component to ternary mixture samples of
sugars, dicarboxylic acids, an ester, and ketone compounds) and
744 ambient samples (collected from seven US Interagency Mon-
itoring of PROtected Visual Environments (IMPROVE) monitoring
network sites in 2011). Out of the 794 ambient samples originally
available, 50 are excluded from this evaluation as Ruthenburg
et al. [11] identified them as spectrally anomalous. MIR spectra
consisting of 2784 wavenumbers spanning the range between
4000 and 420 cm–1 without background correction is used for
this work [39]. Four functional groups are considered for quan-
tification: alcohol COH (aCOH), carboxylic COH (cCOH), alkane CH
(aCH), and carbonyl C=O (CO).

Ruthenburg et al. [11] used 2/3 of the laboratory samples (n =
158) for model development and the remaining 1/3 (n = 80) for
model selection according to the minimum RMSEV criterion. In
this work, we use the same 2/3 of laboratory standards for cali-
bration with CV and leave the remaining 1/3 for evaluation of our
capability to predict concentrations in similar laboratory samples
(to contrast with predictions for ambient samples). The similarity
in relative functional group abundances and the concentrations
between calibration and test set samples are shown in Figure
S5. The maximum number of LVs considered by Ruthenburg
et al. [11] was less than that used for this work (� = 30 instead
of � = 120) and resulted in the selection of different models
(Table S1).

2.2.0.7. Thermal optical reflectance organic carbon. Organic car-
bon concentrations measured by thermal optical reflectance
(TOR) analysis [40] are taken from the IMPROVE network
database (http://views.cira.colostate.edu/fed/). These samples
are collected on quartz fiber filters collocated with the poly-
tetrafluoroethylene filter samples used for FTIR analysis. This
technique analyzes the total carbon vaporized when filters are
subjected to a temperature ramp under an inert and then oxidiz-
ing environment. The OC fraction of the total carbon (the balance
being elemental carbon) is operationally defined according to
monitored optical properties of the filter during the vaporization
process [40].

2.2.0.8. Calculation of organic carbon from functional groups.
We can estimate the OC content from infrared analysis by
taking the inner product of the molar functional group
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concentrations n = [naCOH, ncCOH, naCH, nCO] with the average
number of moles of carbon associated with each bond c =
[nC/naCOH, nC/ncCOH, nC/naCH, nC/nCO], such that the mass of car-
bon is estimated as cT n � 12.01 g/mol. The values of c are not
known precisely for ambient samples but are estimated based on
typical molecular structures assumed to be present in the mix-
ture and can be fractional quantities to prevent potential double
counting of atoms [2,9,11,41,42]. For this work, we use values of
c = [0, 0, .5, 1] as assumed by Ruthenburg et al. [11].

3. RESULTS AND DISCUSSION

First, we describe the similarity of U-shaped curves generated
by M1 and M2 by varying their respective tuning parameters
(Figure 2). Curves of RMSECV and kObk used for calculation of M1
and M2 are also shown. kObk is observed to increase monoton-
ically for our models, while strict monotonicity is not observed
for RMSECV. U-shaped curves are visible for M1 over the domain
of k = {1, 2, : : : , � = 2k*}, which we have specified for illustra-
tion. Unambiguous U-shaped curves within the domain of k =
{1, 2, : : : , k*} are generally observed to emerge for M2 when the
value of � is approximately greater than one (� = 0.2 and � = 5.0
are illustrated). One consequence of this pattern is that for low

values of�, 1+� is a close approximation of RMSECVk� /RMSECVk* .
As � is increased, the actual increase in RMSECVk� /RMSECVk* will
become increasingly small compared with that of 1 + �. For this
data set, the solution obtained with M1 for � � 2k* corresponds
to a penalty for M2 of � > 0.2. Further comparisons of the two
metrics are shown in Section S2, in which we also summarize that
the selected model is sensitive to the specification of � in M1, but
how the variation in � influences the increase in RMSECV of the
selected solution is difficult to anticipate. Only solutions obtained
using M2 and �will be discussed in the following sections.

3.1. Evaluation of latent variable reduction on
laboratory standards

The variation in k� and the corresponding fit metrics as a function
of� as formulated by M2 is shown in Figure 3. We can see the clear
trend of monotonic decrease in the number of LVs selected with
increasing �. In all cases, RMSECVk� � (1 + �)RMSECVk* , which
is a property of the metric (Section 2.1). We do note that 1 + �
becomes an increasingly conservative upper bound of the actual
increase in RMSECV over RMSECVk* when � is large.

We can see that a structure and magnitude similar to the
variation in RMSECV with respect to � are preserved in the

Figure 2. Root mean square error of cross-validation (RMSECV) (red), kObk (blue), and example curves of M1 and M2 computed for calibration samples
prepared in the laboratory for four organic functional groups considered in this work (shown in separate columns). For this figure, RMSECV and kObk are
offset by their minimum value and scaled by their range to lie within [0,1], and M2 is scaled by a factor mink{RMSECVk}/ max{RMSECVk}. For illustration,
several arbitrary values of � and � have been selected for M1 and M2, respectively. Values of � correspond to the nearest integer values of 1, 1.5, and 2
times k*. Dark red vertical lines correspond to k = k*, and vertical blue lines correspond to the values of k = k� . aCOH, alcohol COH; cCOH, carboxylic
COH; aCH, alkane CH; CO, carbonyl C=O.
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Figure 3. The number latent variables selected according to k = k� (top panel) and the corresponding fit metrics for laboratory standards as the
parameter � is varied from 0 to �* = max{RMSECVk}/ mink{RMSECVk} – 1 for each variable (rows 2–4). Dotted blue horizontal lines correspond to the
k = k* solution. Solid red lines are used to indicate evaluations for calibration samples, and solid green lines indicate evaluations for test set samples.
Note that the y-axes for panels in rows 2 and 3 are in logarithmic scale and share the same limits across all columns. Blue diagonal lines in the second
row of panels correspond to the x = y line indicating the ‘upper bound’ for an increase relative to RMSECVk* and correspond to (1 + �). The x-axes are
also shown as 1 + � in logarithmic scale. aCOH, alcohol COH; cCOH, carboxylic COH; aCH, alkane CH; CO, carbonyl C=O.

Figure 4. Top row: Normalized sum of ranking differences scores as a function of latent variables. Gray circles represent each realization of SRD cross-
validation, and red lines indicate their means. Bottom row: Overfitting risk obtained from randomization test (Section 2.1). Dark red vertical lines indicate
the model selected by the minimum root mean square error of cross-validation criterion (k = k*), and blue vertical lines indicate the solution obtained
by either SRD or randomization. aCOH, alcohol COH; cCOH, carboxylic COH; aCH, alkane CH; CO, carbonyl C=O.
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corresponding RMSEP and mean error estimated for test set labo-
ratory standards for most functional groups (Figure 3). The RMSEP
of the test set is approximately an order of magnitude higher
than RMSECV (a factor of 9 on average), and the RMSEP ranges
between 0% and 305%. The difference in the mean error, how-
ever, remains small (28–34%) between the two sets of laboratory
standards (Figures 3 and S2).

Alkane CH does not follow the pattern of variation in fitting
statistics observed for the rest of the functional groups: The
change in RMSEP and mean error is not anticipated by the varia-
tion in RMSECV. An RVM penalty of � = 0.1 results in a reduction
in the selected number of factors from 54 to 18, an increase
in RMSECV of 8%, and a decrease in RMSEP of 40%. Over the
range of �s explored, RMSECV changed the least for aCH com-
pared with all other variables. While RMSECV increases by 20% for
� = 23, RMSEP does not increase above the value of RMSEPk* .
The same conclusion is reached when random 10-fold CV is used
(not shown), which possibly implicates the influence of struc-
tural differences between calibration and evaluation samples
with respect to the absorption bands of aCH. Structural differ-
ences in absorption bands may be further reduced by rigorous

statistical design of the calibration set when mixture composi-
tion of new samples can be anticipated, but model sensitivity to
such differences can be problematic when predicting concentra-
tions in more complex environmental samples (Section 3.3). The
absorption bands of aCH (approximately 3000–2800 cm–1 [43];
Figure 1) in atmospheric aerosols are particularly feature rich,
with absorbance patterns differing by hydrocarbon source type,
for example, vegetative detritus [44] or various forms of fossil fuel
combustion [6].

3.2. Model selection

The appropriate value of � for this real data set is unknown, so
we apply an ensemble modeling approach implemented with
SRD. Normalized SRD scores calculated for � = {0.0, 0.1, 0.2, 0.3}
are shown in Figure 4. The number of LVs selected is identi-
cal or similar to when � = {0.0, 0.1, 0.2}, {0.1, 0.2, : : : , 0.5}, and
{0.0, 0.1, 0.2, : : : , 1.0} ensembles are used (Table I), with proximity
to the k = k* solution with the exception of aCH (for which the
number of LVs selected is lower by a factor of 5). While the upper
bound of 1 +� as defined in Equation 7 holds true for each fold of

Table I. Number of LVs selected according to different methods

Number of LVs (RMSECVk� /RMSECVk* )
Method aCOH cCOH aCH CO

minimum RMSECV 16 (1.00) 18 (1.00) 54 (1.00) 18 (1.00)
SRD with M2; � = {0.0, 0.1, 0.2} 11 (1.23) 17 (1.03) 12 (1.14) 14 (1.14)
SRD with M2; � = {0.0, 0.1, 0.2, 0.3} 13 (1.06) 17 (1.03) 10 (1.20) 18 (1.00)
SRD with M2; � = {0.0, 0.1, 0.2, : : : , 0.5} 13 (1.06) 17 (1.03) 10 (1.20) 18 (1.00)
SRD with M2; � = {0.0, 0.1, 0.2, : : : , 1.0} 13 (1.06) 17 (1.03) 10 (1.20) 18 (1.00)
Randomization; 5% significance level 12 (1.12) 16 (1.11) 10 (1.20) 13 (1.17)
Randomization; 10% significance level 13 (1.06) 17 (1.03) 26 (1.13) 13 (1.17)

LVs, latent variables; aCOH, alcohol COH; cCOH, carboxylic COH; aCH, alkane CH; CO,
carbonyl C=O; RMSECV, root mean square error of cross-validation; SRD, sum of ranking
differences.

Figure 5. Comparison of predicted concentrations with observed concentrations of functional groups (FG) (shown across columns) in laboratory stan-
dards for solution selected by the minimum root mean square error of cross-validation criterion (k = k*) and ensemble scoring (k = k�) with M2 using
multiple values of �. aCOH, alcohol COH; cCOH, carboxylic COH; aCH, alkane CH; CO, carbonyl C=O.

J. Chemometrics 2015; 29: 659–668 © 2015 The Authors. Journal of Chemometrics published
by John Wiley & Sons Ltd.
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CV, the relative magnitudes are rescored as rankings with respect
to the RMSECV prior to aggregation. As a result, we note that the
number of LVs selected does not monotonically decrease with
the maximum � of each ensemble and the bound of 1 + � in the
growth of RMSECV is not strictly obeyed when ensemble scoring
is used (illustrated by the fact that the increase in RMSECV is 1.23
for aCOH when the maximum 1 + � is 1.2). However, the ensem-
ble scoring approach indicates that the k�s selected are same or
fewer than k*s across functional groups (especially for aCH), and
reasonable agreement can be found among the k�s for different
ensembles of �.

We independently confirm by a randomization test at the 5%
significance level that the number of relevant components is
also less than or equal to the those calculated by the mini-
mum RMSE criterion and is also similar to values calculated by
SRD—especially for aCH (Table I). Figure 4 illustrates how the
overfitting risk changes according to the number of LVs, and solu-
tions selected at the 5% significance levels are also indicated. As
shown in the same figure, the first component for aCOH exceeds
5%, but we attribute this anomaly to the presence of the sub-
strate interference in the infrared spectra, and it is not considered
for estimation of LVs. This is anticipated from the fact that pre-
treatment was not applied to remove the substrate interferences
to the signal as described by Wiklund et al. [27] (Section 2.1).
The solution for the 10% significance level does show a notice-
able departure in the selected number of LVs for aCH compared
with the other estimates, however indicating sensitivity to the
choice of significance level combined with erratic variations in the
overfitting risk.

For further analysis, we choose as our reference solution the
number of LVs (k = k�) determined by M2 with SRD for � =
{0.0, 0.1, 0.2, 0.3}. Figure 5 and increases in RMSECVs found in
Table I show that the predicted concentrations in laboratory stan-
dards are insensitive to the selection of these solutions, but we
discuss their appropriateness for application to samples outside
of the domain of the calibration set in Section 3.3.

3.3. Implications for extrapolation

To evaluate implications for overfitting in environmental sam-
ples in which reference functional group concentrations are not
available, we examine the changes in predicted concentrations of
each variable for various values of � and compare the aggregated
estimates of FTIR OC with the measured TOR OC (Figure 6). We
first note the similarity (r > 0.8) in predicted concentrations for
each functional group between the k* and k� solutions for mod-
est values of� < 0.2, except for aCH. At � = 0.1, the number of LVs

Figure 6. Evaluation of calibration models selected by various values
of � (shown on abscissa) applied to complex atmospheric aerosol mix-
tures. The number of latent variables relative to the minimum root mean
square error of cross-validation solution (k�/k*) determined for each
functional group in the calibration models (developed from laboratory-
generated mixtures) is shown in the top panel. The correlation coefficient
of the estimated concentrations [r(Oyk� , Oykmin

)] with respect to the mini-
mum latent variable solution in ambient samples is shown in the second
panel. Summary statistics (mean error and Pearson’s correlation coeffi-
cient, r) of Fourier transform infrared spectroscopy organic carbon (FTIR
OC) estimates in atmospheric samples compared with reported values of
collocated thermal optical reflectance (TOR) OC measurements as a func-
tion of the � penalty imposed across all functional groups are shown in
the bottom two panels. aCOH, alcohol COH; cCOH, carboxylic COH; aCH,
alkane CH; CO, carbonyl C=O.

Figure 7. Comparison of functional group (FG) estimates in ambient samples for solutions selected by the minimum root mean square error of cross-
validation criterion (k = k*) and ensemble scoring (k = k�) with M2 using multiple values of �. Pearson’s correlation coefficients (r) are shown in the
upper left corner. aCOH, alcohol COH; cCOH, carboxylic COH; aCH, alkane CH; CO, carbonyl C=O.
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Figure 8. Comparison of estimated Fourier transform infrared spec-
troscopy organic carbon (FTIR OC) mass in ambient samples with col-
located thermal optical reflectance (TOR) OC measurements using the
model selected by the minimum root mean square error of cross-
validation criterion (k = k*) and ensemble scoring (k = k�) with M2 using
multiple values of�. Pearson’s correlation coefficients (r) are shown in the
upper left corner.

selected for aCH is reduced from 54 to 18, and this coincides with
large differences in predicted concentrations (Figure 6, top two
panels). For the selected solutions corresponding to k = k�, we
also observe major differences (r = –0.62) with respect to the k =
k* solution for aCH (Figure 7) when the number of LVs is reduced
from 54 to 10. This change is highlighted in contrast to the insen-
sitivity of predicted abundances for laboratory standards to the
selected number of LVs (Section 3.2 and Figure 5).

Aggregating the OC content from a combination of the esti-
mated functional groups and comparing with TOR OC, we find
that a very large increase in the Pearson’s correlation coefficient
(from r = –0.42 to 0.86) and a reduction in the mean error (from
70 to 12�g of OC mass on the filter) are observed for � = 0.1,
with continued agreement between the two estimates of OC
with increasing � (Figure 6, bottom two panels). For our selected
value of k�s (Section 3.2), the error is further reduced to 10�g
(Figure 8). The agreement of FTIR OC with TOR OC is largely dic-
tated by the variation in aCH, as aCH is estimated to compose
60–78% of OC mass in these samples. While separate sample
collection and analytical artifacts exist for OC quantification by
FTIR and TOR [45], we expect a general agreement between the
two measurements and conclude that the k� solution is more
appropriate than the k* solution.

A small difference in the correlation (from r = 0.86 to 0.93)
between the two estimates of OC is observed between � =
0.1 and greater values of � (Figures 6) primarily because of the
change in the number of factors selected for aCH, particularly
for a certain class of spectra. While beyond the scope of this
manuscript, focused study of such differences in sensitivity across
ambient samples may further provide characterization of mixture
composition for specific samples.

4. CONCLUSIONS

We propose a reformulation of a metric weighing bias and vari-
ance measures for model selection. The defining parameter,
which frames the trade-off between model parsimony and the
lowest prediction error, is changed from the total number of
LVs considered to a penalization parameter interpreted as the
permissible increase relative to the minimum RMSECV, for which
we have better intuitive sense. We explore the impact of
the parameter on model selection and estimation of organic

functional group concentrations from infrared spectra. We build
a calibration model from 158 laboratory samples and evaluate
predictions for 80 laboratory samples similar to those in the cali-
bration set and for 750 complex environmental mixtures in which
true references are not available for calibration.

We find, expectedly, that the number of LVs selected for
PLS generally decreases according to increasing penalization for
larger RVM (used as an indication of model variance). For a
number of models, we can predict concentrations in laboratory
standards with modest variations in RMSECV (�20%), but exten-
sion of these models to more complex mixtures leads to larger
differences (greater than 100% in predicted concentrations). In
comparison with an independent estimate of OC, we find that
the model with a higher number of LVs as selected by the mini-
mum RMSECV criterion is unable to estimate the mass of organic
material in the samples.

As the appropriate choice of penalization parameter in our
metric is not known, we use an ensemble scoring approach (SRD)
to aggregate solutions for various penalty values. When using
SRD, the actual increase in RMSECV for the selected solution can
increase modestly above the maximum penalty specified but pro-
vides a consistent selection of LVs that is robust with respect to a
range of penalty values considered and consistent with an inde-
pendent randomization test. In our work, we demonstrate that
the model selected by an ensemble of penalties corresponding
to maximum allowable increase in RMSECV of 0%, 10%, 20%, and
30% yields an actual increase in RMSECV of 0–20% across func-
tional groups. The same model drastically improves predictions
in environmental samples, however reducing the mean error
with respect to an independent metric of OC mass from 70 to
10�g (an 85% reduction) and increasing the correlation between
predictions and observations from r = –0.42 to r = 0.93.

As previously reported, PLS models selected on the basis of
bias measure may be susceptible to overfitting, which becomes
apparent when applying calibration models to more complex
mixtures. In such an application, the conventional minimum
RMSE metric may yield models that lead to gross errors. A refor-
mulated metric combined with an ensemble scoring approach
can provide some additional guidance for selecting a model that
considers the cost of parsimony on increased prediction error,
while guarding against larger errors incurred by overfitting.
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S1 Additional description of M2

If the variance and RVM increases monotonically with model complexity (characterized by
number of LVs for PLS) as shown in Figure 2 for our study, RVM 1 = mink{RVM k}, RVM k

∗ =

maxk{RVM k}, and M2 k
∗ = 1 + λ. The values for M2 in such a case is illustrated in Figure S1.

Even if the increase is not strictly monotonic [e.g., 1], the upper bound in the growth in RMSE
indicated by Equation 7 will still hold.

We can present an alternative formulation in which φ = λ/λ∗ bounds the anticipated increase
in RMSE

k
† with respect to the estimated magnitude of achievable reduction in prediction errors

(Section 2.1). However, the solution selected using this parameterization, denoted as M2 ’, is
identical to that selected by M2 ; therefore, we can use M2 and calculate the equivalent φ from
λ if desired. To confirm that this is true, let us define M2 ’ as

M2 ′k =

(
RMSEk −mink{RMSEk}

maxk{RMSEk} −mink{RMSEk}

)
+ φ

(
RVM k −mink{RVM k}

maxk{RVM k} −mink{RVM k}

)
where {xk} denotes the set of values for all models {xk : k = 1, 2, . . . , κ = k∗}. We can see
that λ∗M2 ′k = M2 k − 1; therefore k† = argmink{M2 ′k} = argmink{λ

∗M2 ′k} = argmink{M2 k −
1} = argmink{M2 k}. With this formulation, we can additionally see that when φ = 1, k† =
argmink{M2 k} = argmink{M1 k} under the conditions that λ = λ∗ and κ = k∗.

S2 Comparison of M1 and M2

By analogy to Figure 3 generated for M2 , in Figure S2 we reflect on the variation of k†

and corresponding fit metrics as a function of κ = {k∗, k∗ + 1, . . . , 120} as formulated by M1 .
k† = argmink{M1 k} is smallest when κ = k∗, and increases with increasing κ. For cCOH and
CO, we find that the minimum RMSECV solution is reached with M1 when κ ≈ 2k∗. For
aCOH, the selected solution is invariant after κ ≈ 2k∗ but does not correspond to the RMSECV
solution, though the value of RMSECV approaches that of its minimum. For aCH, the number
of factors selected is invariant over the domain explored from κ = k∗ to 120, even while ‖b̂‖ceases
to increase substantially after k = 100 (Figure 2). The increase in RMSECV and RMSEP for
the models selected as κ is varied can range between 0 and 365%, presumably from an increasing
degree of under-fitting.

1
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Comparison of the selected number of LVs according to parameters of both M1 and M2 is
shown in Figure S3. This figure also shows that k = k∗ at κ > 60 for cCOH and CO (as they
correspond to the solution where λ = 0), whereas k > k∗ for κ ≤ 120 for cCOH and aCH. The
selected number of LVs stabilizes as κ is increased between 60 and 120 (and possibly beyond), and
corresponds to values similar to those selected by ensemble scoring (Table 1). It is conceivable
that model performance curves generated by M1 an ensemble of κ values can also be used with
SRD for model selection.
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Tables
Table S1: Comparison of minimum RMSE solution between
Ruthenburg et al. [2]a and this workb.

Number of LVs
aCOH cCOH aCH CO

Ruthenburg et al. [2] 22 27 19 27
This work 16 18 54 18
a Selected from κ = 30. In the publication, values
of 20, 20, 12, 16 were incorrectly used for aCOH,
cCOH, aCH, and CO, respectively, due to user
error. The correct number of LVs were used for
calculation of organic matter to organic carbon
ratios (OM/OC) used by Dillner & Takahama [3].

b Selected from κ = 120.
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Figures
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Figure S1: Illustration of the proposed M2 metric over its domain for several hypothetical values of λ
(λ1 < λ2 < λ∗). k is the number of LVs, k∗ = argmink{RMSEk}, and k

† = argmink{M2 k}. When λ =
λ∗ = maxk{RMSEk}/mink{RMSEk} − 1 (top curve), M2 1 = M2 k

∗ = maxk{RMSEk}/mink{RMSEk}
if maxk{M2 k} = M2 1.
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calibration samples, and solid green lines indicate evaluations for test set samples. Note that the y-axes
for panels in rows 2 and 3 are in logarithmic scale, and share the same limits across all columns.
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Figure S3: Correspondence of κ and 1 + λ which results in the same number of LVs selected by M1 and
M2 , respectively. Colors (blue gradient) indicates the number of LVs selected at each coordinate.
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Figure S4: Comparison of RVMs: ‖∆b̂‖1 and ‖b̂‖ for k = {1, 2, . . . , κ = 120}.

7



Supporting Information Takahama and Dillner

Min

Max Calibration set

Min

Max Test set

aCOH cCOH aCH CO iNH

Functional group

S
ca

le
d

 c
o
n

ce
n

tr
a
ti

o
n

Compounds

1-docosanol

1-docosanol, adipic acid
1-docosanol, adipic acid,
suberic acid
1-docosanol, suberic acid

12-tricosanone

ammonium sulfate

arachidyl dodecanoate

d-glucose

malonic acid

suberic acid

fructose

levoglucosan

Figure S5: Parallel coordinate plots of functional group concentrations in laboratory standards (cali-
bration and test sets). For each functional group, concentration in µmoles is scaled by subtracting the
minimum value and divided by the range computed for all samples. Lines connect abundances observed
in each sample, and are colored according to the compounds present in the standard. iNH is inorganic
NH contained in ammonium sulfate included in the calibration set. Ammonium sulfate is included in
the standards, as it is an interferant for quantification of aCOH, cCOH, and aCH due to overlapping
absorption bands of the iNH bond.
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