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Abstract. In this article we review a set of methods for exploring the
space of a set of collective variables, and to reconstruct the associ-
ated Landau free energy in presence of metastabilities: Temperature
Accelerated Molecular Dynamics (TAMD), its extension, Temperature
Accelerate Monte Carlo (TAMC), and the Single Sweep Method (SSM).
TAMD and TAMC can be used for both exploring and reconstructing
the Landau free energy landscape. However, SSM is more efficient at
accomplishing this last task. We illustrate the use of these methods by
presenting their application to the nucleation of a Lennard-Jones crys-
tal from its melt, and the H-vacancy migration in an NaAlH6 crystal.

1 Introduction

In this article we review a set of methods for studying rare events by atomistic simu-
lations. Rare events, which we will define more precisely below, are infrequent transi-
tions between high probable states of a system. From the point of view of statistical
mechanics rare events are like any other (more frequent) event. The difference stands
in the simulation techniques that must be used to investigate them: because of their
low frequency we cannot use standard (brute force) molecular dynamics (MD) or
Monte Carlo (MC). To put rare events in their more general theoretical context, and
to introduce quantities that are relevant for their description, in this introduction we
start revising the basic ideas behind statistical mechanics.
Let us consider a classical system made of N point particles. A microscopic state

of this system is described by a point in the 6N -dimensional phase space Γ = (r,p).
r and p are the 3N -dimensional vectors of the positions and momenta of the parti-
cles. Consider an observable O(Γ). The corresponding macroscopic value is the time
average of the observable:

Ō = lim
t→∞

1

t

∫ t
0

dτ O(Γ(τ)), (1)
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i.e. the average of O(Γ) along the trajectory Γ(τ) of the system. Assuming that
the system is ergodic, the time average is equivalent to the ensemble average over
the probability density function (PDF) m(Γ) of the system. This is easily seen by
discretizing the time trajectory, expressing the time integral as a sum over these
discrete times, rearranging the terms of the sum according to their assignment to
cells of a discretization of the phase space, and transforming back this discrete sum
into an integral

Ō = lim
M→∞

1

Mh
M∑
i=1

O(Γi)h = lim
M→∞

lim
N→∞

N∑
s=1

ns

MO(Γs)

=

∫
dΓ O(Γ)m(Γ) = 〈O〉. (2)

The sum in the third term of the equality runs over the states associated to the
discretized phase space.
Any mechanical property of the system can be computed as an expectation value

of a suitable microscopic observable over the PDF of the system. m(Γ), then, is the
central non mechanical quantity of statistical mechanics. In thermodynamics the same
role is played by the thermodynamics potentials, A(X) (with X the set of thermo-
dynamic variables): any property of the system can be obtained by suitable analyt-
ical operations (e.g. derivatives with respect to X) on the relevant thermodynamic
potential: entropy, free energies, etc, depending on the independent thermodynam-
ics variables considered. Thus, it is natural to draw an equivalence between m(Γ)
and A(X). In the microcanonical Boltzmann formula of the entropy (variables N, V,
E), S = kB logQ with Q partition function, this equivalence does not emerge clearly.
However, remembering the hypothesis of equiprobability of the accessible microscopic
states, this formula can be rewritten so as to make it evident:

S = kB logQ = −kB log(1/Q) ≡ − log (mNV E(Γ)) (3)

where the subscriptNV E stresses thatmNV E(Γ) = 1/Q, withQ geometrical measure
of the set of accessible states (constant energy surface), is the PDF of the microscopic
states of the microcanonical system (within accessible phase space). We call the aver-
ages of observables mechanical properties and quantities derived fromm(Γ), including
marginal and conditional PDFs, thermal properties. Thus, m(Γ) itself determines the
entire family of the thermal properties of the system.
Let us now come back to the calculation of 〈O〉. Equation (2) can be rewritten as:

〈O〉 =
∫
dΓO(Γ)m(Γ) =

∫
dO∗O∗

∫
dΓ δ(O(Γ)−O∗)m(Γ)

=

∫
dO∗O∗pO(O∗) (4)

where pO(O∗) =
∫
dΓ δ(O(Γ)−O∗)m(Γ) is the reduced, or marginal, PDF of the ob-

servable O(Γ). The information on O(Γ) contained in pO(O∗) is obviously contained
also in m(Γ). However, due to the high dimensionality of the phase space, with m(Γ)
this does not emerge clearly. So, when one is interested in the values of a specific
observable, O(Γ), or any function of it, pO(O∗) is the central quantity. In analogy
with what done with the total PDF, we introduce the quantity

WO(O∗) = −kB log pO(O∗). (5)
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The analogy between Eqs. (5) and (3) suggests that WO(O∗) is a restriction to O∗ of
the thermodynamic potential. In App. A we prove that ΔWO = WO(O2) −WO(O2)
is the reversible work made by a generalized force to move the system from the state
O(Γ) = O1 to O(Γ) = O2, confirming that WO(O∗) is, indeed, a free energy. A final
PDF that is important to introduce is the conditional PDF

m(Γ| O∗) = δ(O(Γ)−O
∗)m(Γ)

pO(O∗) (6)

m(Γ| O∗) allows to compute the expectation of an observable at a given value of
O(Γ): 〈B|O∗〉 = ∫ dΓB(Γ)m(Γ| O∗).
Summarizing, the central quantities in statistical mechanics are the total or re-

duced PDF, depending on whether one is interested on the entire phase space or only
on an (or few, see Sect. 2) observable. To each of these PDFs is associated a suitable
thermodynamic potential, from which one can derive all the properties of the corre-
sponding thermodynamic system. In addition, the conditional PDF m(Γ| O∗) allows
to compute conditional expectation values.
To introduce rare events, we start by classifying the total PDF in two classes.

In the first class we put monomodal PDFs and multimodal PDFs in which the re-
gions between the modes have a relatively high probability density. The second class
contains multimodal PDFs in which the modes are separated by domains of very low
probability, with a difference of several orders of magnitudes between the values of the
PDF of the modes and of the regions separating them. A trajectory takes relatively
short time to visit the various high probable regions of PDFs belonging to the first
class. So, brute force MD, of the typical duration of few picoseconds, up to microsec-
onds, is suitable to sample PDFs of this kind, and compute unbiased expectation
values of observables through Eq. (2). In the case of PDFs of the second kind, the
passage of the system from the region of one mode to another is infrequent, because
it has to pass through the low probable region in between them. These infrequent
events are the rare events we focus on in this article. In presence of rare events the
residence time in the region of one mode is so long with respect to the duration of
MD simulations, that the brute force approach is unsuited to properly sample the
PDFs.
In many cases, the metastable states of a system, and the passage from one to

another, can be described in terms of selected observables and the associated reduced
PDF. We can apply to this PDF the above analysis on the structure of the the total
PDF: when two modes of the reduced PDF of the relevant observables are separated
by a minimum of very low probability the trajectory takes long time to pass from one
to the other, and Brute force MD is inadequate to sample it.
The problem of rare events has been known for very long time, and some

analytical and numerical techniques have been introduced long time ago to deal
with it. For example, the termodynamics integration of Kirkwood dates back to
the mid-thirties [21], even before modern computers were introduced. Another ex-
ample is the umbrella sampling of Torrie and Valleau, introduced in the late sev-
enties [48]. Nevertheless, many problems remain unaddressed. For example how to
deal with the case of reduced PDFs of several/many observables, or how to identify
their modes when little is known in advance (identification of stable and metastable
states). The methods we discuss in this article, the Temperature Accelerated Mole-
cular Dynamics (TAMD [28]) and Monte Carlo (TAMC [4] – see also Ref. [52] and
Refs. [36,39]) and the Single Sweep method (SSM [29,32]) are attempts to solve these
problems. They share some ingredients with other methods emerged in the same pe-
riod, such as the Local Elevation Method [17], and the closely related Conformational
Flooding [13] and Metadynamics [23], and the Canonical Adiabatic Free Energy
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Sampling (CAFES [51]). The reader might want to refer to these articles to have
a more complete knowledge of the field.
The article is organized as follows. In Sect. 2 we present the methods listed above

(TAMD, TAMC and SSM). In Sect. 3 we illustrate the use of the above methods
through some application. Finally, in Sect. 4 we draw conclusions. As already men-
tioned above, the article contains also an appendix, App. A, in which we prove that
WO(O∗) is a free energy.

2 Methods

In this section we describe three related methods, Temperature Accelerated
Molecular Dynamics (TAMD [28]), the associated Temperature Accelerated Monte
Carlo (TAMC [4]), and the Single Sweep method (SSM) [29,32], aimed at exploring
and computing the free energy of a set of observables, also called collective variables
(CVs). We consider the case of CVs that are function of the particles position only,
ξ(r) = {ξi(r)}i=1,M . The reduced PDF of ξ(r) is a straightforward extension of the
one of a single observable introduced in Sect. 1.

pξ(z) =

∫
drm(r)

∏
i=1,M

δ(ξi(r)− zi) (7)

where z = {zi}i=1,M is a set of realizations of the CVs, and m(r) =
∫
dpm(r,p) is

the PDF of a point r of the configuration subspace. To pξ(z) is associated a Landau
free energy, Wξ(z) = −kBT log pξ(z).

2.1 Temperature accelerated molecular dynamics and temperature accelerated
Monte Carlo

TAMD and TAMC are two methods aimed at exploring the CV-space, and sampling
the associated marginal PDF pξ(z).
With the aim of making more clear the foundations of these methods, we de-

scribe them following an unconventional presentation. First (Sect. 2.1.1) we show
that the gradient of the Landau free energy, F ξ(z) = ∇Wξ(z), can be expressed as
the expectation value of a suitable set of observables over the PDF associated to a
biased potential depending parametrically on z, Ṽ (r;z). This expectation value can

be computed by a MD (MC) driven by Ṽ (r;z). Even though this method for cal-
culating F ξ(z) is just a technical detail of TAMC and TAMD, it is important for
the development of the algorithms. Second (Sect. 2.1.2), we introduce a two-steps
algorithm for an efficient sampling of pξ(z). In this algorithm, the CVs evolve ac-
cording to an enhanced dynamics driven by F ξ(z), and a biased MD/MC is used to
compute F ξ(z) at the current (fixed) values of z. Third (Sect. 2.1.3), we introduce
a one-step algorithm, improving over the previous two-steps one, in which the CVs
and the particles are evolved together.

2.1.1 Calculation of Fξ(z) via biased MD/MC

From the the Landau free energy of a set of CVs, Wξ(z), we can compute

F ξ(z) =∇zWξ(z) = −kBT∇zpξ(z)
pξ(z)

· (8)
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We show that F ξ(z) is the expectation value, conditional to given values of the
CVs, of the (partial) derivative of the Hamiltonian, written in terms of the CVs (see
App. A). Thus, −F ξ(z) can be interpreted as a “mean force”. Here we show how
F ξ(z) can be computed by a more direct approach, replacing the Dirac δ functions
contained in the definition of the marginal probability pξ(z) with a smooth Gaussian
approximation:

δ(ξi(r)− zi) ∼
√
βκ

2π
exp
[
−β κ
2
(ξi(r)− zi)2

]
. (9)

In Eq. (9) β = 1/kBT and κ is a parameter controlling the smoothness of the approx-
imation. The Gaussian approximation of the Dirac δ, Eq. (9), can be plugged into
Eq. (7) obtaining:

p̃κξ (z) =

∫
drm(r)

∏
i=1,M

√
βκi

2π
exp
[
−β κi
2
(ξi(r)− zi)2

]
. (10)

In Eq. (10), and in the following, the bold symbol κ denotes the vector of elements

κi. We introduce W̃
κ
ξ (z) = −kBT log p̃κξ (z). In view of the fact that in the limit

{κi → ∞}i=1,M p̃κξ (z) → pξ(z) and W̃κξ (z) → Wξ(z), we can compute the gradient
of the Landau free energy as F̃κξ (z) in the limit κ→∞:

Fκξ,i(z) = lim
κ→∞

∂Wκξ (z)

∂zi

= lim
κ→∞

∫
dr κi(ξi(r)− zi)m(r)

∏
i=1,M exp

[−β κi2 (ξi(r)− zi)2
]

∫
drm(r)

∏
i=1,M exp

[−β κi2 (ξi(r)− zi)2
] · (11)

In other words, the elements of the gradient of the free energy can be expressed as the
limit κ→∞ of the conditional expectation value of the observable κi(ξi(r,p)− zi).
We proceed our analysis by considering a specific ensemble, the canonical ensem-

ble: m(r) = exp [−βV (r)] / ∫ dr exp [−βV (r)], with V (r) potential energy. In this
ensemble Eq. (11) reads:

Fξ,i(z) = lim
κ→∞

∫
dr κi(ξi(r)− zi) exp

{
−β
[
V (r) +

∑
i=1,M

κi
2 (ξi(r)− zi)2

]}
∫
dr exp

{
−β
[
V (r) +

∑
i=1,M

κi
2 (ξi(r)− zi)2

]} ·

(12)

The ensemble average at the r.h.s. of Eq. (12) can be estimated by MD or MC driven

by the potential Ṽ (r;z) = V (r) +
∑
i=1,M

κi
2 (ξi(r) − zi)2, as a “time” average of

the observable κi(ξi(r)− zi) along the MD/MC simulation. Thus, by performing an
MD/MC simulation with the biased potential Ṽ (r;z) and the k large enough we can
obtain an estimate for the gradient of the Landau free energy.

2.1.2 Two-steps algorithm for sampling pξ(z)

Consider the following equation of motion (EoM) for the CVs:

γzż = −F ξ(z) +
√
2β̄−1γηz(t) (13)
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Fξ(z)

β̄

β̄

β̄ < β̄

F
ξ
(z

)

z
Fig. 1. Sketch of the Landau free energy vs its collective variable ξ. The blue and red lines
denote the value of the thermal energy at β̄′ and β̄′′, respectively. In the case of β̄′′ it is easier
for the system to overcome the Landau free energy barrier separating the two metastable
states and, thus, sampling p̄ξ(z).

where γz is a friction coefficient, ηz(t) is a vector whose elements, ηi(t), are standard
white noise processes, and β̄ is an inverse temperature that might differ from the
physical inverse temperature, β. The distribution sampled by the dynamics of Eq. (13)
is p̄ξ(z) = exp[−β̄Wξ(z)], which can be computed by building the histogram of z
along the trajectory. p̄ξ(z) and pξ(z) are in a very simple relation with each other:

pξ(z) = p̄ξ(z)
β/β̄ . Thus, once p̄ξ(z) is known it is, in principle, an easy matter to

obtain pξ(z).

If β̄ � β the value of p̄ξ(z) in regions of low probability is exponentially enhanced.
Thus, in an MD run the time the system takes to move from one metastable state
to another is reduced, and the sampling of the multimodal marginal PDF is faster.
This effect can be understood pictorially considering that β̄−1 is the thermal energy
available to the system. When β̄−1 is much lower than the Landau free energy barrier
separating two metastable states the system cannot easily pass from one to the other
(see Fig. 1). On the contrary, when the thermal energy is larger, i.e. β̄ is smaller, the
system can easily cross this barrier.

The dynamics of Eq. (13) can be implemented by a two-step algorithm. In the
first step the gradient of the Landau Free energy, F ξ(z), is computed by RMD or

RMC driven by the potential Ṽ (r;z) of Sect. 2.1.1 at the current CVs position. In
the second step z is evolved according to a time discretized version of Eq. (13) using
F ξ(z) computed in the first step.

It is worth remarking that any dynamics sampling a PDF of the generalized Boltz-
mann weight type, pξ(z) = exp[−βWξ(z)], such as Langevin Dynamics, Nosé-Hoover
chanins [30], etc., can be used in place of Eq. (13).

In the following we explain how the calculation of F ξ(z) and evolution of z can
be merged in a single-step algorithm.

2.1.3 One-step TAMD/TAMC algorithm

We can take advantage of the properties of systems composed of sub-systems whose
evolution is adiabatically separated (see Ref. [50] and references cited therein) to
derive a single-step algorithm to sample p̄ξ(z), i.e. an algorithm in which we evolve
together z and Γ.
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Let us start recalling a theorem on the dynamics of adiabatically separated sub-
systems. Consider a system driven by the following EoM:

{
ẏ = 1

ε
h(x, y)

ẋ = g(x, y)
(14)

where g(x, y) and h(x, y) are the forces governing the dynamics of x and y, respec-
tively, and are assumed to be of the same order of magnitude. ε is a parameter
measuring the separation of the time-scales in the system. If the dynamics of y at x
fixed has an invariant measure, mε(y |x), then in the limit ε→ 0 x evolves according
to the dynamics:

ẋ = G(x) (15)

where G(x) = limε→0
∫
dy g(x, y)mε(y |x). In other words, in the limit ε → 0 x

evolves according to the effective force G(x).
In TAMD we take advantage of this result to introduce a combined z−r adiabat-

ically separated dynamics in which z moves according to the force −F ξ(z). Consider
the following EoM:

⎧⎨
⎩
ṙ = −γ−1r ∇rṼ (r;z) +

√
2β−1γ−1r ηr(t)

ż = −γ−1z ∇zṼ (r;z) +
√
2β̄−1γ−1z ηz(t).

(16)

The values of γr and γz can be tuned such that the dynamics of z is much slower
than the dynamics of r. In practice, the values of γr and γz must be such that z does
not move (significantly) over the timescale necessary for the particles’ dynamics to
sample the conditional PDF m(r|z). If this condition is met, according to Eqs. (14)
and (15) z moves following the effective EoM:

ż = −γ−1z G(z) +
√
2β̄−1γ−1z ηz(t) (17)

with

Gi(z) =

∫
dr ∂Ṽ (r;z)/∂zi exp[−βṼ (r;z)]∫

dr exp[−βṼ (r;z)]

≡
∫
dr κi(ξi(r)− zi) exp[−βṼ (r;z)]∫

dr exp[−βṼ (r;z)] = Fκξ,i(z). (18)

If the values of κ are large enough z moves according to an overdamped dynamics
driven by the force F ξ(z), thus sampling, without any need to compute explicitly
F ξ(z), the same PDF, p̄ξ(z) = exp[−β̄Wξ(z)], of the two-step algorithm presented
in Sect. 2.1.2.
In the original article, Ref. [28], TAMD has been introduced using a set of coupled

overdamped EoM (analogous to Eq. (16)). However, this method is not limited to this
type of dynamics, and the overdamped dynamics can be straightforwardly replaced
by other types of dynamics sampling the same ensemble, for example Langevin dy-
namics or Nosé-Hoover chains EoM [30] for the canonical ensemble. TAMC [4] takes
advantage of this freedom to deal with the case of CVs whose dependence on the
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configuration is not given by an analytical expression. TAMD, in fact, requires that
the CVs are differentiable, so that one can compute the forces acting on particles,

−∇rṼ (r;z) = −(∇rV (r)+∑Mi=1 κi(ξi(r)−zi)∇rξi(r)). On the contrary, MC, which
does not require the calculation of forces, can deal with non-differentiable CVs. Thus,
we can replace the stochastic dynamics (first row in Eq. (16)) with a MC evolution
for the particles. In TAMC, like in TAMD, the evolution of particles is driven by the
biased potential Ṽ (r;z). The condition for the adiabatical separation of the evolution
of z with respect to r can be easily redefined in TAMC: the condition is that z does
not move (significantly) over the number of steps necessary for the MC “evolution”
of the particles to sample the conditional PDF m(r|z).

2.2 The single sweep method

TAMD and TAMC sample the marginal PDF p̄ξ(z) = exp[−β̄Wξ(z)]. Thus we could
bin the z-space and build the corresponding histogram along a TAMD/TAMC tra-
jectory to obtain p̄ξ(z). From this we could get pξ(z) by the exponential rescaling :

pξ(z) = p̄ξ(z)
β/β̄ . (19)

This approach presents a problem. Given the exponential scaling between the two
PDFs, the error on pξ(z) is proportional to the error on p̄ξ(z) according to the relation

σpξ(z) ∝ p̄ξ(z)
β

β̄
−1
σp̄ξ(z). In presence of a rare event β 
 β̄, thus β/β̄ − 1 ∼ β/β̄, and

the previous relation reads σpξ(z) ∼ p̄ξ(z)β/β̄σp̄ξ(z) = pξ(z)σp̄ξ(z). This suggests that
TAMD and TAMC magnify the error of the estimated reduced PDF with respect to
the biased PDF they sample in the regions of high probability, i.e. near the modes
of the reduced PDF. Thus, long trajectories are necessary to estimate accurately the
reduced PDF. More in general, methods based on binning-and-histogramming require
long trajectories to have good statistics on the PDF of the relevant region of the CV
space, and their computational cost scales exponentially with the dimensionality of the
space. The objective of the Single Sweep Method (SSM) is to avoid this shortcomings.
Before discussing in detail the method, let us highlight the basic idea. In the SSM

the Landau free energy is expanded on a suitable basis set, and the values of the
coefficients of the expansion are determined by a least square fitting over the gradient
of the Landau free energy obtained from simulations. Two technical problems need
to be solved to implement this idea: i) how to select suitable points in the CV-space
where to compute the gradient of the Landau free energy for the fitting, and ii) how
to chose the basis set for the expansion. In the following, we present the general idea
thoroughly, and discuss the technical points in detail.
The SSM algorithm consists of two phases. In the first phase the CV space is

explored to identify metastable states and the regions among them. This is the part
of the CV space where reactive trajectories tend to pass through, and over which one
typically want to reconstruct the Landau free energy landscape. This exploration of
the CV space can be performed by TAMD, TAMC or any other accelerating technique.
In the second phase we reconstruct the Landau free energy on the reactive region
identified in the first phase. We assume that the Landau free energy can be efficiently
expanded on a suitable basis set:

W̃ξ(z; c,π) =
∑
α

cαχα(z;π). (20)

The basis set, in turn, can depend on few parameters, π = {πβ}β . The values of
expansion coefficients, c = {cα}α, and the basis set parameters, π, are obtained by
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fitting ∇zF̃ξ(z; c,π) on the the estimates gradient of the Landau free energy obtained
by RMD/RMC (Sect. 2.1.1) at a suitable set of z-points.
The name Single Sweep refers to the fact that, at variance with other methods,

here the accelerated trajectory needs to sweep through the CV space only once.
As basis set for the expansion one cannot use “diffuse” functions, like planewaves,

as these typically require a regular domain of definition. Thus, their use would re-
quire to reconstruct the free energy over a regular subspace of the entire CV-space, an
approach that would not scale conveniently with the dimensionality of the CV-space.
Localized basis sets suits better the SSM. One typical choice is to use a set of Gaussian

functions centered at zα points of the the CV-space: χα(z;σ) = exp[− (z−zα)
2

2σ2α
]. To

define the basis set we must set the value of σ = {σα}α, a set of tunable para-
meters that we will discuss shortly, and the centers of the gaussian functions, zα.
The zα are taken along the TAMD/TAMC sweeping trajectory. The first Gaussian
is deposited (centered) at the first point of the trajectory, z1 = z(0). The other
Gaussians are deposited at the positions z(t) having a distance from the centers of
the previously deposited Gaussians, {zα}α=1,L, greater than a predetermined value d,
minα (|z(t)− zα|) � d. d is a parameter controlling the size of the basis set (number
of functions in the basis set), and thus the accuracy of the reconstructed Landau free
energy.
As mentioned above, we set the values of the expansion coefficients c, and σ,

via the least square fitting of the gradient of the Landau free energy estimated by
RMC/RMD. To this end we introduce the objective function:

E(c,σ) =
∑
k

|∇zF̃ c,σξ (zk)− f̃(zk)|2 (21)

=
∑
k

∣∣∣∣∣
∑
α

{cα∇χα(zk;σ)} − f̃(zk)
∣∣∣∣∣
2

with f̃(zk) an estimate of fi(z) =
∫
dr κi(ξi(r)−zi) exp{−β[V (r)+∑i=1,M

κi
2 (ξi(r)−zi)2]}∫

dr exp{−β[V (r)+∑i=1,M
κi
2 (ξi(r)−zi)2]}

(see Eq. (12)). The optimal values of c and σ are:

{c∗,σ∗} = argminc,σE(c,σ). (22)

This minimization is, in general, a complex non-linear problem. However, if σα is the
same for all the χα(z;σ) functions (hereafter simply denoted by σ), a restriction im-
plied in the definition of the basis set given above requiring a validation, the problem
can be simplified. We can use a two-step procedure. First, for a given value of σ we
minimize E(c, σ) only with respect to c, thus obtaining a solution parametrically de-
pending on the value of σ, c∗(σ). c∗(σ) (and E(c∗(σ), σ)) are computed for increasing
values of σ starting from σ = d, the distance between the centers. Then, the optimal
value of σ, σ∗ = argminσE(c∗(σ), σ), is identified with the value corresponding to the
lowest E(c∗(σ), σ) among those obtained in the previous step.
At fixed σ, c∗ can be obtained according to the following equation:

∇cE(c, σ)|c=c∗ = Ac∗ − b = 0 (23)

where A is a matrix of elements Aα,β =
∑
k∇Tzχα(zk) · ∇zχβ(zk) (the index T

denotes the transpose of the vector ∇zχα(zk)) and bβ = ∑kf̃T (zk) · ∇zχβ(zk).
Eq. (23) can be solved by standard linear algebra methods implemented in widely
used libraries of computer routines, available in many programming languages.
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The version of the method explained above assumes that a set of spherical
Gaussian functions is adeguate to expand the Landau free energy. However, when
the CVs are very different in nature, and/or when the Landau free energy has
strong asymmetries, i.e. it is steeper along some direction and shallower along
others, the choice of spherical Gaussians is unjustified and non optimal. The stan-
dard SSM can be improved, ISSM [32], by using the more general Gaussian basis
set: χα(r) = exp

[−1/2(z − zα)TΣ−2α (z − zα)], where Σα is the covariance matrix
associated to χα(r) (in the following the symbol Σ denotes the array whose elements
are Σα matrices).
A second aspect in which ISSM improves over the standard SSM is in the defi-

nition of the objective function. In ISSM E(c,Σ) ≡ ∑k wk|F̃ c,Σξ (zk) − f̃(zk)|2. wk
is a weight measuring the relevance of the point zk in the fitting procedure. Thus,
for example, setting wk = 1/(|f̃(zk)|2 + δ), where δ is a small constant parameter
added to avoid singularities, we can increase the relevance of free energy minima
(metastabilities) and maxima (transition states) in the least square fitting.
The minimization of the new objective function, E(c,Σ), cannot be achieved

with the simple procedure outlined above for the standard SSM. In this case we use
a MC simulated annealing-like procedure [20] in the space of the parameters c and
Σ. This procedure is based on the PDF p(c,Σ) = exp[−β̄E(c,Σ)]/N , where N is
a normalization constant and β̄ is a fictitious inverse temperature. β̄ is initially set
to a relatively low value, and is then increased during the procedure. In principle,
when β̄ is very large the distribution is peaked around the absolute minimum of
E(c,Σ), which then gives the optimal values of c and Σ. However, depending on the
rate of increase of β̄, the trajectory in the c −Σ space can get trapped into a local
minimum of E(c,Σ). Thus, the simulated annealing procedure is repeated several
times starting from different initial conditions to confirm that one has found the
absolute minimum of the objective function. It is worth remarking that the simulated
annealing procedure is computationally cheap with respect to the very expensive
calculation of f̃(zk). Thus repeating the simulated annealing procedure a few times
does not increase significantly the overall computational cost of the simulation.

3 Applications

TAMD, TAMC and SSM have been applied by us and several collaborators to various
problems including phase transitions [24,39], defects in nanoparticles [14,18]; chemical
reactions [6,31,46], biological processes, [26] and the wetting of textured surfaces
[8–11]. We have also employed the RMD/RMC method for sampling the conditional
PDF of Sect. 2.1.1 as one of the ingredients for our method, the dynamical non-
equilibrium MD, for studying non-equilibrium phenomena [5,37,38,44].
In this section we present two applications for elucidating TAMC and SSM. These

results have been already reported in previous publications, and are used here only
as illustrations of the methods described in the previous section. In Sect. 3.1 we
illustrate the use of TAMC to investigate the nucleation of a Lennard-Jones crystal
from a moderate supercooled liquid [4]. In Sect. 3.2 we show an application of SSM to
reconstruct the free energy landscape of the hydrogen vacancy migration in defected
alanates [33,34].

3.1 Nucleation of a Lennard-Jones crystal from a moderate supercooled liquid

The formation of a new phase, B, into a pre-existing one, A, is typically described
in terms of an observable measuring the size of the growing nucleus, for example its
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volume, VB , or number of particles in the new phase, NB . In this model, known as
Classical Nucleation Theory (CNT – see Ref. [19] for an exhaustive description of the
theory), the free energy of the biphasic system is the sum of two terms: i) a bulk term,

(μB−μA)NB with μ chemical potential, and ii) a surface term, cγA,BN2/3B , with γA,B
interface energy between the phases A and B. The value of c depends on the shape
of the B nucleus; for a spherical nucleus of molecular volume v̄, c = (36π)1/3v̄2/3.
Several works have shown that NB is insufficient to describe the nucleation also in the
case of a simple, Lennard-Jones (LJ), liquid (see, for example, Ref. [35]). Nevertheless,
NB (or equivalent CVs) resulted to be a key CV for describing practically any phase
transition.
The definition of the CV NB is non trivial. First one needs to identify particles

in a “state” consistent with the phase B and then find clusters of these particles. In
the case of the nucleation of a LJ crystal, we define particles to be crystal-like on the
base of their bond orientational order parameter [45]

qlm(i) =

Ni∑
j=1

Ylm(r̂ij) (24)

where Ylm(r̂ij) is the spherical harmonics of order l and m computed at the polar
and azimuthal angles associated to the vector rij connecting particles i and j (r̂ij
is the corresponding unit vector). Ni is the number of nearest neighbors of the atom
i, i.e. the number of particles j satisfying the condition |rij | � 1.5 σ, with σ length
parameter of the LJ pair potential.
In crystals the qlm of all atoms is the same because their neighboring atoms have

the same relative position (r̂ij = r̂i′j′). In liquids, on the contrary, the orientation of
r̂ij vectors around each atom is random, and thus qlm(i) of neighboring atoms can
differ significantly. On the basis of this empirical observation we distinguish between
crystal-like and liquid-like particles. We compute

Cij =

∣∣∣∑lm=−l qlm(i)∗qlm(j)
∣∣∣

|ql(i)| |ql(j)| (25)

with |ql(i)| (|ql(j)|) defined as |ql(i)| =
√∑l

m=−l qlm(i)∗qlm(i). Cij can be interpreted
as the normalized dot product between the vectors ql(i) and ql(j), with components
qlm(i) and qlm(j). Therefore Cij measures how much the two vectors are parallel. In
a Bravais lattice at 0K the qlm(i) of all the atoms is the same, and Cij = 1. At finite
temperature this is not true, but it has been empirically observed that Cij � 0.5 [47].
We call particles i and j satisfying this condition “connected”. In the following, this
term will be used in this strict sense. Particles satisfying this condition are found also
in liquids, but the number of connected particles in LJ crystals (� 7) is higher than
in the liquid at the same T (� 4− 5). Thus, we use the number of particles connected
to the particle i, ni, to assign it to the crystal-like set.
The next step is to identify clusters of crystal-like particles. These are set of

connected crystal-like particles. For this we use the Depth-First search method [22].
This method consists in searching the crystal-like particles connected to a root one,
selected randomly, and exploring as far as possible along these connections. Once
all the particles directly or indirectly connected to the root are identified the search
for the members of the present cluster is completed. The search for the particles
belonging to another cluster is then started by defining a new root among the crystal-
like particles not yet assigned to any nucleus. This search is repeated until all the
crystal-like particles have been assigned to a cluster. Our CV, NB(r), is the size
(number of particles) of the biggest of these clusters.
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Fig. 2. Left: free energy vs. NA curve at P = 5.6 and T = 0.92. The nucleus critical size is
also reported. Right: same graph at T = 1.2. Adapted from Ref. [4].

Being the value of NB(r) the result of a search algorithm, this CV is not differ-
entiable and it cannot be used with MD based enhanced sampling methods. TAMC
allows to overcome this problem. It is worth remarking that for the reconstruction
of the Landau free energy of the single NB(r) one could use simpler methods, e.g.
umbrella sampling. However, in more realistic cases, when one consider more than
one CV, and/or other metastabilities might be present (e.g. various crystal phases),
the umbrella sampling is unsuitable, and TAMC becomes a convenient method to
explore the CV-space.
We performed unbiased 2× 106 steps MC of a liquid sample of 3456 LJ particles

at pressure and temperature P = 5.6 and T = 0.92 (LJ units are used throughout
this section), corresponding to a 17% supercooling (current temperature is 17% lower
than the crystallization temperature). Along this simulation we computed NB(r). We
observed NB(r) fluctuating around 20, which is smaller than the size corresponding
to the maximum of the Landau free energy (see below). This result simply confirms
that nucleation is a rare event, and that relevant information on this process, such as
the Landau free energy barrier and the critical size of the nucleus, cannot be obtained
by brute force simulations in the conditions of “moderate” supercooling.
We, then, run a TAMC simulation at β̄ = 1/(30kBT ), to be compared with a pre-

vious estimate of the Landau free energy barrier at T = 0.83 of ΔW † ∼ 25 kBT [35].
This TAMC trajectory explores a broad range of values of the CV in the interval
NA(r) ∈ [0− 600]. To reconstruct the Landau free energy profile and take advantage
of the ICHEC Stokes supercomputer, with its large number of cores, we run 32 in-
dependent trajectories started from 4 configurations at NB(r) = 100, 200, 300, 400.
For each configuration we extracted 8 initial velocities ż from a Maxwell-Boltzmann
distribution at T̄ = 30. In Fig. 2 (left) we report the corresponding free energy profile.
In spite of the difference in the free energy barrier, the critical size as estimated

from our TAMC simulation is in good agreement with the one reported by Moroni
et al. [35]. The critical size, defined as the z corresponding to the maximum of the
free energy, is ∼ 230 in our simulations while it is 243 in Ref. [35].
We also run simulations at a higher temperature, T = 1.2 (Fig. 2, right). According

to the LJ phase diagram [15], at this temperature the most stable phase is the liquid
phase. We therefore expect the Landau free energy curve to increase monotonically
with the nucleus size. Our simulations produce a result qualitatively consistent with
this trend: the Landau free energy increases with the nucleus size, even though it seems
to reach a plateau at large values of NB . This is most likely due to the insufficient
statistics we get for states of very low probability.
We also analyzed the structure of nuclei formed along the TAMC trajectory.

Focusing on the T = 0.92 case, we found that sub-critical (small) nuclei are, globally,
disordered. An example of such a nucleus is shown in Fig. 3A. This nucleus does not
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(A) (B)
Fig. 3. Snapshots of an under-critical nucleus (A) and the ordered core of a post-critical
nucleus (B). In panel (B) the bonds are superimposed to the atomistic structure to emphasize
the ordered shape of the structure. Adapted from Ref. [4]

show any degree of global ordering. Rather, it looks liquid-like. On the contrary, post-
critical nuclei show a more ordered structure, with an fcc/hcp-like core (see Fig. 3B).

3.2 Hydrogen diffusion in a defected sodium alanate crystal

After discovery that Ti-doped sodium alanates can reversibly uptake/release hydro-
gen [2] NanAlHm became a prototypical material for hydrogen storage.
In the experimental investigation of the de-hydrogenation process of NaAlH4 a

controversy emerged. This concerns the nature of a mobile species present in Na3AlH6,
one of the products of dissociation of NaAlH4

3NaAlH4 � Na3AlH6 + 2Al + 3H2. (26)

Anelastic spectroscopy experiments [41,42] have identified this mobile species to be
hydrogen related, and involved in a process characterized by an activation barrier of
∼ 0.12 eV. It has been speculated that this mobile species is an hydrogen vacancy
diffusing in the forming Na3AlH6 crystal. Successively, quasi-elastic neutron scattering
experiments [53] supported the hypothesis that the mobile species was an Na vacancy.
With the aim to clarify this question we reconstructed the free energy of a set of CVs,
described below, suitable to describe the H-vacancy migration process.
Vacancy migration is an elusive process, and several CVs have been introduced to

describe it [1,7,12,40]. Apart for the method introduced in Ref. [7], which has been
developed after the investigation we report here, all the other methods assume the
main involvement of one single atom in the process. In the present case, we cannot
exclude the involvement of more atoms in a cooperative process. Thus, we did not
use any of the CVs introduced in previous works. As CVs we use the smoothed
coordination number of the Al atoms of the sample with respect to hydrogen. Given
the configuration, r, the coordination number of the Al atom i, CAli , is defined as
the number of hydrogen atoms at a distance from this aluminum atom lower than a
prescribed value, R:

CAli =

NH∑
j=1

ΘR(rij) (27)

where the sum runs over the hydrogen atoms in the sample, rij is the distance between
the i-th Al the j-th H atoms, and ΘR(rij) is the Heaviside step function, taking value



2402 The European Physical Journal Special Topics

Fig. 4. Computational sample used for the investigation of the H-vacancy migration in
defective NaAlH6. Green spheres represent Al atoms, small white sphere H atoms, and
big blue spheres Na atoms. The red arrow points the defective AlH5 unit. Adapted from
Refs. [33] and [34].

1 if rij � R and 0 otherwise. The smoothed version of the coordination number
defined in Eq. (27) is obtained by replacing ΘR(rij) with the Fermi function f(rij) =
1/(1+exp[λ(rij−R)]), where λ is a parameter controlling the smoothness of CAli . At
variance with the standard coordination number of Eq. (27), the smoothed version
can take non-integer values.
For a suitable choice of R and λ (R = 2 Å and λ = 10 Å−1 in the present case),

in a perfect Na3AlH6 crystal the coordination number of all the Al atoms is 6. If the
crystal contains H-vacancies, some of the Al atoms have a lower coordination number,
typically 5. Thus, when an H-vacancy migrates we must observe the corresponding
CAli changing from 6 to 5, or vice versa, depending on whether the i-th Al atom is
an acceptor or donor of the vacancy. The H-vacancy migration process could be a
cooperative (collective) phenomenon, with more than two Al atoms involved in the
process. In this case, we should see the coordination number of more than two Al
atoms to change at the same time.
We investigated the H-vacancy migration process in a sample consisting of 7 AlH6

and 1 AlH5 units (see Fig. 4). Apart for the biasing term, the forces acting on the
atoms are obtained from the density functional theory (DFT). We refer the reader
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Fig. 5. Series of snapshots along an H-vacancy migration event. In red is highlighted the
migrating hydrogen atom. Adapted from Refs. [33] and [34].

interested in the details of our simulations to the original articles [33,34]. We first
performed a sweeping TAMD simulation, with the temperature of the particles and
CVs set to T = 380K and T = 6500K, respectively. In a 100 ps TAMD simulation
we observed 44 vacancy migration events. All these events involve only two Al atoms
at a time, with the donation of one of the H atoms coordinating an aluminum to the
other involved in the event. A series of snapshots taken along one of these events is
shown in Fig. 5, illustrating the non-cooperative nature of the process.

The fact that the migration involves only two Al atoms at a time suggests that
the migration process can be described in terms of only two coordination numbers,
denoted C1 and C2 in the following, and the corresponding free energy.

We computed the free energy, WC1,C2(z1, z2), using different versions of the SSM:
i) the normal version, ii) the version with the normal objective function but with a
different scalar value of σ per Gaussian function in the basis set, and iii) the version
with the weighted objective function and a different scalar value of σ per Gaussian
function in the basis set. In all the cases we considered two basis sets consisting of 37
and 55 Gaussian functions centered at points taken along the TAMD simulation, as
explained in Sect. 2.2. In the case iii) the contribution of each term to the objective

function is weighted by wk = 1/(|f̃(zk)|2 + δ), where f̃(zk) is an estimation of the
gradient of the Landau free energy at the point zk obtained by RMD, and δ is a small
positive number introduced to avoid singularities.

In Fig. 6 we report the isocontour plots of the two-dimensional free energy function
reconstructed with the three approaches. In each panel we report the plots obtained
with the two basis sets, in black those corresponding to the 37-elements basis set and
in red those corresponding to the 55-elements one. The general features of the free
energy reconstructed with the various versions of SSM and with all the basis sets are
consistent: two minima at (∼ 5.7,∼ 4.8) and (∼ 4.8,∼ 5.7), and a first order saddle
point at (∼ 5.1,∼ 4.9). We notice that in passing from version i) to ii) to iii) there is
a systematic improvement of the consistency of the results between the smaller and
larger basis set. In particular, we notice a remarkably good agreement between the
results obtained with the two basis sets for the version iii) in the region of relatively
low free energy, namely in the regions around the two minima and the saddle point.
This is the most important region of the CV-space because is the region where most
of the reactive trajectories pass through (see Ref. [27], and our review on rare event
methods Ref. [3]). The improved convergence of the free energy reconstruction for
smaller basis sets for the versions ii) and iii) of SSM is due to the fact that we can find
optimal values of σ for both the shallower regions of the free energy in correspondence
of the minima and saddle point, and the steeper zones in the high energy domain of
the free energy. The further improvement in the reconstruction of the Landau free
energy obtained with the version iii) in the region of minima and saddle point is due
to the higher contribution of the terms associated with these domains to the objective
function.
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Fig. 6. Comparison of the contour lines of the free energy reconstructed with 37- (black)
and 55-elements (red) basis sets. The upper panel shows the profile reconstructed with the
standard SSM. The runs in the lower panels were performed using the version with one
value of σ per Gaussian function and the standard objective function (left) and the weighted
objective function (right), respectively. The green arrows in the bottom panels represent the
“exact” gradient of the free energy at selected centers. The blue arrows are the gradients
computed at the same centers from the reconstruction of the free energy obtained by the
various SSM versions. Adapted from Ref. [32].

This latter remark is made more evident by the comparison between the exact
gradient of the free energy, obtained by RMD (Sect. 2.1.1), and the gradient of the
reconstructed free energy. We notice that in the case of the standard objective function
the agreement between the exact and reconstructed gradient of the free energy is very
good in the high free energy domain, where its gradient is large (long arrows at the
left bottom of the graphs). On the contrary, the agreement is worse in the relative
low free energy region. This is because the points where the gradient is large give a
larger contribution to the objective function. This problem is solved with the weighted
objective function, and we notice that in this case the agreement is improved in the
relevant low free energy domain.

4 Conclusions

In this article we discussed a set of methods for exploring the collective variable space
and reconstruct the Landau free energy in presence of metastabilities. In principle,
TAMD and TAMC can be used for both exploring the CV space and, via binning-and-
histogramming, compute the Landau free energy in this space. However, binning-and-
histogramming is not an efficient approach, and SSM is better suited at reconstructing
the free energy in the “reactive region”.
It is worth remarking that the methods discussed in this article cannot be used as

black boxes for several reasons. First of all, these methods require the selection of a
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suitable set of CVs. This problem, which is not specific of the methods discussed here
but is common to all the collective variable methods, is very difficult to tackle as, at the
moment, there are not simple procedures to identify the relevant CVs a priori. There
are attempts to address this issue (see, for example, Refs. [16,25,43,49]), but much
remains to be done in this direction. Second, TAMD/TAMC and SSM require the
tuning of a set of parameters, such as the masses and value of the frictions in TAMD
(or characteristic times of the Nosé-Hoover thermostat, if these EoMs are used in place
of the overdamped dynamics), the coupling constants κ of the restraining potential for
the calculation of the mean force, etc. Thus, some experience and extensive testing is
necessary to obtain a reliable description of the reactive process and a correct estimate
of the free energy landscape.

SM and GC thank Science Foundation Ireland (SFI) for support via the grant SFI 08-IN.1-
I1869. S.M. acknowledges financial support from the MIUR-FIRB Grant No. RBFR10ZUUK.

A Potential of mean force and the Landau free energy

In this appendix we show that −∇ξWξ(z) is the expectation value of a generalized
mean force computed over a conditional “equilibrium” distribution. Thus, the integral
of −∇ξWξ(z) along a path in the ξ-space is the work made by the generalized forces
during a reversible process bringing the system from the initial to the final point, i.e.
a reversible work, thus a free energy.
To prove that −∇ξWξ(z) is a generalized mean force we use Eqs. (8) and the

definition of the reduced PDF

pξ(z) =

∫
dΓ m(Γ) δ(ξ(Γ)− z) (28)

with δ(ξ(Γ) − z) = ∏i=1,M δ(ξi(Γ) − zi). First, we introduce a set of general-
ized coordinates and associated momenta,

(
ξ, q,pξ,pq

)
, where ξ are the CVs con-

sidered in the main text of the article, and q, pξ and pq are the variables and
associated momenta necessary to complete the canonical transformation from the
original set of variables (r,p). For a canonical transformation holds the relation
dΓ m(Γ) = dξdqdpξdpqp(ξ, q,pξ,pq), where p(ξ, q,pξ,pq) is the PDF at a point

in the
(
ξ, q,pξ,pq

)
space. In the following we assume to work in the canonical en-

semble. In this case

dΓ exp[−βH(Γ)]∫
dΓ exp[−βH(Γ)] =

dξdqdpξdpq exp[−βH̄(ξ, q,pξ,pq)]∫
dξdqdpξdpq exp[−βH̄(ξ, q,pξ,pq)]

(29)

with H̄(ξ, q,pξ,pq)] = H(Γ(ξ, q,pξ,pq))] the system Hamiltonian in the coordinates(
ξ, q,pξ,pq

)
. Further, we make use of the property of the Dirac-δ function that

dδ(x− y)/dx = −dδ(x− y)/dy. Plugging all that together we get:
∂pξ(z)

∂zi
=
∂

∂zi

∫
dr dp m(r,p) δ(ξ(r,p)− z) (30)

=

∫
dξdqdpξdpq p(ξ, q,pξ,pq)

∂δ(ξ − z)
∂zi

= −
∫
dξdqdpξdpq p(ξ, q,pξ,pq)

∂δ(ξ − z)
∂ξi

·
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Integrating by parts the r.h.s. of the last equality, one gets

∂pξ(z)

∂zi
=

∫
dξdqdpξdpq

∂p(ξ, q,pξ,pq)

∂ξi
δ(ξ − z)

= −β
∫
dr dp

∂H̄ (ξ, q,pξ,pq)
∂ξi

m(r,p)δ(ξ(r,p)− z) (31)

Plugging Eq. (31) into Eq. (8) we get:

−∂Wξ(z)
∂zi

= −
∫
dr dp

∂H(Γ)
∂ξi

m(r,p)δ(ξ(r,p)− z)
pξ(z)

· (32)

Therefore, −∇zWξ(z) is the average value of the generalized force
−∇ξH

(
r(ξ, q),p(ξ, q,pξ,pq)

)
over the conditional PDF m(r,p|z) of Eq. (6).
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