
Resource

Reconstruction and Simulation of Neocortical

Microcircuitry
Graphical Abstract
Highlights
d The Blue Brain Project digitally reconstructs and simulates a

part of neocortex

d Interdependencies allow dense in silico reconstruction from

sparse experimental data

d Simulations reproduce in vitro and in vivo experiments

without parameter tuning

d The neocortex reconfigures to support diverse information

processing strategies
Markram et al., 2015, Cell 163, 456–492
October 8, 2015 ª2015 Elsevier Inc.
http://dx.doi.org/10.1016/j.cell.2015.09.029
Authors

Henry Markram, Eilif Muller,

Srikanth Ramaswamy,

Michael W. Reimann, ..., Javier DeFelipe,

Sean L. Hill, Idan Segev, Felix Schürmann
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SUMMARY

We present a first-draft digital reconstruction of the
microcircuitry of somatosensory cortex of juvenile
rat. The reconstruction uses cellular and synaptic
organizing principles to algorithmically reconstruct
detailed anatomy and physiology from sparse experi-
mental data. An objective anatomical method defines
a neocortical volume of 0.29 ± 0.01 mm3 containing
�31,000 neurons, and patch-clamp studies identify
55 layer-specific morphological and 207 morpho-
electrical neuron subtypes. When digitally recon-
structed neurons are positioned in the volume and
synapse formation is restricted to biological bouton
densities and numbers of synapses per connection,
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their overlapping arbors form �8 million connections
with �37 million synapses. Simulations reproduce
an array of in vitro and in vivo experiments without
parameter tuning. Additionally, we find a spectrum
ofnetworkstateswithasharp transition fromsynchro-
nous to asynchronous activity, modulated by physio-
logical mechanisms. The spectrum of network states,
dynamically reconfigured around this transition, sup-
ports diverse information processing strategies.

INTRODUCTION

Since Santiago Ramón y Cajal’s seminal work on the neocortex

(DeFelipe and Jones, 1988; Ramón y Cajal, 1909, 1911), a vast

number of studies have attempted to unravel its multiple levels
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of anatomical organization (types of neurons, synaptic connec-

tions, layering, afferent and efferent projections within and be-

tween neocortical regions, etc.) and functional properties

(neuronal response characteristics, synaptic responses and

plasticity, receptive fields, functional neocortical columns, emer-

gent activity maps, interactions between neocortical regions,

etc.). However, there are still large gaps in our knowledge, espe-

cially concerning the anatomical and physiological organization

of the neocortex at the cellular and synaptic levels.

Specifically, while neurons have been classified in terms of

their electrophysiological behaviors (Connors and Gutnick,

1990; Kasper et al., 1994; McCormick et al., 1985), expression

of different calcium-binding proteins and neuropeptides (Celio,

1986; DeFelipe, 1993; Gonchar and Burkhalter, 1997; Kawagu-

chi and Kubota, 1997; Toledo-Rodriguez et al., 2005) and

morphological features (Kisvárday et al., 1985; Larkman,

1991a; Tamás et al., 1998; Wang et al., 2002), there is still no

consensus on an objective and comprehensive classification of

neuron types. Although the distribution of protein and genetic

markers for different neurons (Grange et al., 2014; Hendry

et al., 1989; Kawaguchi and Kubota, 1997; Meyer et al., 2002;

Toledo-Rodriguez et al., 2004) and the relative proportions of

some morphologically and electrically classified neurons (Beau-

lieu and Colonnier, 1983; Cauli et al., 1997; Hendry et al., 1984;

Meyer et al., 2010a; Rudy et al., 2011) have been described,

we lack a comprehensive view of the number of each type of

neuron in each layer. Since the advent of paired recording tech-

niques, several studies have characterized the anatomical and

physiological properties of synaptic connections between

some types of neurons (Cobb et al., 1997; Feldmeyer et al.,

1999; Frick et al., 2008; Gupta et al., 2000; Mason et al., 1991;

Reyes et al., 1998; Thomson et al., 1993), but a large proportion

have yet to be studied. Although labeling with retrograde and

anterograde tracers and trans-synaptic viral vectors, imaging

with array tomography, and saturated reconstruction with elec-

tron microscopy have made it possible to begin mapping pre-

and postsynaptic neurons for individual neocortical neurons

(Boyd and Matsubara, 1991; Callaway, 2008; Glenn et al.,

1982; Kasthuri et al., 2015; Killackey et al., 1983; Micheva and

Smith, 2007; Micheva et al., 2010; Wickersham et al., 2007),

we know neither the numbers and types of the pre- and postsyn-

aptic neurons associated with any specific neuron type nor the

numbers and locations of the synapses that they form with their

immediate neighbors.

At a functional level, there have been many investigations of

emergent behavior in neocortical slices (Cunningham et al.,

2004; Mao et al., 2001; McCormick et al., 2003; Sanchez-Vives

and McCormick, 2000; Yuste et al., 1997), correlated activity

(Hasenstaub et al., 2005; Livingstone, 1996; Salinas and Sej-

nowski, 2001; Shu et al., 2003; Silberberg et al., 2004; Singer,

1993), and the functional impact of individual neurons across

cortical layers (Sakata and Harris, 2009; Schroeder and Foxe,

2002; Silva et al., 1991; Steriade et al., 1993), as well as in vivo

activity in somatosensory and other cortical areas (Chen et al.,

2015; Klausberger et al., 2003; Leinekugel et al., 2002; Luczak

et al., 2007; Reyes-Puerta et al., 2015; Wilson et al., 2012), How-

ever, we still lack an understanding of the cellular and synaptic

mechanisms and the role of the different layers in the simplest
of behaviors, such as correlated and uncorrelated single-neuron

activity and, more generally, synchronous and asynchronous

population activity. For example, it is known that different types

of neurons are connected through synapses with different dy-

namics and strengths, strategically positioned at different loca-

tions on the neurons’ dendrites, somata, and axons, but the

functional significance of this organization remains unclear.

Computational approaches that abstract away this level of bio-

logical detail have not been able to explain the functional signif-

icance of such intricate cellular and synaptic organization.

Although future experimental research will undoubtedly

advance our knowledge, it is debatable whether experimental

mapping alone can provide enough data to answer these

questions.

Here, we present a complementary algorithmic approach that

reconstructs neuronal microcircuitry across all layers using avail-

able sparse data and that leverages biological principles and in-

terdependencies between datasets to predict missing biological

data. As a test case, we digitally reconstructed a small volume of

tissue from layers 1 to 6 of the hind-limb somatosensory cortex

of 2-week-old Wistar (Han) rat. This model system was chosen

not only because it is one of the most comprehensively charac-

terized in the neocortex, but also because experimental data on

its cellular and synaptic organization are readily available and

validation experiments are relatively easy to perform. In brief,

we recorded and digitally reconstructed neurons from in vitro

brain slices and classified the neurons in terms of well-estab-

lished morphological types (m-types; Figure 1A), positioned

the neurons in a digital volume of objectively defined dimensions

according to experimentally based estimates of their layer spe-

cific densities (Figure 1B), and reconstructed the connectivity

between the neurons (Figure 1C). Neurons were then classified

into electrical types (e-types), using an extended version of the

classification proposed in the Petilla convention (Ascoli et al.,

2008), and models were produced that captured the character-

istic electrical behavior of each type. (Figure 1D); similarly, syn-

apses were modeled to capture the characteristic synaptic dy-

namics and kinetics of particular synapse types (s-types;

Figure 1E). Finally, we constructed a virtual slice and recon-

structed thalamic input using experimental data (Figure 1F;

Meyer et al., 2010b).

This approach yielded a first-draft digital reconstruction of

the microcircuitry, which was validated against a multitude of

experimental datasets not used in the reconstruction. The results

suggest that it is possible to obtain dense maps of neural micro-

circuitry without measuring every conceivable biological param-

eter and point to minimal datasets required, i.e., strategic data.

Integrating complementary, albeit sparse, datasets also makes

it possible to reconcile discrepancies in the literature, at least

partially addressing the problem of data quality and reproduc-

ibility. Simulations exploring some of the emergent behaviors

of the reconstructed microcircuitry reproduce a number of

previous in vitro and in vivo findings and provide insights into

the design and functioning of neocortical microcircuitry. The

experimental data, the digital reconstruction, and the simulation

results are available at the Neocortical Microcircuit Collaboration

Portal (NMC Portal; https://bbp.epfl.ch/nmc-portal; see Ram-

aswamy et al., 2015).
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P H Y S I O L O G Y

Morphological diversity of neurons:
(a) m-types, (b) cloning

Microcircuit anatomy: (a) Microcircuit dimensions,
(b) m-type distribution, and morphology selection

Reconstructing
microcircuit connectivity

Electrical diversity of neurons:
e-types

Synaptic diversity:
s-types

Reconstructing virtual tissue volumes for
in silico  experimentation

A B C

D E F

Figure 1. Workflow for Data-Driven Reconstruction of Neocortical Microcircuitry

(A) Morphological diversity of neurons. (a) Identify the morphological diversity in the neocortical microcircuit (m-types). (b) Repair and then clone the various m-

types with statistical variations to enrich the number of exemplars.

(B) Microcircuit anatomy. (a) Define the spatial dimensions of a unitary microcircuit. (b) Assemble individual neurons in 3D space according to the frequency of

occurrence of each m-type per layer, selecting the appropriate m-type instance that satisfies laminar constraints on the axonal and dendritic distribution.

(C) Reconstructing microcircuit connectivity. Derive the number and location of synaptic contacts formed between all neurons in the microcircuit, based on a

series of synaptic connectivity rules.

(D) Electrical diversity of neurons. Map and model the electrical types (e-types) of each m-type to account for the observed diversity of morpho-electrical

subtypes (me-types).

(E) Synaptic diversity of neurons. Map and model the diversity of synaptic types (s-types) observed between pre-post combinations of me-types, according to

rules derived from synaptic physiology.

(F) Reconstructing virtual tissue volumes. Apply the above strategy to reconstruct defined circuit volumes (microcircuits, slices, mesocircuits) for in silico ex-

periments; insert synapses formed by thalamocortical fibers for stimulation experiments.
RESULTS

Neuron-type Nomenclature
Neurons differ in terms of their location in the brain, morphology,

electrical properties, projections, and the genes and proteins

that they express (for reviews, see Harris and Shepherd, 2015;

Markram et al., 2004). The combination of these properties

implies an immense diversity of neuron types. Given the lack of

sufficient data for other dimensions, the neuronal classification

used for this first-draft digital reconstruction considered only

layer, local morphology, and electrophysiology. Naming of

morphological types was based on the most common names

used over the past century (Connors and Gutnick, 1990; DeFe-

lipe, 1993; DeFelipe et al., 2013; Douglas and Martin, 2004;
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Fairén et al., 1984; Hestrin and Armstrong, 1996; Kawaguchi

and Kubota, 1997; Kisvárday et al., 1985; Oberlaender et al.,

2012; Somogyi et al., 1982, 1998; Svoboda et al., 1997; Szaba-

dics et al., 2006), extended with a layer prefix (e.g., Layer_Mor-

phology, L5_MC for layer 5 Martinotti cells). Electrical types,

based on the Petilla convention (Ascoli et al., 2008), were treated

as subtypes, (e.g., L5_MC_NAC for the non-accommodating

subtype; see Experimental Procedures). When whole-brain

axonal tracing data for a sufficient number of projecting neurons

becomes available (e.g., L5_TTPC_CP and L5_TTPC_CT to

represent cortico-pontine and cortico-tectal subtypes; Hallman

et al., 1988; Wang andMcCormick, 1993; for a review, see Ram-

aswamy andMarkram, 2015), the proposed classification can be

extended to include projection subtypes. Similarly, when there



Figure 2. Table of Neocortical Neuronal Morphologies

Exemplar 3D reconstructions of 55m-types. Morphologies in L2 and L3 are not separated. Axon in blue, dendrites in red. Full morphologies are not always shown.

See also Figure S1 for average arbor densities of eachm-type and Figure S2 for objective classification of m-types and details of themorphology cloning process.

See also Movie S1A.
are sufficient single-cell gene and protein expression data to

systematically identify cells, it can be extended to includemolec-

ular subtypes. The abbreviations used for each m-type are

provided in Figure 2. A mapping between the nomenclature

used in this study and alternative names present in the literature

is provided in Table 1.

Morphological Diversity of Neocortical Neurons
We recorded and labeled >14,000 neurons from all six layers in

the somatosensory cortex of P14 male Wistar (Han) rats, using

patch-clamp electrodes in in vitro slices. Of these neurons,

2,052 were sufficiently well stained to allow expert classification

into m-types, based on well-established characteristic features

of their dendritic and axonal arbors, a procedure initiated by early

neuroanatomists and still in use today (Fairén et al., 1984; Kara-

giannis et al., 2009; Karube et al., 2004; Kawaguchi and Kubota,

1997; Kisvárday et al., 1985; Larkman, 1991a; Perrenoud et al.,

2013; Peters and Kaiserman-Abramof, 1970; Ramón y Cajal,

1909, 1911; Somogyi et al., 1982, 1998;Wang et al., 2004; Yuste,

2005). We were able to digitally reconstruct a subset of 1,009 of

these neurons. This allowed validation of the expert classifica-

tion using an objective method (see below) based on clustering

of characteristic features and provided the initial pool of digital

neuron models needed to reconstruct the microcircuitry. In a

few cases, we had no morphological reconstructions for rare

m-types known to be present in the microcircuitry (L5_BP,

L5_ChC, L6_NGC; Oláh et al., 2007; Szabadics et al., 2006).

These were represented using exemplars of the same mor-

phology from neighboring layers. Although L6 horizontal and
sub-plate pyramidal cells (L6_HPC and L6_SPC) were present

in the dataset and have also been reported in the literature

(Ghosh and Shatz, 1993; Hevner et al., 2001), the quality of the

stains was not sufficient for reliable reconstruction. These mor-

phologies are not represented in the first draft.

Aggregating morphological reconstructions and reports in the

literature, we distinguished 55 m-types (65 if layers 2/3 are

considered separately and 67 if L6_HPC and L6_SPC are also

considered; Figure 2). Inhibitory types are mostly distinguished

by axonal features and excitatory types by dendritic features

(for reviews, see Markram et al., 2004; Ramaswamy and Mark-

ram, 2015; Spruston, 2008). Figure S1 shows overlays ofmultiple

exemplars of each of the 55major m-types, and Figures S2A and

S2B illustrate the objective classification. While in some cases,

it might have been possible to introduce a finer separation be-

tween m-types, this would have limited the size of the samples

for individual types, reducing the reliability of the classification.

The same inhibitory types were present in all layers except

layer 1, which contained a unique set of inhibitory neuron types.

Pyramidal cell morphologies varied across layers (Figure 2, right)

and also with depth within layer, as illustrated by the diversity of

L23_PCs (Figure 2, upper-right). The number of pyramidal cell

types, as defined by their local morphology, increased from

upper to lower layers. Several types of interneurons (e.g., LBC

and DBC) had axonal arbors that tended to descend to deeper

layers when they were in upper layers and to ascend to upper

layers when they were in deeper layers. Consistent with this

trend, one type of pyramidal cell (L6_IPC) also had inverted

axonal arbors.
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 459



Ta e 1. Relation of Interneuron Classes to Classification Schemes Found in the Literature

Mo hological

Ty

Neurogliaform

Cell (NGC)

Small Basket

Cell (SBC)

Double Bouquet

Cell (DBC) Bipolar Cell (BP) Martinotti Cell (MC) Bitufted Cell (BTC)

Large Basket

Cell (LBC)

Nest Basket

Cell (NBC)

Chandelier

Cell (ChC)

Ot

mo hological

cla ifications

Dwarf cell,

button-type cell

Clutch cell Bitufted cell/

interneuron,

horse-tail cell

Bitufted cell/

interneuron

Bitufted cell/

interneuron

Bitufted

interneuron

Common

basket cell,

typical

basket cell

Willow cell,

arcade cell,

shaft-biased

cell, atypical

basket cell

Axo-axonic cell

Pr minantly

ex ssed

Ca binding

pr ins

an eptides

CB (�),

PV (�),

CR (�)

NPY (+),

VIP (�),

SOM (�)

CB (++),

PV (�),

CR (�)

NPY (+),

VIP (+++),

SOM (++)

CB (+),

PV (�),

CR (+)

NPY (�),

VIP (+++),

SOM (++)

CB (�),

PV (�),

CR (++)

NPY (�),

VIP (+++),

SOM (++)

CB (++),

PV (�),

CR (�)

NPY (++),

VIP (�),

SOM (+++)

CB (++),

PV (�),

CR (++)

NPY (+),

VIP (+),

SOM (++)

CB (++),

PV (+++),

CR (+)

NPY (+

VIP (+)

SOM (

CB (++),

PV (+++),

CR (++)

NPY (+),

VIP (+),

SOM (�)

CB (+),

PV (�),

CR (�)

NPY (�),

VIP (�),

SOM (�)

Ele rical

typ

bNAC (7%),

cNAC (79%),

cSTUT (7%),

cAC (7%)

bNAC (36%),

cAC (36%),

dNAC (29%)

bAC

(9%),

bIR

(37%),

bNAC

(9%),

bSTUT

(9%)

cAC

(9%),

cIR

(18%),

cNAC

(9%)

bAC

(7%),

bIR

(14%),

bNAC

(29%)

cAC

(29%),

cNAC

(14%),

dSTUT

(7%)

bAC

(37%),

bIR

(11%),

bSTUT

(4%),

cAC

(37%)

cNAC

(3%),

cSTUT

(3%),

dNAC

(3%)

bAC

(17%),

cAC

(67%),

cNAC

(17%)

bAC

(6%),

cAC

(12%),

cIR

(6%)

cNAC

(17%),

dNAC

(17%),

dSTUT

(24%)

bAC

(6%),

bIR

(6%),

bSTUT

(13%),

cAC

(20%)

cIR

(7%),

cNAC

(20%),

cSTUT

(20%),

dSTUT

(7%)

cAC

(38%),

cNAC

(38%),

dNAC

(25%)

Ot

ele ical

cla ifications

Non-fast spiking,

late spiking

Fast spiking,

non-

accommodating,

non-adapting

Irregular spiking,

regular spiking

non-pyramidal,

adapting

Late spiking,

regular spiking

non-pyramidal,

adapting

Regular spiking

non-pyramidal,

burst spiking

non-pyramidal,

low threshold

spiking

Regular spiking

non-pyramidal,

adapting,

burst spiking

non-pyramidal

Fast spiking,

non-

accommodating,

non-adapting

Fast

spiking, non-

accommodating,

non-adapting

Fast spiking,

late spiking,

non-adapting

Th erms used in this paper are in the first row, followed by other common names in the literature. Interneurons can be categorized according to whic primary marker they express (calcium-

bin ng proteins: parvalbumin [PV], calbindin [CB], and calretinin [CR]; neuropeptides: somatostatin [SOM], vasoactive intestinal polypeptide [VIP], ne opeptide Y [NPY], and cholecystokinin

[C ]). The mapping to serotonergic receptors (5HT3AR) is not included since this was not assayed in the RT-PCR. We assign several possible electrica pes to each morphological type, based

on e Petilla convention, and show other names frequently used in the literature. See Figure 4 for definitions of electrical types.
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Figure 3. Neuron Densities and Composition and Microcircuit Dimensions.
(A) Neuron densities and numbers. Vertical thicknesses as determined by transitions in neuronal somata size and density in NeuN stained slices (six animals;

mean ± SD). Neuron densities and numbers (six animals; mean ± SD).

(B) Neuron fractions. Confocal block imaging of dual immunohistochemical labeling. DAPI labels all cells (blue). NeuN labels all neurons (green), GABA labels all

GABAergic cells including glia (red), dual GABA andNeuN labels only GABAergic neurons (green). Bars to the right show fractions of excitatory (red) and inhibitory

(blue) neurons in each layer.

(C) m-type composition. Fractions of inhibitory (left) and excitatory (right) m-types per layer (n = 2052).

(D) Dimensions. The horizontal dimension was defined as the smallest circle required to attain maximal dendritic volume at a central minicolumn (brown, top); cut-

off radius, 95% of the plateau volume (r = 210 mm, middle). To allow tiling, the circle was transformed into a hexagon, preserving the area. For m-type acronyms,

see Figure 2.

See also Figure S3 for details on morphology placement and Figure S4 for validation of the composition. See also Movie S1B.
Using multiple exemplars obtained from different animals for

each m-type, we developed a repair process to recover arbors

cut during the slicing process, which was validated using in vivo

reconstructed neurons (see Experimental Procedures; Anwar

et al., 2009). To generate an even larger pool of unique morphol-

ogies, we cloned multiple exemplars of each m-type (Figures

S2C–S2F), jittering branch angles, and section lengths in the

clones (see Experimental Procedures). The morphometric

properties of the resulting population were validated against

distributions of features obtained from reconstructed neurons

(see Experimental Procedures). This approach allowed us to

establish a dataset of neuronal morphologies (see Movie S1A)

that respects biological variability. Software applications for

repairing and cloning in vitro neuron morphologies and for auto-

mated classification of neurons into the 55 m-types are available

through the NMC Portal.

Reconstructing Neuron Densities, Ratios, and
Composition
Reconstruction began by specifying the dimensions of themicro-

circuit, the fractions of excitatory and inhibitory neurons, the

proportions of each m-type, and the number of neurons of each
m-type. The height of the neocortex and heights of each layer

weremeasured experimentally in six animals, yielding an average

overall height of 2,082± 80microns (mean±SD; n = 6; Figure 3A).

Layer thicknesseswere determined experimentally bymeasuring

the location of transitions in cell densities and soma sizes in

NeuN-stained tissueblocks (seeExperimentalProcedures). Frac-

tions of excitatory and inhibitory neurons per layer (E-I fractions)

were established by counting cells stained for DAPI (all cells),

NeuN (all neurons), and GABA (all inhibitory neurons) in tissue

blocks (Figure 3B; see Experimental Procedures). Overall, excit-

atory and inhibitory neurons represented 87% ± 1% and 13% ±

1% of the population, respectively, with a trend toward higher

fractions of excitatory neurons in deeper layers (Figure 3B).

The m-type composition for all excitatory and all inhibitory

neurons in each layer was obtained from the relative frequencies

of each m-type in the experimental dataset of 2,052 classified

neurons mentioned earlier (Figure 3C; see Experimental Proce-

dures). It is not possible to exclude sampling bias in this dataset.

However, since E-I fractions were obtained in an unbiased

manner, any bias is restricted to the proportions of m-types

within the excitatory and inhibitory neurons and does not affect

the overall E-I balance.
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The E-I fractions and m-type composition determined in this

way are broadly consistent with previous reports (DeFelipe

et al., 2002; Lefort et al., 2009). For example, it is well established

that �50% of inhibitory interneurons are basket cells (i.e., LBCs

and NBCs—predominantly parvalbumin-positive cells; SBCs—

predominantly vasoactive intestinal peptide (VIP)-positive cells;

we found �53%, see below), that Martinotti cells (i.e., predomi-

nantly somatostatin-positive cells; we found �22%, see below)

are frequent in all layers except L1, and that bitufted and bipolar

cells (i.e., many of the calbindin and calretinin-positive cells)

and double bouquet cells (i.e., many of the VIP-positive cells)

are both found in layers 2–6. Other inhibitory interneuron types

are also found in L2–L6 but less frequently (Kawaguchi and

Kubota, 1997; Krimer et al., 2005; Meyer et al., 2011; Oláh

et al., 2007; Sancesario et al., 1998; Somogyi et al., 1998; for a

review, see Markram et al., 2004). Previously published neuron

densities could not be used because they varied by a factor of

two (40,000–80,000 neurons/mm3; Beaulieu, 1993; Cragg,

1967; DeFelipe et al., 2002; Keller and Carlson, 1999; Peters,

1987) and are too low to account for the number of synapses

in the microcircuit (see below, ‘‘Digital Reconstruction of

Connectivity’’). We therefore performed new experiments,

counting cells in NeuN-stained tissue blocks. The experiments

yielded a mean cell density of 108,662 ± 2,754 neurons/mm3

(mean ± SEM, n = 6; see Experimental Procedures), comparable

to observations in rat barrel cortex (Meyer et al., 2010a). Neuron

densities were highest in L4 (Figure 3A), consistent with previous

studies (Meyer et al., 2010a).

Since hind-limb somatosensory cortex, unlike barrel cortex,

has no anatomically defined horizontal columnar organization

(Horton and Adams, 2005; Markram, 2008), we chose to define

the radius of the microcircuit by placing reconstructed neurons

in a cylindrical volume and determining the minimal radius where

the density of dendrites saturates at the center (Figure 3D; 95%

of the plateau value obtained at a radius of 210 mm; see Experi-

mental Procedures). We chose dendrites, as opposed to axons,

because they only arborize locally. This convention, which yields

a minimal radius that reflects saturated dendritic density along

the central axis, could allow comparisons between microcircuits

in different brain regions. It yields a radius similar to the horizontal

extent of the dendrites of the largest neuron in the microcircuit

(i.e., the L5_TTPC; for a review, see Ramaswamy and Markram,

2015) and is comparable with the dimensions of the barrels in the

rodent barrel cortex (Meyer et al., 2010b; Wimmer et al., 2010).

To allow tiling of multiple microcircuits while minimizing edge ef-

fects, the volume of the microcircuit was defined as a hexagonal

prism (Figure 3D, bottom) with a cross-sectional area equal to

that of the circle with the radius defined above and a height

determined by the combined height of the layers.

With these densities, m-type composition, and circuit dimen-

sions, we calculated the number of each m-type in each layer

and in the whole microcircuit. To approximate inter-individual

variation in layer dimensions and neuronal densities, we digitally

reconstructed separate microcircuits corresponding to layer

heights and densities measured in five animals (Bio1–Bio5).

The five reconstructions had an average of 31,375 ± 2,251 neu-

rons (mean ± SD, n = 5), with the number of neurons increasing in

each layer from L1 to L6. We then constructed an additional
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microcircuit using the averaged data (BioM). To assess the vari-

ation introduced by the digital reconstruction process (stochas-

tic variations in m-type composition, selection and positioning

of model neurons, and synaptic connectivity [see below]), we

reconstructed seven instances of each microcircuit (i.e., seven

reconstructions each from Bio1–Bio5 and seven from BioM; 42

in total).

Positioning Morphologically Reconstructed Neurons
After establishing the dimensions of the microcircuit and the

number of neurons belonging to each m-type in each layer, it

was necessary to position each neuron in the digital reconstruc-

tion. Consistent with reports of weak minicolumnar organization

in rodents, (Mountcastle, 1998), neurons were arranged in 310

minicolumns at horizontal positions drawn from 2D Gaussians

around the center of each minicolumn, thus relaxing the strict-

ness of the minicolumnar organization (see Experimental Proce-

dures). The positions of the neurons along the vertical axis of the

minicolumn were randomly chosen within each layer, using a

space-filling algorithm to ensure that somata did not overlap

(see Experimental Procedures).

Once the positions of the neurons were established, a second

algorithm randomly selected a suitable morphology for each po-

sition from the top 8% of morphologies, scored by their match to

typical patterns of arborization within and across layers (Fig-

ure S3; see Experimental Procedures). These patterns were

manually annotated on each reconstructed neuron, based on

the depth of the recorded neuron within each layer and cross-

layer arborization patterns described in the literature (see Exper-

imental Procedures and NMC Portal). Figure S4A illustrates the

microcircuit at this stage of reconstruction (see also Movie

S1B). The total lengths of axons and dendrites in the average

microcircuit were 350 ± 4 m and 215 ± 3 m (mean ± SD, n = 7),

respectively.

Biological accuracy at this stage of the reconstruction was

validated against two experimental datasets that had not been

used thus far. The first tissue-level dataset provides in vitro

immunohistochemical staining of 30 mm sections for seven

markers (calcium-binding proteins and neuropeptides) com-

monly used to label inhibitory interneurons (Figure S4B). The

second cellular-level dataset provides estimated probabilities

that the genes for these markers are expressed in specific

m-types (Toledo-Rodriguez et al., 2005; Wang et al., 2002,

2004). We used the second dataset to add the markers to the

model neurons. We then performed in silico immunohistochem-

ical staining of the whole reconstructed tissue for each marker

separately and compared the in silico stains against immunohis-

tochemical stains from the first dataset. Although gene expres-

sion data are noisy and genes do not translate equally to protein

levels, we found a reasonable correspondence between the

numbers of neurons at different depths stained for specific

markers in the in silico and the in vitro stains (regression, r =

0.65; Figure S4C). Furthermore, the layer-dependent pattern of

in silico stained cells was consistent with previous staining ex-

periments in this brain region (Ascoli et al., 2008; Condé et al.,

1994; DeFelipe, 1993; Dumitriu et al., 2007; Gentet et al., 2010,

2012; Gonchar and Burkhalter, 1997; Gonchar et al., 2007;

Kawaguchi and Kondo, 2002; Kawaguchi and Kubota, 1993,
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Figure 4. Table of Morpho-Electrical Neuron Types

(A) e-types. Diverse firing patterns in response to depolarizing step current injections in neocortical neurons. c, continuous; d, delayed; b, bursting. AC,

accommodating; NAC, non-accommodating; STUT, stuttering, IR, irregular; AD, adapting.

(B) An exemplar neuron (L23NBC) with a diversity of e-types. Percentages indicate the relative frequency of e-type occurrence.

(C) Fractions of e-types (11 e-types) recorded experimentally in each of the 55m-types, making up 207me-types. Solid lines indicate layer boundaries. See Table

1 for relation of e-types to other classifications in the literature.
1997; McGarry et al., 2010; O’Connor et al., 2009; Packer and

Yuste, 2011; Santana et al., 2013; see also NMC portal). The

observed correspondence would be unlikely in the presence of

major errors in neuron densities, m-type composition, or posi-

tioning of reconstructed neurons. However, the biological data

are highly variable, and the validation of the inhibitory m-type

composition used only a small proportion of markers reported

in the literature. The reconstruction should thus be considered

as a first draft, to be refined as it is challenged with additional

markers.

Morpho-Electrical Composition
We applied a standardized battery of stimulation protocols

(Le Bé et al., 2007; Wang et al., 2002, 2004) to >3,900 neurons

from all layers, recording and analyzing their responses. The

neurons were classified using quantified features of the neuronal

response to step current pulses, according to the criteria estab-

lished by the Petilla convention (Ascoli et al., 2008; Figure 4A,

top), with the exception of stuttering cells, which were consid-

ered as a separate class (see Druckmann et al., 2013).

Since no significant bursting behavior was observed in excit-

atory m-types from animals of the age used in this study, all

excitatory m-types were classified as continuous adapting

(cAD) neurons (Figure 4A, bottom). Using this feature-based
classification scheme, we identified 11 e-types (10 inhibitory

e-types and 1 excitatory e-type) (Figure 4A; see Experimental

Procedures). Objective clustering of the same features produced

a similar classification, validating the original classification

scheme (Druckmann et al., 2013). The fact that the e-types iden-

tified in this way have characteristic ion channel profiles provides

further evidence for their distinctive identity (Khazen et al., 2012;

Toledo-Rodriguez et al., 2004).

Most inhibitory m-types expressed multiple e-types (Fig-

ure 4B), consistent with previous observations (Ascoli et al.,

2008; Cauli et al., 2000; Nelson, 2002; Toledo-Rodriguez et al.,

2005). Combining m- and e-types yielded 207 morpho-electrical

types (me-types), providing an integrated view of the morpho-

electrical diversity of the microcircuit (Figure 4C). A dataset of

511morphologically and electrically classified inhibitory neurons

was used to determine the relative proportion of e-types for each

inhibitory m-type (in a layer-dependent manner for m-types with

sufficient samples and otherwise in a layer-independent manner;

Figure 4C, color map; see Experimental Procedures). The rela-

tive proportions were combined with neuron densities to calcu-

late the number of neurons for each me-type in each layer. The

resulting diversity and spatial distribution of inhibitory e-types

is illustrated in Figure 5A. This integrated view of the micro-

circuitry reveals that, at this age, the most common inhibitory
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Figure 5. Layer-Dependent Distribution of

Inhibitory e-Types

(A) In silico ‘‘brainbow’’ staining of a random

selection of inhibitory morphologies, colored by

e-type.

(B) Layer-wise distribution of inhibitory e-types

(n = 35 reconstructions; mean ± SD). See Figure 4

for definitions of e-types.
e-type is cAC, followed by cNAC and dNAC, and that stuttering

and irregular e-types (cSTUT, bSTUT, dSTUT, cIR, and bIR) are

relatively rare (Figure 5B). Inhibitory e-types with regular firing

patterns (cAC, bAC, cNAC, bNAC, and dNAC) occur more

frequently in superficial layers, whereas e-types with irregular

firing patterns (cSTUT, bSTUT, dSTUT, cIR, bIR) are more com-

mon in deep layers (Figure 5B).

Digital Reconstruction of Connectivity
We developed an algorithmic approach to reconstruct synaptic

connectivity between neurons in a companion study (Reimann

et al., 2015). The approach is based on five rules of connectivity

described in the Experimental Procedures and validated in Re-

imann et al. (2015). We implemented these rules in four stages

that yield plausible multi-synapse connections, consistent with

the rules and constrained by experimental bouton densities

(Figure 6A).

The algorithm predicts the characteristics of multi-synapse

connections between pairs of neurons that belong to specific

m-types (Figure 6B). We have previously shown that these pre-

dictions faithfully reproduce detailed anatomical data on con-

nectivity between L5 thick-tufted PCs (number of synapses

and locations; Ramaswamy et al., 2012) and for a number of
464 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
other connection types (synapse loca-

tions; Hill et al., 2012). We now show

that they reproduce the connectivity

(numbers and locations) of all connection

types that have been studied experimen-

tally (see NMC Portal). For example, the

anatomy of in silico synaptic connections

between L5 Martinotti cells and L5 thick-

tufted PCs (Figure S5) compares well with

available experimental data (Silberberg

and Markram, 2007). The algorithm pro-

vides detailed anatomical predictions for

connection properties, which it has not

yet been possible to measure experimen-

tally (e.g., numbers of source and target

cells and synapses) (Figure S5). The

reconstruction also allows studies of neu-

rons involved in polysynaptic pathways

(see NMC Portal) forming known motifs

(Honey et al., 2007; Perin et al., 2011;

Silberberg, 2008; Sporns and Kötter,

2004).

The algorithm yields 1,941 biologically

plausible multi-synapse connection types

(out of a theoretical 3,025) that are con-
sistent with the connectivity principles described above. Figure 7

shows the predicted average number of synapses formed by

each potentially viable connection type (Figure 7A) aswell as their

predicted average connection probabilities (Figure 7B). The

predicted number of synapses/connection is 4.5 ± 0.1 (3.6 for

excitatory connections, 13.9 for inhibitory connections; n = 35).

We also predict 27,625 types of connection between neurons

of different me-types (see NMC Portal).

On average, each neuron innervates 255 ± 13 other neurons

belonging to 32% ± 1% of m-types, forming an average of

1,145 ± 75 synapses per neuron present in the microcircuit (Fig-

ure S6A; mean ± SD, across the 35 Bio1-5 reconstructions; all

neurons sampled). As a population, the neurons belonging to a

givenm-type innervate 63% ± 6%of them-types in themicrocir-

cuit. The individual reconstructions (Bio1-5) yield an average of

638 ± 74 million appositions and 36.7 ± 4.2 million synapses

(27.0 ± 2.9 million excitatory and 9.7 ± 1.5 million inhibitory).

Taken together, the neurons of the microcircuit form 8.1 ± 0.9

million connections. Figure 7C and Table S1 provide a first

view of the connectivity between neurons of the neocortical

microcircuit. Analyzing these data, we find that, at this age,

the fraction of excitatory synapses (red) increases from L1 to

L6 (Figure S6B). At later ages, this trend may change as axons



Figure 6. Reconstructing Connectivity

(A) Four-step algorithm to convert putative axo-dendritic appositions into functional synapses. (1) Axonal appositions. For an exemplar L23SBC (left, soma and

dendrites in black, axon in blue), connectivity based on all axo-dendritic appositions (in red) is characterized by an extremely wide distribution of synapses per

connection and almost 100% connection probability (right, pooled data from efferent connections to L23PCs of n = 100 L23SBCs). (Inset) A selected axon

collateral with all appositions. (2) After general pruning. For the same exemplar, L23SBC, randomly removing a fraction of appositions removes the right side of the

distribution of synapses per connection (right). (3) After multi-synapse pruning. Removing connections formed by too few appositions prunes the left side of the

distribution of synapses (right) but leaves short inter-bouton intervals. (4) After plasticity pruning. The last step randomly removes more connections (right),

leading to correct inter-bouton-intervals and connection probabilities.

(B) Examples of in silico multi-synapse connections resulting after the four-step apposition to synapse conversion algorithm. The pre- and postsynaptic m-types

forming the synaptic connection are indicated. The presynaptic neuron is shown in yellow, postsynaptic neuron in black, and synaptic contacts as red circles.
mature and reach higher layers. Pooling all excitatory and inhib-

itory cells in each layer reveals that recurrent excitation increases

with cortical depth while recurrent inhibition is weak in all layers,

that descending interlaminar projections are stronger than
ascending projections, and that intralaminar inhibition is weakest

in layer 4 (Figure S6C).

The seven statistical instantiations of the mean microcircuit

(BioM) yield 636 ± 10 million appositions and 36.5 ± 0.5 million
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Figure 7. Predicted Synapse Numbers and Connection Probabilities

(A) Synapses per connection. Amatrix of the average synapses per connection for multi-synapse connections formed between the 55m-types (1,941 biologically

viable connection types).

(B) Connection probabilities. A matrix of average connection probabilities within 100 mm.

(C) The connectome of the reconstructed microcircuit grouped by m-type (i.e., 1,941 m-type pathways). Colors group m-types by layer. Thickness of ribbon

proportional to the number of synapses; inner ring segments, outputs (axons); outer ring segments, inputs (dendrites).

See also Figure S5 for anatomical details of an exemplary pathway; Figure S6 and Table S1 for more details of synaptic innervation strength; and Figure S20 for a

comparison of the predicted connectome to a recent EM study. See also Movie S1C.
synapses (25.8 ± 0.4 million excitatory and 10.6 ± 0.2 million

inhibitory; n = 7; Table S1 and Movie S1C). The lower variability

of the statistical instantiations compared to the individual recon-

structions (Bio1–Bio5; Table S1) indicates that the variation

across digital reconstructions falls well within the bounds of bio-

logical variability.

From the space remaining on dendrites after accounting for

predicted intrinsic connectivity (assuming 1.1 synapses/mm;

Datwani et al., 2002; Kawaguchi et al., 2006; Larkman,

1991b), we predict that afferent fibers from beyond the

microcircuit (extrinsic synapses) form a further 147 ± 4 million

synapses (mean ± SD; n = 35) (Figures S6D and S6E). The total
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predicted number of synapses in the microcircuit is thus 184 ±

6 million (mean ± SD; n = 35), of which only 20% ± 2% of

synapses are formed by neurons belonging to the microcircuit

(i.e., intrinsic synapses), consistent with previous estimates

in neocortex (Stepanyants et al., 2009). In a parallel electron mi-

croscopy study in which we determined average synapse den-

sity (0.63 ± 0.1/mm3; mean ± SD; n = 25) and calculated the

number of synapses in a comparable volume of the neocortex,

we obtained 182 ± 6 million synapses. On the assumption that

the average number of synapses/connection is the same for

afferent fibers as for excitatory connections within the microcir-

cuit (3.6 ± 0.04 synapses/connection; n = 35), we predict that



the microcircuit contains �41 million mostly en passant afferent

fibers.

The reconstructed microcircuitry reproduces numerous other

experimental findings that were not used in the reconstruction

process, described in a companion paper (Reimann et al.,

2015). Nevertheless, it is clear that the predicted connectivity

is a first draft that will be challenged and refined as experi-

mental studies discover exceptions to the connectivity rules

used here.

Reconstructing Neuronal Physiology
A series of algorithms and an automated workflow were devel-

oped to configure NEURON models to reproduce the electro-

physiology of each me-type, (Druckmann et al., 2007, 2011;

Hay et al., 2011) (see Experimental Procedures). In brief, we

selected a morphologically reconstructed neuron and distrib-

uted Hodgkin-Huxley (HH)-type models of 13 known classes of

ion channels (Figure S7) along the neuronal arbors (Figure 8A).

Salient features were extracted from electrophysiological traces

of e-type responses to step current pulses and data on back-

propagating action potentials (Figure 8B; Larkum et al., 2001;

Nevian et al., 2007). A multi-objective optimization algorithm

(Druckmann et al., 2007) computed the vector of ion channel

conductance densities that best reproduced features such as

spike amplitudes and widths, spike frequency, and changes in

frequency, and the resulting vector was transplanted into all neu-

rons belonging to the m-type. Neurons in the resulting pool of

models were challenged with a separate battery of stimuli not

used to fit the vector of ion channel conductances. We then

selected those that fell within observed distributions of features

(�40% of models accepted; Figure 8C). This workflow provided

a generic high-throughput method for modeling the electrical

behavior of a potentially unlimited number of neurons of any

e-type (Figure 8D). We automated the workflow to model all

207 me-types (Figure 8E), generating a pool of 121,231 unique

neuron models. Exemplars can be downloaded from the NMC

portal together with NEURON models of each m-type with all

of their intrinsic synapses (see Movie S2). Morpho-electrical

variation in the ensemble of model neurons was comparable to

the biological variation observed experimentally. The quality of

the final selection was quantified by comparing model and bio-

logical neurons in terms of their median z-scores for all electrical

features (Figure 8E; see Experimental Procedures).

The generalization power of these models has been demon-

strated previously (Druckmann et al., 2011). As a further test,

we compared dendritic attenuation of synaptic potentials in the

models against past experiments (Berger et al., 2001; Nevian

et al., 2007). While attenuation along basal dendrites (Figure S8;

space constant, 40.0 ± 0.1 mm) was consistent with these results

(Nevian et al., 2007), the reconstruction displayed stronger atten-

uation along apical dendrites (Figure S8; 174.3 ± 0.4 mm) than

previously reported (273 mm; Berger et al., 2001). However, the

data in the literature were obtained from adult animals whose

apical dendrites have larger diameters (Zhu, 2000) than those

of the animals used in this study. In a subset of model neurons

whose apical dendrites had similar diameters to those of adult

animals (Zhu, 2000), attenuation was similar (Figure S8, B2,

dark blue).
In most cases, transplantation of the vector of conductances

to variants within the same inhibitory m-type preserved target

physiology (�80% of models accepted), which was often main-

tained, even when conductances were transplanted to other

inhibitory m-types (�60% of models accepted). This suggests

that, in animals of the age used in the experiments, electrical

behavior is relatively independent of the specific neuron

morphologies.

Reconstructing Synaptic Physiology
To predict the physiology of the �36 million synapses in the

reconstruction, we integrated published paired-recording data

and reported synaptic properties (conductances, postsynaptic

potentials [EPSPs/IPSPs], latencies, rise and decay times, fail-

ures, release probabilities, etc.; see Experimental Procedures

and NMC portal).

Neocortical synapses display known forms of short-term dy-

namics, which we used to classify synaptic connections as facil-

itating (E1 and I1), depressing (E2 and I2), or pseudo-linear (E3

and I3) s-types (Figures 9A and 9B) (Beierlein et al., 2003; Reyes

and Sakmann, 1999; Reyes et al., 1998; Thomson and Lamy,

2007; Thomson et al., 1996; Wang et al., 2006). The s-types of

specific connections were determined from the combination of

their pre- and postsynaptic me-types (Ali et al., 2007; Bannister

and Thomson, 2007; Beierlein and Connors, 2002; Feldmeyer

et al., 2002; Frick et al., 2007; Gupta et al., 2000; Markram

et al., 1998; Reyes et al., 1998; Somogyi et al., 1998; Thomson

et al., 1993). Based on the available experimental data, we iden-

tified five rules to predict s-types for broad classes of connec-

tions: (1) pyramidal-to-pyramidal connections are always

depressing (E2) (Feldmeyer et al., 1999; Frick et al., 2007,

2008; Gupta et al., 2000; Maffei et al., 2004; Markram et al.,

1998; Mason et al., 1991; Mercer et al., 2005; Reyes et al.,

1998; Thomson and Bannister, 1998; Thomson et al., 1993), (2)

pyramidal-to-interneuron connections are also depressing (E2)

(Angulo et al., 1999; Blatow et al., 2003; Holmgren et al., 2003;

Markram et al., 1998; Reyes et al., 1998; Silberberg and Mark-

ram, 2007; Thomson and Deuchars, 1997; Wang et al., 2002),

except for connections onto Martinotti, bitufted and other inter-

neuron types displaying spike frequency accommodation, which

are facilitating (E1) (Kapfer et al., 2007; Markram et al., 1998;

Reyes et al., 1998; Rozov et al., 2001; Silberberg and Markram,

2007), (3) facilitation from inhibitory neurons is around two times

stronger than from excitatory neurons (Gupta et al., 2000; Silber-

berg and Markram, 2007), (4) synaptic dynamics are preserved

across layers for all me-type-specific connections, and (5) any

remaining connections belong to the most common s-type

(type 2; E2 or I2).

Since physiological characterization of all 27,625 unique me-

type-to-me-type connections is not feasible, s-types in which

experimental data were missing were specified using the rules

above. Parameters for the synaptic dynamics of individual

synapses were drawn from experimental distributions. In this

manner, we generated a complete, albeit sparsely character-

ized, map of synaptic dynamics (Figure 9C). Stochasticity of

synaptic transmission was modeled by extending a previously

reported model (Fuhrmann et al., 2002). As an independent vali-

dation of the modeled synaptic dynamics, we compared the
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Figure 8. Workflow for High-Throughput Reconstruction of Morpho-Electrical Behaviors

(A) Morphology and ion channel models. Selection of exemplar morphology, ion channel models, and their distribution on soma, dendrites, and axon.

(B) Feature extraction. Selection of experimental traces from a population of recorded cells as targets for fitting. Extraction of voltage and spiking features from

experiments.

(C) Quality assurance.Multi-objective optimization of the vector of ion channel conductance densities tomatch the statistics of the extracted biological features in

the model. Screen out models with electrical features that do not match the statistics for equivalent features in biological recordings.

(D) Models of e-types. Shows the 11 e-types modeled.

(E) Generalization and model quality. Generalization of the vector of ion channel conductance densities to other exemplars of the same m-type; application of a

standardized set of measurement protocols to each model neuron to determine generalization; quality scores for accepted models (median z-score).

See also Figure S7 for properties of modeled ion channels and Figure S8 for dendritic properties.
coefficient of variation (c.v.) of first PSPs against reported exper-

imental data (r = 0.8; Figure 9D; Gupta et al., 2000; Markram

et al., 1998; Wang et al., 2006).

We then applied unitary synaptic conductances obtained in

previous experiments that also measured somatic postsynaptic

potentials (PSP) between specific pairs of m-types and

compared the resulting in silico PSPs with the corresponding
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in vitro PSPs (Figure 10A). The in silico PSPs were systematically

lower. Since the neuron models and the numbers and locations

of synapses between pairs of m-types had been validated, we

hypothesized that the reported synaptic conductances had

been underestimated, because of inadequate compensation

for space-clamp errors (Feldmeyer et al., 2002; Gupta et al.,

2000; Rinaldi et al., 2008). To quantify the underestimate,
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Figure 9. Reconstructing Dynamic Synaptic Transmission.

(A) In silico synaptic connection. Experimental protocol recreated in silico to obtain the frequency dependence of synaptic transmission between pairs of neurons.

A presynaptic L4NBC (black pipette) was stimulatedwith a 30Hz pulse train to evoke eight APs + 1 ‘‘recovery’’ AP (bottom trace), resulting in inhibitory depressing

responses (top traces) in the postsynaptic L4SS (blue pipette); 30 individual trials in gray, average in blue. The connection was mediated by 12 synaptic contacts

(blue stars).

(B) Synapse types (s-types). Parameters describing six s-types in the Tsodyks-Markram phenomenological synapse model (see Experimental Procedures).

(C) Map of predicted synaptic dynamics. Previously established mapping rules were used to constrain s-types for connections that have not yet been char-

acterized experimentally (see Figure S8), yielding a complete map for all 1,941 m-type-to-m-type connections in the reconstructed microcircuit.

(D) Validation. Trial-to-trial variability for different s-types in silico compared to in vitro data. Dots and error bars show mean ± SD of the data; dashed line shows

regression fit.
synaptic conductances were adjusted until in silico PSPs

matched experimental levels (Figure 10B and Table S2; Angulo

et al., 1999; Le Bé et al., 2007; Feldmeyer et al., 2006; Feldmeyer

et al., 1999, 2002;Markram et al., 1997; Silberberg andMarkram,
2007). The results suggested that reported conductances are

about 3-fold too low for excitatory connections, and 2-fold too

low for inhibitory connections (Table S2; Gupta et al., 2000; Ri-

naldi et al., 2008). Other recent studies also suggest that
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Figure 10. Reconstructing Quantal Synaptic Conductances.

(A) Unitary synaptic responses. A single APwas evoked in a presynaptic L1HAC (black pipette and trace). The postsynaptic potential was recorded at the soma of

a L23PC (blue pipette; 30 individual trials in gray, average in blue); synaptic conductance was recorded simultaneously in the dendrite (green pipette and trace).

(B) Validation. Comparison of in silico PSP amplitudes to in vitro characterized connections (n = 9; mean ± SD; Table S2), explicitly correcting reported con-

ductances for space-clamp errors (see Experimental Procedures). Dots and error bars show mean ± SD of the data; dashed line shows regression fit.

(C) Validation. As B for connections that lack conductance estimates (n = 10; mean ± SD; Table S4). Conductances were generalized from B for broad classes of

excitatory and inhibitory connections (see Experimental Procedures).

(D) Quantal synaptic conductances. In the absence of experimental data for postsynaptic potentials, synaptic conductances were generalized from data for

similar connections, allowing the prediction of quantal synaptic conductances for all synapses on a neuron. Simultaneous recording of quantal synaptic con-

ductances in a L5TTPC are shown in colored traces (excitatory, red to pink; inhibitory, green to blue).

(E) Predicted map of quantal conductances. Circles indicate connections used in B (black) and C (white) above. Black lines separate excitatory m-types.

See also Figure S9 for examples of in silico synaptic patch and staining experiments and Table S2 for corrected conductances. See also Movie S2.
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previously reported values are underestimated to a similar de-

gree (Sarid et al., 2007; Williams and Mitchell, 2008).

For the vast majority of connection types, no experimental

data for synaptic conductances were available. Therefore, we

computed the average corrected synaptic conductances for

broader classes of synaptic connections (e.g., E-E, E-I, I-I, I-E;

see Experimental Procedures) and applied these conductances

to all specific connections where data were missing. The result-

ing amplitudes of in silico PSPs were validated against experi-

mental data for ten connection types not used in determining

the conductances (regression, r = 0.6; Figure 10C and Table

S2). The derived synaptic dynamics and quantal conductances

compared well with previous reports (Feldmeyer et al., 2002;

Ramaswamy et al., 2012; Silberberg and Markram, 2007; Thom-

son and Deuchars, 1997) (see NMC Portal). Using the same

method, we generated a first prediction of mean synaptic con-

ductances for all 1,941 m-type-to-m-type connections (Fig-

ure 10D). Unique quantal synaptic conductances for individual

synapses were drawn from truncated normal distributions

around these means (Figure 10E; see Experimental Procedures).

We performed in silico paired recordings of all 1,941 m-type-

to-m-type connections in the average microcircuit (BioM) and

found results comparable to previously published paired record-

ings in vitro (see Figures S9A–S9J for an example; see NMC

Portal). Obtaining the anatomical and physiological properties

of all the intrinsic synapses formed onto and by any neuron

has long been an experimental challenge (Crick, 1979). The

reconstruction now allows in silico retrograde staining experi-

ments for any neuron in the microcircuit, providing a detailed

view of its presynaptic neurons and their synapses (Figure S9K).

In silico anterograde staining for postsynaptic neurons is also

possible. Figure S9L illustrates predicted locations of afferent

synapses formed onto a L23_PC. Figure S9M shows the mean

number of presynaptic (red) and postsynaptic (blue) neurons

for excitatory (top) and inhibitory (bottom) m-types. Predicted

input-output synapses for all 31,346 neurons in the BioM

microcircuit and summary statistics for each of the 55 m-types,

11 e-types, and 207 me-types can be downloaded from the

NMC Portal. The portal also provides NEURON models of each

m-type, allowing simulation experiments exploring dendritic

integration of m-type-specific synaptic inputs.

We found that the m-, e-, and s-types of inputs to any partic-

ular neuron were always strikingly different from those of its

outputs (i.e., inputs and outputs were highly asymmetrical; see

NMC Portal). The predicted average total synaptic conductance

for single neurons was �1000 nS (�750 nS excitatory and

�250 nS inhibitory conductance; based on all synapses in

BioM). Predicted average quantal conductance was 0.85 ±

0.44 nS for excitatory synapses (corresponding to �150 AMPA

and �20 NMDA receptors; Yoshimura et al., 1999) and 0.84 ±

0.29 nS for inhibitory synapses (corresponding to �40 GABAA

receptors; Ling and Benardo, 1999). The average failure rate

across all 1,941 m-type-to-m-type connections was 11.1% ±

14.1%.

Simulating Spontaneous Activity

To simulate reconstructed microcircuits at the level of detail

described above, the NEURON simulator was extended to run

on supercomputers (Figure S10; Carnevale and Hines, 2006;
Hines and Carnevale, 1997; Hines et al., 2008a, 2011, 2011; Mi-

gliore et al., 2006), and additional functionality was developed to

support in silico experimentation (see Experimental Procedures).

We then used simulations to investigate the neuronal activity of

the reconstructed microcircuitry (Figure 11A) under different

conditions. We began by simulating spontaneous activity during

tonic depolarization (see Movie S3A), attempting to mimic previ-

ous in vitro experiments (see Experimental Procedures). Under

these conditions, neurons belonging to all m-types were active

and the network exhibited spontaneous slow oscillatory popula-

tion bursts, initiated in L5, spreading down to L6, and then up to

L4 and L2/3 with secondary bursts spreading back to L6 (Fig-

ure 11B). Despite apparent global synchrony, the 55 m-types

generated diverse patterns of spiking (Figures 11C and 11D).

To allow comparison with the in vitro experiments, from which

the physiological data were obtained, we reconstructed a virtual

brain slice (a mesocircuit) that was 230 mm thick and whose

width was equivalent to that of seven microcircuits (containing

a total of 139,834 neurons) (Figure 12A; see Movie S3B and

Experimental Procedures). The virtual slice reproduced the

oscillatory bursts (�1 Hz) found in the previous microcircuit

simulations (Figure 12B), which are comparable to those found

in in vitro experiments (L}orincz et al., 2015; Sanchez-Vives and

McCormick, 2000).

In vitro experiments are typically performed at 2 mM [Ca2+]o,

while the level of [Ca2+]o in vivo is reported to lie in the range

0.9–1.1 mM (Amzica et al., 2002; Jones and Keep, 1988; Massi-

mini and Amzica, 2001; also see Borst, 2010), increasing in

oscillatory cycles to 1.2–1.3 mMduring the transition fromwake-

fulness to sleep (Amzica et al., 2002; Heinemann et al., 1977).

Although it is not possible to fully mimic in-vivo-like conditions,

we nonetheless explored the behavior of the circuit at these

lower Ca2+ levels as an approximation of the in vivo condition.

It is well known that the [Ca2+]o in the extracellular space mod-

ulates the probability of neurotransmitter release (Borst, 2010;

Ohana and Sakmann, 1998; Rozov et al., 2001). We therefore

modified the probability of release, consistent with experimental

data for the specific sensitivities of different s-types to changes

in [Ca2+]o (Gupta et al., 2000; Rozov et al., 2001; Silver et al.,

2003; Tsodyks and Markram, 1997) (Figure S11; see Experi-

mental Procedures). We found that, in the low Ca2+ condition,

slow oscillatory bursting disappeared and the neuronal activity

became asynchronous and irregular (Figure 12C). To validate

this in silico finding, we performed multi-electrode array record-

ings in vitro (Figure 12D) in high and low Ca2+ conditions (see

Experimental Procedures). As predicted by the simulations,

we found that the slow oscillatory bursts present in high Ca2+

(Figure 12E) were replaced by asynchronous and irregular activ-

ity under low Ca2+ conditions (Figure 12F).

We then used the virtual slice to explore the behavior of the

microcircuitry for a wide range of tonic depolarization and Ca2+

levels. We found a spectrum of network states ranging from

one extreme, where neuronal activity was largely synchronous,

to another, where it was largely asynchronous (the synchro-

nous-asynchronous [SA] spectrum; Figure S12). The spectrum

was observed in virtual slices, constructed from all 35 individual

instantiations of the microcircuit (seven for each of Bio1–Bio5)

and all seven instantiations of the average microcircuit (BioM).
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Figure 11. Simulation of the Reconstructed Microcircuit

(A) Simulation of spontaneous activity. Individual neurons at different levels of depolarization in the microcircuit are colored according to a heatmap (blue,

hyperpolarized; red, depolarized; white, spike).

(B) Rastergrams of randomly selected neurons for each m-type during synchronous bursting.

(C) Exemplar voltage traces for each of the 55 m-types during spontaneous activity in the microcircuit (traces truncated at �30 mV).

(D) Inter-spike interval (ISI) distributions of each of the 55 m-types for the activity shown in C.

See also Figure S10 for an overview of the software ecosystem surrounding the simulation of the microcircuit. See also Movie S3A.
This implies that it is a highly reproducible phenomenon, robust

to biological and statistical variations in parameters such as

layer thickness, cell density, and composition; specific synaptic

connectivity; and the specific dimensions of the microcircuit

(see Movie S3C).

We observed that a change in [Ca2+]o of < 1 mM can lead to a

transition from the synchronous to the asynchronous state,

revealing two distinct activity regimes (Figure S12). The level of

[Ca2+]o at the transition varied slightly across the different instan-

tiations of the microcircuit (Bio1–Bio5; Figure S13).

Since the reconstructed microcircuitry displays synaptically

coupled assemblies comparable to those found experimentally

(Perin et al., 2011; Reimann et al., 2015), we also analyzed corre-

lations in neuronal activity within these assemblies. Neuronal

activity was found to be slightly more correlated within assem-
472 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
blies compared to randomly sampled neurons (Figure S14).

Near the transition, a fall in [Ca2+]o of just�0.15 mM (Figure S14)

led to a sharp decrease in correlated spiking, clearly demar-

cating a transition in the SA spectrum.

The mechanism underlying this sharp transition is likely to

involve the differential Ca2+ sensitivities of inhibitory and excit-

atory synapse types. Indeed, we found that changing [Ca2+]o
from 2 mM to 1.3 mM alters the ratio between excitatory and

inhibitory synaptic PSPs by a factor of �3.5, in favor of inhibition

(Figure S11). This suggests the existence of a threshold level of

Ca2+ beyond which inhibition is insufficient to prevent a super-

critical state (see below).

The finding that differential sensitivity of s-types to Ca2+

levels determines the position of the network along the SA

spectrum suggests that other mechanisms that change the



Figure 12. Predicting and Validating Synchronous and Asynchronous States in Spontaneous Activity

(A) A spontaneously active virtual slice formed from seven unitary microcircuits (230.9 3 2800 3 2082 mm).

(B) Rastergram of a random selection of neurons during in silico spontaneous activity under in-vitro-like conditions (somatic depolarization to �90% threshold,

([Ca2+]o = 2.0 mM). Number of neurons displayed per layer is proportional to the total number of neurons per layer.

(C) Rastergram of a random selection of neurons during in silico spontaneous activity under in-vivo-like conditions (somatic depolarization to �90% threshold,

([Ca2+]o = 1.0 mM).

(D) To assess network activity, 300-mm-thick cortical slices weremounted on a 3Dmulti-electrode array (MEA) (reconstruction of a layer 5 pyramidal cell overlaid).

(E) Experimentally observed spontaneous multi-unit activity under in vitro [Ca2+]o.

(F) Experimentally observed spontaneous multi-unit activity under in vivo-like [Ca2+]o.

See also Figure S11 for [Ca2+]o sensitivity of synapse types; Figures S12 and S13 for activity along the full spectrum of [Ca2+]o concentrations and its biological

variability; Figure S14 for synchrony in synaptically clustered neurons along the spectrum; Figure S15 for the effect of selective knockouts onmicrocircuit activity.

See Movie S3B for a visualization of B and Movie S3C for C.
excitatory-inhibitory balance may have similar effects. We there-

fore performed in silico knockout experiments to understand the

roles of the different layers, neurons, and connections in control-
ling the position of the microcircuit on the spectrum (Figure S15).

We found that blocking activity in the upper layers tended to shift

the network toward the synchronous state, while blocking the
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 473



deeper layers had the opposite effect (Figure S15A). Similarly,

blocking soma-targeting basket cells produced a stronger shift

toward the synchronous state than blocking other interneurons,

while blocking pyramidal cells caused a shift toward the asyn-

chronous state (Figure S15B). Corresponding differential effects

were found when blocking associated inhibitory and excitatory

connections (Figure S15C). These effects were observed both

at high and low [Ca2+]o. It follows that differential regulation of

layers, neurons, and connections plays an important role in con-

trolling the position of the microcircuit along the SA spectrum,

independently of [Ca2+]o.

Simulating Thalamic Activation of the Microcircuit

To examine spatio-temporal patterns of evoked activity, we

constructed a mesocircuit consisting of a central microcircuit

surrounded by six additional microcircuits. Connectivity was

established for the mesocircuit as a whole, with no anatomical

borders between microcircuits. An algorithm was developed to

approximate input from the thalamus to the central microcircuit

in such a way as to satisfy experimental constraints. We used

data for the number of incoming fibers, bouton density profiles,

and the numbers of synapses per connection (to layer 4) for

the ventral posteromedial (VPM) thalamic input to the barrel re-

gion of somatosensory cortex (Constantinople and Bruno,

2013; Gil et al., 1999; Meyer et al., 2010b). To represent the num-

ber of fibers, we instantiated one fiber centered in each minicol-

umnwith a horizontal spread (Meyer et al., 2010b). We then used

the layer-by-layer bouton density profiles (Meyer et al., 2010b)

(Figure 13A, left), experimental measurements of the mean num-

ber of synapses per thalamic connection in layer 4 (Amitai, 2001;

Gil et al., 1999), and the multi-synapse principle (see above and

Experimental Procedures) to predict the synapses that each

thalamic fiber forms onto different m-types (Figure 13A, right).

The reconstruction reproduced the number of synapses formed

on L4PCs (Figure 13B) (Amitai, 2001; Gil et al., 1999) and pre-

dicted, for example, an average of �12 synapses on L5 pyrami-

dal neurons (Figure 13B), more than for L4PCs. Overall, we pre-

dicted that each thalamic fiber innervates 903 ± 66 neurons

(mean ± SD; n = 100 fibers; Figure 13C; 775 ± 57 excitatory

and 83 ± 11 inhibitory neurons) with an average of 8.1 ± 4.2 syn-

apses/connection. In total, we found that thalamic fibers form�2

million synapses in the central microcircuit (�1% of synapses

across all layers; see Meyer et al., 2010b).

Thalamocortical synaptic transmission was modeled using

in vitro data on synaptic dynamics (Figure 13D, left; Amitai,

2001; Gil et al., 1999) and the generalized excitatory-to-excit-

atory conductances derived above (i.e., similar to L4_EXC, E2

s-type; see Experimental Procedures). Ca2+ dependency was

modeled as for other excitatory connections. The resulting syn-

aptic transmission was validated by comparing in silico PSPs in

L4 and L5 PCs in low-Ca2+ conditions against previous in vivo re-

ports (Bruno and Sakmann, 2006; Constantinople and Bruno,

2013; Figure 13E). Distributions of PSPs in L4 and L5 PCs in

high-Ca2+ conditions were also predicted (Figure 13D, right).

With [Ca2+]o at 1.25 mM and moderate depolarization (in-vivo-

like conditions), the main response to stimulation of thalamic

fibers was in L4 to L6 (Figure S16A). Examination of the

spiking activity of a random selection of neurons, covering all

55 m-types, showed that most m-types in these layers re-
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sponded to the stimulus (Figure S16B). To investigate the effects

of a graded stimulus, we used a single synchronous spike to

activate a progressively increasing number of fibers innervating

the center of the mesocircuit. With [Ca2+]o at 2.0 mM and zero

depolarization (in-vitro-like conditions), activating four or more

fibers evoked a stereotypical high-amplitude PSTH response

(>80 Hz, Figure 14A), similar to previous in vitro observations

(Beierlein et al., 2002). In contrast, stimulation under in-vivo-

like conditions produced graded responses, with 20–30Hz oscil-

lations emerging in the lower layers, particularly in L6, when

higher numbers of fibers were stimulated (Figure 14B). While

under in-vitro-like conditions, stimulating as few as four thalamic

fibers produced all-or-none behavior, indicative of a regenera-

tive state that spread across the whole mesocircuit (Figure 14C),

under in-vivo-like conditions, the activity remained localized

(Figure 14D).

With increasing Ca2+ levels, the stimulus response curves

measured during the first 10 ms of thalamic stimulation shifted

from a linear to a sharp sigmoidal shape (Figure 14E). Analysis

of the velocity of spread revealed a qualitative difference be-

tween the synchronous and asynchronous regimes. In the syn-

chronous regime, the spread of activity accelerated over time,

while in the asynchronous regime, it was constant until the ampli-

tude of the activity fell to zero (Figure 14F). This suggests that,

in the synchronous regime, inhibition cannot act fast enough to

curb the excitation and prevent uncontrolled spreading activity.

Correlated activity is maximal in the regenerative regime and

minimal in the non-regenerative regime (Figure S14), suggesting

a dynamic range for correlations to emerge during information

processing under in-vivo-like conditions. Taken together, the

simulations predict that, at the average [Ca2+]o reported in the

awake state (Jones and Keep, 1988; Massimini and Amzica,

2001; Westerink et al., 1988), the neocortex will exhibit graded

and spatially restricted activation, a prerequisite for the emer-

gence of functional maps with high spatial resolution.

At a level of tonicdepolarizationwhere thenetwork is spontane-

ously active in both the regenerative and non-regenerative

regimes, we observed a spectrum of oscillations with lower fre-

quencies (�1 Hz) in the regenerative regime and higher fre-

quencies in the non-regenerative regime (�10–20 Hz; data not

shown).Maximumpowerwasobserved in layers 5–6 in the regen-

erative regime and in layers 2–3 in the non-regenerative regime

(data not shown). This suggests that shifts along the SA spectrum

contribute to the spectra of oscillatory frequencies observed

in spontaneously active neocortex (see also Tan et al., 2014).

To establish a more complete demarcation between different

activity regimes, we performed a series of simulations system-

atically exploring network state at varying levels of [Ca2+]o and

depolarization. An analysis of average firing rates demarcated

the boundary between evoked and spontaneous activity (Fig-

ure 15A). The boundary between spontaneous regenerative

and non-regenerative regimes was demarcated by the pres-

ence or absence of spontaneous bursting activity (Figure 15B).

The transition between the evoked regenerative and non-

regenerative regimes was determined by an analysis of the

amplitude of the response to stimuli at the edge of the meso-

circuit (Figure 15C). The combination of these activity maps

demarcates four distinct activity regimes: evoked regenerative
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Figure 13. Reconstructing Thalamocortical Input

(A) Bouton and synapse profiles. (Left) The distribution of boutons across the depth of the microcircuit (orange line, Meyer et al., 2010b) assuming one afferent

fiber from ventral posteromedial (VPM) thalamic nucleus per minicolumn, overlaid on randomly chosen neurons. (Right) The resulting synapses formed (green)

with synapses formed by a single fiber (red).

(B) Distribution of the number of synapses per connection formed by the population of thalamic fibers onto L4 and L5 excitatory neurons. L4 distribution is

compared against in vitro data (dashed red line; Gil et al., 1999). Horizontal bar: mean ± SD.

(C) Postsynaptic neurons. Distribution of the number of postsynaptic neurons innervated by individual thalamic fibers.

(D) In-vitro-like conditions. (Left) Synaptic dynamics of thalamocortical connections to L4 excitatory cells (gray, 30 trials; blue, average; [Ca2+]o = 2.0 mM). (Right)

Distribution of PSP amplitudes of thalamocortical connections to L4 and L5 excitatory cells ([Ca2+]o = 2.0 mM, horizontal bar, mean ± SD).

(E) In vivo-like conditions. (Left) Synaptic dynamics of thalamocortical connections to L4 excitatory cells (gray, 30 trials; blue, average; [Ca2+]o = 1.3 mM). (Right)

Distribution of PSP amplitudes of thalamocortical connections to L4 and L5 excitatory cells ([Ca2+]o = 1.3 mM, horizontal bar, mean ± SD). L4 and L5 distributions

are compared against in vivo data (L4, dashed red line, left; Bruno and Sakmann, 2006; L5, star dashed red line; Constantinople and Bruno, 2011).

See also Figure S11 for [Ca2+]o sensitivity of synapse types.
(ER), spontaneous regenerative (SR), evoked non-regenerative

(EN), and spontaneous non-regenerative (SN) (Figure 15D).

Reproducibility of Emergent Properties
The reconstructed microcircuitry is based on biological data

from a large number of different animals and, in some cases,
from different neocortical regions that together provide statis-

tical distributions for layer heights, neuron densities, cellular

composition, and morphological and electrophysiological diver-

sity within and across types of neuron and reflect the diversity

of synaptic anatomy and physiology observed in biological

experiments. The reconstruction process stochastically creates
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 475
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Figure 14. Activity Evoked by Thalamic Input

(A) In-vitro-like stimulus-dependent evoked activ-

ity. Raster plots (top) and PSTHs (bottom) of the

response to stimulation of varying number of

thalamic fibers under in vitro-like conditions (so-

matic depolarization to �60% threshold, [Ca2+]o =

2.0 mM).

(B) In-vivo-like stimulus-dependent evoked activ-

ity. Same as in A for in-vivo-like conditions (somatic

depolarization to �100% threshold, [Ca2+]o =

1.25 mM). Stimulation times and number of fibers

stimulated are shown below.

(C) In-vitro-like activity propagation. A mesocircuit

under in vitro-like conditions (no somatic depolar-

ization, [Ca2+]o = 2.0 mM) stimulated with single

synchronous spikes to each of 16 thalamic

fibers at the center of the central microcircuit. The

mesocircuit at L4 is depicted from above at

different times after stimulation. Neuronal somata

are rendered with a heat color map indicating level

of depolarization.

(D) In-vivo-like activity propagation. Same as in

D but under in vivo-like conditions (somatic depo-

larization to �100% threshold, [Ca2+]o = 1.25 mM).

(E) Stimulus response curves for various levels

of Ca2+ and somatic depolarization to �85%

threshold. Response amplitude determined as the

peak response for the central ten minicolumns in

the first 10 ms of the response.

(F) Propagation of the wave front with time in

response to thalamic stimulation (at t = 0),

measured as the half-maximum of a one-sided

Gaussian fit to the wave front. Exponential fit for

the regenerative activity and linear fit for non-

regenerative activity (conditions as in C and D,

respectively). In the non-regenerative regime, the

amplitude of the wave front was zero at 25 ms.

See also Figure S16 for stimulus responses of

individual m-types.
instantiations of the digital microcircuit that respect these distri-

butions. We have previously shown that detailed synaptic phys-

iology is largely invariant across different instantiations of the

digital microcircuit (Ramaswamy et al., 2012) and that emergent

parameters such as the distributions of the locations of synapses

formed by different presynaptic neurons are also largely invariant

(Hill et al., 2012).

To further assess the reproducibility of the reconstruction as a

whole, we measured the variance of a range of its emergent

anatomical and physiological properties (i.e., properties not

directly specified by the data). The anatomical properties

measured from seven instantiations of each microcircuit (seven

instantiations of BioM and seven each for Bio1–Bio5) included

total number of appositions and synapses, convergence and

divergence of connectivity for each m-type, numbers of excit-

atory and inhibitory synapses and connections, mean numbers

and types of presynaptic neurons innervating neurons belonging
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to different m-types, and numbers of

intra-and inter-laminar synapses and

connections. In each case, we found low

variance compared to the mean (see Fig-
ure S17 for a sample; see Table S1 for selected values; see also

NMC Portal).

To gain a deeper understanding of the physiological variability

of the digital reconstruction, we examined trial-to-trial variability

in the spiking activity of individual neurons and variability across

neurons of the same type, as well as variability across layers and

across digital reconstructions individualized with data from five

different animals (Bio1–Bio5). Cell responses to a single thalamic

stimulation, roughly comparable to a single whisker deflection

(stimulation of a cluster of 60 minicolumns), displayed varying

degrees of trial-to-trial variability (Figure 16A). Since the digital

reconstruction implements biologically grounded stochastic

mechanisms for synaptic transmission, spontaneous release,

and some ion channels, this was expected. However, each

cell-type also displayed a characteristic delay to first spike

response. In some cases, the distribution of single-neuron re-

sponses was similar to that of the population (Figure 16B, left),
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Figure 15. The Regime Map

Characterization of spontaneous and evoked activity under different levels of

depolarization and [Ca2+]o.

(A) Average spontaneous firing rates. White line indicates interpolated transi-

tion between evoked and spontaneous regimes.

(B) Presence of spontaneous bursting activity. White line indicates transition

between spontaneous regenerative (SR) and non-regenerative (NR) activity.

(C) Map of evoked regenerative (ER) and non-regenerative activity determined

by the amplitude of the response to stimuli at the edge of the mesocircuit in

relation to the initial response at the center. White line indicates the transition

between the ER and NR regimes. Blue-green region is extrapolated to be NR.

(D) Schematic map of showing the four activity regimes. Evoked regenerative,

ER; spontaneous regenerative, SR; evoked non-regenerative, EN; sponta-

neous non-regenerative, SN.
while in others it was markedly different (Figure 16B, right). For

both excitatory and inhibitory neurons, variance in response

times decreased with cortical depth (Figure 16C). In all layers,

trial-to-trial variability was lower than the variability between indi-

vidual neurons of the same type in single trials.

Responses from neurons of the same m-type, in digital recon-

structions based on data from individual animals (Bio1–Bio5),

displayed higher variability across reconstructions than in

different instantiations of the average microcircuit (BioM) (for

an example, see Figure 16D, left). To isolate the source of this

inter-individual variability, we began by re-examining the SA

spectra for the reconstructions at different levels of Ca2+. We

found that they all displayed the spectrum but that the precise

level of Ca2+ at the transition between the synchronous and

asynchronous state was slightly different for each reconstruc-

tion, ranging from 1.23 to 1.31 mM [Ca2+]o (Figure S13). We

therefore repeated the simulations, setting the Ca2+ level such

that each reconstruction was shifted to the same point along

the spectrum relative to the transition. Under these normalized

conditions, the variance in the responses of specific m-types

across reconstructions decreased strikingly (Figure 16D, right).

Figure 16E summarizes the different sources of variability for

all neurons in L4 and L5.

Taken together, these results demonstrate the ability of the

digital reconstruction to accommodate physiological variability

while maintaining reproducibility and are evidence of its potential

to generate useful biological insights. To further test this poten-

tial, we attempted to replicate results from an array of recent

in vivo studies.

Reproducing In Vivo Findings
The digital reconstructions described above aimed to recreate

the anatomy and physiology of an isolated slice of neocortical

tissue, but not specifically to replicate any particular in vivo

experiment. Nonetheless, we tested the ability of the digital

reconstruction to replicate such experiments. We selected a

set of recent in vivo studies in which a reasonable replication

of the stimulation and analysis protocols was technically

feasible. We then selected an arbitrary instantiation of BioM

and used this model for all tests. In each case, we maintained

the model’s original parameters, without introducing modifica-

tions to fit previously reported results—a ‘‘zero tweak’’ strategy.

All simulations were performed near the transition from the syn-

chronous to the asynchronous state.
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Figure 16. Reliability of Microcircuit Re-

sponses

(A) Raster plot of the spiking activity of an exem-

plary L23PC (top) and an exemplary L4PC (bottom)

in response to simulated thalamocortical stimula-

tion with 60 fibers. The first spike after the stimulus

in each of 200 trials is indicated in red, other spikes

in black. The blue line indicates the probability that

the neuron fires a spike in a 5 ms bin.

(B) Histograms of the response delay (delay of the

first spike after stimulus presentation) for L23PCs

(left) and L4PCs (right). (Black) For 200 trials of 25

randomly chosen neurons of the indicated type.

(Red) For 200 trials of the neurons indicated in A.

(C) Standard deviation of the response delay of

neurons in different layers across trials. Red line

indicates the median of neurons, blue boxes the

25th and 75th percentiles, and whiskers the full data

spread. (Top) Excitatory neurons; (bottom) inhibi-

tory neurons.

(D) Standard deviation of the response delay

across trials of neurons when placed in microcir-

cuits constructed from different biological data-

sets (Bio1–Bio5). (Top) Of five L4SPs. (Bottom) Of

five L6SBCs. (Left) Under simulated extracellular

Ca2+ concentration of 1.25 mM. (Right) When the

calcium concentration was set to a value on the

border between regenerative and non-regenera-

tive activity for that particular microcircuit. Boxes

and whiskers as in C.

(E) Comparison of the different sources of vari-

ability. (Left to right) Inter-trial variability (same

neuron in samemicrocircuit across trials); neuronal

variability (same trial in same microcircuit across

neurons of a given m-type); inter-circuit variability

(same neuron in different microcircuit); inter-circuit

variability under normalized Ca2+ concentrations.

(Top) In layer IV; (bottom) in layer V. Boxes and

whiskers as in C.

See also Figure S17 for the anatomical variability of

microcircuits.
Neuronal Responses to Single-Whisker Deflection

Many in vivo studies of evoked neuronal activity have reported

that basal activity is sparse in all cell types, that the response

characteristics of individually recorded neurons display cell-

type-specific diversity, and that response latencies are cell

type and layer specific (Constantinople and Bruno, 2013;

Reyes-Puerta et al., 2015). To test the ability of the reconstruc-

tion to reproduce these findings, we attempted to replicate

some of the experiments reported in a recent study by Reyes-

Puerta et al. (2015), in which the authors recorded and analyzed

neuronal responses to a single-whisker deflection in the

barrel cortex of anaesthetized adult rats. We approximated the

stimulus as a single pulse in 60 reconstructed thalamic fibers

projecting to the center of the digital microcircuit. As shown in

Figure 17A1, the response to the stimulation displays cell-type-

specific diversity that compares reasonably well with the results

reported in Figure 3A of the Reyes-Puerta et al. study (Reyes-

Puerta et al., 2015), with the exception of the OFF response,

which is not as prominent. The general distribution of responses

for excitatory and inhibitory cells is also comparable (Figure 17A2

in silico versus Figure 3B in vivo), though again with fewer OFF
478 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.
responses. As in Reyes-Puerta et al. (Reyes-Puerta et al.,

2015), most responses occurred within 10–20 ms of the stimulus

and were generally led by inhibitory cells and, more specifically,

by inhibitory cells in L4 and L5 (Figure 17A3 in silico versus Fig-

ure 4B1 in vivo).

Anti-correlated Inhibitory Activity Cancels Out Highly

Correlated Excitatory Activity

Many previous studies have struggled to explain the uncorre-

lated neuronal spiking activity that is often observed in vivo

(Celikel et al., 2004; Mazurek and Shadlen, 2002), with some

suggesting that it is the result of poorly correlated excitatory

activity (as expected if excitatory neurons generate a rate

code), while others argue that correlations in excitatory activity

are cancelled out by anti-correlated inhibition (Beierlein et al.,

2000; Okun and Lampl, 2008). A model developed to address

this issue by Renart et al. (2010) shows that it is indeed theoret-

ically feasible for anti-correlated inhibitory activity to cancel out

highly correlated excitatory activity (see their Figure 3). To test

this hypothesis, we therefore analyzed whether this phenome-

non was evident during spontaneous activity in the digital recon-

struction. Although the digital reconstruction was not specifically
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Figure 17. Cell-Type Responses In Vivo and E-I Balance

(A1) Cellular response types to simulated single-whisker deflection. Each subplot represents the activity of an individual cell, containing the raster plot aligned

to simulated whisker deflection and the PSTH. Upon simulated whisker deflection, neurons increased their firing rate (ON cells), showed no change in firing rate

(NR cells), or decreased their firing rate (OFF cells). (A2) Comparison of mean firing rates before and after whisker deflection plotted in logarithmic scale (2630

excitatory and 550 inhibitory neurons). Empty symbols represent neurons showing no significantly different activity in both periods (NR cells), and filled symbols

represent neurons showing significantly different (p < 0.05) activity (ON and OFF cells). (A3) Mean first-spike latencies of inhibitory (INH) and excitatory (EXC)

neurons to simulated whisker deflection, defined by first spike occurrence within 30 ms after stimulation, mean over 200 trials, for all 31,346 neurons in the

stimulated column. Each box plot represents median, interquartile, and range of latencies; crosses represent outliers (2.5 times interquartile range).

(B1) Raster (top) of the spontaneous spiking activity of 500 excitatory (red) and inhibitory (blue) neurons under in-vivo-like conditions (100% depolarization and

[Ca2+]o = 1.25 mM). Bottom curves show tracking of instantaneous population-averaged activities (transformed to z-scores, bin size 3ms). Average firing rates of

E and I cells were 1.09 ± 1.0 Hz and 6.00 ± 8.95 Hz, respectively (n = 1,000; mean ± SD). (B2) Histogram of spike-spike correlations (black, count window 50 ms)

and of jittered spike trains (gray, jitter ± 500 ms). (B3) Population-averaged cross-correlograms of the somatic membrane current, when cells are held at the

reversal potential of inhibition (blue) or of excitation (red) in both cells, or at one potential for one cell and at the other potential for the other cell (magenta). The

black curve is for pairs at resting potential.

See also Figure S18 for details of E-I balance.
designed to produce this phenomenon, it nonetheless generated

excitatory conductances in single neurons that were highly

correlated but effectively cancelled out by anti-correlated inhib-

itory conductances (Figure 17B).

Deeper investigation revealed that spiking is correlated with

momentary imbalances between excitatory and inhibitory con-

ductances lasting <10 ms and that the timing of spikes can

be predicted from the difference in the E and I conductances

(Figure 17B). We also found that the precision with which

these imbalances drive spiking falls dramatically as the network

state shifts away from the transition in either direction. When it
shifts toward the synchronous state, the correlation is strong

but broad, resulting in a temporally imprecise increase in

spiking more suitable for a rate code. When it shifts toward

the asynchronous regime, the correlation is sharp but too

weak to effectively drive spiking, a regime more suitable for a

population code based on a high degree of correlated activity

(Figure S18).

Temporally Sequential Structure during Spontaneous

Activity of L5 Neurons

The search for precise temporal structures in brain activity, such

as synfire chains, motifs, repeated spike patterns, etc., has a
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Figure 18. Triplet Structure and Diverse Population Coupling

Precisely repeating triplet structures can be predicted from individual neural latencies under synchronous stimulation (20 thalamic fibers, [Ca2+]o = 1.25 mM; cf.

Luczak et al., 2007, Figure 5).

(A1) Schematic depicting the structure of a spike triplet for a triad of neurons. (A2) Count matrix for a representative neuron triad. Black box indicates region

containing precisely repeating triplets. White square signifies mode. (A3) Correlation between neural latency differences and triplet structures. (A4) Precisely

repeating triplet probability peaks shortly after onset of activated state. This peak is significant when compared with two null hypotheses (independent Poisson

model, blue curve; common excitability model, red curve). Dashed lines show standard deviation.

(B1) Time course of population firing rate just below the transition to the synchronous regime (microcircuit ‘‘Bio5,’’ [Ca2+]o = 1.27 mM). (B2) (Top) Spike-triggered

average of population activity (stPR) for four representative neurons in layers V and VI. (Bottom) Same as above but after shuffling (see Okun et al., 2015; cf.

Figures 1E and 1G). (Inset) Distribution of the population-coupling coefficient before and after shuffling (seeOkun et al., 2015). (B3) Relative fractions of m-types of

soloists (population coupling < 0.5) and choristers (> 2.0).

See also Figure S19 for results under lower [Ca2+]o.
long history. These patterns are thought to reflect ‘‘stereotypical

organized sequential spread of activation through local cortical

networks,’’ as demonstrated recently (Luczak et al., 2007). Luc-

zak et al. (2007) found a temporally sequential structure during

spontaneous activity of L5 neurons in vivo in the somatosensory

cortex (Luczak et al., 2007). In particular, they found that, after

the onset of an UP state, trios of neurons generated spike motifs

(triplets) with a precisely defined temporal relationship between

spikes that could not be explained by random correlations during

high-frequency spiking (see their Figure 5). A similar analysis of

the evoked response to thalamic stimulation of L5 neurons in

the digital reconstruction found the same repeating triplet struc-

tures as observed in vivo (Figure 18A). A second in silico exper-

iment further into the asynchronous regime (i.e., at lower Ca2+

levels; 1.0 mM) showed no evidence of triplet structures (Figures

S19A–S19C), supporting our prediction that, in the highly asyn-

chronous regime, it is difficult for single neurons to track fine

temporal structure in network activity unless the population of
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presynaptic neurons becomes highly synchronized, for example,

by external input.

Soloists versus Choristers

A recent study showed that some neurons in a network display

spiking activity that is tightly correlated with the average activity

of the population of neurons in the network (choristers), while

others display a diversity of spiking patterns whose correlation

with that of the population is smaller than expected by chance

(soloists), suggesting that they actively avoid correlating with

the rest of the population (Okun et al., 2015). We simulated the

spontaneous activity of a single microcircuit in the asynchronous

state but close to the transition to synchronous state for 800 s

(Figure 18B1; see also Figure S19D) and analyzed the spiking

activity of every individual neuron in L5 and L6 with respect to

the spiking of all others. Replication of the analysis in Okun

et al. (2015) yielded comparable results, although the proportion

of choristers appears to be somewhat higher in the digital recon-

struction (Figure 18B2 in silico versus Figures 1E and 1G in vivo).



We found that soloists are predominantly interneurons, while

choristers are mainly pyramidal neurons (Figure 18B3). Pyrami-

dal cells can be found on both extremes; they tend to be soloists

when their spontaneous firing rate is high, the ratio of excitatory

to inhibitory synaptic innervation is high, and most of the inner-

vating synapses are close to their somata (data not shown).

Shifting the network further into the synchronous regime leads

to an increase in the number of choristers, consistent with gen-

eral recruitment of all neurons and a rate-based response. On

the other hand, shifting the network further into the asynchro-

nous regime results in a loss of both choristers and soloists dur-

ing spontaneous activity (data not shown). This finding supports

our prediction that, when the network is far into the asynchro-

nous regime, single neurons cannot easily sense and respond

to fine temporal structure in network activity.

Functional Implications
These replications of in vivo studies suggest that the digital

reconstruction can yield physiologically relevant insights. We

therefore went on to address two issues that it has not been

possible to address experimentally, either in vitro or in vivo.

In a first experiment, we investigated the ability of single L5

pyramidal neurons to discriminate between spatially segregated

inputs. As previously, we used stimuli that approximated a

whisker deflection (Figure 19A). To measure how far apart the

stimuli needed to be for single neurons of the microcircuit to

discriminate between them, we progressively increased the

spatial separation between the stimuli and measured the

response of L5 pyramidal cells in terms of rate (represented by

the number of spikes emitted) and timing (represented by the

latency to first response). Analysis of the difference between re-

sponses yielded a measure of latency- and rate-based discrim-

ination. Figure 19B1 shows the responses of a single, arbitrarily

selected neuron to stimuli applied at locations separated by

150 mm. In this case, latency- and rate-based discrimination

are both significant (Figures 19B2 and 19B3). Exploration of

the discriminatory power of L5 pyramidal neurons with different

separations between the stimuli and at different levels of Ca2+

(Figures 19C1 and 19D1) showed that many neurons discrimi-

nate between inputs separated by 150 mm or more and that a

few can discriminate between stimuli with separations as small

as 50 mm (i.e., approximately two minicolumns apart). In general,

timing-based discrimination is much stronger than rate-based

discrimination (Figures 19C2 and 19D2). Interestingly, at all sep-

arations, discrimination is strongest at Ca2+ levels close to the

transition between the synchronous and asynchronous regimes

(Figure 19D).

Unexpectedly, we noticed a spatial asymmetry in the discrim-

inatory power of the neurons (Figures 19C1 and 19C2, shaded

background). To test the reproducibility of the phenomenon,

we repeated the simulation using instantiations of Bio1–Bio5

that we already knew to be highly variable (see Figure S17 and

Table S1). All reconstructions showed asymmetry, but the spe-

cific degree and pattern of asymmetry was different in each

case (Figure 19E1, four instantiations shown). We therefore

hypothesized that the asymmetry reflects local variations in con-

nectivity arising from the statistical instantiation of the digital

microcircuit, amplified by edge effects. To test this hypothesis,
we repeated the discrimination experiment with a mesocircuit

constructed as previously described ([Ca2+]o 1.25 mM, separa-

tion 150 mm, see shaded background in Figures 19C1 and

19C2), taking the same microcircuit used in the previous ex-

periment (Figures 19C1 and 19C2) as its central microcircuit

(Figure 19E2, white hexagon). Under these conditions, the asym-

metry was markedly reduced. We also found strong variation in

overall discrimination power across the different instantiations

(Figure 19E1).

In the final series of simulations, we explored the relationship

between the size of the network and its emergent properties,

the emergence of the transition between the synchronous

and asynchronous states, and the emergence of spontaneous

spatio-temporal patterns for different sized networks (10–

1,000 minicolumns). In reconstructions smaller than the

anatomically defined microcircuit, the transition occurred at

high levels of Ca2+ and fell sharply with increasing size of the

reconstruction, reaching a plateau in reconstructions larger

than�300 minicolumns (i.e., the size of the anatomically defined

microcircuit; Figures 20A and 20B). Even in reconstructions

as large as 1,000 minicolumns, the spectrum of states did not

exhibit any further qualitative change (Figure 20B). Figures 20C

and 20D show the emergence of spontaneous clustered activity

as the network increases in size. We found that, in smaller recon-

structions, the time course of spontaneous firing rates in different

clusters of �10 minicolumns was very similar and became pro-

gressively dissimilar as the reconstructions increased in size (Fig-

ure 20D). The between-cluster correlation coefficient decreased

exponentially with increasing distance between clusters, also

plateauing at distances comparable to the diameter of the

anatomically defined microcircuit (�202 mm; Figure 20E). As a

related measure, we also examined the trend in correlated activ-

ity within a central set of �50 minicolumns as the surrounding

network increased in size. We found that, in larger networks,

the correlation fell exponentially, bottoming out in microcircuits

of �300 minicolumns and larger (r = �0.4; Figure 20F).

DISCUSSION

This paper presents a first-draft digital reconstruction of neocor-

tical microcircuitry that integrates experimental measurements

of neuronal morphologies, layer heights, neuronal densities,

ratios of excitatory to inhibitory neurons, morphological and

electro-morphological composition, and electrophysiology, as

well as synaptic anatomy and physiology (see ‘‘Reconstruction

Data’’ and Table S3). It has been validated against a spectrum

of separate anatomical and physiological measurements not

used in the reconstruction (see ‘‘Validation Data’’ and Table

S3). The reconstruction provides predictions of a wide range of

anatomical and physiological properties of the neocortical

microcircuitry (Box 1). Simulation of the reconstruction shows

a spectrum of emergent network activity states with a sharp

transition from synchronous to asynchronous states. At this

particular point along the spectrum, digital reconstructions

reproduce a number of findings from in vivo studies, allowing

deeper investigation of their underlying cellular and synaptic

mechanisms. They also enable experiments that have not so

far been possible either in vitro or in vivo. Investigation of the
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 481
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Figure 19. Spatial Resolution

(A) The ability of L5PCs in the microcircuit to discriminate between inputs given by bundles of ten thalamic fibers was examined. The stimuli were centered on

locations offset from the center of the circuit to the left or right. (Top) Spatial extent of the synapses activated by ten thalamic fibers in the microcircuit.

(B1) Raster plot of spiking activity of a neuron in response to ten repetitions of spatially constrained stimuli at different locations (1 s of pulses at 20 Hz). Black

arrows on top indicate individual pulses. (B2) Histogram of the delay to the first spike after the start of stimulus presentation of the neurons in B1. The difference in

delay is statistically significant (p < 0.001, Wilcoxon rank sum test). (B3) Histogram of the number of spikes during stimulus presentation (gray window in B1).

Differences in spike counts were statistically significant.

(C1) Mean discrimination strength. �log10 of the p value as in B2 of L5PCs at different locations is indicated as color coded. Red and blue stars indicate the

centers of the two stimuli to discriminate. Black dots indicate locations of individual L5PCs with a discrimination strength >2 (p < 0.01). Each row indicates a

different extracellular Ca2+ concentration. (C2) Same, for the discrimination power based on spike count as in B3.

(D) Fraction of L5PCs with a discrimination power >2 (light red) and >3 (dark red) for different conditions shown in C. Asterisks indicate instances in which the

number of neurons with separation strength >2 is larger than can be explained as false positives (*p < 0.05; ***p < 0.001).

(E1) Discrimination power for a stimulus separation of 150 mm at 1.25 mM [Ca2+]o for four microcircuits based on biological datasets Bio2–Bio5. (E2) Discrimi-

nation based on response delay and spike count when the same microcircuit was embedded in six surrounding microcircuits.
size of network required to reproduce key functional properties

of the microcircuit shows that it is roughly equivalent to the vol-

ume of neocortical tissue used as the basis for the reconstruc-

tion. This is evidence that a network of this size is the minimum

functional unit required for neocortical information processing.

Validity of the Digital Reconstruction
The reconstruction certainly includes errors due to mistakes and

gaps in experimental datasets and incomplete understanding of
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biological principles. For instance, additional cell type markers

would improve the accuracy of the morphological composition,

saturated EM reconstructions could be used to further validate

the derived connectivity, more experiments reporting combined

voltage and current measurements for synaptic responses will

strengthen conclusions on quantal conductances and connec-

tion-specific synaptic dynamics, and further characterization

of the sensitivity of different synapses to [Ca2+]o may allow

more accurate demarcation of the transitions between different
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Figure 20. Emergence

(A) Transition between regenerative and non-

regenerative regimes as a function of circuit size

and calcium concentration. Panels of raster plots

(top) and PSTHs (bottom) of spontaneous activity

are shown for a selection of circuit sizes and cal-

cium concentrations (100% depolarization).

(B) Overview of a broad range of circuit sizes and

calcium concentrations as in A. Red crosses and

green dots indicate regenerative and non-regen-

erative circuit behavior, respectively, as assessed

by visual inspection. Black curve depicts interpo-

lated transition between regenerative and non-

regenerative regimes.

(C) Spatial profile of instantaneous firing rates for

circuits of increasing size. Mean instantaneous

firing rates were estimated for contiguous group-

ings (clusters) of approximately ten minicolumns

using a K-means algorithm. Six spatial firing rate

profiles are shown, generated by interpolating

these rate estimates (see Experimental Pro-

cedures) at two selected times for three circuit

sizes. Colored circles show five exemplary cluster

centers.

(D) Time traces of firing rates for selected clusters.

Firing rate time courses are shown for the clusters

in C in corresponding color for all three circuit sizes.

Dashed boxes indicate the times, t1 and t2, at

which spatial profiles are compared in C.

(E) Pairwise cross-correlation coefficients of cluster

firing rate time courses for all cluster combinations

versus inter-cluster separation for varying circuit

sizes (50 to 1,000 minicolumns). Pair-wise corre-

lation decays exponentially with distance (blue

dashed line shows exponential fit to 1,000 mini-

columncircuit dataset, space constant l=202mm).

(F) Mean pairwise cluster correlation coefficients

versus circuit size for each circuit’s centermost

five clusters (red circles) and for all clusters (blue

circles). Error bars indicate SD. Dashed curves

indicate exponential fits to respective data.
activity states and may allow a more precise determination of

the role played by each neuron and synapse type in maintaining

and shifting regimes. For example, a recent EM study found

evidence for a higher number of synapses per connection than

predicted by a naive interpretation of Peters’ rule (Kasthuri

et al., 2015). Applying the same analysis to the digital reconstruc-

tion produced comparable findings (Figure S20 in silico versus

Figures 7D, 7F, and S6B in Kasthuri et al., 2015). These proper-

ties emerge in the digital reconstruction as a consequence of

preferential pruning of connections with low numbers of synap-

ses (Reimann et al., 2015).

The validation tests conducted at multiple stages of the recon-

struction process reduce the risk that errors could lead to major

inaccuracies in the reconstruction or in simulations of its emer-

gent behavior. For example, validation of electrical neuron

models against independent data insulates the emergent

behavior of the network from the impact of our limited knowledge

of ion channel kinetics and distributions. More generally,

the reconstruction passed multiple tests broadly validating
its underlying anatomy and physiology. For instance, major

errors in cell morphology, densities, composition, and con-

nectivity would make it difficult to reproduce the types of

neuronal assemblies discovered in 12-patch experiments, the

numbers of GABAergic synapses on pyramidal somata, protein

staining patterns, layer-wise synapse densities, connection

probabilities, bouton densities, and distributions, etc. (see

Table S3). These properties lie well within experimentally re-

ported ranges. The reproducibility of observations and pre-

dictions in multiple reconstructions using data from different

animals and incorporating statistical variations provide evidence

that they are robust.

Although the reconstruction is, to our knowledge, the most

detailed to date, it omits many important details of microcircuit

structure and function, such as gap junctions, receptors, glia,

vasculature, neuromodulation, plasticity, and homeostasis.

Furthermore, it represents a snapshot of just one brain region,

in one strain of male rat, at a young age. This limits the gener-

ality of the conclusions that can be drawn. For instance, in
Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc. 483



Box 1. Microcircuit Predictions

1. The cellular composition of the microcircuit

2. Total lengths of dendrites and local axons

3. Increase in neuronal diversity with cortical depth

4. Total number of appositions and synapses

5. Total number of connections and connection types

6. Number of connections and synapses per connection between different neuron types

7. Number of connections and synapses formed by incoming fibers

8. Increase in the E-I neuronal fraction with cortical depth

9. All input and output synapses for all neuron types

10. Quantal synaptic conductances for all intrinsic synapses

11. Total excitatory and inhibitory conductances for all neuron types

12. Number and combination of pre- and postsynaptic neurons for all neuron types

13. Detailed synaptic physiology for connections between all neuron pairs

14. E-I ratios within and across layers

15. A spectrum of network states ranging from synchronous to asynchronous activity

16. Extracellular calcium regulates the network state through differential effects on synaptic dynamics

17. Role of layers, neuron, and connection types in modulating network states

18. The in vivo phenomena examined only emerge near the transition between synchronous and asynchronous states
animals of the age used for the study, dendritic morphologies

have already matured to adult levels (Larkman, 1991a; Romand

et al., 2011), but the ascending axons may not be fully repre-

sented and are certainly not completely mature (Romand

et al., 2011). However, studies at a greater level of biological

detail (e.g., including glia, receptors, and signaling pathways)

and investigations of different brain regions in animals of

different ages, gender, and species, as well as in disease

models can use the reconstruction as a reference point. Find-

ings consistent with the reconstruction would indicate the

sufficiency of the principles of organization used in the recon-

struction process; discrepancies may point to new principles.

For example, if application of the connectivity algorithm to

another brain region or to animals at a different age or belong-

ing to a different species failed to yield results consistent with

experimental findings, this would point to specific variations

in the connectivity rules.

Failure in validation could also indicate errors in experi-

mental data. For instance, the reconstruction indicated that

cell densities from a dozen previous studies were all too low

to account for spine and synapse densities, suggesting new

experiments, which verified this prediction. The reconstruction

also revealed that many experiments underestimate synaptic

conductances and suggests that in vitro experiments that do

not account for calcium level in the bath may misinterpret

the relevance of their findings for in vivo conditions. These ex-

amples illustrate how the reconstruction process does not take

experimental data at face value but uses complementary,

related datasets to constrain the use as parameters, wherever

possible.

Functional Implications
Simulations of the spontaneous and evoked activity that ac-

counted for the differential sensitivity to Ca2+ of different types

of synapses and that explored changes in Ca2+ levels revealed
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a spectrum of activity states ranging from synchronous to asyn-

chronous behavior. Varying the Ca2+ level profoundly changes

the overall E-I balance and hence the position of the network

along the spectrum, leading to a sharp transition between activ-

ity regimes. These in silico predictions were verified by new

in vitro experiments.

Further simulations showed that the level of Ca2+, where the

transition occurred, varies across digital reconstructions that

use data from different animals and that this accounts for a

significant proportion of the variance in neuronal spiking and

the spatial resolution of the network. We also found that a

small adjustment in Ca2+ levels (�0.05 mM) in individual recon-

structions significantly reduces their physiological variability.

These simulations provide an example of how variations in in-

dividual neuroanatomy may lead to functional differences.

Inspired by this finding, we performed further simulations,

which demonstrated that activating or inhibiting specific layers,

neurons, and synaptic connections also shifts the network

along the spectrum. While it is well known from previous

theoretical findings that changing E-I balance changes the state

of the network (Brunel, 2000; van Vreeswijk and Sompolinsky,

1996), the simulations further suggest that any mechanism

that differentially changes the synaptic dynamics of different

types of synapses (e.g., through neuromodulation; for reviews,

see Lee and Dan, 2012; Zagha and McCormick, 2014) could

alter the boundaries between activity regimes in complex

ways. We speculate that other emergent properties, such as

UP and DOWN states with two meta-stable fixed points,

as observed in vivo (Steriade et al., 1993), which are not

reproduced by the digital reconstruction, may require thalamo-

cortical interactions (Hughes et al., 2002), cortico-cortical inter-

actions (Timofeev et al., 2000), intrinsic oscillators (L}orincz

et al., 2015; Sanchez-Vives and McCormick, 2000), or neuro-

modulation (Constantinople and Bruno, 2011; L}orincz et al.,

2015; Sigalas et al., 2015). Modulation of cellular or synaptic



physiology may therefore serve as mechanisms to dynamically

reconfigure the network to satisfy different computational

requirements.

Reproducing In Vivo Findings
Although the digital reconstruction was largely based on in vitro

dataandwasnotdesigned to reproduceanyparticular experiment

or tocapturecomplex invivoconditions, it yielded results thatwere

qualitatively comparable to a number of major in vivo findings and

madepredictionsbeyondwhatwaspossible in theseexperiments,

without tweaking any of the model parameters.

For example, the digital reconstruction made it possible to

address a long-standing question concerning the mechanisms

underlying the uncorrelated activity frequently observed in

in vivo experiments (Haider et al., 2006). Previous theoretical

work has shown that uncorrelated activity could be the result

of tightly correlated excitatory conductances that are effec-

tively cancelled out by anti-correlated inhibitory conductances

(Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996).

Our simulations, using a model not specifically designed to

address this question, confirm this effect as an emergent prop-

erty of the network. The simulations further suggest that

cortical activity in vivo approaches a critical transition along

the synchronous asynchronous spectrum, beyond which

regenerative activity leads to neuronal avalanches (see also

Beggs and Plenz, 2003). Around this transition, spiking activity

is highly correlated with fine temporal structure in synaptic

input, reflected in brief moments of imbalance between excit-

atory and inhibitory conductances. Maximal discrimination

between spatially segregated inputs, the generation of fine

temporal structures such as triplets, and soloist-like and

chorister-like behavior all emerge close to the transition. A

recent study has experimentally characterized the plasticity

mechanisms for maintaining the network close to this transition

(Delattre et al., 2015).

Reproducing these in vivo findings was surprising because

the digital reconstruction was based on data and architectural

principles obtained from the immature rat somatosensory

cortex, while many of the in vivo findings came from different

neocortical regions in adult animals, sometimes belonging

to other species. The fact that the reconstruction reproduces

these phenomena suggests that they arise from fundamental

properties of the neocortical microcircuit.

Concluding Remarks
This study demonstrates that it is possible, in principle, to recon-

struct an integrated view of the structure and function of neocor-

tical microcircuitry, using sparse, complementary datasets to

predict biological parameters that have not been measured

experimentally. Although the current digital reconstruction can

already be used to gain insights into the way the microcircuitry

operates, it is only a first step. To facilitate integration of new

experimental data and challenges to the principles on which

it is based, we have created a public web resource, which

provides access to experimental data, models, and tools used

in the reconstruction (The Neocortical Microcircuit Collabora-

tion [NMC] Portal, https://bbp.epfl.ch/nmc-portal; Ramaswamy

et al., 2015). This will allow the community to integrate their
own data, perform their own analyses, and test their own

hypotheses.

EXPERIMENTAL PROCEDURES

A detailed description is available in the Supplemental Experimental

Procedures.

Data Acquisition

Neuron Morphology

Neuron morphologies were obtained from digital 3D reconstructions of

biocytin-stained neurons from juvenile rat hind-limb somatosensory cortex,

following whole-cell patch-clamp recordings in 300-mm-thick brain slices

(Markram et al., 1997). In some of the reconstructed neurons, bouton locations

were annotated on the axon (Wang et al., 2002). Reconstruction used the Neu-

rolucida system (MicroBrightField).

Neuron Electrophysiology

Neurons were stimulated with a set of previously described protocols (Le Bé

et al., 2007; Wang et al., 2002, 2004). A subset of these stimuli was used

to generate neuron models; a different subset was used to validate the

models.

Synaptic Anatomy

Data on the anatomy of synaptic connections were collected from previous

studies in which synaptically coupled neurons were digitally reconstructed,

and putative synapses were identified using criteria identifiable in light micro-

scopy and validated using EM. In brief, putative synapses were identified at

appositions between arbors, where a bouton was also present on the axon

of the presynaptic neuron (Markram et al., 1997).

Synaptic Physiology

Presynaptic neurons were stimulated with a set of previously described proto-

cols (Gupta et al., 2000; Markram et al., 1998; Tsodyks and Markram, 1997;

Wang et al., 2002, 2006). The synaptic parameters required to model

the synapses were obtained by fitting the responses against the Tsodyks-

Markram model for dynamic synaptic transmission (Fuhrmann et al., 2002;

Tsodyks and Markram, 1997).

Tissue Immunohistochemistry

Standard immunohistochemical methods were used to label markers of cell

types (Lefort et al., 2009). Stained cells were counted under light microscopy.

Layer boundaries and densities per layer were computed on slices using opti-

cal dissectors on NeuN-stained tissue (West and Gundersen, 1990; Williams

and Rakic, 1988) and Stereo Investigator software (StereoInvestigator 7.0,

MicroBright Field). Data for each cortical layer (I, II, III, IV, Va, Vb, VI) were

collected from different animals (n = 5). Final values for neuronal densities

and layer thicknesses were corrected for shrinkage. E/I ratios were determined

by soma counting in confocal microscopy imaging of dual NeuN- and GABA-

stained tissue.

Electron Microscopy

Serial EM stacks were obtained for blocks of neocortical tissue, as previously

described (Denk and Horstmann, 2004).

Multi-electrode Array Experiments

A 3D multi-electrode array with 60 pyramidal platinum electrodes (Qwane

Bioscience SA) was used to obtain extracellular recordings from neurons in

slices, as previously described (Delattre et al., 2015; Rinaldi et al., 2008).

Experimental data analysis was performed in Matlab (The MathWorks) with

custom scripts. Extra-cellular spikes were detected when the recorded signal

crossed a dynamic threshold.

Manipulating [Ca2+]o
Extracellular Ca2+ concentration ([Ca2+]o) was changed by bath perfusion with

artificial extracellular fluid containing a modified [Ca2+]o. Bath changing times

were minimized by employing a pipette to remove the recording chamber

solution prior to changing the subsequent solution.

Reconstruction Process

Digital Neuron Morphologies

Following 3D reconstruction, the cut ends of neuronal morphologies were

restored using a repair algorithm (Anwar et al., 2009). Neuronal arbors
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were digitally unraveled to compensate for tortuosity caused by shrinkage,

and neuron morphologies were cloned (see Supplemental Experimental

Procedures).

Electrical Neuron Models

Multicompartmental conductance-based models of neurons were generated

using up to 13 active ion channel types and a model of intracellular Ca2+ dy-

namics. Axon initial segments (AIS), somata, basal dendrites, and apical

dendrites were separated. Interneurons contained only one dendritic region.

Each region received a separate set of channels (see NMC portal, https://

bbp.epfl.ch/nmc-portal; Ramaswamy et al., 2015). Of the axon, only the AIS

was simulated. Each AIS was represented by two fixed-length sections,

each with a length of 30 mm. AIS diameters were obtained from the recon-

structed morphology used for model fitting. Action potentials detected in the

AIS were sent to the postsynaptic synapses with a delay corresponding to

the axonal length, assuming an axonal velocity of 0.3 m/s. Neuron models

were fitted using a feature-based multi-objective optimization method, as

previously described (Druckmann et al., 2007).

The Microcircuit Volume

Layer thicknesses and the diameter of the microcircuit were used to construct

a virtual hexagonal prism (see main text). A virtual slice was generated from a

1 3 7 mosaic of microcircuits as a sheet (230.9 3 2800 mm). A meso-circuit

was also generated. The meso-circuit consisted of a single microcircuit

surrounded by additional microcircuits on all faces.

Cellular Composition

Cell density measurements and experimentally determined fractions of m- and

me-types were used to generate the position of each cell in the volume of

tissue, using E:I ratios to correct for sampling bias. Each cell was assigned

the optimal morphology for its location in the volume (see Supplemental Exper-

imental Procedures).

Synaptic Anatomy

Locations of synapses were derived using an algorithm described in the com-

panion article (Reimann et al., 2015). The algorithm eliminates appositions that

do not comply with the multi-synapse and plasticity reserve rules and ensures

compatibility with observed biological bouton densities.

Synaptic Physiology

Excitatory synaptic transmission was modeled using both AMPA and NMDA

receptor kinetics (Fuhrmann et al., 2002; Häusser and Roth, 1997; Markram

et al., 1998; Ramaswamy et al., 2012; Tsodyks and Markram, 1997). Inhibitory

synaptic transmission was modeled with a combination of GABAA and GABAB

receptor kinetics (Gupta et al., 2000; Khazipov et al., 1995; De Koninck and

Mody, 1997; Mott et al., 1999). Stochastic synaptic transmission was imple-

mented as a two-state Markov model of dynamic synaptic release, a stochas-

tic implementation of the Tsodyks-Markram dynamic synapse model (Fuhr-

mann et al., 2002; Tsodyks and Markram, 1997). Biological parameter

ranges for the four model parameters were taken from experimental values

for synaptic connections between specificm- andme-types or between larger

categories of pre- and postsynaptic neurons (see Figure 9). Spontaneous

miniature PSCs were modeled by implementing an independent Poisson

process for each individual synapse that triggered release at rates (lspont)

determined by the experimental data (Ling and Benardo, 1999; Simkus and

Stricker, 2002).

Thalamic Innervation

Thalamic input was reconstructed using experimental data for ventro-poste-

rior medial (VPM) axon bouton density profiles in rat barrel cortex (Meyer

et al., 2010b), synapses per connection, and approximate numbers of

incoming fibers. Synapse locations were determined using a variant of the

connectome algorithm (Reimann et al., 2015; see Supplemental Experimental

Procedures). Synapses were assigned to incoming fibers based on a Gaussian

probability centered around each fiber.

Simulation

Microcircuit Simulation

The reconstructed microcircuit was simulated using the NEURON simulation

package, augmented for execution on the supercomputer (Hines and Carne-

vale, 1997; Hines et al., 2008a, 2008b), together with additional custom tools

to handle the setup and configuration of the microcircuit and the output of

results.
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In Silico Experiments

Depolarization was achieved by simulating current injection at the neuron

soma. Currents were expressed as percent of first spike threshold for each

neuron. Changes in [Ca2+]o were simulated by changing the use parameter

of synaptic transmission according to three curves for specific m-types (see

Figure S15). Neuronal in silico knockout experiments were performed by

hyperpolarizing the target population with somatic current injection (�100%

threshold). Thalamic fiber stimulations were performed on circular clusters of

minicolumns. The methods used to replicate previous in vivo experiments

are described in the Supplemental Experimental Procedures.

Data Analysis

Anatomical and physiological data analysis were performed using a custom

suite of Python-based tools operating on a Linux cluster (Supplemental Exper-

imental Procedures). The same analysis as described in Kasthuri et al. (2015)

was applied to compare results between a saturated EM reconstruction and

the digital reconstruction that we generated (see Figure S20). PSPs were

measured at the somata or dendrites of randomly selected pairs of neurons

(30 trials). PSTHs were computed from all neurons in the circuit and were

normalized by neuron number and time bin to express the average instanta-

neous firing rate. Mean spike-spike correlations were calculated as the histo-

gram of intervals between all spike times of two different cells (bin size 1 ms).

Evoked regenerative activity was defined as activity in which peak activity

(PSTH) within 100 ms after stimulus of the outermost 20 minicolumns ex-

ceeded 30 Hz and 70% of the activity of the 20 central minicolumns in the

10 ms after stimulus. Spike rasters show spike events at the locations within

the layers where they occurred (for clarity, only a fraction of spikes are plotted).

Supercomputing

Reconstruction and simulation workflows, such as neuronmodel optimization,

circuit reconstruction, and network simulation, were executed on super-

computers. The systems used included an IBM Blue Gene/L (until 2009), a

CADMOS 4-rack IBM Blue Gene/P (until 2013), a CADMOS 1-rack IBM Blue

Gene/Q (until 2014), and the Blue Brain IV operated by the Swiss National

Supercomputing Center (CSCS) on behalf of the Blue Brain Project, ranked

the 100th most powerful supercomputing system (Top500, June 2015). Blue

Brain IV includes a 4-rack IBM Blue Gene/Q, IBM Blue Gene Active Storage,

and a 40-node Linux cluster for post-processing, analysis, and visualization,

fully interconnected using Infiniband technology and a GPFS file system with

4.2 Petabyte raw storage (Schürmann et al., 2014).

Visualization

Large circuits and simulations in high resolution were visualized using a

custom-developed tool, RTNeuron (Hernando et al., 2012). High-quality, static

images of small neural circuits, individual neurons, and synaptic spines

and boutons were created using Maya 3D animation software (Autodesk,

San Rafael, California, USA).

Software Development

Data integration and post processing as well as reconstruction, simulation,

analysis, and visualization of neuronal network models used >30 software

applications, integrated into automated and semi-automated workflows.

Development was supported by a comprehensive development environment

based on best practices for version control (git), code review (gerrit), and

continuous building, testing, packaging, and deployment (Jenkins).
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Hines, M.L., Eichner, H., and Schürmann, F. (2008b). Neuron splitting in

compute-bound parallel network simulations enables runtime scaling with

twice as many processors. J. Comput. Neurosci. 25, 203–210.
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Supplemental Figures

Figure S1. A Table of m-Type Arbor Densities, Related to Figure 2

2D projection of m-types, obtained by overlaying multiple reconstructed morphologies, aligning somata to a single point, and summing the fiber length per mm3

(axon left, blue; dendrite right, red). Density plots for 55 known inhibitory and excitatory m-types arranged horizontally by layer. Inset, expanded L5TTPC with an

exemplar reconstruction superimposed. Abbreviations as defined in Table 1.
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Figure S2. Objective Classification of m-Types and Cloning, Related to Figure 2

Summary of classification robustness for L2-6 interneurons (A1, A2) and L2-5 pyramidal cells (B1, B2). Left panels (A1, B1) show the relative sizes of the pop-

ulations. Colors represent classification accuracy, which is quantified in the right hand panels. Classification accuracy is defined as the number of successfully

classified cells over the total number of cells in a class for each m-type. (A2) Detailed results of hierarchical clustering for interneuron classes. The vertical axis

shows expert assigned classes; the horizontal axis shows objectively assigned classes, using supervised hierarchical clustering with feature selection. (B2)

Detailed results of supervised clustering with feature selection for pyramidal cell classes. The axes are the same as in panel (A2). (C) Fiber density image of all

repaired L5TTPC as in Figure S1. (D) Upper reconstructed neuron was cloned by introducing variability in branch lengths and angles (see Experimental Pro-

cedures); 5 sample clones shown below. (E) As in C, for randomly selected L5TTPC clones. (F) Fiber density plot comparing mean fiber length of original versus

cloned L5TTPCs at different heights grouped in 80 mm bins.
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Figure S3. Reconstructing Inter-laminar Architecture, Related to Figure 3

(A) Constraining rules for placing morphologies of different m-types. (B) Morphology-placement scoring algorithm. Placement – placement of morphologies.

Annotation – annotation of the extent of axonal and dendritic clusters. Target – determination of absolute target depth intervals. Score – calculation of overlap

between annotated and target areas. (C) Determining soma and m-type positions. (D) Selecting morphologies. Scores are calculated for all morphologies for all

m-type positions. Morphologies are ordered from left to right according to their descending scores for a given position. (E) Collage of L5TTPC1 (left) and L5MC

(right) morphologies showing placement relative to layer boundaries.
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Figure S4. Validating Morphological Composition, Related to Figure 3

(A) Morphologically reconstructedmicrocircuit. Only inhibitory m-types are shown. (B) Tissue stainings. In silico and in vitro labeling of m-types for neuropeptides:

Neuropeptide Y (NPY), Vasoactive intestinal polypeptide (VIP), Somatostatin (SOM), Cholecystokinin (CCK), and calcium binding proteins (Calbindin (CB),

Parvalbumin (PV), and Calretinin (CR). (C) Neuron counts. The number of stained neurons per 100 mm bin from L1 to L6. Red: in vitro counts/bin, blue: in silico

counts/bin (N = 100 bins; mean±SD). Dashed line has unit slope. Linear regression shows r = 0.65 (CR and CCK counts are excluded).

S4 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.



Figure S5. Predicting the Detailed Anatomical Properties of a Synaptic Pathway, Related to Figure 7

Predicted properties of the L5MC to L5TTPC pathway: (A) In silico L5MC to L5TTPC synaptic connection. Synaptic contacts are shown as black circles (B)

Number of synapses per connection (black dashed line, predicted mean; black line, predicted SD; red line, experimental data, mean±SD). (C) Distribution of total

number of synapses from L5MCs to L5TTPCs. (D1) Neuronal divergence, number of L5TTPCs targeted by single L5MCs. (D2) Neuronal convergence, number of

L5MCs targeting single L5TTPCs. (E1) Synaptic divergence, fraction of all synapses formed by L5MCs that target L5TTPCs. (E2). Synaptic convergence, fraction

of all synapses formed onto L5TTPCs from L5MCs. (F1) Axonal and (F2) dendritic innervation patterns in terms of branch order of synaptic contacts. (G1, G2)

Same as F, in terms of geometrical distance of synaptic contacts.
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Figure S6. Synapse Counts and Balance by m-Type in the Reconstructed Microcircuit, Related to Figure 7

(A) Afferent synapses. Average number of afferent synapses per m-type (N = 35; mean±SD). Inset: Image of neurons placed in the 3D volume displaying a fraction

of appositions converted into synapses. (B) E-I synapse ratios. Average ratio of excitatory and inhibitory synapses per m-type (N = 35; mean±SD). Inset: Image of

excitatory (red) and inhibitory (blue) synapses. (C) Percentages of synapses in excitatory (red) and inhibitory (blue) connections in themicrocircuit (layer 1 omitted).

Arrowwidth and numbers indicate the percentage of total synapses formed by the pathway (omitted for pathwayswith <1% of synapses). The total percentage of

plotted synapses is 98%; the remaining 2% originate in layer 1). Rectangle sizes are proportional to the sizes of the corresponding excitatory or inhibitory

populations. (D) An exemplary L6UTPCwith all afferent synapses highlighted. Different colors indicate different presynapticm-types. (E) Comparing the density of

excitatory synapses across the dendritic tree for 55 m-types in the reconstructed connectome (blue bars: mean±SD of neurons in a microcircuit) against bio-

logical data (red lines, data from: (Riccio and Matthews, 1985; Larkman, 1991b; Datwani, 2002; Bock et al., 2004; Mataga et al., 2004; Kawaguchi, 2006). The

dashed line indicates the mean of the biological data, with the lower outliers excluded.
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Figure S7. Modeling Ionic Mechanisms, Related to Figure 8

(A–N) Currents generated by voltage steps to model 13 Hodgkin-Huxley type ion channel classes, and one model of intracellular Ca2+ dynamics.
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Figure S8. Validating Dendritic Properties of Neuron Models, Related to Figure 8

(A1) Simulation of back-propagating APs (bAP) evoked by somatic current pulse injections (5ms, 2nA) to a single L5TTPC (blue, apical dendrites; green, basal

dendrites). Simultaneous recordings in the apical dendrite (blue voltage trace, �300 mm from the soma), the soma (black) and basal dendrite (green, �100 mm

from the soma). (A2) Predicted bAP amplitudemeasured at different locations on apical (blue dots) or basal dendrites (green dots). Color bar indicates diameter of

apical and basal dendrites at different distances from somata. Exponential fits shown as black dashed lines. Red dots, from Figure 8D of Larkum et al. (2001); red

triangles from Figure 1g of Nevian et al. (2007). (B1) Simultaneous quadruple in silico recordings of evoked EPSPs induced by a transient change in synaptic

conductance in distal apical (1.5 nS) and basal dendrites (0.2 nS) of a single L5TTPC (blue, apical dendrites; green, basal dendrites) mimicking previous re-

cordings (apical, Figure 2B of Berger et al. (2001); basal, Figure 4C of Nevian et al. (2007)). Recording in distal apical dendrite (blue, �270 mm from the soma),

proximal apical dendrite (dark blue), distal basal dendrite (green, �100 mm from the soma) and proximal basal dendrite (dark green). (B2) Predicted dendritic to

somatic attenuation ratio for in silico EPSP amplitudes measured at different locations on apical (blue dots) and basal dendrites (green dots). Exponential fits

shown as black dashed lines. Red dots, from Figure 3C of Berger et al. (2001). Red triangles, from Figure 2e of Nevian et al. (2007). Exponential fits used the

Levenberg-Marquardt algorithm. In A2 and B2, in silico recordings from 500 randomly selected L5TTPCs with diameters larger than 0.5 mm; 10 recordings per

neuron from apical and basal sections.

S8 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.



Figure S9. In Silico Synaptic Experiments, Related to Figure 10

(A) Average time course and amplitude of unitary EPSPs evoked in silico in a L5MC by a presynaptic L5TTPC. Black arrow, presynaptic AP; grey, 30 trials of

individual postsynaptic responses; blue, mean of 30 trials. (B) Histogram of EPSP onset latency (N = 100 pairs, sampled at intersomatic distances % 100 mm).

Black dashed line, mean±SD. (C) Histogram of 20-80% EPSP rise time. (D) Histogram of EPSP amplitudes. Red line, mean±SD of experimental data. (E) His-

togram of EPSP decay time constants. (F) Histogram of transmission failures. (G) Histogram of the coefficient of variation (c.v.; defined as SD/mean) of EPSP

amplitudes. (H) Inverse relationship between the rate of transmission failures and EPSP amplitude. (I) Same as in H, but for c.v. of EPSP amplitudes. (J) Direct in

silico dendritic patch recordings of single synaptic contacts (light grey, presynaptic L5_TTPC; red, postsynaptic L5MC; blue stars, synaptic contacts; dark grey,

recording pipette; blue, average EPSP). (K) In silico retrograde staining. The presynaptic neurons of a L23BNC (red) were stained (blue). Only immediate

neighboring presynaptic neurons are shown. (L) Afferent synapses. Predicted synapses on a single exemplar L23PC, colored according to presynaptic m-type

(red excitatory; other, inhibitory). (M) Top: Number of pre- (red) and postsynaptic (blue) neurons for neurons of excitatory m-types (mean of neurons in a

microcircuit). Bottom: Same, for inhibitory m-types.
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IGOR Pro

bluepy
MATLAB

Figure S10. Computing Challenges, Related to Figure 11

Ecosystem of software components and workflows for the reconstruction of neural microcircuitry. Some components are executed on a supercomputer. Left:

phases of the reconstruction process workflow; Right: software and hardware. Experiment: protocol standardization, metadata annotation, and curation

workflows for consumption of experimental data. Building: Workflow for data-driven reconstruction of neuron, and tissue models. Simulation: In silico experi-

mentation capabilities for reconstructed microcircuitry. Analysis and validation of reconstructed and simulated microcircuitry using common analysis environ-

ments. Visualization of simulated microcircuitry.
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Figure S11. Ca2+ Sensitivity of Synaptic Physiology, Related to Figures 12 and 13

(A) Experimental data on the dependence between EPSP amplitudes and [Ca2+]o are consistent with either a steep (black line) or shallow (grey line) dependence

(adapted from Rozov et al. (2001)), fits are Hill isotherms; K1/2=2.79 for steep, K1/2=1.09 for shallow). Based on these sparse data, we assumed a steep Ca2+-

dependence for connections between PC-PC and PC-distal targeting cell types (DBC, BTC, MC, BP) and a shallow dependence between PC-proximal targeting

cell types (LBCs, NBCs, SBCs, ChC). Pathways that had not been studied experimentally were assumed to have an intermediate level of dependence (blue line;

average of steep and shallow). In vivo Ca2+ levels in the range 1.1-1.3mM are depicted in red (Borst, 2010). (B) Effect of changes in Ca2+ levels on synapse types.

Synaptic responses in the presence of [Ca2+] = 2.0 mM (in vitro-like; upper traces) and 1.25 mM (in vivo-like; lower traces).
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Figure S12. A Synchronous-Asynchronous Spectrum of Network States, Related to Figure 12

Systematic exploration of emergent network states, as assessed by spike raster plots, for a range of [Ca2+]o (horizontal axis) and depolarization levels (vertical

axis, see Experimental Procedures). [Ca2+]o at typical in vitro levels (2.0 mM) and sufficient depolarization leads to synchronous network bursting. Lowering

[Ca2+]o towards in vivo levels (�1.0 mM) produces a transition to asynchronous firing. Spike-spike correlations (insets; each normalized) showing neurons remain

functionally coupled in the asynchronous regime.

S12 Cell 163, 456–492, October 8, 2015 ª2015 Elsevier Inc.



Figure S13. Biological Variability of the Synchronous-Asynchronous Transition, Related to Figure 12

Variability of the synchronous-asynchronous transition between instances of the microcircuit reconstructed using 5 biological datasets on neuron densities and

layer heights in individual animals (vertical axis). Panels of raster plots (above) and PSTHs (below) of spontaneous activity are shown for a range of [Ca2+]o
(horizontal axis) for 100% depolarization. Red boxes indicate the level of [Ca2+]o just below the transition to the synchronous regime.
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Figure S14. Synchrony of Synaptically Clustered Assemblies of Neurons, Related to Figure 12

(A) Spontaneous synchronous activity. Top to bottom: Voltage raster of a random selection of neurons across the 6 layers while the network was depolarized to

100% of spiking threshold (blue, hyperpolarized; red, depolarized; white, spike); PSTH of the activity; random selection of voltage traces of neurons across the 6

layers; the distribution of somatic membrane voltages. (B) Spontaneous asynchronous activity. Same as for A under lower [Ca2+]o. (C) Voltage cross-correlations

for a range of [Ca2+]o. A set of 20 clusters having the highest number of common neighbors from a population of excitatory cells (inset; see Experimental Pro-

cedures). Voltage cross-correlation at dt = 0 (synchrony) for cell pairs in clusters (red), and for random pairs (blue; mean±SD). (D) Layer-dependent voltage cross-

correlations. Voltage correlation at dt = 0 (synchrony) for cell pairs in clusters in different layers for a range of [Ca2+]o (Red: L23PC; green: L4PC; blue: L5PC; black:

L6PC, mean±SD).
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Figure S15. In Silico Blocking of Morphological Types, Synaptic Connections, and Layers, Related to Figure 12

Panels of raster plots (above) and PSTHs (below) of spontaneous activity just above (1.3mM [Ca2+]o; left) and below (1.25mM [Ca2+]o; right) the transition between

the synchronous and asynchronous regimes. Upper panels show controls for A-C. (A) Blocking activity in all neurons in layers 2-6 (top to bottom) by hyper-

polarization. (B) Blocking activity in selected sets of m-types by hyperpolarization. (C) Lesioning connections between specific pre- and postsynaptic m-types by

transiently setting the conductances of all synapses between these m-types to zero. Onset and offset of blockade and lesion indicated below controls.
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Figure S16. Evoked Activity, Related to Figure 14

Response of exemplary neurons from all 55 morphological types to a single pulse from 20 thalamic fibers. (A) Soma voltage traces under in-vivo-like conditions.

(B) Spiking response as assessed by PSTHs.
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Figure S17. Biological and Statistical Variability of the Microcircuit, Related to Figure 16

Variability between instances of the microcircuit reconstructed using 5 biological datasets on neuron densities and layer heights in individual animals, as as-

sessed by a number of emergent properties. (A) Numbers of synapses and connections. (B) Convergence and divergence in MC-PC connections. (C) Inter-

laminar innervation strength. (D) Synapses per connection. (E) Convergence of m-types. (F-J) As A-E, for the variability between seven statistical instances of the

microcircuit, all reconstructed using the mean of the 5 biological datasets.
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Figure S18. Excitatory-Inhibitory Balance in the Activated State, Related to Figure 17

(A) Top:Mean excitatory (red) and inhibitory (blue) conductance effective at the soma of 200 exemplary L6PCs at different points along the SA-spectrum (from left

to right). Middle (green): Difference between effective excitation and inhibition. Bottom: Spiking activity of the population. (B) Top: Spike triggered average (STA)

of excitation (red) and inhibition (blue) of L6PCs, normalized to a Z-Score; from left to right: different points along the SA-spectrum. Bottom (green): Difference

between the excitatory and inhibitory STA. (C) From top to bottom: Amplitude, half width and location of the peak of E-I difference shown in B at different points of

the SA-spectrum.
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Figure S19. Degradation of Repeating Triplet Structure at Subthreshold Calcium Concentration and Examples of Soloists and Choristers,

Related to Figure 18

(A) Count matrix for a representative neuron trio. Lowering extracellular calcium from 1.25 mM to 1.1 mM markedly increased isotropy of triplet structure

probability distributions (cf. Figure 18A1). Count matrices for a majority of cell trios had no clearly distinguishable mode. (B) Correlation between neural latency

differences and triplet structures. Correlation strength was severely attenuated with respect to Figure 18A2. (C) Precisely repeating triplet probability as a function

of time from activated state onset. As in Figure 18A4, data was evaluated against two null hypotheses (common excitability model: red curve; independent

Poisson model: blue curve). Dashed lines indicate standard deviations. (D) Top: Spike raster plots of exemplary neurons, sorted by their coupling coefficient from

above two (top) to below zero (bottom). Bottom: Population firing rate during the same 2 second time window.
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Figure S20. Higher Number of Synapses per Connection in Accordance with Recent Experimental Results, Related to Figure 7
(A) Histogram comparing the number of synapses formed by the same presynaptic neuron onto a randomly selected L6TPC against the number of additional

touches from the same presynaptic neuron, i.e. the number of appositions that were not used for synapse placement. To emulate an electron microscopy (EM)

experiment, only synapses and touches in a cylindrical volume around the apical dendrite of the L6TPC were considered. Pooled data shown for 50 L6TPCs.

Black line shows linear regression. The correlation is weak (correlation coefficient: 0.05). (B) The L6TPCs received on average 71 redundant synapses inside the

cylindrical volume defined around their apical dendrite (red line, 50 L6TPCs). Blue bars: in Monte Carlo randomizations that maintain the individual probabilities of

placing a synapse at a touch for each presynaptic neuron and the total number of synapses in the volume, the redundant synapse count is significantly lower (blue

bars, p << 0.001). (C) Number of additional synapses on a L6TPC outside the cylindrical volume, formed by neurons that form at least one synapse onto the L6TPC

inside the volume (yellow bar) and by neurons that touch it inside the volume, but form no synapse (blue bar; mean±SD of 50 L6TPCs; p << 0.001, paired t-test). (D)

Fraction of touches from the same presynaptic neuron to a L6_TPC converted to synapses. The bin at 0 contains 21,234 neuron pairs. Pooled data shown for 50

L6TPCs.
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Supplemental Experimental Procedures 

MORPHOLOGICAL DIVERSITY 

Reconstruction of morphologies 

3D reconstructions of biocytin stained neuronal morphologies were obtained from whole-cell patch-clamp 
experiments on 300 μm thick brain slices from juvenile rat hind-limb somatosensory cortex, following 
experimental and post-processing procedures as previously described (Markram et al., 1997).  

Neurons were chosen for 3D reconstruction that were high contrast, completely stained, and had few cut 
arbors. Reconstruction used the Neurolucida system (MicroBrightField Inc., USA) and a bright-field light 
microscope (Leica DMRB, Wetzlar, Germany) at a magnification of 100x (oil immersion objective, 1.4-0.7 NA) 
or of 60x (water immersion objective, 0.9 NA). The finest line traced at the 100x magnification with the 
Neurolucida program was 0.15  μm. The slice shrinkage due to staining procedure was approximately 25% in 
thickness (Z-axis) and approximately 10% anisotropically along the X- and Y-axes. Only the shrinkage of 
thickness was corrected at the time of reconstruction (X-Y shrinkage is corrected later by the unraveling step). 
Reconstruction resulted in a connected set of points traced from the morphology, each having a 3D (x, y, z) 
position and diameter. 

Classification of morphologies 

Following reconstruction, neuronal morphologies were classified into one of 55 different morphological types 
(m-types) based on the layer containing their somata, and their anatomical and electrical features (see Figure 
2 for a complete listing of m-types) as described below.  

Excitatory m-types in layers 2 to 6 
Pyramidal cells (PC) in different cortical layers were mainly characterized by their apical dendrites, since their 
large axonal clusters were cut in the slice preparation. The classification of excitatory neurons in layers 2 to 6 
was combined with quantitative analysis of 3D computer reconstructions of biocytin stained neurons. We 
attempted to correlate layer 6 PC m-types with their long-distance axonal projections by performing retrograde 
labeling experiments. The PC m-types defined here are consistent with previously reported subtypes that have 
distinct long-distance projections (Van Aerde and Feldmeyer, 2015; Marx and Feldmeyer, 2013; Mercer et al., 
2005; Oberlaender et al., 2012; Zhang and Deschênes, 1997). 

Layer 2/3 PCs: As reported previously (Feldmeyer, 2006; Holmgren et al., 2003), PCs in layer 2/3 were simply 
pooled together according to their location in the supragranular layer.  

Layer 4 PCs: There were 3 excitatory m-types in layer 4 (Feldmeyer et al., 1999): 1) L4PC (tufted PC) had an 
apical dendrite with a small tuft that often did not extend to layer 1. 2) L4SP (untufted PC, or Star PC) had a 
slender apical dendrite without a tuft. 3) L4SS (Spiny Stellate cell) had an apical dendrite with one or few 
branches, having a radial length similar to basal dendrites. In comparison with the L4PC and L4SP m-types, 
L4SS had tortuous and thicker basal dendritic segments. 

Layer 5 PCs: There were 4 PC m-types in layer 5 (Frick et al., 2007; Kasper et al., 1994; Markram et al., 
1997; Romand et al., 2011): 1) L5TTPC1 (Thick-tufted PC 1) had a thick apical dendrite with a big tuft that 
bifurcated at the distal half of the apical dendrite. 2) L5TTPC2 (Thick-tufted PC 2) had a thick apical trunk that 
bifurcated at the proximal half of the apical dendrite into multiple apical dendrites that further bifurcated 
respectively forming a smaller tuft in layer I. 3) L5STPC (small tufted PC) had a thin apical dendrite with a 
small tuft. 4) L5UTPC (untufted PC) had a thin apical dendrite without a tuft. The L5TTPCs had bigger and 
more typical pyramidal-shaped somata compared to L5STPC and L5UTPC. While L5TTPC1 and L5TTPC2 
were bigger neurons with basal dendritic clusters, L5STPC and the L5UTPC were smaller with similar basal 
dendritic clusters. 

Layer 6 PCs: There were 5 PC m-types layer 6: 1) L6TPC (Tufted PC) had an apical dendrite with a tuft 
terminating in either layer 1 or 4. 2) L6UTPC (untufted PC) had an apical dendrite without a tuft. 3) L6IPC 
(Inverted PC) had large dendrites inverted towards the white matter with more branches than other basal 
dendrites. 4) L6BPC (Bipolar PC) had a typical apical dendrite towards the pia with or without a small tuft and 
a big inverted dendrite (towards the white matter) with more branches than other basal dendrites. According to 
retrograde labeling experiments, L6BPCs were similar to cortico-claustral PCs projecting to the ipsilateral 
claustrum; L6TPCs, L6UTPCs, and L6IPCs corresponded to cortico-cortical PCs projecting to the contralateral 
somatosensory cortex (also see (Kisvárday et al., 1990)).  
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Inhibitory m-types in layers 2 to 6 
Interneurons were classified according to axonal and dendritic features, especially the characterized axonal 
morphological features, as published previously (Markram et al., 2004; Wang et al., 2002, 2004) . With the 
exception of layer 1, all other layers shared a similar set of m-types, with variations in the shape and size of 
dendritic and axonal clusters. 

Large basket cell (LBC): LBCs had multipolar or bitufted dendrites, an axonal cluster characterized by 
straight and long axonal segments with low density of boutons, and long collaterals giving branches from both 
sides. Layer 2/3 LBCs commonly had descending axonal collaterals while those in deep layers 5 and 6 often 
had ascending axonal collaterals reaching layer 2/3 or even layer 1.  

Nest basket cells (NBC): These cells correspond to Arcade or Willow cells, having multipolar or bitufted 
dendrites without long collaterals. NBCs in supragranular layers were in general smaller in size than those in 
infragranular layers.  

Small basket cell (SBC): SBCs had multipolar or bitufted dendrites and axon collaterals with numerous 
curved or straight short axonal segments. The axon collaterals contained a high density of boutons and 
formed a dense local axonal cluster around the soma.  

Chandelier cell (ChC): ChCs had multipolar or bitufted dendrites, and were distinguished by pre-terminal 
axon branches that form short vertical rows of boutons resembling candlesticks. These interneurons were also 
referred to as axo-axonic cells as they form synaptic contacts on the axon initial segment of target PCs 
(Somogyi et al., 1982).  

Martinotti cells (MC): MCs had multipolar, bitufted, or bipolar dendrites, and were distinguished by ascending 
axons that commonly gave rise to two axonal arbors, one near the cell body and another in layer 1 except 
those in layer 6. Layer 6 MCs had a second axonal cluster formed below layer 1. The second axonal plexus of 
MCs were very dense (axonal tuft) or diffused. Axonal collaterals of MCs were characterized by spiny boutons 
while dendrites contained sparsely distributed spines that were uncommon for other interneuron types.  

Double bouquet cell (DBC): DBCs had multipolar or bitufted dendrites, and were distinguished by a horse-
tail like axon bundle. The axon bundle consisted of one to few long descending/ascending vertical axonal 
collaterals from which many short branches emerged, or by tightly intertwined bundles of long descending 
vertical collaterals (corresponding to horse-tail like neurons; (Somogyi and Cowey, 1981)). Layer 2/3 DBCs 
commonly had descending axonal collaterals while those in deeper layers 5 and 6 often had ascending axonal 
collaterals reaching layer 2/3 or even layer 1.  

Bipolar cell (BP): BPs had bipolar dendrites that emerged from the two poles of a small vertical spindle like 
soma. A few BPs could have a third dendrite emerging from the middle of the soma. Their axonal clusters 
were narrow and vertically oriented.  

Bitufted cell (BTC): BTCs had bitufted dendrites and were characterized by long axonal segments, typically 
forming a large translaminar or transcolumnar axonal cluster.  

Neurogliaform cell (NGC): NGCs had multipolar dendrites and were characterized by very small and dense 
local axonal arborization around the soma, and short axonal segments bearing a high density of small 
boutons.   

Inhibitory m-types in layer 1 
Layer 1 contained six m-types - Neurogliaform Cells with dense (NGC-DA) and sparse local axonal 
arborization (NGC-SA), Horizontal Axon Cell (HAC), Descending Axon Cell (DAC); Large Axon Cell (LAC) and 
Small axon cell (SAC). Except NGCs, other m-types were specific only to layer 1. Cajal-Retzius cells were not 
included as they exist mainly in the embryonic stage before birth and are no longer present by post-natal day 
11 (P11) in rodent neocortex (Hestrin and Armstrong, 1996) 

Neurogliaform cells with dense axonal arbors (NGC-DA): NGC-DAs were very similar to the NGC cells 
reported in other cortical layers showing small compact axonal arborization (Kawaguchi and Kubota, 1997; 
Kisvárday et al., 1990; Szabadics et al., 2007). These neurons also typically displayed the shortest dendritic 
segments among all layer I neurons. 

Neurogliaform cells with sparse axonal arbors (NGC-SA): Visually, NGC-SAs appeared as a sparser 
variation of NGC-DAs. They displayed similar axonal branching patterns in terms of segment length, tortuosity, 
and branch angles. However, NGC-SAs differ from NGC-DAs in that they displayed significantly smaller 
vertical arborizations with fewer and shorter axon collaterals. On the other hand, the dendritic arborization 
extended further horizontally with longer dendritic segments and smaller branching angles. 
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Horizontal axon cells (HAC): HACs were characterized by extensive horizontal axonal arborizations as 
compared to vertical extents, with long axonal segment lengths. Their horizontal/vertical extent ratio (often > 4 
fold) was the highest among all other m-types in layer 1. 

Descending axon cells (DAC): DACs were easily distinguished due to the presence of one to a few 
descending axon collaterals that reached layers 4, 5, and occasionally 6 (Hestrin and Armstrong, 1996). Their 
other striking distinguishing feature was the large horizontal (often > 1 mm) and vertical (often > 0.5 mm) 
extents of their axonal arborization, which was the largest of any m-type in layer 1. 

Large axon cells (LAC): LACs appeared visually similar to the HACs. On closer inspection, however, the 
axonal segments were shorter and projected more radially compared with HACs. Particularly, many short 
branches emerged from long axonal collaterals. They displayed the longest total length of axon, the highest 
number of segments, and the highest maximum branch order among layer 1 m-types. The axonal collaterals 
of more than 50% of LACs were often seen to project vertically into layers 2 and 3. Their dendrites also 
displayed the highest segment number indicating frequent branching. 

Small axon cells (SAC): SACs had the smallest axonal arborization reflected in the lowest total axonal 
lengths among layer 1 m-types. The axonal arbor also displayed the lowest number of axonal segments and 
the lowest maximum axonal branch order. The axons, however, had the largest axonal branch angles with 
straight axonal segments. About a third of SACs projected one or two axonal collaterals into layers 2 and 3. 

Unraveling morphologies 

The histological processing performed on brain slices results in tissue shrinkage, which leads to an increase in 
arbor tortuosity. This leads to a decrease in the overall reach of the neuron, while presumably maintaining a 
constant total arbor length (Jaeger, 2000). In order to correct for this increased tortuosity and reduction in 
overall reach, we developed an unraveling procedure to smoothen and extend the reach of arbors while 
maintaining their overall length. The unraveling process used a centered moving window algorithm for each 
arbor branch. Assuming a window size of N points, running on a branch of M points, the algorithm started on 

the first point of the branch to be unraveled (call this point’s index p). The points in the window were fitted 

using principal component analysis (PCA) by a 3D direction vector, �⃑⃑� 𝑝 . The moving window ran on the 

tortuous neuron, computing the PCA direction vectors for each point. The algorithm then updated the position 
of each point sequentially to align them with the PCA direction. The coordinates of the point p+1 then became:  

(

�̂�𝑝+1

�̂�𝑝+1

�̂�𝑝+1

) = (

�̂�𝑝

�̂�𝑝

�̂�𝑝

) + ‖�⃑� 𝑝‖  ×  
�⃑⃑� 𝑝

‖�⃑⃑� 𝑝‖
 

where 

�⃑� 𝑝 = (

𝑥𝑝+1 − 𝑥𝑝

𝑦𝑝+1 − 𝑦𝑝

𝑧𝑝+1 − 𝑧𝑝

) 

and (x, y, z) are the coordinates of the point before unraveling, (�̂�, �̂�, �̂�) are the coordinates after unraveling, 

and ‖�⃑� 𝑝‖ is the distance to the previous point. The unraveling thus preserved the overall length of the arbors 

while decreasing the tortuosity (increasing the smoothness) and increasing the range of the neuron. At the 
boundaries (if p < N/2 or p+N/2 > M), the window was truncated to the points available. The window size could 
be adjusted to achieve a desired increase in the range of the neuron. We found empirically that using a 
window size (N = 5) resulted in a range increase of 10% on average, and this value was used for unraveling. 

Repairing morphologies 

Because neuronal morphologies were reconstructed from brain slices, some reconstructions were truncated at 
the slice edges. To restore the severed arbors we developed repair algorithms to mitigate the slicing artifacts. 
The repair process, described here briefly, was based on previously published methods (Anwar et al., 2009). 
The first step of this process was to determine if the morphology was actually truncated at the two cut-planes. 
Our coordinate system for reconstructing neurons defined the cut plane as XY (perpendicular to the Z-axis) 
and the origin as the center of the soma. Thus, the first step of cut-detection was to determine the maximum 
extent of arbors in the positive and negative Z directions. In order for a cut-plane to be detected, there must be 
a minimum number of terminal points within 30 μm of the maximum Z extents (five points by default, or the 
total number of terminal points divided by four if there are fewer than 20 terminal points). In the case of finding 
two cut-planes in this manner, we imposed an additional requirement of having a minimum span between 
maximum Z extents of 200 μm. If the span was less than this value, the side with the most terminal points 
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within the 30 μm range was considered the only cut side. Any terminal points further than 30 μm from the 
maximum Z extents were eliminated as cut points. Additionally, if any point along the arbor path from the soma 
to a terminal point was more distal in Z than the terminal point itself, this terminal point was eliminated as a cut 
point (i.e. the arbor loops back, or is re-entrant). This process resulted in reconstructed morphologies with a 
certain number of terminal points tagged as cut-points. These cut branches were then repaired using separate 
algorithms for dendrites and axons. 

The dendrite repair process “regrows” cut dendrite branches in order to recover the portions severed during 
slicing (Anwar et al., 2009). This process was not intended to recover the original dendritic morphology, but 
rather recovered the overall morphology in a statistical manner, using the assumption of statistical symmetry. 
The dendrite repair process analyzed the properties of the intact dendrites of a single morphology and uses 
that data to stochastically generate “virtual” dendrites at its identified cut points. This process was developed 
on the basis of existing models (Ascoli and Krichmar, 2000; Ascoli et al., 2001; Burke et al., 1992; Donohue 
and Ascoli, 2008; Hillman, 1979; Pelt and Uylings, 2003). Our model utilized the behavior of uncut branches 
as a function of branch order and straight-line distance from the root. For basal dendrites the root was defined 
as the point where the dendrite emerges from the soma, for apical oblique dendrites the root was defined as 
the point where the dendrite emerges from the main apical trunk, and for apical tuft dendrites the root was 
defined as the point where the apical trunk begins forming the tuft. Probability density clouds for continuing, 
bifurcating, and terminating events were calculated in a series of spherical shells (Sholl, 1953) for each branch 
order. P(E|O,S) was the probability of event E occurring, knowing that the branch is of order O and was in 
shell S. The event probabilities were calculated as  

𝑃(𝐸|𝑂, 𝑆) =  
𝑁𝐸,𝑂,𝑆

𝑁𝑂,𝑆

 

where NE,O,S was the number of branches of order O undergoing event E in shell S and NO,S is the total number 
of branches of order O in shell S. At each cut point, the behavior of the branch was stochastically sampled 
utilizing the calculated event probabilities. If the branch is to continue, it was regrown up to the next spherical 
shell. If it was to bifurcate, a random number of points were added before the bifurcation, and the daughter 
branches were grown up to the next spherical shell, with the angle between the daughters randomly sampled 
from the daughter angle distribution of all bifurcations in the neuron. If the branch was to terminate, a random 
number of points were added and the branch terminated. The direction in which branches are re-grown was 
allowed to vary randomly from the current direction by 5 -10%.  

The axonal repair process differed from dendrite repair in that it did not assume that the axonal arborization 
was symmetrical (Anwar et al., 2009). Neocortical axons are known to exhibit laminar preferences, with lateral 
extent dependent upon depth within the microcircuit (Larsen and Callaway, 2006). Thus, our axonal repair 
algorithm attempted to maintain the laminar structure. Due to the greater complexity of axonal arborization, 
instead of regrowing branches at cut points, the algorithm selected and pasted intact subtrees from the 
particular m-type. The first step was to create a pool of intact subtrees (those without any cut branches) from 
all reconstructed morphologies of a given m-type. For each axonal cut-point, the nearest intact tree became 
the target subtree. From the pool of intact subtrees, the one with the closest matching overall length was 
chosen and pasted onto the cut point. 

Cloning morphologies 

Morphological diversity is an important component of robust and invariant connectivity patterns (Ramaswamy 
et al., 2012). In order to increase morphological diversity, we performed several procedures on our population 
of reconstructed and repaired neurons. 

Neurons reconstructed from brain slices lose all arbors outside of the cut planes, which is particularly 
problematic for m-types with extensive axonal arborizations. Even after our repair process, some of our 
neuronal morphologies exhibited impoverished axonal arborizations despite having excellent dendrite 
arborizations, or vice-versa. A mix-and-match procedure mitigated this problem by separating neurons at the 
axon, discarding poor dendrite and axonal reconstructions, and then recombining good dendrite and axonal 
reconstructions in all possible permutations, thus increasing utilization of reconstruction data and increasing 
the number of unique morphologies available for microcircuit building. We manually annotated the dendritic 
and axonal arborizations as acceptable or not and perform the procedure on all pyramidal cell m-types in 
layers 2-6 as well as on layer 4 spiny stellate neurons. 

For placement of morphologies within the simulated neocortical column, a specific m-type was determined for 
each somatic location and then the morphology of that m-type which best fit the location was chosen, as 
described below. However, for some locations, especially near the layer boundaries, the best-fit morphology 
did not fit particularly well. This was assumed to be due to a combination of choice bias during the 
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experiments (experimenters looking for a specific cell type search near the middle of the layer) and variability 
in cortex height between different animals. To ameliorate this issue, the repaired morphologies were 
duplicated and scaled vertically (Y-axis) by ± 2.5% and ± 5.0%. 

In order to further increase morphological diversity, a cloning algorithm was implemented. This algorithm took 
each morphology and injected noise into branch lengths and rotations, leaving the overall branching structure 
unchanged, but resulting in completely unique space-filling for each clone. For each branch in the current 
morphology, a random number was sampled from a Gaussian distribution of mean 0% and standard deviation 
20%, and the branch’s length was then scaled by this amount. At each bifurcation point, there were two 
subtrees, each of which were rotated by a degree sampled from a Gaussian distribution of mean 0° and 
standard deviation 10°. The rotation occurred around the vector determined by the point at the base of the 
subtree and the first principal component of all arbor lengths in the subtree. This generally resulted in unique 
cloned morphologies that maintained the general structure of the m-type (e.g. laminar structure). However, in 
L1HACs and Martinotti cells in all layers, this process resulted in a degradation of laminar structure, and thus 
cloning was not performed on these cells. 

Some m-types occur very infrequently, resulting in small numbers of reconstructions for these types (e.g. 
neurogliaform cells, chandelier cells, and bipolar cells). As such, we allowed these cell types to be used in 
layers next to the layer in which they are found. Thus, L23NGCs could also be placed in layer 6, L6NGCs 
could be placed in layer 5, L5ChCs could be placed in layers 4 and 6, and L5BPs and L5DBCs could be 
placed in layer 6. Martinotti cells were also allowed to be placed in the layer above and below the layer in 
which they were found, with two exceptions: layer 1 did not contain Martinotti cells and layer 6 Martinotti cells 
were not allowed to be placed in layer 5. 

Objective classification and validation of cloning 

Following the unraveling, repair and cloning/scaling of the reconstructed morphologies, an objective 
classification was performed to ensure that the repaired cells and the clones belong to the same classes 
assigned by the expert classification. Of the original 55 m-types, 43 were objectively classified. The remaining 
classes (L23BP, L23NGC, L4BP, L4NGC, L4ChC, L5BP, L5NGC, L6BTC, L6ChC, L6DBC, L6NGC, L6BP) 
were not classified because too few biological reconstructions were available. The 583 repaired morphologies 
of 43 m-types were classified using the method of leave-one-out Linear Discriminant Analysis (Rao, 1948) 
provided by the open-source Python-based machine learning library Scikit-learn (Pedregosa et al., 2011).  

The morphologies were divided into 9 superclasses in two steps. The first step distinguished the interneurons 
from the pyramidal cells depending on the absence or presence of an apical dendrite, and the second step 
categorized the cells of different layers, according to the expert layer assignment based on the layer 
containing their somata. An initial classification was performed with 105 anatomical features for pyramidal cells 
and 75 (apical features are not included) anatomical features for interneurons (see Table S4) that were 
extracted through NeuroM. The results of this classification showed 99% accuracy between the expert and the 
objective classification. However, randomization of classes within layers only reduced this accuracy to 97%, 
indicating over-fitting of the data. To reduce this problem, a second classification was performed using a 
subset of features. In order to select the most significant features for the anatomical classification of the cells a 
multi-objective optimization problem was designed to assign an importance score to each feature. The Pareto 
Front was extracted from the multi-objective optimization problem of minimizing within-group variance and 
maximizing between-group variance, with the constraint of the predefined 43 classes. The 15 most significant 
features were selected for each layer and type (Interneuron or Pyramidal cells). After the feature selection, the 
overall accuracy of the 43 m-types classification was around 70%, while the randomization of classes resulted 
in a significant decrease of the accuracy to around 40%. This shows that the expert-proposed features (see 
the section: Classification of morphologies) were also objectively significant. 

In order to further improve the classification and minimize the effects of the sparsity of data in interneuron 
classes (layer 2-6), a hierarchical clustering approach was used for the group of interneurons. The local 
arborization of most interneurons results in similar morphometrics within their classes (BP, BTC, ChC, DBC, 
LBC, NBC, SBC, MC, NGC), independently of the position of their somata. This property, which is unique for 
interneurons, allowed the merging of interneuron classes of different layers into larger classes for classification 
purposes. Layer 1 interneurons were excluded from this process, because of their distinct morphologies, 
which cannot be integrated with the rest of the interneurons. The overall accuracy of supervised clustering with 
feature selection for Layer 1 interneurons is 68%. The described process increased the sample size and 
reduced the number of classes that could not be objectively classified to two (BP and NGC) because they still 
had less than 3 members. A subsequent application of hierarchical clustering, a technique commonly used in 
clustering problems with a large number of classes (here 7) and few members per class (here 7 to 50 
members), resulted in a significant improvement of the overall classification accuracy for the interneurons (~ 
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90%). The randomization of classes suggested terminating the hierarchical clustering at three final classes 
(DBC, ChC, BTC). The detailed results for the interneurons in Layers 2 to 6 are presented in Figure S2A1, A2. 

The hierarchical clustering was not applied to the pyramidal cells for the following reasons. First, the pyramidal 
neurons are cells that commonly span larger areas and are not locally restricted to the layer of their somata. 
As a result, pyramidal cells of the same type with somata positions in different layers have significantly 
different morphologies. Second, the number of classes of pyramidal cells per layer (Layer 2/3: 1 class, Layer 
4: 3 classes, Layer 5: 4 classes) and the sufficient number of members of each class did not indicate the need 
for hierarchical clustering. The overall accuracy of the pyramidal cells classification was around 88%. The 
detailed results of the classification of pyramidal cells Layer 2 to 5 are presented in Figure S2B1, B2. Layer 6 
pyramidal cells are a special case, since 2 classes (IPC and BPC) can be identified by the number and the 
orientation of the apical trees with 100% accuracy, one class does not have sufficient members to participate 
in the objective classification (HPC) and the rest of the classes (TPCL1, TPCL4, UTPC) can be classified with 
~60% accuracy. These results are not presented in Figure S2 since the used method is modified.  

Once the performance of the classifier had been quantified, 9187 unique cloned-scaled morphologies were 
classified according to the described method to ensure that the cloning process did not modify the assigned 
cell classes. The mean score for the classification of the cloned morphologies was 81%, which is significantly 
similar to the accuracy of the repaired cells' classification. As a result of this objective classification, we 
concluded that the assignment of classes to the repaired and cloned cells agrees with the expert classification.  

Morphological Structural Analysis 

We generated a profile of the mean densities of arbors around the somata of all 55 m-types based on 
manually reconstructed and repaired morphologies in our database (N = 433), as shown in Figure S1. To 
generate the profile for a given morphology type we placed 10 copies of each relevant morphology at the 
same point in (virtual) space and rotated them between 0 and 360 degrees around the y-axis (perpendicular to 
the layer boundaries). Next, we converted the axons and dendrites into a point cloud by moving recursively 
from the soma to the tips of the arbors, placing a point in space every 1 μm. Each of these points represented 
1 μm of arbor length centered at its location. The final result therefore represented density of arbor length, and 
not volume. The point clouds for dendrites and axons were converted into a volume separately by counting the 
number of axon/dendrite points that fall into a 1 μm cubic voxel. Finally, the volume was normalized to present 
the probability density of finding the center of a randomly picked 1 μm segment of arbor inside the voxel. To 
visualize the volumes, we calculated the sum along the z-axis (parallel to the layer boundaries) and mapped 
the densities to a color map. Axon density is shown in blue, dendrite density in red (see Figure S1).  

Cell densities and layer boundaries 

Slicing procedures 
Layer boundaries and densities per layer were computed from light microscopic techniques on slices. P14 
Wistar (Han) rats (N = 6) were anesthetized with pentobarbital (100 mg/kg) and transcardially perfused with 20 
ml 0.1 M phosphate buffer followed by 100 ml of 4% paraformaldehyde (pH 7.4) prepared in the same buffer. 
The brains were post-fixed in the same solution for 24 h, and coronal sections were cut with a vibratome. All 
animals were handled in accordance with the guidelines for animal research set out in the European 
Community Directive 86/609/EEC and all the procedures were approved by the local ethics committee of the 
Spanish National Research Council (CSIC). 

Immunohistochemistry 
Free-floating sections were treated for 30 min with 1% H2O2 to deplete the endogenous peroxidase activity, 
and then non-specific binding was blocked for 1 h in PB with 0.25% Triton-X and 3% horse serum (Vector 
laboratories Inc., Burlingame, CA, USA). The sections were incubated overnight at 4°C with a mouse anti-
neuron specific nuclear protein (NeuN, 1: 2000, Chemicon, Temecula, CA, USA), and they were then 
processed by the avidin-biotin method, using a biotinylated secondary antibody (1:200, Vector Laboratories, 
Burlingame, CA, USA) and the Vectastain ABC immunoperoxidase kit with 3,3’-diaminobenzidine 
tetrahydrochloride (DAB, Sigma-Aldrich, St Louis, MO, USA) as the chromogen. After staining, the sections 
were dehydrated, cleared with xylene and cover-slipped.  

The specificity of the staining was controlled by processing selected sections after either replacing the primary 
antibody with preimmune horse serum, after omission of the secondary antibody, or after replacement of the 
secondary antibody with an inappropriate secondary antibody. No significant staining was detected under 
these control conditions.  
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To generate the figures, images were captured with a digital camera (Olympus DP70) attached to an Olympus 
BX51 light microscope (Olympus, Ballerup, Denmark), and Adobe Photoshop CS4 software (Adobe Systems, 
San Jose, CA, USA) was used to produce figure plates. 

Estimation of layer boundaries and densities per layer in NeuN-stained sections 
Neuronal density were estimated using optical dissectors (Bonthius et al., 2004; West and Gundersen, 1990), 
and with the aid of the Stereo Investigator software (StereoInvestigator 7.0, MicroBright Field Inc. Vermont, 
USA).  

Optical dissectors were performed on every cortical layer (I, II, III, IV, Va, Vb, VI) from each animal. After 
randomly selecting a starting point, 5-6 sections (50 μm thick) were selected at equally spaced intervals in the 
same cortical area (HL somatosensory cortex (Paxinos and Watson, 1998)). Optical dissectors were made in 
an Olympus BX51 light microscope (Olympus, Ballerup, Denmark) with an oil immersion x100 objective, within 
a depth of 15 μm. To provide a systematic area offset, the movement of the stage was controlled through the 
Stereo Investigator software. A neuron was counted only if the nucleus was clearly identified in the height of 
the optical plane along the z-axis. 

Correction for tissue shrinkage 
To estimate the shrinkage in our samples, we measured the surface area and thickness of the vibratome 
sections with Stereo Investigator in three different experimental conditions: (1) before fixation, in fresh 
(unfixed) tissue; (2) after fixation (overnight at +4°C in 4% paraformaldehyde in 0.1M PB); (3) after processing 
for NeuN immunostaining. For fresh to fixed tissue, the surface area after fixation was divided by the value 
before fixation to obtain an area shrinkage factor of 0.929. The linear shrinkage factor for measurements in the 
plane of the section was therefore its square root, 0.964. From fixed tissue to NeuN-immunostained tissue, the 
surface area after processing was divided by the value before processing to obtain an area shrinkage factor of 
0.83. The linear shrinkage factor for measurements in the plane of the section was therefore 0.91. The 
shrinkage factor in the z-axis was 0.47. Thus, the final values of the neuronal densities were corrected to 
obtain an estimation of the pre-processing values. Layer thicknesses were corrected by a factor of 0.964*0.91 
to obtain an estimation of the pre-processing values. 

Morphological composition 

E/I ratios 
A P14 Wistar (Han) rat was anesthetized with pentobarbital (150 mg/kg) and transcardially perfused with 50ml 
0.1M phosphate buffer followed by 100ml of 4% paraformaldehyde (pH 7.4 in 0.1M phosphate buffer). The 
brain was post-fixed in the same solution for 2h, and 50 μm sagittal sections from right hemisphere were sliced 
with a vibratome (Leica, VT-1000-S), slices were placed into cryoprotectant (30% glycerol, 30% polyethylene 
glycol in distilled water) at -20°C until staining.  

The non-specific binding sites of the free-floating sections were blocked for 2h in 0.1M PBS with 0.3% Triton 
X-100 and 1% bovine serum albumin. The sections were first incubated at 4°C for 20h first with a mouse anti-
neuron specific nuclear protein 1:1000 (anti-NeuN, Chemicon, MAB377). They were then incubated with a 
rabbit anti-GABA (anti-GABA, Sigma-Aldrich Inc., A2052) 1:500, at room temperature for 1h followed by 24h at 
4°C, with blocking steps in between (PBS-T with 3% normal goat serum). Revelation was done with a goat 
anti-mouse IgG Alexa488 (Alexa488, 1:1000, Molecular Probes, A11029) and with a donkey anti-rabbit 
Alexa568 (Alexa568, 1:200, Molecular Probes, A10042) in 0.1M PBS with 1% bovine serum albumin and 0.3% 
Triton X-100. DAPI was used as a nuclear counterstain (1:50’000, Sigma-Aldrich, D9542). After staining, the 
sections were mounted in aqueous anti-fading reagent (Dako, S3023) and cover-slipped. Negative control of 
staining was performed with secondary antibodies only. No significant staining was detected under this control 
condition. 

Imaging was performed on a motorized confocal microscope (Zeiss LSM 700) with 40x magnification at 0.223 
μm x 0.223 μm x 1 μm voxel size with 12-bit color depth. Stack depth was chosen to be 90 slices thick to 
account for possible errors in z alignment. A region of   640 μm x 2673 μm was imaged with 10% overlap - 
resulting in an image size of 2871 x 11990 x 90 voxel. Single stacks were stitched using the custom made Fiji 
“massive stitcher” plugin implemented by the BioImaging and Optics Platform of EPFL (http://biop.epfl.ch/). 

The representative counting region was chosen to be 152.53 μm x 1800 μm x 53 μm in size inside the 
somatosensory area ranging from bottom of L6 to pia inside the hind-limb somatosensory cortex. Shrinkage 
correction was not necessary. Counting volume was re-sliced into horizontal plane to better assess nucleus 
position inside the slice. Counting was performed three times by independent experimenters using the Fiji cell 
counter plugin. All cells with matching criteria were counted. Upper and left bounding box borders were 

http://biop.epfl.ch/
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defined as exclusion borders. Lower and right borders as inclusion borders. Cells with nuclei touching 
exclusion borders were not counted. Positions of counted cells were saved. Only double positive 
(NeuN/GABA; +/+) cells counted as inhibitory neurons. Layer boundaries were applied after counting. Volume 
rendering was performed with Imaris scientific visualization (Bitplane) and VTK (Kitware Inc., Visualization 
Toolkit). 

All procedures were conducted in conformity with the Swiss Welfare Act and the Swiss National Institutional 
Guidelines on Animal Experimentation for the ethical use of animals. The Swiss Cantonal Veterinary Office 
approved the project, following its ethical review by the State Committee for Animal Experimentation. 

Immunohistochemistry for Marker Visualization 
Wistar rats (n=4 aged 14 days) were sacrificed by administering a lethal intraperitoneal injection of sodium 
pentobarbital (40 mg/kg), and they were then perfused intracardially with saline solution followed by 4% 
paraformaldehyde in 0.1 M phosphate buffer (PB), pH 7.4. All experiments were approved by the ethics 
committee of the Spanish National Research Council (CSIC) and performed in accordance with the guidelines 
established by the European Union regarding the use and care of laboratory animals (Directive 2010/63/EU). 
Brains were removed and postfixed by immersion in the same fixative for 7 h at 4ºC and then were cryo-
protected in 30% sucrose solution in PB until they sank, frozen in dry ice and cut at 50 μm in the coronal plane 
with a sliding freezing microtome. The sections were pre-incubated for 1 h at room temperature in a stock 
solution containing 3% normal goat serum (Vector Laboratories, Burlingame, CA) in PB with Triton X-100 
(0.25%) and then incubated for 48 h at 4 ºC in the same stock solution containing the following antibodies, 
alone or in combination: Mouse anti-CB (Swant 1:2000), mouse anti-PV (Swant 1:2000), mouse anti-CR 
(Swant 1:2000) rabbit anti-NPY (Peninsula, 1:2000), rabbit anti-Som (Peninsula, 1:2000), rabbit anti-CCK 
(Sigma 1:10000) and  rabbit anti-VIP (Incstar 1:1000). Sections were then rinsed in PB and incubated in for 2 
h at room temperature goat anti-rabbit and or goat anti-mouse coupled antibodies with Alexa 488 or Alexa 594 
(1:1000; Molecular Probes, Eugene, OR). Sections were rinsed and stained with Dapi, to reveal borders 
between layers and cytoarchitectonical areas. The sections were then washed in PB, mounted in anti-fade 
mounting medium (Invitrogen/Molecular Probes, Eugene, OR) and studied confocal microscopy (Zeiss, 710). 
Controls were included in all the immunocytochemical procedures, either by replacing the primary antibodies 
with pre-immune goat serum in some sections, by omitting the secondary antibodies, or by replacing the 
secondary antibody with an inappropriate secondary antibody. No significant immunolabeling was detected 
under these control conditions. Additional quantitative staining was performed using a variation of a previously 
published protocol (Brionne et al., 2003). 

Defining horizontal circuit dimensions 

The horizontal dimensions of a microcircuit were estimated by evaluating the density of dendritic fiber at the 
center of the circuit, as cells are placed at successively farther distances from the center. In particular, we 
calculated the total length of morphological segments whose midpoint is contained inside a cylinder at the 
center of the circuit with a radius of 25 μm but spanning all layers. At first, we only considered dendritic 
segments of cells that had their soma within 25 μm horizontally of the center. We then increased that maximal 
distance in steps of 25 μm, each step increasing the total length in the center. We calculated the radius where 
95% of the asymptotal maximal length is reached as 210 μm (linearly interpolated). Instead of a circle, we 
used a hexagon with identical area as the base of the microcircuit to facilitate tiling, while minimizing 
asymmetrical edge effects. 

Soma positions 

The horizontal and vertical extents yield a 3D microcircuit volume in the shape of a hexagonal prism that is 
461.8 μm wide (at its widest point, side length 230.9 μm) and 2082 μm high (See Figure 3D), composed of 6 
layers. This volume was then populated by assigning soma positions according to the derived layer-specific 
cell densities. The positions were distributed in mini-columnar arrangements using the Niederreiter space-
filling algorithm (Niederreiter, 1988). Each mini-column contains around 100 neurons (depends on total 
numbers in circuit, which varies slightly across the different instantiations, Bio1-Bio5, BioM, according to their 
differing total numbers of neurons) and exactly 310 mini-columns per unitary microcircuit. Finally, each soma 
position was assigned an m-type according to the derived morphological composition and E-I fractions. 
Furthermore, each soma position was associated with a random rotation to be applied to the morphology.  

Ensuring inter-laminar structure 

The microcircuit contains morphologies of different sizes and shapes. Placing the soma of reconstructed 
morphologies in the layers they were found in during the reconstruction is insufficient to ensure a biologically 
correct placement. We found that there are more constraints on the morphologies than just the home layer of 
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the soma. For example, within a layer, a given morphology may be limited to only a small fraction of the 
available space, due to its axon or dendritic structure. We know for example, that the arbors of a cell cannot 
stretch further than the top of layer I. This means that the largest pyramidal cells of a given layer can only be 
placed at the bottom of that layer. Conversely, the dendrites of the smallest pyramidal cells originating from 
the top of layer II/III will be unable to reach layer I, if placed at the bottom of the layer. 

Once a neuronal location was assigned an me-type, it was assigned a morphology from the database of 
morphologies provided by the morphology release process (unravel, repair, mix-and-match, scaling, cloning, 
substitution) according to a placement scoring algorithm designed to ensure adherence to known biological 
rules for laminar placement of morphological features (e.g. L1 targeting axon clusters of Martinotti axons, L4 
targeting pyramidal dendrites).  

A broad literature review was undertaken to identify described rules for the laminar targeting of morphological 
features, and individual repaired morphologies (prior to mix-and-match, scaling and cloning) were manually 
annotated for vertical intervals which should target specific layers. Annotations of parent intervals were carried 
over to mix-and-match, scaled, and cloned morphologies. For the latter, sections annotated in the parent were 
also annotated in the clone by correspondence of segments, and the clone was rejected if any extent of an 
annotated region was not within ± 60% of the parent region.  

Scores were computed for each pool of m-types for bins of 10 μm along the vertical axis of the microcircuit. 
The score was computed as the generalized mean of the overlap of Gaussians between feature interval and 
target interval over all annotated rules for a given morphology. A given morphology was removed from 
consideration for placement if it penetrated the pia. For a given location, the candidate morphology was 
randomly chosen weighted by score from the pool of cells with the highest scores accounting for 8% of the 
total score of the m-type pool.  

In the superficial layers 2 and 3, some m-types contained no exemplars that could be placed in upper regions 
of the layer without exiting the pia. In this case, the density of this m-type was redistributed to the sub-volume 
of the layer where exemplars were available to be placed.  

MORPHO-ELECTRICAL DIVERSITY 

Physiological recordings 

Electrophysiology 
The firing patterns of neurons, obtained from in vitro recordings in P14-16 rat somatosensory cortex, were 
expert-classified into one of 11 electrical types (e-type; cAC, bAC, cIR, bIR, cNAC, bNAC, dNAC, cSTUT, 
bSTUT, dSTUT, cAD; see Figure 4) based on their response to stimulus protocols as described below. The 
response properties recorded from several neurons (N = 143) were selected from our experimental database 
as the basis for the distributions of feature values used for electrical model optimization. The experimental 
procedures were published in previous studies (Toledo-Rodriguez et al., 2004).  

Stimulus protocols 
Neurons were stimulated with a set of previously described protocols (Le Bé et al., 2007; Wang et al., 2002, 
2004). Only a subset of these stimuli was used to generate neuron models. 

 IDRest: In the IDRest protocol the experimenter determines a hyperpolarizing offset current to keep 
the cell at -70 mV (before liquid junction potential correction) and applies this current during the entire 
protocol. After an initial period of 700 ms, a step current was applied for 2000 ms, and after the step, a 
final period of 300 ms is recorded. This protocol is repeated with different step currents normalized to 
the threshold current (i.e. the lowest current that generates one AP during the step). For this study, the 
current steps IDRest150, IDRest200 and IDRest250 (resp. 150%, 200% and 250% threshold) were 
used. 

 APWaveform: The offset current is determined in the same way as in the IDRest protocol. To obtain a 
detailed profile of the action potential waveform, voltage is sampled with a period of 10 µs. After 5 ms, a 
step current is applied at typically 2 to 4 times the threshold step. Voltage is recorded for 50 ms, mostly 
generating a trace containing two to three high-resolution AP waveforms. 

 APThreshold: The offset current is determined in the same way as in the IDRest protocol. A ramp 
current (from 0 pA to 4 times threshold) is injected for 2 seconds after an initial period of 100 ms 
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To create pyramidal cell models, only features extracted from voltage traces obtained during the IDRest 
protocol were calculated. For the interneuron models, APWaveform and APThreshold protocol traces were 
included. 

Composition of e-types 

The me-type fractions summarized in Figure 4C were assessed from statistics of assigned e-types from a pool 
of 511 m- and e-type classified inhibitory neurons. Since researchers are unable to target cells based on their 
electrical properties, the fractions are assumed to be unbiased. Excitatory m-types were uniformly classified as 
continuous adapting/accommodating (cAD). Since some m-types are infrequent, in some cases samples from 
different layers were pooled to have sufficient samples to assess the e-type fractions. Such pooling was done 
in a conservative manner, only when necessary, and only from neighboring layers if possible. For example, 
BTCs for layers 5 and 6 were pooled to assign the fractions in those layers. The pooling rules applied, in an m-
type specific manner, are as follows: (A) L4 + L5 + L6, (B) L5 + L6, (C) L1 lumped (NGC + NGC-DA + NGA-
SA), (D) L23 + L4 + L5 + L6. The application of these rules is summarized in Table S5. 

RECONSTRUCTING MICROCIRCUIT CONNECTIVITY 

Touch detection 

After placing the morphologies in 3D space, the next step consisted of generating a structural circuit by 
detecting zones of geometric overlap called “touches”. This step was performed by the custom developed 
BlueDetector software (Kozloski et al., 2008), which implemented the following workflow: 1) Reconstructed 
morphologies were loaded, translated and rotated according to the assigned soma positions and rotations 
(see Soma positions); 2) A division of the volumetric space into sub-volumes (called "slices") was calculated in 
such a way that every sub-volume held the same amount of data; 3) Morphology segments were evenly 
distributed over available cores, based on previous slicing; 4) An in-core touch detection algorithm was 
independently executed on each core (which holds a slice); 5) The detected touches were then sent back to 
the core that holds each full morphology of the previously sliced neurons; 6) Neurons touches were then 
filtered according to the biological rules (Riachi, 2010); 7) The resulting set of structural touches was written in 
parallel to disk. The execution of such a process for a microcircuit consisting of 219k neurons and around 7.0 
billion structural touches ran on 8k cores of a CADMOS IBM BG/P or BG/Q supercomputer with an execution 
time of approximately 1.5 hours.  

Touch filtering 

For details of the filtering of touches or appositions to constrain synaptic connectivity to experimental data, see 
the companion paper (Reimann et al., 2015). 

Estimation of external input 

We estimated the fraction of external inputs into all layers (Figure S7E) by comparing the spine density 
emerging from connections within the microcircuit to biologically characterized densities. Spine densities in the 
reconstructed microcircuit were calculated as the density of excitatory synapses, thus assuming one excitatory 

synapse per spine. Densities were calculated on dendritic segments in the most central 50 m of the 
microcircuit where axonal density was highest. They were then compared to m-type specific values from the 
literature, calculating the fraction of external input needed to reach full, biological density. Finally, fractions 
were averaged per layer. 

NEURONAL PHYSIOLOGY 

Neuron models  

Multicompartmental, conductance-based models of neurons were obtained from reconstructed morphologies 
in P14 rat somatosensory cortex. Up to 13 active ion channels types and a model of intracellular Ca

2+
 

dynamics were incorporated in neuron models. The compartments were separated into different regions: (1) 
axon initial segment (AIS), (2) soma, (3) basal dendrites and (4) apical dendrites. Interneurons contained only 
one dendritic region. Each region received a separate set of channels ((see NMC portal;(Ramaswamy et al., 
2015)). The full axon was not simulated, but only the AIS. The AIS was represented by two fixed length 
sections with a 30 μm length, whose diameter was obtained from the reconstructed morphology used in the 
model fitting process.  
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Action potentials were detected in the AIS, and the information was transmitted with a delay to the dendritic 
locations of synaptic contacts on postsynaptic neurons (see Synaptic Physiology).  

Compartment discretization 
Reconstructed and repaired neuron morphologies (Anwar et al., 2009) were divided into isopotential 
compartments of a maximal length (20 μm). The average number of compartments in all neuron models was 
approximately 260. 

Passive properties  
Membrane capacitance (Cm) was set to 1 μF/cm

2
 for the soma, AIS and dendrites. In pyramidal cells a value of 

2 μF/cm
2
 was used for the membrane capacitance in the basal and apical dendrites to correct for dendritic 

spine area. Axial resistance (Ra) was set to 100 Ωcm for all compartments. For pyramidal cells the maximal 
conductance of the leak current was manually set to a value that created a resting potential, membrane time 
constant and input resistance in accordance with reported values (Le Bé et al., 2007; Stuart and Spruston, 
1998). For interneurons, the leak reversal potential and the leak conductance were set as a free parameter in 
the optimization algorithm, within physiological bounds. 

Conductance mechanisms 
We included 13 key active ionic currents known to play a role in neocortical neurons, with kinetics obtained 
from published ion channel models or published experimental data (transient sodium (Colbert and Pan, 2002), 
persistent sodium (Magistretti and Alonso, 1999), transient potassium (Korngreen and Sakmann, 2000), 
persistent potassium (Korngreen and Sakmann, 2000), m-current (Adams et al., 1982), h-current (Kole et al., 
2006), high voltage-activated calcium (Reuveni et al., 1993), low voltage-activated calcium (Avery and 
Johnston, 1996), Kv3.1 (Rettig et al., 1992), d-type potassium (Shu et al., 2007), stochastic potassium (Diba et 
al., 2006), SK calcium-activated potassium (Köhler et al., 1996)). The kinetics of ionic conductances that were 
characterized at room temperature (21 °C) were adjusted to the simulation temperature of 34°C using Q10 of 
2.3. The kinetics obtained from experiments where the liquid junction potential was not corrected for were 
shifted by -10mV. The reversal potentials for Na

+
, K

+
 and Ih were set to 50, -85 and -45 mV respectively. 

Ion currents were modeled using Hodgkin-Huxley formalism, so that for each ion current: 

𝐼 =  𝑔 ̅ ∗ 𝑚𝑥 ∗  ℎ𝑦  (𝑉 − 𝐸) 

where �̅� is the maximal conductance (or density); x and y are the number of gate activation and inactivation 
variables, respectively; E is the reversal potential of the given ion; and V is the membrane potential. Figure S8 
describes the kinetics of each ion channel conductance mechanisms used in this study. To link the calcium 
channels to the calcium-activated potassium channels, an exponentially decaying intracellular calcium pool 
was included. 

Reconstructing morpho-electrical behavior  

Conductance distribution 
For pyramidal cell models, all ion channel mechanisms were uniformly distributed in the soma, AIS, basal and 
apical dendrites, except Ih, which was exponentially distributed in apical dendrites (Kole et al., 2006). For the 
interneuron models, all ion channels were uniformly distributed in the soma, AIS and dendrites with the 
exception of Ih, which was exponentially distributed in dendrites. A complete description of all the channel 
distributions is provided in the Neocortical Microcircuit Collaboration (NMC) Portal - https://bbp.epfl.ch/nmc-
portal (Ramaswamy et al., 2015). 

Optimization of neuron models 
A feature-based multi-objective optimization method as previously described (Druckmann et al., 2007) was 
used to fit the neuron models. In brief, feature-based error functions were designed to deal with the variability 
of experimental responses to identical stimuli. The free parameters in the optimization were primarily the 
density of ion channel conductances located in the soma, AIS and the dendrites (see NMC portal). 

We developed an optimizer framework in C++ to integrate the NEURON simulation environment (Carnevale 
and Hines, 2006), optimization library PISA (Bleuler et al., 2003), and a feature extraction library. Among 
different implemented optimization algorithms (NSGA, NSGA-II, SPEA2, IBEA), we used the indicator-based 
evolutionary algorithm (IBEA). Cell model optimization converged faster and reliably found models with 
summed errors better than the previously reported modified NSGA algorithm (Druckmann et al., 2007). The 
evolutionary algorithm was run with a population size of typically 1024 individuals on 512 cores of a 
BlueGene/P system for 100-200 generations. After the optimization, the best solution was the individual in the 

https://bbp.epfl.ch/nmc-portal
https://bbp.epfl.ch/nmc-portal
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population with the smallest sum of its objective values. Every optimization was typically run with different 
random seeds. The best solution among different seeds was selected as the final electrical model. 

We used a set of key electrical features (e-features) of target firing behavior at the soma and dendrites (see 
NMC portal). For every e-feature an absolute standard score 𝑍𝑖 was calculated: 

𝑍𝑖 =
|𝑓𝑖 −   𝜇𝑖|

  𝜎i

 

with 𝑓𝑖  the e-feature value measured from the output traces of the models,   𝜇𝑖  and   𝜎𝑖  the experimentally 
measured mean and standard deviation for the e-features in the respective cell types. 

These Z-scores served to define the objectives 𝑂𝑗 to be fitted by the evolutionary algorithm:  

𝑶𝒋 = ∑𝒘𝒊

𝒏𝑶𝒋

𝒊=𝟎

𝒁𝒊 

with 𝑤𝑖 weight factors, and 𝑛𝑂𝑗
 the number of e-features in objective 𝑂𝑗. 

Every optimization was run with an exemplar morphology that corresponded to the target electrical firing type. 

In total, 14 electrical models were created: Ten models corresponding to the inhibitory firing types (cAC, bAC, 
cIR, bIR, cNAC, bNAC, dNAC, cSTUT, bSTUT, dSTUT), and four models corresponding to excitatory firing 
types (one model each for PCs in layers 2/3 to 6, and one model for L4SS). This is required due to fact that 
the morphology of pyramidal cells found in different layers is markedly different.  

Electrical models of pyramidal neurons were generated based on a set of experimental features identified from 
responses to “IDRest” stimuli (see (Hay et al., 2011)). The feature value set used for electrical models of 
pyramidal neurons across all layers was the same; only the morphology used during the optimization differed. 
The experimental mean and standard deviation for features measuring the mean frequency, adaptation, CV of 
the ISIs, doublet ISIs, time to the first spike, AP height / width, AHP depth / time were calculated for all these 
traces, and were used as target data. One feature also measured the height of the back-propagating action 
potential in the model at two different locations in the dendrites based on the literature (Larkum et al., 2001). 
Every objective seen by the optimization algorithm consisted of a combination of a selected set of features. 
The maximal conductance of the Ih channel and the reversal potential of the leak current were fixed to values 
based on previous studies (Kole et al., 2006).  

Inhibitory cell models were based on the features extracted from responses to APWaveform, APThreshold 
IDRest150, IDRest200 and IDRest250 stimuli from the experimental data (see Stimulus protocols). Due to the 
large variability of firing types of the interneurons, and due to the computational cost of the optimizations, a 
different strategy was used for these models. First a set of four core e-types, namely cAC, bAC, cNAC and 
bNAC was selected, and full optimizations were run to generate models for these firing types. The maximal 
conductances of Ih and the leak current and the reversal potential of the leak current were part of the 
optimized parameters. For these interneuron models, every objective in the optimization algorithm 
corresponded with exactly one feature. Since all the cells of the same e-type were obtained from different m-
types and pooled together, some of the resulting features had a large experimental standard deviation. 
Therefore, the experimental distributions of some features were manually restricted to yield tighter constraints 
for the optimization. 

To generate models for delayed, stuttering and irregular spiking cells, an extra stochastic potassium channel 
was added to the soma and dendrites of the four core e-types, creating channel noise in the models (Diba et 
al., 2006). A new optimization was then run to find a value for the conductance of the channel, with the 
remaining parameters untouched. In this manner, cSTUT, bSTUT, dSTUT, cIR, bIR were derived from cNAC, 
bNAC, dNAC (see below), cAC, bAC respectively. The stochasticity of the channel was ensured by 
implementing a unique random number generator for each compartment in these electrical models. A different 
seed was assigned to every cell and compartment, and the long period of the random number generators 
avoided conflicts between the different seeds. In a similar way, dNAC was created from the cNAC model by 
adding a slowly inactivating D-type potassium channel (Shu et al., 2007). The conductance of this channel 
was optimized using the time to the first spike as a target feature. 

Quality assurance of morpho-electrical models 

After creating the 14 electrical models that were optimized for specific exemplar morphologies, these models 
were combined with all the relevant morphologies in our database to create a large set of morpho-electrical 
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(me) combinations. We ran a process called Model Management to ensure the quality of thus generalized me-
combinations. First, the IDRest protocol was applied to every me-combination, and the features that were 
used during the optimization were calculated from the traces (for IR, STUT and delayed models these were 
combined with the feature values of the core e-type they were derived from). The repaired version of the 
exemplar morphology used during the optimization was a benchmark to accept or reject other me-
combinations. Combinations were accepted if the Z-scores 𝑍𝑖 for all individual features 𝑓𝑖 met the following 
criteria: 𝑍𝑖   ≤ max (5, 5 ∙ 𝑍𝑖,exemplar)  for pyramidal cells and 𝑍𝑖   ≤ 5 ∙ 𝑍𝑖,exemplar for interneurons. To ensure 

sufficient numbers of interneuron combinations were retained, the scores of certain features were given a 
higher acceptance threshold. 

Goodness-of-fit 

Z-scores in Figure 8 were calculated based on experimental features, where values that were changed to 
improve the optimization algorithm were omitted. Pyramidal neuron models have higher Z-scores due to less 
variability in the experimental data as against inhibitory neurons, mainly because for interneurons data from 
more m-types was pooled together. For the Z-score calculation of L23 pyramidal cell models, additional traces 
specific to these cells from our experimental database were used. 

SYNAPTIC PHYSIOLOGY 

Modeling stochastic synaptic transmission 

At each synaptic location identified by the algorithm to reconstruct microcircuit connectivity, we implemented a 
stochastic model of synaptic transmission based on previous work (Fuhrmann et al., 2002), but also including 
facilitation. The implemented two state Markov model is a stochastic model of dynamic synaptic release with 
an ensemble average response equal to that of the phenomenological Tsodyks-Markram dynamic synapse 
model (Tsodyks and Markram, 1997). The model further incorporates NMDA receptor (NMDAR) kinetics (Jahr 
and Stevens, 1990a, 1990b) where applicable. The underlying assumptions were derived from the classical 
quantal model of synaptic transmission, in which a synaptic connection is assumed to be composed of N 
independent release sites (Del Castillo and Katz, 1954);

 
(Korn and Faber, 1991), each of which has a 

probability of release, p, and contributes a quanta q to the post-synaptic response. Release from any particular 
site is independent of release from all other sites (Fuhrmann et al., 2002). We assumed the number of release 
sites equals the number of synapses per connection (Ramaswamy et al., 2012). 

The two state Markov model to simulate stochastic synaptic transmission has the following properties: 

 There can be no consumption of synaptic resources when an event fails to release neurotransmitter  - 
i.e. during failure of synaptic transmission 

 After neurotransmitter release at any given release site, there can be no further release of at that site 
until it recovers. 

 
The exact synapse models as implemented are included in the neuron model packages available for download 
on the NMC portal. 

Parameterizing synaptic kinetics 

Excitatory synaptic transmission was modeled with both AMPA and NMDA receptor kinetics. For AMPA 

receptor (AMPAR) kinetics, the rise (riseAMPA) and decay (decayAMPA) time constants  were 0.2 ms and 1.74 ± 
0.18 ms, respectively (Häusser and Roth, 1997). Pathway specific values for the parameter  “utilization of 
synaptic efficacy” (U, analogous to the probability of neurotransmitter release) were unified from various 
experimental studies of synaptic transmission in juvenile rat somatosensory cortex (Le Bé et al., 2007; 
Brémaud et al., 2007; Feldmeyer, 2006; Koester and Johnston, 2005; Markram et al., 1997; Silver et al., 

2003).For NMDAR kinetics, riseNMDA and decayNMDA were 0.29 ms and 43 ms, respectively (Sarid et al., 2007). 
The time constants are consistent with several previous in vitro studies (Feldmeyer, 2006; Flint et al., 1997; 
Monyer et al., 1994; Rinaldi et al., 2007). The concentration of Mg

2+
 was generally set to 1 mM (Jahr and 

Stevens, 1990b), but was set to 0.5mM where exceptionally specified. The reversal potential of AMPA and 
NMDA receptors was set to 0 mV. The axonal conduction delay for each synaptic contact was computed using 
the axonal path distance from the soma, and a AP conduction velocity of 300 μm/ms, based on experimental 
estimates (Stuart et al., 1997). Furthermore, experimentally measured ratios of NMDA and AMPA 
conductances were used in order to model their relative contribution to unitary the EPSC (Feldmeyer, 2006; 
Myme et al., 2003; Rinaldi et al., 2007; Silver et al., 2003; Wang and Gao, 2009). For pathways where specific 
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values are lacking, we used extrapolated conductance ratios of 0.8  ± 0.1 and 0.4 ± 0.1 for E-E and E-I 
connections, respectively (Wang and Gao, 2009). 

Inhibitory synaptic transmission was modeled with a combination of GABAA and GABAB receptor kinetics. For 

GABAA receptor (GABAAR) kinetics, the rise (riseGABAA) and decay (decayGABAa) time constants were 0.2 ms and 
10.4 ± 6.1, 8.3 ± 2.2 or 6.44 ± 1.7 ms respectively, for the 3 specific inhibitory synapse types used (Gupta et 
al., 2000). Synapse-type-specific values for the parameter U (analogous to the probability of neurotransmitter 
release) were compiled from previous experimental studies (see Table S6). The reversal potentials for GABAA 
and GABAB were set to -80 mV and -93 mV respectively (Mott et al., 1999; Silberberg and Markram, 2007). 
Due to a lack of voltage-clamp experimental data on the synaptic kinetics of GABABRs in neocortical 
connections, data from hippocampal connections was used (Khazipov et al., 1995; De Koninck and Mody, 

1997; Mott et al., 1999; Rovira et al., 1990). For GABAB receptor (GABABR) kinetics, the rise (riseGABAB) and 

decay (decayGABAB) time constants were 3.5 ms and 260.9 ms respectively (Mott et al., 1999).  

Synaptic conductances were determined by optimization of in silico paired recordings in the reconstructed 
microcircuit to match experimentally measured PSP amplitudes where available (see Table S2).  For 
pathways where experimental data was not available, averages computed for E-E, E-I, I-E, and I-I connection 
types were assigned (see Table S6). 

Reconstructing synaptic dynamics 

Based on experimental data, synapse types (s-types) were separated into facilitating (E1 & I1), depressing (E2 
& I2), and pseudo-linear (E3 & I3) types (Beierlein et al., 2003; Gupta et al., 2000; Reyes et al., 1998; 
Thomson et al., 1996; Wang et al., 2002, 2006); for a review see (Thomson and Lamy, 2007). We identified 
and used several constraining principles based on the current state of the art to map s-types associated with 
specific me-type to me-type pathways (Angulo et al., 1999; Bannister and Thomson, 2007; Blatow et al., 2003; 
Feldmeyer, 2006; Feldmeyer et al., 1999; Frick et al., 2007; Galarreta and Hestrin, 1998; Gupta et al., 2000; 
Holmgren et al., 2003; Kapfer et al., 2007; Maffei et al., 2004; Markram and Tsodyks, 1996; Markram et al., 
1997, 1998; Mason et al., 1991; Mercer et al., 2005; Reyes et al., 1998; Rozov et al., 2001; Silberberg and 
Markram, 2007; Thomson and Bannister, 1998; Thomson and Lamy, 2007; Thomson et al., 1993; Wang et al., 
1999, 2002, 2006). See Figure S9 for a summary of s-type assignment rules used. 

Where directly available, experimental data were applied to relevant pathways, and where unavailable the 
constraining principles as previously identified were applied to produce a fully constrained map of synaptic 
dynamics for all possible me-type to me-type pathways. Unique dynamic synaptic parameters (U, D & F) for 
individual synapses were prescribed from a truncated Gaussian distribution with the SD parameter determined 
from experiments (Gupta et al., 2000; Silberberg and Markram, 2007; Wang et al., 2002, 2006).  

Spontaneous synaptic release 

Spontaneous miniature PSCs were modeled by implementing an independent Poisson process (of rate λspont) 

at each individual synapse to trigger release at low rates. The rates of spontaneous release for inhibitory and 
excitatory synapses were chosen to match experimental estimates(Ling and Benardo, 1999; Simkus and 
Stricker, 2002). The excitatory spontaneous rate was scaled up on a per layer basis to correct for missing 
extrinsic excitatory synapses. The resulting spontaneous release rates for unitary synapses were low enough 
(0.01Hz-0.6Hz) so as not to significantly depress individual synapse.  

SIMULATION 

Environment 

The reconstructed microcircuit was simulated using the NEURON simulation package as the core 
computational engine (Hines and Carnevale, 1997). A collection of tools and templates, called Neurodamus, 
written in the HOC and NMODL programming languages (Hines and Carnevale, 2000) were employed to 
handle the setup and configuration of the microcircuit on the parallel machine architecture (Hines et al., 
2008a). In addition, a reporting library written in C++ handled the parallel gathering of data and output to disk 
(Gropp et al., 1999). Simulations were configured in a configuration file to the main run script of Neurodamus, 
which specified the location of key data files, and assigned stimuli and reports to designated groups of cells, 
referred to as targets. 
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Simulation Configuration 

A simulation was parameterized through a configuration file. Multiple sections in the file described an aspect of 
the simulation: general run parameters, stimuli, report generation, synapse and connection configurations. 
Key-Value pairs were used to apply settings within a given section. The initial section of the configuration 
provided user specified general settings for a simulation, including paths to various locations on disk such as 
the circuit and synapse files, the morphology files, the neuron models (electrical templates), and an output 
directory for generated reports. Other settings included the duration of a simulation, the time increment of the 
numerical solver, and the load-balancing mode. Stimulus sections were created for each stimulus to apply to a 
set of cells. Stimuli of various patterns were available to choose from: pulse, ramp, spike train, sine, random 
noise, etc. Depending on the stimulus pattern, additional settings were required. For example, a pulse stimulus 
required specification of a current amplitude (nA), a spike train required a frequency (Hz) and so on. All stimuli 
required a time delay and duration. Report sections were created to record a variable from a set of cells. 
Reports were configured to specify the variable in the NEURON simulation environment from which to record, 
for a starting time until some end time. In addition, the user could choose the file output format: ASCII, hdf5, or 
binary. Binary format was required when using multisplit load balancing in order to handle restructuring data 
that has been split across CPUs (Hines et al., 2008a). Connect sections were created to customize synapse 
creation. Users could designate two sets of cells, the source target and destination target, and any synapses 
from the source to the destination were configured as specified within the section. 

Neurons were grouped together as a target. Two types of targets were used for regular simulations: cell and 
compartment targets. Cell targets were used more generally throughout simulation configuration. Members of 
a cell target were typically interpreted as whole cells for the purpose of connect sections. For stimuli and 
reports, members were interpreted as somata. Compartment targets provided a more specific addressing 
capacity in order to allow for dendritic or axonal locations of a cell to be included for stimulus and report usage.  

Load-balancing and multisplit 

When simulating the microcircuit on a massively parallel machine, it was important that the workload be 
distributed as evenly as possible to minimize idle CPUs. NEURON provides hooks to compute the 
computation load of a cell and determine the optimal way to separate that cell in multiple pieces assigned 
across multiple CPUs (Hines et al., 2008b). The initial microcircuit was instantiated by Neurodamus in a 
straightforward manner, which may not have very good load balancing. Calls were assessed by NEURON’s 
load balancing algorithm and the optimal splitting strategy was written to disk. The microcircuit was then 
cleared from memory and Neurodamus recreated it using the now available load balancing information. During 
later stages of setup, checks were made to ensure that actions were executed for pieces on the local CPU and 
skipped when the piece exists on a remote CPU. The reporting library especially took care to handle the split 
cell case and managed the reorganization of data into the final output report file such that any cell’s data 
appear all together within the report. 

IN SILICO EXPERIMENTS 

Bath manipulation simulations 

In vivo and in vitro-like conditions were reconstructed in silico by modifying ionic concentrations in the 
extracellular bath medium. The extracellular Ca

2+
 concentration ([Ca

2+
]o)  was manipulated by changing the 

utilization of synaptic efficacy parameter (U) in the stochastic synapse model (see section Synaptic 
Physiology). The reconstructed synaptic U parameters for standard in vitro bath conditions ([Ca

2+
]o =2.0mM) 

were scaled as a function of [Ca
2+

]o  with pathway specific interpolating functions. The interpolating functions 
were determined from experimental data on changes in PSP amplitudes (relative to PSP at [Ca

2+
]o =2.0mM) as 

a function of [Ca
2+

]o by assuming all [Ca
2+

]o induced changes where due to changes in U, and that U and PSP 
amplitude scalings have a linear relationship. As depicted in Figure S12, multiple data sources on such PSP 
scalings were collected from literature, and found to be consistent with one of two Hill isotherms reported 
previously (Rozov et al., 2001), either steep or shallow dependence. Parameterizations of K1/2=2.79 for steep 
and K1/2=1.09 for shallow are from previous reports (Rozov et al., 2001). 

Specificities of [Ca
2+

]o dependencies on connection type were implemented as follows: a) synapses between 
excitatory neurons, and between excitatory neurons and distal-targeting interneurons (DBC, BTC, MC, BP) in 
both directions have a steep calcium dependency; and b) synapses between excitatory and proximal-targeting 
PV+ interneurons (LBC, NBC, SBC, ChC) in both directions have a shallow calcium dependency (Figure 
S12A) (Gupta et al., 2000; Rozov et al., 2001; Silver et al., 2003; Tsodyks and Markram, 1997). Due to a lack 
of experimental data, synapses between inhibitory neurons, and between excitatory neurons and all other 
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inhibitory neurons are assumed to have level of dependency on [Ca
2+

]o as the average of the two extremes 
(Figure S12A).  

Depolarization in bath manipulation experiments (e.g. to mimic increased [K
+
]o in vivo, tonic glutamate, or 

neuromodulators in the bath) was achieved by current injection at the neuron soma. Currents were expressed 
in terms of percentage of the minimum step current injection required for each cell to spike at least once 
(rheobase). 

Bath manipulation experiments using multi-electrode array  

To experimentally validate the observed transitions in the network state due to changes in [Ca
2+

]o, a multi-
eletrode array was used to observe changes in synchronous network activity in brain slices while allowing 
rapid changes in bath composition. In accordance with the Swiss national and institutional guidelines, 300 μm 
thick sagittal brain slices were prepared from the somatosensory cortex of postnatal day 14 to 15 Wistar rats 
(N=2) of either sex in iced artificial cerebrospinal fluid (ACSF) containing (in mM) 125 NaCl, 2.5 KCl, 25 D-
glucose, 25 NaHCO3, 1.25 NaH2PO4, 2 CaCl2, and 1 MgCl2; all chemicals from Sigma-Aldrich, St. Louis, MO 
or Merck, Darmstadt, Germany) using a HR2 vibratome (Sigmann Elektronik, Heidelberg, Germany). The 
primary somatosensory cortex was manually dissected and isolated to obtain rectangular slices of 5 – 7 mm 
width and containing the neocortex in its entire height. Optimal slices, with apical cell dendrites running parallel 
to the slice surface, were selected for recordings. Slices were incubated at 22 ºC for 30 – 60 min until 
mounting in the recording chamber. Slices were mounted on a 3D-MEA with 60 pyramidal platinum electrodes 
(electrode basis: 40 μm × 40 μm, electrode height: 50 – 70 μm, electrode interspacing: 200 μm; Qwane 
Bioscience SA, Lausanne, Switzerland) after evaporation of a mounting solution of 0.14 mg/L nitrocellulose in 
an ethanol (99%) – methanol (1%) mixture. Experiments were conducted at room temperature (22°C). 

We modified the concentration of potassium [K
+
], magnesium [Mg

2+
] and calcium [Ca

2+
] ions present in the 

extracellular solution to induce transitions in the network activity. We defined 3 different conditions 
corresponding to 3 sets of concentrations. Baseline solution: [K

+
] 2.5 mM; [Mg

2+
] 1.0 mM; [Ca

2+
] 2.0 mM; 

solution S1: High Potassium Low Calcium: [K
+
] 6.25 mM; [Mg

2+
] 0.5 mM; [Ca

2+
] 1.0 mM; and solution S2: High 

Potassium High Calcium: [K
+
] 6.25 mM; [Mg

2+
] 0.5 mM; [Ca

2+
] 2.0 mM. Bath changing times were minimized 

by employing a pipette to remove the recording chamber solution prior to changing the subsequent solution. 
We perfused the baseline solution for 5 minutes then recorded the network activity in the surface chamber for 
90s; then, perfused solution S1 for 5 minutes recorded the network activity for 270s; and finally perfused 
solution S2 for 5 minutes recorded the network activity for 270s. Several experiments were undertaken to 
establish the transition time using this approach, and the 5 min interval between recording times was 
determined to be a minimal yet sufficient time to induce a transition to bursting (baseline->S2 or S1 ->S2).  

We recorded activity in a total of 12 slices (3 slices per hemisphere per animal). Experimental data analysis 
was performed in Matlab (The MathWorks, Inc., Natick, MA, USA) with custom scripts. Extra-cellular spikes 
were detected when recorded signal crossed a dynamic threshold T:  

𝑇 = �̇� − 5 ∗ 𝑠𝑡𝑑(𝑋) 

X is the recorded data chunk over the whole recording duration whereas �̇� is a local average of the recorded 
data (sliding window of 40 ms). We computed the inter burst interval (IBI) when slices were perfused with S2, 
and oscillations lasted for 30s or more. To avoid transitions in the network activity to affect this measure, the 
IBI was computed over period considered as regular (IBI below a threshold = avg(IBI) + 3 std(IBI)). Data are 
presented as the mean ± SEM. Paired Student's t tests were applied as statistical tests, and statistical 
significance was asserted for:

*
p<0.05; 

**
p<0.01; 

***
p<0.001.  

Observations of oscillations for various solutions as follows. Baseline solution: 1/12 slices, 2 bursts (~20 Hz); 
S1: 2/12 slices, sparse bursting; S2: 9/12 slices, regular bursting with an IBI of 1.59 +/- 0.09 s (mean +/- SD) 
or 0.98 +/- 0.05 Hz. 

Generating thalamic input  

The hind-limb somatosensory cortex receives input from the ventro-posterolateral (VPL) nucleus of the 
thalamus (Kandel et al., 2000). As data for the VPL enervation pattern is scarce, we used published data from 
the ventral posterior medial (VPM) thalamic nucleus to generate a vertical density profile for external thalamic 
synaptic input (Meyer et al., 2010). In a number of successive steps, first the vertical depth profile was 
digitized and binned with a bin size of 25 μm. For each depth bin, we then found all morphological segments 
contained inside that bin (i.e. the midpoint of the segment was located inside the bin). We then continuously 
drew random segments from the pool and placed a synapse at their centers, until 2.6 times the biological 
density (oversampling) at that depth bin was reached. Synapses were then pruned using the multi-synapse 
rule step (see (Reimann et al., 2015)). Drawing was with replacement, i.e. a segment could be drawn more 
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than once. The probability of drawing a given segment was proportional to its length, i.e. longer segments will 
be drawn more often. The 2.6 oversampling factor was chosen to match thalamocortical synapses per 
connection onto L4 excitatory cells. 

Dynamic synaptic parameters were drawn from distributions with means and standard deviations taken from 
the literature (Amitai, 2001; Gil et al., 1999).  

Each external synapse was assigned a virtual presynaptic VPM cell, whose spike will activate it. To accurately 
capture the correlation between synaptic inputs, the mapping to virtual presynaptic cells was spatial according 
to minicolumns, i.e. synapses that were close together were likely to be innervated by the same virtual 
presynaptic cell. In particular, there was one virtual cell per minicolumn and the probability that a synapse was 
mapped to it was dependent on the distance to the center of the minicolumn: 

, 

where Spre denotes the mapping of synapse S, Tpre its spatial location and Ci the location of the center of 
minicolumn i ;  defined the degree of spatial mapping and was set to 25 μm.  

Calculation of spike time correlations 

The mean spike-spike correlations (Figure 17, S13) were calculated as the histogram of intervals between all 
spike times of two different cells (bin size 1 ms). The average was computed over 10 ’000 randomly selected 
cell pairs. 

Detection of structural assemblies 

Structural assemblies (Figure S15) were detected based on the number of common neighbors between cell 
pairs, i.e. the number of neurons connected pre- or post-synaptically to both cells. We calculated the number 
for all N

2
 potential pairs, where N is the number of neurons in the circuit. The numbers were converted into a 

distance measure between 0 and 1, setting the distance between pairs to 1 minus the cumulative probability of 
the number of common neighbors. The cumulative probability was calculated once based on the number of 
common neighbors of all pairs involving one cell of the pair, then based on the other cell and finally the root 
mean square was used: 

, 

where N(i,j) refers to the number of common neighbors between i and j and Cx to the cumulative probability 
function based on the number of common neighbors of x with any cell. 

Assemblies were then detected by creating a hierarchical cluster tree based on the distance matrix using 
Matlab (The MathWorks, Inc., Natick, MA, USA). 

Calculation of voltage correlations 

Voltage correlation was computed by convolving the two voltage traces with their means subtracted. 

REPRODUCTION OF IN VIVO EXPERIMENTS 

Emergence 

We performed a series of simulations on monotonically increasing circuit sizes (50, 100, 200, 300, 400 and 
1000 minicolumns per microcircuit, [Ca

2+
]o = 1.25 mM, 100% depolarization), resulting in a collection of six 20 

second recordings of spontaneous in silico activity. Subsequently, each microcircuit’s minicolumns were 
sorted into spatially coherent clusters comprising an average of ten minicolumns using a k-means clustering 
algorithm. The result was that the six circuits were grouped into 5, 10, 20, 30, 40 and 100 clusters of 10 
minicolumns, respectively. Finally, we computed the population-level firing rate PSTH for each cluster in each 
circuit using a time bin of 5 ms (Figures 20E,F) or 20ms (Figures 20C,D). Spatial profile plots were obtained by 
interpolation of the estimated PSTH for a given time slice assigned to the locations of the minicolumns using 
the ‘cubic’ method of scipy.interpolate.griddata. Pairwise cross-correlation coefficients between the PSTHs 
were computed for each possible combination of two clusters. 
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Temporally sequential structure during spontaneous activity of L5 neurons 

To construct an in silico approximation of an in vivo UP state, the inner 20 minicolumns of the reconstructed 
microcircuit were stimulated by activating the afferent VPM fibers innervating these minicolumns. The stimulus 
was delivered 1500 ms after the commencement of each trial to ensure that the circuit dynamics had achieved 
a steady-state prior to stimulation. Neural responses were recorded for 500 ms following application of the 
stimulus. The data contained in Fig. 18A were obtained by repeating the stimulus protocol described above 25 
times, and concatenating the spike trains generated by each neuron during each trial. Thus, we obtained a 
dataset consisting of 25 activated (UP state-like) states, each lasting 500 ms (though the time course of neural 
activity throughout this period was typically much shorter, on the order of 250 ms), preceded by 1500 ms of 
spontaneous activity. 

In line with Luczak et al. (Luczak et al., 2007), we restricted our analysis to a randomly selected pool of 50 
neurons in L5, whose average firing rate was greater than 3 Hz throughout the course of each trial. 19,600 cell 
trios were constructed from this pool by considering all distinct combinations of 3 neurons. The collection of 
triplets associated with a given trio was obtained by sequentially iterating over each spike in the raster of the 
trio's first cell, and calculating the time differences between the occurrence of that spike and the occurrences 
of all spikes in the rasters of the remaining two neurons (see Fig. 18A). Next, for each trio, we computed a 
count matrix of triplet structures (see Fig. 18A1), comprising a normalized 2D histogram of the trio's triplets 
binned at 3.2 ms, which we subsequently smoothed with a 10 ms Gaussian kernel. From each trio's count 
matrix, we extracted the precisely repeating triplets, defined as those triplets occurring within +/- 10 ms of the 
mode. Furthermore, to produce Fig. 18A2, we calculated each neuron's average latency, which we defined as 
the center of mass of a given cell's activated state-triggered PETH (smoothed by a 10 ms Gaussian kernel) 
within a 250 ms time window. Finally, we compared the results of our analysis against two competing null 
hypotheses (see Fig. 18A3). In the first, an independent Poisson model, we randomly permuted the spike 
times of each cell's spike train (thereby preserving the overall firing rate of each cell), and calculated the 
average probability of observing a precisely repeating triplet as a function of time from the onset of an 
activated state. To this end, we constructed a normalized histogram (binned at 3.2 ms) of the temporal 
occurrence of precisely repeating triplets produced by all trios. In the second, a "common excitability" model of 
triplet activity, we randomly exchanged spikes between the rasters of all 50 neurons, thereby preserving both 
the average firing rate of each cell and the exact spike times contained in the pooled set of raster data, and 
computed the average probability of observing precisely repeating triplets as described above. 

Neuronal Responses to Single Whisker Deflection 

In each trial, the 60 VPM fibers closest to the center of the microcircuit were stimulated with synchronous 
action potentials. There were 200 trials with different simulation seeds. Only the stimulated column was 
simulated. 

Neurons for the scatter plot were randomly selected reflecting the statistics used in the in vivo study by Reyes-
Puerta et al. (see Fig 3B in (Reyes-Puerta et al., 2015)). The overall neuron counts that were chosen in silico 
were: 2630 excitatory neurons (2080 in L5, 360 in L4, 100 in L3, and 90 in L2), 550 inhibitory neurons (370 in 
L5, 50 in L4, 20 in L3, 10 in L2). NR cells were defined as those that either did not pass the significance test (p 
> 5) or did not fire at all. 

VISUALIZATION 

Mesh Generation 

In order to generate the meshes used in the visualization, we used the Visualization Tool Kit, an open-source 
software package for 3D computer graphics. The mesh generator built upon our previous technique (Lasserre, 
2012). Morphology files were read in and a kernel of the appropriate radius was extruded along the 
morphology. At branch points, new holes were opened in the mesh and joined with the child processes. 
Processes were connected to a spherical soma kernel and smoothing performed. The final product was a 
watertight, manifold mesh suitable for simulation with subcellular simulators such as MCell as well as 
visualization using RTNeuron. The mesh generation step could export in a variety of formats, including ply, 
obj, vtk and internal formats that include information about the identity of the subcellular components and their 
mapping to the neuronal morphologies. 

RT Neuron 

Some of the high resolution images and the simulation playback movies were rendered with RTNeuron 
(Hernando et al., 2008, 2012). RTNeuron is a C++ rendering engine with a Python wrapping based on 
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OpenSceneGraph and Equalizer (for parallel rendering) (Eilemann et al., 2009), usable as either a standalone 
application or a Python module. It was developed in house as the result of a long-term collaboration between 
the BBP and the Cajal Blue Brain project. Apart from being a tool for generating presentation media, 
RTNeuron also allowed the interactive visualization of the structural information and the simulation results of 
large cortical circuits (~10K cells). These capabilities were used for debugging the model building process as 
well as the simulation. The interactive capabilities were used to design the color maps used to map simulation 
variables onto the mesh model of each cell membrane. RTNeuron implemented a fast algorithm for rendering 
transparent geometry that was used to generate the images showing simulation data. 
RTNeuron read the file formats produced by other applications from the tool chain using an object-oriented 
library developed for that purpose, the BBP-SDK. Apart from interactive visualization, it can write images in all 
file formats supported by OpenSceneGraph for monoscopic and stereoscopic visualization. 

Maya 

For some visualizations, we used Maya® 3D animation software (Autodesk, San Rafael, California, USA). As 
Maya is limited in the number of meshes it can handle, it was mainly used for creating high quality static 
images of small neural circuits. We built an automated workflow on top of Maya and the mesh generation 
software to visualize individual neurons color-coded according to their morphology types or layers that could 
also show the distribution of the excitatory and inhibitory synapses color-coded according to the morphology 
type of their pre-synaptic partners.  

The neuron meshes were exported in Wavefront object format from the mesh generation stage and read on 
the fly into Maya. We mapped a shader onto the mesh in order to give the appearance of texturing seen in 
electron micrograph images. Color, glow, transparency were also altered according to the visualization 
scenario. In images displaying synapses and spines, the positions were assigned according to an input list, 
generated from the circuit. In images involving multiple neurons, the neuron meshes were rotated and 
translated according to their position in the circuit. 

Rendering was performed on a cluster of 12 Intel Xeon X5690 cores, running at 3.47 GHz. Rendering time per 
frame on one node ranged from 10 seconds. Frames were integrated and post-processed using Adobe 
Aftereffects (Adobe Systems, San Jose, California, USA). 

Volume Rendering 

Some microcircuit images were generated using volume rendering. We chose this method because volumetric 
effects such as slicing, segmenting, volumetric noise and transparency were needed to simulate the sample 
images taken from laboratory microscopes. The volume rendering equations were evaluated using volume ray 
casting (Levoy, 1990), which calculates the absorption incurred by rays cast from the eye of the observer. 

There were two stages in volume rendering: rasterization and rendering. In the first stage, meshes were 
rasterized into regular grids and then placed in the circuit volume. This resulted in a large regular grid data 
containing the density values of the rasterized meshes in each cell. The tools employed in this stage included 
C++ libraries and python scripts. One could set the branch order for visualizing different number of branching 
depths of the cell processes, the inclusion of soma, dendrites, axons, as well as shell rendering for just 
visualizing the iso-surface of the neuron mesh. 

In the rendering stage, the engines employed were the Python-based Mayavi (Ramachandran and Varoquaux, 
2011) library for easy python scripting and the Voreen tool (Meyer-Spradow et al., 2009) for easy GUI-based 
modifications to the rendering. The coloring and transparency of the images are evaluated through modifying 
the transfer functions of the rendering equation in volume ray casting.  

The stained sample images taken from laboratory microscopes exhibited staining noise. This noise was 
mimicked computationally using the Perlin noise generator (Perlin)  integrated into the Voreen tool with the 
Libnoise library (available from Sourceforge). The cells in these images also had noise on the soma surface, 
which was simulated using uniformly distributed noise in the volume multiplied by the intensities in the non-
empty grid cells.  

In silico Fluorescence Microscopy 

A novel method was developed to visualize the fluorescent tissue models (Abdellah et al., 2015) using the 
spectral characteristics of fluorescent dyes including their emission and excitation spectra, quantum yield and 
their concentration in the tissue. This method uses physically-based volume rendering to simulate the light 
interaction with the fluorescent-labeled brain structures relying on the optical properties of the tissue and the 
fluorescent dyes. The generated renderings can accurately reflect the optical sections created from 
fluorescence microscopy. 
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Connectivity diagrams 

The ribbon plot in Figure 7C was generated using Circos software (Krzywinski et al., 2009). 

SOFTWARE INTEGRATION AND COMPUTING INFRASTRUCTURE 

Development process and continuous integration 

Data integration and post processing as well as building, simulation, analysis and visualization of neuronal 
network models relied on developing and integrating more than 30 software applications in complex 
workflows. The efficient development of such a large set of applications, by dozens of contributors, required 
putting together a comprehensive development environment. All major software tools are registered with a 
common versioning system (Git) and all modifications are traced. For the major software applications, online 
code review via Gerrit is implemented as well as continuous building, testing, packaging and deployment using 
Jenkins. The software is released on various machines and architectures and GNU modules are used to 
expose the installed software to the end user.  

Workflows and Provenance 

A significant aspect of reproducibility is the tracking of the input and output artifacts in each step in the circuit 
building, simulation, and analysis workflow. To this end, we constructed a collaboration portal, which provides 
a) functionality to register artifacts and process execution manually or automatically upon workflow execution 
b) a forum to view and discuss the results of simulations c) functionality to do comparative analysis of different 
simulations. Workflows are collections of standardized conversion, analysis and validation tasks using a 
custom Python-based Task component framework. The Task component framework allows the wrapping of 
any type of code into a source-controlled component, which automatically tracks provenance of artifacts during 
execution. This is accomplished by leveraging the OPM provenance model as implemented by the Karma 
Provenance Server (http://d2i.indiana.edu/provenance_karma).  

Storage for Experimental Data 

Experimental data is stored on a scalable unified storage resource delivered by a NetApp FAS3240 cluster. A 
unified storage architecture allows the consolidation of diverse workloads and helps maximizing the efficiency. 
It also allows us to support multiple network configurations and protocols. Experimental data is internally 
accessible via native NFS and CIFS protocols, and federated externally via iRODS system. The Integrated 
Rule-Oriented Data System (iRODS) is an open-source data management software in use at research 
organizations and government agencies worldwide. It functions independently of storage resources and 
abstracts data control away from storage devices and device location.  

Analysis and Visualization Cluster  

Computation for processing of experimental data, models or for interactive visualization sessions is provided 
by a fully model-managed cluster (Intel 188-cores, 39 x nVidia GTX580) with SLURM reservation system and 
scheduler. The model-based approach helps to manage the cluster throughout its lifecycle, from provisioning 
and configuration to orchestration and reporting, by enforcing a standard operating environment and thus 
eliminating configuration drifts.  

Supercomputing 

For more compute intensive workflow steps, such as cell building, circuit building, network simulation the study 
relied on supercomputers. Amongst the systems used were the CADMOS 4-rack IBM Blue Gene/P (until 
February 2013), CADMOS 1-rack IBM Blue Gene/Q (March 2013 until March 2014). The CADMOS 
infrastructure was interconnected with the Analysis and Visualization Cluster by using a common shared 
GPFS file system where data exchange between the two machines is supported by 2x10 Gib/s Ethernet links.  

Building on the CADMOS-EPFL hardware integration experience, a tighter design resulted in the construction 
of Blue Brain IV, 100

th
 most powerful supercomputing system (Top500, June 2015), which is operated by the 

Swiss National Supercomputing Center (CSCS) for the Blue Brain Project. It includes a 4-rack IBM Blue 
Gene/Q, IBM Blue Gene Active Storage, and a 40-node Intel cluster fully interconnected using Infiniband 
technology and a GPFS file system with 4.2 Petabyte raw storage (Schürmann et al., 2014).  

  



 22 

REFERENCES 

Abdellah, M., Bilgili, A., Eilemann, S., Markram, H., and Schürmann, F. (2015). A Computational Model of 
Light-Sheet Fluorescence Microscopy using Physically-based Rendering. In Proc. Eurographics - Posters, 
(Eurographics Association),. 

Adams, P.R., Brown, D.A., and Constanti, A. (1982). M-Currents and Other Potassium Currents in Bullfrog 
Sympathetic Neurones. J. Physiol. 330, 537–572. 

Van Aerde, K.I., and Feldmeyer, D. (2015). Morphological and Physiological Characterization of Pyramidal 
Neuron Subtypes in Rat Medial Prefrontal Cortex. Cereb. Cortex 25, 788–805. 

Amitai, Y. (2001). Thalamocortical synaptic connections: efficacy, modulation, inhibition and plasticity. Rev. 
Neurosci. 12, 159–173. 

Angulo, M.C., Rossier, J., and Audinat, E. (1999). Postsynaptic Glutamate Receptors and Integrative 
Properties of Fast-Spiking Interneurons in the Rat Neocortex. J. Neurophysiol. 82, 1295–1302. 

Anwar, H., Riachi, I., Hill, S., Schurmann, F., and Markram, H. (2009). An approach to capturing neuron 
morphological diversity. In Computational Modeling Methods for Neuroscientists, (The MIT Press), pp. 211–
231. 

Ascoli, G.A., and Krichmar, J.L. (2000). L-neuron: A modeling tool for the efficient generation and 
parsimonious description of dendritic morphology. Neurocomputing 32–33, 1003–1011. 

Ascoli, G.A., Krichmar, J.L., Scorcioni, R., Nasuto, S.J., Senft, S.L., and Krichmar, G.L. (2001). Computer 
generation and quantitative morphometric analysis of virtual neurons. Anat. Embryol. (Berl.) 204, 283–301. 

Avery, R.B., and Johnston, D. (1996). Multiple Channel Types Contribute to the Low-Voltage-Activated 
Calcium Current in Hippocampal CA3 Pyramidal Neurons. J. Neurosci. 16, 5567–5582. 

Bannister, A.P., and Thomson, A.M. (2007). Dynamic properties of excitatory synaptic connections involving 
layer 4 pyramidal cells in adult rat and cat neocortex. Cereb. Cortex 17, 2190–2203. 

Beierlein, M., Gibson, J.R., and Connors, B.W. (2003). Two Dynamically Distinct Inhibitory Networks in Layer 
4 of the Neocortex. J. Neurophysiol. 90, 2987–3000. 

Le Bé, J.-V., Silberberg, G., Wang, Y., and Markram, H. (2007). Morphological, Electrophysiological, and 
Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex. Cereb. Cortex 17, 
2204–2213. 

Blatow, M., Rozov, A., Katona, I., Hormuzdi, S.G., Meyer, A.H., Whittington, M.A., Caputi, A., and Monyer, H. 
(2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in 
neocortex. Neuron 38, 805–817. 

Bleuler, S., Laumanns, M., Thiele, L., and Zitzler, E. (2003). PISA — A Platform and Programming Language 
Independent Interface for Search Algorithms. In Evolutionary Multi-Criterion Optimization, C. Fonseca, P. 
Fleming, E. Zitzler, L. Thiele, and K. Deb, eds. (Springer Berlin / Heidelberg), pp. 1–1. 

Bonthius, D.J., McKim, R., Koele, L., Harb, H., Karacay, B., Mahoney, J., and Pantazis, N.J. (2004). Use of 
frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical 
disector and optical fractionator. Brain Res. Protoc. 14, 45–57. 

Brémaud, A., West, D.C., and Thomson, A.M. (2007). Binomial Parameters Differ Across Neocortical Layers 
and with Different Classes of Connections in Adult Rat and Cat Neocortex. 14134–14139. 

Brionne, T.C., Tesseur, I., Masliah, E., and Wyss-Coray, T. (2003). Loss of TGF-beta 1 leads to increased 
neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–1145. 

Burke, R.E., Marks, W.B., and Ulfhake, B. (1992). A parsimonious description of motoneuron dendritic 
morphology using computer simulation. J. Neurosci. 12, 2403–2416. 



 23 

Carnevale, N.T., and Hines, M.L. (2006). The NEURON Book (New York, NY, USA: Cambridge University 
Press). 

Del Castillo, J., and Katz, B. (1954). Quantal components of the end-plate potential. J. Physiol. 124, 560–573. 

Colbert, C.M., and Pan, E. (2002). Ion channel properties underlying axonal action potential initiation in 
pyramidal neurons. Nat. Neurosci. 5, 533–538. 

Diba, K., Koch, C., and Segev, I. (2006). Spike propagation in dendrites with stochastic ion channels. J. 
Comput. Neurosci. 20, 77–84. 

Donohue, D.E., and Ascoli, G.A. (2008). A Comparative Computer Simulation of Dendritic Morphology. PLoS 
Comput Biol 4, e1000089. 

Druckmann, S., Banitt, Y., Gidon, A., Schürmann, F., Markram, H., and Segev, I. (2007). A Novel Multiple 
Objective Optimization Framework for Constraining Conductance-Based Neuron Models by Experimental 
Data. Front. Neurosci. 1, 7–18. 

Eilemann, S., Makhinya, M., and Pajarola (2009). Equalizer: A scalable parallel rendering framework. IEEE 
Trans. Vis. Comput. Graph. 15, 436–452. 

Feldmeyer, D. (2006). Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel 
cortex of juvenile rats. J. Physiol. 575, 583–602. 

Feldmeyer, D., Egger, V., Lübke, J., and Sakmann, B. (1999). Reliable synaptic connections between pairs of 
excitatory layer 4 neurones within a single “barrel” of developing rat somatosensory cortex. J. Physiol. 521, 
169–190. 

Flint, A.C., Maisch, U.S., Weishaupt, J.H., Kriegstein, A.R., and Monyer, H. (1997). NR2A subunit expression 
shortens NMDA receptor synaptic currents in developing neocortex. J. Neurosci. 17, 2469–2476. 

Frick, A., Feldmeyer, D., and Sakmann, B. (2007). Postnatal development of synaptic transmission in local 
networks of L5A pyramidal neurons in rat somatosensory cortex. J. Physiol. 585, 103–116. 

Fuhrmann, G., Segev, I., Markram, H., and Tsodyks, M. (2002). Coding of temporal information by activity-
dependent synapses. J Neurophysiol 87, 140–148. 

Galarreta, M., and Hestrin, S. (1998). Frequency-dependent synaptic depression and the balance of excitation 
and inhibition in the neocortex. Nat. Neurosci. 1, 587–594. 

Gil, Z., Connors, B.W., and Amitai, Y. (1999). Efficacy of Thalamocortical and Intracortical Synaptic 
Connections: Quanta, Innervation, and Reliability. Neuron 23, 385–397. 

Gropp, W., Lusk, E., and Skjellum, A. (1999). Using MPI, 2nd Edition: Portable Parallel Programming with the 
Message Passing Interface (MIT Press). 

Gupta, A., Wang, Y., and Markram, H. (2000). Organizing Principles for a Diversity of GABAergic Interneurons 
and Synapses in the Neocortex. Science 287, 273–278. 

Häusser, M., and Roth, A. (1997). Estimating the time course of the excitatory synaptic conductance in 
neocortical pyramidal cells using a novel voltage jump method. J. Neurosci. 17, 7606–7625. 

Hay, E., Hill, S., Schürmann, F., Markram, H., and Segev, I. (2011). Models of Neocortical Layer 5b Pyramidal 
Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties. PLoS Comput Biol 7, 
e1002107. 
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Additional Supplementary Tables 

Table S4. Complete List of Features Used in the Classification of Morphologies, Related to Figure 2.  

Bifurcation Mean Branch Length (all 
neurites) 

Bifurcation Mean Branch Length (apical 
dendrites) 

First Moment in z axis (axon) 

Mean Density (all neurites) Mean Trunk Diameter (apical 
dendrites) 

Second Moment in x axis (axon) 

Horizontal-Vertical ratio (all neurites) First Moment in x axis (apical 
dendrites) 

Second Moment in y axis (axon) 

Mean Horizontal Range (all neurites) First Moment in y axis (apical 
dendrites) 

Second Moment in z axis (axon) 

Maximum  Branch Order (all neurites) First Moment in z axis (apical 
dendrites) 

Number of  Neurites (axon) 

Maximum  Degree (all neurites) Second Moment in x axis (apical 
dendrites) 

Number of Fragments (axon) 

Maximum  Path Length (all neurites)  Second Moment in y axis (apical 
dendrites) 

Mean Termination Branch Length 
(axon) 

Maximum  Radial Distance (all 
neurites) 

Second Moment in z axis (apical 
dendrites) 

Min Termination Path Distance (axon) 

Mean Trunk Diameter (all neurites) Number of  Neurites (apical dendrites) Mean Tortuosity (axon) 

First Moment in x axis (all neurites) Number of Fragments (apical 
dendrites) 

Number of Branches (axon) 

First Moment in y axis (all neurites) Distance of Apical Point To Soma 
(apical dendrites) 

Total Length (axon) 

First Moment in z axis (all neurites) Mean Termination Branch Length 
(apical dendrites) 

Total Surface Area (axon) 

Second Moment in x axis (all neurites) Min Termination Path Distance (apical 
dendrites) 

Total Volume (axon) 

Second Moment in y axis (all neurites) Mean Tortuosity (apical dendrites) Bifurcation Mean Branch Length (basal 
dendrites) 

Second Moment in z axis (all neurites) Number of Branches (apical dendrites) Mean Density (basal dendrites) 

Number of  Neurites (all neurites) Total Length (apical dendrites) Horizontal-Vertical ratio (basal 
dendrites) 

Number of Fragments (all neurites) Total Surface Area (apical dendrites) Mean Horizontal Range (basal 
dendrites) 

Mean Termination Branch Length (all 
neurites) 

Horizontal length of Apical Tuft (apical 
dendrites) 

Maximum  Branch Order (basal 
dendrites) 

Min Termination Path Distance (all 
neurites) 

Vertical length of Apical Tuft (apical 
dendrites) 

Maximum  Degree (basal dendrites) 

Mean Tortuosity (all neurites) Depth of Apical Tuft (apical dendrites) Maximum  Path Length (basal 
dendrites)  

Number of Branches (all neurites) Total Volume (apical dendrites) Maximum  Radial Distance (basal 
dendrites) 

Total Length (all neurites) Mean Vertical Range (apical dendrites)  Mean Trunk Diameter (basal dendrites) 

Total Surface Area (all neurites) Bifurcation Mean Branch Length (axon) First Moment in x axis (basal dendrites) 

Total Volume (all neurites) Mean Density (axon) First Moment in y axis (basal dendrites) 

Mean Vertical Range (all neurites)  Horizontal-Vertical ratio (axon) First Moment in z axis (basal dendrites) 

Bifurcation Mean Branch Length (apical 
dendrites) 

Mean Horizontal Range (axon) Second Moment in x axis (basal 
dendrites) 

Mean Density (apical dendrites) Maximum  Branch Order (axon) Second Moment in y axis (basal 
dendrites) 

Horizontal-Vertical ratio (apical 
dendrites) 

Maximum  Degree (axon) Second Moment in z axis (basal 
dendrites) 

Mean Horizontal Range (apical 
dendrites) 

Maximum  Path Length (axon)  Number of  Neurites (basal dendrites) 

Maximum  Branch Order (apical 
dendrites) 

Maximum  Radial Distance (axon) Number of Fragments (basal dendrites) 

Maximum  Degree (apical dendrites) Mean Trunk Diameter (axon) Mean Termination Branch Length 
(basal dendrites) 

Maximum  Path Length (apical 
dendrites)  

First Moment in x axis (axon) Min Termination Path Distance (basal 
dendrites) 

Maximum  Radial Distance (apical 
dendrites) 

First Moment in y axis (axon) Mean Tortuosity (basal dendrites) 

Number of Branches (basal dendrites) Total Surface Area (basal dendrites) Mean Vertical Range (basal dendrites)  

Total Length (basal dendrites) Total Volume (basal dendrites) Soma Cross Section Area 
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Table S5. Rules for m-type Specific Pooling for e-types across Layers, Related to Figures 2 and 4. 
The pooling rules applied, in an m-type specific manner, are as follows: (A) L4 + L5 + L6, (B) L5 + L6, (C) L1 
lumped (NGC + NGC-DA + NGA-SA), (D) L23 + L4 + L5 + L6. See Supplementary Experimental Procedures: 
Composition of e-types. 
 

 
BP BTC ChC DBC LBC MC NBC NGC SBC 

L2/3 D  D     C D 

L4 D  D A    C D 

L5 D B D A   B C D 

L6 D B D A   B C D 
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Table S6. Prescribed Parameters for Synaptic Transmission, Related to Figures 9 and 10.  

Excitatory-excitatory connections 

Connection 
type 

Synapse 
type 

Kinetic parameters (mean  ± SD) Dynamic parameters (mean  ± SD) 

gsyn  (ns) rise (ms) decay (ms) U D (ms) F (ms) 

L23PC-L23PC 
Excitatory, 
depressing 

(E2) 

0.68± 
0.46 

0.2 ± 0.1 1.7 ± 0.14 
0.46 ± 
0.26 

671 ± 17 17 ± 5 

L4Exc-L4Exc 
Excitatory, 
depressing 

(E2) 

0.68 ± 
0.45 

0.2 ± 0.1 1.7 ± 0.14 
0.86 ± 
0.09 

671 ± 17 17 ± 5 

L4SS-L23PC 
Excitatory, 
depressing 

(E2) 

0.19 ± 
0.12 

0.2 ± 0.1 1.7 ± 0.14 
0.79 ± 
0.04 

671 ± 17 17 ± 5 

L5TTPC -
L5TTPC 

Excitatory, 
depressing 

(E2) 

1.5 ± 
1.05 

0.2 ± 0.1 1.7 ± 0.14 
0.5 ± 
0.02 

671 ± 17 17 ± 5 

L5STPC  - 
L5STPC 

Excitatory, 
depressing 

(E2) 

0.8 ± 
0.53 

0.2 ± 0.1 1.7 ± 0.14 
0.39 ± 
0.03 

671 ± 17 17 ± 5 

All other           
E - E 

connections 

Excitatory, 
depressing 

(E2) 

0.72 ± 
0.5 

0.2 ± 0.1 1.7 ± 0.14 
0.5 ± 
0.02 

671 ± 17 17 ± 5 

 

Excitatory-inhibitory connections 

Connection 
type 

Synapse 
type 

Kinetic parameters (mean  ± SD) Dynamic parameters (mean  ± SD) 

gsyn (ns) 
rise 
(ms) 

decay (ms) U D (ms) F (ms) 

L5TTPC-
L5MC 

Excitatory, 
facilitating 

(E1) 

0.11 ± 
0.08 

0.2 ± 
0.1 

1.7 ± 0.14 
0.09 ± 
0.12 

138 ± 
211 

670 ± 830 

L5PC  - L5BC/ 
L5ChC 

Excitatory, 
depressing 

(E2) 
0.72 ± 0.5 

0.2 ± 
0.1 

1.7 ± 0.14 
0.72 ± 
0.12 

227 ± 
70 

13 ± 24 

All other E - I 
connections 

Excitatory, 
depressing 

(E2) 

0.43 ± 
0.28 

0.2 ± 
0.1 

1.7 ± 0.14 
0.5 ± 
0.02 

671 ± 
17 

17 ± 5 
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Inhibitory-excitatory connections 

Connection 
type 

Synapse 
type 

Kinetic parameters (mean  ± SD) Dynamic parameters (mean  ± SD) 

gsyn (ns) 
τrise 

(ms) 
decay (ms) U D (ms) F (ms) 

L5MC-L5TTPC 
Inhibitory, 

depressing 
(I2) 

0.75 ± 0.32 0.2 ± 0.1 8.3 ± 2.2 
0.3 ± 
0.08 

1250 ± 
520 

2 ± 4 

L23(NBC, 
LBC)/L23ChC  - 

L23PC 

Inhibitory, 
depressing 

(I2) 
0.91 ± 0.61 0.2 ± 0.1 8.3 ± 2.2 

0.14 ± 
0.05 

875 ± 
285 

22 ± 5 

All other I - E 
connections 

Inhibitory, 
depressing 

(I2) 
0.83 ± 0.2 0.2 ± 0.1 8.3 ± 2.2 

0.25 ± 
0.13 

706 ± 
405 

21 ± 9 

 
Inhibitory-inhibitory connections 

Connection 
type 

Synapse 
type 

Kinetic parameters (mean  ± SD) Dynamic parameters (mean  ± SD) 

gsyn (ns) 
τrise 

(ms) 

τdecay 

(ms) 
U D (ms) F (ms) 

All I - I 
connections 

Inhibitory, 
depressing 

(I2) 
0.83 ± 0.55 0.2 ± 0.1 8.3 ± 2.2 

0.25 ± 
0.13 

706 ± 
405 

21 ± 9 
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