CrossMark

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Solar Energy 124 (2016) 57-67

SOLAR
ENERGY

www.elsevier.com/locate/solener

Model-free computation of ultra-short-term prediction intervals
of solar irradiance

D. Torregrossa ™, J.-Y. Le Boudec, M. Paolone

Swiss Federal Institute of Technology in Lausanne, Switzerland

Received 2 September 2015; received in revised form 16 November 2015; accepted 17 November 2015

Communicated by: Associate Editor Mario A Medina

Abstract

We propose an ultra-short-term dynamic interval predictor (DIP) of solar irradiance. Our DIP relies on experimentally observed cor-
relations between the derivative of the solar irradiance and the forecast error in the next time-step. The main originalities of this DIP are
(i) its independence from the method used for the point forecast of solar irradiance, (ii) its independence from the error distribution of the
point-forecast method. We compare the DIP with the most common prediction interval methods. By using significant data set covering
several months of experimental observations, we have observed higher accuracy and lower width of the prediction intervals of the pro-

posed DIP.
© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Today’s trend of vast connections of distributed genera-
tion in low- and medium-voltage power networks accounts
for quality-of-supply of electrical distribution grids in a
way that, in several countries, operational constraints are
already attained. Additionally, it is necessary that their
active contribution be quantified in real-time and, eventu-
ally, controlled. In this respect, one of the main concerns
of distribution network operators refers to the definition
of optimal control-schemes in which the high volatility of
renewable-energy resources (RERs) can be accounted for.
The choice of the forecast time window is extremely impor-
tant and it is highly correlated to the design of real-time
control of RERs in order to provide grid primary-
ancillary services (e.g., Song et al., 2013; Vrakopoulou
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et al., 2013; Heniche et al., 2013). Several control strategies
have been proposed (database model in Song et al. (2013),
stochastic optimization in Vrakopoulou et al. (2013), mul-
tiagents in Heniche et al. (2013)) to define dedicated real-
time energy-management systems and, in some cases, the
concept of real-time control is associated with time dynam-
ics below 1 s (Heniche et al., 2013).

More specifically, the authors of Bernstein et al. (2015),
Reyes Chamorro et al. (2015) recently proposed a solution
to the challenging problem of controlling a distribution
network in real-time by using explicit power setpoints. In
this framework the resources can advertise their current
internal needs and power availability by simple messages
in order to enable a grid controller to maintain the state
of the system within secure limits. The framework, called
Commelec, is designed to be robust (i.e., it avoids the prob-
lems inherently posed by software controllers) and scalable
(i.e., it easily adapts to grids of any size and complexity). It
is based on software agents, that are responsible for
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resources/subsystems (Resource Agents) or entire grids
(Grid Agents) and they communicate using a simple yet
powerful protocol with a refresh rate of around 100 ms.
A detailed description of the proposed framework is given
in Section 2.

In this context, the real-time control can be considerably
improved if the Grid Agents are able to bound the uncer-
tainty of power injections, due to stochastic sources, at a
horizon of one or a few control cycles (fraction of a sec-
ond). For systems with photovoltaic (PV) panels, it is
worth observing that the solar irradiance has an extreme
volatility in time scales below a second.” It is thus interest-
ing to find ultra-short-term forecast bounds for the solar
irradiance of PV panels, and such is our goal in this paper.

The available literature on prediction intervals for PV
energy-conversion systems is characterized by the following
four main limitations (Singh et al., 2013; Kardakos et al.,
2013; Trapero et al., 2014; Lorenz et al., 2009; Marquez
and Coimbra, 2011; Bacher et al.,, 2009; Segura and
Vercher, 2001): (i) absence of methods proposing prediction
intervals targeting the time scale of seconds or sub-seconds;
(i1) absence of methods proposing prediction intervals able
to track the highly-dynamic volatility of the solar irradiance;
(iii) absence of methods able to account for distributions of
the point-forecast errors other than Gaussian; (iv) strong
dependency of the prediction interval with the specific
method used for the point forecast computation. To the best
of our knowledge, the only works that are independent of the
point-forecast method are (Wan et al., 2014; Pinson and
Tastu, 2014). Machine-learning methods capable of quanti-
fying uncertainty bounds of point forecasts are presented
in Wan et al. (2014), Pinson and Tastu (2014).

In this paper we propose a model-free prediction inter-
val of the solar irradiance. The method, henceforth called
the dynamic interval predictor (DIP), is able to estimate
the magnitude of the prediction intervals by assessing the
correlations between the measurements of the derivative
of solar irradiance and the point-forecast error in the next
forecasting time-step.

With respect to the above-listed drawbacks of tradi-
tional prediction intervals, the DIP exhibits the following
characteristics: (i) the prediction intervals are computed
within a time scale ranging from 250 ms up to 750 ms;
(i) it does not depend directly on the method used for
the point forecast; (iii) it is able to track high dynamics
of the solar irradiance and (iv) it is capable of self-
improving its performances during its use because it is able
to correct the magnitude of the prediction intervals for
future computations.

The paper is structured as follows. The Commelec
framework, for which the proposed DPI has been
deployed, is described in Section 2. A brief summary of
the different existing methods for prediction intervals is

' An experimental quantification of the sub-second PV volatility is given
in Section 3.

reported in Section 3. In order to highlight the need of
ultra-short-term forecast, experimental evidences of sub-
second solar dynamics are illustrated in Section 4. In the
same section, by using experimental data, the existing cor-
relations between the derivative of solar irradiance and the
point-forecast error in the next forecasting time-step have
been analyzed. The proposed DIP is described in detail in
Section 5. The robustness of the DIP, and its comparison
with the other commonly used prediction intervals meth-
ods, are illustrated in Section 6. In particular, since the
available literature on point forecast computation contains
a considerable amount of works based on heuristic tech-
nique (Mellit and Pavan, 2010; Mellit and Kalogirou,
2008; Sfetsos and Coonick, 2000; Behrang et al., 2010),
Section 6 also assesses the performances of the proposed
DPI coupled with an ANFIS (adaptive neuro-fuzzy infer-
ence system) point forecast model. The main findings of
the work and its applicability are summarized in Section 7.

2. The Commelec control framework

In the Commelec framework, a software agent is associ-
ated with a resource (henceforth called “‘Resource Agent”,
RA), or an entire system, including a grid and/or a number
of devices (henceforth called “Grid Agent”, GA). Thereis a
well-defined relationship between the agents, which follows
from the tree structure of the distribution networks. An
example of agents relationship is shown in Fig. 1 where
GA is in charge of controlling RAs 4, ..., Ay, who are
responsible for subsystems S, ..., Sy.

Each Resource Agent advertises its internal state to its
Grid Agent using the following three elements. (1) The
PQ profile A is the region in the (P,Q) plane (for active
and reactive power) that the subsystem under the control
of this Resource Agent can deploy. (2) The virtual cost C
is a function, that defined for every (P, Q) in the PQ profile,
returns a number C(P,Q) interpreted as the willingness of
this subsystem to apply a requested power setpoint (P, Q).
It is virtual in the sense that it is not directly related to a
monetary value. (3) The belief function BF returns the
set of all possible (actual) setpoints so that this subsytem
might in reality implement, when instructed to imple-
ment a target setpoint. This accounts for the uncertainty
in a subsystem operation. In particular, highly controllable
subsystems are expected to have ideal beliefs, namely
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Fig. 1. A general scheme for showing Commelec agents interactions.
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BF(P,Q)={(P, Q)}. For subsystems such as PV/wind
farms, or loads, the belief function returns larger sets, to
account for their volatility. It is important to observe that
these three elements (i) are the only information needed for
real-time control in the Commelec framework and (ii) hide
the internal state of the resource.

3. State of the art: prediction intervals

The main approaches, presented in the literature, to the
problem of the PV short-term forecasting are summarized
by Singh et al. (2013), Kardakos et al. (2013), Trapero
et al. (2014), Lorenz et al. (2009), Marquez and Coimbra
(2011), Bacher et al. (2009). The authors of Singh et al.
(2013) propose an adaptive-neuro-fuzzy inference (ANFIS)
to predict the PV power output in the time horizon of one-
hour ahead. The input quantities of the forecasting tool are
solar irradiance, ambient temperature and wind velocity.
The committed error for a one-hour ahead prediction is
in the order of 9.6%. In Kardakos et al. (2013) the authors
propose also an auto regressive integral moving average
(ARIMA) model to predict a day-ahead PV power produc-
tion. The analyzed data cover one year and the average of
the relative root mean square error (RMSE) of the pro-
posed forecast method is equal to 11%. In Trapero et al.
(2014), the authors used an auto regressive moving average
(ARMA) model to predict one hour-ahead the solar irradi-
ance by taking into account in their analysis clear and
cloudy days. In Trapero et al. (2014) the authors use a sim-
ple exponential-smoothing algorithm to forecast the one-
hour ahead solar irradiance.

Concerning the prediction intervals, a common hypoth-
esis adopted in the literature (e.g., Lorenz et al., 2009;
Marquez and Coimbra, 2011) is to assume a normal distri-
bution of the forecast errors. The magnitude of the predic-
tion intervals are usually estimated as multiples of the
standard deviation of the forecast solar-irradiance associ-
ated with a given confidence level. In general, the predic-
tion intervals are computed only for one-hour ahead
predictions and, as illustrated in the works mentioned
above, the width of those intervals is large. It ranges
between 14% and 80% of the point-forecast value.

Bacher et al. (2009) propose a prediction-intervals com-
putation by using quantile regression. Their proposed
method is suitable for online forecasting. However, the
magnitude of the prediction intervals could be quite impor-
tant (i.e., in the range of 80% of the point forecast).

We summarize below the most common methods pre-
sented in the literature for the prediction of intervals of
random variables; these methods could be adopted to the
case of PV production. The two quantities that are gener-
ally forecasted are the PV AC output power and the solar
irradiance. In our work we focus only on the prediction
intervals for solar irradiance.

The purpose of any prediction interval is to satisfy, at
any forward step #;, the following equation with a certain
confidence 7.

Dk k k Dk k
PIRR - WB,LOW < PIRR < PIRR + WB,UPP (1)

with

e Pk predicted solar irradiance at time-step k.

e Piyr: measured solar irradiance at time-step k.

o W} ow: lower-bound of the prediction interval at time-
step k.

e W} upp: upper-bound of the prediction interval at time-
step k.

There are several methods for forecasting the behavior
of stochastic physical phenomena. A thorough study of
the literature on this topic shows that there are two main
types of models: (i) ARMA/ARIMA models and (ii) adap-
tive neural-fuzzy inference system. The first category can be
used in presence of a stochastic process with a clear auto-
correlation structure; it has a clear method for computing
the prediction intervals. The additive Holt-Winters method
belongs to this category; it is often used as it has very few
parameters and is robust. The persistent predictor, which
uses as prediction for the next time-step the most recent
measured value, also belongs to this category and is often
used as a simple benchmark. The second category can be
adapted to different domains because they learn, in a cer-
tain way, the behavior of the variable to be predicted.
However, this category does not give any indications about
the prediction-interval computation.

For the ARMA/ARIMA models with Gaussian innova-
tion, the upper and lower bound of the predicted intervals
can be evaluated as follows (Le Boudec, 2010):

Witow = W'oer = 17/0k (2)

where y is a coefficient depending on the required confi-
dence level for the prediction interval and oy, is the variance
of the prediction error, computed from the model and the
residuals.

To the best of our knowledge, all the works presented in
the domain of PV forecasting assume a Gaussian innova-
tion. In this respect, in this paper we also consider non-
Gaussian innovations. First, the generalized autoregressive
conditional heteroskedasticity (GARCH) model can be
used to model the noise. The main characteristic is that
enables the prediction of its variance, at time k, by using
the following equation:

q P
2 2 2
o, =0+ E :(rbi‘c’.tfi + § vior

1 1

wa@ith’>0
¢ +y, <1

where

e ¢ is a white noise.

e o, ¢, Y are coefficients to be determined by an optimiza-
tion problem, described in details in Brockwell and
Davis (2002).
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Once the variance at time ¢ = #, has been predicted, the
upper and lower bounds of the prediction interval are also
computed with Eq. (2).

Another method for account for non-Gaussian innova-
tion is the Bootstrap (Le Boudec, 2010). In this case, it is
necessary to evaluate the error distribution. Once the value
of the confidence level  has been defined, it is possible to
detect, in the Bootstrap distribution two values of error
associated with the quantiles % and 1—;”7 (these two values
are defined as E% and E0%). Consequently, the computa-
tion of the prediction intervals can be performed, for future
predictions, as follows:

Wsiow = Egrs(n) )
Wy upe = Egis(n)
It is important to underline that the width of the predic-
tion intervals computed with (3) and (4) is independent of
the dynamics of the solar irradiance.

4. Experimental evidences of correlations between solar
irradiance dynamics and prediction errors

By means of experimental evidences in this section we
assess the correlations between the solar irradiance and
the prediction errors in a forecasting-time window of the
order of sub-seconds. In this respect, we first describe the
adopted experimental setup and, then, we numerically ana-
lyze the above-mentioned correlations.

4.1. Experimental setup

The experimental setup used for the experimental
characterization of the dynamics associated with the solar
irradiance includes a Phono Solar 240 W PV module
(PS240P-20/U) and an Enphase M215 monophase micro-
inverter (p-inv). The p-inv is a grid-tie converter that always
uses the maximum power point-tracking (MPPT) method.
The sensors deployed in this experimental setup are: (i) an
Apogee SP-230 pyrometer for the irradiance in the same
plane of the PV module (the bandwidth of the sensor is
1 kHz), (i) two IST AG TSic TO92 temperature sensors
for the module’s temperature (one on the surface and one
behind the PV); (iii) two current sensors LEM LAH 25-NP
for DC and AC; and (iv) two voltage sensors LEM LV
20-P for DC and AC voltages. The system is located at the
following GPS location: 46.518397-N, 6.565229-E.

4.2. Observed irradiance dynamics

We used the above-described experimental setup to col-
lect data for a period of one year. In order to evaluate the
dynamic of Pirr, we computed its discrete time derivative
at each time-step forecast. Based on this one-year analysis,
P;rr reached a maximum of 1400 W/m? and its derivative
reached a maximum of 60 W/s/m”. As we focus on ultra-
short-term prediction intervals of the solar irradiance, it

is worth observing that its variations are only associated
with clouds passing and not with clear sky dynamics. In
this respect, Fig. 2 illustrates a typical time evolution of
the solar irradiance during cloud passing at the measure-
ment location. In this figure we observe time derivatives
of the solar irradiance of about 40 W/s/m?.

As already stated in the introduction, our DIP is
based on the investigation of the correlation between
the forecast relative-error eff} at time k + 1 and the deriva-
tive of the solar-irradiance time at time k, defined by
Par = Plar — Pian- In this respect, in Fig. 2 we illustrate
the cumulative-distribution function of the error associated
with different values of the derivative when the point fore-
cast is obtained with the double-exponential Holt Winters
method. We can observe that the conditional distribution
of the forecast error, given the value Py, of the derivative
of the irradiance in the previous time-step, strongly
depends on Pl,. We will use this dependency to derive
our DIP.

The results of Fig. 3 show that it is possible to
statistically quantify the error made by the forecasting
process as a function of the irradiance time derivative, by
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Fig. 2. Example of the highest Pirg dynamics measured on 24th Mars,
2014 at location 46.518397-N, 6.565229-E.
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Fig. 3. Cumulative conditional distribution function of the relative
forecast error effy given the derivative of the irradiance.
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estimating the conditional distribution of the prediction
error given the derivative of the irradiance. This observa-
tion is the starting point of the DIP method, presented in
the next section.

5. The proposed dynamic-interval predictor

As anticipated in the introduction, we target a DIP that
is independent of the point-forecast method and of the
point-forecast error distribution. In this respect, in this
sub-section we describe the algorithm for the DIP without
adopting any a priori assumption on a specific point-
forecast method.

5.1. Overview on the proposed DIP

In this sub section we summarize the steps of the algo-
rithm for computing the lower and upper bounds of the irra-

diance prediction, (Wlkﬁlow) and (Wj‘{dpg respectively.

(1) Irradiance measurement and computation of its
derivative Pty .

(2) Prediction of the irradiance measurement at the next
time-step P&{L.

(3) Discretization of Py, and eli}.

(4) Computation of the initial value of the conditional
distribution of ekf} given Plyy; the result is stored
in the matrix R.

(5) Computation of the upper and lower bound intervals
whtlow and WL, via the correlations assessed at
point 3.

(6) Matrix R update.

In what follows a comprehensive description of the
above-listed steps is given.

5.2. Conditional distribution matrix R

We store the empirical conditional distribution of the
forecast error, given the derivative of the irradiance in a
matrix R. Formally, R(n, m) is equal to the probability that
the next forecast error is e(n) given the derivative of the
irradiance p(m), where e(n) is the nth discretized value of
errors and p(m) is the mth discretized value of derivatives.

The key idea of our DIP is to use the correlations
defined by matrix R to compute the prediction intervals,
as explained in the next sub-section.

5.3. Computation of the prediction intervals width

The process for the computation of the prediction inter-
val is the following:
1. Define the required value of the confidence level 5.
2. At the generic time-step #, calculate P, (from the
experimental observation).

3. Find the element p(m) that is the closest to Plyy.

4. Compute the # and % quantiles of the distribution of
errors that corresponds to the column m of matrix R.
This is done as follows. We interpret column m of
matrix R as the histogram of a probability distribution
that has a continuous cumulative distribution function
F(). The matrix R gives the values of at the points

e(n) by the formula :
Flem) = Y R(,m) (5)

and the value of F(e) at an arbitrary e, which is not one of
the, e(n) is obtained by linear interpolation. The quantiles

UPP LOW : o UPP\ _ l+41
elne and ey are obtained by the conditions F (efiy ) = 32
. LOWY _ 1y
and F(efy’) = 5%

The prediction interval widths are obtained by
k+1  _ JUPP  pk+l
Wiuer = €rr * Pirr
k+1 LOW | pk+1 (6)
+ _ +
Wiitow = err * Pirr

Consequently, the width of the DIP depends on the
required confidence level and a brief analysis of this depen-
dence is illustrated in Table 2.

5.4. Update of the conditional distribution matrix

A main advantage of the proposed DIP is its capability
to take into account the evolution of the dynamics associ-
ated with the solar irradiance. As explained in the previous
sub-section, the prediction-interval computation changes at
each time-step and is based on the knowledge of the condi-
tional distribution matrix R. In our work, we investigate
three different ways to update this conditional distribution
matrix. These three methods are:

e Step-by-step update: the R update is performed at each
time-step and it is fed by the raw sampled data of the
irradiance (method #1).

e Batch update: the update takes into account a larger
amount of points from the beginning of the measure-
ment, without any weight for the last correlations
between Pl and efgy (method #2).

o Weighted step-by-step: this method puts more weight on
the recent correlations (method #3).

We can observe that methods #1 and #2 are similar,
whilst #3 gives a way to gradually age out the old “learnt”
dynamics.

The step-by-step update method #1 is based on the fol-
lowing equations. Let assume that, at time #,, we make a
new observation, and let e(ny) and p(my) be the discretized

values of the error e} and the derivative Pt .. The update

of the equations for matrix RNV is then as follows:
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OLD (0 m,
R (g, mo) = Horstzsit
NOLD (1 m
RN Y (n,mg) = AW,n?ﬁno (7)
RV (n,m) = RO"P (n, m), n#ny, m#=my

where
o NP (1) is the number of observations having a deriva-

tive in the range of p(my).
o NP (ng,m) = RO (n, m)N°P (o).
The superscripts “EW and P refer to the updated and
the old version of the R matrix, respectively.

Method #2 uses the same set of Eq. (7), but it is not used
at each time-step; instead it is applied in a batch, after a
specific measurement time window. In our case, illustrated
in Table 1, during the first day of measurement, the first
version of R matrix is built and then it is updated at times
10 days, 20 days, 30 days and so on.

Method #3 puts more weight on the last measurements.
To understand how it is derived, first note that it is possible
to re-write the update Eq. (7) of method #1 as

RN Y (g, mg) = (1 — w)ROLD(nO,mO) +w
RYY (1, mp) = (1 — w)R®"P (n, my), n#ny (8)
RV (n,m) = RP(n, m), n#ny, m#=my,

: _ 1
with w = ~or5 T

In other words, Eq. (8) expresses that, with method

#1, the weight w of the last correlation between efjx

and Pf., becomes lower at each time-step. This could
involve, after a long observation time, an R matrix giv-
ing the same importance to all the correlations, even
those observed when we computed the first version of
the R matrix. Additionally, the last correlations that
are strongly linked to the most recent behavior of the
solar irradiance will not be properly taken into account.
Therefore, there is the risk that old correlations no
longer represent the real dynamics associated with the
solar irradiance.

In contrast, with the update method #3, the R matrix
is updated with Eq. (8) but with a constant weight w.
The value of w controls how fast the R matrix ages
out. To understand what a given value of w represents,
it is useful to consider that, roughly speaking, 1/w repre-
sents the “typical time horizon” (counted in time-steps)
for aging. It is worth observing that method #3 does
not require that measured data be stored because the
computation of the R matrix inherently accounts for all
the past correlations. In the next section, we show that
values of w that work best correspond to a time horizon
of several seconds. We also compare the performance of
the three update methods.

Table 1
Performances of different correlation matrix update methods.

I'—Xin
Time-step 250 ms 500 ms 750 ms

I (%) X (%) I (%) Xin (Y0) I" (%) X (%)
First 10 days
Methods #1: step-by-step update 0.34 1.21 0.49 1.21 0.83 1.21
Methods #2: batch update 0.93 1.21 0.86 1.21 1.12 1.21
Methods #3: weighted update with a time horizon of 6 s 0.14 1.21 0.11 1.21 0.67 1.21
Methods #3: weighted update with a time horizon of 2s 0.10 1.21 0.068 1.22 0.32 1.22
First 20 days
Methods #1: step-by-step update 0.31 1.21 0.75 1.21 1.10 1.21
Methods #2: batch update 0.50 1.21 1.15 1.22 1.98 1.19
Methods #3: weighted update with a time horizon of 6 s 0.14 1.21 0.42 1.40 0.94 1.21
Methods #3: weighted update with a time horizon of 2 s 0.093 1.21 0.30 1.22 0.56 1.34
First 30 days
Methods #1: step-by-step update 0.25 1.21 0.73 1.21 1.03 1.21
Methods #2: batch update 0.22 1.21 0.56 1.22 1.21 1.21
Methods #3: weighted update with a time horizon of 6 s 0.10 1.21 0.40 1.20 0.91 1.25
Methods #3: weighted update with a time horizon of 2 s 0.076 1.18 0.40 1.20 0.54 1.22
First 40 days
Methods #1: step-by-step update 0.28 1.21 0.73 1.21 1.12 1.20
Methods #2: batch update 0.58 1.23 1.31 1.22 2.34 1.21
Methods #3: weighted update with a time horizon of 6 s 0.12 1.21 0.40 1.20 1.02 1.22
Methods #3: weighted update with a time horizon of 2 s 0.084 1.18 0.45 1.22 0.59 1.22
First 70 days
Methods #1: step-by-step update 0.28 1.21 0.58 1.21 1.21 1.21
Methods #2: batch update 0.35 1.21 1.12 1.22 2.17 1.22
Methods #3: weighted update with a time horizon of 6 s 0.12 1.21 0.37 1.40 1.11 1.22
Methods #3: weighted update with a time horizon of 2 s 0.084 1.18 0.41 1.18 0.64 1.22
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6. Experimental validation and comparison with other bound
predictors

It is worth underlining that, as it can be observed from
Egs. (5)-(8), the proposed DIP does not make reference to
any point-prediction method. Consequently, it is possible
to assume that its description and applicability are
universal.

In this section we compare the proposed DIP with the
other prediction interval methods illustrated in Section 2.
In this respect, it is necessary to choose a point-
prediction method to which we can associate different
prediction-interval computation methods and, then, com-
pare their performances with our DIP. We chose the Holt
Winters (HW) method because it relies on its simple imple-
mentation, robustness, low data-storage requirements, and
straightforward automation. It also has the advantage of
being able to adapt to changes in trends and seasonal
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Fig. 4. Graphical comparison of the effect of different correlation matrix
update methods on the missing probability (time-steps of 250 ms).
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Fig. 5. Graphical comparison of the effect of different correlation matrix
update methods on the missing probability (time-steps of 500 ms).

patterns when they occur. The complete description of
the HW method can be found in Hindammn et al. (2008).

Concerning the performance assessment metrics, they
are described in the next sub-section.

6.1. Performances assessment metrics

Any prediction-interval method can make errors. This
means that, in a certain time-window, the number of mea-
sured points (N) can be separated in two main categories:
the points inside the prediction intervals (Nyn) and those
outside (Noyt). Our first metric is the miss probability I’
defined by

Nour
r= 9
> ©)
We can observe that I' largely depends on the width of
prediction intervals, as a wider prediction interval increases
the probability of obtaining points forecast satisfying
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Fig. 6. Graphical comparison of the effect of different correlation matrix
update methods on the missing probability (time-steps of 750 ms).
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Fig. 7. Graphical comparison of the effect of different required confidence
level with a weighted correlation matrix update with a time horizon of 2 s.
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Table 2
Performance metrics with weighted update with a time horizon of 2 s for
different confidence levels 7.

First 70 days

Time step (%) 250 ms 500 ms 750 ms

I Xw (@) I'(%) X (%) T (%) X (%)
n=95 0.084 1.18 0.41 1.18 0.64 1.22
=90 0.23 1.15 0.84 1.16 0.67 1.18
n =285 0.33 1.09 0.86 1.14 1.31 1.16
n =280 0.61 1.06 0.95 1.08 2.06 1.04

Eq. (1). Consequently, it is extremely important to have
another performance metric in order to capture the width
of the prediction interval. We use the following:

k k
1 & ’WB,UPP_ W Low

k
P IRR

1{Eq(1)holds} (10)

where the indicator function 1{Eg(1)kolds} in the summa-
tion enables the sum only over those time instants k at
which (1) is satisfied. In other words, the metric Xy com-
putes the mean prediction-interval, averaged over all points
where the prediction interval succeeds.

6.2. Comparison of methods for the update of the correlation
matrix

The comparison between the three matrix update meth-
ods defined in Section 5.4 in terms of I' and Xjy is illus-
trated in Table 1. In particular, three time-steps are
accounted for, 250 ms, 500 ms and 750 ms. The whole
time-window covers 70 days of measurement during the
spring season, characterized by high solar-irradiance
dynamics. For each method used for the matrix update,
the values of both metrics I and Xy are given. The irradi-
ance time series is shown in Fig. 10. For the method #2, we
perform the update every 10 days, and we keep the same R
matrix for the following 10 days. For the method #3, we
perform the update at each time-step with different values
of the weight w; we found that the best performance is
obtained with values of w which correspond to a typical
time horizon of a few seconds. In the following we show
results for two values of w: w; corresponds to a typical time
horizon of 6s and w, corresponds to 2s. By observing
Table 1, it is possible to make the following observations:

e Time-step: the most accurate results are obtained for
250 ms (also lower time-steps provide almost identical
results).

Table 3
Comparison of different PI methods. Time step = 250 ms.
I (%) X (Y0)
First 10 days, time step 250 ms
Holt Winter point forecast computation coupled with the proposed DPI with a step-by-step update 0.34 1.21
Holt Winter point forecast computation coupled with a Gaussian error distribution 12.47 2.08
Holt Winter point forecast computation coupled with a Garch error distribution 22.67 2.31
Holt Winter point forecast computation coupled with a BootStrap error distribution 1.40 7.11
Persistent point forecast computation coupled with a Gaussian error distribution 66.52 0.23

First 20 days, time step 250 ms

Holt Winter point forecast computation coupled with the proposed DPI with a step-by-step update 0.31 1.21
Holt Winter point forecast computation coupled with a Gaussian error distribution 13.64 1.97
Holt Winter point forecast computation coupled with a Garch error distribution 21.01 2.25
Holt Winter point forecast computation coupled with a BootStrap error distribution 31.12 7.89
Persistent point forecast computation coupled with a Gaussian error distribution 66.38 0.21

First 30 days, time step 250 ms

Holt Winter point forecast computation coupled with the proposed DPI with a step-by-step update 0.25 1.21
Holt Winter point forecast computation coupled with a Gaussian error distribution 12.78 1.84
Holt Winter point forecast computation coupled with a Garch error distribution 19.27 2.02
Holt Winter point forecast computation coupled with a BootStrap error distribution 29.07 5.17
Persistent point forecast computation coupled with a Gaussian error distribution 71.11 0.20

First 40 days, time step 250 ms

Holt Winter point forecast computation coupled with the proposed DPI with a step-by-step update 0.28 1.21
Holt Winter point forecast computation coupled with a Gaussian error distribution 12.3 1.81
Holt Winter point forecast computation coupled with a Garch error distribution 17.61 2.0

Holt Winter point forecast computation coupled with a BootStrap error distribution 29.58 7.86
Persistent point forecast computation coupled with a Gaussian error distribution 71.6 4.71

First 70 days, time step 250 ms

Holt Winter point forecast computation coupled with the proposed DPI with a step-by-step update 0.28 1.21
Holt Winter point forecast computation coupled with a Gaussian error distribution 11.90 1.90
Holt Winter point forecast computation coupled with a Garch error distribution 18.08 2.21
Holt Winter point forecast computation coupled with a BootStrap error distribution 30.11 7.86

Persistent point forecast computation coupled with a Gaussian error distribution 72.16 0.20
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Fig. 8. Graphical comparison of different PIs in term of missing
probability (time-steps of 250 ms).
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Fig. 9. Graphical comparison of ANFIS point forecast computation
coupled with our DPI. Comparison of step-by-step update and weighted
update with a time horizon of 2 s w.

e R-update method: method #1 enables taking into
account instantaneously any new dynamics associated
with the solar irradiance. For the R-update with method
#1, the higher the width of the learning time window,
the lower the value of I and Xin. Method #3 is the most
accurate: it shows the importance of giving a higher
weight to the latest dynamics. For method #2 the above
observations do not hold.

Figs. 4-6 illustrate a graphical comparison of the effects
of the correlation matrix update methods on the value of
the missing probability, for the three time-steps (250 ms,
500 ms, 750 ms). These figures illustrate the results summa-
rized in Table 1.

Table 2 provides the value of the considered perfor-
mance metrics, in terms of I' and Xy, for method #3
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Fig. 10. Irradiance time evolution during 70 days of measurements.

weight w, for different values of the confidence-interval.
It is possible to quantify the increase of the percentage of
points outside the bounds for low confidence intervals
and the corresponding wider PIs.

Fig. 7 illustrates graphically the results reported in
Table 2.

6.3. Comparison with the other prediction interval methods

In this subsection we compare our DIP with the conven-
tional methods discussed in Section 3. We consider the fol-
lowing cases:

(a) HW forecast method with the proposed DIP.

(b) HW forecast method with prediction-interval based
on Eq. (2), specifically the variance computation with
Gaussian distribution of the point-forecast error.

(c) HW forecast method with prediction interval based
on (3), specifically the variance computation with
GARCH (1,1) model distribution of the point fore-
cast error.
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Fig. 11. Example of the time evolution of DIP during high dynamics.
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Table 4
Performance of DPI when the point predictor is provided by the adaptive neuro fuzzy inference system. Time step = 250 ms.
I (%) Xin (%)
First 10 days
ANFIS point forecast computation coupled with the proposed DPI with a step-by-step update 0.007 1.21
ANFIS point forecast computation coupled with the proposed DPI with weighted update with a time horizon of 2 s 0.0031 1.20
First 20 days
ANFIS point forecast computation coupled with the proposed DPI with a step-by-step update 0.007 1.21
ANFIS point forecast computation coupled with the proposed DPI with weighted update with a time horizon of 2 s 0.0031 1.20
First 30 days
ANFIS point forecast computation coupled with the proposed DPI with a step-by-step update 0.0053 1.21
ANFIS point forecast computation coupled with the proposed DPI with weighted update with a time horizon of 2 s 0.0019 1.20
First 40 days
ANFIS point forecast computation coupled with the proposed DPI with a step-by-step update 0.005 1.21
ANFIS point forecast computation coupled with the proposed DPI with weighted update with a time horizon of 2 s 0.0014 1.20
First 70 days
ANFIS point forecast computation coupled with the proposed DPI with a step-by-step update 0.005 1.21
ANFIS point forecast computation coupled with the proposed DPI with weighted update with a time horizon of 2 s 0.001 1.20

(d) HW forecast method with prediction-interval based
on Eq. (4), specifically the Bootstrap distribution of
the point-forecast error.

(e) Persistent forecast method and prediction interval
based on Eq. (2).

We use a time-step of 250 ms as it provides the best
results. For the proposed DIP we use the R matrix update
method #1 as it is the only one that can be fairly compared
with the others.

We perform the comparison for the same data as in
Table 1. The error distribution of cases (b), (c), and (d)
are also updated at each sample. The main results of this
analysis are shown in Table 3. The following considera-
tions can be derived (see Fig. 8).

e The DIP shows the best performances in terms of trade
of between I' and Xjn. Our DIP has a I' metric one
order of magnitude lower, with respect to some other
PIs.

e For the two error distributions (the Gaussian and the
GARCH), the larger the amount of data for the learning
process is, the higher the accuracy of the predictor is.

e The Bootstrap predictor improves its accuracy when
large amounts of data are accounted. In this respect,
during the first 10 days, it performs as the proposed
DIP as no extreme irradiance dynamics were observed.

e The persistent predictor does not show any remarkable
improvement and the lower value of I' is largely wors-
ened by the higher values of Xjy, i.e. it produces predic-
tion intervals that are too wide.

Using the above considerations, we can conclude that
our DIP clearly shows the best performances in terms of
combined metrics I' and Xin. It is worth observing that
the DIP coupled with the update method #3 has the best
value of I', even one order of magnitude lower than the
persistent model coupled with a Gaussian error-
distribution.

The results summarized in Table 3 are shown in Fig. 8.

For sake of completeness, Fig. 11 illustrates the time
evolution of the solar irradiance along with the predicted
interval with the DIP during a typical dynamic.

6.4. Adaptive neuro fuzzy inference system

In order to highlight the independence of the DIP from
the model used for the point forecast, we applied the DIP
to a specific forecast technique that does not provide any
information on the prediction intervals. For this purpose,
we selected the adaptive neuro fuzzy inference system
(ANFIS) with a Gaussian function used as the mother
function. For this purpose, we adopt a toolbox available
in the Matlab® programming environment.” Table 4 illus-
trates the summary of the performances of our DIP cou-
pled with the ANFIS point predictor. The update
methods are methods #1 and #3 with weight w, and the
time-step is 250 ms.

Fig. 9 summaries the result shown in Table 4. In Table 4,
we observe that the DIP is robust because the I' metric
reduces its value for a larger learning time-window and
the metric Xyy keeps reasonable values. Comparing with
the corresponding values in Table 1, we find that the com-
bination of ANFIS with the proposed DIP provides a
smaller miss probability (I") with the same prediction inter-
val width (XIN)'

2 An adaptive neuro-fuzzy inference system (or adaptive network-based
fuzzy inference system — ANFIS) is an artificial neural network based on
the Takagi—Sugeno fuzzy inference system.The technique integrates both
neural networks and fuzzy logic principles and, consequently, it has the
advantage to capture in a single framework the benefits of both neural
network and fuzzy systems. Its inference corresponds to a set of fuzzy IF—
THEN rules can approximate nonlinear functions. In the work here
proposed we used the ANFIS model to compute the point forecast value
of the solar irradiance. Then, the results associated with this point
prediction, are used to create and update the correlation matrix R of our
DPI.
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7. Conclusions

In this paper we discussed the problem of the ultra-
short-term prediction of the solar irradiance. We focused
our attention on proposing a dynamic interval predictor
(DIP) that does not require a specific point-prediction
method or any hypothesis on the error-forecast distribu-
tion. The proposed DIP relies on an on-line assessment
of the statistical correlations between the solar irradiance
time derivative and the point-forecast error in the next
forecasting time-step. The main features of the proposed
DIP are here summarized:

e The DIP does not depend directly on the method used
for the point forecast; in particular, it can work with
methods such as artificial neural networks that do not
provide prediction interval.

e It is able to take into account high dynamics.

e It improves its performance during its use because it is
able to correct the magnitude of the predictions intervals
for future computations.

e It can produce results for any required confidence level.

We have compared our DIP with other methods for pre-
diction intervals that use a specific error-distribution (i.e.,
Gaussian, GARCH and Bootstrap). We made such an
assessment by using an experimentally obtained time series
of solar irradiance of 70 days. The main results of this com-
parison show that the DIP exhibits the best performance in
terms of tradeoff between miss probability and interval
width.

We would like to conclude this section by underlining
that the rationale to develop such a DIP is associated with
its potential use in real-time optimal control-processes of
electrical distribution networks characterized by a large
penetration of photovoltaic power plants. Indeed, perspec-
tive real-time optimal control processes of these grids might
take advantage of the availability of our DIP.
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