

Biokinetic process model diagnosis with shape-constrained spline functions

A. Mašić¹, S. Srinivasan², J. Billeter², D. Bonvin², K. Villez¹

28 June 2016

Setting the stage

- Biological wastewater treatment (e.g. nitrification)
- Mathematical models = helpful tools
- Biokinetic process models (e.g. ASM) well established
- Express bacterial growth rates with respect to concentration of substrate
- Examples: Monod and Tessier kinetics

Problem

- Bacteria unlikely to follow idealized kinetics
- Typically, Monod = default
- Inappropriate/wrong model can lead to errors
 - design and optimization purposes

FIGURE 4. Prediction for CSTR steady state concentrations S across all dilution rates D for $\sigma=0.1$; $K_S^{\rm Tessier}=0.3$. 1000 MC simulations for Monod model and prediction with true Tessier model (solid black line).

Neumann & Gujer (2008) Underestimation of uncertainty in statistical regression of environmental models: Influence of model structure uncertainty, *Environ. Sci. Technol.* 42: 4037-4043.

Justification

- Convenient to use the same model
- Monod is very simple, 2 parameters
- Investigating the structure takes time
- Library of candidate models is never exhaustive
- No guarantee that results will be improved much

Kinetic growth rates

Problem statement

Can we find?

- A single kinetic rate law
- For all cases
- With a predetermined shape
- Based on experimental data

Spline functions

Defined by the number and location of knots.

Spline functions

Defined by the number and location of knots.

$$r_{SCS}(S) = b_0(S)^T \cdot \theta$$

- Function
- Cubic spline

$$r_{SCS}(S) = b_0(S)^T \cdot \theta$$

Flexible
Semi-parametric
Black-box

Shape constraints

Often: linear in the parameters

Example: concave profile

$$b_2(S_k)^T \cdot \theta \le 0 \quad \forall k = 1, ..., n_k$$

Prior knowledge Smoothness White-box

Shape: concave, monotonically increasing. 9 knots.

Library of candidate models

Most common (non-inhibited): Monod and Tessier

$$r_{MONOD}(S) = a^{max} \frac{S}{S + K_S}$$
 $r_{TESSIER}(S) = a^{max} (1 - e^{-S/K_S})$

Methods

- Numerical approach
 - simulate noisy concentration data from a batch reactor
 - simple kinetic model
 - assumptions: negligible bacterial growth
 - · fit parameters of library models and of SCS model
 - use WRMSR as measure
- Matlab
 - use of Functional Data Analysis toolbox

Simulation with Monod

$$\frac{dS}{dt} = -r(S), \qquad S(0) = S^0$$

$$P(t) = S^0 - S(t)$$

Scenario

- Measurements available
- Aim: identify structure of biokinetic model
- Approach:
 - use SCS to determine shape
 - · limit the search in a library of conventional models

Scenario – simulated rate laws

Results

Use library models (Monod, Tessier) and different SCS models to fit measurement data (Steele)

Results - WRMSR

Conclusions

- Shape-constrained spline functions successfully used to diagnose shape of biokinetic model
- Easier and quicker diagnosis and identification of model shape
- Helpful when underlying rate law unknown and a potentially wrong model is used

Benefits of SCS:

- Representing a wide range of known behaviors one function
- Optimization of one parameter set only instead of multiple sets
- Easier to update

Future work

- Several different shapes and a variety of different scenarios
- Real measurement data
- More complex models/scenarios
- Uncertainty analysis

Thank you for your attention!