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Abstract 

Modern unreinforced masonry buildings with reinforced concrete slabs are often retrofitted by 

inserting reinforced concrete walls. The main advantages of this technique are the increase in 

strength and displacement capacity with respect to masonry structures. The paper presents two 

modelling approaches for evaluating such structures: a shell-element model and a macro-element 

one. The objective is to formulate practical recommendations for setting up a macro-element 

model using as input the geometry of the structure and results from standard material tests. 

Structural configurations of masonry buildings, in which the insertion of reinforced concrete 

walls is an efficient retrofit technique, are also investigated. 

Keywords Seismic behaviour Modern mixed masonry and reinforced concrete wall structures 

Non-linear analyses Shell-element model Macro-element model Equivalent frame 
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1. Introduction 

In recent years, the seismic hazard in several countries of Europe was re-evaluated, leading, in 

particular for countries of low to moderate seismicity to an increase of the seismic design 

spectra. As a result, many modern residential unreinforced masonry (URM) buildings no longer 

fulfil the seismic design check for the new spectra and have to be retrofitted. Adding RC walls to 

the existing structure or replacing selected URM walls with RC ones can be an effective retrofit 

strategy if RC slabs allow a redistribution of the forces. This retrofit approach might not only 

increase the strength but also modify the global deformed shape of the structure, leading to an 

increase in the system’s displacement capacity. For new constructions, it is pertinent to conceive 

similar structures directly as mixed RC-URM systems because they show an improved seismic 

behaviour when compared to buildings with URM walls only. In addition, when compared to 

buildings with RC walls only, such mixed structures have better thermal and insulation 

properties at a lower construction cost. 

Mixed RC-URM construction varies significantly from region to region [Magenes, 2006; Cattari 

and Lagomarsino, 2013]. In this paper, the examination is limited to the most common building 

configurations of modern mixed RC-URM systems built in Switzerland. Such configurations are 

characterised by the following features: 

i) The RC-URM systems are modern buildings of three to five storeys with masses evenly 

distributed over the height. Both masonry and concrete walls are continuous over the height and 
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connected at each floor by 20 to 30 cm thick RC slabs which provide an efficient rigid 

diaphragm. 

ii) The length of the RC walls varies between 2 and 5 m and their aspect ratio is between 1.5 and 

3. The RC walls are 20 to 30 cm thick and designed according to modern codes to develop a 

stable flexural behaviour with displacement capacities larger than those of URM walls. The 

mean concrete cylinder compressive strength at 28 days is between 20 and 50 MPa and the 

reinforcement bars have mean yield strengths between 500 and 600 MPa. The total longitudinal 

reinforcement ratio of the RC walls varies between 0.2% and 4.0% [EN 1992-1, 2004]. In the RC 

slabs the longitudinal reinforcement ratio varies between 0.13% and 4.0% [EN 1992-1, 2004]. 

iii) The URM walls have typically lengths up to 7 m and aspect ratios between 0.5 and 3. The 

URM walls, which always outnumber the RC ones, are built with hollow clay 20 to 30 cm thick 

bricks in combination with standard cement mortar. URM walls are characterised by mean 

masonry compressive strengths (fcM) between 4 and 8 MPa and axial stress ratios (σ0/fcM) 

between 0.05 and 0.25. Since in such structures the URM walls are connected by RC slabs which 

introduce an important framing effect [Lang, 2002], the URM walls generally exhibit a dominant 

shear behaviour. 

Despite the popularity of this construction and retrofitting technique, very little research has been 

carried out [Magenes, 2006] and there are several open issues to be addressed: 

i) Response of mixed RC-URM wall structures: Vertical and horizontal forces are resisted by the 

combined contribution of the existing URM walls and the new RC walls. Hence the retrofitted 
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structure will behave differently from the uncoupled systems since each type of wall results in a 

different displaced shape when subjected to horizontal forces (Fig. 1). 

ii) Lack of experimental data: There are only few experimental tests on mixed RC-URM 

structural buildings. Tomaževič et al. [1990] conducted a shake table test on a URM wall 

building with one RC column. However, the latter had no influence on the behaviour of the 

structure under lateral loads since the URM walls were considerably stiffer. Jurukovsky et al. 

[1992] conducted shake table tests of 1/3-scale models. They investigated several strengthening 

techniques for a mixed structure composed of URM walls and one RC frame at the ground floor. 

In one case they added a central RC core wall to the URM building and they tested this 

retrofitted solution up to the near collapse limit state, but the presence of the RC frame at the 

ground floor added a vertical irregularity. Hence, none of the experimental studies addressed the 

seismic behaviour of mixed structures where RC and URM walls are regular and continuous over 

the height. 

iii) Numerical modelling: Numerical results on RC-URM wall structures are sensitive to 

mechanical and geometrical assumptions [Casoli, 2007; Paparo and Beyer, 2012] but models 

could not be validated as experimental results of such mixed structures were missing. For these 

buildings, the parameters which most influence the distribution of reaction forces among the 

walls are those defining the strength and stiffness of the elements. 

iv) Scarce numerical investigations: Recently non-linear numerical investigations [Cattari and 

Lagomarsino, 2013] studied the interaction of RC and URM walls. They simulated the response 

of buildings where the RC walls were not capacity-designed and failed before the URM walls. 
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5 

The study presented herein targets structures where the RC members are designed to fail for 

larger displacement demands than the URM walls. 

In order to address the aforementioned issues, a research programme was initiated at EPFL with 

the objective to understand better the seismic behaviour of mixed RC-URM wall structures. Both 

experimental (Fig. 2 and 3) and numerical investigations were carried out. The objective of this 

paper is to provide some indications for the modelling and analysis of structures with both RC 

and URM walls. Two modelling approaches will be investigated: a shell-element model and a 

macro-element approach; the latter is commonly used in engineering practice for analysing such 

structures. Sec. 2 will present the main characteristics of the seismic behaviour of mixed RC-

URM wall structures and will outline advantages and drawbacks of coupling URM walls with 

RC walls. In Sec. 3 the two modelling approaches will be presented and validated against 

experimental results. The paper concludes with the discussion of four case studies (Sec. 4), 

outlining for which structural configurations of URM buildings adding RC walls can be an 

efficient retrofit measure. 

2. Seismic behaviour of interacting URM and RC 

walls 

Retrofitting a modern URM building by replacing some URM walls with RC ones does not only 

increase the strength of the structure, but can also improve the system’s displacement capacity. 

The section describes qualitatively the interaction of URM and RC walls connected by RC slabs 
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when subjected to lateral forces (Sec. 2.1) and outlines the resulting advantages and 

disadvantages of this retrofit technique (Sec. 2.2). 

2.1. Deformation pattern of mixed RC-URM wall structures 

subjected to lateral loading 

URM walls have a dominant flexural or shear response depending on several parameters such as 

the axial load ratio, the pier geometry and the coupling moment introduced by RC slabs or 

masonry spandrels. RC walls are designed to have a dominant flexural behaviour and a 

displacement capacity larger than that of URM walls. The RC slabs are assumed to provide a 

rigid diaphragm action, allowing an effective force redistribution between walls of one plane. 

Under lateral loading, uncoupled URM walls which deform primarily in shear lead to larger 

inter-storey drifts at the bottom storeys (Fig. 1a). Single slender RC walls display instead 

primarily flexural deformations, with larger inter-storey drifts at top storeys (Fig. 1b). At the 

height of the RC slabs, URM and RC walls need to displace by the same amount because of the 

rigid diaphragm action provided by the RC slabs. Hence, the deformed shape of mixed RC-URM 

wall structures lies in between that of buildings with RC and URM walls alone (Fig. 1c). As a 

consequence, for such mixed structures the damage in the URM walls is not concentrated in the 

first storey—as for URM buildings—but it also spreads to the storeys above. This behaviour was 

noted in quasi-static and dynamic tests on mixed RC-URM wall structures (Fig. 2 and 3) and 

also Jurukovsky et al. [1992] observed that the presence of the pin-based RC wall “distributed 

the failure mechanism all over the structure”. 
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Mixed RC-URM wall structures present similarities to dual RC frame-wall buildings. Slender 

wall elements, which display mainly flexural deformations, are coupled to frames, which 

globally deform—as do most URM piers—in a predominant shear mode [Smith and Coull, 

1991]. As a consequence, and similar to mixed RC-URM wall structures, the deformed shape of 

dual RC frame-wall buildings is modified and tends to be rather linear over the height of the 

structure [Paulay and Priestley, 1992]. 

If the masonry walls have a dominant flexural response, in the URM walls the inter-storey drift 

profile is rather constant over the height and the modification of the deformed shape is less 

accentuated. For modern URM buildings with RC slabs such a behaviour is, however, 

uncommon since the RC slabs connecting the walls feature a significant out-of-plane stiffness 

and strength and introduce therefore an important framing effect which leads to a more shear 

critical behaviour of the URM walls [Lang, 2002]. 

2.2. Advantages and drawbacks of adding RC walls in URM wall 

buildings 

Fig. 4 compares failure mechanisms of a mixed RC-URM structure versus that of a URM 

building where shear deformations prevail. The presence of the RC wall in the retrofitted 

configuration leads, for the same level of inter-storey drift δ* at the ground floor, to larger top 

displacements: Δmixed > ΔURM. Consequently, the displacement capacity of mixed RC-URM wall 

structures is larger than that developed by shear dominated URM wall buildings. Furthermore, in 
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retrofit design, the URM walls with the smallest displacement capacity can be replaced by RC 

walls. 

In addition, in such mixed systems, the strength degradation of shear dominated URM walls 

generally starts at drifts of around 0.3%-0.5%. At these drift levels, RC walls that are designed to 

develop a stable flexural behaviour are still in the pre-peak response. As a consequence, in mixed 

RC-URM wall structures the strength degradation of the URM walls can be somewhat 

compensated by the presence of the RC walls. 

A drawback of the strategy is the increase in seismic mass related to the addition of RC walls to 

the structure. However, since large parts of the dead loads result from the weight of the RC slabs 

and the added RC walls in the retrofitted systems are usually few, the increase in total weight is, 

generally, less than 5%. 

3. Numerical analysis of modern RC-URM wall 

buildings with RC slabs 

Several modelling approaches are used for evaluating the seismic behaviour of mixed RC-URM 

wall structures, ranging from sophisticated strategies (shell-models) to more simplified 

approaches (macro-models). Although computer power increases continuously, it seems unlikely 

that shell-models will become a standard tool for the practically oriented analyses, as they 

require too much computational time. 
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Previous studies [Casoli, 2007; Paparo and Beyer, 2012] have also shown that numerical 

investigations using macro-models are sensitive to some modelling assumptions, such as the 

assumed effective stiffness of the members or the effective length of the coupling RC beams. In 

this paper, to validate two modelling approaches, a two-step validation procedure is used: (i) 

first, a detailed shell-model is assessed against the results from quasi-static cyclic tests. This 

model is then used to study additional parameters. (ii) The results of the macro-model are then 

compared and recommendations for the analysis of such mixed structures formulated. Before the 

presentation and comparison of the two modelling approaches, a brief overview of two quasi-

static tests on two mixed RC-URM wall structures is outlined. 

3.1. EPFL tests 

Two mixed RC-URM substructures were tested under a quasi-static cyclic loading regime at the 

structural engineering laboratory at EPFL. Each of the two specimens comprised a two-storey 

RC wall coupled to a two-storey URM wall through two RC beams. The RC beams connecting 

the two walls represented the slabs in the reference structure. 

The main difference between the two systems was the axial load applied at the top of the URM 

walls. For the first specimen (TU1), an axial load of 400 kN was applied and led to a shear 

dominant behaviour of the masonry. For the second test (TU2) the axial load was reduced to 

200 kN in order to achieve a prevalent rocking behaviour. Fig. 2 shows the crack pattern of the 

two specimens after failure. In Sec. 3.4, the global force-displacement characteristics, as well as 

the inter-storey drift profile, will be introduced and compared with the analysis results. For 

further details on the EPFL tests, the reader is referred to Paparo and Beyer [2014]. 
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3.2. Shell-element model 

In the shell-element model, (i) URM walls are simulated by using the simplified micro-

modelling approach [Lourenço, 1996] and (ii) RC walls and beams are represented by shell 

elements for the concrete, shell elements for the transverse reinforcements and trusses for the 

longitudinal reinforcements. The simulations are carried out using the software ATENA 

[Červenka et al., 2010]. The mechanical properties, summarised in Table 1, were obtained from 

standard material tests, Paparo and Beyer [2014]. In the following, a description of the adopted 

mechanical properties is provided. 

i) URM walls: Shell elements to which the SBETA constitutive model [Červenka et al., 2008] is 

assigned are used to simulate the bricks as elastic in compression. Their tensile strength ftb 

instead is limited to 1.4 MPa and the fracture energy GI
b is set equal to 0.08 N/mm [Lourenço, 

1996]. The mortar joints are modelled by zero-thickness contact interfaces with a Mohr-

Coulomb failure criterion. The interface friction μ and cohesion c between mortar and bricks 

were obtained from standard triplet tests [EN 1052-3, 2002]. The interface tensile strength ftm is 

calculated by considering a parabolic tension cut off: 

µ2
cftm =  (3.1) 

The constitutive law assigned to the interfaces does not account for compression failure. As a 

consequence, the crushing of the masonry is not represented by the shell element model and, 
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therefore, the failure of the masonry cannot be fully captured. Thus, the shell element model is 

used to investigate the behaviour before failure, i.e. the shear-flexure interaction which develops 

between the RC and URM walls (Sec. 2.1) and the effective length of the RC beams. 

As the software can only account for isotropic material behaviour, an equivalent E-modulus of 

the bricks, which lies in between the E-modulus of the bricks for loading parallel (Ebx) and 

orthogonal (Eby) to the perforations, is adopted (Eb). The different masonry E-modulus in the 

two directions of loading (Emv and Emh) can be matched by varying the normal and tangent 

interface stiffnesses (Knn and Ktt). In the experimental program [Paparo and Beyer, 2014] the 

vertical masonry E-modulus Emv was obtained from standard compression tests on masonry 

wallettes [EN 1052-1, 1998]. Compression tests in horizontal direction were not carried out. 

According to Beyer and Dazio [2012], who tested similar masonry walls under horizontal and 

vertical loads, the ratio Emh / Emv is estimated as 0.25. Hence it was assumed that Emh = 0.25 Emv. 

As the investigated URM walls had dry head joints, the vertical masonry E-modulus (Emv) can be 

related to the normal interface stiffness (Knn) and the horizontal masonry E-modulus (Emh) can 

be related to the tangent interface stiffness (Ktt). Simple compression tests with loading 

orthogonal and parallel to bed joints are simulated, allowing the calibration of Knn and Ktt to 

obtain the two desired masonry E-moduli Emh and Emv. 

The fracture energies of the joint interfaces (GI
f and GII

f) were not determined within this project 

[Paparo and Beyer, 2014]. The interface Mode II fracture energy GII
f is assumed to be equal to 

0.50 N/mm, according to Beyer and Dazio [2012]. Since for the interface Mode I fracture energy 

GI
f no experimental results for hollow clay bricks were found, it is assumed that the ratio GI

f/GII
f 
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is equal to the ratio ftm/c [Reyes et al., 2008]. Since GI
f and GII

f were not determined directly 

from material tests, sensitivity analyses of their influence to the response of single URM walls 

were carried out. Also according to Lourenço [1996], it was found that the assumed values of GI
f 

and GII
f are parameters which do not strongly affect the results of the analyses. 

ii) RC walls and beams: The concrete behaviour of RC walls and beams is modelled using shell 

elements in conjunction with the SBETA model [Červenka et al., 2008]. The concrete behaviour 

in compression is parabolic up to the cylinder compressive values fc and fcc. The cylinder 

compressive value fc is used for modelling the unconfined concrete in the RC walls. In the 

boundary elements of the RC walls and in the RC beams, the concrete compressive strength 

adopted is fcc. This value accounts for the effect of the confinement and is calculated according 

to Mander et al. [1988]. After the peak stresses fc and fcc, the softening law of the concrete would 

be linearly descending but this was not reached in any of the analyses. The concrete behaviour in 

tension is modelled using a linear-elastic relation until the tensile strength (ftc). After the stress 

peak ftc, the concrete is modelled with an exponential tension softening law. The concrete tensile 

strength ftc was experimentally determined from double punch tests on half cylinders [Chen, 

1970]. A bilinear stress-strain relation is adopted for the reinforcing bars in conjunction with (i) 

truss elements for representing longitudinal reinforcements and (ii) shells for representing 

transverse smeared reinforcements. Perfect bond between steel and concrete is always assumed. 

3.3. Macro-element model 

The macro-model strategy consists of modelling each structural member as single elements 

which are then assembled to an equivalent frame. The macro-element developed by Penna et al. 
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[2013] is used to describe the behaviour of masonry walls. Timoshenko beams characterised by 

an elasto-plastic law represent RC members [Cattari and Lagomarsino, 2013]. The simulations 

are carried out with the software TREMURI [Lagomarsino et al., 2009; Lagomarsino et al.; 

2013, Penna et al., 2013]. 

The adopted mechanical properties are summarised in Table 2. The equivalent friction and 

cohesion parameters for masonry piers (μeq and ceq) are computed as follows: 

Step1) Calculation of the shear strength: For single masonry walls, Penna et al. [2013] proposed 

to set the equivalent friction and cohesion (i) on the basis of the strength criterion which is 

representative of the expected failure and (ii) assuming the axial force N acting on the section. 

For multi-storey (mixed RC-URM and plain URM) wall buildings with RC slabs, Mandirola 

[2014] used the same approach and set μeq and ceq (i) on the basis of the shear criterion which 

represents the expected shear failure and (ii) assuming the axial force N at the base of the URM 

walls considering the gravity loads only. The latter assumption means that the calibration is 

made without taking into account the variation of the axial force in the URM walls due to the 

floor level and the load transferred by the RC slabs. 

As the objective of the paper is to provide practical guidelines for setting up models by using 

standard material tests only, the approach proposed by Mandirola [2014] is followed herein. 

Note that, in a multi-storey building, the approach would require different values of μeq and ceq 

depending on the floor level to account for the variation of axial force over the height of the 

building. However, since in the top storeys the URM walls are dominated by rocking 
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deformations because of the low axial force acting on the URM walls, a variation of μeq and ceq 

is unlikely to affect the results significantly. 

Step 2) Calculation of μeq and ceq: In the macro-element developed by Penna et al. [2013], the 

shear strength of a masonry wall Vsh is the sum of the friction component Vµ and the cohesion 

component Vc: 

 

csh VVV += µ  (3.2) 

The equivalent friction and cohesion parameters μeq and ceq can be found by assigning half of the 

shear strength to the friction component Vμ and half of the shear strength to the cohesion 

component Vc: 

NVV eqsh ⋅==⋅ µµ5.0  (3.3a) 

grosseqcsh AcVV ⋅==⋅5.0  (3.3b) 

Note that (i) the cohesion component Vc is determined considering the gross section area Agross 

and that (ii), for URM walls with shear behaviour, plastic displacements occur when the shear 

force V is bigger than the friction component (Vμ). The assignment of 50% of the total shear 

(Vsh) to cohesive and friction components is chosen on the basis of the experimental results. In 

fact, in the hysteretic behaviour of TU1 and TU2, the stiffness degradation in the masonry walls 
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starts for values of shear forces V equal to around 50% Vsh. The force-displacement results of 

two quasi-static cyclic tests [Petry and Beyer, 2014a] on URM walls exhibiting dominant shear 

behaviour are used to validate the approach for the calculation of μeq and ceq. The comparison 

(Fig. 5) shows that the TREMURI models with the proposed values of μeq and ceq provide good 

estimates of the stiffness degradation in the pre-peak response and of the dissipated energy (β = 

0.25). 

Concerning the calculation of the shear strength of the masonry wall, Penna et al. [2013] propose 

to use the strength criterion which is representative of the expected failure. In this case, the 

strength of the masonry panel is calculated by using the shear strength criterion which accounts 

for the brick tensile strength [Mann and Müller, 1982]: 

tbv

tb
sh ltf

NfltV +
+

= 1
)1(3.2 α

 (3.4) 

where l and t are the length and the thickness of the masonry wall, N the axial force acting on 

section and ftb the brick tensile strength. (1+αv) = (1+HCF/l) is a correction coefficient proposed 

by Magenes and Calvi [1997] to account for the effect of complex stress distribution. HCF is the 

height of the contra-flexure point of the masonry wall. According to such a calibration, for TU1 

the shear strength Vsh is equal to 141 kN (N = 460 kN) and for TU2 the shear strength Vsh is 

equal to 123 kN (N = 260 kN). The experiments have shown that, for TU1 and TU2, HCF can be 

assumed equal to the storey height. The tensile strength of the brick, ftb, is set equal to 1.27 MPa 
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according to Petry and Beyer [2014a] who tested masonry walls similar to those herein 

considered. 

In Table 2, the adopted E-modulus corresponds to the vertical masonry E-modulus (Emv) 

obtained from standard compression tests on masonry wallettes [EN 1052-1, 1998], see Sec. 3.2. 

The shear modulus (Gm) is calculated from the E-modulus Emh (compression parallel to bed-

joints, see Sec. 3.2): 

)1(2
)25.0(

)1(2 M

mv

M

mh
m

EE
G

νν +⋅
⋅

=
+⋅

=  (3.5) 

νM is the Poisson ratio of the masonry wall which was found to be equal to 0.18 according to EN 

1052-1 [1998]. 

For the construction of the macro-model, additional assumptions on the stiffness and 

deformation capacity of the elements are required: 

i) Stiffness of URM walls: The stiffness of URM walls corresponds to the uncracked stiffness of 

the section. For the shear damage model, non-linear plastic deformations in the pre-peak 

response are taken into account by the effect of the shear deformability parameter Gct [Penna et 

al., 2013]. The latter is set equal to one so that, at peak strength (Vsh), the total horizontal 

displacement utot is 1.5 times the elastic one uel: 
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eltot uu 5.1=  (3.6) 

with )/( ltGhVu mshel = . h, l, t are the height, length, thickness of the wall. For the flexural 

behaviour, non-linear elastic deformations are taken into account in terms of kinematic variables 

(rotation and vertical displacement of the section). A no tension model is attributed to the zero-

length springs in which flexural and axial deformations are lumped [Penna et al., 2013]. 

ii) Softening parameter β: The parameter β, which describes the softening post-peak response of 

the URM walls, is here set equal to zero. This means that the macro-element does not display 

any strength degradation after the peak. 

iii) Failure criterion for URM walls: The failure criterion follows the formulation proposed by 

EN 1998-3 [2005] in which the near collapse (NC) inter-storey drift δu of a masonry wall 

depends on its failure mechanism: 

For shear failure %53.0=uδ  (3.7a) 

For flexural failure )/(%07.1 LH CFu ⋅=δ  (3.7b) 

For flexural failure, the near collapse drift is also dependant on the ratio HCF/L (height of the 

contra-flexure point over length of the pier). Although the pier’s displacement capacity is defined 

as horizontal load failure, tests have shown that URM walls lose their vertical load bearing 

capacity soon after the horizontal load failure [Petry and Beyer, 2014b]. Once the first URM pier 
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fails, it is assumed that the system reaches its ultimate displacement capacity. The inter-storey 

drift δ is calculated as follows: 

h
ji ∆−∆

=δ  (3.8) 

where Δi and Δj are the horizontal displacements of the beams below and above the considered 

wall and h the height of the wall. 

iv) Stiffness of RC members: Experiments on mixed RC-URM wall structures [Paparo and Beyer, 

2014; Beyer et al., 2014] have shown that the RC walls crack only in the first storey, while the 

above storeys feature just thin cracks, mainly in the construction joints connecting walls and 

slabs (or beams). As a consequence, the reduction of stiffness according to Priestley et al. [2007] 

is applied to the first storey of the RC walls and to the RC beams. This reduction is taken into 

account by considering the effective stiffness EIe: 

y

N
e

MEI
ϕ

=  (3.9) 

where MN is the nominal yield moment, calculated considering the axial force acting at the base 

of the wall before applying the horizontal load, and φy is the nominal yield curvature, which is 

equal to Cεy/lw. C is a constant depending on the geometrical properties of the section; εy is the 

yield strain of the longitudinal reinforcing bars and lw is the length of the wall. To account for 

the presence of thin cracks in construction joints between the RC walls above the first storey and 

D
ow

nl
oa

de
d 

by
 [

E
PF

L
 B

ib
lio

th
èq

ue
] 

at
 1

4:
46

 2
4 

N
ov

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
19 

the slabs (or beams), the concrete E-modulus of the RC walls above the first storey is reduced by 

50%. The latter assumption is considered applicable if (i) the mean longitudinal reinforcement 

ratio of the RC walls is within the range of 0.2% and 4.0% and if (ii) the RC walls are built 

between floor levels and their longitudinal reinforcements pass across the slabs, as it is generally 

the case for mixed RC-URM structures representative for residential buildings in Switzerland. 

v) Axial stiffness of RC beams: The RC beams are modelled with infinite axial stiffness to 

guarantee that the walls at each floor displace horizontally by the same amount. 

vi) Failure criterion for RC members: All RC elements are designed to form a ductile flexural 

mechanism. The ultimate chord rotation θu of RC members is estimated according to EN 1998-3 

[2005]. However, the deformation capacity of RC members developing a stable flexural response 

is much larger than that of URM walls. In all the analyses presented in this paper, the RC 

elements do not reach their deformation capacity. 

vii) Effective length of the RC beams: In the macro-model the user can control the effective 

length of the RC beams (Lbe) by introducing rigid offsets. To account for the curvature 

penetration of RC beams into URM walls, the deformable part is increased by its section depth 

hb where the beam spans into an URM wall [Priestley et al., 2007]. In case of beams connecting 

two URM walls one obtains as length of the deformable part of the beam: 

bbbbe hLhL ++=  (3.10a) 
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where Lb is the clear distance between the ends of the two walls. If the beam spans one URM 

and one RC wall (as represented in Fig. 6bone obtains: 

bbbe LhL +=  (3.10b) 

The effective length of the beams influences their stiffness and therefore their shear force, which 

lead to the variation of axial force at the base of the walls. Fig. 6a compares the variation of the 

axial force at the base of the URM wall for macro-models with different effective lengths to the 

data obtained from TU2. Results indicate that the best match in terms of variation of axial force 

at the base of the URM wall is, indeed, obtained for Lbe according to Eq. (3.10). 

A parametric study comparing the response between the shell-model and the macro-model is 

carried out. The investigated parameters are (i) the axial load applied at the top of the two storeys 

of the URM wall and (ii) the strength of the RC beams (Fig. 6b and 7). The objective is to 

ascertain if the estimation of Lbe according to Eq. (3.10) in the macro-model can be used also for 

different configurations of masonry structures. The study is carried out by comparing the 

variation of axial stress at the base of the URM wall since such a variation is directly related to 

the assumed deformable length of the RC beams (Lbe). The results confirm that in the macro-

model the effective length of the RC beams is accurately estimated by Eq. (3.10) also for 

different strengths of the RC beams (ρb = 0.6% - 1.2%) and different axial load ratios of the 

URM walls (σ0/fcM = 0.2 - 0.6). 
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3.4. Comparison of the numerical and experimental results 

Comparison between the two numerical models and the experiments is made by analysing: 

i) The distribution of the base shear among the walls, to assess the influence of the relative 

stiffness of the members; 

ii) The distribution of the axial force between the walls, to check the assumptions of the effective 

length of the RC beams; 

iii) The inter-storey drift profile over the height of the structure, to ascertain the predicted 

deformed shapes. 

When comparing the numerical to the experimental results, it is assessed which of the two 

models predicts the experimentally obtained values better. Further it is assessed whether the 

numerical models can capture the trends of the experimental results with increasing displacement 

demand. The numerical results are not benchmarked against the experimental results in absolute 

terms since, for example, small unintended variations in the axial load that was applied during 

the test might falsify the picture. 

Fig. 8a and 8b show that the shear carried by the walls is estimated rather accurately by both 

numerical approaches. Note, however,  that with regard to the shear carried by the RC walls, the 

two models performed differently. (i) The macro-model approximates the force-displacement 

response of the RC walls with a bilinear relation which initial slope corresponds to the effective . 

As a consequence, it does not capture the stiffness degradation of the RC members due to 
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cracking and the onset of yielding of the longitudinal bars and therefore underestimates the shear 

forces carried by the RC walls before yielding. (ii) The shell-model, instead, captures the 

stiffness degradation of the RC members. 

For TU1 there are some discrepancies in the distribution of the axial force between the models 

and the experimental results (Fig. 8c). During testing of TU1, the total axial load applied at the 

top of the URM wall varied with around 30 kN while in the numerical analyses the axial load 

was kept constant. As a consequence, the variation of axial force that is due to the variation of 

the axial load applied at the top of the URM wall is not taken into account in the simulations. On 

the other hand, for TU2 (Fig. 8d), the axial load applied at the top of the URM wall was constant 

throughout the testing procedure and the difference between experiments and analytical results is 

small. 

During the testing of TU1 and TU2, the inter-storey drift δ of the first storey was almost equal to 

that of the second storey and the same trend is found from the simulations (Fig. 9a and 9b). Fig. 

9c and 9d represent the ratio between the inter-storey drift and the average drift. Except for 

absolute average drifts smaller than 0.1%, the comparison between experiments and simulations 

is satisfactory and differences smaller than 15% are found. The evaluation of the displacement 

capacity, calculated only with the macro-model, gives good results although the displacement 

capacity of the structure is somewhat overestimated for the negative direction of loading. In Fig. 

8 and 9 the numerical simulations performed with the macro-model are stopped when the failure 

criterion is attained. In addition, the two numerical strategies are able to capture the prevailing 

shear and flexure damage modes that occurred over the height of the URM walls. 
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The macro-model can be used for practically oriented analyses of complete mixed RC-URM 

wall structures and, following the indications proposed in Sec. 3.3, relative accurate results with 

a limited computational effort can be obtained. The shell-element approach instead, can be 

adopted for detailed analyses of the mechanical behaviour of small substructures to give a better 

understanding about their local behaviour. Moreover, the shell-element approach can be used 

when an irregular arrangement of openings does not allow the definition of an equivalent frame 

in the macro-model approach or when the URM walls have not sufficiently large dimensions to 

be treated as macro-elements [Lourenço, 1996]. However, due to the regularity of the herein 

analysed mixed buildings, the macro-modelling technique can be generally used and is the most 

suitable tool for practically oriented analyses of such buildings. 

4. Application to four buildings 

One reference structure and three retrofit solutions (Fig. 10) are compared to exemplify the 

benefits of retrofitting URM buildings by replacing or adding RC walls. The reference structure 

is a four-storey building composed of three URM walls. The adopted geometrical configuration 

leads to a shear failure mechanism at the bottom storey. In case study 1 one URM wall is 

replaced by one RC wall of the same length. Case study 2 represents the retrofit design made by 

the insertion of one RC wall which is parallel but not in the same plane of the other URM walls. 

As a consequence, in the numerical simulations the RC wall is connected to the URM structure 

with axially rigid links with zero moment capacity at each floor as represented in Fig. 10c. In 

case study 3 two slender RC walls are added to the original URM building. Fig. 10 shows the 

elevation of the four structures and the lateral load pattern applied. The thickness of the walls is 
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always equal to 0.20 m. Two-dimensional simulations are carried out and RC beams 0.25x0.60 

m represent the slabs. The thickness of the RC beams is three times that of the walls [Priestley et 

al., 2007] and the free span of the RC beams is 1.05 m. The axial stress ratio σ0/fcM at the base of 

the URM walls is around 0.14. All RC walls and slabs are designed such that the URM walls fail 

before any RC element. RC member’s longitudinal reinforcement ratios are listed in Table 3; the 

shear reinforcement of RC walls and beams are designed to prevent shear failure. The total 

masses of the buildings are proportional to the sum of the length of the walls, that is 180 t for the 

reference structure and case study 1; 240 t for case studies 2 and 3. 

The reference structure and case study 1 (Fig. 10a and 10b) are also analysed considering a lower 

coupling provided by the RC beams (ρb equal to 0.20%). The objective is to decrease the 

coupling effect provided by the RC beams and achieve dominant rocking behaviour of the URM 

walls. This configuration will show that for buildings with rocking URM walls the increase in 

displacement capacity after the retrofitting is smaller than for buildings where the URM walls 

develop a dominant shear behaviour. 

The analyses are carried out with the macro-model following the indications described in Sec. 

3.3. μeq and ceq, the equivalent friction and cohesion coefficients, are equal to 0.18 [-] and 0.17 

MPa respectively. The analyses are performed until the structures reach their Significant Damage 

(SD) limit state, which corresponds to the instant when the first URM wall reaches the target 

inter-storey drift capacity δcap. For walls failing in shear, the inter-storey drift capacity at the SD 

limit state is assumed as 0.4% [EN 1998-3, 2005]. For URM walls failing in flexure, their inter-
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storey drift capacity δcap is set equal to 0.8% HCF/L [EN 1998-3, 2005]. The inter-storey drift 

demand of each wall (δD) is calculated as follows: 

i
ji

D h
θδ −

∆−∆
=  (4.1) 

where Δi and Δj are the horizontal displacements of the beams below and above the considered 

wall, h the height of the wall and θi the rotation of beam below the wall. Comparisons will be 

carried out by analysing the capacity curves (Sec. 4.1) and the results from the N2 method (Sec. 

4.2). 

4.1. Capacity curves 

Fig. 11 represents the capacity curves of the four case studies for the two directions of loading. 

Besides the augmentation in strength, there is an increase in average drift capacity between 

approximately 50-60% (see also Table 4). As outlined in Sec. 2, the RC walls change the 

deformed shape and avoid a concentration of damage in the first storey. 

Case study 1 is not plan-symmetric and its response changes whether the structure is pushed 

towards one direction or another (Fig. 11a). URM walls are, in fact, much more sensitive to the 

variation of the axial force if compared to RC walls with respect to their stiffness, displacement 

and strength capacity. Since URM wall 1 and the RC wall are flanked by beams only from one 

direction (Fig. 10b), the axial force at their base changes depending on the loading direction. 
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Fig. 12 represents the force-displacement relation for the reference structure and case study 1 

when the longitudinal reinforcement ratio ρb of the beams is reduced to 0.20%. This 

configuration represents the effect of the retrofitting technique when the URM walls develop 

mainly a rocking behaviour. Since the addition of the RC wall does not particularly change the 

deformed shape of the structure, there is no significant increase in displacement capacity. In Fig. 

12, the displacement and strength capacities of the retrofitted configuration change depending on 

the loading direction since the retrofitted configuration is not plan symmetric (Fig. 10a). 

4.2. N2 method 

The objective of structural engineers designing a retrofit intervention is that the retrofitted 

structure can withstand a larger seismic hazard than the original building. In codes the seismic 

hazard is typically expressed by the peak ground acceleration (PGA), which scales the shape of 

the design spectrum. Since retrofit interventions affect stiffness, strength and deformation 

capacity, the resulting increase in maximum peak ground acceleration (PGAmax) that the 

structure can withstand is evaluated by the N2 method. The method evaluates the so called 

“performance point”, which is found by comparing the capacity curve of the equivalent bi-linear 

single-degree of freedom (SDOF) system with the seismic demand [Fajfar, 2000]. From the 

pushover curve of the multi-degree of freedom system (actual MDOF response), the force-

displacement response of the SDOF system (actual SDOF response) is computed according to 

EN 1998-1 [2004], Fig. 13a. The bi-linear approximation of the SDOF’s force-displacement 

response is then constructed using the proposed criteria of Table 5 (see also Fig. 13b) and the 

performance point of the structures is computed according to EN 1998-1 [2004]. 

D
ow

nl
oa

de
d 

by
 [

E
PF

L
 B

ib
lio

th
èq

ue
] 

at
 1

4:
46

 2
4 

N
ov

em
be

r 
20

15
 



Acc
ep

ted
 M

an
us

cri
pt

 
27 

Besides the comparison of PGAmax, the other quantities representing the seismic behaviour of the 

bilinear approximation of the equivalent SDOF systems (T*, Δ*
y, Δ*

u, μ*, F*
b) are summarised in 

Table 6. In the analyses, the seismic demand is represented by an acceleration design spectrum 

of soil class C (Tb = 0.2 s; Tc = 0.6 s and Td = 2 s [EN 1998-1, 2004]). Note that for all the 

structures the equivalent period T* (period of the equivalent SDOF system) is lower than Tc, as it 

is generally the case for URM structures. As for all the configurations T* < Tc = 0.6 s, the 

performance point of the equivalent SDOF system Δ*
u is calculated as follows [EN 1998-1, 

2004]: 

( ) et
c

u
u

et
u

T
Tq

q
*

*

*
* 11 ∆≥






 −+

∆
=∆  (4.2) 

where Δ*
et is the performance point of the SDOF system with period T* and unlimited elastic 

behaviour: 

2*
**

2
)( 








=∆

π
TTSaet  (4.3) 

qu is the ratio between the peak acceleration in the structure with unlimited elastic behaviour and 

in that with limited strength. Sa(T*) is the elastic acceleration response spectrum at the equivalent 

period T*. Fig. 14a shows the used acceleration design spectrum for PGA = 1 m/s2, whereas Fig. 

14b to 14f represent the identification of the performance point in the acceleration-displacement 

response spectra for the maximum PGA that the structures withstand (PGAmax). 
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For the three case studies, the system’s yield displacements Δ*
y are between 1.15 to 1.45 times 

the one of the reference structure. The ultimate displacements Δ*
u increase between 1.50 and 

1.60 times, mainly because of the change in displacement profile due to the insertion of RC 

walls. As a result, the ductility of the system μ* increases between 5% and 30%. The base shear 

capacity of the equivalent SDOF system (F*
b) rises for all the case studies. In case study 3 the 

increase in base shear is larger than for the other configurations due to the larger frame effect 

developed by the presence of the two RC walls. As a result of the increase displacement and 

force capacity, the maximum PGA that the structures can sustain (PGAmax) rises between 140-

170%. 

5. Conclusions and outlook 

The article presented a retrofit technique for modern URM buildings connected by RC slabs by 

adding or replacing RC walls to the original structure. The study targeted structures where the 

RC members are designed to fail for larger displacement demands than the URM walls. Mixed 

RC-URM buildings in which the RC members are not capacity-designed were not herein 

considered. The advantages of this retrofitting technique are related to (i) an increase in strength 

capacity and (ii) a change of the deformed shape. The latter provides a failure mechanism with 

larger top displacements for the same level of inter-storey drift at the ground floor (Fig. 4). 

In order to analyse such structures, two computational strategies were presented, namely a shell-

model and a macro-model approach. The results of the two techniques were compared against 

experimental results and judged satisfactory. The macro-model, although requiring limited 
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computational efforts, was capable of representing all the main features of the seismic behaviour 

of mixed RC-URM wall structures: (i) distribution of the reaction forces between the walls at 

peak strength, (ii) evaluation of the inter-storey drift profile over the height of the structure, (iii) 

evaluation of the ultimate displacement capacity and (iv) damage modes that occurred in the 

URM walls. As a consequence a macro-element model, which follows the indications proposed 

in Sec. 3.3, is particularly recommended for practically oriented analysis of complete mixed RC-

URM wall structures. A shell-model approach, instead, can be adopted for analysing in detail the 

mechanical behaviour of small substructures where more refined analyses are needed. 

The case studies evaluated the benefits in terms of design quantities: the increase in displacement 

capacity ranged between 50% and 60% and the increase in PGAmax was between 40% and 70%. 

The displacement ductility μ* increased between 5% and 30%. 

The RC wall length, as well as its reinforcement ratio, was kept constant. Further studies will 

address the effects of varying the RC wall length and its reinforcement ratio with the objective of 

optimising the efficiency of the retrofitting technique. 
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FIGURE 1 Deformation pattern and inter-storey drift profile due to lateral forces of a single 
URM wall with dominant shear behaviour (a), a single RC wall with dominant flexure behaviour 
(b) and a mixed RC-URM structure (c). 
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FIGURE 2 EPFL tests on two mixed RC-URM wall substructures: crack pattern after failure. 
(a): TU1. (b): TU2 [Paparo and Beyer, 2014]. 
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FIGURE 3 Crack pattern in a four-storey mixed RC-URM wall structure, from Beyer et al. 
[2014]. 
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FIGURE 4 Deformation capacity, for the same level of inter-storey drift δ*, of a mixed RC-
URM structure (a) and a shear dominated URM building (b). 
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FIGURE 5 Comparison of the force-displacement curves obtained from in-plane cyclic tests 
[Petry and Beyer, 2014a] and numerical simulations. 
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FIGURE 6 Effective length (Lbe) of the RC beams in the macro-model. (a): comparison of the 
variation of the axial force at the base of the URM wall between TU2 (experiment) and macro-
models with different effective lengths. (b): model for the parametric study. 
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FIGURE 7 Effective length (Lbe) to be adopted in the macro-model, parametric study. Variation 
of axial stress ratio for different axial loads applied to the URM wall (σ0/fn) and different beam 
reinforcement ratios (ρb). 
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FIGURE 8 Distribution of the reaction forces between the two walls. (a), (b): base shear; (c), 
(d): axial force. 
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FIGURE 9 (a), (b): inter-storey drift profile over the height of the structure; (c), (d): ratio inter-
storey drift-average drift. 
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FIGURE 10 (a): reference URM structure; (b): case study 1; (c): case study 2; (d): case study 3. 
All dimensions in m. All RC beams have a clear span of 1.05 m. 
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FIGURE 11 Force-displacement relations: reference URM structure and retrofitted 
configurations; squares indicate yielding of the RC walls. 
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FIGURE 12 Force-displacement relations: reference structure and case study 1 when the URM 
walls have a dominant flexural behaviour. Squares indicate yielding of the RC walls. 
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FIGURE 13 Mixed RC-URM wall structure, force-displacement curve. (a): actual MDOF and 
SDOF responses; (b): actual SDOF response and equivalent SDOF system. 
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FIGURE 14 (a) Design acceleration spectrum adopted for the evaluation of the N2 method; (b-f) 
identification of the performance points in the acceleration-displacement response spectra 
diagram for the maximum PGA that the structures withstand. 
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TABLE 1 Mechanical properties adopted for shell-model. 

Materials 
Material 

properties 
Shell-model 

Material test 

results 

Bricks    Ebx    [GPa] 5.60  9.80 

 

   Eby    [GPa] 5.60  4.70 

 
   ftb       

[MPa] 
1.4 - 

 
   GI

b     

[N/mm] 
0.08 - 

Mortar joints     μ     [-] 0.63  0.63 

 

   c      [MPa] 0.38 0.38 

 

   ftm    [MPa] 0.30  ftm = c/(2μ) 

 

  Knn    

[MN/m3] 
3.00 x 105  - 
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  Ktt     

[MN/m3] 
1.00 x 104  - 

 

  GI
f     

[N/mm] 
0.41  - 

 

  GII
f    

[N/mm] 
0.50  - 

Masonry walls  Emv     [GPa] - 5.10 

  Emh     [GPa] - 1.28 

Concrete   Ec    [GPa] 34.5  34.5 

 
 fc & fcc 

[MPa]                               

51.4 (unconfined) 

80.0 (confined – RC 

walls) 

75.0 (confined – RC 

beams) 

51.4 
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   ftc     [MPa] 3.00 3.00 

Reinforcing 

bars 
  fy     [MPa] 540  537 

   fu     [MPa] 600 625 

Ebx: brick E-modulus for loading along the brick’s height; 

Eby: brick E-modulus for loading along the brick’s length; 

ftb: brick tensile strength; 

GI
b: brick fracture energy; 

μ and c: interface friction and cohesion coefficient; 

ftm: interface tensile strength; 

Knn and Ktt: interface normal and tangent stiffness; 

GI
f and GII

f: interface Mode I and II fracture energy; 

Emv and Emh:  vertical and horizontal masonry E-modulus; 

Ec: concrete E-modulus; 

fc and fcc: confined and unconfined concrete compressive strength; 
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fy and fu: reinforcing bar yield and ultimate tensile strength, [SIA162/1, 1995]. 
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TABLE 2 Adopted material properties for macro-model. 

Materials 
Material 

properties 
Macro-model 

Material test 

results 

URM 

members 
μ* / μ [-] 

0.15 (TU1) 

0.24 (TU2) 

0.63 

 

c* / c [MPa] 

0.23 (TU1) 

0.20 (TU2) 

0.38 

 

fm       [MPa] 6.30  6.30 

 

Emv    [GPa] 5.10  5.10 

 

Gm     [GPa] 0.54  - 

 Gct    [-] 1.00 - 

 β       [-] 0.00 - 

RC members Ec      [GPa] Eeff   (1st storey & beams) 36.0 
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18.0  (above storeys) 36.0 

 

Gc      [GPa] 

Eeff/2.4  (1st storey & beams) 

7.50  (above storeys) 

7.50 

7.50 

 fy        [MPa] 550  537 

μ* and c*: equivalent friction and cohesion coefficients; 

μ and c: friction and cohesion coefficient from triplet tests; 

fm: masonry compressive strength; 

Emv: E- modulus of masonry panels subjected to compression orthogonal to bed-joints; 

Gm: masonry shear modulus; 

Gct: shear deformability parameter; 

β: softening parameter; 

Ec and Gc: RC member’s Young’s and shear modulus; 

fy: reinforcing bar yield tensile strength adopted in RC members. 
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TABLE 3 RC member’s reinforcement ratios. 

RC walls ρmean (case studies 1 & 2) 0.26 % 

 ρmean(case study 3) 0.35 % 

RC beams ρb,top = ρb,bot = ρb 0.90 % 

ρmean: longitudinal reinforcement ratio in RC walls; 

ρb,top = ρb,bot = ρb: top and bottom longitudinal reinforcement ratios (RC beams). 
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TABLE 4 Increase in drift capacity for the three case studies. 

 

Average drift 

capacity 

[%] 

Increase in drift capacity 

[%] 

Reference 

structure 
0.24 % - 

Case study 1 - 

Pos. 

Case study 1 - 

Neg. 

0.36 % 

0.36 % 

+ 50 % 

+ 50 % 

Case study 2 0.38 % + 58 % 

Case study 3 0.37 % + 54 % 
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TABLE 5 Definition of the bi-linear envelope of the equivalent SDOF. 

Parameters for 

the bi-linear 

envelope 

Proposed criteria 

(i)    Maximum 

shear 

F*
b 

F*
b is determined so that the energy dissipated by the 

equivalent SDOF and the actual SDOF systems are 

equal (Fig. 13b) 

 

(ii)    Initial 

stiffness 

kin 

kin is the secant stiffness at  0.70 Vmax/Γ  (Fig. 13b) 

 

(iii)    Ultimate 

drift 

δu 

δu  corresponds to the displacement Δ*
u divided the 

height of the structure 

Vmax: maximum shear force (actual MDOF response); 

F*
b: maximum shear force (equivalent SDOF system); 
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kin: initial stiffness (equivalent SDOF system); 

δu: ultimate average drift (equivalent SDOF system); 

Δ*
u= Δmax,top /Γ: ultimate displacement (actual SDOF response); 

Δmax,top: ultimate top displacement (actual MDOF response); 

Γ: transformation factor calculated according to EN 1998-1 [2004]. 
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TABLE 6 Comparison between the reference structure and the three case studies (except for the 
equivalent period T* and PGAmax,abs values of the reference structure taken as unit). 

        

Reference 

structure 

Case 

study 1- 

Pos. 

Case study 1- 

Neg. 

Case 

study 2 

Case 

study  3 

T* 0.38 s 0.38 s 0.34 s 0.41 s 0.35 s 

PGAmax,abs 2.0 m/s2 3.0 m/s2 3.4 m/s2 2.8 m/s2 3.4 m/s2 

Δ* y 1.00 1.45 1.15 1.31 1.28 

Δ*
u 1.00 1.50 1.50 1.58 1.52 

μ* 1.00 1.04 1.30 1.21 1.19 

F*
b 1.00 1.42 1.45 1.50 2.02 

PGAmax 1.00 1.50 1.70 1.38 1.68 

T*: equivalent period (equivalent SDOF system); 

PGAmax,abs: absolute maximum PGA the structures can sustain; 
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Δ*
y: normalised yield displacement (equivalent SDOF system); 

Δ*
u: normalised ultimate displacement (equivalent SDOF system); 

μ*: normalised system’s displacement ductility (equivalent SDOF 

system); 

F*
b: normalised total base shear (equivalent SDOF system); 

PGAmax: normalised maximum PGA the structures can sustain. 

 

 

D
ow

nl
oa

de
d 

by
 [

E
PF

L
 B

ib
lio

th
èq

ue
] 

at
 1

4:
46

 2
4 

N
ov

em
be

r 
20

15
 


