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Microscopic and thermodynamic definition of γsl

In this document we briefly clarify the connections between the atomic-scale simulation of

solidification, the thermodynamic definition of a free energy excess for a solid-liquid interface

in out-of-equilibrium conditions, and classical nucleation theory.

The central tenet of our treatment is that the thermodynamically consistent way of defin-

ing a reference state for a microstate that contains a solid and liquid region separated by an

(inevitably) ill-defined interfacial region is to introduce an atom-based order parameter φ that

distinguishes the solid (with a mean order parameter φs) from the liquid (average order param-

eter value φl). Given the free-energy profile as a function of the total Φ =
∑

i φ(i) for a system

that is composed of N atoms, one can then define the number of solid atoms in the reference

state by inverting the relation Φ = nsφs + (N − ns)φl,

ns(Φ) =
Φ−Nφl

φs − φl

, (1)

This procedure gives you a reference state that has zero surface excess for the order parameter

φ. The free energy of an idealized system composed of ns solid atoms and nl = N − ns liquid

atoms, with no surfaces or interfaces, is equal to Nµl +µslns, where µl is the chemical potential

of the liquid and µsl is the difference between the chemical potentials of the solid and liquid.

Setting the free energy of the liquid as the reference zero, this leaves us with

G(Φ) = µslns(Φ) +Gsurf(Φ) (2)

for any system with an interface present. Through this procedure we thus single out an excess

term due to the solid-liquid interface.

It is customary to express the surface free energy excess, Gsurf, as the product of a specific

surface energy term γsl and the area of the interface. The problem in doing so is that there

can be some ambiguity in defining the area of the solid region. In our method this problem is

circumvented as the area of the interface is defined by the boundary conditions. The biased

dynamics is used to trigger the formation of a solid-liquid interface perpendicular to the elongated

direction of the simulation box. This interface thus has a fixed, total surface area of A = 2∆y∆z.

By contrast, in 3D nucleation, both the volume and surface area of the nucleus depend on

the definition of the solid region. It is thus not obvious how to factor the surface excess

as a product of an area and a nucleus-size-independent γsl as is required when interpreting

nucleation experiments. A model with some assumptions is thus inevitably required. In this

model one could take the planar-interface limit of γsl as a constant, and infer the surface area
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FIG. 1. Schematic representations of the partitioning of simulation cells that are obtained when an

order parameter is used to discriminate solid regions from liquid regions. The “excess volume” region

is indicated by a dashed pattern. Top: schematic of the boundary conditions of a periodic cell in

which there is an idealized, planar-interface simulation. Bottom: geometry for a finite nucleus. Note

that the choice of dividing surface changes the volume and surface area of the solid cluster.
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of the nucleus from the free energy excess for a given configuration: γslA(Φ) = G(Φ)−µslns(Φ).

However, if one instead wanted a predictive model the most common approach is that used in

classical nucleation theory (CNT): the surface area of the cluster A is assumed to be related

to ns by A(ns) = σn
2/3
s , where σ is a constant that depends on the geometry of the cluster.

This implies that the cluster has a fixed shape and a volume proportional to ns. In setting the

proportionality constant, σ, one implicitly assumes that the densities of the solid and liquid

portions are fixed. The most natural choice for these fixed densities are the values that would

be taken by the bulk solid/liquid under the same thermodynamic conditions. The inverse of

these densities are the molar volumes, which we can insert into equation 1 so as to determine

ns(V ).

When ns(Φ) is defined using an order parameter that is not proportional to the molar volume,

the volume of the reference state ns(Φ)vs + (N −ns(Φ))vl (here vs and vl are the molar volumes

of the bulk solid and liquid) will not equal the actual volume of the system, V . In other words,

determining ns based on Φ makes the volume of the nucleus ill-defined - one could take it to

be ns(Φ)vs, V − (N − ns(Φ))vl, or any intermediate value. Choosing a reference based on the

molar volume thus provides the most consistent framework for linking atomic-scale models of

nucleation with CNT.

What really matters, however, is how the choice of dividing surface affects the prediction of

the free energy of the nucleus, and the activation energy to solidification. As discussed in the

main text, for a given configuration of a planar interface in out-of-equilibrium conditions the

free energy G is fixed. The choice of order parameter and reference state only affects the way

this total energy is partitioned into bulk and interface terms. The specific free energy excesses

obtained using two different order parameters φ and θ to define the reference state are related

by:

γΘ
sl − γΦ

sl = −µsl
ns(Θ)− ns(Φ)

A
. (3)

This change in the interfacial free energy can been seen as coming from a shift in the position

of the dividing surface along x. As a consequence of this shift, different numbers of atoms are

assigned to the solid and liquid parts of the system. Any changes that are observed in the value

of γsl with a different reference state are thus compensated by a change in the bulk term so

that the overall free energy of the system remains constant.

A similar treatment also applies in the case of 3D nucleation. Here, however, one has to

consider that the choice of reference state will also affect the average density of the solid cluster,

i.e. the proportionality constant σ that relates the number of solid atoms to the surface area
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of the cluster. For the the overall free energy to be independent of the choice of reference state

the following must hold

µslns(Θ) + γΘ
sl σ

Θns(Θ)2/3 = µslns(Φ) + γΦ
slσ

Φns(Φ)2/3. (4)

If one assumes that any change in ns is related to the change in surface area by an equation

that is analogous to that found in the planar interface limit one can write:

ns(Φ)− ns(Θ) = (γΘ
sl − γΦ

sl )
σΦ

µsl

ns(Φ)2/3. (5)

One can then write a relation between σΘ and σΦ:

σΘ =σΦ γ
Φ
slns(Φ)2/3

γΘ
slns(Θ)2/3

+ µsl
[ns(Φ)− ns(Θ)]

γΘ
slns(Θ)2/3

=σΦ γ
Φ
slns(Φ)2/3

γΘ
slns(Θ)2/3

+ σΦ

[
γΘ

sl − γΦ
sl

]
ns(Φ)2/3

γΘ
slns(Θ)2/3

=σΦns(Φ)2/3

ns(Θ)2/3

(6)

One sees that in order to guarantee that CNT results for finite-size nuclei are consistent with

the thermodynamic, planar-interface limit, it is necessary to apply a correction to the propor-

tionality constant that relates the solid atom count to the surface area. This scaling ensures

that the estimate for the surface area of the cluster is independent of the choice of reference

state. Substituting Eq. (5) into Eq. (6) one further time gives

σΦns(Φ)2/3 = σΘ

[
ns(Φ)− σΦ(γΘ

sl − γΦ
sl )

µsl

ns(Φ)2/3

]2/3

= σΘns(Φ)2/3
[
1− δ ns(Φ)−1/3

]2/3
, (7)

where we introduced the shorthand δ = σΦ(γΘ
sl − γΦ

sl )/µsl. Expanding for large ns(Φ) gives:

σΦ ≈ σΘ

[
1− δ

ns(Φ)1/3

]
. (8)

Hence, when a different order parameter is used to define the interfacial area, the size-to-area

conversion constant that enters the CNT expression for the surface energy must be corrected

with a a term ∝ 1/R. This is formally equivalent to the so-called Tolman correction, which

has been shown to be a simple yet effective way to reconcile nucleation rate data obtained for

nanoscopic nuclei with results obtained in the planar interface limit [1].

Local order parameter

The local order parameter φ for each atom i depends on the position of its nearest neighbors.

To single out the first-shell neighbors, we introduce a radial cutoff function between each pair
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FIG. 2. The distributions of κ for a bulk fcc crystal oriented with the 〈100〉 direction parallel the

axes of the simulation cell, and for the bulk liquid. All distributions have been computed at T = Tm.

SMAP indicates the sketch-map switching function [2] that we used to define φ = S(κ).

of atoms i and j:

cr(rij) =


1 rij ≤ r1

0 rij ≥ r0

(y − 1)2(1 + 2y) r1 < rij < r0

(9)

where y = (rij − r1)/(r0 − r1). We then compute an angular term cα(rij) to identify whether

atom j sits on an fcc lattice point relative to i. This angular term has a functional form inspired

by the cubic harmonics

cα(rij) = (x4y4 + y4z4 + x4z4)/r8
ij − ax4y4z4/r12

ij , (10)

Fig. 2 shows the shape of the above cubic harmonic function. The parameter α = 27 has

been changed from the original value used in Ref. [3]. This new value allows us to differentiate

more clearly between different orientations of the fcc environment. This is useful as cα is not

rotationally invariant. It can thus be used in conjunction with a rotation matrix to ensure that

an fcc crystal is only detected when it has a particular orientation. This orientation can be

specified using a set of Euler angles (φ, ψ, θ), i.e.,

c(φ,ψ,θ)
α (rij) = cα(R(φ,ψ,θ) · rij), (11)
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where

R(φ,ψ,θ) =

∣∣∣∣∣∣∣∣∣
cosφ cosψ − cos θ sinψ sinφ cosφ sinψ + cos θ cosψ sinφ sinφ sin θ

− sinφ cosψ − cos θ sinψ cosφ − sinφ sinψ + cos θ cosψ cosφ cosφ sin θ

sin θ sinψ − sin θ cosψ cos θ

∣∣∣∣∣∣∣∣∣ . (12)

The un-scaled local order parameter κ0 is then defined as

κ0(i) =

∑
i 6=j

cr(rij)cα(rij)∑
i 6=j

cr(rij)
. (13)

This quantity is linearly scaled using κ(i) = (κ0(i) − κ0
l )/(κ

0
s − κ0

l ) to ensure that the perfect

fcc lattice corresponds to κ = 1, while the average κ value for atoms in bulk liquid is zero. The

value of κ0(i) in the perfect fcc crystal with the desired orientation κ0
s = 1/16 can be readily

computed by summing over the positions of the ideal positions of nearest neighbors. It is also

possible to analytically integrate the value of κ0(i) in the bulk liquid, as one can safely assume

that the distribution of rij is uniform in the polar directions, i.e.,

κ0
l =

∫ π

0

dθ

∫ 2π

0

dφ cα(rij(φ, θ, r = 1)) =
143− a

5005
. (14)

For a given choice of a, κ(i) = 80080
2717+16a

κ0(i) + 16(a−143)
2717+16a

.

Figure 2 shows that the atoms in bulk fcc crystal and bulk liquid have a minimal amount

of overlap in the distribution of the local order parameter κ. Consequently, a tunable sigmoid

switching function [4] can be used to map each atom onto the solid-like or the liquid-like regime,

i.e.,

φ(i) = S(κ(i)) = 1− (1 + (2a/b − 1)(κ(i)/R0)a)−b/a, (15)

The switching function used in this work is shown in figure 2. It has a = 8, b = 8, and

R0 = 0.45. These values were selected so that φ = 0.5 corresponds to the crossover point at

which the κ distributions for the atoms belonging to the bulk crystal and the bulk liquid cross.

Simulation details

A truncated Lennard-Jones potential was used [5–7]:

u(r) =


4ε
[
(σ
r
)12 − (σ

r
)6
]

+ C1 r ≤ 2.3σ

C2(σ
r
)12 + C3(σ

r
)6 + C4(σ

r
)2 + C5 2.3σ < r < 2.5σ

0 r ≥ 2.5σ

(16)
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where C1 = 0.016132ε, C2 = 3136.6ε, C3 = −68.069ε, C4 = −0.083312ε, and C5 = 0.74689ε.

The time step was set equal to 0.004 Lennard-Jones time units, which gives negligible drift in

the conserved quantities for this system. The NPT ensemble was employed throughout with the

Nose-Hoover thermostat and barostat used to control the temperature and pressure. Only the x

dimension of the supercell was allowed to fluctuate under the barostat. The y and z dimensions

of the simulation cell were set so that they were commensurate with the equilibrated lattice at

the appropriate simulation temperature.

For the simulation runs presented in Figures 1 and 2 in the main text, a supercell with

5184 atoms was used. The total number of steps in each run was set equal to 5 × 107. In

order to reduce the total simulation time, the simulations in Figure 3 were performed using a

smaller supercell containing 1200 atoms or 1152 atoms for the 〈100〉 and 〈111〉 lattice directions

respectively. In addition, during these runs the system was restrained so that it remained in

a state that was somewhere between partially-solid/partially-liquid and completely solid. This

choice allows us to converge the free energy profiles much more quickly because the system

never fully melts, and a surface with the proper orientation is always available to promote

solidification. Since one can infer the value of µsl from the slope of the plateau region in the

free energy profile, it is still possible to extract an estimate of γsl(T ). We have meticulously

checked the finite-size effects on γsl for this simulation box size, and confirmed that when γsl is

computed in this way it is well-converged with respect to the results from simulations of larger

box sizes with complete melting. The simulation length for each run in Figure 3 was 2 × 107

time steps.

The PLUMED plug-in adds a bias potential to the system Hamiltonian. The metadynamics

bias and other constraints are calculated and updated inside the PLUMED software. At each

step of the simulation, the PLUMED software receives the atomic configuration from LAMMPS,

computes local order parameters and global collective variables, and returns an external bias

potential to the MD code.

In the following pages, sample input files for simulations performed with the interface in the

〈111〉 direction in Figure 3 are provided.

Sample LAMMPS input file

Here is a sample LAMMPS input file for running the molecular dynamics simulations of the solid-liquid systems.

atom_style atomic

units lj
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dimension 3

boundary p p p

processors * * 1

read_data ./data.lj # Coordinate file

Atoms of type 1 are the Lennard-Jones particles with the truncated pairwise potential [5–7]. The atom of type 2 is a fixed ghost

atom that does not interact with its surroundings. It is used as reference point in some of the collective variables.

group real type 1

velocity real create 0.6 RandomSeedHere dist gaussian

pair_style table linear 5000

pair_coeff 1 1 tr-lj.table TR_LJ 2.5

pair_coeff * 2 tr-lj.table NULL 2.5

neighbor 1.0 bin

timestep 0.004

An initial equilibration of 20’000 steps is performed before starting the biased dynamics. During this equilibration a highly efficient

Generalized Langevin thermostat [8] is employed.

fix 1 real press/berendsen x 0.0 0.0 1.0

fix 2 real gle 6 0.60 0.60 RandomSeedHere smart2.A every 5

run 20000 # Equilibration time

unfix 1

unfix 2

After the equilibration a metadynamics simulation in the NPT ensemble, using a Nosé-Hoover barostat and thermostat is started.

Only the elongated axis of the cell is left free to fluctuate. 20 million steps are performed for each simulation.

fix 3 real npt temp 0.60 0.60 0.2 x 0.0 0.0 0.5

fix 4 all plumed plumedfile plumed.dat outfile p.log

thermo 500

thermo_style one

dump coord all xyz 5000 traj.xyz

run 20000000

write_restart restart.lj

Sample PLUMED input file

Here we provide a sample input file for PLUMED. This input was used to compute the surface free energy excess for the γ111

surface. In addition to returning the metadynamics bias potential that promotes the solid-liquid transitions, this PLUMED input

also defines a number of restraint potentials that ensure that the central region of the supercell remains in the solid, fcc structure.

UNITS NATURAL

RESTART

Record the volume of the simulation cell.
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cell: CELL

We first compute the local order parameter κ using the cubic harmonic function “FCCUBIC”. “ALPHA” specifies the value of

the a parameter in Eqn. 10. “PHI”, “THETA” and “PSI” define the three Euler angles in Eqn. 12. By specifying these Euler

angles we ensure that the CV only identifies atoms as being in an fcc crystals if the 〈111〉 lattice direction is along the x axis of

the system. The sigmoid switching function “SMAP” is used to do a non-linear mapping on κ as described in Eqn. 15. We collect

Φ =
∑
S(κ(i)) - the global order parameter used to identify nΦ

s - using the keyword “MORE THAN”. The value of “cub.morethan”

is proportional to the number of atoms in the fcc crystal with the specified lattice direction.

The system contains a total of 1152 real atoms, The 1153th atom is a “ghost” atom that stays stationary at the center of the

supercell. This ghost atom is only used as a reference point and allows us to indicate the relative positions of the atoms in some

CVs.

FCCUBIC ...

LABEL=cub

SPECIES=1-1152 SWITCH={CUBIC D_0=1.2 D_MAX=1.5}

MEAN

MORE_THAN={SMAP R_0=0.45 D_0=0.0 A=8 B=8}

ALPHA=27 PHI=-1.5708 THETA=-0.61548 PSI=0.785389

... FCCUBIC

At undercooled conditions, the system has a strong tendency to form solids. Although the central region of the supercell is

constrained to remain as an fcc crystal with the 〈111〉 lattice direction along the x axis of the system, the peripheral region is likely

to form twinned crystals or mis-oriented crystals with grain boundaries. As the local order parameter κ is not rotational-invariant,

any atoms in wrongly orientated crystals usually adopt values intermediate between those obtained for bulk solid and liquid. These

crystals with unwanted orientations will be misidentified as partially liquid, and will be included in the computed free energy profile.

When this happens, the free energy profile shows bumps as in Ref. [3], which hinders the determination of µsl and γsl. For this

reason, “cub2”, “cub3”, “cub4” and “cub5” are used to identify fcc crystals with unwanted orientations. Constraints are added on

these CVs to prevent the formation of solid phase with an orientation incompatible with the simulation box.

FCCUBIC ...

LABEL=cub2

SPECIES=1-1152 SWITCH={CUBIC D_0=1.2 D_MAX=1.5}

MORE_THAN={SMAP R_0=0.05 D_0=0.4 A=16 B=8}

ALPHA=27 PHI=-1.5708 THETA=0.61548 PSI=2.35619

... FCCUBIC

FCCUBIC ...

LABEL=cub3

SPECIES=1-1152 SWITCH={CUBIC D_0=1.2 D_MAX=1.5}

MORE_THAN={SMAP R_0=0.05 D_0=0.4 A=16 B=8}

ALPHA=27 PHI=1.5708 THETA=-1.29515 PSI=0.785389

... FCCUBIC

FCCUBIC ...

LABEL=cub4

SPECIES=1-1152 SWITCH={CUBIC D_0=1.2 D_MAX=1.5}

MORE_THAN={SMAP R_0=0.05 D_0=0.4 A=16 B=8}

ALPHA=27 PHI=-0.2014 THETA=1.84644 PSI=1.71269

... FCCUBIC
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FCCUBIC ...

LABEL=cub5

SPECIES=1-1152 SWITCH={CUBIC D_0=1.2 D_MAX=1.5}

MORE_THAN={SMAP R_0=0.05 D_0=0.4 A=16 B=8}

ALPHA=27 PHI=-0.61548 THETA=-1.5708 PSI=-0.785398

... FCCUBIC

The 1153th ghost atom is used as a landmark. These commands allow us to calculate the value of the order parameter in the central

slice of the box, in the side regions and in the border slice of the supercell. Notice that the sigmoid switching function “SMAP” in

Eqn 15 is tuned in order to facilitate the biasing procedures.

centercub: AROUND DATA=cub ATOM=1153 XLOWER=-1.2 XUPPER=1.2 SIGMA=0.5 MORE_THAN={SMAP R_0=0.5 D_0=0.0 A=8 B=8}

sidecub: AROUND DATA=cub ATOM=1153 XLOWER=-2.3 XUPPER=2.3 SIGMA=0.5 OUTSIDE LESS_THAN={SMAP R_0=0.5 D_0=-0.1 A=8 B=2}

bordercub: AROUND DATA=cub ATOM=1153 XLOWER=-7.0 XUPPER=7.0 SIGMA=0.5 OUTSIDE LESS_THAN={SMAP R_0=0.5 D_0=-0.45 A=8 B=8}

Well-tempered metadynamics is used to induce transitions between the liquid and the fcc crystal for the region on the side of the

supercell. An external history-dependent bias potential is gradually accumulated in the space of the CV “sidecub.lessthan”. A

Gaussian that should cover the space of 600 timesteps in the CV space is deposited every 1600 time steps, with the maximum

height equal to 0.15 Lennard-Jones energy unit. The well-tempered option is activated with the biasfactor set to 90.

METAD ...

LABEL=metad

ARG=sidecub.lessthan

PACE=1600 HEIGHT=0.15 SIGMA=600 FILE=HILLS

TEMP=0.60 BIASFACTOR=90

ADAPTIVE=DIFF SIGMA_MAX=50 SIGMA_MIN=0.1

... METAD

A restraint is used to keep the central slice of the simulation cell, near to the ghost atom, crystalline.

wall: LOWER_WALLS ARG=centercub.morethan AT=140 KAPPA=2.0

Several restraints are added to prevent nucleation of crystals with unwanted crystal orientations.

notwin2: UPPER_WALLS ARG=cub2.morethan AT=14 KAPPA=0.4

notwin3: UPPER_WALLS ARG=cub3.morethan AT=14 KAPPA=0.2

notwin4: UPPER_WALLS ARG=cub4.morethan AT=14 KAPPA=0.2

notwin5: UPPER_WALLS ARG=cub5.morethan AT=14 KAPPA=0.1

A further bias is added on the atoms at the border of the simulation box far away from the ghost atom, in order to facilitate the

nucleation of the melt starting from the edge of the supercell.

softliquid: LOWER_WALLS ARG=bordercub.lessthan AT=30 KAPPA=0.005

Finally the instantaneous values of the CV and the biases are recorded. These are used in the re-weighting processes to construct

the FES, e.g.

G(Φ) = −
1

β
ln

(∫
dteβVtot(t)δ(Φ)∫
dteβVtot(t)

)
, (17)

where β = 1/kBT , and Vtot(t) is the total external bias including the metadynamics bias and the restraint biases at time t.
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PRINT STRIDE=10

ARG=cell.ax,cub.* ,metad.bias,wall.bias,notwin2.bias,notwin3.bias,notwin4.bias,notwin5.bias,softliquid.bias FILE=FES

PRINT STRIDE=10

ARG=cub2.*,cub3.*,cub4.*,cub5.*,centercub.*,sidecub.*,sidecub.* ,bordercub.* FILE=COLVAR

ENDPLUMED
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