
The Weakest Failure Detector for Eventual Consistency

Swan Dubois
Sorbonne Universités, UPMC
Univ Paris 06, CNRS, INRIA,

LIP6 UMR 7606

Rachid Guerraoui
EPFL

Petr Kuznetsov∗
Télécom ParisTech

Franck Petit
Sorbonne Universités, UPMC
Univ Paris 06, CNRS, INRIA,

LIP6 UMR 7606

Pierre Sens
Sorbonne Universités, UPMC
Univ Paris 06, CNRS, INRIA,

LIP6 UMR 7606

ABSTRACT
In its classical form, a consistent replicated service requires
all replicas to witness the same evolution of the service state.
Assuming a message-passing environment with a majority
of correct processes, the necessary and sufficient informa-
tion about failures for implementing a general state machine
replication scheme ensuring consistency is captured by the
Ω failure detector.

This paper shows that in such a message-passing environ-
ment, Ω is also the weakest failure detector to implement an
eventually consistent replicated service, where replicas are
expected to agree on the evolution of the service state only
after some (a priori unknown) time.

In fact, we show that Ω is the weakest to implement even-
tual consistency in any message-passing environment, i.e.,
under any assumption on when and where failures might oc-
cur. Ensuring (strong) consistency in any environment re-
quires, in addition to Ω, the quorum failure detector Σ. Our
paper thus captures, for the first time, an exact computa-
tional difference between building a replicated state machine
that ensures consistency and one that only ensures eventual
consistency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems; F.1.1 [Computation by Abstract De-
vices]: Models of Computation—relations between models

Keywords
eventual consistency, failure detectors

1. INTRODUCTION
State machine replication [21, 26] is the most studied tech-

nique to build a highly-available and consistent distributed

∗The research leading to these results has received funding
from the Agence Nationale de la Recherche, under grant
agreement N ANR-14-CE35-0010-01, project DISCMAT.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright c© 2015 ACM 978-1-4503-3617-8 /15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2767386.2767404.

service. Roughly speaking, the idea consists in replicating
the service, modeled as a state machine, over several pro-
cesses and ensuring that all replicas behave like one correct
and available state machine, despite concurrent invocations
of operations and failures of replicas. This is typically cap-
tured using the abstraction of a total order broadcast [3],
where messages represent invocations of the service opera-
tions from clients to replicas (server processes). Assuming
that the state machine is deterministic, delivering the invo-
cations in the same total order ensures indeed that the repli-
cas behave like a single state machine. Total order broadcast
is, in turn, typically implemented by having the processes
agree on which batch of messages to execute next, using the
consensus abstraction [22, 3]. (The two abstractions, con-
sensus and total order broadcast, were shown to be equiva-
lent [3].)

Replicas behaving like a single one is a property generally
called consistency. The sole purpose of the abstractions un-
derlying the state machine replication scheme, namely con-
sensus and total order broadcast, is precisely to ensure this
consistency, while providing at the same time availability,
namely that the replicated service does not stop respond-
ing. The inherent costs of these abstractions are sometimes
considered too high, both in terms of the necessary com-
putability assumptions about the underlying system [12, 2,
1], and the number of communication steps needed to deliver
an invocation [22, 23].

An appealing approach to circumvent these costs is to
trade consistency with what is sometimes called eventual
consistency [25, 29]: namely to give up the requirement that
the replicas always look the same, and replace it with the
requirement that they only look the same eventually, i.e.,
after a finite but not a priori bounded period of time. Basi-
cally, eventual consistency says that the replicas can diverge
for some period, as long as this period is finite.

Many systems claim to implement general state machines
that ensure eventual consistency in message-passing sys-
tems, e.g., [20, 7]. But, to our knowledge, there has been no
theoretical study of the exact assumptions on the informa-
tion about failures underlying those implementations. This
paper is the first to do so: using the formalism of failure
detectors [3, 2], it addresses the question of the minimal in-
formation about failures needed to implement an eventually
consistent replicated state machine.

It has been shown in [2] that, in a message-passing envi-
ronment with a majority of correct processes, the weakest
failure detector to implement consensus (and, thus, total
order broadcast [5]) is the eventual leader failure detector,
denoted Ω. In short, Ω outputs, at every process, a leader

375

process so that, eventually, the same correct process is con-
sidered leader by all. Ω can thus be viewed as the weak-
est failure detector to implement a generic replicated state
machine ensuring consistency and availability in an environ-
ment with a majority of correct processes.

We show in this paper that, maybe surprisingly, the weak-
est failure detector to implement an eventually consistent
replicated service in this environment (in fact, in any envi-
ronment) is still Ω. We prove our result via an interesting
generalization of the celebrated “CHT proof” by Chandra,
Hadzilacos and Toueg [2]. In the CHT proof, every process
periodically extracts the identifier of a process that is ex-
pected to be correct (the leader) from the valencies of an
ever-growing collection of locally simulated runs. We care-
fully adjust the notion of valency to apply this approach
to the weaker abstraction of eventual consensus, which we
show to be necessary and sufficient to implement eventual
consistency.

Our result becomes less surprising if we realize that a cor-
rect majority prevents the system from being partitioned,
and we know that both consistency and availability cannot
be achieved while tolerating partitions [1, 14, 8]. Therefore,
in a system with a correct majority of processes, there is no
gain in weakening consistency: (strong) consistency requires
the same information about failures as eventual one. In an
arbitrary environment, however, i.e., under any assumptions
on when and where failures may occur, the weakest failure
detector for consistency is known to be Ω + Σ, where Σ [8]
returns a set of processes (called a quorum) so that every
two such quorums intersect at any time and there is a time
after which all returned quorums contain only correct pro-
cesses. We show in this paper that ensuring eventual con-
sistency does not require Σ: only Ω is needed, even if we
do not assume a majority of correct processes. Therefore,
Σ represents the exact difference between consistency and
eventual consistency. Our result thus theoretically backs up
partition-tolerance [1, 14] as one of the main motivations
behind the very notion of eventual consistency.

We establish our results through the following steps:

• We give precise definitions of the notions of eventual
consensus and eventual total order broadcast. We show
that the two abstractions are equivalent. These under-
lie the intuitive notion of eventual consistency imple-
mented in many replicated services [7, 6, 4].

• We show how to extend the celebrated CHT proof [2],
initially establishing that Ω is necessary for solv-
ing consensus, to the context of eventual consensus.
Through this extension, we indirectly highlight a hid-
den power of the technique proposed in [2] that some-
how provides more than was used in the original CHT
proof.

• We present an algorithm that uses Ω to implement, in
any message-passing environment, an eventually con-
sistent replicated service. The algorithm features three
interesting properties: (1) An invocation can be per-
formed after the optimal number of two communica-
tion steps, even if a majority of processes is not correct
and even during periods when processes disagree on
the leader, i.e., partition periods; 1 (2) If Ω outputs the
same leader at all processes from the very beginning,
then the algorithm implements total order broadcast
and hence ensures consistency; (3) Causal ordering is

1Note that three communication steps are, in the worst case,
necessary when strong consistency is required [23].

ensured even during periods where Ω outputs different
leaders at different processes.

The rest of the paper is organized as follows. We present
our system model and basic definitions in Section 2. In Sec-
tion 3, we introduce abstractions for implementing eventual
consistency: namely, eventual consensus and eventual total
order broadcast, and we prove them to be equivalent. We
show in Section 4 that the weakest failure detector for even-
tual consensus in any message-passing environment is Ω. We
present in Section 5 our algorithm that implements eventual
total order broadcast using Ω in any environment. Section 6
discusses related work, and Section 7 concludes the paper.

2. PRELIMINARIES
We adopt the classical model of distributed systems pro-

vided with the failure detector abstraction proposed in [3, 2].
In particular we employ the simplified version of the model
proposed in [15, 18].

We consider a message-passing system with a set of pro-
cesses Π = {p1, p2, . . . , pn} (n ≥ 2). Processes execute steps
of computation asynchronously, i.e., there is no bound on
the delay between steps. However, we assume a discrete
global clock to which the processes do not have access. The
range of this clock’s ticks is N. Each pair of processes are
connected by a reliable link.

Processes may fail by crashing. A failure pattern is a
function F : N → 2Π, where F (t) is the set of processes
that have crashed by time t. We assume that processes
never recover from crashes, i. e., F (t) ⊆ F (t + 1). Let
faulty(F) =

⋃
t∈N F (t) be the set of faulty processes in a

failure pattern F ; and correct(F) = Π− faulty(F) be the set
of correct processes in F . An environment, denoted E , is a
set of failure patterns.

A failure detector history H with range R is a function
H : Π × N → R, where H(p, t) is interpreted as the value
output by the failure detector module of process p at time t.
A failure detector D with range R is a function that maps
every failure pattern F to a nonempty set of failure detector
histories. D(F) denotes the set of all possible failure detector
histories that may be output by D in a failure pattern F .

For example, at each process, the leader failure detector Ω
outputs the id of a process; furthermore, if a correct process
exists, then there is a time after which Ω outputs the id of
the same correct process at every correct process. Another
example is the quorum failure detector Σ, which outputs a
set of processes at each process. Any two sets output at any
times and by any processes intersect, and eventually every
set output at any correct process consists of only correct
processes.

An algorithm A is modeled as a collection of n determinis-
tic automata, where A(p) specifies the behavior of process p.
Computation proceeds in steps of these automata. In each
step, identified as a tuple (p,m, d,A), a process p atomically
(1) receives a single message m (that can be the empty mes-
sage λ) or accepts an input (from the external world), (2)
queries its local failure detector module and receives a value
d, (3) changes its state according to A(p), and (4) sends a
message specified by A(p) for the new state to every process
or produces an output (to the external world). Note that the
use of λ ensures that a step of a process is always enabled,
even if no message is sent to it.

A configuration of an algorithm A specifies the local state
of each process and the set of messages in transit. In the
initial configuration of A, no message is in transit and each
process p is in the initial state of the automaton A(p). A

376

schedule S of A is a finite or infinite sequence of steps of A
that respects A(p) for each p.

Following [18], we model inputs and outputs of processes
using input histories HI and output histories HO that spec-
ify the inputs each process receives from its application and
the outputs each process returns to the application over
time. A run of algorithm A using failure detector D in en-
vironment E is a tuple R = (F,H,HI , HO, S, T), where F
is a failure pattern in E , H is a failure detector history in
D(F), HI and HO are input and output histories of A, S is a
schedule of A, and T is a list of increasing times in N, where
T [i] is the time when step S[i] is taken. H ∈ D(F), the
failure detector values received by steps in S are consistent
with H, and HI and HO are consistent with S. An infinite
run of A is admissible if (1) every correct process takes an
infinite number of steps in S; and (2) each message sent to
a correct process is eventually received.

We then define a distributed-computing problem, such
as consensus or total order broadcast, as a set of tuples
(HI , HO) where HI is an input history and HO is an output
history. An algorithm A using a failure detector D solves
a problem P in an environment E if in every admissible
run of A in E , the input and output histories are in P .
Typically, inputs and outputs represent invocations and re-
sponses of operations exported by the implemented abstrac-
tion. If there is an algorithm that solves P using D, we
sometimes, with a slight language abuse, say that D imple-
ments P .

Consider two problems P and P ′. A transformation from
P to P ′ in an environment E [17] is a map TP→P ′ that, given
any algorithm AP solving P in E , yields an algorithm AP ′

solving P ′ in E . The transformation is asynchronous in the
sense that AP is used as a“black box”where AP ′ is obtained
by feeding inputs to AP and using the returned outputs to
solve P ′. Hence, if P is solvable in E using a failure detector
D, the existence of a transformation TP→P ′ in E establishes
that P ′ is also solvable in E using D. If, additionally, there
exists a transformation from P ′ to P in E , we say that P
and P ′ are equivalent in E .

Failure detectors can be partially ordered based on their
“power”: failure detector D is weaker than failure detector
D′ in E if there is an algorithm that emulates the output of
D using D′ in E [2, 18]. If D is weaker than D′, any problem
that can be solved with D can also be solved with D′. For a
problem P , D∗ is the weakest failure detector to solve P in
E if (a) there is an algorithm that uses D∗ to solve P in E ,
and (b) D∗ is weaker than any failure detector D that can
be used to solve P in E .

3. ABSTRACTIONS FOR EVENTUAL
CONSISTENCY

We define two basic abstractions that capture the notion
of eventual consistency: eventual total order broadcast and
eventual consensus. We show that the two abstractions are
equivalent: each of them can be used to implement the other.

Eventual Total Order Broadcast (ETOB).
The total order broadcast (TOB) abstraction [17] exports

one operation broadcastTOB(m) and maintains, at every
process pi, an output variable di. Let di(t) denote the value
of di at time t. Intuitively, di(t) is the sequence of messages
pi delivered by time t. We write m ∈ di(t) if m appears in
di(t).

A process pi broadcasts a message m at time t by a call to
broadcastTOB(m). We say that a process pi stably delivers

a message m at time t if pi appends m to di(t) and m is
never removed from di after that, i.e., m /∈ di(t − 1) and
∀t′ ≥ t: m ∈ di(t′). Note that if a message is delivered but
not stably delivered by pi at time t, it appears in di(t) but
not in di(t

′) for some t′ > t.
Assuming that broadcast messages are distinct, the

TOB abstraction satisfies:

TOB-Validity If a correct process pi broadcasts a message
m at time t, then pi eventually stably delivers m, i.e.,
∀t′′ ≥ t′ : m ∈ di(t′′) for some t′ > t.

TOB-No-creation If m ∈ di(t), then m was broadcast by
some process pj at some time t′ < t.

TOB-No-duplication No message appears more than once
in di(t).

TOB-Agreement If a message m is stably delivered by
some correct process pi at time t, then m is eventu-
ally stably delivered by every correct process pj .

TOB-Stability For any correct process pi, di(t1) is a prefix
of di(t2) for all t1, t2 ∈ N, t1 ≤ t2.

TOB-Total-order Let pi and pj be any two correct pro-
cesses such that two messages m1 and m2 appear in
di(t) and dj(t) at time t. If m1 appears before m2 in
di(t), then m1 appears before m2 in dj(t).

We then introduce the eventual total order broadcast
(ETOB) abstraction, which maintains the same inputs and
outputs as TOB (messages are broadcast by a call to
broadcastETOB(m)) and satisfies, in every admissible run,
the TOB-Validity, TOB-No-creation, TOB-No-duplication,
and TOB-Agreement properties, plus the following relaxed
properties for some τ ∈ N:

ETOB-Stability For any correct process pi, di(t1) is a pre-
fix of di(t2) for all t1, t2 ∈ N, τ ≤ t1 ≤ t2.

ETOB-Total-order Let pi and pj be correct processes such
that messages m1 and m2 appear in di(t) and dj(t) for
some t ≥ τ . If m1 appears before m2 in di(t), then m1

appears before m2 in dj(t).

As we show in this paper, satisfying the following optional
(but useful) property in ETOB does not require more infor-
mation about failures.

TOB-Causal-Order Let pi be a correct process such that
two messages m1 and m2 appear in di(t) at time t ∈ N.
If m2 depends causally of m1, then m1 appears before
m2 in di(t).

Here we say that a message m2 causally depends on a
message m1 in a run R, and write m1 →R m2, if one of the
following conditions holds in R: (1) a process pi sends m1

and then sends m2, (2) a process pi receives m1 and then
sends m2, or (3) there exists m3 such that m1 →R m3 and
m3 →R m2.

Eventual Consensus (EC).
The consensus abstraction (C) [12] exports, to every pro-

cess pi, a single operation proposeC that takes a binary ar-
gument and returns a binary response (we also say decides)
so that the following properties are satisfied:

C-Termination Every correct process eventually returns a
response to proposeC.

C-Integrity Every process returns a response at most once.

C-Agreement No two processes return different values.

377

C-Validity Every value returned was previously proposed.

The eventual consensus (EC) abstraction exports, to every
process pi, operations proposeEC1, proposeEC2, . . . that take
binary arguments and return binary responses. Assuming
that, for all j ∈ N, every process invokes proposeECj as soon
as it returns a response to proposeECj−1, the abstraction
guarantees that, in every admissible run, there exists k ∈ N,
such that the following properties are satisfied:

EC-Termination Every correct process eventually returns
a response to proposeECj for all j ∈ N.

EC-Integrity No process responds twice to proposeECj for
all j ∈ N.

EC-Validity Every value returned to proposeECj was pre-
viously proposed to proposeECj for all j ∈ N.

EC-Agreement No two processes return different values to
proposeECj for all j ≥ k.

It is straightforward to transform the binary version of EC
into a multivalued one with unbounded set of inputs [24].
In the following, by referring to EC we mean a multivalued
version of it.

Equivalence between EC and ETOB.
It is well known that, in their classical forms, the consen-

sus and the total order broadcast abstractions are equivalent
[3]. In this section, we show that a similar result holds for
our eventual versions of these abstractions.

The intuition behind the transformation from EC to ETOB
is the following. Each time a process pi wants to ETOB-
broadcast a message m, p sends m to each process. Peri-
odically, every process pi proposes its current sequence of
messages received so far to EC. This sequence is built by
concatenating the last output of EC(stored in a local vari-
able di) to the batch of all messages received by the process
and not yet present in di. The output of EC is stored in di,
i.e., at any time, each process delivers the last sequence of
messages returned by EC.

The correctness of this transformation follows from the
fact that ECeventually returns consistent responses to the
processes. Thus, eventually, all processes agree on the same
linearly growing sequence of stably delivered messages. Fur-
thermore, every message broadcast by a correct process
eventually appears either in the delivered message sequence
or in the batches of not yet delivered messages at all cor-
rect processes. Thus, by EC-Validity of EC, every message
ETOB-broadcast by a correct process is eventually stored
in di of every correct process pi forever. By construction,
no message appears in di twice or if it was not previously
ETOB-broadcast. Therefore, the transformation satisfies the
properties of ETOB.

The transformation from ETOB to EC is as follows. At
each invocation of the EC primitive, the process broadcasts a
message using the ETOB abstraction. This message contains
the proposed value and the index of the consensus instance.
As soon as a message corresponding to a given eventual con-
sensus instance is delivered by process pi (appears in di), pi
returns the value contained in the message.

Since the ETOB abstraction guarantees that every process
eventually stably delivers the same sequence of messages,
there exists a consensus instance after which the responses of
the transformation to all alive processes are identical. More-
over, by ETOB-Validity, every message ETOB-broadcast by
a correct process pi is eventually stably delivered. Thus, ev-
ery correct process eventually returns from any EC-instance

it invokes. Thus, the transformation satisfies the EC speci-
fication.

Theorem 1. In any environment E, EC and ETOB are
equivalent.

From EC to ETOB. To prove this result, it is sufficient to
provide a protocol that implements ETOB in an environ-
ment E knowing that there exists a protocol that imple-
ments EC in this environment. This transformation proto-
col TEC→ETOB is stated in Algorithm 1. Now, we are going to
prove that TEC→ETOB implements ETOB. Assume that there
exists a message m broadcast by a correct process pi at time
t. As pi is correct, every correct process receives the mes-
sage push(m) in a finite time. Then, m appears in the set
toDeliver of all correct processes in a finite time. Hence,
by the termination property of EC and the construction of
the function NewBatch, there exists ` such that m is in-
cluded in any sequence submitted to proposeEC`. By the
EC-Validity and the EC-Termination properties, we deduce
that pi stably delivers m in a finite time, that proves that
TEC→ETOB satisfies the TOB-Validity property. If a process
pi delivers a message m at time t, then m appears in the se-
quence responded by its last invocation of proposeEC`. By
construction and by the EC-Validity property, this sequence
contains only messages that appear in the set toDeliver of
a process pj at the time pj invokes proposeEC`. But this set
is incrementally built at the reception of messages push that
contains only messages broadcast by a process. This implies
that TEC→ETOB satisfies the TOB-No-creation. As the se-
quence outputted at any time by any process is the response
to its last invocation of proposeEC and that the sequence
submitted to any invocation of this primitive contains no du-
plicated message (by definition of the function NewBatch),
we can deduce from the EC-Validity property that TEC→ETOB

satisfies the TOB-No-duplication. Assume that a correct
process pi stably delivers a message m, i.e., there exists a
time after which m always appears in di. By the algorithm,
m always appears in the response of proposeEC to pi after
this time. As EC-Agreement property is eventually satis-
fied, we can deduce that m always appears in the response
of proposeEC for any correct process after some time. Thus,
any correct process stably delivers m, and TEC→ETOB satis-
fies the TOB-Agreement. Let τ be the time after which the
EC primitive satisfies EC-Agreement and EC-Validity. Let
pi be a correct process and τ ≤ t1 ≤ t2. Let `1 (respec-
tively `2) be the integer such that di(t1) (respectively di(t2))
is the response of proposeEC`1

(respectively proposeEC`2
).

By construction of the protocol and the EC-Agreement and
EC-Validity properties, we know that, after time τ , the re-
sponse of proposeEC` to correct processes is a prefix of the
response of proposeEC`+1. As we have `1 ≤ `2, we can de-
duce that TEC→ETOB satisfies the ETOB-Stability property.
Let pi and pj be two correct processes such that two mes-
sages m1 and m2 appear in di(t) and dj(t) at time t ≥ τ .
Let ` be the smallest integer such that m1 and m2 appear
in the response of proposeEC`. By the EC-Agreement prop-
erty, we know that the response of proposeEC` is identical
for all correct processes. Then , by the ETOB-Stability prop-
erty proved above, that implies that, if m1 appears before
m2 in di(t), then m1 appears before m2 in dj(t). In other
words, TEC→ETOB satisfies the ETOB-Total-order property.
In conclusion, TEC→ETOB satisfies the ETOB specification in
an environment E provided that there exists a protocol that
implements EC in this environment.

378

Algorithm 1 TEC→ETOB: transformation from EC to
ETOB for process pi

Proof. Output variable:
di: sequence of messages of M (initially empty) outputted
at any time by pi

Internal variables:
toDeliveri: set of messages of M (initially empty) contain-
ing all messages received by pi
counti: integer (initially 0) that stores the number of the
last instance of consensus invoked by pi

Messages:
push(m) with m a message of M

Functions:
Send(message) sends message to all processes (including
pi)
NewBatch(di, toDeliveri) returns a sequence containing
all messages from the set toDeliveri \ {m|m ∈ di}

On reception of broadcastETOB(m) from the application

Send(push(m))

On reception of push(m) from pj
toDeliveri := toDeliveri ∪ {m}

On reception of d as response of proposeEC`
di := d
counti := counti + 1
proposeECcounti

(di.NewBatch(di, toDeliveri))

On local timeout
If counti = 0 then⌊

counti := 1
proposeEC1(NewBatch(di, toDeliveri))

From ETOB to EC.
To prove this result, it is sufficient to provide a protocol

that implements EC in an environment E given a protocol
that implements ETOB in this environment. This transfor-
mation protocol TETOB→EC is stated in Algorithm 2. Now,
we are going to prove that TETOB→EC implements EC.

Let pi be a correct process that invokes proposeEC`(v)
with ` ∈ N. Then, by fairness and the TOB-Validity
property, the construction of the protocol implies that the
ETOB primitive delivers the message (`, v) to pi in a finite
time. By the use of the local timeout, we know that pi re-
turns from proposeEC`(v) in a finite time, that proves that
TETOB→EC satisfies the EC-Termination property.

The update of the variable counti to ` for
any process pi that invokes proposeEC` and
the assumptions on operations proposeEC ensure
us that pi executes at most once the function
DecideEC(`, receivedi[Ωi, `]). Hence, TETOB→EC satis-
fies the EC-Integrity property.

Let τ be the time after which the ETOB-Stability and
the ETOB-Total-order properties are satisfied. Let k be
the smallest integer such that any process that invokes
proposeECk in run r invokes it after τ .

If we assume that there exist two correct processes pi and
pj that return different values to proposeEC` with ` ≥ k,
we obtain a contradiction with the ETOB-Stability, ETOB-
Total-order, or TOB-Agreement property. Indeed, if pi re-
turns a value after time τ , that implies that this value ap-
pears in di and then, by the TOB-Agreement property, this
value eventually appears in dj . If pj returns a different value
from pi, that implies that this value is the first occurrence
of a message associated to proposeEC` in dj at the time
of the return of proposeEC`. After that, dj cannot satisfy
simultaneously the ETOB-Stability and the ETOB-Total-

order properties. This contradiction shows that TETOB→EC

satisfies the EC-Agreement property.
If we assume that there exists a process pi that returns

to proposeEC` with ` ∈ N a value that was not proposed
to proposeEC`, we obtain a contradiction with the TOB-No-
creation property. Indeed, the return of pi from proposeEC`

is chosen in di that contains the output of the ETOB prim-
itive and processes broadcast only proposed values. This
contradiction shows that TETOB→EC satisfies the EC-Validity
property.

In conclusion, TETOB→EC satisfies the EC specification in
an environment E provided that there exists a protocol that
implements ETOB in this environment.

Algorithm 2 TETOB→EC: transformation from ETOB to
EC for process pi

Internal variables:
counti: integer (initially 0) that stores the number of the
last instances of consensus invoked by pi
di: sequence of messages (initially empty) outputted to pi
by the ETOB primitive

Functions:
First(`): returns the value v such that (`, v) is the first
message of the form (`, ∗) in di if such messages exist, ⊥
otherwise
DecideEC(`, v): returns the value v as response to
proposeEC`

On invocation of proposeEC`(v)
counti := `
broadcastETOB((`, v))

On local time out
If First(counti) 6= ⊥ then⌊

DecideEC(counti, F irst(counti))

4. THE WEAKEST FAILURE DETECTOR
FOR EC

In this section, we show that Ω is necessary and sufficient
for implementing the eventual consensus abstraction EC:

Theorem 2. In any environment E, Ω is the weakest fail-
ure detector for EC.

Ω is necessary for EC.
Let E be any environment. We show below that Ω is

weaker than any failure detector D that can be used to solve
EC in E . Recall that implementing Ω means outputting,
at every process, the identifier of a leader process so that
eventually, the same correct leader is output permanently
at all correct processes.

First, we briefly recall the arguments use by Chandra et
al. [2] in the original CHT proof deriving Ω from any algo-
rithm solving consensus (to get a more detailed survey of the
proof please rever to [13, Chapter 3]). The basic observation
there is that a run of any algorithm using a failure detector
induces a directed acyclic graph (DAG). The DAG contains a
sample of failure detector values output by D in the current
run and captures causal relations between them. Each pro-
cess pi maintains a local copy of the DAG, denoted by Gi:
pi periodically queries its failure detector module, updates
Gi by connecting every vertex of the DAG with the vertex
containing the returned failure-detector value with an edge,
and broadcasts the DAG. An edge from vertex [pi, d,m] to

379

vertex [pj , d
′,m′] is thus interpreted as “pi queried D for the

mth time and obtained value d and after that pj queried D
for the m′th time and obtained value d′”. Whenever pi re-
ceives a DAG Gj calculated earlier by pj , pi merges Gi with
Gj . As a result, DAGs maintained by the correct processes
converge to the same infinite DAG G. The DAG Gi is then
used by pi to simulate a number of runs of the given consen-
sus algorithm A for all possible inputs to the processes. All
these runs are organized in the form of a simulation tree Υi.
The simulation trees Υi maintained by the correct processes
converge to the same infinite simulation tree Υ.

The outputs produced in the simulated runs of Υi are then
used by pi to compute the current estimate of Ω. Every ver-
tex σ of Υi is assigned a valency tag based on the decisions
taken in all its extensions (descendants of σ in Υi): σ is as-
signed a tag v ∈ {0, 1} if σ has an extension in which some
process decides v. A vertex is bivalent if it is assigned both
0 and 1. It is then shown in [2] that by locating the same
bivalent vertex in the limit tree Υ, the correct process can
eventually extract the identifier of the same correct process.
(More details can be found in [2, 13].)

We show that this method, originally designed for con-
sensus, can be extended to eventual consensus (i.e., to the
weaker EC abstraction). The extension is not trivial and re-
quires carefully adjusting the notion of valency of a vertex
in the simulation tree.

Lemma 3. In every environment E, if a failure detector
D implements EC in E, then Ω is weaker than D in E.

Proof. Let A be any algorithm that implements EC us-
ing a failure detector D in an environment E . As in [2],
every process pi maintains a failure detector sample stored
in DAG Gi and periodically uses Gi to simulate a set of runs
of A for all possible sequence of inputs of EC. The simulated
runs are organized by pi in an ever-growing simulation tree
Υi. A vertex of Υi is the schedule of a finite run of A “trig-
gered” by a path in Gi in which every process starts with
invoking proposeEC1(v), for some v ∈ {0, 1}, takes steps
using the failure detector values stipulated by the path in
Gi and, once proposeEC`(v) is complete, eventually invokes
proposeEC`+1(v′), for some v′ ∈ {0, 1}. (For the record, we
equip each vertex of Υi with the path in Gi used to pro-
duce it.) A vertex is connected by an edge to each one-step
extension of it. 2

Note that in every admissible infinite simulated run, EC-
Termination, EC-Integrity and EC-Validity are satisfied and
that there is k > 0 such that for all ` ≥ k, the invocations
and responses of proposeEC` satisfy the EC-Agreement.

Since processes periodically broadcast their DAGs, the
simulation tree Υi constructed locally by a correct process
pi converges to an infinite simulation tree Υ, in the sense
that every finite subtree of Υ is eventually part of Υi. The
infinite simulation tree Υ, starting from the initial configu-
ration of A and, in the limit, contains all possible schedules
that can triggered by the paths DAGs Gi.

Consider a vertex σ in Υ identifying a unique finite sched-
ule of a run of A using D in the current failure pattern F .
For k > 0, we say that σ is k-enabled if k = 1 or σ con-
tains a response from proposeECk−1 at some process. Now

2In [2], the simulated schedules form a simulation forest,
where a distinct simulation tree corresponds to each ini-
tial configuration encoding consensus inputs. Here we fol-
low [18]: there is a single initial configuration and inputs
are encoded in the form of input histories. As a result, we
get a single simulation tree where branches depend on the
parameters of proposeEC` calls.

Algorithm 3 Locating a bivalent vertex in Υ.

k := 1
σ := root of Υ
while true do

if σ is k-bivalent then break
σ1 := a descendant of σ in which

EC-Agreement does not hold for proposeECk
σ2 := a descendant of σ1 in which every correct process

completes proposeECk and receives
all messages sent to it in σ

choose k′ > k and σ3, a descendant of σ2, such that
k′-tag of σ3 contains {0, 1}

k := k′

σ := σ3

we associate each vertex σ in Υ with a set of valency tags
associated with each “consensus instance”k, called the k-tag
of σ, as follows:

• If σ is k-enabled and has a descendant (in Υ) in which
proposeECk returns x ∈ {0, 1}, then x is added to the
k-tag of σ.

• If σ is k-enabled and has a descendant in which two
different values are returned by proposeECk, then ⊥ is
added to the k-tag of σ.

If σ is not k-enabled, then its k-tag is empty. If the k-
tag of σ is {x}, x ∈ {0, 1}, we say that σ is (k, x)-valent
(k-univalent). If the k-tag is {0, 1}, then we say that σ is
k-bivalent. If the k-tag of σ contains ⊥, we say that σ is
k-invalid

Since A ensures EC-Termination in all admissible runs ex-
tending σ, each k-enabled vertex σ, the k-tag of σ is non-
empty. Moreover, EC-Termination and EC-Validity imply
that a vertex in which no process has invoked proposeECk

yet has a descendant in which proposeECk returns 0 and a
descendant in which proposeECk returns 1. Indeed, a run
in which only v, v ∈ {0, 1} is proposed in instance k and
every correct process takes enough steps must contain v as
an output. Thus:

(*) For each vertex σ, there exists k ∈ N and σ′, a descen-
dant of σ, such that k-tag of σ′ contains {0, 1}.

If the “limit tree” Υ contains a k-bivalent vertex, we can
apply the arguments of [2] to extract Ω. Now we show that
such a vertex exists in Υ. Then we can simply let every
process locate the “first” such vertex in its local tree Υi.
To establish an order on the vertices, we can associate each
vertex σ of Υ with the value m such that vertex [pi, d,m] of
G is used to simulate the last step of σ (recall that we equip
each vertex of Υ with the corresponding path). Then we
order vertices of Υ in the order consistent with the growth of
m. Since every vertex in G has only finitely many incoming
edges, the sets of vertices having the same value of m are
finite. Thus, we can break the ties in the m-based order
using any deterministic procedure on these finite sets.

Eventually, by choosing the first k-bivalent vertex in their
local trees Υi, the correct processes will eventually stabilize
on the same k-bivalent vertex σ̃ in the limit tree Υ and apply
the CHT extraction procedure to derive the same correct
process based on k-tags assigned to σ̃’s descendants.

It remains to show that Υ indeed contains a k-bivalent
vertex for some k. Consider the procedure described in Al-
gorithm 3 that intends to locate such a vertex, starting with
the root of the tree.

380

For the currently considered k-enabled vertex σ that is
not k-bivalent (if it is k-bivalent, we are done), we use (*)
to locate σ3, a descendant of σ, such that (1) in σ3, two
processes return different values in proposeECk in σ3, (2) in
σ3, every correct process has completed proposeECk and has
received every message sent to it in σ, and (3) the k′-tag of
σ3 contains {0, 1}.

Thus, the procedure in Algorithm 3 either terminates by
locating a k-bivalent tag and then we are done, or it never
terminates. Suppose, by contradiction, that the procedure
never terminates. Hence, we have an infinite admissible run
of A in which no agreement is provided in infinitely many in-
stances of consensus. Indeed, in the constructed path along
the tree, every correct process appears infinitely many times
and receives every message sent to it. This admissible run
violated the EC-Agreement property of EC—a contradiction.

Thus, the correct processes will eventually locate the same
k-bivalent vertex and then, as in [2], stabilize extracting the
same correct process identifier to emulate Ω.

Ω is sufficient for EC.
Chandra and Toueg proved that Ω is sufficient to imple-

ment the classical version of the consensus abstraction in an
environment where a majority of processes are correct [3]. In
this section, we extend this result to the eventual consensus
abstraction for any environment.

The proposed implementation of EC is very simple. Each
process has access to an Ω failure detector module. Upon
each invocation of the EC primitive, a process broadcasts the
proposed value (and the associated consensus index). Every
process stores every received value. Each process pi period-
ically checks whether it has received a value for the current
consensus instance from the process that it currently believes
to be the leader. If so, pi returns this value. The correctness
of this EC implementation relies on the fact that, eventually,
all correct processes trust the same leader (by the definition
of Ω) and then decide (return responses) consistently on the
values proposed by this process.

Lemma 4. In every environment E, EC can be imple-
mented using Ω.

Proof. We propose such an implementation in Algo-
rithm 4. Then, we prove that any admissible run r of the al-
gorithm in any environment E satisfies the EC-Termination,
EC-Integrity, EC-Agreement, and EC-Validity properties.

Assume that a correct process never returns from an in-
vocation of proposeEC in r. Without loss of generality, de-
note by ` the smallest integer such that a correct process pi
never returns from the invocation of proposeEC`. This im-
plies that pi always evaluates receivedi[Ωi, counti] to ⊥. We
know by definition of Ω that, eventually, Ωi always returns
the same correct process pj . Hence, by construction of `, pj
returns from proposeEC0,..., proposeEC`−1 and then sends
the message promote(v, `) to all processes in a finite time.
As pi and pj are correct, pi receives this message and up-
dates receivedi[Ωi, counti] to v in a finite time. Therefore,
the algorithm satisfies the EC-Termination property.

The update of the variable counti to ` for
any process pi that invokes proposeEC` and
the assumptions on operations proposeEC ensure
us that pi executes at most once the function
DecideEC(`, receivedi[Ωi, `]). Hence, the EC-Integrity
property is satisfied.

Let τΩ be the time from which the local outputs of Ω are
identical and constants for all correct processes in r. Let k

be the smallest integer such that any process that invokes
proposeECk in r invokes it after τΩ.

Let ` be an integer such that ` ≥ k. As-
sume that pi and pj are two processes that re-
spond to proposeEC`. Then, they respectively ex-
ecute the function DecideEC(`, receivedi[Ωi, `]) and
DecideEC(`, receivedj [Ωj , `]). By construction of k, we
can deduce that Ωi = Ωj = pl. That implies that pi and
pj both received a message promote(v, `) from pl. As pl
sends such a message at most once, we can deduce that
receivedi[pl, `] = receivedj [pl, `], that proves that ensures
the EC-Agreement property.

Let ` be an integer such that ` ≥ k. Assume that pi is
a process that respond to proposeEC`. The value returned
by pi was previously received from Ωi in a message of type
promote. By construction of the protocol, Ωi sends only
one message of this type and this latter contains the value
proposed to Ωi, hence, the EC-Validity property is satisfied.

Thus, Algorithm 4 indeed implements EC in any environ-
ment using Ω.

Algorithm 4 EC using Ω: algorithm for process pi

Local variables:
counti: integer (initially 0) that stores the number of the
last instances of consensus invoked by pi
receivedi: two dimensional tabular that stores a value for
each pair of processes/integer (initially ⊥)

Functions:
DecideEC(`, v) returns the value v as a response to
proposeEC`

Messages:
promote(v, `) with v ∈ {0, 1} and ` ∈ N

On invocation of proposeEC`(v)
counti := `
Send promote(v, `) to all

On reception of promote(v, `) from pj
receivedi[j, `] := v

On local time out
If receivedi[Ωi, counti] 6= ⊥ do⌊

DecideEC(counti, receivedi[Ωi, counti])

5. AN EVENTUAL TOTAL ORDER
BROADCAST ALGORITHM

We have shown in the previous section that Ω is the weak-
est failure detector for the EC abstraction (and, by Theo-
rem 1, the ETOB abstraction) in any environment. In this
section, we describe an algorithm that directly implements
ETOB using Ω and which we believe is interesting in its own
right.

The algorithm has three interesting properties. First, it
needs only two communication steps to deliver any message
when the leader does not change, whereas algorithms imple-
menting classical TOB need at least three communication
steps in this case. Second, the algorithm actually imple-
ments total order broadcast if Ω outputs the same leader at
all processes from the very beginning. Third, the algorithm
additionally ensures the property of TOB-Causal-Order,
which does not require more information about faults.

The intuition behind this algorithm is as follows. Every
process that intends to ETOB-broadcast a message sends
it to all other processes. Each process pi has access to an
Ω failure detector module and maintains a DAG that stores
the set of messages delivered so far together with their causal

381

Algorithm 5 ET OB: protocol for process pi

Output variable:
di: sequence of messages m ∈ M (initially empty)
output by pi

Internal variables:
promotei: sequence of messages m ∈ M (initially
empty) promoted by pi when Ωi = pi
CGi: directed graph on messages of M (initially
empty) that contains causality dependencies known by
pi

Messages:
update(CGi) with CGi a directed graph on messages
of M
promote(promotei) with promotei a sequence of mes-
sages m ∈M

Functions:
UpdateCG(m,C(m)) adds the node m and the set of
edges {(m′,m)|m′ ∈ C(m)} to CGi

UnionCG(CGj) replaces CGi by the union of CGi

and CGj

UpdatePromote() replaces promotei by one of the se-
quences of messages s such that promotei is a prefix of
s, s contains once all messages of CGi, and for every
edge (m1,m2) of CGi, m1 appears before m2 in s

On broadcastETOB(m,C(m)) from the application
UpdateCG(m,C(m))
Send update(CGi) to all

On reception of update(CGj) from pj
UnionCG(CGj)
UpdatePromote()

On reception of promote(promotej) from pj
If Ωi = pj then
b di := promotej

On local time out
If Ωi = pi then
b Send promote(promotei) to all

dependencies. As long as pi considers itself the leader (its
module of Ω outputs pi), it periodically sends to all pro-
cesses a sequence of messages computed from its DAG so
that the sequence respects the causal order and admits the
last delivered sequence as a prefix. A process that receives
a sequence of messages delivers it only if it has been sent
by the current leader output by Ω. The correctness of this
algorithm directly follows from the properties of Ω. Indeed,
once all correct processes trust the same leader, this leader
promotes its own sequence of messages, which ensures the
ETOB specification.

The pseudocode of the algorithm is given in Algorithm 5).
Below we present the proof of its correctness, including the
proof that the algorithm additionally ensures TOB-Causal-
Order.

Lemma 5. In every environment E, Algorithm ET OB
implements ETOB using Ω.

Proof. First, we prove that any run r of ET OB in any
environment E satisfies the TOB-Validity, TOB-No-creation,
TOB-No-duplication, and TOB-Agreement properties.

Assume that a correct process pi broadcasts a message m
at time t for a given t ∈ N. We know that Ω outputs the
same correct process pj to all correct processes in a finite
time. As pj is correct, it receives the message update(CGi)
from pi (that contains m) in a finite time. Then, pj includes
m in its causality graph (by a call to UnionCG) and in its
promotion sequence (by a call to UpdatePromote). As pj
never removes a message from its promotion sequence and

is outputted by Ω, pi adopts the promotion sequence of pj
in a finite time and this sequence contains m, that proves
that ET OB satisfies the TOB-Validity property.

Any sequence outputted by any process is built by a call
to UpdatePromote by a process pi. This function ensures
that any message appearing in the computed sequence ap-
pears in the graph CGp. This graph is built by successive
calls to UnionCG that ensure that the graph contains only
messages received in a message of type update. The con-
struction of the protocol ensures us that such messages have
been broadcast by a process. Then, we can deduce that
ET OB satisfies the TOB-No-creation property.

Any sequence outputted by any process is built by a call
to UpdatePromote that ensures that any message appears
only once. Then, we can deduce that ET OB satisfies the
TOB-No-duplication property.

Assume that a correct process pi stably delivers a message
m at time t for a given t ∈ N. We know that Ω outputs the
same correct process pj to all correct processes after some
finite time. Since m appears in every di(t

′) such that t′ ≥ t,
we derive that m appears infinitely in promotej from a given
point of the run. Hence, the construction of the protocol
and the correctness of pj implies that any correct process
eventually stably delivers m, and ET OB satisfies the TOB-
Agreement property.

We now prove that, for any environment E , for any run r of
ET OB in E , there exists a τ ∈ N satisfying ETOB-Stability,
ETOB-Total-order, and TOB-Causal-Order properties in r.
Hence, let r be a run of ET OB in an environment E . Let us
define:

• τΩ the time from which the local outputs of Ω are
identical and constant for all correct processes in r;

• ∆c the longest communication delay between two cor-
rect processes in r;

• ∆t the longest local timeout for correct processes in r;

• τ = τΩ + ∆t + ∆c

Let pi be a correct process and pj be the correct elected
by Ω after τΩ. Let t1 and t2 be two integers such that
τ ≤ t1 ≤ t2. As the output of Ω is stable after τΩ and the
choice of τ ensures us that pi receives at least one message of
type promote from pj , we can deduce from the construction
of the protocol that there exists t3 ≤ t1 and t4 ≤ t2 such
that di(t1) = promotej(t3) and di(t2) = promotej(t4). But
the function UpdatePromote used to build promotej ensures
that promotej(t3) is a prefix of promotej(t4). Then, ET OB
satisfies the ETOB-Stability property after time τ .

Let pi and pj be two correct processes such that two mes-
sages m1 and m2 appear in di(t) and dj(t) at time t ≥ τ .
Assume that m1 appears before m2 in di(t). Let pk be the
correct elected by Ω after τΩ. As the output of Ω is stable
after τΩ and the choice of τ ensures us that pi and pj receive
at least one message of type promote from pj , the construc-
tion of the protocol ensures us that we can consider t1 and t2
such that di(t) = promotek(t1) and dj(t) = promotek(t2).
The definition of the function UpdatePromote executed by
pk allows us to deduce that either di(t) is a prefix of dj(t) or
dj(t) is a prefix of di(t). In both cases, we obtain that m1

appears before m2 in dj(t), that proves that ET OB satisfies
the ETOB-Total-order property after time τ .

Let pi be a correct process such that two messages m1 and
m2 appear in di(t) at time t ≥ 0. Assume that m1 ∈ C(m2)
when m2 is broadcast. Let pj be the process trusted by Ωi

at the time pi adopts the sequence di(t). If m2 appears in

382

di(t), that implies that the edge (m1,m2) appears in CGj

at the time pj executes UpdatePromote (since pj previously
executed UnionCG that includes at least m and the set
of edges {(m′,m)|m′ ∈ C(m)} in CGj). The construction
of UpdatePromote ensures us that m1 appears before m2

in di(t), that proves that ET OB satisfies the TOB-Causal-
Order property.

In conclusion, ET OB is an implementation of ETOB as-
suming that processes have access to the Ω failure detector
in any environment.

6. RELATED WORK
Modern data service providers such as Amazon’s Dynamo

[7], Yahoo’s PNUTs [6] or Google Bigtable distributed stor-
age [4] are intended to offer highly available services. They
consequently replicate those services over several server pro-
cesses. In order to tolerate process failures as well as parti-
tions, they consider eventual consistency [25, 29, 28].

The term eventual consensus was introduced in [19]. It
refers to one instance of consensus which stabilizes at the
end; not multiple instances as we consider in this paper.
In [9], a self-stabilizing form of consensus was proposed:
assuming a self-stabilizing implementation of �S (also de-
scribed in the paper) and executing a sequence of consensus
instances, validity and agreement are eventually ensured.
Their consensus abstraction is close to ours but the authors
focused on the shared-memory model and did not address
the question of the weakest failure detector.

In [11], the intuition behind eventual consistency was cap-
tured through the concept of eventual serializability. Two
kinds of operations were defined: (1) a “stable” operation
of which response needs to be totally ordered after all op-
erations preceding it and (2) “weak” operations of which re-
sponses might not reflect all their preceding operations. Our
ETOB abstraction captures consistency with respect to the
“weak” operations. (Our lower bound on the necessity of Ω
naturally extends to the stronger definitions.)

Our perspective on eventual consistency is closely related
to the notion of eventual linearizability discussed recently
in [27] and [16]. It is shown in [27] that the weakest failure
detector to boost eventually linearizable objects to lineariz-
able ones is 3P . We are focusing primarily on the weakest
failure detector to implement eventual consistency, so their
result is orthogonal to ours.

In [16], eventual linearizability is compared against lin-
earizability in the context of implementing specific objects
in a shared-memory context. It turns out that an eventually
linearizable implementation of a fetch-and-increment object
is as hard to achieve as a linearizable one. Our ETOB con-
struction can be seen as an eventually linearizable universal
construction: given any sequential object type, ETOB pro-
vides an eventually linearizable concurrent implementation
of it. Brought to the message-passing environment with a
correct majority, our results complement [16]: we show that
in this setting, an eventually consistent replicated service
(eventually linearizable object with a sequential specifica-
tion) requires exactly the same information about failures
as a consistent (linearizable) one.

7. CONCLUDING REMARKS
This paper defined the abstraction of eventual total order

broadcast and proved its equivalence to eventual consen-
sus: two fundamental building blocks to implement a general
replicated state machine that ensures eventual consistency.
We proved that the weakest failure detector to implement

these abstractions is Ω, in any message-passing environment.
We could hence determine the gap between building a gen-
eral replicated state machine that ensures consistency in a
message-passing system and one that ensures only eventual
consistency. In terms of information about failures, this gap
is precisely captured by failure detector Σ [8]. In terms of
time complexity, the gap is exactly one message delay: an
operation on the strongly consistent replicated must, in the
worst case, incur three communication steps [23], while one
build using our eventually total order broadcast protocol
completes an operation in the optimal number of two com-
munication steps.

Our ETOB abstraction captures a form of eventual consis-
tency implemented in multiple replicated services [7, 6, 4].
In addition to eventual consistency guarantees, such systems
sometimes produce indications when a prefix of operations
on the replicated service is committed, i.e., is not subject
to further changes. A prefix of operations can be commit-
ted, e.g., in sufficiently long periods of synchrony, when a
majority of correct processes elect the same leader and all
incoming and outgoing messages of the leader to the correct
majority are delivered within some fixed bound. We believe
that such indications could easily be implemented, during
the stable periods, on top of ETOB. Naturally, our results
imply that Ω is necessary for such systems too.

Our EC abstraction assumes eventual agreement, but re-
quires integrity and validity to be always ensured. Other def-
initions of eventual consensus could be considered. In par-
ticular, we have studied an eventual consensus abstraction
assuming, instead of eventual agrement, eventual integrity,
i.e., a bounded number of decisions in a given consensus in-
stance could be revoked a finite number of times. In the
companion technical report [10], we define this abstraction
of eventual irrevocable consensus (EIC) more precisely and
show that it is equivalent to our EC abstraction.

8. REFERENCES
[1] E. A. Brewer. Towards robust distributed systems

(abstract). In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed
Computing, PODC ’00, pages 7–, 2000.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The
weakest failure detector for solving consensus.
J. ACM, 43(4):685–722, July 1996.

[3] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
43(2):225–267, Mar. 1996.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Trans. Comput. Syst.,
26(2):4:1–4:26, June 2008.

[5] B. Charron-Bost and G. Tel. Approximation d’une
borne inférieure répartie. Technical Report
LIX/RR/94/06, Laboratoire d’Informatique LIX,

École Polytechnique, Sept. 1994.
[6] B. F. Cooper, R. Ramakrishnan, U. Srivastava,

A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. Pnuts: Yahoo!’s hosted
data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, Aug. 2008.

[7] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.

383

In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[8] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui.
Tight failure detection bounds on atomic object
implementations. J. ACM, 57(4), 2010.

[9] S. Dolev, R. I. Kat, and E. M. Schiller. When
consensus meets self-stabilization. Journal of
Computer and System Sciences, 76(8):884 – 900, 2010.

[10] S. Dubois, R. Guerraoui, P. Kuznetsov, F. Petit, and
P. Sens. The weakest failure detector for eventual
consistency. CoRR, abs/X.X, 2015.

[11] A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and
A. Shvartsman. Eventually-serializable data services.
In Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Distributed Computing,
PODC ’96, pages 300–309, New York, NY, USA, 1996.
ACM.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, Apr. 1985.

[13] F. C. Freiling, R. Guerraoui, and P. Kuznetsov. The
failure detector abstraction. ACM Comput. Surv.,
43(2):9:1–9:40, Feb. 2011.

[14] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, June 2002.

[15] R. Guerraoui, V. Hadzilacos, P. Kuznetsov, and
S. Toueg. The weakest failure detectors to solve
quittable consensus and nonblocking atomic commit.
SIAM J. Comput., 41(6):1343–1379, 2012.

[16] R. Guerraoui and E. Ruppert. A paradox of eventual
linearizability in shared memory. In Proceedings of the
2014 ACM Symposium on Principles of Distributed
Computing, PODC ’14, pages 40–49, 2014.

[17] V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems.
Technical Report TR 94-1425, Department of
Computer Science, Cornell University, May 1994.

[18] P. Jayanti and S. Toueg. Every problem has a weakest
failure detector. In PODC, pages 75–84, 2008.

[19] F. Kuhn, Y. Moses, and R. Oshman. Coordinated
consensus in dynamic networks. In Proceedings of the
30th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pages 1–10. ACM,
2011.

[20] A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. SIGOPS
Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[21] L. Lamport. Proving the correctness of multiprocessor
programs. Transactions on software engineering,
3(2):125–143, Mar. 1977.

[22] L. Lamport. The Part-Time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
May 1998.

[23] L. Lamport. Lower bounds for asynchronous
consensus. Distributed Computing, 19(2):104–125,
2006.

[24] A. Mostefaoui, M. Raynal, and F. Tronel. From binary
consensus to multivalued consensus in asynchronous
message-passing systems. Inf. Process. Lett.,
73(5-6):207–212, Mar. 2000.

[25] Y. Saito and M. Shapiro. Optimistic replication. ACM
Comput. Surv., 37(1):42–81, Mar. 2005.

[26] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299–319, Dec. 1990.

[27] M. Serafini, D. Dobre, M. Majuntke, P. Bokor, and
N. Suri. Eventually linearizable shared objects. In
A. W. Richa and R. Guerraoui, editors, Proceedings of
the 29th Annual ACM Symposium on Principles of
Distributed Computing, pages 95–104. ACM, 2010.

[28] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and
P. Maniatis. Zeno: Eventually consistent
byzantine-fault tolerance. In Proceedings of the 6th
USENIX Symposium on Networked Systems Design
and Implementation, NSDI’09, pages 169–184,
Berkeley, CA, USA, 2009. USENIX Association.

[29] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, Jan. 2009.

384

