General equilibrium simulations of floods

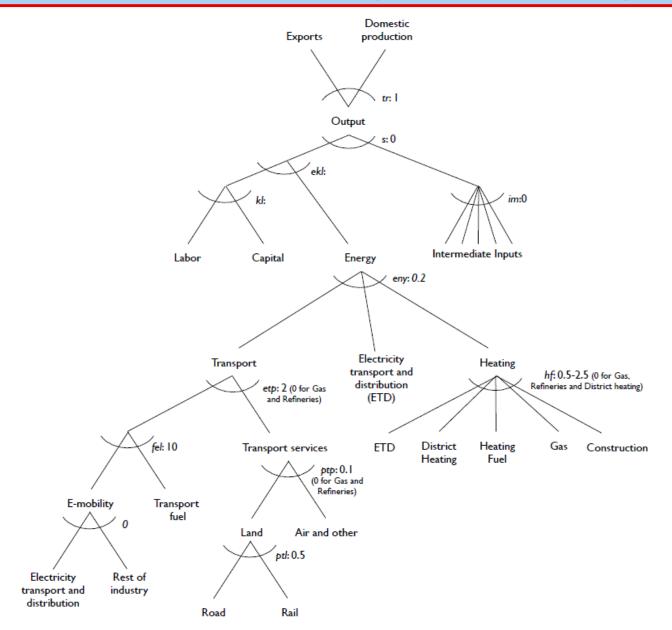
Philippe Thalmann Sinergia-CCAdapt Workshop November 20th, 2015

Prof. Philippe Thalmann ENAC IA LEURE philippe.thalmann@epfl.ch

General equilibrium simulations of floods Structure of the presentation

- Context
- Models
- 4 steps towards modelling the economic costs of floods with adaptation
- Special emphasis on adaptation under uncertainty with bounded rationality
- Research in Gunter Stephan's group
- Expected results

- Contract with FOEN for 2014-2016
- Based on existing literature and research, including our own previous projects on CC impacts and adaptation
- Gaps in the literature identified, in particular the lack of monetary assessment of impacts
- Enhance integrative CGE modelling framework (GEMINI-E3) and perform simulations
- In depth analysis of costs of floods with adaptation in this Sinergia project



Economic modelling The two models

- "Theory with numbers" ("toy model")
 - close to theoretical models, with stylized data
 - high flexibility
- GENESWIS
 - fully dynamic CGE calibrated to Swiss input output table
 - open economy (CH) including taxes and GHG emissions
 - simulates interaction of inter-temporally optimizing agents (firms, households) and government
 - flexible prices and quantities
 - substitutability of consumption goods & inputs to production governed by nested CES utility and production functions

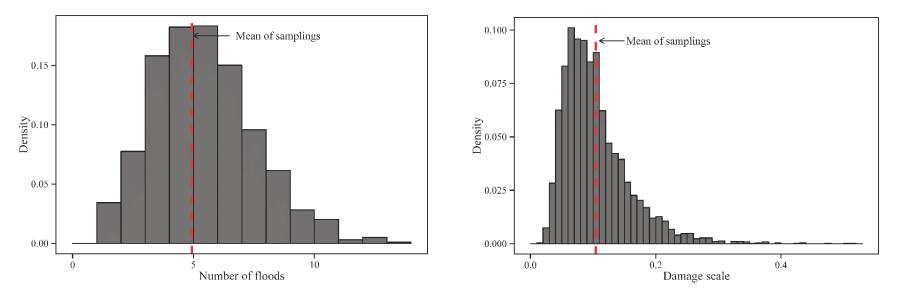
Economic modelling GENESWIS: sectoral production (NCES)

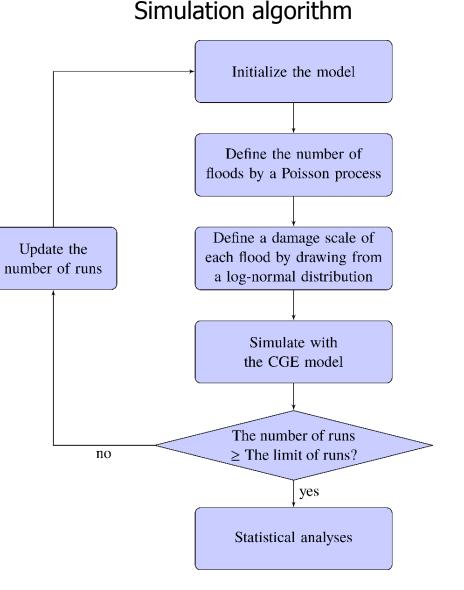
The simulation approach Four steps

- 1. Improve knowledge about flood damages
- 2. Introduce floods into the simulation models
- **3.** Incorporate adaptation measures into the models
- 4. Try alternative decision-making rules for adaptation

- 1. Improve knowledge about flood damages
 - use inputs from "impacts" group
 - select historical flood events
 - assess related damages (WSL database)
 - learn about possible adaptation measures
 - develop dynamic damage projection methods for the selected types of events
 - project damage costs until 2100

Identify typical flood events Floods selected for economic simulations


Prio- rity	Year/ month	Most affected		Magnitude	Return	CH impact	Information
		Catchments	Cantons		period	Mio. CHF	
1.	1999 May	Thur Aare Linthkanal Bodensee	ZH, BE	1129 m³/s 613 m³/s	> 150 > 150	751	Extensive damage, different from 2005 in terms of process and affected region.
2.	2000 Oct	Lago Maggiore	VS, TS			777	A lake case; differs from other floods w.r.t. adaptation measures and spatial development.
1.	2005 Aug	Aare Reuss	BU, UR	605 m³/s 523 m³/s	> 150 30	3109	The largest historical event in terms of damages.
2.	2007 Aug	Birse Aare	JU, BE	383 m³/s 524 m³/s	> 150 62	722	Processes similar to 2005. How has adaptive behaviour reduced costs relative to 2005?
2.	2011 Oct	Kander Lötschental	BE, VS, GL	65 m³/s 120 m³/s	>100 30-100	118	This particular process may increase in frequency due to climate change.


2. Introduce floods into the simulation models

- unanticipated stochastic shocks
- destruction of capital (more/less vulnerable locations)
- direct impact on welfare (e.g. non-market damages)
- toy model:

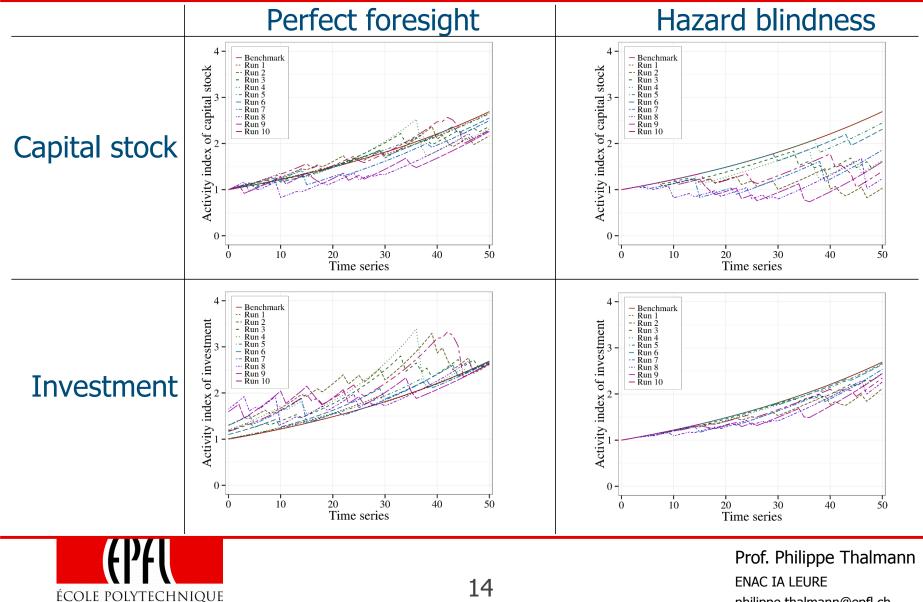
Poisson flood event distribution & log-normal distributed damage scale

- Perfect foresight, but not concerning the timing and magnitude of flood events
- The model needs to be re-initialized after each unanticipated flood
- Evaluating individual flood scenarios as well as Monte Carlo simulations

3. Incorporate adaptation measures in the model

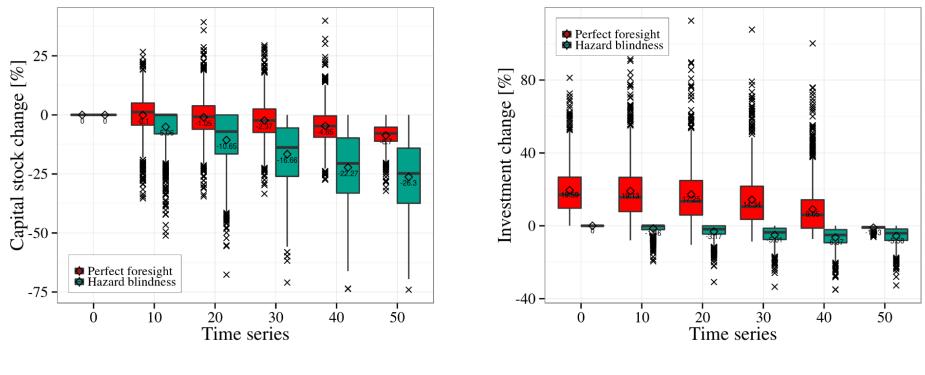
- types of measures
 - (infra-)structural, e.g. protection capital, alarm systems
 - spatial planning, e.g. building in less vulnerable locations
 - environmental information
- private and public adaptation
 - private: structure of the economy adapts to shocks
 - public: investment into adaptation capital & spatial planning
- costs and benefits of adaptation
 - cost function: total costs and input shares
 - crude estimates of related damage reduction benefits

- 4. Try alternative decision-making rules for adaptation
 - use insights from the "theory" and "policy" groups
 - autonomous adaptation by optimising economic agents
 - depends on their anticipations
 - proactive vs. reactive public adaptation according to decision rules
 - reference: optimal decision-making under uncertainty
 - descriptive: sub-optimal decision-making, e.g. heuristics
 - prescriptive: how to improve public decision-making on adaptation?



First results Model and assumptions

- Simulations with toy model
- Two polar assumptions about private agents' anticipation relative to flood risks
 - 'perfect foresight': actors know when and what flood will occur -> optimal adaptation
 - 'hazard blindness': no anticipation that floods may occur and no learning from events -> no proactive adaptation
- No public adaptation yet


First results Perfect foresight vs. hazard blindness (10 runs)

FÉDÉRALE DE LAUSANNE

philippe.thalmann@epfl.ch

First results Monte Carlo simulation (1000 runs)

(a) Capital stock

(b) Investment

Prof. Philippe Thalmann ENAC IA LEURE philippe.thalmann@epfl.ch

General equilibrium simulations of floods Core of the research

- How to improve on sub-optimal decision-making for adaptation
- Focus: decision-making under flood hazard uncertainty
 - risks may be neglected before they materialize
 - surprising extreme events are likely to induce additional adaptation
 - agents may under- or overestimate damage increase through climate change
 - what is our own knowledge base in this respect?
 - how does a society learn?
 - how do scientists learn?
 - learning as part of the adaptation strategy?

Research in Gunter Stephan's group Goals and means

- Quantitative assessment of flood damages with different adaptation options
- CGE model with a multi-region/multi-tier setting
- Main data and knowledge input:
 - Swiss input-output table (2008), data on sectoral output and employment at municipality level, and data on commuting (Swiss Statistics)
 - data on representative flood damages by municipality (WSL)
 - aqua-protect data on regional vulnerability ('impact' group)
 - financing strategies ('theory' group)
 - interaction between national and regional government ('policy' group)

Research in Gunter Stephan's group Key modelling choices

- Dynamic Ramsey-type model with a time horizon of 2100 and 5-year periods
- Regional disaggregation by distinguishing land that is
 - more or less vulnerable to floods
 - an input factor for production or assimilated to households consumption
- Sectoral disaggregation: Sectors I, II and III have different production structures, especially with respect to land use
- Impacts of floods are described through damages to uncovered land and land covered with immobile capital and infrastructure

Research in Gunter Stephan's group Key modelling choices - adaptation

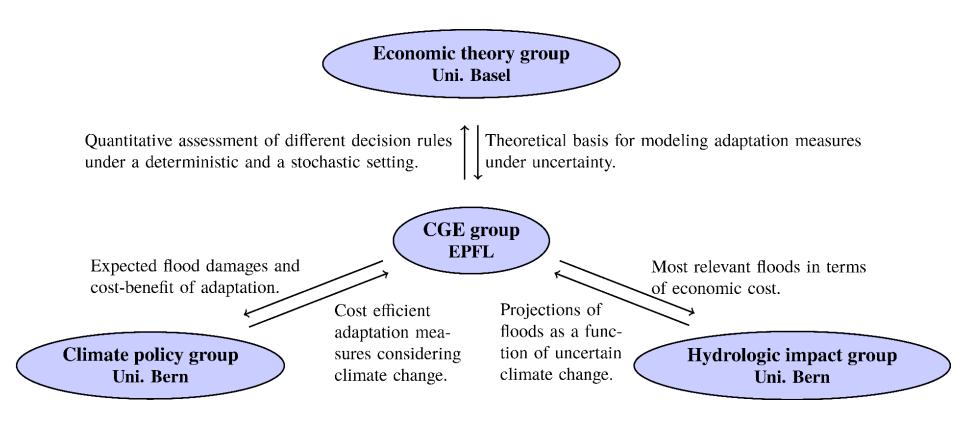
- Damage functions are calibrated to WSL data
- Adaptation reduces lands' vulnerability to floods
- Only public adaptation is analysed:
 - Iand-use planning
 - establishment of protected areas
 - flood protection constructions
- Differentiation between local and national adaptation measures, i.e. provided either by the regional or the national government
- Analysis of different forms of adaptation funding

General equilibrium simulations of floods Expected results

- Advancements in CGE modelling of
 - flood risks
 - adaptation measures
 - decision-making for adaptation under uncertainty
 - decision-making for adaptation in a federal context
- Estimates of the cost of myopic policies under alternative flood scenarios and decision rules
- Finding realistic means to improve on the decisionmaking for flood adaptation
 - what are the most costly mistakes that we make?
 - what simple rules or spread of information could avoid these mistakes?

Teams

Christin Hoffmann Uni Berne


Gunter Stephan Uni Berne Takafumi Usui EPFL Frank Vöhringer Econability /EPFL Philippe Thalmann EPFL

THANK YOU FOR YOUR ATTENTION

Prof. Philippe Thalmann ENAC IA LEURE philippe.thalmann@epfl.ch

Modeling of flood adaptation Interdisciplinary collaboration

Prof. Philippe Thalmann ENAC IA LEURE philippe.thalmann@epfl.ch