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Abstract

Pedestrian facilities are more and more congested. It is important to understand the modeling of
pedestrian flows to assure safety and comfort. Many models have already been developed such
as the social force modle and PedCTM. The problem is that either they allow for population
heterogeneity or they are fast. The goal of this project is to implement a new model that has
both of these characteristics.
The new model presented here is fast due to the use of a fundamental diagram. The anisotropy
of this model comes from a new formulation of a fundamental diagram based on the literature,
SbFD. This project gives a summary of the model and presents the new fundamental diagram.
It also compares this fundamental diagram to the state-of-the-practice, Weidmann (1992). The
different parameters of the model and the fundamental diagrams are calibrated using the simu-
lated annealing algorithm. Finally, a case study analysis on two set of experimental data is done
to compare the performance of the fundamental diagrams.
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1 Introduction

The study of pedestrian flows is gaining importance due to phenomena such as congestion in
transportation hubs and urban facilities. It is desirable to have fast predictive models to optimize
the design and operation of pedestrian environments in terms of safety, comfort and performance.
So far, mostly models have been developed that have either population heterogeneity (social force
model), or are fast (cellular automata), but usually not both. To consider complex networks, or
for accessory problems such as demand estimation, we however need models that combine both
properties.
To that end, the use of a cell transmission model for describing pedestrian flows is a promising
approach. The cell transmission model is fast and can be easily calibrated thanks to its use of a
fundamental diagram. For mildly congested situations, or for situations involving uni-directional
flows, such a model has been successfully developed (PedCTM) (Hänseler et al.; 2014).
For problems that are both congested and multi-directional, flows are typically anisotropic, i.e.,
the walking speed depends on the direction. For instance for bi-directional flows on cross-walks
or in shopping malls in Hong Kong, it has been shown by Lam et al. (2002) that the speed in
the direction of major flow is significantly higher than in the opposite direction. Existing cell
transmission models, such as the aforementioned PedCTM, cannot realistically reproduce such
anisotropic phenomena.
To address this issue, we would like to develop a model that features the efficiency of the
cell-transmission model, but which can additionally reproduce anisotropic flow behavior at the
aggregate level, as they appear in mildly or highly congested situations for multi-directional flow
patterns. Our approach lies in the use of a link-transmission model.

2 Model Framework

2.1 Summary of the model

We give here a summary of the model framework provided by Hänseler et al. (2015). All the
details are given in Hänseler et al. (2015, section 3).

We consider a discrete-time discrete-space model, where each time interval τ ∈ T is of uniform
length ∆T > 0. The pedestrian walking network is represented by a directed graph G = {Λ,N}
where Λ is the set of directed streams λ ∈ Λ and N the set of nodes ν ∈ N . The length of each
stream is given by Lλ > 0 and the minimum length is given by Lmin = minλ∈Λ Lλ.
Pedestrians move along streams. Multi-directional flow is decomposed into the set of uni-
directional streams. Each stream λ is associated with an area ξ, defining a space in which
local streams interact. The surface size of an area ξ is denoted by Aξ > 0. There is no a priori
assumption regarding the size and shape of an area. The set of all areas is denoted by X , and
the set of links associated with area ξ by Λξ, with Λξ ⊂ Λ and Λξ ∩ Λξ′ = ∅ if ξ 6= ξ′.
Fig. 1 illustrates the proposed space representation at the example of a longitudinal corridor
and a triangular space discretization. However, any other discretization – irregular, with varying
link lengths and even disconnected areas – can in principle be envisaged.
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Figure 1: Illustration of space representation at the example of a longitudinal corridor. In this
example, walkable space is represented by a regular network of streams λ ∈ Λ that decompose
multi-directional flow in a set of uni-directional streams that interact within areas ξ ∈ X (one is
shaded in light blue). Centroids at both ends of the corridor are discernible by their star shape.

The choice of ∆T is given by the Courant-Friedrichs-Lewy (CFL) condition (Courant et al.;
1967). It can be expressed as

∆T ≤ Lλ
Vf
, ∀λ ∈ Λ =⇒ ∆T =

Lmin
Vf

(1)

where Vf represents the ‘global’ free-flow speed, a calibration parameter of the model. The left
part of equation 1 represents an upper bound for the time step given by the CFL condition.
Since, the choice of the time discretization is not critical for the stability of this model and we
don’t use it as a calibration parameter, the upper bound is used to specify it. Each link is then
associated with a speed Vλ,τ that is characteristic for the stream it carries during time interval
τ . This speed is calculated with a fundamental diagram that links the speed to the density k
on a link λ. The concept of a fundamental diagram is given in the section 2.2.

Figure 2: Illustration of the concept of route. In this example, the route is represented by the
red arrow that goes from the origin node νρo (in green) to the destination node νρd (in blue). The
accessible network Xρ for the chosen route is in light red.

A route ρ is defined as a set of links Λρ and a pair of origin and destination nodes (centroids)(
νρo , ν

ρ
d

)
, with νρo , ν

ρ
d ∈ C ⊂ N where C is the set of centroids. The set of all routes is denoted by

R. All the links λ ∈ Λρ are contained in an accessible network Xρ ⊂ X . Generally, the route is
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defined by the two centroids and the accessible network. There is no a priori restriction on the
routes as they connect a pair of centroids and use a valid set of links and areas. Fig. 2 illustrates
the choice of routes in the case of a network with two different paths that goes from an origin
node to a destination node. The choice of the route has been done arbitrarly, the upper path
can also be chosen.

Pedestrian are organized in packets. A pedestrian packet ` is characterized by a route ρ`, a
departure time interval τ` and the number of people m` it contains. The set of all packets is
denoted by L ⊂ R × T . The route ρ`, the departure time interval τ` and the size m` of each
packet ` ∈ L are assumed to be known a priori, and the corresponding demand matrix is denoted
by D = [ρ`, τ`,m`] ∀` ∈ L
The state of the model at any time interval is fully described by the packet-specific distribution
of pedestrians on the network. The number of pedestrians associated with group ` on link λ
during time interval τ is denoted by M`

λ,τ and refered to as the corresponding ‘fragment size’.
The sum of all fragments on a link λ during time interval τ is denoted by Mλ,τ and referred to
as link accumulation. The vector of link accumulations associated with area ξ and time interval
τ is denoted by Mξ,τ = [Mλ,τ ], with λ ∈ Λξ.
The ‘fragment size’ is updated using a continuity equation given by:

M `
λ,τ+1 = M `

λ,τ + Pedestrians in packet ` entering link λ

− Pedestrians in packet ` leaving link λ (2)

+ source/sink term

The source/sink terms are used only if the link λ is adjacent to a centroid ν ∈ C.

2.2 Fundamental diagrams–density-speed relation

We give here a summary of the fundamental diagrams provided by Hänseler et al. (2015). All
the details are given in Hänseler et al. (2015, section 4.1).

2.2.1 Weidmann

The fundamental diagram of Weidmann (1992) is given by:

Vλ = Vf

{
1− exp

[
−γ
(
Aξ
Mξ
− 1

kjam

)]}
(3)

with kjam the jam density, γ a shape parameter and Vf the free-flow speed. Therefore, this
fundamental diagram has three different calibration parameters. One of the particularities of
this fundamental diagram is that it has a jam density. One more condition stands:

0 ≤
Mξ

Aξ
≤ kjam

According to Weidmann (1992), the free-flow speed is estimated at Vf = 1.34 m/s, the shape
parameter at γ = 1.913 m−2, and the jam density at kjam = 5.4 m−2.

The only problem of this fundamental diagram is that it is isotropic. However, since it is
the state-of-the-practice, it is used as the benchmark for the comparison between the different
fundamental diagrams.
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2.2.2 SbFD

The SbFD (Stream-based Fundamental Diagram) is inspired by Wong et al. (2010) and Xie and
Wong (2014). But, these two fundamental diagrams show some problems. First, the fundamental
diagram of Wong et al. (2010) is for bi-directional flows only. On the other hand, the fundamental
diagram of Xie and Wong (2014) is not self-consistent. Indeed, splitting up a group into two
identical groups of half the magnitude yields a different flow field. It does not guarantee a unique
solution, which is inconsistent with the definition of this fundamental diagram. Therefore, we
present here the simplest possible fundamental diagram inspired by the literature to illustrate
the model: SbFD.

Vλ = Vf exp

(
−ϑ
(
Mξ

Aξ

)2
) ∏
λ′∈Λξ

exp

(
−β
(
1− cosφλ,λ′

)Mλ′

Aξ

)
(4)

where ϑ and β are model parameters, φλ,λ′ denotes the intersection angle between two groups
λ and λ′ with φλ,λ′ = 0 if λ = λ′, and Vf the free-flow speed.
Eq. 4 has two distinct terms. The first exponential represents the isotropic reduction in speed
due to the accumulation on the whole area Mξ. The second term, i.e. the product of exponen-
tials, represents the anisotropic reduction due to the ‘friction’ with other groups, depending on
their density Mλ′/Aξ and the intersection angle φλ,λ′ .

This fundamental diagram is self-consistent and guarantees a unique solution. It is also anisotropic
due to the ‘friction’ and it is multi-directional due to the intersection angle φλ,λ′ .

2.2.3 Drake

The fundamental diagram of Drake et al. (1967) is the isotropic version of SbFD. Indeed, if the
model parameter β is set to 0, then we have:

Vλ = Vf exp

(
−ϑ
(
Mξ

Aξ

)2
)

(5)

with ϑ a model parameter, and Vf the free-flow speed.

This fundamental diagram does not have the property of anisotropy and is also uni-directional.
Therefore, it is used to show the improvement the anisotropic part of SbFD can bring.

2.2.4 Shape of the fundamental diagrams

Fig. 3 shows the three fundamental diagrams presented before. Weidmann and Drake’s fun-
damental diagrams are presented with a uni-directional flow, since they are uni-directional.
However, SbFD is presented with the whole range of all possible flow compositions. The area
covers all possible speeds. The two bounds are given by two particular cases of counter flow,
once where a pedestrian walks with everyone else, and once where a pedestrian walks against
everyone. Mλ denotes the accumulation of the major flow and Mλ′ the accumulation of the
minor flow. Therefore, SbFD is given by:

Vλ
Vf

= exp

(
−ϑ
(
Mλ +Mλ′

Aξ

)2
)

exp

(
−β
(
1− cosφλ,λ′

)Mλ′

Aξ

)
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where cosφλ,λ′ = −1 because the two flows are counter-flows. The upper bound, the black solid
line, is the relation found when the minor flow is zero, i.e. Mλ′ = 0. Therefore, the upper
bound for SbFD becomes:

Vλ
Vf

= exp
(
−ϑk2

)
where k = Mλ/Aξ is the density. This expression of SbFD is the same as the expression of
Drake’s fundamental diagram with ϑ the model parameter given by the calibration on SbFD
(different from the one calibrated with Drake’s fundamental diagram).

The lower bound, the black dashed line, is found when the major flow is zero, i.e. Mλ = 0.
Therefore, the lower bound for SbFD becomes:

Vλ
Vf

= exp
(
−ϑk2

)
exp (−2βk)

where k =Mλ′/Aξ is the density.

Therefore, depending on the ratio of the flows, SbFD can take any values between the lower and
the upper bound.
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Weidmann (1992)

SbFD (this work)
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Figure 3: Illustration of the three fundamental diagrams presented before: Weidmann, SbFD,
and Drake. The parameters used to illustrate the fundamental diagrams are the ones found by
the full-set calibration, see section 5.1.

Fig.4 illustrates the SbFD in two dimensions: the total density and the density ratio. The upper
bound of figure 3 corresponds to the value of 1 in the density ratio and the lower bounds to the
value of 0 in the density ratio.
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This figure already gives an idea of the benefits of an anisotropic fundamental diagram. Indeed,
we see on figure 4 that if the total density is high and if the density ratio is asymmetric, then
the normalized speed of the two flows will be different.
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Figure 4: Illustration of SbFD in two dimensions. The parameters used to illustrate the
fundamental diagrams are the ones found by the full-set calibration, see section 5.1.

3 Calibration

3.1 Parameter calibration

Let z denote the set of random variables representing the parameters of the current fundamental
diagram. z is equal to:

• (Vf , γ, kf , µ) for Weidmann

• (Vf , ϑ, β, µ) for SbFD

• (Vf , ϑ, µ) for Drake

µ is the weight of the logit-type model of the en-route path choice model. It is not discussed in
this paper, see Hänseler et al. (2015). The other parameters are defined in section 2.2.

We assume that these parameters are random variables and uncorrelated. In order to find the
optimum value z∗, we use a simulation-based technique called Simulated Annealing. Indeed,
the space of parameters can be vast, therefore using a simulation-based technique gives a good
approximation of the global optimum.

For each parameter, we give a lower and an upper bound. We can then define the set of feasible
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parameters P, a space of n dimension where n is the number of parameters to calibrate. Let
V (z) be a non-negative function defined on z ∈ P. We are interested in finding the minimal
value of V (z), i.e.

z∗ = arg min
z
V (z) (6)

At the beginning of the calibration, an initial vector of valid parameters z0 ∈ P is given. Then,
the parameter will be randomly changed with a maximum step size. Further details of simulated
annealing are given in Farooq et al. (2013).

3.2 Objective function

The idea of calibrating the model and the fundamental diagrams is to find the vector z such
that the output of the model is as close as possible to some observed data. The calibration is
based on travel times of pedestrian packets. The objective function is defined by a weighted
squared error on travel times. The idea of using different weights1for each packet is to equalize
the effect of each group on the objective function. The weights are given by:

w` =
m`∑

`′∈Lm`′ · I`,`′∈K

where I is the indicator function and {`, `′ ∈ K} means that packets ` and `′ are associated with
same group. Therefore, the objective function is given by:

Vcalib(z) =
∑
`∈L(z)

w`

(
TT

sim
` − TT obs

`

)2
(7)

3.3 Combinatorial cross-validation

The combinatorial cross-validation is used when the number of data is too poor to have good
statistics. First, we define the set of experimental design E . In this set, we draw randomly
b80 %c of them. This new set is defined as Ecalib and the d20 %e remaining are defined as Evalid.
Then, the experiments in the set Ecalib will be used to calibrate the model and the experiments
in the set Evalid to validate the model. Thus, the process of calibrating and validating the model
is repeated many times. This will allow to test the predictive power of the model.

In order to test the robustness of the model, a full-set calibration is initially done. The initial
vector z0 is chosen randomly between the lower and upper bounds. Then, the results of the
full-set calibration zFS is given as initial parameters for the combinatorial cross-validation.

The results presented in section 5 are done with:

• 624 runs of SA2 with 161 iterations for the full-set calibration

• 200 runs of SA2 with 200 iterations for the combinatorial cross-validation

1We give here a warning. Using weights for the objective function can bias the results.
2SA stands for Simulated Annealing
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4 Data

4.1 HKU – Counter-flow experiments

The first set of data is provided by Wong et al. (2010). In their paper, they present 89 bi-
directional experiments varying the total number of pedestrians, the ratio between the two
groups and the intersection angle. The reference group is called major group and the conflicting
one minor group. They are called like this because the major group consists of at least as many
pedestrians as the minor group. We did not get the tracking data, therefore we had to extract
manually the travel times of the two groups. Fig 5 shows different frames of the experiments
provided by Wong et al. (2010). As we can see, the angle of the camera makes the extraction of
the data complicated. Therefore, we avoided to take the cross-flow experiments.

(a) Exp. #78: ratio 60-0. Frame 2905 (b) Exp. #81: ratio 42-18. Frame 4437

(c) Exp. #83: ratio 30-30. Frame 5309 (d) Exp. #86: ratio 53-30. Frame 7185

Figure 5: Images of the experimental data provided by Wong et al. (2010). The major group
wears blue hats and the minor group wears gray hats.

Fig. 6 shows the walkway configuration for Wong et al. (2010) experiments. The network (a) is
the one shown in figure 5. The other setup, (b), was difficult to implement. Thus, we decided
to forget it and keep the bi-directional experiments only.
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(a)

(b)

(a) perpendicular intersecting angle

(a)

(b) (b) oblique intersecting angle

Figure 6: Walkway configuration of the experiment used by Wong et al. (2010).

The bi-directional experiments were done for a total number of pedestrians equal to 40, 60
and 88. Since, we are looking for experiments that show anistropy, we decided to only take
the experiments with a total number of pedestrians equal to 60 and 88. This let us with 12
experiments. The extracted travel times and walking speeds are given in the table 1.

Exp. # of Ped. Travel time [s] Walking speed [m/s]

78 60 0 10.76 - 0.84 -
79 54 6 10.09 11.26 0.92 0.81
80 48 12 9.27 11.01 0.99 0.83
81 42 18 8.98 11.11 1.02 0.82
82 36 24 9.42 10.28 1.00 0.88
83 30 30 9.78 10.48 0.97 0.87

84 87 0 8.46 - 1.08 -
85 79 9 7.68 11.52 1.19 0.80
86 68 18 10.10 12.66 0.90 0.74
87 61 26 10.98 13.78 0.82 0.67
88 53 30 10.93 11.78 0.83 0.79
89 44 44 11.75 11.61 0.79 0.79

Table 1: Extracted travel times and walking speeds from the chosen experiments by Wong
et al. (2010). The major group is in dark gray and the minor group in light gray.

Table 1 shows some anisotropy. Indeed, the travel times and walking speeds are different be-
tween the major and the minor groups. In the literature, Lam et al. (2002) has already shown
that the walking speed of a minor group walking against a major group is smaller than the
walking speed of the major group. It comes from the fact that the speeds (or travel times) are
stochastic. Otherwise, for equal counter-flow, we would expect exactly the same speeds, or for
higher demands always longer travel times. This means that with more demands, we would
always have more congestion. That is not the case in reality.

Fig. 7 illustrates the network used to reproduce the experiments by Wong et al. (2010). The
three centered areas (W1, C1, and E1) have a size of 3x3 meters, the gate areas (WGATE, and
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EGATE) have an infinite area as the source/sink areas (WEST, and EAST).

Figure 7: Network used for the model and the experiments provided by Wong et al. (2010).
This network is inspired by the walkway (a) in Fig.6. Since only counter-flow experiments are
used, the perpendicular walkway is not implemented.

The histograms of the walking speeds for each experiment are presented in the appendix.

4.2 Berlin – “Science Night” experiments

During the Lange Nacht der Wissenschaften (Long Night of the Sciences), Plaue et al. (2011)
conducted several experiments. A first set of two experiments was under the control of the
experimenters. One of these experiments is counter-flow and the other one is cross-flow. A final
experiment with less control was conducted with a lot of pedestrians. This was a cross-flow
experiment. Fig.8 shows two images of the experiments. The first one, (a), is the cross-flow
controlled experiment. The controlled counter-flow experiment is not shown here. The second
one, (b), is the ‘uncontrolled’ experiment.

(a) Controlled counter-flow experiment (b) ‘uncontrolled ’experiment

Figure 8: Images of the experimental data provided by Plaue et al. (2011).

The problem with these data is that the controlled experiments do not show a lot of anisotropy.
The number of pedestrians in the major and the minor groups are almost the same. It is not
exactly the same, thus we still have some anisotropy and that is why they are still useful. The
‘uncontrolled’ experiment, on the other hand, shows a lot of anisotropy. The extracted travel
times and walking speeds are given in table 2.
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Exp. # of Ped. Travel time [s] Walking speed [m/s]

Controlled counter-flow 54 46 5.61 5.86 0.98 0.97
Controlled cross-flow 52 46 6.19 4.75 0.91 0.81

‘uncontrolled’cross-flow 134 75 12.30 10.17 0.81 0.59

Table 2: Extracted travel times and walking speeds from the experiments by Plaue et al.
(2011). The major group is in dark gray and the minor group in light gray.

The network is different between the controlled experiments and the ‘uncontrolled’ one. In the
‘uncontrolled’ experiment, pedestrians had a larger choice of routes. Therefore the distance
chosen to calculate the walking speed is simply the width and the height of the network for all
pedestrians going in the horizontal and vertical directions. The walking speed show that the
first two experiments are mostly isotropic because they are almost the same between the two
groups. On the other hand, the walking speed of the last experiment shows a larger anisotropy
between the major and the minor flow.

Fig.9 illustrates the two networks used to reproduce the experiments by Plaue et al. (2011). All
the centered areas (A*, B*, and C*, where * corresponds to a number) have a size of 1.8×1.8
meters. The gate and the source/sinks areas have an infinite area.

The histograms of the walking speeds for each experiment are presented in the appendix.

(a) Network for the controlled experiments
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(b) Network for the ‘uncontrolled’ experiment

Figure 9: Networks used for the model and the experiments provided by Plaue et al. (2011).
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5 Results

5.1 HKU – Counter-flow experiments
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Figure 10: Objective function for each fundamental diagram {Weidmann, Drake, SbFD}. The
boxplots are given for the calibration in the combinatorial cross-validation process. The best
value from the full-set (FS) calibration is also given with a thin black line. The values on the
graph are normalized by the number of experiments, i.e. the objective function value for the
full-set calibration is divided by 12 and the objective function value for the calibration in the
cross-validation process is divided by 9.
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Figure 11: Objective function for each fundamental diagram {Weidmann, Drake, SbFD}. The
boxplots are given for the validation in the combinatorial cross-validation process. The best
value from the full-set (FS) calibration is also given with a thin black line. The values on the
graph are normalized by the number of experiments, i.e. the objective function value for the
full-set calibration is divided by 12 and the objective function value for the validation in the
cross-validation process is divided by 3.

Vcalib,FS(z∗) Vcalib,CV(z∗) Vvalid,CV(z∗)

Weidmann 39.68 (base) 31.24 (base) 13.86 (base)

Drake 40.42 (+1.87%) 32.30 (+3.39%) 14.96 (+7.94%)

SbFD 36.51 (-7.99%) 28.00 (-10.37%) 11.25 (-18.83%)

Table 3: Change in the objective function for the calibration on the full data set (Vcalib,FS(z∗)),
the calibration in the cross-validation process (Vcalib,CV(z∗)) and the validation (Vvalid,CV(z∗)).
The best value are in green, the worst in red.
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Figure 12: Scatter plot of the run that returns minVcalib(z∗), the best run of the combinatorial
cross-validation. The blue circles correspond to the major groups and the red crosses correspond
to the minor groups. The values associated to these graphs are reported in table 4.

TTMajor [s] TTMinor [s]

minVcalib(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 26.32 180 10.29 9.90 0.39 11.33 11.49 0.16 0.55

Drake 27.29 162 10.28 9.90 0.38 11.48 11.81 0.33 0.71

SbFD 22.78 11 9.60 9.48 0.12 11.57 11.44 0.17 0.29

Table 4: Values extracted from figure 12. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 13: Scatter plot of the run that returns maxVcalib(z∗), the worst run of the combi-
natorial cross-validation. The blue circles correspond to the major groups and the red crosses
correspond to the minor groups. The values associated to these graphs are reported in table 5.

TTMajor [s] TTMinor [s]

maxVcalib(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 35.93 23 10.01 9.62 0.39 10.97 11.20 0.23 0.62

Drake 39.06 142 10.28 10.03 0.25 11.75 11.80 0.05 0.30

SbFD 33.12 162 9.79 10.07 0.28 11.68 11.67 0.01 0.29

Table 5: Values extracted from figure 13. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 14: Scatter plot of the run that returns mean Vcalib(z∗), the closest run to the average
of the combinatorial cross-validation. The blue circles correspond to the major groups and the
red crosses correspond to the minor groups. The values associated to these graphs are reported
in table 6.

TTMajor [s] TTMinor [s]

mean Vcalib(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 31.24 62 10.25 9.71 0.54 11.38 11.54 0.16 0.70

Drake 32.30 178 10.06 9.57 0.49 11.41 11.78 0.31 0.80

SbFD 28.00 136 9.82 9.79 0.03 11.93 12.06 0.13 0.16

Table 6: Values extracted from figure 14. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 15: Scatter plot of the run that returns median Vcalib(z∗), the median run of the
combinatorial cross-validation. The blue circles correspond to the major groups and the red
crosses correspond to the minor groups. The values associated to these graphs are reported in
table 7.

TTMajor [s] TTMinor [s]

median Vcalib(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 31.31 63 10.55 10.35 0.20 11.49 11.76 0.27 0.47

Drake 32.53 8 9.94 9.93 0.01 11.08 11.43 0.35 0.36

SbFD 27.85 118 9.49 9.61 0.12 11.98 11.89 0.09 0.21

Table 7: Values extracted from figure 15. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 16: Scatter plot of the calibration run of the combinatorial cross-validation that the
linear fit is the closest to the black dashed line: y = ax+b, where a = 1 and b = 0. The fitting of
the points has been done with the function polyfit from Matlab. The blue circles correspond
to the major groups and the red crosses correspond to the minor groups. The values associated
to these graphs are reported in the table

Linear fit TTMajor [s] TTMinor [s]

slope intercept Run sim obs ∆ sim obs ∆ tot

Weidmann 0.63 3.59 84 9.96 9.62 0.34 11.30 11.53 0.23 0.57

Drake 0.72 2.60 37 10.23 10.06 0.17 11.77 12.01 0.24 0.41

SbFD 0.63 3.47 107 9.49 9.41 0.08 11.34 11.29 0.05 0.13

Table 8: Values extracted from figure 16. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 17: Scatter plot of the run that returns minVvalid(z∗), the best run of the combinatorial
cross-validation. The blue circles correspond to the major groups and the red crosses correspond
to the minor groups. The values associated to these graphs are reported in table 9.

TTMajor [s] TTMinor [s]

minVvalid(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 7.81 51 9.84 8.96 0.88 10.32 10.63 0.31 1.19

Drake 7.15 79 9.32 8.91 0.41 9.94 10.53 0.59 1.00

SbFD 5.57 170 9.24 8.82 0.42 11.34 11.07 0.27 0.69

Table 9: Values extracted from figure 17. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 18: Scatter plot of the run that returns maxVvalid(z∗), the worst run of the combi-
natorial cross-validation. The blue circles correspond to the major groups and the red crosses
correspond to the minor groups. The values associated to these graphs are reported in table 10.

TTMajor [s] TTMinor [s]

maxVvalid(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 24.76 104 10.88 9.20 1.68 12.60 11.48 1.12 2.80

Drake 46.03 118 13.43 11.19 2.24 14.51 12.22 2.29 4.53

SbFD 19.51 107 8.78 10.64 1.86 11.85 13.31 1.46 3.32

Table 10: Values extracted from figure 18. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 19: Scatter plot of the run that returns mean Vvalid(z∗), the closest run to the average
of the combinatorial cross-validation. The blue circles correspond to the major groups and the
red crosses correspond to the minor groups. The values associated to these graphs are reported
in table 11.

TTMajor [s] TTMinor [s]

mean Vvalid(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 13.86 72 10.80 9.77 1.03 12.29 12.31 0.02 1.05

Drake 14.96 186 9.56 8.58 0.98 10.14 10.79 0.65 1.63

SbFD 11.25 171 10.47 10.29 0.18 11.40 11.49 0.09 0.27

Table 11: Values extracted from figure 19. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 20: Scatter plot of the run that returns median Vvalid(z∗), the median run of the
combinatorial cross-validation. The blue circles correspond to the major groups and the red
crosses correspond to the minor groups. The values associated to these graphs are reported in
table 12.

TTMajor [s] TTMinor [s]

median Vvalid(z∗) Run sim obs ∆ sim obs ∆ tot

Weidmann 13.59 12 10.70 9.92 0.78 10.86 11.12 0.26 1.04

Drake 14.04 70 10.14 10.35 0.21 12.03 11.53 0.50 0.71

SbFD 11.15 145 10.44 9.73 0.71 11.46 11.25 0.21 0.21

Table 12: Values extracted from figure 20. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 21: Scatter plot of the validation run of the combinatorial cross-validation that the
linear fit is the closest to the black dashed line: y = ax+ b, where a = 1 and b = 0. The fitting
of the points has been done with the function polyfit from Matlab. The blue circles correspond
to the major groups and the red crosses correspond to the minor groups. The values associated
to these graphs are reported in the table 13.

Linear fit TTMajor [s] TTMinor [s]

slope intercept Run sim obs ∆ sim obs ∆ tot

Weidmann 0.91 0.88 45 10.82 11.13 0.31 13.02 12.41 0.61 0.92

Drake 1.11 -0.04 2 10.92 9.56 1.36 13.29 11.14 2.15 3.51

SbFD 0.62 2.19 107 8.78 10.64 1.86 11.85 13.31 1.46 3.32

Table 13: Values extracted from figure 21. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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Figure 22: Parameter Vf given for each fundamental diagram. The boxplots represent the
values from the calibration in the cross-validation process. The thin black line represents the
value returned by the calibration on the full data set. On the left, the values found by Wong
et al. (2010) and Xie and Wong (2014) are given.

The figures with the other parameters are presented in the appendix.

5.2 Berlin – “Science Night” controlled experiments

For the results of the controlled experiments, we only show the table of the numerical results.
Since there is only two experiments, the cross-validation is done in a different way as it is explain
in section 3.3. The idea is to calibrate on one experiment and get the optimal parameters, then
we validate on the other experiment with the obtained parameters.

cross-flow (90◦) counter-flow (180◦)

calibration cross-validation calibration cross-validation

Weidmann 1.39 (base) 5.63 (base) 0.49 (base) 1.24 (base)
Drake 0.96 (-32.09%) 8.37 (+48.67%) 0.57 (+16.33%) 0.74 (-40.32%)
SbFD 0.93 (-33.09%) 1.63 (-71.05%) 0.47 (-4.08%) 0.71 (-42.74%)

Table 14: Goodness-of-fit for the calibration and the cross-validation for the two controlled
experiments. Best values are in green, worst in red.
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5.3 Berlin – “Science Night” ‘uncontrolled’ experiment
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Figure 23: Scatter plot of the run that returns minVcalib(z∗), the best run of the combinatorial
cross-validation. The blue circles correspond to the major groups and the red crosses correspond
to the minor groups. The values associated to these graphs are reported in table 15.

TTMajor [s] TTMinor [s]

median Vvalid(z∗) sim obs ∆ sim obs ∆ tot

Weidmann 18.02 (base) 13.44 12.04 1.40 8.84 10.44 1.60 3.00

Drake 18.19 (+0.94%) 12.96 12.04 0.92 9.07 10.44 1.37 2.29

SbFD 13.00 (-27.86%) 12.55 12.04 0.51 9.78 10.44 0.66 1.17

Table 15: Values extracted from figure 23. TT means the weighted average travel time. ‘sim’
and ‘obs’ stand respectively for the simulated and observed travel times. ∆ is the absolute value
of the difference between the two. ‘tot’ is the sum of the values corresponding to ∆ for both the
major and minor groups. The red values are the worst and the green the best.
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6 Discussion

The first aspect that comes out of these results is the fact that SbFD performs, most of the
time, better than Weidmann and Drake. Indeed, the two figures 10, and 11 and the table 3 show
that SbFD is the best fundamental diagram and Drake the worst. We recall here that Drake’s
fundamental diagram contains one less parameter than Weidmann and SbFD. The improvement
of SbFD on Weidmann, the state-of-the-practice, is between 7.99% and 18.83%. SbFD is the
fundamental diagram with the best predictive power. We also see on the two figures that the
model is quite robust because the normalized objective function value of the calibration on the
full data set stays inside the boxes, i.e. 25th and 75th percentiles. This statement is valid mainly
for the comparison of the two calibrations.

The different scatter plots show also interesting features. Indeed, if we only compare the objec-
tive function, SbFD is the best eight times out of eight. If we compare the difference between
the travel times, i.e. the value ‘tot’, SbFD performs the best seven times out of ten. Therefore,
we can argue that SbFD is not only the fundamental diagram that returns the minimal objective
function value, but also the one that returns the least worse value. It is also the one that returns
the smallest average and median values most of the time. On the other hand, we see that it
really performs less good when we try to fit the reference line. Indeed, on the calibration and on
the validation, SbFD is the worst if we only compare the slope and the intercept. This can come
from the fact that since it’s an anisotropic fundamental diagram, it will always try to fit the two
groups together. It does not take too much into account the whole shape for the two groups
together. If a improved specification of such an anisotropic fundamental diagram is developed,
then it could maybe take this overall fitting into account.

One last interesting aspect about the parameters found on the calibrations is that they are close
to the reality. Indeed, in figure 22, we see that the values of the free-flow speed is close to the
values found by Wong et al. (2010) and Xie and Wong (2014). The box plots are overall good,
because the overall range for Vf is small. We give, here, just a relative comparison. It is not clear
if the difference between the models is significant or not, see last paragraph. We still explain
where this difference can come from. We know that the choice of the space discretization can
influence the parameter Vf . The experimental data also can. For example, we had a problem
with some pedestrians walking too fast.

The Berlin controlled experiments show a small anisotropy in demand, as the extracted data
can show, see table 2. This doesn’t stop SbFD to be the best fundamental diagram in all
case as the table 14 shows. But, the objective function values between the calibration and the
cross-validation are quite different. This is a problem. Indeed, this tells us that the parameter
calculated for one of the experiments are not really good for the other experiment. This impairs
the robustness of the model between different experiments. On the other hand, we see that this
robustness is better with SbFD than the other fundamental diagram.

The Berlin ‘uncontrolled’ experiment has a lot of anisotropy in demand. Therefore, it is logical
to see that SbFD performs a lot better than the two other isotropic fundamental diagrams. It
suggests that SbFD is a good anisotropic fundamental diagram even if it is not optimal. The
discovery of a better fundamental diagram will surely improve the robustness and the predictive
power of this model.
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All the results presented in the section 5 lack a rigorous statistical testing. The values given
in all the tables however show a promising trend in terms of the performance of the proposed
model. A rigorous statistical analysis is subject to future research.
are just the one given by the output of the model. Thus, the discussion above is done on results
that are not verified correctly. This is why it has to be taken with caution. Indeed, good
statistical test would give stronger results and then a better discussion.

7 Conclusion

As the experimental data from Wong et al. (2010), and Plaue et al. (2011) have shown, multi-
directional pedestrian flows are generally anisotropic. The new model developed in this project
can capture this anisotropy. The use of a simple anisotropic fundamental diagram (SbFD) yields
a significant improvement over Weidmann, the state-of-the-practice. Therefore, developing an
optimal anisotropic fundamental diagram with different regims and an overall fitting of the
travel times may lead to even better results. This will also improve the robustness and the
predictive power of this model. As it has been shown, this model is already quite robust and has
a good predictive power when the set of experimental data is quite big. One of the problems to
calibrate this model was the lack of experimental data showing anisotropy. Only a few of them
show an anistropic behavior. Nevertheless, these few experiments could give enough information
to extract the case where the benefit of SbFD is maximal:

• Head-on flow (e.g. 180◦)

• Asymmetric flow ratio (e.g. 10% : 90%)

• High density (e.g. k > 1 [m−2])

This allows us to come back to the illustration of SbFD, see figure 4. On this picture, we al-
ready saw that the difference between the speeds of major and minor groups is maximal when
it corresponds to the characteristics outlined above.

There is still a lot of work to do in order to well understand pedestrian flows. But this work
showed that with a simple anisotropic fundamental diagram and a good model, the prediction
of observed travel times can be improved a lot compared to the state-of-the-practice. Of course,
this work needs some changes, such as the definition of a better objective function, and the
addition of statistical tests on the results. Then, the finding and implementation of an optimal
anisotropic fundamental diagram will lead to a significant improvement as compared to the
current specification, SbFD.
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Appendix

Histograms of experiments by Wong et al. (2010) experiments
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Figure 24: Histograms of the first six experiments by Wong et al. (2010) with a total of
approximately 60 pedestrians. The numerical values of the walking speeds are given in the table
1.

30



0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.1

0.2

P
er

ce
n
ta

ge
of

p
ed

es
tr

ia
n 87 ped.

(a) Experiment 84

0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3
79 ped.
9 ped.

(b) Experiment 85

0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

P
er

ce
n
ta

ge
of

p
ed

es
tr

ia
n 68 ped.

18 ped.

(c) Experiment 86

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

61 ped.
26 ped.

(d) Experiment 87

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
0

5 · 10−2

0.1

0.15

Walking Speed [m/s]

P
er

ce
n
ta

g
e

of
p

ed
es

tr
ia

n 53 ped.
31 ped.

(e) Experiment 88

0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

Walking Speed [m/s]

44 ped.
44 ped.

(f) Experiment 89

Figure 25: Histograms of the last six experiments by Wong et al. (2010) with a total of
approximately 88 pedestrians. The numerical values of the walking speeds are given in the table
1.
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Histograms of experiments by Plaue et al. (2011) experiments
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(a) Counter-flow experiment
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(b) Cross-flow experiment
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Figure 26: Histograms of the three experiments by Plaue et al. (2011) The numerical values
of the walking speeds are given in the table 2.
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Boxplots of the parameters
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Figure 22: Parameter Vf given for each fundamental diagram. The boxplots represent the
values from the calibration in the cross-validation process. The thin black line represents the
value returned by the calibration on the full data set. On the left, the values found by Wong
et al. (2010) and Xie and Wong (2014) are given.
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Figure 27: Parameter ϑ given for each fundamental diagram. The boxplots represent the
values from the calibration in the cross-validation process. The thin black line represents the
value returned by the calibration on the full data set. On the left, the values found by Wong
et al. (2010) and Xie and Wong (2014) are given.
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Figure 28: Parameter γ given for Weidmann fundamental diagram. The boxplots represent
the values from the calibration in the cross-validation process. The thin black line represents the
value returned by the calibration on the full data set. On the left, the value found by Weidmann
(1992) is given.
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Figure 29: Parameter kj given for Weidmann fundamental diagram. The boxplots represent
the values from the calibration in the cross-validation process. The thin black line represents the
value returned by the calibration on the full data set. On the left, the value found by Weidmann
(1992) is given.
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Figure 30: Parameter β given for SbFD. The boxplots represent the values from the calibra-
tion in the cross-validation process. The thin black line represents the value returned by the
calibration on the full data set. The definition of SbFD changed too much to have a comparison
with the β parameter from Wong et al. (2010), and Xie and Wong (2014).
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Figure 31: Parameter µ given for each fundamental diagram. The boxplots represent the
values from the calibration in the cross-validation process. The thin black line represents the
value returned by the calibration on the full data set. There is no comparison with the literature
for the parameter µ.
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