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1.  Introduction

The first-principles understanding of the processes occurring 
in the tokamak scrape-off layer (SOL) remains an outstanding 
open issue in the way towards the construction of a fusion 
reactor. The SOL physics sets the boundary conditions for 
the plasma core, influencing the performance of the entire 
device, and it regulates the interaction of the plasma with 
the solid wall, determining the particle and power flux to the 
vessel. These have to stay within the material limits to prevent 
damage to the wall.

When ions and electrons outflowing from the SOL impact 
the solid walls, they recombine and they are re-emitted into 
the tokamak as neutral atoms and molecules that can pene-
trate into the SOL because of the low local plasma tempera-
ture. These recycled neutrals, which interact with the plasma 
through a number of collisional processes, play an important 
role in the SOL dynamics, and in regulating the heat and par-
ticle flux to the first wall.

To study the interplay between the neutral and the plasma 
dynamics in the SOL, plasma simulation codes based on phe-
nomenological models for the turbulent transport are coupled 
to kinetic Monte Carlo codes that describe the behavior of the 
neutrals in the SOL (e.g. EIRENE [1], DEGAS 2 [2], NIMBUS 
[3], and others). The resulting codes (e.g. SOLEDGE2D-
EIRENE [4], SOLPS, formerly B2-EIRENE, [5–7], EMC3-
EIRENE [8], UEDGE [9], and others) remain the tool of 
reference for the design of tokamak divertors and they have 
been used for the ITER divertor [10]. On the other hand, the 
inclusion of the neutral dynamics in today’s SOL codes that 
are derived from first-principles, i.e. that do not make use 
of empirical models or experimentally fitted parameters to 
describe SOL turbulence, is still in its infancy. In the two-
dimensional turbulence simulation code TOKAM2D [11], the 
ionization of mono-energetic neutrals flying along the radial 
direction is self-consistently described within a plasma model 
that evolves plasma density and electric potential. Work with a 
two-dimensional fluid plasma and fluid neutral model has also 
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been recently reported [12]. Initial progress has been reported 
on the coupling of BOUT++ with EIRENE in linear geom-
etry [13], and with a fluid neutral model1.

In the present paper, we introduce a kinetic model for 
neutral atoms in the tokamak SOL, self-consistently evolved 
with the drift-reduced Braginskii equations [14] that describe 
the plasma dynamics in typical SOL conditions. The neutral 
kinetic model allows us to consider both short and long neu-
tral mean free paths. We consider one mono-atomic neutral 
species, which is subject to four effective collision processes: 
charge-exchange (that includes elastic ion–neutral collisions), 
ionization, recombination, and elastic electron–neutral col-
lisions. Although they may become important in detached 
scenario, we neglect neutral–neutral collisions, which have a 
lower reaction rate than charge-exchange and ionization pro-
cesses in the typical attached SOL parameter regime. We note 
that additional neutral species can be included using the same 
model presented in this paper—this might become necessary 
to consider detachment conditions, or to include the details of 
the recycling from the main vessel wall.

The model is implemented and numerically solved within 
the GBS code [15], a three-dimensional numerical code devel-
oped to simulate SOL plasma turbulence. By solving the drift-
reduced Braginskii equations, GBS evolves the full plasma 
profiles without separation of the plasma quantities into an 
equilibrium and fluctuating part, enabling the study of the self-
consistent formation of the plasma profiles as the interplay of 
the plasma outflowing from the core, the parallel losses, and 
turbulent transport. GBS uses a proper set of boundary con-
ditions at the presheath entrance [16], and it is able to treat 
electromagnetic perturbations [17].

This paper is structured as follows. After the Introduction, 
in section 2 we introduce the model for neutral atoms and the 
drift-reduced Braginskii equations suitable to describe plasma 
turbulence in the SOL and the interaction of the plasma with 
the neutrals. The method to solve the kinetic equation  for 
neutrals is discussed in section  3. In section  4, first results 
of coupled plasma turbulence and neutral dynamics are pre-
sented. The conclusions and an outlook follow. The numerical 
implementation and the numerical convergence properties are 
added in the appendix.

2. The model

Here we present a model for the fusion fuel in the tokamak 
SOL that allows the first-principles self-consistent description 
of the plasma turbulent dynamics and the neutral physics. The 
model is composed of a kinetic model for the neutrals, which 
allows us to consider both long and short neutral mean free 
path scenarios, and a drift-reduced Braginskii model for the 
plasma that we deduce from the electron and ion kinetic equa-
tions. The boundary of the domain we consider is defined by 
the limiter or divertor plates, by the last closed flux surface 
(LCFS), and by a boundary surface facing the outer vessel 
wall.

2.1. The neutral model

We describe the dynamics of the distribution function of a 
single mono-atomic neutral species, fn, by using the following 
kinetic equation

⎛
⎝
⎜

⎞
⎠
⎟ν ν ν+ ⋅ = − − − +v

x

f

t

f
f f

n

n
f f

∂

∂

∂

∂
n n

iz n cx n
n

i
i rec i� (1)

being fi, nn, and ni the ion distribution function, the neutral 
density, and the ion density, respectively. The ionization, 
charge-exchange, and recombination processes are described, 
respectively, through the use of Krook operators with collision 
frequencies defined as

⟨ ( )⟩ν σ= n v viz e e iz e� (2a)

⟨ ( )⟩ν σ= n v vrec e e rec e� (2b)

⟨ ( )⟩ν σ= n v vcx i i cx i� (2c)

where σiz, σrec, and σcx are the ionization, recombination, and 
charge-exchange cross sections, and ve and vi are the elec-
tron and ion velocities. The collisions frequencies, νiz and 
νrec, result from the averaging over the electron distribution 
function, neglecting therefore the neutral atom velocity, with 
respect to the electron one, in the evaluation of the rela-
tive velocity between the colliding particles. Regarding the 
charge-exchange collision frequency, νcx, we note that it 
depends weakly on the relative velocity between neutrals and 
ions [18], thus we neglect the neutral velocity in equation (2c) 
when evaluating the relative velocity of the colliding parti-
cles, and we average the cross section over the ion distribution 
function. The elastic electron–neutral collisions are neglected 
in the neutral equation, because of the electron to neutral mass 
ratio. In the present work, we use effective reaction rates for 
the ⟨ ⟩σv  terms, which are taken from the OpenADAS2 data-
base, where they have been calculated using a collisional-
radiative model [19].

We now describe the boundary conditions of equation (1). 
Being a kinetic advection equation, the boundary conditions 
for fn have to be specified for the inward pointing veloci-
ties, that is for v such that ˆ= ⋅ >v nv 0p , with n̂ the normal 
vector perpendicular to the boundary and pointing into the 
plasma region. At the limiter or divertor plates, the boundary 
of the domain over which equation  (1) is solved coincides 
with the wall. We assume that the wall is saturated, i.e. that 
all impacting particles, neutrals and ions, are re-emitted from 
the wall instantly. A fraction of the particles impacting the 
wall, αrefl, is reflected, the rest is absorbed and released with a 
velocity that depends on the wall properties and that is inde-
pendent of the impacting velocities. The parameter αrefl, which 
is assumed to be constant here, depends on the wall material 
and the SOL conditions (see, e.g. p 113 in [18]). The distribu-
tion function of the inflowing neutrals, >v 0p , is therefore

α χ
α

= − Γ
+ − + −

x v x x v
x v v x v v

f

f f

, 1 ,
, 2 , 2 ,

n b refl out b in b

refl n b p i b p

( ) ( ) ( ) ( )
[ ( ) ( )]�

(3)

1 Dudson 2015 private communication. 2 OpenADAS—http://open.adas.ac.uk
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where xb is the vector position of a point on the boundary, 
specifically on the limiter or divertor plates in this case, and 

∫Γ = | | + Γ
<

v f vd
vout 0 p n

3
out,i

p
 the flux of ions and neutrals out-

flowing towards the limiter or divertor plates. In particular, 

Γout,i is the outflowing perpendicular ion flux, and ˆ=v nvp p  is 
the perpendicular neutral velocity with respect to the boundary. 
For the reflected part of the inflowing neutral distribution, we 
use spectral reflexion at the magnetic pre-sheath entrance, in 
particular, we neglect the acceleration of the ions in the sheath, 
and we assume unitary energy reflection coefficients (see, e.g. 
equation (3.2) in [18]). The inflowing velocity distribution, χin, 
is set according to the Knudsen Cosine law [20] to

( ) ( )χ
π

θ= −
⎛
⎝
⎜

⎞
⎠
⎟x v

m

T

mv

T
,

3

4
cos exp

2in b

2

b
2

2

b
� (4)

being θ Ω= ⋅ narccos ˆ( ˆ), Ω̂ = v v/ , and Tb the wall tempera-
ture. The function χin satisfies the property ∫ χ =

>
v vd 1

v 0 p in
3

p
.

For the sake of simplicity, we place the outer boundary of 
the computational domain between the LCFS and the vessel 
wall, at a location where the plasma density drops to a negli-
gible value. We remark that this boundary does not coincide 
with a physical surface. Particles that flow out through this 
boundary therefore travel towards the outer vessel wall, impact 
it, recycle, and then they re-enter the simulation domain. As 
particles can spread while moving towards the outer vessel 
wall and re-entering the domain, we evaluate the inflowing 
distribution function of the neutral atoms by using a local 
averaging procedure to redistribute the particles outflowing 
through the surface S that surrounds the position xb as

( )
( )

∫
χ

= Γx v
x v

f
S

S,
,

d
S

n b
in b

out� (5)

for v such that >v 0p . The surface S can depend on xb.
At the LCFS, there are no neutral atoms flowing into the 

SOL, thus ( ) =x vf , 0n b  for v such that >v 0p . The integrated 
flux of neutral atoms outflowing from the SOL across the 
LCFS represents the source of density in the main tokamak 
plasma due to recycling.

2.2. The plasma model

For simplicity, we consider a single ion species plasma. We 
start our derivation of the drift-reduced Braginskii equa-
tions from the kinetic Boltzmann equation of ions and elec-
trons, where we include collision terms in the form of Krook 
operators to describe the interaction with the neutrals. For 
the ion species we consider ionization, recombination, and 
charge-exchange processes, while for the electrons, we con-
sider ionization, recombination, and elastic collision pro-
cesses. Therefore, the kinetic equation for the ions is
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(6)

while the kinetic equation for the electrons is
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(7)

where a is the particle acceleration due to the Lorentz force, 
( )Φ v T,e  is a Maxwellian distribution function for electrons, 

( )C fi  and ( )C fe  are the Coulomb collision operators including 
both inter- and intra-species collisions for ions and electrons 
respectively, and the elastic electron–neutral collision fre-
quency is ν σ= n v veen e e en⟨ ( )⟩.

While the interpretation of the collision terms in the ion 
kinetic equation is straightforward, as they correspond (with 
opposite sign) to those of the neutral equation  (1), the col-
lision operators in the electron kinetic equation  deserve 
a longer discussion. When a neutral atom is ionized, the 
impacting fast electron is removed from the system, while 
two slower electrons appear. As a Krook collision term 
is used in equation  (7), the loss rate of the fast electrons is 
proportional to the electron distribution function. Although 
it is not taken into account that the two resulting electrons 
might be emitted according to different distribution func-
tions, the model can be reliably used to derive a fluid plasma 
description, as we do in the following. The two lower-energy 
electrons appear with a Maxwellian distribution function, 

( )Φ v T,e n e,iz , of average velocity ∫ ∫=v v v vf fd / dn n n  and tem-
perature = − + −T T E m v m v/2 /3 /6 /3e,iz e iz e e

2
e n

2 , where Te and 
ve are the local electron temperature and fluid velocity respec-
tively. This is deduced by assuming that the electrons are 
released isotropically in the neutral frame of reference, and 
that the total electron kinetic energy is reduced by the ioniza-
tion energy, Eiz, when an ionization process occurs. We note 
that the ionization term in equation (7) takes into account the 
different paths to ionization (direct or through excited states), 
by using an effective ionization coefficient.

The electron–neutral collisions are modeled in equa-
tion (7) through a loss term proportional to the electron distri-
bution function and a source with a Maxwellian distribution, 

( )Φ v T,e n e,en . In fact, similarly to the ionization process, we 
impose that the electrons are scattered isotropically in the neu-
tral frame of reference. Moreover, assuming that during the 
elastic electron–neutral collisions the electron kinetic energy 
is conserved during collisions with much heavier neutrals, one 
obtains ( )= + −T T m v v /3e,en e e e

2
n
2 . We note that the electron–

neutral elastic collision term is neglected in the neutral kinetic 
equation  (1), because of the small electron to neutral mass 
ratio.

Following the work of Braginskii [14], we now take the 
first three moments of the electron and ion kinetic equations in 
the limit ω τ� 1c , where ω = qB m/c  is the gyro-frequency and 
τ the typical Coulomb collision time. In typical SOL condi-
tions, the ion–neutral and electron–neutral collision time is 
much larger than the electron and ion Coulomb collision time, 
thus the presence of these collisions does not affect the closure 
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derived in [14]. In the case of high ion–neutral collisionality, 
⩽ω τ− 1ci i n , the closure terms have been derived by Helander 

et al in [21].
The Braginskii equations for the electron and ion densities, 

fluid velocities, and temperatures, derived in [14] including 
the additional plasma interaction terms with the neutrals are

( ) ν ν
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∂

+ ∇ ⋅ = −v
n

t
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e e n iz i rec� (8a)

( ) ν ν
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i i n iz i rec� (8b)
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where Παβ is the αβ component of the stress tensor, 
R is the friction force between electrons and ions, p 
is the pressure, q is the heat flux density, Q is the heat 
generated by Coulomb collisions, Z is the ion charge, 

( )= ∂ ∂ + ⋅ ∇vt td /d /e e  and ( )= ∂ ∂ + ⋅ ∇vt td /d /i i  are the 
electron and ion advective derivatives, and the subscripts 
e and i stand for electrons and the ion species respectively. 
The definitions of all fluid quantities can be found in the 
paper by Braginskii [14].

Despite their simplicity with respect to the kinetic equa-
tions, Braginskii’s equations, equations (8), are not yet suitable 
to describe the plasma turbulence in the SOL. Therefore, we 
simplify the Braginskii equations in the drift limit, observing 
that ω�td/d ci for typical SOL turbulence. We follow the pro-
cedure described by, e.g. Zeiler [22]. In particular, to obtain the 
perpendicular ion velocity, we cross the ion momentum equa-
tion (8d), with B, and rearrange the terms according to their 
order, writing = + +⊥ ⊥ −v v v vi i0 i n pol. The leading order term 

= +⊥v v vEi0 di is the sum of the ×E B drift, ( )= ×v E B B/E
2, 

and the diamagnetic drift, ( )( )= × ∇v B p enBedi
2 , where we 

assume quasi-neutrality, = =n n ni e , and Z  =  1. The drift 
arising from ion–neutral friction due to charge-exchange 
and elastic collisions, ν ω= − ×− ⊥ ⊥v v v b/i n cx ci n i( )( ) ˆ, and 

the polarization drift, vpol, due to the ion inertia [22], are 
assumed to be of higher order in ( )ω t1/ d/dci  with respect to 
⊥v i0. While the ordering and the expression of vpol have been 

discussed in detail by many authors (see, e.g. [22]), we notice 
that −vi n is much smaller than the leading order term ⊥v i0, as 

ν ω− ⊥ ⊥��v v v/i n i cx ci i0 in typical SOL conditions, where we 
assume that ⊥ ⊥�v vn i. On the other hand, the terms proportional 
to me in the perpendicular electron velocity can be neglected 
leading to = +⊥v v vEe de, where = × ∇v B p enBde e

2( )( ).
The resulting drift-reduced Braginskii equations are
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(9f )

with ( )= +p n T Te i , the total pressure, and ∥σ τ= e n m1.96 /2
e e, 

the parallel conductivity, where τe is the electron collision time. 
The generalized vorticity, ω̃ ω= + ∇⊥e T1/ 2

i, is related to the 

electrostatic potential by φ ω∇ =⊥
2 , while β ∇ Ψ =⊥ j/2e0

2( ) ∥, with 

β µ= p B2 /e0 0 e
2. The following operators have been introduced 

ˆ ˆ∥∇ = ⋅ ∇ + × ∇ Ψ ⋅ ∇⊥b bA A B A/ , [ ] ˆ ( )= ⋅ ∇ × ∇bA B A B, , 

and ( ) [ ( ˆ )]= ∇ × ⋅ ∇bC A B B A/2 / .
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We note that the density equation (9a) is derived from the 
electron density equation  (8a), and that the vorticity equa-
tion (9b), is obtained by subtracting equation (8a) from equa-
tion  (8b), applying quasi-neutrality, = =n n ni e , and using 
the Boussinesq-approximation. The term resulting from the 
ion–neutral friction drift in equation  (9b) has been evalu-
ated by approximating ( )( ) ˆ� ν ω − ×− ⊥ ⊥v v v b/i n cx ci n i0  and 
assuming ∇ ⋅ ∇ ⋅⊥ ⊥�v vn i0, which is true for ρ λ �/ 1s0 mfp,n . 
(ρ = Ωc /s0 s0 ci is the ion sound Larmor radius, =c T m/s0 e0 i  
is the plasma sound speed, Te0 is the electron temperature at 
the LCFS, and λmfp,n is the mean free path of the neutrals.) 
The contribution of the electron–neutral friction drift in the 
vorticity equation  (9b), has been neglected due to the small 
electron to ion mass ratio. We remark that we neglect vpol and 

−vi n in the advective derivative td/d .
The boundary conditions at the magnetic presheath 

entrance of the limiter plates for the drift-reduced Braginskii 
equations are discussed in [16], where a set of first-principles 
boundary conditions was derived. We remark that the boundary 
conditions of the kinetic neutral equation (1), at the limiter or 
divertor plates, equation (3), are specified directly at the solid 
wall, and not at the magnetic presheath entrance. However, 
since the neutral mean free path is typically much longer than 
the width of the magnetic presheath, we will assume that the 
boundary of the neutral kinetic equation  coincides with the 
magnetic presheath entrance.

We remark that equations  (9), in the limit of →n 0n , 
have been implemented in the GBS code [15] and used in 
the past to study the main properties of plasma turbulence 
in the tokamak SOL. Investigations carried out with GBS 
have significantly advanced our understanding of, e.g. the 
turbulent saturation mechanisms in the SOL [23], the SOL 
turbulent regimes [24], the phenomena behind the genera-
tion of intrinsic rotation [25], the scaling of the SOL width in 
inner-wall limited tokamak plasma [26], and the equilibrium 
electrostatic potential [27].

3.  Formal solution of the neutral kinetic equation in 
typical SOL relevant parameters

We now solve the kinetic advection equation for the neutrals, 
equation  (1), by using the method of characteristics, under 
the assumption that plasma-related quantities are known. The 
formal solution of equation (1) is

( ) ( ) ( ) ( )

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫
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× −

′ ′
′ ′ ′ ′

′

′

′

x v
x v

x v
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f t
S t

v
r r f t

v
t r r

, ,
, ,

, ,

exp
1

, d d

r

r

n
0

b n b b

0
eff

b

�
(10)

where Ω̂= −′ ′x x r , = −′ ′t t r v/ , and Ω = v v/ˆ . (The single 
prime is used to indicate the source location of neutrals.) 
Similar definitions apply to ″x  and ″t . (The double prime is 
used for locations along the path integral between the source, 

′x , and target location, x.) Moreover, the subscript b is used 
as an indication for a position on the boundary. Therefore, 

Ω̂= −′ ′x x rb b  is the intersection of the vector parallel to Ω̂, 

starting at x, with the boundary, and = −′ ′t t r v/b b . The neu-
tral source term consists of a volumetric source, ( )′ ′x vS t, , , 
resulting from charge-exchange and recombination processes, 
given by

( ) ( ) ( ) ( )

( ) ( )

ν

ν

= Φ

+

′ ′ ′ ′ ′ ′ ′ ′

′ ′ ′ ′

x v x x x v

x x v

S t t n t t

t f t

, , , , , ,

, , , ,

cx n i

rec i

�
(11)

and the term ( ) ( )δ −′ ′ ′ ′x vr r f t, ,b n b b , localized at the 
boundary of the domain, where ( )′ ′x vf t, ,n b b  is given by 
the boundary conditions, equations  (3) and (5). The effec-
tive cross-section for the removal of the neutrals is given 
by ( ) ( ) ( )″ ″ ″ ″ ″ ″ν ν ν= +x x xt t t, , ,eff iz cx . Because ( )′ ′x vS t, ,  

depends on ( ) ( )∫=′ ′ ′ ′x x v vn t f t, , , dn n  (see equation  (11)), 
equation (10) is an integral equation for fn in the spatial and 
velocity domain that involves plasma and neutral quantities at 
past times.

We now consider two approximations, valid in the typical 
SOL parameter regime, which considerably simplify equa-
tion (10) and therefore the numerical investigation of the neu-
tral dynamics. First, we Taylor expand the source term S and 
the other time-dependent quantities appearing in the integral 
in equation (10) about time =′t t, i.e.

( ) ( ) ( )
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠= − = − +′ ′ ′

′
′

′ ′
′

′ ′

=′

x x x
x

S t S t
r

v
S t

S t

t

r

v
o

r

v
, , ,

∂ ,

∂
.

t t

�

(12)

We now note that S varies in time on the typical plasma tur-
bulent time scale, τturb, while ′r v/  constitutes the typical flight 
time of the neutrals, τn, which can be estimated as τ ν∼ −

n eff
1. 

For typical SOL parameters τ τ<n turb. It follows therefore that 
we can approximate ( ) ( )′ ′ ′�x xS t S t, , , which corresponds to 
taking =f∂ 0t n  in equation (1). This has been denoted as the 
neutral adiabatic regime [28].

Second, we take advantage of the plasma turbulence ani-
sotropy to reduce the solution of the three-dimensional neutral 
model to a set of two-dimensional problems. In fact, turbulent 
plasma structures are considerably more elongated along the 
magnetic field lines than perpendicular to them, ∥ ⊥�k k , and 
the neutral mean free path, λmfp,n, is typically much shorter 
(of the order of millimeters or centimeters) than the parallel 
elongation of the turbulent plasma structures, which is of the 
order of the machine size (i.e. of the order of a meter). We 
therefore have ∥λ ν∼ �v k/ 1/mfp,n eff . (We remark that neu-
trals in the tail of the distribution function originating from 
charge exchange processes might have much longer mean free 
paths, but ∥λ � k1/mfp,n  is fulfilled for the bulk of the neutrals 
in a typical tokamak SOL.) To take advantage of the plasma 
anisotropy, we introduce a set of coordinates aligned to B, 
that is ( )∥= ⊥x x x, , where ⊥x  denotes the coordinates in the 
direction perpendicular to B, and ∥x  parallel to it. We note that 

∥x  approximately coincides with the toroidal direction, and 
⊥x  denotes the coordinate in the poloidal plane, in the large 

aspect ratio limit and at the large value of the safety factor of 
typical tokamak SOL ( �R a/ 1, q  >  1). We expand the source 
S and the other quantities appearing in equation  (10) about 

∥ ∥=′x x , that is
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( ) ( )
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x x o x x, , , ,
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∂
.

x x

�

(13)

Now, because of the exponential decay due to ionization and 
charge exchange processes, the contribution of S to the integral 
in equation (10) becomes small at distances longer than λmfp,n. 
Therefore, the expansion in equation  (13) has to be consid-
ered for ∥ ∥ λ−′ �x x mfp,n. Being ( ) ( )∥ ∥ ∥∥

∂ ∼′ ′ ′ ′⊥ ⊥′ x xS x t k S x t, , , ,x , 

and ∥λ �k 1mfp,n , it follows that ( ) ( )∥ ∥′ ′ ′⊥ ⊥�x xS x t S x t, , , ,  in the 
regime of interest.

Within the adiabatic approximation and the assumption of 
∥λ �k 1mfp,n  the formal solution of the neutral kinetic equa-

tion (1), becomes
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where ′⊥r  has been defined through Ω= −′ ′⊥ ⊥ ⊥ ⊥x x r ˆ , Ω̂ =⊥ ⊥ ⊥v v/ , 
and ⊥v  is the perpendicular velocity. Since the dependencies in 
equation (14) on the parallel direction and on time are para-
metric, in the following, for better readability, we do not carry 
over the explicit notation of the t and ∥x  dependence.

In equation  (14), the recombination term contained in 
S [see equation  (11)], as well as the term associated to ion 
recycling at the limiter present in the boundary conditions, do 
not depend on ( )⊥x vf ,n  and can be evaluated once the plasma 
quantities are known. On the other hand, the charge-exchange 
collision term on the right-hand side of equation  (14) con-
tained in S, and the reflected or re-emitted neutrals from the 
walls, which appear in the boundary term, depend on ( )⊥x vf ,n  
through ( )⊥xnn . This suggests that a linear integral equation for 

( )⊥xnn  can be obtained by integrating equation (14) in velocity 
space, which is

( )

( )
( ) ( )
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where we use cylindrical coordinates, ( )∥ϑ⊥v v, , , in velocity 
space (also in this case parallel and perpendicular denote the 
direction with respect to the magnetic field).

We now describe two properties that help us simplify equa-
tion (15). First, for a generic function ( )′⊥ ⊥x xF ,  we can write

( ) ( )∫ ∫ ∫ϑ =′ ′ ′
′

′
π

⊥ ⊥ ⊥
⊥
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⊥

x x x xr F A
r
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, ,
r

D0 0

2b

� (16)

where ′Ad  is the infinitesimal area of D, which is the part of 
the plane perpendicular to the magnetic field, approximatively 
corresponding to the poloidal plane, that is optically con-
nected to ⊥x . Second, we use the following property,

∫ ∫
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where ′ad b is the infinitesimal length along ∂D, which is the  
boundary of D, and ˆ ˆθ Ω= | ⋅ |′ ⊥ narccos  is the angle between 
Ω⊥ˆ  and n̂ at the boundary location, ′⊥x b. In fact, the ′r  integral 
gives

( ) ( ) ( )∫ ∫ ∫ϑδ ϑ− =′ ′ ′ ′ ′
π π

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
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0 0

2

b
0

2

b

b

� (18)

and the ϑ integral is transformed to a line integral along ∂D 
by using the law of sines for the triangle in figure 1, namely

( ) ( )ϑ α θ
= =

′ ′ ′

′
⊥ ⊥a r rd

d sin cos
,b b b� (19)

as α π θ= − ′/2  for infinitesimal small ϑd .
Now, by rearranging the integrals in equation  (15) and 

using the two properties, equations (16) and (17), we obtain
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The quantities that do not depend on velocity, that is ( )′⊥xnn , 
( )ν ′⊥xcx , and ( )Γ ′⊥xout b  [inside ( )′⊥x vS , , and ( )′⊥x vf ,n b  respec-

tively], can be taken out of the velocity integrals, leading to an 
integral equation for ( )⊥xnn , which is

( ) ( ) ( ) → ( )

( ) → ( ) ( )
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∫
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where Γout, the perpendicular component of neutral and ion 
flux outflowing into the boundary, is

( ) ( ) ( )∫ θΓ = + Γ⊥ ⊥ ⊥ ⊥ ⊥ ⊥x x v v xv fcos , dout b n b out,i b� (22)
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�

(23)

and where θ Ω= | ⋅ |⊥ narccos ˆ ˆ  is the angle between Ω⊥ˆ  and n̂ at 
the target location, ⊥x b. Moreover, the following kernel func-
tions have been defined
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where ( ) ( ) ( ) [ ( )]∥∫ πΦ = Φ = −⊥ ⊥ ⊥ ⊥ ⊥x v x v v m T m v T, , d / 2 exp / 2i i i i i
2

i ,  

∫χ χ π θ= = −⊥ ⊥ ⊥ ⊥ ⊥ ⊥x v x v v m T v m v, , d 3 / 4 cos expin in i
2

i
2

i
2( ) ( ) ( ) [∥
  

⊥T m v T/ 4 / 4i 0 i
2

iK( )] [ ( )], and ( )K x0  is the modified Bessel func-

tion of the second kind.
The four kernels, equations (24), depict the four different 

possible paths for neutral particles: originating from within 
the plasma or from the boundary, and arriving at a position in 

the plasma or on the boundary. All kernels include an expo-
nentially decaying term, to take into account the loss of neu-
trals between the origin and arrival positions due to ionization 
and charge-exchange collisions. Furthermore, we note that 
neutrals that are emitted in the plasma region originate from a 
source proportional to Φ⊥i (see →Kp p and →Kp b), while neu-
trals are emitted at the boundary with a source proportional to 
χ θ′⊥ ⊥v cosin  (see →Kb p and →Kb b). Since Γout describes the 
perpendicular outflow into the boundary, the kernels →Kp b 
and →Kb b include a θ⊥v cos  term.

The neutral density and the neutral outflow caused by volu-
metric recombination are evaluated using kernels →Kp p and Kp b→  

resulting in ( ) ( ) ( ) → ( )∫ ν= ′ ′ ′ ′⊥ ⊥ ⊥ ⊥ ⊥x x x x xn n K A, d
Dn,rec i rec p p , and 

( ) ( ) ( ) → ( )∫ νΓ = ′ ′ ′ ′⊥ ⊥ ⊥ ⊥ ⊥x x x x xn K A, d
Dout,rec b i rec p b b . We remark 

that the kernel functions, →Kp p, →Kb p, →Kp b, and →Kb b, do 
neither depend on ( )⊥x vf ,n , nor on any of its moments. They 
can be evaluated once the problem geometry and the plasma 
properties are known.

Having solved equation  (21), therefore once ( )⊥xnn  
is known, the distribution function of the neutral atoms, 

( )⊥x vf ,n , can be readily evaluated by using equation (14). At 
that point, the moments of ( )⊥x vf ,n  that are needed in the neu-
tral-plasma interaction terms presented in the drift-reduced 
Braginskii equations, equations (9), such as the fluid parallel 
neutral velocity, ( )⊥xvn , and the neutral temperature, ( )⊥xTn , 
can be computed without difficulties. The numerical discre-
tization and the convergence properties of the neutral model 
are described in appendix.

4.  First plasma turbulence simulations with  
self-consistent neutral dynamics

The neutral model derived in this paper has been used to per-
form the first simulations of SOL plasma turbulence that include 
self-consistently the neutral dynamics. For this purpose, the 
GBS code has been extended by implementing the neutral 
model and the plasma-neutral interaction terms in the fluid 
equations. We compare here a low plasma density simulation, 
where the recycled neutrals are mostly ionized in the tokamak 
core, and therefore the source of SOL plasma is mainly due to 
the plasma outflow from the core (this simulation features the 
sheath limited regime), with a high plasma density simulation, 
where SOL plasma is coming partly from the core and partly 
from the recycling process occurring inside the SOL (several 
features of the so-called conduction limited regime are dis-
played by this simulation). Both simulations consider a limited 
SOL geometry, with a toroidal limiter on the high field equa-
torial midplane, ρ =R/ 500s0 , =m m/ 400i e , π ρ=a2 800 s0, 
a being the minor radius, and =T 10e0  eV. Furthermore, in 
the low plasma density simulation, we impose =n0  
5⋅1018 m−3, the value of the density at the LCFS, and 
˜ ( )ν τ= =Rm c m/ 1.96 0.02e s0 i e , the resistivity normalized to 
R c/ s0. As a consequence, the dimensionless parallel electron 
heat conductivity is ˜ ( )∥κ τ= × =T m c R3.16 2 / 3 56.0e e0 e e s0 ,  
the dimensionless parallel ion heat conductivity is 
˜ ( )∥κ τ= × =T m c R3.9 2 / 3 1.6i i0 i i s0 , and the dimensionless  

Figure 1.  Illustration of the transformation from an angular integral 
(in ϑ) to a line integral (in ′ab) for neutrals coming from a section of 
the boundary of length ′ad b at ′⊥x b arriving at ⊥x  flying in the 
direction Ω⊥ˆ .
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electron viscosity coefficient is ˜ ( )η τ= =T m Rc0.73 / 20.0e0 e0 e e s0 . In 
the high plasma density simulation, = ⋅n 5 100

19 m−3, ν̃ = 0.2, 
˜∥κ = 5.6e , ˜∥κ = 0.16i , and η̃ = 2.0e0  are used. The computa-
tional domain extends from =r 0min  to ρ=r 150max s0. The 
source terms Sn, STi, and STe in equations (9) are constant in time, 
poloidally uniform, and radially Gaussian around ρ=r 30s s0, 
that we interpret as the radial position of the LCFS. Quantities 
displayed in the figures are normalized to n0, cs0, and Te0.

In figures 2 and 3 typical snapshots of plasma density, par-
allel electron and ion velocities, electron and ion temperatures, 
electrostatic potential, neutral density, and ionization source, 

ν=S niz n iz, are shown on a poloidal cross-section. They show 
fully developed turbulence during the saturated state of the 
two simulations.

The poloidal dependence of the relevant plasma quantities 
(plasma density, electron and ion parallel velocities, electron 
and ion temperatures, electrostatic potential, neutral density, 
and Siz) for the low- and high-density simulations are shown 
in figure 4. The displayed profiles are averaged over a time 
window of 20 R c/ s0, over the full toroidal angle, and over a 
radial region extending for 20 ρs0, centered at a distance of 30 
ρs0 from the separatrix.

We point out a few interesting differences between the 
high- and low-density simulations. The poloidal density pro-
file in the high-density simulation is flatter than in the low-
density simulation. This is due to the fact that the plasma 
source due to the ionizations occurring close to the limiter 
inside the SOL is much higher in the high-density simulation, 
preventing the plasma density to drop when approaching the 
sheaths. The parallel velocity profiles (which are expected 
to be approximately linear if the plasma source is poloi-
dally constant) are somewhat flatter close to the limiter in 
the high-density scenario; however, the flattening is not par-
ticularly significant, because a relatively large fraction of the 
plasma density source is still due to the poloidally constant 
outflow of particles from the core. Furthermore, both elec-
tron and ion temperature poloidal gradients increase in the 
high-density scenario, which is expected while going towards 
the conduction limited regime. The mechanisms that lead to 
this temperature drop include the reduced parallel heat con-
ductivity (due to lower temperature and higher density), and 
the direct energy loss due to ionizations (see, e.g. [18]). To 
verify that these are the acting mechanism behind the tem-
perature drop in the high-density scenario, the balance of 

Figure 2.  Snapshots on a poloidal cross-section of plasma density, electric potential, ion and electron parallel velocities, electron and ion 
temperatures, neutral density, and the ionization source term, Siz, for the low-density simulation, = ⋅n 5 100

18 m−3.

Figure 3.  Snapshots on a poloidal cross-section of plasma density, electric potential, ion and electron parallel velocities, electron and ion 
temperatures, neutral density, and the ionization source term, Siz, for the high-density simulation, = ⋅n 5 100

19 m−3.
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the electron temperature equation (9e), in quasi steady state 
is shown in figure  5. The terms on the right hand side of 
equation  (9e) are toroidally, radially, and time averaged, in 
the same way as the poloidal profiles in figure 4. The terms 
are arranged into four groups, namely, the parallel advection 
term, ( )[ ]∥ ∥ ∥ ∥ ∥ ∥= − ∇ + ∇ − ∇A v T T n e j n v2 / 3 0.71/e e e e , the par-

allel diffusion term, ( )∥= DD TT ee
, the plasma-neutral interac-

tion term, ν= − − + −N n n E T m v v v/ 2 /3 4 /3n iz iz e e e e n[ ( )]∥ ∥ ∥   
ν− −n m v n v v2 / 3n en e e n e( )( )∥ ∥ ∥ , and the source term, S = -1/B [φ, 

Te] Dφ+ + − + +T eB T C n n C T eC T S4 / 3 / 7 /2 T Te e e ee e( )[ ( ) ( ) ( )] ( ) , 

which includes the divergence of the flow due to the ×E B 
and curvature drifts. It has been verified that the sum of the 
four terms converges towards zero as we increase the time-
span over which the average is evaluated. From figure  5, it 
is apparent that both before mentioned mechanisms are 
important for the steepening of the electron temperature gra-
dient. While the source term, S, has almost the same shape 
in the two scenarios, the plasma-neutral interaction term, N, 
is clearly important only in the high-density simulation (the 
most important contribution to N is due to the ionization pro-
cess, ( )ν− n E n2 / 3n iz iz ). The effect of N is to decrease the elec-
tron temperature close to the limiter. Furthermore, the parallel 

diffusion term, D, has a larger impact on the low-density 
simulation, where it flattens the temperature profile. In the 
low-density simulation, the importance of the parallel diffu-
sion term arises from the high parallel electron conductivity, 
inversely proportional to the plasma density. In the-high den-
sity simulation, the parallel diffusion term plays a significant 
role only in proximity of the limiter.

5.  Conclusions and outlook

In this paper we have presented a first-principles self-consis-
tent model suitable to simulate the coupled plasma turbulent 
and neutral dynamics in the tokamak SOL. The model assumes 
high plasma collisionality, ω τ� 1c , drift ordering, ω�td/d ci, 
adiabatic neutrals, τ τ<n turb, and elongated turbulent plasma 
structures, ∥λ �k 1mfp,n . The plasma is modeled by the drift-
reduced two-fluid Braginskii equations, equations (9), and the 
neutral physics is described by a kinetic equation with Krook 
operators for ionization, recombination, and charge-exchange 
processes, equation (1). The neutral kinetic equation is solved 
in the adiabatic limit using decoupled poloidal planes and a 
short cycle scheme. The kinetic equation is hereby reduced to 
a linear integral equation for the neutral density, equation (21). 

Figure 4.  Time-averaged poloidal profiles of n, Φ, ∥V e, ∥V i, Te, Ti, nn, and Siz for the low (blue) and high (red) plasma density scenario.
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Obtaining the neutral density enables the straightforward 
computation of the neutral distribution function, fn, by evalu-
ating equation (14), and any of its higher order moments, as 
needed in the plasma equations.

We have performed the first simulations with the newly 
developed model and promising initial results, showing the 
expected changes in the plasma profiles, have been briefly 
discussed. As a matter of fact, we have developed a new tool 
to study the effect of the neutral dynamics on SOL turbu-
lence, which enables us to investigate a rich variety of SOL 
physics phenomena, while being conceptually simple and 
numerically affordable. We intend to apply it to investigate 
the transition between the different SOL regimes, focusing 

first on the transition between the sheath and the conduction 
limited regimes, and to study the effect of the neutrals on SOL 
turbulent properties, in particular the linear properties of the 
unstable modes, their saturation, and, ultimately, their impact 
on the SOL width.
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Appendix.  Numerical solution and convergence 
tests

In the following we introduce the discretization of equa-
tion (21) necessary for its numerical solution and show some 
tests to illustrate the numerical convergence properties of our 
model. The spatial discretization for the neutral equation can be 
set independently of the grid on which the plasma quantities are 
evolved. If the two spatial discretizations do not match, a linear 
two-dimensional interpolation routine is used to port the plasma 
and neutral fields from one grid to the other. We remark that the 

Figure A1.  Relative error of the neutral particle conservation, εrel, 
as a function of the grid spacing in the radial, ∆x, and poloidal, ∆y, 
directions. The low density scenario, = ⋅n 5 100

18 m−3, which is 
presented in section 4, is considered.
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use of any grid to solve equation (21), including unstructured 
meshes, does not present any conceptual difficulty.
On a discretized spatial grid, equations (21) and (22) assume 
the form

→ →∑ ∑ν= + Γ +n K n K ni

j

i j j j

j

i j j i
n p p

,
cx n b p

,
out n,rec� (A.1)

and

→ →∑ ∑νΓ = + Γ + Γ + ΓK n Ki

j

i j j j

j

i j j i i
out p b

,
cx n b b

,
out out,rec out,i

� (A.2)

where i and j are grid cell indices (the i-th grid cell is centered 
around ⊥x

i  and has an area ∆Ai), and

⎡
⎣
⎢

⎤
⎦
⎥

∫

∫ ν

=
∆

Φ

× − + ′ ′

∞

⊥ ⊥ ⊥

⊥
⊥ ⊥

x r

x r

K
A

r
v

v
r r v

,

exp
1

d d

i j
j

ij
j ij

r
j ij

p p
,

0 i

0 eff

ij

→ ( ˆ )

( ˆ )
�

(A.3)

with = −⊥ ⊥r x xij i j , and ˆ =r r r/ij ij ij. Equivalent expressions 
apply to the other kernels.

In equation  (A.3), the velocity integral is discretized in 
equidistant velocity intervals of size ∆v, centered around 
( )+ ∆i v1/2v , usually up to =v c5max s0, and computed by 
using the rectangle rule. On the other hand, the line integral 

between ⊥x
i  and ⊥x

j , ( ˆ )∫ ν + ′ ′⊥x rr rd
r j ij

0 eff

ij

, is equidistantly 

discretized into +N 1interp  intervals, and integrated using the 
trapezoidal rule. The values of ( ˆ )ν + ′⊥x rrj ij

eff  required for the 
evaluation of the integral are obtained by using linear interpo-
lation from the grid values.

Equations (A.1) and (A.2) are a system of linear equa-
tions that can be recast in matrix form

→ →
→ →Γ = ⋅ Γ + Γ + Γ

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢

⎤
⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

n K K

K K

n nn

out

p p b p

p b b b

n

out

n,rec

out,rec out,i
� (A.4)

and that can be solved with standard full matrix solvers. We 
note that, in the simulations presented in this paper, the matrix 

is typically filled by one third, since not every pair of grid 
cells is optically connected. The fraction of non-zero entries 
decreases at larger system size. As a matter of fact, entries of 
pairs that are separated by several λmfp,n could be neglected, 
making the fraction of non-zero elements even smaller. This 
possibility, as well as the related use of sparse matrix solvers, 
will be explored in a future work.

Since the solution of equation (A.1) is particularly expen-
sive, we use a short cycling scheme, as described in [5] and 
used, e.g. in [11]. More precisely, to apply the short cycle 
scheme, we recalculate the neutral density every time interval, 
∆tn, where ∆tn is comparable to the turbulent timescales and 
longer than the typical time step used to advance numeri-
cally the drift-reduced Braginskii equations. However, the 
interaction terms in the plasma equations, equations (9) (e.g. 

⟨ ⟩ν σ=n n n vn iz n e iz ) are recalculated at every time-step, taking 
into account the changing plasma quantities (e.g. n), and the 
change in reaction rates (e.g. ⟨ ⟩σve iz ), which depend on the 
plasma temperatures.

To illustrate the numerical convergence properties, we  
consider the relative error in the conservation of neutral par-
ticles, defined as

=
−

ε
N N

N
rel

in out

in
� (A.5)

where ν= ∑ Γ ∆ + ∑ ∆N a n Ai
i i

i
i i i

in out,i b i rec  is the number of 
neutrals that are created in a time unit due to ion recycling and 

recombination, and ν= ∑ ∆ + ∑ Γ ∆N n A ai
i i i

i
i i

out n iz out,core b is 
the number of neutrals lost from the system in a time unit due 
to ionization and outflow to the core plasma. For the numer-
ical tests in the remainder of this section we consider the low-
density plasma scenario described in detail in section 4.

We carry out three convergence tests. We first study the 
convergence of the numerical solution with the spatial discre-
tization. We use the radial distance from the LCFS, r, and the 
poloidal angle, ϑ, as coordinates in the poloidal plane, which 
we discretize on a grid with equidistant points separated by 
the normalized distances ρ∆ = ∆x r / s0 in the radial direction 
and ρ ϑ∆ = ∆y a/ s0  in the poloidal direction (a is the minor 

Figure A4.  Relative error of particle conservation, εrel, as a function of the velocity discretization. (Both cases use ∆ = ∆ =x y2.5 7.5, 
and =N 20interp .) (a) Convergence is observed for ∆ �v c0.25 s0 (having fixed =v c5.0max s0). (b) Convergence is observed for �v c2.5max s0 
(having fixed ∆ =v c0.1 s0).
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plasma radius). Figure A1 shows a convergence study on the 
spatial discretization. The best converged results are obtained 
for ∆ ∆� �x y2 / 4. (The variation of the neutral quantities 
is stronger in the poloidal than in the radial direction.) Then, 
we perform a scan of solutions of equation (A.4) by varying 
the grid spacing and Ninterp independently. The results are pre-
sented in figure A2. For small Ninterp, the error does not con-
verge to zero, but towards a finite value that is determined by 
the error associated with the discretization of the line inte-
gral between ⊥x  and ′⊥x . This error decreases with increasing 
Ninterp as it is shown in figure A2. To calculate the order of 
convergence, we extrapolate the error of the =N 80interp  curve 
to ∆ =x 0, to obtain ( )= ∆ =ε ε x 0extrp , where εextrp includes 
the numerical error from the discretization of the line inte-
gral between ⊥x  and ′⊥x , as well as the numerical errors from 
the velocity space discretization. Figure A3 shows the error 
due to the spatial grid discretization, −ε εrel extrp, and reveals 
that the numerical algorithm has a linear convergence with 
respect to the grid spacing. Typically, ∆ �x 2.5, ∆ �y 7.5, and 

=N 20interp  are used in our simulations.
The second test investigates the convergence with respect 

to the discretization of the velocity integral inside the kernel 
functions. Figure A4(a) shows the convergence with ∆v for 
fixed =v c5.0max s0, while figure  A4(b) shows the conver-
gence with vmax for fixed ∆ =v c0.1 s0. Both figures  show 
convergence towards a finite value of εerr, which is the error 
due to the spatial discretization. Typically, ∆ =v c0.1 s0 and 

=v c5max s0 are used in our simulations.
For the third convergence test, we performed a set of simu-

lations of SOL plasma dynamics by solving the drift-reduced 
Braginskii equations with the self-consistent neutral module. 
We set ∆ =t 0.01n , 0.05, 0.2, 1, and 5 R c/ s0. The results of all 
simulations show no significant nor systematic differences in 
the averaged plasma quantities. In fact, the neutral density is 
approximatively constant throughout a simulation. The time 
dependence of the collisionalities is due mainly to the evolu-
tion of the plasma density and temperatures, while the neutral 
density strongly influences the spatial dependence of the col-
lision rates.

References

	 [1]	 Reiter D. et al 2002 EIRENE—a monte carlo linear transport 
solver available on the internet at www.eirene.de

	 [2]	 Stotler D. and Karney C. 1994 Neutral gas transport modeling 
with DEGAS 2 Contrib. Plasma Phys. 34 392–7

	 [3]	 Cupini E., De Matteis A. and Simonini R. 1983 NIMBUS-
Monte Carlo Simulation of Neutral Particle Transport in 
Fusion Devices (Brussels: Commission of the European 
Communities) EUR XII-324/9

	 [4]	 Bufferand H. et al 2013 Near wall plasma simulation 
using penalization technique with the transport code 
SOLEDGE2D-EIRENE J. Nucl. Mater. 438 S445–8

	 [5]	 Reiter D. 1992 Progress in two-dimensional plasma edge 
modelling J. Nucl. Mater. 196–8 80–9

	 [6]	 Schneider R., Reiter D., Zehrfeld H.P., Braams B., 
Baelmans M., Geiger J., Kastelewicz H., Neuhauser J. and 
Wunderlich R. 1992 B2-EIRENE simulation of ASDEX 
and ASDEX-upgrade scrape-off layer plasmas J. Nucl. 
Mater. 196–8 810–5

	 [7]	 Reiter D., Baelmans M. and Börner P. 2005 The EIRENE and 
B2-EIRENE codes Fusion Sci. Technol. 47 172–86

	 [8]	 Feng Y., Sardei F., Kisslinger J., Grigull P., McCormick K. 
and Reiter D. 2004 3D edge modeling and island divertor 
physics Contrib. Plasma Phys. 44 57–69

	 [9]	 Rognlien T.D., Milovich J.L., Rensink M.E. and Porter G.D. 
1992 A fully implicit, time dependent 2D fluid code for 
modeling tokamak edge plasmas J. Nucl. Mater. 196–8 347–51

	[10]	 Kukushkin A.S., Pacher H.D., Kotov V., Pacher G.W. and 
Reiter D. 2011 Finalizing the ITER divertor design: the key 
role of SOLPS modeling Fusion Eng. Des. 86 2865–73

	[11]	 Marandet Y., Tamain P., Futtersack R., Ghendrih Ph., 
Bufferand H., Genesio P. and Mekkaoui A. 2013 Influence 
of neutral particles on scrape-off layer turbulence with 
application to the interpretation of fast camera data J. Nucl. 
Mater. 438 518–21

	[12]	 Bisai N., Jha R. and Kaw P.K. 2015 Role of neutral gas in 
scrape-off layer tokamak plasma Phys. Plasmas 22 022517

	[13]	 Mekkaoui S., Dudson B., Reiter D., Kotov V. and Boerner P. 
2014 Self-consistent turbulence-recycling modeling in the 
lapd device [abstract] 21st Int. Conf. on Plasma Surface 
Interactions (Ongaku-do, Kanazawa Ishikawa, Japan, 
26–30 May 2014) P3–095 http://psi2014.nifs.ac.jp

	[14]	 Braginskii S.I. 1965 Transport processes in a plasma Rev. 
Plasma Phys. 1 205

	[15]	 Ricci P., Halpern F.D., Jolliet S., Loizu J., Mosetto A., 
Fasoli A., Furno I. and Theiler C. 2012 Simulation of 
plasma turbulence in scrape-off layer conditions: the GBS 
code, simulation results and code validation Plasma Phys. 
Control. Fusion 54 124047

	[16]	 Loizu J., Ricci P., Halpern F.D. and Jolliet S. 2012 Boundary 
conditions for plasma fluid models at the magnetic 
presheath entrance Phys. Plasmas 19 122307

	[17]	 Halpern F.D., Jolliet S., Loizu J., Mosetto A. and Ricci P. 2013 
Ideal ballooning modes in the tokamak scrape-off layer 
Phys. Plasmas 20 052306

	[18]	 Stangeby P. 2000 The Plasma Boundary of Magnetic Fusion 
Devices (Bristol: IOP)

	[19]	 Summers H.P., Dickson W.J., O’Mullane M.G., Badnell N.R., 
Whiteford A.D., Brooks D.H., Lang J., Loch S.D. and 
Griffin D.C. 2006 Ionization state, excited populations and 
emission of impurities in dynamic finite density plasmas: 
I. The generalized collisional–radiative model for light 
elements Plasma Phys. Control. Fusion 48 263–93

	[20]	 Knudsen M. 1916 Das cosinusgesetz in der kinetischen 
gastheorie Annal. Phys. 353 1113–21

	[21]	 Helander P., Krasheninnikov S.I. and Catto P.J. 1994 Fluid 
equations for a partially ionized plasma Phys. Plasmas 1 3174

	[22]	 Zeiler A., Drake J.F. and Rogers B. 1997 Nonlinear reduced 
Braginskii equations with ion thermal dynamics in toroidal 
plasma Phys. Plasmas 4 2134

	[23]	 Ricci P. and Rogers B.N. 2013 Plasma turbulence in the 
scrape-off layer of tokamak devices Phys. Plasmas 
20 010702

	[24]	 Mosetto A., Halpern F.D., Jolliet S., Loizu J. and Ricci P. 2013 
Turbulent regimes in the tokamak scrape-off layer Phys. 
Plasmas 20 092308

	[25]	 Loizu J., Ricci P., Halpern F.D., Jolliet S. and Mosetto A. 
2014 Intrinsic toroidal rotation in the scrape-off layer of 
tokamaks Phys. Plasmas 21 062309

	[26]	 Halpern F.D., Ricci P., Jolliet S., Loizu J. and Mosetto A. 2014 
Theory of the scrape-off layer width in inner-wall limited 
tokamak plasmas Nucl. Fusion 54 043003

	[27]	 Loizu J., Ricci P., Halpern F.D., Jolliet S. and Mosetto A. 
2013 On the electrostatic potential in the scrape-off layer 
of magnetic confinement devices Plasma Phys. Control. 
Fusion 55 124019

	[28]	 Marandet Y. et al 2011 Transport of neutral particles in 
turbulent scrape-off layer plasmas Nucl. Fusion 51 083035

Nucl. Fusion 55 (2015) 123014

www.eirene.de
http://dx.doi.org/10.1002/ctpp.2150340246
http://dx.doi.org/10.1002/ctpp.2150340246
http://dx.doi.org/10.1002/ctpp.2150340246
http://dx.doi.org/10.1016/j.jnucmat.2013.01.090
http://dx.doi.org/10.1016/j.jnucmat.2013.01.090
http://dx.doi.org/10.1016/j.jnucmat.2013.01.090
http://dx.doi.org/10.1016/S0022-3115(06)80014-0
http://dx.doi.org/10.1016/S0022-3115(06)80014-0
http://dx.doi.org/10.1016/S0022-3115(06)80014-0
http://dx.doi.org/10.1016/s0022-3115(06)80147-9
http://dx.doi.org/10.1016/s0022-3115(06)80147-9
http://dx.doi.org/10.1016/s0022-3115(06)80147-9
http://www.ans.org/pubs/journals/fst/a_698
http://www.ans.org/pubs/journals/fst/a_698
http://www.ans.org/pubs/journals/fst/a_698
http://dx.doi.org/10.1002/ctpp.200410009
http://dx.doi.org/10.1002/ctpp.200410009
http://dx.doi.org/10.1002/ctpp.200410009
http://dx.doi.org/10.1016/s0022-3115(06)80058-9
http://dx.doi.org/10.1016/s0022-3115(06)80058-9
http://dx.doi.org/10.1016/s0022-3115(06)80058-9
http://dx.doi.org/10.1016/j.fusengdes.2011.06.009
http://dx.doi.org/10.1016/j.fusengdes.2011.06.009
http://dx.doi.org/10.1016/j.fusengdes.2011.06.009
http://dx.doi.org/10.1016/j.jnucmat.2013.01.107
http://dx.doi.org/10.1016/j.jnucmat.2013.01.107
http://dx.doi.org/10.1016/j.jnucmat.2013.01.107
http://dx.doi.org/10.1063/1.4913429
http://dx.doi.org/10.1063/1.4913429
http://psi2014.nifs.ac.jp
http://dx.doi.org/10.1088/0741-3335/54/12/124047
http://dx.doi.org/10.1088/0741-3335/54/12/124047
http://dx.doi.org/10.1063/1.4771573
http://dx.doi.org/10.1063/1.4771573
http://dx.doi.org/10.1063/1.4807333
http://dx.doi.org/10.1063/1.4807333
http://dx.doi.org/10.1088/0741-3335/48/2/007
http://dx.doi.org/10.1088/0741-3335/48/2/007
http://dx.doi.org/10.1088/0741-3335/48/2/007
http://dx.doi.org/10.1002/andp.19163532409
http://dx.doi.org/10.1002/andp.19163532409
http://dx.doi.org/10.1002/andp.19163532409
http://dx.doi.org/10.1063/1.870470
http://dx.doi.org/10.1063/1.870470
http://dx.doi.org/10.1063/1.872368
http://dx.doi.org/10.1063/1.872368
http://dx.doi.org/10.1063/1.4789551
http://dx.doi.org/10.1063/1.4789551
http://dx.doi.org/10.1063/1.4821597
http://dx.doi.org/10.1063/1.4821597
http://dx.doi.org/10.1063/1.4883498
http://dx.doi.org/10.1063/1.4883498
http://dx.doi.org/10.1088/0029-5515/54/4/043003
http://dx.doi.org/10.1088/0029-5515/54/4/043003
http://dx.doi.org/10.1088/0741-3335/55/12/124019
http://dx.doi.org/10.1088/0741-3335/55/12/124019
http://dx.doi.org/10.1088/0029-5515/51/8/083035
http://dx.doi.org/10.1088/0029-5515/51/8/083035

