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Abstract

Since the beginning of multimedia services, in particular video services, with the invention

of the television, considerable effort has always been devoted on reproducing the real world.

We have witnessed the transition from black-and-white to color television and from a very

low image resolution to current Ultra High-Definition Video (UHDV), 7680×4320 pixels. The

natural next step in improving the realistic experience in multimedia services is interactive

multiview video (IMV). IMV promises to enable the users to freely navigate through a scene by

selecting their preferred viewpoints from any view position for which the corresponding view

is generated. A smooth navigation could be achieved with camera views and views synthesized

at the decoder. Ultimately, an infinite number of views will be available to the users, providing

a very realistic viewing experience with a wide navigation range. However, the large amount

of data required for such navigation experience still represents a challenge for the current

systems, which implies the need for new efficient coding strategies that permit to save on

storage and transmission resources, while preserving interactivity in the navigation.

In this thesis, we focus on the optimization of coding strategies for IMV systems. In particular,

we investigate several problems arising with the large amount of data required by IMV and

propose different solutions, such as, (i) optimized multiview video prediction structures

for interactive multiview video streaming (IMVS), (ii) an optimal layered representation for

adaptive multiview video streaming, and (iii) a Lagrangian multiplier search algorithm for

Lagrange-based optimization in constrained rate allocation problems.

First, we address the issues related to the coding techniques for IMV in a multiview video

plus depth (MVD) scenario, where texture and depth maps are available for view synthesis

at the decoder. Current multiview video coding standards efficiently compress images from

different camera views capturing the same scene by exploiting the spatial, the temporal and

the interview correlations. However, the compressed texture and depth data have typically

many interview coding dependencies, which may not suit IMVS systems, where the user

typically requests only one view at a time. In this context, we propose an algorithm for the

effective selection of the interview prediction structures (PSs) and associated texture and

depth quantization parameters (QPs) for IMVS under transmission and storage constraints.

These PSs and QPs are selected such that the visual distortion is minimized during navigation

at the decoder, given storage and point-to-point transmission rate constraints. Simulation

results show that our novel low complexity algorithm has near-optimal compression efficiency

while preserving interactivity properties at the decoder, so that it offers an effective encoding

solution for IMVS applications.

Then, considering the limited and heterogeneous capabilities of current networks and de-
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Abstract

coding devices, we propose a novel adaptive solution for IMV based on a layered multiview

representation where camera views are organized into layered subsets to offer different levels

of navigation quality depending on the different client constraints. We formulate an opti-

mization problem for the joint selection of the view subsets and their encoding rates. Then,

we propose an optimal and a reduced computational complexity greedy algorithms, both

based on dynamic programming. Simulation results show the good performance of our novel

algorithms compared to a baseline algorithm, proving that an effective IMVS adaptive solution

should consider the scene content, the client capabilities and their preferences, in building

adaptive systems for multiview navigation.

Finally, we build on the solution proposed in our second problem and present a general solu-

tion to rate allocation problems in multiview video. In particular, we propose a new algorithm

to find the optimal Lagrange multiplier in a Lagrangian-based rate allocation problem. This

algorithm permits to select the optimal subset of coding units (e.g., views in multiview video)

and quantization parameter values (QPs) such that the expected distortion among all the

units available at the decoder is minimized given a rate budget constraint. We show that, by

combining dynamic programming and a Lagrange-based algorithm with an optimal Lagrange

multiplier selection, we are able to reduce the complexity of the rate allocation algorithm

and to efficiently solve the allocation problem. We show the performance of our proposed

algorithm in both multiview and monoview video scenarios and show that the proposed

method is able to compete with complex state-of-the-art rate control techniques.

In summary, this thesis addresses important issues for coding multiview video in the design

of efficient IMV systems under resource constraints. Our algorithm to select the optimal PS

and QPs in a MVD scenario can improve the quality of the rendered views and it can indeed

provide new insights for a deeper understanding of specific IMV coding requirements. We

show that our algorithm for a layered representation of multiview video provides an effective

adaptive streaming solution for IMV systems with users with limited and heterogeneous capa-

bilities. Finally, our proposed Lagrangian-based rate allocation algorithm with an optimized

selection of the Lagrange multiplier represents a general contribution that can be used in both

multiview video and monoview video scenarios.

Keywords: Interactive multiview video (IMV), multiview video plus depth (MVD), navigation,

streaming, view synthesis.
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Riassunto

Sin dalla nascita dei servizi multimediali, in particolare quelli video diffusosi con l’invenzione

della televisione, notevoli sforzi sono sempre stati dedicati a riprodurre il mondo reale. Prima

la televisione da bianco e nero è diventata a colori, e poi la risoluzione da molto bassa è

arrivata all’Ultra High-Definition Video (UHDV) - 7680 × 4320 pixel - riproducendo sempre più

fedelmente il mondo reale. Il passo successivo per rendere sempre più veritiera l’esperienza

offerta dai servizi multimediali è la tecnologia chiamata interactive multiview video (IMV). IMV

è un sistema di visione a telecamere multiple che permette agli utenti di navigare liberamente

in una scena, selezionando la prospettiva preferita da cui guardare la scena tra un’insieme

di angolazioni disponibili (viste multiple). Questa navigazione è possibile grazie a differenti

telecamere, che acquisiscono la scena da diverse angolazioni o viste, e grazie alla tecnica

di view-rendering che permette di generare ulteriori viste virtuali, sintetizzate direttamente

dal ricevitore. In definitiva, gli utenti possono osservare la scena da un numero infinito di

viste, fornendo un’esperienza di navigazione molto realistica in una scena che può essere

molto ampia. Tuttavia, tale navigazione è possibile al prezzo di una vasta quantità di dati,

non sempre sostenibile dagli attuali siatemo di video comunicazione. Tali sistemi dunque

necessitano di nuove ed efficienti strategie di codifica che consentano di risparmiare risorse

di storage e trasmissione, preservando l’interattività nella navigazione.

In questa tesi, ci concentriamo sull’ottimizzazione delle strategie di codifica per i sistemi

IMV. In particolare, indaghiamo problemi derivanti dalla grande quantità di dati necessari

in sistemi IMV e proponiamo differenti soluzioni, quali ad esempio, (i) un’ottimizzazione

delle strutture di predizione per multi-telecamere per lo streaming dei sistemi IMV (IMVS),

(ii) una composizione del segnale in strati (o livelli) per lo streaming adattativo del video di

multi-telecamere in sistemi IMV, e (iii) un metodo per definire il miglior moltiplicatore di

Lagrange in problemi di ottimizzazione di assegnazione del rate basati sui moltoplicatori di

Lagrange.

In primo luogo, ci focalizziamo sulle tecniche di codifica per sistemi IMV in uno scenario mul-

tiview video plus depth (MVD), composto da un numero limitato di viste e dalle corrispondenti

mappe di profondità. Ad oggi, le immagini acquisite da diverse telecamere che catturano la

stessa scena sono compresse in maniera efficiente da attuali metodi di codifica video, che

sfruttano la correlazione della sorgente a livello spaziale, temporale ed anche inter-vista,

cioè la correlazione che sussiste tra telecamere vicine. Tuttavia, a causa della correlazione

inter-vista, i dati dell’immagine e della mappa di profondità, una volta compressi, hanno

tipicamente molti dipendenze con altre viste. Il che significa che altre viste devono essere

decodificate prima di poter decodificare la vista corrente. Tale codifica con dipendenze non

v



Riassunto

risulta ideale per sistemi IMVS, in cui l’utente richiede in genere solo una vista alla volta. In

questo contesto, proponiamo un algoritmo per un’efficace selezione delle strutture di pre-

visione (PSs) inter-vista e parametri di quantizzazione (QPs) dell’immagine e della mappa

di profondità per sistemi IMVS considerando vincoli di trasmissione e storage. Questi PSs e

QPs sono scelti in modo tale che la distorsione visiva sia minimizzata durante la navigazione

dell’utente nella scena, dati i vincoli di storage ed il rate di trasferimento dei dati point-to-

point. L’algoritmo proposto è a bassa complessità e dai risultati risulta essere un’efficiente

tecnica di compressione (quasi ottimale) garantendo l’interattività della scena in sistemi IMVS.

Sempre per sistemi IMV, caratterizzati da le limitate ed eterogenee capacità sia delle reti attuali

che dei dispositivi di decodifica, proponiamo inoltre una nuova soluzione adattativa basata

sul concetto di rappresentazione di multi-telecamera a strati dove le viste sono organizzate

in strati (o livelli). Tale rappresentazione offre così differenti livelli di qualità durante la nav-

igazione per differenti condizioni (in termini di canale o dispositivi) degli utenti. Il problema di

ottimizzazione è finalizzato a determinare l’allocazione ottima delle viste nei differenti livelli,

definendo anche i rispettivi rate di codifica. Per risolvere tale ottimizzazione, proponiamo

due algoritmi entrambi basati su dynamic programming. Il primo metodo calcola la soluzione

ottimale, ottimizzando simultaneamente tutti i livelli, ma ad un prezzo di elevata complessità.

Il secondo metodo invece offre una complessità di calcolo ridotta ma ottimizza ogni livello

di telecamere singolarmente. I risultati delle simulazioni mostrano le buone prestazioni dei

nostri nuovi algoritmi rispetto ad un algoritmo di riferimento. Ciò dimostra che, per offrire

servizi di IMVS a buona qualità, un’efficace soluzione deve adattarsi al contenuto della scena,

alle funzionalità del cliente ed alle loro preferenze.

La soluzione di questa ottimizzazione adattativa è infine generalizzata nel terzo contributo

di questa tesi, dove presentiamo una soluzione generale per problemi di allocazione di rate

in sistemi di visione di telecamere multiple. In particolare, si propone un nuovo algoritmo

per trovare il moltiplicatore di Lagrange ottimo in un problema di allocazione di rate basato

sui moltiplicatori di Lagrange. Il metodo proposto permette di selezionare il sottoinsieme

ottimo delle unità di codifica (ad esempio, le viste in sistemi di telecamere multiple) ed i valori

dei parametri di quantizzazione (QPs) in modo tale che la distorsione prevista tra tutte le

unità disponibili presso il decodificatore sia ridotta al minimo dato un budget limitato di rate.

Abbiamo dimostrato che, combinando dynamic programming ed un algoritmo basato sui

moltiplicatori di Lagrange con un’ottima selezione del moltiplicatore stesso, siamo in grado di

ridurre la complessità dell’algoritmo di allocazione di rate, risolvendo dunque tale problema

in maniera efficiente. Le prestazioni del nostro algoritmo proposto in scenari di visione con

telecamere multiple o singole dimostrano che il metodo proposto è in grado di competere con

le tecniche complesse di ultima generazione per il controllo del rate.

In sintesi, questa tesi affronta argomenti importanti per la codifica di sistemi di visione

di telecamere multiple in servizi IMV quando le risorse sono limitate. Il nostro algoritmo

per selezionare l’ottimale PS e QPs in uno scenario MVD può migliorare la qualità delle

viste virtuali generate al decodificatore e può fornire nuove intuizioni per una più profonda

comprensione di specifici requisiti di codifica IMV. Abbiamo dimostrato che il nostro algoritmo

per la rappresentazione a livelli multipli di multi-telecamere fornisce una soluzione efficace
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per lo streaming adattativo in sistemi IMV con utenti con capacità limitate ed eterogenee.

Infine, l’algoritmo di allocazione di rate che proponiamo è un contributo generale che offre

una tecnica efficace di ottimizzazione e può essere utilizzato in scenari di telecamere multiple,

ma anche in problemi di allocazione di rate in casi di telecamera singola.

Parole chiave: Interactive multiview video (IMV), multiview video plus depth (MVD), nav-

igazione, streaming, viste virtuali.
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1
Introduction

1.1 Motivation

The advances in image and signal processing, display technologies, coding and transmission

techniques coupled with the rapid increase in computing power, computer storage facilities,

communication speed, have led to an increase in both content creation and consumer de-

mand of video services. Moreover, due to the increasing use of personal devices capable of

reproducing videos, and to the delivery of content over the Internet, viewers can now enjoy

any video service on any device, anywhere, and at anytime. Video experience have shifted

from a social experience, where groups of viewers gather in front of the house TV, to a more

individual experience, where viewers watch their favorite programs on smaller, more personal

devices such as tablets and smartphones. More importantly, users are no longer slaves of

their TV sets, they can watch the video they want in their own terms. However, interaction

is currently limited to occasional user intervention in the time domain (e.g., pause, play, fast

forward and rewind), and users are not yet able to choose their own viewing angle in a 3D

scene. For example, a sport scene would be much more exciting if the viewer could get the

desired viewpoint of his/her favorite player, bringing the user to the center of the play. Simi-

larly, educational videos would benefit as well from more interactivity, since it permits a better

understanding of complex structures, e.g., molecules or engines, if the viewer can rotate them

by himself.

Given the trends towards a more personal video experience, we believe that the next step for

video services is interactive multiview video (IMV). In IMV, an array of cameras first capture

the same 3D scene from different viewpoints in order to provide the clients with the capability

1
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Captured View

Virtual View

Navigation Window

Figure 1.1 – Illustration of an interactive multiview video (IMV) where a user can request any
view, captured or virtal view, defining the navigation window.

of eventually choosing among different views of the scene. Intermediate virtual views, that

are not available from the set of captured views, can also be estimated and rendered at the

decoder if relevant information from neighboring views is available. As a result, IMV clients

can get the freedom of selecting a viewpoint from a set of captured and virtual views defining

an interaction space or a navigation window (Fig. 1.1). These systems have been developing

fast in the recent years. Current implementations of IMV systems have considered linear

camera arrangements with a few number of camera views. Recent efforts of standardization

committees already target Super Multiview Video (SMV) and free navigation [5]; they require

more views with a wider and higher-dimensional camera arrangement to have a glass-free 3D

experience in the SMV case [6], and a “walking-through" feeling in the free navigation case [7],

[8].

IMV however brings important challenges compared to traditional video system, due to the

important increase in the volume of data with multiview representations. In IMV many views

need to be stored and eventually transmitted to the users. Thus, the design of efficient coding

strategies that consider storage and bandwidth resources, complexity, video quality and

interaction delay becomes crucial in IMV systems. It is essential to overcome these challenges

in order to provide high quality IMV services, which will offer a smooth and high quality

navigation experience and lead to a mass adoption of these exciting new applications in the

near future.

The coding strategies proposed so far in the literature for multiview video target applications

where the full set of captured views are transmitted together to the clients. Given that the

different views in multiview video tend to be very correlated, as the different video signals are

created from the same scene, current coding solutions exploit the similarities between adja-

cent views to maximize the compression efficiency, in addition to the redundancies already

exploited in traditional monoview video encoders (i.e., temporal and spatial redundancies).
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However, in an interactive system only one view is requested at a time. Inter-view coding

dependencies unfortunately impose a lot of information that needs to be transmitted in order

to decode or render each single view. Providing high view-switching flexibility with reduced

coding dependencies can however come at the cost of reducing the compression efficiency.

Therefore, there is a need to find effective prediction structures that adapt to the IMV particular

needs in trading-off compression efficiency and interaction capabilities.

IMV is an application that requires the transmission of a huge amount of information and

therefore it needs a scalable or adaptive solution that ensures that all the clients can enjoy it at

the highest possible quality even if they have different bandwidth capabilities. The solutions

proposed so far have been an extension of adaptive solutions for traditional monoview video,

mainly based on scalable video coding, which allows video to be encoded as a set of ‘layers’

of increasing quality and complexity. However, the particular characteristics of multiview

video have not been exploited for scalable solutions. For instance, instead of transmitting

the complete set of views of a multiview video dataset, some views can be omitted from

the compressed bit-stream and eventually reconstructed at the receiver side. This solution

permits to trade off navigation quality and transmission bandwidth and to adapt the navigation

experience to the user capabilities.

In general, efficient compression for single or multiple layers stream raises a rate allocation

problem as storage capacity and transmission rate are generally constrained resources. The

problem is to find the optimal rate distribution among coding units, e.g., frames in a monoview

video or views in a multiview video, such that the quality is optimized given a rate constraint. To

solve rate allocation problems, methods based on dynamic programming have been suggested.

However, due to the computational complexity of dynamic programing approaches, rate

allocation problems are usually solved considering a Lagrangian cost function, where an

unconstrained formulation of the problem is possible by using a Lagrange multiplier. However,

the search of the optimal Lagrange multiplier is usually overlooked, which jeopardizes the

algorithms for rate allocation in practice. Moreover, most of the works tackling the problem of

rate allocation focus on traditional monoview video settings and rate allocation problems for

multiview video have received only very limited attention.

In this thesis, we address the limitations of current multiview systems and propose novel cod-

ing strategies for IMV. We first propose an optimization algorithm to select optimal prediction

structures (PSs) for interactive multiview video streaming (IMVS). These PSs result from a trade

off between compression efficiency and interaction flexibility. Then, a bandwidth-adaptive

solution for IMV is presented, where some views can be skipped for encoding/transmission

and reconstructed at the user side. Finally, we present a novel algorithm to find the optimal

Lagrange multiplier in Lagrangian-based optimization for rate allocation problems. This

solution is general enough to be applied on both multiview video and traditional monoview

videos.

3



Chapter 1. Introduction

1.2 Thesis Outline

The outline of this thesis is as follows.

In Chapter 2, we provide an overview of the existing works related to coding strategies for IMV

applications, as this is the focus of this thesis. First, we describe the different components of an

IMV system and their impact on the coding solutions. Then, we overview the existing coding

strategies for multiview video data, considering compression, scalability and rate control

properties, along with specific coding requirements for IMV.

In Chapter 3, we investigate the problem of finding the optimal multiview video plus depth

prediction structures (PSs) to trade off compression and interaction flexibility in an IMV

scenario. We propose a greedy algorithm to find the optimal PS and quantization parameters

(QPs) for the texture and depth maps, in a system where the point-to-point transmission

bandwidth and the storage capacity are scarce resources. Experimental results show that our

new generic algorithm is able to identify a near-optimal PS in the sense of minimizing the

distortion while trading off the transmission and storage costs. At the same time, our PS and

associated QPs selection algorithm leads to a complexity reduction up to 72% compared to an

optimization performed with exhaustive search approach. The research work related to this

chapter has resulted in the following publications:

• A. De Abreu, P. Frossard and F. Pereira; “Optimized Multiview video Plus Depth Prediction

Structures for Interactive Multiview Video Streaming”, IEEE Journal of Selected Topics in

Signal Processing, vol 9, no. 3, pp. 487-500, April 2015.

• A. De Abreu, P. Frossard and F. Pereira; “Fast MVC Prediction Structure Selection for

Interactive Multiview Video Streaming”, Picture Coding Symposium (PCS); San Jose, CA,

US; 8-13 December 2013.

• A. De Abreu, P. Frossard and F. Pereira; “Optimized MVC Prediction Structures for Inter-

active Multiview Video Streaming”, IEEE Signal Processing Letters, vol. 20, no. 6, pp.

603-606, June 2013.

In Chapter 4, we consider the scenario where resources constraints prevent the transmission

of all the views to all the clients in an IMV system. We propose an adaptive or scalable

representation strategy for interactive multiview video streaming (IMVS) systems that adapts

to the capabilities of the different clients. This adaptation is performed by varying the number

of camera views transmitted to the decoder, hence the navigation quality, according to users

capabilities. We consider the problem of jointly determining which views to transmit and

at what encoding rate, such that the expected rendering quality in the navigation window is

maximized under relevant resources constraints. Simulation results show the benefits of the

proposed solution compared to a baseline view selection algorithm. The research work related

to this chapter has resulted in the following publications:
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• A. De Abreu, L. Toni, N. Thomos, T. Maugey, F. Pereira and P. Frossard; “Optimal Layered

Representation for Adaptive Interactive Multiview Video Streaming”, Journal of Visual

Communication and Image Representation, accepted under minor revision.

• A. De Abreu, L. Toni, T. Thomas, N. Thomos, P. Frossard, F. Pereira; “Multiview Video

Representations for Quality-Scalable Navigation”, IEEE Conference on Visual Communi-

cations and Image Processing (VCIP); Valeta, Malta; 7-10 Dec. 2014.

Then, in Chapter 5, we tackle generic rate allocation problems, where a rate budget should be

optimally distributed among the views in a multiview video. We are particularly interested in

finding the optimal Lagrange multiplier value when a rate allocation problem is solved by a

Lagrangian optimization. We propose a new and effective algorithm for picking the optimal

value of the Lagrange multiplier. We illustrate the performance of this algorithm on multiview

video data and on traditional monoview video. To appreciate the performance of our rate

allocation algorithm we also compare our results to rate control solutions adopted in the

reference softwares of current monoview and multiview video standards, namely HEVC [9]

and 3D-HEVC [10], showing that a simple strategy as the one proposed compares favorably to

more complex rate control solutions. This work is in preparation for publication:

• A. De Abreu, G.Cheung , P. Frossard, F. Pereira; “Optimal Lagrange Multiplier Values for

Constrained Rate Allocation Problems”, in preparation.

Finally, some conclusions and directions for future work in the field of IMV are presented in

Chapter 6.

1.3 Thesis Contributions

The main contributions of this thesis are summarized as follows:

• We propose a greedy algorithm to find the optimal interview prediction structures

and quantization parameters (QPs) for texture and depth maps coding in interactive

multiview video systems. The optimal PS and QPs minimize the distortion when the

point-to-point transmission bandwidth and the storage capacity are scarce resources.

Our PS and associated QPs selection algorithm shows a close to optimal performance,

leading to a complexity reduction of up to 72% compared to an exhaustive search

approach.

• We propose a new type of scalability for IMV compared to classical video, where, instead

of transmitting the complete set of views of the multiview video dataset, some views

can be omitted from the compressed bit-stream and eventually reconstructed at the

receiver side using DIBR methods.
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• We investigate the problem of jointly determining the optimal arrangement of views in

layers along with the coding rate of the views, such that the expected rendering quality is

maximized in a given navigation window. We show that this combinatorial optimization

problem is NP-hard, meaning that it is computationally difficult and there are no known

algorithms that optimally solves the problem in polynomial time.

• In the framework of an adaptive solution for IMV, we propose a globally optimal solution

and, due to its high complexity, a greedy algorithm both based on dynamic programing.

The results show that our greedy algorithm achieves a close-to-optimal performance in

terms of total expected distortion.

• We propose a generic algorithm that finds the optimal Lagrange multiplier value with

a minimum number of iterations given a rate allocation problem to find the optimal

subset of coding units and QPs such that the expected distortion among all the available

units at the users is minimized.

• We show that by combining dynamic programming and a Lagrangian-based algorithm

with an optimal search of the Lagrange multipliers we are able to reduce the complexity

of dynamic programing-based algorithms efficiently solving the rate allocation problem.
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2
State of the Art

2.1 Overview

Interactive multiview video (IMV) enables the “walking-through” or “navigation” experience

by providing multiple views of the same 3D scene. It promises a realistic experience, as

users can switch to any viewpoint in order to have a new viewing angle of the same scene.

However, this comes at a price. Multiview videos are clearly much larger in size than tradi-

tional monoview video and effective coding strategies adapted to the particular needs of the

interaction application are needed in order to have a mass acceptance of this technology.

We provide in this chapter an overview of the different modules of interactive multiview

video systems [11][12], with a special focus on coding strategies that is the main topic of

this thesis. The coding strategies for IMV largely depend on the constraints imposed by the

system, e.g., data representation, the bandwidth of the transmission channel, storage capacity

limitations and the type of service offered to the user. Therefore, we first describe the different

components of the IMV system in Section 2.2 and their impact on the selection of the coding

strategy. Then, in Section 2.3 we overview the existing coding strategies for multiview video

data, along with specific target applications.

2.2 Interactive Multiview Video System

In an IMV system, users are able to freely navigate within a scene by choosing their own

viewing angle. This can be achieved by capturing the scene by a set of calibrated cameras
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Figure 2.1 – Interactive multiview video (IMV) system. Its components can be classified into:
capturing and data representation, coding, storage and transmission, rendering and user
interaction.

from different viewpoints. These synchronized video signals can be transformed into a data

representation that eventually permits the synthesis or rendering of intermediate virtual views.

Then, this acquired and/or transformed data is encoded and eventually transmitted when

requested. In general, the components of an IMV system can be classified into five parts:

capturing and data representation, coding, storage and transmission, rendering and user

interaction. The processing chain of an IMV system is illustrated in Fig. 4.1.

Capturing and Data Representation

Interactive multiview video navigation requires multiple views representing the same scene

from different angles. These views can be captured by an array of cameras or they can be

computer generated. Different multi-camera setups have been used for capturing the same

scene [13] [14], such as 1-D or 2-D linear arrays and 1-D arc arrangements. The camera set-up

has an impact on the entire IMV processing chain. For instance, it defines the navigation

range offered to the users and determines the quality of the rendered or synthesized views,

as this quality usually depends on the camera spacing, camera resolution and the distance

from the cameras to the scene. The acquisition of multiview data can be determined by the

multiview data representation or format required by the IMV system. Basically, two types of

multiview data representation can be distinguished [15], given an IMV application: multiview

video (MVV) and multiview video plus depth (MVD). The former is obtained by acquiring

texture information from a set of synchronized cameras. Figure 2.2 illustrates the MVV data

representation. The latter refers to a data representation where, for each captured frame,

. . .   

Figure 2.2 – Multiview video (MVV) data representation for Shark dataset, provided by NICT for
MPEG FTV standardization [1]. Views 20, 40 and 182 (from left to right) and the corresponding
first frame in the time domain are used as illustration.
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Figure 2.3 – Multiview video plus depth (MVD) data representation for Shark dataset, provided
by NICT for MPEG FTV standardization [1]. Texture and depth maps of views 20, 40 and
182 (from left to right) and the corresponding first frame in the time domain are used as
illustration.

there is an associated depth map, which is eventually used for intermediate view rendering

purposes. Depth maps are gray-scale images where each pixel represents the distance between

the camera and its position in the 3D scene. Depth maps can be obtained using special camera

sensors [16] or they can be estimated from images captured by two or more cameras by solving

for stereo correspondences [17]. Figure 2.3 illustrates MVD data representation. The type of

multiview data representation used defines the coding strategy that should be followed. This

is further explained in Section 2.3.1.

Storage and Transmission

In IMV a user watching a particular view can send at any time a request to a server to switch

to a different view while continuing temporal playback. In general, the full set of encoded

captured views can be stored in a unique video server [18] [19][20] or the content can be

replicated in different local servers closer to the clients to reduce network congestion risks and

delays [21]. Then, two main types of transmission models can be identified for IMV. One where

the full set of encoded views is transmitted to the users and another one where only the data

that users need to decode or render the requested view is sent. The former allows the user to

get the requested data from its own memory and decode or render the requested view saving

in interaction delay, as all the views have been previously transmitted to the user. In this case, a

coding approach that takes into account all the inter-view redundancies is important in order

to maximize the compression efficiency, due to the huge amount of data that needs to be sent.

However, transmitting the entire multiview video dataset when the user only requests one

view at a time can be very demanding in terms of bandwidth and it is not commonly adopted

in IMV. The latter transmission model, usually called interactive multiview video streaming

(IMVS) [18] [20], can potentially reduce bandwidth utilization since only the data required to

decode or render the user requested view is transmitted. In this case, a coding strategy that

9



Chapter 2. State of the Art

does not exploit many inter-view coding dependencies among the full set of encoded views

would be preferred, as less additional information needs to be transmitted in order to decode

and render a requested view.

Rendering

The number of camera views that can be stored and transmitted over the network are limited

by the resources available in the system. Therefore, in order to provide a wide and smooth

navigation range, view synthesis needs to be used at the decoder for reconstructing novel views

between the reference camera views. Rendering techniques have received a lot of attention in

the literature. One of the first approaches used for generating virtual views is the model-based

rendering (MBR). In MBR, 3D models of the scene are used to create new virtual views [22] [23].

The cost of MBR techniques is high and it depends on the complexity of the scene. Moreover,

generating realistic virtual views with MBR involves expensive computation. Therefore, image-

based-rendering (IBR) methods [24] [25] have been developed more recently, where the

acquired camera images are the main information used for synthesizing new viewpoints.

Differently from MBR methods, the rendering cost with IBR is independent of the scene

complexity and the texture mapping fidelity of the generated virtual views does not depend

on complex 3D models but rather on the available views. IBR techniques have been classified

into three categories [26], namely: i) rendering with no geometry; ii) rendering with implicit

geometry; and iii) rendering with explicit geometry. The more the geometric information

about the scene, the less the number of camera views that are needed for synthesis. Among

the different IBR methods, we can find the light-field rendering method [27], which uses many

images in order to synthesize a new viewpoint without considering any geometric information.

Then, view interpolation [28] is an example of a rendering method that uses implicit geometric

information to render new viewpoints by interpolating, generating new views by interpolating

the optical flow between corresponding image points. Finally, texture-plus-depth or depth

image-based rendering (DIBR) methods [17] [29] [30][31] use geometric information of the

scene, in particular per-pixel depth information, in order to synthesize novel viewpoints with

a limited number of reference images. In DIBR, pixels from a reference image are projected

into the 3D world, using the respective depth data and camera parameters, and then these

3D points are projected back into the image plane of a “virtual” camera, which is located

at the required viewing position, this is also called 3D-warping [29]. In this process, some

pixels that are occluded in the original texture view can become visible in the virtual view (i.e.,

disocclusions), meaning that no texture information is available for these pixels. As a result,

in order to reduce the occurrence of disocclusions, the unknown pixels for a first reference

view can be filled with the projected information from a second reference view when available,

through a blending process (Fig. 2.4); otherwise, inpainting [32] methods can be used. Dealing

efficiently with occlusions and disocclusions in the synthesized views remains a challenge

[15].

In general for IBR techniques and a given navigation range, the quality of the synthetic views

10
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increases with the number of available camera views at the decoder and their encoded quality.

This becomes a common trade-off in the design of IMV systems between the number and

quality of camera views and the view synthesis quality. Thus, the encoding strategy becomes

essential in selecting the number of views to encode and the allocation of rate or quality

among the selected views, in order to maximized the quality of both the encoded and the

synthesized views given some network resource constraints.
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Figure 2.4 – DIBR method using view 1 and view 3 of Ballet dataset [2] to generate view 2. First
step is the 3D warping, where pixels from the right and left reference views are projected into
the virtual view position. Then, both projections are merged in a blending process to fill in
disoccluded pixels.

User Interaction

Users profit from IMV by periodically requesting view switches to navigate through the 3D

scene. They can manually interact with the system via a traditional keypad [19] or through

head motion [33], [34]. Mainly, two types of user interactions can be identified: random access

and view-switching. In random access, view-switches occur from/to any viewpoint in the

multiview set at the same time instant. If view-switches occur only through adjacent frames,

then a frozen time effect [19] is obtained where the scene is frozen in time and the camera

rotates/translates around the captured scene. In the view-switching interaction mode, users

are able to switch flexibly from one camera view to another as the video continues along

time. Usually, in the view-switching mode, view switches occur through adjacent views for a

smooth navigation. The user interaction mode has an impact on the different modules of the

IMV processing chain, in particular on the coding solution. Random access is guaranteed by

using independently encoded frames, as view-switches occur at a fixed time instant, while

in view-switching different coding structures are needed, what makes independent coding

inefficient in terms of compression efficiency [18], [35] and [36].

11
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2.3 Coding for Interactive Multiview Video

Uncompressed multiview video signals accounts for a huge amount of data, thus efficient

coding techniques are essential for enjoying such applications [37]. Moreover, due to the

heterogeneity of transmission scenarios and general limited transmission rate, scalability of

the coded bitstream and rate control solutions are also very desirable features in any video

coding solution [38]. In this section, we first provide an overview of the different multiview

video coding strategies targeting the compression, scalability and rate control issues. Then,

we describe particular solutions to be considered for IMV when the users interact with the

multiview content.

2.3.1 Multiview Video Coding

The simplest way to encode multiview video is to independently encode each view using

a monoview video coding standard, e.g., the H.264/MPEG4 advanced video coding (AVC)

standard [39] or the High-Efficiency Video Coding (HEVC) [40] standard, and to independently

transmit each view when requested. This is usually referred as simulcast [41]. The advantage

of this coding technique for IMV, apart from its simplicity, is that only the requested view needs

to be transmitted to the client, which minimizes network resources and computational com-

plexity at the decoder. Moreover, it guarantees compatibility with state-of-the-art monoview

codecs. However, the different views in multiview video tend to be very correlated (because

of the spatial proximity of the capturing cameras) and this coding scheme does not exploit

the inter-view redundancy of this type of content, which makes it sub-optimal in terms of

the overall rate-distortion trade-off, consuming a lot of storage resources. Therefore, multi-

view video coding solutions considering the inter-view correlation of this type of data have

been proposed. In general, different solutions are proposed depending on the type of data

representation they use, namely MVV or MVD.

Given a multiview video (MVV) data representation (Fig. 2.2), multiview video coding schemes

target the efficient compression of multiple views capturing the same video scene by enabling

inter-view prediction to improve compression capability, as well as supporting traditional

temporal (inter-frame prediction) and spatial prediction (intra-picture prediction). This allows

frames from adjacent views to be used for prediction of a frame in a current view and at the

same time instant. An extension of the H.264/MPEG4-AVC monoview video coding standard,

referred as Multiview Video Coding (MVC) standard [42] 1, and a multiview extension of

the HEVC standard, denoted as MV-HEVC [43] have been proposed to encode this type of

content. They ensure compatibility with the corresponding monoview video coding standards,

meaning that one of the views can be independently decoded by a monoview decoder, such

as H.264/MPEG4-AVC or HEVC. Figure 2.5 illustrates two common prediction structures used

by different coding schemes for MVV, denoted here as IBP and IP, as these are the types of

1In this thesis when referring to the Multiview Video Coding standard the acronym MVC is used, otherwise
multiview video coding refers to a general codec for multiview video
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frames used to encode the anchor frames (i.e., frames that do not use temporal prediction

for encoding, although they do allow interview prediction from other views in the same

time instant [44]) of the different views. In general, the coding schemes for MVV preserve

the encoded video quality, as novel views are not synthesized at the decoder, avoiding the

complication associated to view synthesis.
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Figure 2.5 – Inter-frame and inter-view prediction structures commonly used in MVC and MV-
HEVC standards. (a) IBP and (b) IP prediction structures. Hierarchical B prediction structure
is used in the temporal domain.

When the multiview video plus depth (MVD) format is used to represent the multiview data

(Fig. 2.3), texture and depth maps need to be efficiently encoded to enable high quality

view synthesis at the decoder. Initial results have shown that the depth maps could be effi-

ciently compressed using standard texture coding algorithms [45], where MVC and MV-HEVC

standards have been used to encode texture and depth information as separate bit-streams.

However, such coding schemes do not exploit the similarities of the motion information of

the texture and the depth of the multiview video. Moreover, depth maps have characteristics

that are different from texture data (e.g., large monochromatic areas and sharp edges), thus it

requires specific coding methods. In order to maximize the compression efficiency, new MVD

coding schemes have been proposed where joint coding of depth and texture information

is considered, allowing both inter-view prediction for texture and depth maps and inter-

component prediction between texture and depth data. Multiview video coding standards

as the 3D extension of HEVC (3D-HEVC) [46] have been proposed to this end, offering new

coding modes for depth maps using view synthesis prediction and optimization at the encoder.

The MVD coding models are illustrated in Fig. 2.6, for the texture and depth components of

five views. For the sake of simplicity, the temporal inter-frame prediction is not considered in

the figure. A straightforward advantage of these coding schemes is that they provide explicit

depth information that could be used for view synthesis at the decoder. However, high-quality

view synthesis requires precise depth information [47], which poses challenges on depth

coding algorithms.
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Figure 2.6 – Prediction structures for MVD. (a) Inter-view only prediction (texture and depth
maps are independently encoded). (b) Inter-view and inter-component prediction (depth
maps are predicted using auxiliary information associated to the texture data).

The efficient compression of multiview videos, and video in general, raises the rate control

problem when coding and/or transmission bandwidth are constrained. In rate control, the

problem is to find the optimal rate allocation among views and/or frames in a (multiview)

video sequence. In this context, the term unit is used as a general term for frames in traditional

monoview video or views in multiview video. These type of problems have a high complexity,

in particular for multiview video, due to the search among all possible QPs and total number

of units. In the literature, rate allocation problems are usually solved by considering an

unconstrained problem based on Lagrangian optimization [48] [49] [50] [51] [52] [53], where

a Lagrange multiplier λ is used to define a Lagrangian cost function in the form D +λR,

as it allows to set different R-D trade-off points by modifying λ. For instance, minimizing

a Lagrangian cost function with λ = 0 is equivalent to minimizing the distortion. On the

other way around, minimizing a Lagrangian cost function with a large λ value is equivalent

to minimizing the rate. Thus, for each λ value there is an optimal rate allocation solution,

meaning that the optimal λ also needs to be found. Usually, search for the best λ is done

by swapping its value from an initial lower bound to an upper bound from a predetermined

set of λ values [52], where a bisection search can be used to reduce the number of iterations.

However, finding an optimal λ is not guaranteed as it depends on the granularity of the search

space.

Most of rate allocation algorithms for rate control problems have been proposed for traditional

monoview videos [50] [51] [52] [53]. Recently, some effort have been made to propose rate

allocation solutions for multiview video. In [48], Kim et al. a trellis-based optimization

approach is presented for multiview video where views are predictively coded. The authors do

not consider a system where missing views can be synthesized using both texture and depth
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maps, thus only the QPs of the texture information are optimized. On the other hand, the

work in [49] tackles the bit allocation problem for both texture and depth maps such that the

distortion of the encoded and the synthesized views is minimized. The authors optimize both

the set of coded views and their QPs, also adopting a trellis-based solution. However, both

works, [48] and [49], use a Lagrange cost function where no constructive algorithm for the

search of the optimal λ is proposed.

As an alternative to Lagrangian optimization, rate allocation problems can be solved as dy-

namic programming problems [54] providing optimal solutions; however the complexity is

rather high as it is a way of optimally considering all the possible solutions.

Scalability is also a desired feature in a multiview video coding strategy. In current networks,

where users may have different access link bandwidth capabilities, it becomes a challenge to

offer the same IMV service to all the users, even if the most efficient compression scheme is

used. In this context, it becomes important to devise adaptive compression and transmission

strategies for IMV systems that adapt to the capabilities of the users. Here, we define scalability

as the ability of the decoder to access part of the entire bitstream and still being able to enjoy

the IMV experience, even at a reduced quality. The problem of heterogeneous users has

been mostly tackled in the literature via scalable multiview video coding. For instance, some

extensions of the H.264/SVC standard [55] for traditional 2D video have been proposed in the

literature for multiview video [56] [57]. In [58], [59] and [60], the authors propose a joint view

and rate adaptation solution for heterogeneous users. Their solution is based on a wavelet

multiview image codec that produces a scalable bit-stream from which different subsets can

be extracted and decoded at various bitrates in order to satisfy different users bandwidth

capabilities.

The focus of recent works and standardization activities in the area of multiview video coding

has been mainly on compression efficiency, where usually one view is encoded independently

and the other views are predictively encoded to maximize the redundancy reduction. However,

in IMVS systems where only one of the views is requested at a time, this may not be the most

efficient prediction model, as it leads to large transmission costs. For instance, from Fig.

2.5, if the last view in the coding set is requested by a user, all the previous views need to be

transmitted first in order to decode the desired view. In the following, we present some coding

solutions for IMV applications.

2.3.2 Multiview Video Coding in IMV

Interactive multiview video is characterized by view-switches from/to any viewpoint in the

multiview set, virtual or coded. This means that, without any previous knowledge of the

navigation path followed by the user, video coding solutions for IMV need to provide flexible

viewpoint switching in order to minimize network resource consumption and decoding com-

plexity. A common challenge in IMV systems is to consider both, a solution that exploits the

inter-view correlation for efficient coding, and a solution that provides interaction flexibility
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to the users minimizing transmission costs and interaction delay.

Recently, some prediction structure (PS) selection algorithms to encode multiview video have

been proposed for IMV systems, with the goal of providing multiview video with flexible

viewpoint switching by trading off the transmission rate, storage capacity and/or latency.

To save transmission bandwidth, different interview prediction structures are proposed in

[61] to code various versions of a multiview set in order to satisfy different RD performances.

However, this approach brings a high storage cost at the server, as its gain depends on the

number of PSs used to encode the multiview sequence. Similarly, the authors in [19] consider

the trade-off between flexibility, latency, and bandwidth when proposing three prediction

structures in order to offer three different types of interactive experiences to the users. A low-

delay random accessibility, as well as low-transmission bandwidth cost is proposed in [62],

where a group of GOPs (GoGOP) concept is introduced with interview prediction restricted to

the views in the same GoGOP. However, this solution leads to limited compression efficiency.

In [63], a user dependent multiview video streaming for Multi-users (UMSM) system has been

proposed to reduce the transmission rate, where overlapping frames (potentially requested

by two or more users) are encoded together and transmitted using multicast, while the non-

overlapping frames are transmitted to each user by unicast. This approach is only useful when

several users are watching the same video at the same time instant. In addition, if in [63] a

random interactivity model is assumed, where a user can switch to any viewpoint, UMSM

must transmit all the views to each user, which results in large bandwidth usage. Differently, in

[18],[35] and [36], the authors have studied the PSs that facilitate a continuous view-switching

by trading off the transmission rate and the storage capacity. The authors have considered

a coding system with redundant P- and DSC-frames (distributed source coding), which is

unfortunately not compliant with standard decoders. A different approach is followed in [49]

and [58] where, given a rate constraint, a set of views is optimally selected at the sender side

for encoding. Then, the set of views are transmitted to the users from where they may select

an encoded view or reference vieews to synthesize a desired viewpoint.

In addition, some interactive navigation systems have been proposed where the redundancies

are not only reduced through coding techniques but also in the data representation adopted. In

[64] the authors propose a novel solution where the available navigation domain is partitioned

into segments. Each of the segments is then described by a unique reference image (texture

and depth maps) and some auxiliary information. This auxiliary information and the reference

image allow the user to synthesize any viewpoint in each particular segment, and additional

data is only required if the user “moves” to a different segment.

The work of this thesis continues the research efforts in designing a coding strategy that

balance compression efficiency and interaction flexibility in the context of multiview video

systems for interactive navigation.
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3
Optimizing Multiview Video plus Depth

Prediction Structures for IMVS

3.1 Introduction

In this chapter, our main goal is to find the optimal interview prediction structure (PS) and

associated texture and depth quantization parameters (QPs) to encode a set of views in the con-

text of interactive multiview video streaming (IMVS). In IMVS, the users periodically request

view switches and only the data required to decode or render the requested view is transmitted

by the server. Efficiently encoding this type of content a priori and without knowing the actual

path each user will follow in his/her interactive navigation is a challenging task. Most of recent

works and standardization activities have focused on exhaustively exploiting the inherent

correlation among the views to improve the overall compression efficiency [45] [65], without

considering the penalty in transmission rate that it brings to IMVS systems, as data that is

not requested but required for decoding needs often to be transmitted. The coding and the

prediction structures for IMVS applications have to be different from other non-interactive

multiview applications, as they need to offer an appropriate trade off between transmission

rate or interaction flexibility and compression efficiency.

Therefore, we propose a greedy algorithm to find the optimal interview PS and QPs for the

texture and depth maps. The optimal PS and QPs minimize the expected distortion at the user

in a system where the point-to-point transmission bandwidth and the storage capacity are

scarce resources. It is important to mention that the proposed algorithm is not specific to

any coding standard, provided that we are using a temporal and interview predictive coding
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solution for both texture and depth maps. We consider depth-image-based rendering (DIBR)

techniques in order to render new views from encoded texture and depth maps. To better

adapt the coding model to the video content along time, we characterize the user interaction

behavior with a view popularity model [66] [67], assuming a random access interactivity

model, where users can switch to any viewpoint in the multiview system and not only to

neighboring views. Experimental results show that the proposed algorithm is able to identify a

near-optimal PS in the sense of minimizing the distortion while trading off the transmission

and storage costs. At the same time, our PS and associated QPs selection algorithm leads to a

complexity reduction of up to 72% compared to an exhaustive search approach. Overall, the

proposed algorithm permits to efficiently use the bandwidth available and storage capacity

by optimizing inter-view dependencies on the PS, where the viewing user preferences are

considered.

To achieve its objectives, this chapter is organized as follows: Section 3.2 outlines the main

characteristics of the IMVS system under consideration. Section 3.3 describes the transmis-

sion and coding rate, and distortion models adopted in this work. Then, the optimization

problem to find the optimal interview PS and associated QPs given some system constraints

is formulated in Section 3.4. In Section 3.5, a greedy algorithm is proposed to efficiently

solve the optimization problem, previously formulated. Section 3.6 presents and analyses the

performance results demonstrating the benefits of the proposed solution considering both

the MVC and 3D-HEVC coding standards and finally, the conclusions and further work are

presented in Section 3.7.

3.2 IMVS Framework

We consider an IMVS system, where multiview video coding standards are used to compress

texture and depth data for a limited set of views. The users may not only be interested in the

coded viewpoints but also in intermediate viewpoints derived from a pair of textures and

depths views. The most relevant characteristics of the IMVS system model considered in this

work are described below.

3.2.1 Depth-based Multiview Model

We consider an IMVS system where a set of V views, V = {1, · · · ,V }, is encoded at the sender

side. For each coded view v ∈ V , texture and depth maps are available, allowing the generation

of intermediate virtual viewpoints at the decoder with an appropriate synthesis algorithm.

This set of coded views may be different from the set of captured ones as the rate may be

limited and/or the position of the cameras capturing the scene may not always be the optimal

one. Between each pair of consecutive coded views, some virtual view positions may be

available for user request at a minimum guaranteed quality. With the help of the depth-image

based rendering (DIBR) technique, these views are synthesized using the closest right and

left coded views, denoted as {vR , vL} ∈ V . At the decoder side a view can be rendered at any
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position in the discrete set U = {1,1+δ, · · · ,V }; with δ as the minimum distance between

consecutive views in the navigation window. The set of virtual views is defined as W =U \V .

Multiview video coding is applied to both texture and depth components of the set of coded

views, using two coding standards: MVC+D and 3D-HEVC. Based on predefined storage and

bandwidth constraints, both texture and depth images are encoded using the same optimized

PS at their respective QPs, Q = (
qt , qd

)
, where t and d stand for texture and depth, respectively.

The QPs are typically different for the texture and depth data [68], as they have completely

different impact on the final texture quality, and thus lead to different RD trade-offs. It is

important to remember that, while decoded textures are directly offered to the users, decoded

depths are not; they only serve to generate virtual views (thus also influencing their texture

quality). All coded data is stored in a server and eventually transmitted when requested.

The server provides an IMVS service to multiple users. We assume that when a coded view

is requested by the user, only the texture information is transmitted. On the other hand,

when a virtual view is requested, both the texture and depth maps of the closest right and

left coded views are transmitted by the server, if not already available at the user, so that the

user can synthesize the requested virtual viewpoint. This transmission model ensures the

backward compatibility with traditional video decoders, by only offering texture information

to users unable to synthesize virtual viewpoints. The same general IMVS system model can be

considered in the stereo video case, where instead of one, two views are requested by the user,

notably considering that different stereo displays may use different baseline distances. Then,

if the two requested views are coded views, only their texture information is transmitted to the

user. However, if one or both requested views are virtual views, texture and depth maps of the

closest right and left coded views of one or both viewpoints need to be transmitted. Figure

3.1 illustrates the general IMVS system architecture, where the coded and virtual views are

represented by frames connected by continuous and dashed arrows to the decoder and view

synthesis blocks, respectively.

Processing
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Depth
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Texture &
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Figure 3.1 – General IMVS system architecture. Coded and virtual views are represented by
images connected by continuous and dashed arrows to the texture decoder and view synthesis
blocks, respectively.
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3.2.2 Interactivity Model

In our system, we consider a random access interactivity model works and to model the user

interaction, a view popularity factor, pg
u , is considered to express the probability that a user

selects view u ∈ U at the switching time instant (i.e., at the anchor frames) of a group of

pictures (GOP) g . We assume that the probability pg
u , ∀u ∈U , depends on the popularity of

the views or on the scene content itself but not on the view previously requested by the user.

This may be the case for sports scenes for example, where a user may be following the moves

of his/her favorite player but at a certain time decides to change to the most popular view,

which is done independently of his/her current position. We assume a static view temporal

popularity model, meaning that all the GOPs of a given view have the same probability of being

requested by the users, although this may be easily modified if the temporal characteristics of

the content are considered.

3.2.3 Coding Model

Multiview video plus depth coding considers both the temporal and interview correlations to

increase the RD performance, reducing the redundancy among different views at the same

time instance and among subsequent frames in time in the same view position. In this work,

the same temporal and interview PS is used for coding both the texture and depth maps of

the set of coded views V . The temporal and interview coding models to be considered for the

optimization of the texture and depth common PS have the following characteristics:

Temporal Coding Model

As commonly done in the literature, we assume a fixed temporal PS for each view (texture

and depth maps), with hierarchical B-frames/slices [69], where B-frames are hierarchically

predicted from other B or anchor frames. Figure 3.2 illustrates a typical hierarchical B-frames

PS with 4 temporal layers, denoted with a sub-index from 0 to 3. The arrows in the figure

indicate the reference frames used for the prediction of the various B frames. To control the

quantization steps in the temporal domain, and thus the distortion, a cascading quantization

parameters (CQP) [65] strategy is used. In this strategy, the full set of texture and depth QPs,

Q = (
qt , qd

)
, for the anchor frames are encoded with a small QP (high quality), since they are

used as references for the prediction of frames in higher temporal layers. Then, the QPs of the

frames in higher temporal layers are assigned by increasing the previous temporal layer QP

with a pre-defined ∆Q, which may also be different for texture and depth. Here, we assume

that even if qt and qd can take different values, their value distribution is the same for all the

views in a particular GOP, as they vary at GOP level. Therefore, for a given PS there is only

one qt and one qd that are used for all the texture and depth maps of the views, respectively.

This assumption reduces the complexity of the Q search and it is not far from reality as the

content of the various views from the same captured scene tends to be very similar and as a

consequence the optimal QPs should also be similar among the views.
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Figure 3.2 – Hierarchical B-frames with four temporal layers.

Interview Coding Model

The interview coding models considered here are based on the two most commonly used

interview PSs in multiview video coding standards, namely IBP and IP [44]. In these PSs,

hierarchical B-frames are used in the temporal domain while the IBP or IP modes are used for

the anchor frames, determining the interview coding model of both anchor and non-anchor

frames. Although the use of interview coding in the non-anchor frames is optional, here we

use it as it has been shown to improve the RD performance in typical sequences [44]. Typically,

in IBP and IP PSs only one independently encoded view or key view is considered ( e.g., a

lateral view) in order to maximize the interview redundancy reduction. However, as high

compression efficiency is not the only objective in IMVS systems, we allow here more than one

key view in the two basic PSs (IBP and IP) to reduce the coding dependencies and increase the

navigation flexibility. To illustrate this, let us consider the example in Fig. 3.3 where two IP -

PSs are shown, one with only one key view (view 0) and the other with two key views (views 0

and 2). We further show (in gray) the frames that need to be transmitted in order to decode a

GOP in view 3. It can be seen that, due to the interview coding dependencies, for the PS with

only one key view (maximum compression efficiency) all the frames from the previous views

(views 0, 1 and 2) need to be transmitted together with the requested view 3, while for the

PS with two key views, only views 2 and 3 need to be transmitted. Finally, for benchmarking

purposes, we also consider the simulcasting structure where all the views are key views (I-PS).

3.3 Rate and Distortion Modeling

To fully characterize the IMVS system, we now define the rate and distortion models considered

in this work. In the following, we use F to denote the frame texture and F to denote both the

texture and the depth components of a frame. Both F and F refer to frames fully covered by a

single type of slice, namely I-, P- or B-slices.
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Figure 3.3 – Interview coding dependencies example. Two IP PSs are illustrated along with the
coding dependencies: (a) with only one key view (view 1) and (b) with two key views (views
1 and 3). The frames that need to be transmitted, in order to decode a GOP from view 4 are
shown in grey.

3.3.1 Coding Rate

The coding rate (CR) is defined as the total number of bits per unit of time necessary to code

both the texture and depth maps of a multiview sequence and it may be computed as:

C R = f

∑G
g=1

∑V
v=1

∑N
n=1 nb

(
F

g
v,n

(
PSg ,Qg

))
GNV

(3.1)

where f is the frame rate in frames per second, G the total number of GOPs per view, V the

number of coded views, N the number of frames per view in a GOP (we assume that all the

views have the same GOP size) and nb
(
F

g
v,n

)
the number of bits used to code frame F

g
v,n

of view c ∈ V at time instant n in GOP g . The number of bits necessary to code frame F
g
v,n

depends on the PS and the set of QPs used to code the texture and depth on each particular

GOP g , PSg and Qg = (
q g

t , q g
d

)
. It is important to mention that since we consider that the PS

may vary on a GOP basis, also the texture and depth QPs should vary in order to better match

the system constraints. Typically, a PS with only one key view, meaning a maximum number

of interview dependencies, and a coarse quantization should result in higher compression

efficiency or lower coding rate, CR, in Eq. (3.1).

3.3.2 Transmission Rate

The transmission rate (TR) is here associated to a point-to-point connection where a dedicated

video stream is transmitted between two network nodes. This transmission model is useful
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View 1
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View 3

View 4

View 5

View 2

View 5
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Figure 3.4 – Transmission model example where views {1,2,3,4,5} ∈U ; {1,3,5} ∈ V and {2,4} ∈
W . User A requests virtual view 2 and User B coded view 5 (dashed arrows). Coded views 1
and 3 have to be transmitted to user A, in order to synthesize the requested virtual view, while
for user B only the texture information of view 5 need to be sent.

in content on-demand scenarios where users act independently; hence there are not many

streams that could be shared between them as normally the probability that two or more

users request the same video stream at the same time is very low. The TR depends on the PS

considered, in particular on the interview PS. For instance, in order to decode a particular

frame, other frames from the same time instant but from different views might have to be

transmitted and processed before decoding the requested view. This is illustrated in Fig. 3.3,

where an example of the effect of interview dependencies is presented. In addition, the TR also

depends on which view is requested by the user, notably whether it is a coded or virtual view.

If the requested view is a coded view, v ∈ V , only its texture information has to be transmitted.

Otherwise, if the requested view is a virtual view, w ∈W , both the texture and depth maps of

the closest right and left coded views have to be transmitted, if not already available, so that

the user can synthesize the requested virtual viewpoint. This is illustrated in Fig 3.4, where

user A requests a virtual view (view 2) while user B asks for a coded view (view 5). Then, coded

views 1 and 3 (texture and depth maps) have to be transmitted to user A, in order to synthesize

the requested virtual view, while for user B, only the texture information of view 5 has to be

sent.

Before defining the transmission rate TR, we need to define the so-called frame- and GOP-

dependency path size. Similar to the transmission cost defined in [35], the frame-dependency

path size φ
(
F g

u,n
)

corresponds to the number of bits that have to be transmitted to be able to

decode or synthesize a particular texture frame from view u ∈U . The definition of φ
(
F g

u,n
)

depends on whether F g
u,n corresponds to a frame in a coded view, u = v |v ∈ V , or from a virtual

view, u = w |w ∈ W . If F g
u,n corresponds to a frame in a coded view, F g

u,n = F g
v,n , φ

(
F g

v,n
)

is
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recursively defined as:

φ
(
F g

v,n
) = nb

(
F g

v,n
(
PSg , q g

t

)) + ∑
v̂∈{c−1,c+1}

φ
(
F g

v̂ ,n

)
+ ∑

n̂∈{1,··· ,N }\n
φ

(
F g

v,n̂

)
(3.2)

where F g
v̂ ,n and F g

v,n̂ are the spatial and temporal reference frames for F g
v,n , respectively. The

frame F g
v̂ ,n corresponds to the reference frame of F g

v,n from the same time instant but from one

of the two neighboring views (depending on the interview PS), while frame F g
v,n̂ is a reference

frame from the same view v ∈ V and GOP g , but at different time instant. In (3.2) each frame

is considered once, so redundancy is avoided.

On the other hand, if F g
u,n corresponds to a frame from a virtual view, F g

u,n = F g
w,n , the texture

and depth data of the closest right and a left coded view, F
g
vR ,n and F

g
vL ,n , for {vR , vL} ∈ V ,

need to be transmitted and decoded in order to synthesize frame F g
w,n . Therefore, φ

(
F g

w,n
)

becomes:

φ
(
F g

w,n
)=φ

(
F

g
vR ,n

)+φ(
F

g
vL ,n

)
(3.3)

where, φ
(
F

g
vR ,n

)
and φ

(
F

g
vL ,n

)
are still the frame dependency paths of frames F

g
vR ,n and F

g
vL ,n ,

where both texture and depth data are considered. Remember that here we consider that

texture and depth data use the same optimized PS, so that the coding dependencies are the

same for both data types. Then, φ
(
F

g
vR ,n

)
and φ

(
F

g
vL ,n

)
are recursively defined as in (3.2); for

instance, in the case of φ
(
F

g
vR ,n

)
we have:

φ
(
F

g
vR ,n

) = nb
(
F

g
vR ,n

(
PSg ,Qg

)) + ∑
ĉ∈{c−1,c+1}

φ
(
F

g
ĉ,n

)
+ ∑

n̂∈{1,··· ,N }\n
φ

(
F

g
c,n̂

)
(3.4)

The frame-dependency path size for the left reference view, φ
(
F

g
vL ,n

)
, is similarly defined.

As a consequence, the number of bits required to decode or synthesize all the frames in a GOP

g of a particular view u ∈U , named GOP-dependency path size φg
u , is defined as:

φ
g
u =

N∑
n=1

φ
(
F g

u,n
) =

{∑N
n=1φ

(
F g

v,n
)

, if u = v |v ∈ V∑N
n=1φ

(
F g

w,n
)

, if u = w |w ∈ V
(3.5)

where each frame F g
u,n is considered only once. We assume that F g

u,n stays at the decoder side
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for at least the duration of the current GOP g , so it does not need to be re-transmitted if it is

required for decoding a future frame. We also assume that frame dependencies are limited to

a GOP.

Finally, we compute the overall expected point-to-point transmission rate, TR, as:

T R = f

∑G
g=1 E

{
φ

g
u
}

GN
(3.6)

where E
{
φ

g
u
}

is the expectation of the GOP-dependency path size φ
g
u , which is defined as

E
{
φ

g
u
}=∑U

u=1 pg
uφ

g
u , considering the view popularity model, pg

u , to express the user prefer-

ences for the various views in a particular GOP, common for all the views. Differently of the

CR, assuming that the texture and depth QPs are fixed, by increasing the GOP-dependency

path size (i.e., increasing the number of interview dependencies), the TR increases, as more

frames need to be transmitted in order to decode or render a particular frame.

3.3.3 Distortion

The average distortion for GOP g in view u, Dg
u , corresponding to the coding noise associated

to the quantization process, is taken as the temporal average of the distortion per frame in

GOP g , Dg
u,n :

Dg
u =

∑N
n=1 Dg

u,n

N
(3.7)

If the view u ∈U corresponds to a coded view, u = v |v ∈ V , its distortion Dg
v depends only on

the texture QP, q g
t . Otherwise, if u is a virtual view, u = w |w ∈ V , its distortion Dg

w , depends on

both the texture and the depth QPs, Qg = (
q g

t , q g
d

)
, used to encode the right and left reference

views; {vR , vL} ∈ V . The distortion perceived by the user for a particular GOP g takes the value

Dg
u with probability pg

u (i.e., the view popularity factor). Then, the expected distortion in a

specific GOP g , Dg , for the multiview sequence is defined as:

Dg =
U∑

u=1
pg

uDg
u =

V∑
v=1

pg
v Dg

v
(
q g

t

)+ W∑
w=1

pg
w Dg

w
(
Qg

)
(3.8)

Note that the distortion of both coded and virtual views, Dg
v and Dg

w , mainly depends on the

QPs of the coded or reference views and not on the PS chosen.
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We measure the distortion due to different coding choices in order to select the best coding

strategy. To quantify the distortion of the coded views, Dg
c , we measure the mean-squared-

error (MSE) between the original view and its coded version. Regarding the distortion of the

virtual views, Dg
v , typically there are no original frames available to compute the same metric

or any full reference objective quality metric. A commonly used solution available in the

literature, and adopted in this chapter, consists in computing a virtual reference view from

the uncompressed texture and depth data of the closest right and left coded views. Then, this

synthetic view is taken as benchmark to evaluate the distortion, e.g. the MSE, of the same view

synthesized from the decoded reference views [70]. Alternatively, one could use a distortion

model for the virtual views, instead of computing it explicitly using the available data (Chapter

4).

Finally, the expected distortion for the overall multiview sequence is defined as:

D =
∑G

g=1 Dg

G
(3.9)

In this chapter, for the sake of simplicity, we use the terms distortion and transmission rate

when referring to the expected distortion and expected point-to-point transmission rate per

sequence, respectively.

3.4 Problem Formulation

After describing the main characteristics of our IMVS system, we shall now formulate the

optimization problem. The problem addressed here is to find the optimal texture and depth

interview PS per GOP, PS∗ = {
PS∗

1 ,PS∗
2 , · · · ,PS∗

G

}
, together with their associated optimal

texture and depth QPs, Q∗ = {
Q∗

1 ,Q∗
2 , · · · ,Q∗

G

}
to encode a predefined set of views, minimizing

the distortion D while considering the following storage and bandwidth related constraints:

• Storage constraint — For convenience, we express the storage capacity of the system as

a rate, CR, notably as the total number of bits per unit of time used to code all the views,

considering both texture and depth. The constraint states that the coding rate shall not

exceed the maximum storage capacity of the system, C Rmax .

• Bandwidth constraint — Moreover, the transmission rate, TR, for each user is limited by

the maximum data rate supported by the network for any user, namely T Rmax .
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3.4. Problem Formulation

In summary, the optimization problem may be written as follows:

{
PS∗,Q∗}= argmin

PS,Q
D (Q) (3.10)

such that,

C R (PS,Q) ≤C Rmax Storage constraint

T R (PS,Q) ≤ T Rmax Bandwidth constraint

where CR, TR and D are calculated as in (3.1), (3.6) and (3.9), respectively. When all the GOPs

have the same probability of being requested by the user, meaning a static view temporal

popularity model is assumed, the optimization problem defined in (3.10) can be independently

solved for each GOP. Then, the optimal PS per GOP g , PS∗
g and associated texture and depth

QPs, Q∗
g , corresponds to those minimizing the GOP distortion, Dg , as defined in (3.8):

{
PS∗

g ,Q∗
g

}
= argmin

PSg ,Qg

Dg
(
Qg

)
(3.11)

such that,

C Rg = f

NC

C∑
c=1

N∑
n=1

nb
(
F

g
c,n

(
PSg ,Qg

))≤C Rmax

T Rg = f

N
E

{
φ

g
u
}≤ T Rmax

where the expressions for the storage and bandwidth constraints are calculated from (3.1) and

(3.6), respectively.

For the sake of simplicity, we assume that an optimal bitrate allocation (eventually at GOP

level) between texture and depth is known. A different texture and depth rate ratio is expected

for different sequences, as it has been shown to be content dependent [71] [72].

C Rg
d ≤C Rd ,max C Rg

t ≤C Rt ,max (3.12)

Solving the combinatorial optimization problem defined in (3.11) can be very computationally

intensive, notably if exhaustive search (ES) is applied. Indeed, the number of possible interview
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PSs exponentially grows with the number of views in the multiview set, and for each PS

multiple texture and depth QPs configurations are possible. Therefore, in the following section

we propose a greedy algorithm that finds near-optimal PSs and associated texture and depth

QPs, with remarkably reduced complexity, able to minimize the distortion under storage and

bandwidth constraints.

3.5 Optimization Algorithm

In this section, we propose a novel optimization algorithm that is able to find, for each

GOP over all views, with a reduced complexity, a near-optimal PS with associated texture

and depth QPs, given some IMVS system constraints. To significantly reduce the overall

complexity regarding an exhaustive search (ES) approach, we propose a greedy optimization

solution, which basically reduces the set of considered PSs without significant compression

performance penalty. With this approach, the problem in (3.11) is solved by breaking it

down into a series of stages, Si , which are successively solved, one after the other. To better

understand these different stages and how they depend on each other, we adopt a graph to

embody all this information. Then, for each GOP over all views, the optimization problem in

(3.11) is solved based on this stage graph.

3.5.1 Stage Graph Creation

The stage graph defines the various phases of the solution for the problem in Eq. (3.11). Each

stage Si includes a set of associated states representing the possible PS solutions at each phase

of the proposed algorithm. These PSs are then processed in order to find the best PS and

QPs in the stage, denoted as PSg∗
i and Qg∗

i . The states of consecutive stages are linked if

they contain a similar sub-structure, which is defined in terms of key views position. In the

following, we describe the two main steps in the stages graph creation process, notably the

states and links definition.

States Definition

We define the states in our stages graph in terms of the number of key views in the interview

prediction structure. Thus, the states in a particular stage correspond to the PSs with the

same number of key views (e.g., 1,2, · · · ,V ), in different positions of the multiview set. We start

by including in the first stage, S1, all possible PSs (for the IBP and IP PSs considered in this

paper) with only one key view. This corresponds to the solutions with the maximum number

of interview coding dependencies, thus associated with maximum compression efficiency and

also maximum transmission rate in an IMVS system. Then, we gradually increase the number

of key views in the PSs as we move towards the following stages, until the last stage, SV , where

all the V views are independently encoded. This corresponds to the absence of interview
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Figure 3.5 – Example of a three stages graph definition and PS selection.

coding dependencies, hence minimum compression efficiency and minimum transmission

rate in an IMVS system. Therefore, for fixed texture and depth QPs, by moving from stage S1 to

stage SV , we are, in general, moving along solutions from a maximum TR (minimum CR) to a

minimum TR (maximum CR), as the redundancy between the views increases i.e., the number

of interview dependencies decreases.

Links Definition

To link the states of two consecutive stages, we assume that the optimal PS, PSg∗
i , in a particular

stage Si for a specific GOP g , determines the optimal position of the i key views in the final

optimal PS. This means, for example, that the optimal PS in S1 determines the positioning

of one of the key views in the optimal PS solution. Therefore, a link is defined between two

states j , k, associated to PSg
i−1, j and PSg

i ,k from stages Si−1 and Si , if the i −1 key views in

PSg
i−1, j keep their position in PSg

i ,k . This is illustrated in Fig. 3.5a where the different states

are represented by circles and the links are defined between PSs of consecutive stages that

preserve the key views position. The set of PSs in stage Si linked to a same PS in stage Si−1,

PSg
i−1, j , is called a sub-stage of Si and denoted as SSi , j , given PSg

i−1, j ∈ Si−1. In this work,

there is only one sub-stage relevant for each stage, this means the one corresponding to the

optimal PS in the previous stage. Therefore, to shorten the sub-stage notation, here a sub-stage

of Si is denoted as SSi , which is associated to PSg∗
i−1, while |SSi | stands for the number of

states in SSi . For instance, in Fig. 3.5b, the IIP, IPI and IBI PSs define SS2, given that PSg∗
i−1 =

IBP. In the particular case of stage S1, SS1 = S1, as there is no previous stage.
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3.5.2 Iterative PS and Texture and Depth QPs Selection

The stages of the graph are successively processed for each GOP of the multiview sequence,

starting with stage S1, until the adopted stopping criterion is fulfilled, meaning that the best

PS for a particular GOP g , PS∗
g , (defined over all the coded views) has been found together

with the optimal texture and depth QPs, Q∗
g . At each stage Si , only the PSs in the sub-stage

SSi , given PSg∗
i−1, are processed to find the optimal PS and Q, this means PSg∗

i and Qg∗
i .

The optimal PS for GOP g and sub-stage SSi , PSg∗
i , and associated optimal texture and depth

QPs, Qg∗
i , are found by alternatively solving the problem in (3.11) for the PSs and QPs in SSi .

In particular, the following steps are followed for each Si , starting with S1:

Initialize Qg
i , j

For each PS in sub-stage SSi , find Q = (qt , qd ) that satisfies the texture and depth components

of the storage constraint, as defined in (3.12). We denote it as Qg
i , j , which is associated to

PSg
i , j from sub-stage SSi and state j ∈ SSi , as Q may take different values for different PSs

in SSi . By initializing Qg
i , j , for each PS in SSi , PSg

i , j , such that it satisfies one of the problem

constraints in (3.11), we are trying to find a set of texture and depth QPs that is close enough

to the optimal one. Here, we have only considered the storage constraint, but the bandwidth

constraint could have been also used if preferred.

Find Optimal PS, PSg∗
i

Here, we optimize the problem in (3.11) only for the PSs in SSi , while the texture and depth

QPs set is kept fixed for each PS. In particular, we consider Qg
i , j as the QPs set for each PS in

SSi . Hence, the problem addressed here is to find the optimal PS in SSi for the GOP g , PSg∗
i ,

that minimizes the GOP distortion Dg given some storage and bandwidth constraints:

PSg∗
i = argmin

PSg
i , j

Dg

(
PSg

i , j

)
, ∀PSg

i , j ∈ SSi (3.13)

such that,

C Rg ≤C Rmax T Rg ≤ T Rmax

where we do not consider the texture and depth components of the CR independently, as for

each PS we have already found the texture and depth QPs fulfilling the storage constraint for

the texture and depth maps (Section 3.5.2).
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To solve the combinatorial problem in (3.13), we apply the Lagrangian relaxation approach,

where according to [73] the constraints are first relaxed by adding them into the objective

function with an associated weight (the Lagrangian multiplier). In our case, we move the

storage and bandwidth constraints, as in (3.13), to the objective function with the Lagrangian

multipliers,
{
λ,µ

} ≥ 0. Each Lagrangian multiplier represents a penalty to be added to a

solution that does not satisfy the considered constraints. Then, the problem in (3.13) is relaxed

as follows:

Ji

(
PSg

i , j ,λ,µ
)
= min

PSg
i , j

{
Dg −λ

(
C Rmax −C Rg

)−µ(
T Rmax −T Rg

)}
(3.14)

In (3.14), we have eliminated the constraints from (3.13), but the number of variables has

increased with the number of eliminated constraints or the number of Lagrangian multipli-

ers used. To find the optimal values for the Lagrangian multipliers, λ and µ, we solve the

Lagrangian dual problem [73]:

{
λ∗,µ∗}= argmax

λ,µ
Ji (3.15)

Finally, considering only the PSs in SSi , the best PS for GOP g and stage Si , PSg∗
i , is the one

minimizing (3.14) for the optimal Lagrangian multipliers obtained in (3.15).

Find Optimal Q, Qg∗
i

Given the optimal PS in SSi and GOP g , PSg∗
i , the problem addressed here is to find the

optimal set of texture and depth QPs, Qg∗
i minimizing the distortion given some storage and

bandwidth constraint:

Qg∗
i = argmin

Q
Dg (Q) (3.16)

such that,

C Rg
d ≤C Rd ,max C Rg

t ≤C Rt ,max T Rg ≤ T Rmax

Differently from the problem posed in (3.13), here we consider the texture and depth com-

ponents of the CR independently, as we need to find the set of texture and depth QPs, Qg∗
i ,
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satisfying these constraints, while in (3.13), for each PS, we have already selected the set Q

satisfying both of the CR constraints.

As in Section 3.5.2, to solve the problem in (3.16), we apply the Lagrangian relaxation approach

with the Lagrangian multipliers,
{
α,β,γ

}≥ 0:

Li
(
Q,α,β,γ

) = min
Q

{
Dg −α

(
C Rt ,max −C Rg

t

)−β(
C Rd ,max −C Rg

d

)−γ(
T Rmax −T Rg

)}
(3.17)

In order to find the optimal α, β and γ values, we solve the following Lagrangian dual problem:

{
α∗,β∗,γ∗

}= argmax
α,β,γ

Li (3.18)

Then, the best Q for GOP g and stage Si , Qg∗
i , is the one minimizing (3.17) for the optimal

Lagrangian multipliers obtained in (3.18).

The optimal PS, PSg∗
i , found in Section 3.5.2 using Qg

i , j , with high probability, is not changed

after modifying the texture and depth QPs to the optimal ones, Qg∗
i . This is due to the

similarities between PSs compared in each stage of our algorithm. This statement is further

justified in Section 3.5.4. Therefore, there is not need to recalculate the optimal PS of the

current sub-stage for the new texture and depth QPs, Qg∗
i .

Before moving to the following stage, the stopping criterion needs to be checked. This is

explained in the following.

3.5.3 Stopping Criterion Checking

The decision to process the next stage in the graph or to stop the PS selection algorithm at

the current stage depends on the fulfillment of the following stopping criterion. If Li is larger

than Li−1, then stop the optimization algorithm as PS∗
g = PSg∗

i−1 and Q∗
g = Qg∗

i−1 define the

locally optimum solution, since moving to the next stage will increase the Lagrangian cost,

which is not desirable. In other words, by moving from stage Si−1 to stage Si , at a fixed quality,

we are in general moving to solutions with higher coding rate and lower transmission rate, as

the number of interview coding dependencies decreases from one stage to the other. Then, an

increase of Li , as defined in (3.17), means that the distortion has increased in order to satisfy

the storage capacity constraint. Thus, as we move forward to the following stages, after the

first increase of the Li value, we expect Li to monotonically increase, as the CR will become

higher (for a fixed quality level). As a result, moving to upcoming stages, after the rise of the
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Lagrangian cost Li , will only increase the complexity of the algorithm with no benefits in

terms of reduced distortion.

It is important to mention that, if Si is the last stage of the graph, Si = SV , and Li <Li−1 then

the locally optimal solution is defined by the current solution PS∗
g = PSg∗

i and Q∗
g =Qg∗

i .

Following this approach we achieve a major reduction on the complexity associated to solving

the optimization problem at the price of slightly losing optimality. Although this greedy

algorithm determines the optimal PS (and associated optimal Q) at a sub-stage level, the final

PS may not be the global optimal one, as at each stage some PSs are ignored. Remind that

under the assumptions made, there is only one sub-stage relevant for each stage, this means

the one corresponding to the optimal PS in the previous stage. However, a good performance

is expected as when adding a new key view at each stage, it is very unlikely that the previous k

views do not maintain their optimal position in the multiview set. This argument becomes

stronger as k becomes larger as the key views positions providing higher gain are chosen in

the first stages of the algorithm. This is confirmed with the experimental results.

The flowchart in Fig. 3.6 summarizes our optimization algorithm, after the creation of the

stage graph.

3.5.4 Sub-stage Optimal PS and Q Relationship

We discuss here why it is reasonable to claim that, at each stage of our greedy algorithm, the

optimal PS, PSg∗
i , tends to be independent of the level of quality or the QPs used to encode

the texture and depth maps, Q = (qt , qd ). This is important to justify the decision taken in

Section 3.5.2 of not recalculating the optimal PS for the obtained Qg∗
i .

For the PSs considered in this work, the various views are different in terms of the type of

coding used at the anchor frame time, meaning an I- P- or B-frame (meaning frames with

I, P or B slices). Empirically, we have seen that for the same coding conditions, each type

of frame, I, P (in anchor frame position) and B (in anchor and non-anchor frame position)

tends to have the same number of bits as another frame of the same coding type in a different

view but at the same time instant. This is true because, we compare frames with similar

motion characteristics, as they are frames from the same time instant and the scene is typically

captured with equidistant cameras. Then, when we compare the CR between the PSs with the

same quality and the same number of key views, as it is done at each stage of the graph of

our greedy algorithm, the number of bits required for each PS is very similar. In general, the

CR values are closer for IP PSs than for IBP PSs, as IP PSs are more similar than IBP PSs. In

particular, for the same number of key views, IP PSs have the same number of P anchor frames

while IBP PSs may have different number of B and P frames, depending on the position of the

key views. On the other hand, when, for a particular quality level, we compare the TR between

the PSs with the same number of key views (from the same graph stage), the expected number

of bits per unit of time that is needed to decode a view may change from one PS to another.
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Figure 3.6 – Flowchart of the proposed optimization algorithm, after the stage graph creation.
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Figure 3.7 – Relationship between (a) CR and Qt , and (b) TR and Qt for IBP PSs with one key
view. Poznan_Hall2 [3] sequence is considered, where a total of U = 13 views are available for
request (C = 7 and V = 6).

This occurs since the relative position of the different views in the multiview set and the view

popularity distribution have a great impact on the TR value (please, refer to Section 3.3.2).

However, as explained before, the PSs compared have, most of the time, the same frame types,

as they are PSs from the same graph stage and almost the same number of bits for each frame

type. Therefore, as the QP decreases (increases), we expect that the proportion of the increase

(decrease) of the transmission rate is the same for all the PSs in the same graph stage. This

means that the TR difference between PSs at different QPs is very much constant, making the

optimal PS independent of the QP selected.

This can be better understood through an example. Let us consider the multiview sequence

Poznan_Hall2 [3] where V = 7 coded views and one virtual view between each pair of coded

views are considered, for a total of 13 views. Let us also assume a uniform popularity dis-

tribution, which means pg
u = 1/13, ∀u ∈U . The seven views available at the server side are

encoded using the MVC reference software JMVC v8.2 [74] with all the possible IBP PSs with

one key view (corresponding to the IBP PSs in the first stage of our greedy algorithm), where

the texture QP, qt varies and the depth QP is kept fixed, qd = 42. Figures 3.7a and 3.7b show the

relationship between CR and qt and TR and qt , respectively, for all IBP PSs with a single key

view this means in stage S1. The charts show that for different IBP PSs the CR is very similar,

where the number of P and B views may be different as they depend on the position of the

key views. For TR, PSs with less B-frames as anchor frames tend to have better performance.

However, the curves representing the efficiency of the PSs (in terms of CR or TR) are rather

parallel, for both CR and TR, which means that the efficiency difference between the PSs is

independent of the quality level. Therefore, the optimal PS in a particular stage of our greedy

algorithm is very much independent of the quality level. The same behavior has been observed

for IP PSs and for PSs with more than one key view.
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3.6 Performance Assessment

This section presents the test conditions and performance results obtained in different sce-

narios when the PS and associated texture and depth maps QPs search is performed with our

proposed algorithm.

3.6.1 Content and Coding Test Conditions

As multiview video coding standards, we have considered the MVC, with the reference software

JMVC v8.2 [74], and the 3D-HEVC, with the reference software HTM 6.2 [75]. As multiview

data, we have used the sequences Poznan_Hall2 [3] (1920×1080, 25Hz), Pantomime [76]

(1280×960, 30Hz), Book Arrival [77] (1024×768, 16.67Hz), GT_Fly [78] (1920×1080, 25Hz) and

Undo Dancer [79] (1920×1080, 25Hz). Figure 3.8 illustrates some frames of the considered

sequences. While Poznan_Hall2, Pantomime and Book Arrival are real captured scenes, GT_Fly

and Undo Dancer are computer-generated scenes. For all sequences, a GOP size of 8 frames

has been adopted as specified in JCT-3V common test conditions [80]. In the temporal domain,

the CQP strategy has been used with a fixed ∆Q equal to 0, 3 and 1 when the temporal layer

was equal to 0, 1 and larger than 1, respectively. This is a common ∆Q setting for multiview

test sequences. For each sequence, the following conditions have been considered:

• Poznan_Hall2 [3] — |V | = 7 coded views and |W | = 6 virtual views, each located between

two coded views. The seven coded views correspond to the views captured by the first

seven cameras. The cameras are horizontally arranged with a fixed distance between

neighboring cameras of approximately 13.75 cm.

• Pantomime [76] — |V | = 10 coded views and |W | = 9 virtual views, each located between

two coded views. The ten coded views correspond to the captured views V = {34−43}.

The cameras are horizontally arranged with a fixed stereo distance.

• Book Arrival [77] — |V | = 5 coded views and |W | = 4 virtual views, each located be-

tween two coded views. The five coded views correspond to the captured views V =
{6,7,8,9,10}. The cameras are horizontally arranged with a spacing of 6.5 cm.

• GT_Fly [78] — The five available views are taken as coded views, V = {1,2,3,5,9}, and we

consider four virtual views W = {4,6,7,8}. In this sequence, cameras are equidistantly

arranged but the camera separation changes with time in order to preserve the 3D

perception of the various scenes types: “landscape-view” and “near-view” scenes.

• Undo Dancer [79] — As for GT_Fly, the five available views are taken as coded views,

V = {1,2,3,5,9}, and we consider four virtual views W = {4,6,7,8}. The cameras for this

sequence are horizontally arranged with a fixed distance of 20 cm between neighboring

views; this means that there are 80 cm of separation between the captured views 5 and 9.
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For the sequences Poznan_Hall2, Pantomime and Book Arrival not all the depth maps for the

coded views are provided. Therefore, we used the MPEG depth estimation reference software

(DERS) [81] to generate the missing depth maps of these three sequences. In addition, we

used the MPEG view synthesis reference software (VSRS) [82] based on DIBR, to synthesize

the virtual views of all the considered sequences.

Depending on the content characteristics, this means after visual inspection, we have assigned

different view popularity distributions to different sets of frames in the considered sequences.

The view popularity distributions assumed here are: uniform (equally distributed popularity

among the views), exponential (most popular views are located at the left end of the multiview

set), inverted exponential (most popular views are located at the right end of the multiview set),

Gaussian (most popular views are located at the center of the multiview set) and U-quadratic

(most popular views are located at the borders of the multiview set). Table 3.1 shows the frame

sets encoded for each sequence and the different popularity distributions assumed for each

set. For instance, for the sequence GT_Fly two types of scenes have been considered, one

where the region of interest of the scene is at the right end of the multiview set (Fig. 3.8g)

and another one where the major attention is expected to be at the center of the scene (Fig.

3.8h). Therefore, we have assumed the inverted exponential and the Gaussian distributions

for the first and second sets of frames, respectively. A similar reasoning has been applied to

the other sequences when selecting the different sets of frames and their associated popularity

distribution. As the sequences Book Arrival and Undo Dancer are very homogeneous in time

in terms of the position of the region of interest of the scene only one set of frames (frames

0-50) has been considered. Sample frames of the considered frame sets for each sequence

are presented in Fig. 3.8. We also considered, for Book Arrival sequence and its unique set of

frames, two different popularity distributions (Gaussian and uniform) to conclude about their

impact on the PS and QPs selection.

Table 3.1 – Test conditions: encoded frame sets and popularity distribution for each test
sequence.

Sequence Frame sets View Pop. Distribution

Poznan_Hall2 0-50 Exponential

100-150 Gaussian

150-200 U-Quadratic

Pantomime 0-50 Gaussian

350-400 Inverted exponential

Book Arrival 0-50 Gaussian

0-50 Uniform

GT_Fly 0-50 Inverted exponential

125-175 Gaussian

Undo Dancer 0-50 Gaussian
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(a) Poznan_Hall2 sequence, coded view 0,
frame 40.

(b) Poznan_Hall2 sequence, coded view 0,
frame 200.

(c) Pantomime sequence, coded view 37,
frame 1.

(d) Pantomime sequence, coded view 37,
frame 370.

(e) Book Arrival sequence, coded view 8,
frame 50.

(f) Undo Dancer sequence, coded view 1,
frame 56.

(g) GT_Fly sequence, coded view 3, frame 1. (h) GT_Fly sequence, coded view 3, frame
135.

Figure 3.8 – Content characteristics examples for the frame sets for each test sequence: (a) and
(b) Poznan_Hall2, (c) and (d) Pantomime, (e) Book Arrival, (f ) Undo Dancer and (g)GT_Fly.
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3.6.2 Storage and Transmission Constraints

Given the different sequence characteristics, the best PS and associated texture and depth

maps QPs have been found for various scenarios defined in terms of bandwidth and storage

capacity. These scenarios are specified in Table 3.2 for each sequence under consideration.

The defined T Rmax and C Rmax values were chosen in order to have a good video quality in

terms of PSNR (30-40 dB). These values are different for the various sequences due to the

particular content characteristics and image size. Regarding the allocation of the texture and

depth coding rate, C Rt ,max and C Rd ,max , we empirically found the appropriate ratio of the

rate that provided the lowest expected distortion, as defined in Eq. (3.9). For instance, for

the Book Arrival sequence the best percentage of rate allocated to the depth, C Rd , would be

around 40% of the available bitrate budget. These values are consistent with the texture and

depth maps rate allocation results available in the literature [71] [72], where they observe that

the optimal bitrate ratio is significantly different depending on the sequence characteristics.

Table 3.2 – Test scenarios: bandwidth and storage capacity for each sequence.

Sequence T Rmax C Rt ,max C Rd ,max C Rmax

[Mbps] [Mbps] [Mbps] [Mbps]

Poznan_Hall2 1 2 2 4

Pantomime 1.8 4.5 1 5.5

Book Arrival 0.7 1 0.7 1.7

GT_Fly 3.7 5.5 1.3 6.8

Undo Dancer 3 5 1 6

3.6.3 Results and Analysis

In Table 3.3 and 3.4, the optimal PSs and associated texture and depth maps QPs are shown

for each sequence and set of frames when MVC and 3D-HEVC are used as codecs, respectively.

We compare the performance of our proposed algorithm with the exhaustive search (ES)

approach, which guarantees to find the global optimal PS, this means the PS minimizing the

distortion while fulfilling the storage and bandwidth constraints. In the exhaustive search

approach, at each stage of our graph, all the PSs and possible QPs are evaluated, while in our

optimization algorithm only the PSs in each sub-stage are considered. Due to the content

similarity and fixed view popularity distribution, the PS∗
g and Q∗

g found for all GOPs, of each

frame set, were always the same. Therefore, in Table 3.3 and 3.4 only one PS∗
g and Q∗

g are

shown per frame set and sequence.

The comparison between the proposed greedy algorithm and the ES approach is done here

in terms of the Lagrangian cost as specified in (3.18), and the computational complexity,

measured as CPU execution time. We use the normalized difference of the Lagrangian, ∆L ,

and the difference of execution time,∆T , both in percentage. In particular,∆L = (LG −LES)∗
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Table 3.3 – MVC greedy and exhaustive search solutions: results and performance comparison.

Sequence Frame ES Greedy ∆L , ∆T

sets
(
qt , qd

) (
qt , qd

)
[%]

Poznan_Hall2 0-50 IIBIBPP IIBIBPP 0, 71

(36, 41) (36, 41)

100-150 PBIIIBP PBIIIBP 0, 71

(37, 41) (37, 41)

150-200 IIBPBIP IIBPBIP 0, 72

(37, 42) (37, 42)

Pantomime 0-50 PPPPIIPPPP PPPPIIPPPP 0, 65

(35, 34) (35, 34)

350-400 PPPPPPPPII PPPPPPPPII 0, 64

(36, 34) (36, 34)

Book Arrival 0-50 PIIPP PIIPP 0, 42

(33, 35) (33, 35)

0-50 PIPIP PPIIP 2.2, 42

(33, 36) (33, 36)

GT_Fly 0-50 PPPII PPPII 0, 42

(39,33) (39,33)

125-175 PPPII PPPII 0, 41

(39,33) (39,33)

Undo Dancer 0-50 PPPII PPPII 0, 42

(35,27) (35,27)

100/LG and ∆T = (TES −TG )∗100/TES , where the indexes ES and G are used to differentiate

the Lagrangian and execution time obtained with exhaustive search and with our proposed

greedy algorithm, respectively. The closer ∆L is to zero, the closer the obtained PS solution

is to the optimal solution in terms of RD performance. Moreover, the closer ∆T is to 100%,

the larger is the complexity reduction obtained with the proposed algorithm compared to

exhaustive search.

In general, the results obtained with the 3D-HEVC codec (Table 3.4) are very similar to the ones

obtained with the MVC codec (Table 3.3), which shows how our proposed selection algorithm

is independent of the specific codec used. The differences are due to the higher efficiency of

the 3D-HEVC codec compared with MVC, obtaining PSs with lower optimal Q = (
qt , qd

)
, and

to the limitations of the 3D-HEVC reference software HTM. In the 3D-HEVC software version

considered only 2 or 3 views can be simultaneusly coded, which limits the possible PSs as
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Table 3.4 – 3D-HEVC greedy and exhaustive search solutions: results and performance com-
parison.

Sequence Frame sets ES Greedy ∆L , ∆T(
qt , qd

) (
qt , qd

)
[%]

Poznan_Hall2 0-50 IIBPIBP IIBPIBP 0, 50

(33, 40) (33, 40)

100-150 PBIIIBP PBIIIBP 0, 50

(34, 40) (34, 40)

150-200 IIBPPBI IIBPPBI 0, 51

(34, 40) (34, 40)

GT_Fly 0-50 PPIII PPIII 0, 57

(28, 26) (28, 26)

125-175 PPIPI PPIPI 0, 44

(29, 26) (29, 26)

Undo Dancer 0-50 PPIPI PPIPI 0, 43

(28, 26) (28, 26)

at least one key view should be available for every 3 coded views. For instance, in the case

of |V | = 5 the only two possible PSs with 3D-HEVC with one key view are: PBIBP and PPIPP.

On the other hand, the MVC reference software provides more freedom when selecting the

number and position of the key views.

As it can be seen from Table 3.3 and 3.4, the proposed algorithm is able to identify the global

optimal PS (∆L = 0%) or near-optimal PS (∆L = 2.2%) with a complexity reduction of up to

72%, in comparison with the ES algorithm. The variation of the complexity reduction with

the sequences is due to the number of coded views considered and the number of key views

we are able to allocate, given the CR and TR constraints. The larger the number of coded

views and allocated key views, the larger the complexity reduction is, as the number of PSs

considered with our algorithm, compared with the ones considered with the ES approach,

gets smaller. This is the case of Poznan_Hall2 sequence, where our algorithm achieves a lower

complexity reduction when 3D-HEVC is used compared to when MVC is used, as the possible

PSs are fewer with the 3D-HEVC codec than with the MVC codec.

In general, we can observe an alignment of the optimal PSs with the popularity models, where

for both the greedy and the ES algorithms, the chosen PSs allocate the key views to the most

popular viewpoint positions. For instance, for the Book Arrival sequence, and the same set

of frames, different allocations of the key views are proposed for the two popularity models

considered, namely Gaussian and uniform. This is not so obvious for the GT_Fly and Undo

Dancer sequence, where for all the view popularity distributions the optimal key views take the
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lateral position in the multiview set. This is due to the non-uniform distribution of the coded

and virtual views. For instance, when the MVC codec is used, the optimal chosen key views

are the two coded views 5 and 9, which serve as reference views to render the virtual views

considered. To render virtual views {6,7,8} ∈W coded views 5 and 9 are needed as reference

views, while virtual view 4 ∈W requires coded view 5 as the right reference view. Therefore,

since six ({4,5,6,7,8,9}) out of nine available views for user request need coded views 5 and/or

9, it is expected that they should be independently encoded, as they contribute with most of

the transmission bitrate.

Different from common PSs in the multiview compression literature, the best PSs, shown in

Table 3.3 and 3.4, have more than one key view. This solution results from the trade-off be-

tween minimizing the transmission rate (associated to PSs with less interview dependencies)

and maximizing the compression efficiency (associated to PSs with more interview dependen-

cies). These results indicate that a pure compression efficiency objective is not ideal in IMVS

systems. Note that in the case where there is an infinite bandwidth constraint, the optimal PSs

will tend to maximize the inter-view dependencies proposing solutions with only one view

independently encoded. Differently, if there is an infinite storage constraint, then the optimal

PSs will tend to maximize the number of views independently encoded.

Though experiments have been done with the available data sets, which have a limited number

of views or a small navigation range, similar results are expected in real IMVS applications

where a large number of views should be available for user request and distant views consid-

erably differ in their scene content. Note also that, predifined PSs may be used for further

encoding scenarios by modeling different datasets according to their content. This would

decrease the complexity associated to perform the proposed optimization algorithm for each

video sequence, and therefore it could be used for live streaming cases.

3.7 Conclusions

In this chapter, we have proposed an algorithm that efficiently selects a near-optimal interview

PS and associated texture and depth QPs, at the GOP level, when the MVD data format is used

for IMVS systems. We consider an IMVS system where storage capacity and transmission

rate are limited resources. While the search space is a priori quite big, our algorithm is able

to reduce the set of relevant PSs and reduce the search complexity without significant RD

performance penalty. To evaluate the performance of the proposed algorithm, the multiview

video coding standards MVC and 3D-HEVC have been considered and simulation results

have shown that the global optimal or near-optimal PS can be obtained with the proposed

algorithm, while the associated complexity is considerably reduced (up to 72% of complexity

reduction compared to an exhaustive search approach). Given a unique bandwidth constraint,

we find the PS to encode all the views that will eventually be transmitted to the users, but

the solutions does not adapt to heterogeneous networks. In the next chapter, we propose

an adaptive solution where users of an IMVS system have different access link bandwidth
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capabilities.
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4
Optimal Layered Representation for Adaptive

IMVS

4.1 Introduction

In IMV, the quality of the rendered views in the navigation window depends on the quality

of the captured views and on their relative distance, as the distortion of a virtual view tend

to increase with the distance to the views used as references in the view synthesis process.

This means that, in the ideal case, all the captured views encoded at the highest possible rate,

would be transmitted to all the clients. However, in practice, resource constraints prevent the

transmission of all the views. In particular, clients may have different access link bandwidth

capabilities, and some of them may not be able to receive all the captured views. In this context,

it becomes important to find adaptive solutions for interactive multiview video streaming

(IMVS) systems that adapt to the capabilities of the clients.

In this chapter, we consider the problem of jointly determining which views to transmit and

at what encoding rate, such that the expected rendering quality in the navigation window

is maximized under relevant resource constraints. In particular, we consider the scenario

illustrated in Fig. 4.1, where a set of views are captured from an array of time-synchronized

cameras. For each captured view, both a texture and a depth map are available, so that

intermediate virtual viewpoints can eventually be synthesized. The set of captured and

virtual views defines the navigation window available for client viewpoint request. Clients are

clustered in groups according to their bandwidth capabilities; for instance, in Fig. 4.1 only one

client per cluster is illustrated for three groups with 1Mbps, 5Mbps and 10Mbps bandwidth
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constraints. Then, the set of captured views are organized in layers or subsets of views to

be transmitted to the different groups of clients in order to maximize the overall navigation

quality. With a layered organization of the captured views in the navigation window, we aim at

offering a progressive increase of the rendering quality. Indeed, the quality of the navigation

improves with the number of layers (subset of views) that clients are able to receive. In the

example of Fig. 4.1, three layers or subsets of views are formed as: V1 = {1, 6}, V2 = {4} and

V3 = {2, 3, 5}. Depending on the clients’ bandwidth capabilities, they receive the views in V1, or

in V1 and V2, or in V1, V2 and V3. In particular, the client with the lowest bandwidth capability

(i.e., the client with a mobile phone) is able to receive only the subset of views V1 in the first

layer, and needs to synthesize the rest of the views. On the other hand, the client with the

highest bandwidth capability (i.e., the client with a TV), is able to receive all the views, and

therefore reaches the highest navigation quality.

We formulate an optimization problem to jointly determine the optimal arrangement of views

in layers along with the coding rate of the views, such that the expected rendering quality is

maximized in the navigation window, while the rate of each layer is constrained by network

and clients capabilities. We show that this combinatorial optimization problem is NP-hard,

meaning that it is computationally difficult and there are not known algorithm that optimally

solves the problem in polynomial time. We then propose a globally optimal solution based on

the dynamic-programing (DP) algorithm. As the computational complexity of this algorithm

grows with the number of layers, a greedy and lower complexity algorithm is proposed, where

the optimal subset of views and their coding rates are computed successively for each layer by

a DP-based approach. The results show that our greedy algorithm achieves a close-to-optimal

performance in terms of total expected distortion, and outperforms a distance-based view

and rate selection strategy used as a baseline algorithm for layer construction.

This chapter is organized as follows. First, the main characteristics of the layered IMV rep-

resentation are outlined in Section 4.2 where also our optimization problem is formulated.

Section 4.3 describes the optimal and greedy views selection and rates allocation algorithms

for our layered multiview representation. Section 4.4 presents the experimental results that

show the benefits of the proposed solution and the conclusions are outlined in Section 4.5.

4.2 Framework and Problem Formulation

We consider the problem of building a layered multiview video representation in an IMVS

system, where the clients are heterogeneous in terms of bandwidth capabilities. In this section,

we first describe the most relevant characteristics of the IMVS system. Then, we formulate our

optimization problem.
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4.2.1 Network and IMVS Model

In this work, we denote as V o = {1,2, . . . ,V } the ordered set of captured views from an array of

synchronized cameras defining a navigation window for the clients. Each camera compresses

the recorded view before transmitting it over the network. We assume that there is no com-

munication between the cameras, so each camera encodes its images independently of the

other cameras, which is common in numerous novel applications ranging from surveillance

to remote sensing. For each captured view in V o , both a texture and a depth map are available

so that users can eventually synthesize new viewpoints using DIBR techniques. At the decoder

side each client can reconstruct a view at any position in the discrete set U = {1,1+δ, · · · ,V };

with δ as the minimum distance between consecutive views in the navigation window.

We consider a population of heterogeneous clients requesting camera views from the IMVS

system, such that they can freely navigate within the navigation window defined by the views

in V o . Due to resource constraints in practical systems, it is not possible to transmit all the

camera views in V o to all the clients. Therefore, we propose a layered multiview representation,

where clients are clustered according to their bandwidth capabilities and the set of views

transmitted to each group of clients are carefully selected, so that their navigation quality is

maximized. This means that, given a set of received views, an intermediate view u can be left

uncoded at the encoder, if u ∈ V o , or simply be a virtual view, if u ∈U \V o . In both cases, view

u can be synthesized at the decoder using the two surrounding available encoded views at the

user side, vL and vR , where vL < u < vR for vL , vR ∈ V o .
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Figure 4.1 – Illustration of an IMVS system with 6 camera views and 3 heterogeneous clients.
The optimization is done by the layered representation creation module considering three
layers defined by the set of views {V1,V2,V3}.
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4.2.2 Layered Multiview Video Representation Model

We give now some details on the proposed layered multiview representation. The views in

V o , are organized into layered subsets V = {V1, · · · ,VC } to offer a progressive increase of the

visual navigation quality with an increasing number of layers. In particular, the finite set of

cameras V o is divided in C layers such that V1 ∪V2 ∪·· ·∪VC ⊆ V o , with Vi ∩V j =;, i 6= j . The

number of layers C corresponds to the number of subsets of heterogeneous clients grouped

according to their bandwidth capabilities. As a requirement, a client cannot decode a view

in Vc without receiving the views in Vc−1, meaning that V1 and VC are the most and the least

important subsets, respectively. This means that clients with very low bandwidth capabilities

may only receive the views in the first layer (V1), and need to synthesize the missing viewpoints.

On the other hand, clients with higher bandwidth capabilities receive more layers, which leads

to a lower rendering distortion as the distance between reference views decreases, hence the

view synthesis is of better quality. In addition, we denote by V c
1 = ⋃c

l=1 Vl = [v1, · · · , vN ] the

ordered subset of N views in the first c layers, for c ≤C , and by Rc
1 = {rv1 , · · · ,rvN } as the set

of rates chosen to encode the selected views in V c
1 , where rvi ∈ Ro and Ro is the set of all

possible rates for a given encoder. When c = C , we simply denote V c
1 = V and Rc

1 = R. As

mentioned before, we assume that view synthesis with DIBR is done by using a right and left

reference views. Therefore, the leftmost and rightmost views of the navigation window need

to be transmitted in the first layer, v1 = 1 and vN =V .

Formally, the quality of the interactive navigation when the views from the c most important

layers are received and decoded can be defined as:

Dc (V c
1 ,Rc

1) = ∑
u∈U ,

vL ,vR∈V c
1 ,

rvL ,rvR ∈Rc
1

p(u) du(vL , vR ,rvL ,rvR ) (4.1)

with, vL = min
v∈V c

1 ,
v<u

|v −u| vR = min
v∈V c

1 ,
v≥u

|v −u|

where vL and vR are the closest right and left reference views to view u among the views in

V c
1 , and du is the distortion of view u, when it is synthesized using vL and vR as reference

views, encoded at rates rvL and rvR , respectively. Finally, p(u) is the view popularity factor

describing the probability that a client selects view u ∈U for navigation [66]. We assume that

p(u), depends on the popularity of the views, due to the scene content, but it is independent

of the view previously requested by the client. Note that, Dc ≥ Dc+1, since each camera views

subset or layer provides a refinement of the navigation quality experienced by the client.
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4.2.3 Problem Formulation

We now formulate the optimization problem for the allocation of coded views in layers and

their rate allocation in order to maximize the expected navigation quality for all IMVS clients.

More specifically, the problem is to find the optimal subset of captured views from the set

of available views V o that should be allocated to each of the C layers V ∗ = {V ∗
1 , · · · ,V ∗

C } and

optimal coding rate of each selected view in V ∗, R∗ = {r∗
v1

, · · · ,r∗
vN

}, such that the expected

distortion of the navigation is minimized for all the clients, while the bandwidth constraint per

layer, B = [B1, · · · ,BC ], is satisfied. This bandwidth constraint is associated to the bandwidth

capabilities of each clients cluster. The optimization of the number of layers and of the rate

constraints of the layers due to clients’ bandwidth capabilities is out of the scope of this paper.

Formally, the optimization problem can be written as:

min
V c

1 ,Rc
1

C∑
c=1

q(c)Dc (V c
1 ,Rc

1) such that,
∑

vi∈V c
1

rvi ≤ Bc , ∀c ∈ {1, · · · ,C } (4.2)

where q(c) stands for the proportion of clients that are able to receive the first c layers V C
1 ,

namely clients with rate capability larger than Bc but lower than Bc+1. The distortion Dc

is given in Eq. (4.1). We finally assume that the depth maps are all encoded at the same

high quality, as accurate depth information is important for view synthesis. In practice, the

coding rate of depth maps is much smaller than the rate of the texture information, even when

compressed at high quality [83]. In the above problem formulation, the rate of encoded views

can be formally written as rvi = r t
vi
+ r d

vi
, with r t

vi
and r d

vi
as the rate of the texture and depth

information of view vi , respectively. For the sake of clarity, and without loss of generality, we

assume in the following that rvi = r t
vi

, due to the low rate contribution of the compressed

depth maps compared with the texture information.

Note that in the case where the navigation domain is too large, we can split it in sub-domains

in order to ensure a particular navigation quality, notably for users receiving only the first

layers. In this case, we would have a set V o defining the limits of each sub-domain and then

the problem posed in (4.2) is independently solved for each of them.

4.2.4 NP-Hardness Proof

We now prove that the optimization problem in (4.2) is NP-hard, by reducing it to a well-known

NP-complete problem, the Knapsack problem. The Knapsack problem is a combinatorial

problem that can be characterized as follows:

Settings – Non-negative weights w1, w2, · · · , wV , profits c1,c2, · · · ,cV , and capacity W .

Problem – Given a set of items, each with a weight and a profit, find a subset of these items

such that the corresponding profit is as large as possible and the total weight is less than or
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equal to W .

We now consider a simplified instance of our problem in (4.2) and consider only one layer

and a unique rate value for each captured view. Intuitively, if the problem is NP-hard for

this simplified case it will also be NP-hard for the full optimization problem. We reduce this

simplified problem from the Knapsack problem. First, we map each weight wv to a view rate

rvi . Then, when a view vi is considered as a reference view for the corresponding layer, the

profit is quantified by the distortion reduction that it brings in total, denoted here as θ(vi ),

where θ(vi ) = Dc (V c
1 ,Rc

1)−Dc (V
c
1,R

c
1), for V

c
1 = [V c

1 vi ] and R
c
1 = [Rc

1 rvi ]. However, the profit

θ(vi ) of each view is not independent from the content of current and previous layers, as it

is the case for each object in the Knapsack problem. The profit depends on the views that

have been already selected as reference views in the layer, meaning V c
1 . This increases the

complexity of the view selection and rate allocation problem compared to the classic Knapsack

problem. Therefore, if the problem is NP-hard when profits θ(vi ) are independent of the layer

content, then it will be NP-hard for our simplified problem. Then, assuming an independent

profit for each view, our simplified problem can be rewritten as:

Settings – Rates of the possible reference views r1,r2, · · · ,rV , independent profit for each view

θ(1),θ(2), · · · ,θ(V ), and bandwidth capacity Bc .

Problem – Given a set of views, each with a rate and a profit, find the subset of views such that

the distortion reduction is as large as possible and the total rate is less than or equal to Bc .

This reduced problem is equivalent to the Knapsack problem. Hence, this proves that our

original optimization problem is at least as hard as the Knapsack problem. Therefore, our

problem in (4.2) is NP-hard.

4.3 Proposed Optimization Algorithms

To tackle the problem in (4.2), we propose first an algorithm that solves the optimization

optimally. Second, we present a reduced complexity algorithm that finds a locally optimal

solution working on a layer by layer basis, with an average quality performance close to the

optimal algorithm.

4.3.1 Optimal Algorithm

To obtain an optimal solution to the problem in (4.2), we propose a dynamic programming

(DP) algorithm that solves problems by breaking them down in subproblems and combining

their solutions. The subproblems are solved only once, and their solutions are stored in a

DP table to be used in the multiple instances of the same subproblem [54]. To develop a DP

algorithm from the problem defined in (4.2), we first need to identify the structure of the

problem and how it can be decomposed. We start with the following observations:
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1. Decomposition in the view domain – We first observe that the distortion Dc in Eq. (4.1)

can be computed by parts and recursively. In particular, we can write:

Dc (V c
1 ,Rc

1) = ∆c (v1,rv1 )+
N−1∑
n=1

∆c (vn , vn+1,rvn ,rvn+1 )

= ∆c (v1,rv1 )+∆c (v1, v2,rv1 ,rv2 )+Dc (V c
1 \ v1,Rc

1 \ rv1 ) (4.3)

where, ∆c (v1,rv1 ) denotes the distortion of view v1 ∈ V c
1 encoded at rate rv1 , and it can

be written as:

∆c (v1,rv1 ) = q(v1) dv1 (v1,rv1 ) (4.4)

The distortion between consecutive views vn and vn+1 in V c
1 , compressed at rates

rvn and rvn+1 , respectively, should account for the distortion of the synthesized views,

vn < u < vn+1, with u ∈ V o \ V c
1 and coded view vn+1. This distortion is denoted as

∆c (vn , vn+1,rvn ,rvn+1 ), which is defined as:

∆c (vn , vn+1,rvn ,rvn+1 ) = ∑
vn<u≤vn+1,
vn ,vn+1∈V c

1 ,
rvn ,rvn+1∈Rc

1

p(u) du(vn , vn+1,rvn ,rvn+1 ) (4.5)

2. Decomposition in the layer domain – Given a multiview layered representation of C

layers, we denote as φC
c (vn , vn+1,rvn ,rvn+1 ) the expected distortion between reference

views vn and vn+1 encoded at rates rvn and rvn+1 , when vn and vn+1 are the closest

reference views in V c
1 and V C

1 = V (i.e, no intermediate views are added between views vn

and vn+1 from layer c to layer C ). The distortion φC
c (vn , vn+1,rvn ,rvn+1 ) can be expressed

as:

φC
c

(
vn , vn+1,rvn ,rvn+1

)= C∑
l=c

q(l )∆l (vn , vn+1,rvn ,rvn+1 )

= q(c)∆c (vn , vn+1,rvn ,rvn+1 )+φC
c+1

(
vn , vn+1,rvn ,rvn+1

)
(4.6)

As users receiving higher layers need also to receive all the previous layers for optimal quality

improvement, the reference views in layer c become available for any layer l > c. This means

that, the distortion difference for clients in layers c and c +1 simply depends on the improve-

ment provided by views in Vc+1. In other words, the expected distortion can be computed

iteratively.
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LetΦC
c

(
vn , v,rvn ,rv ,B

C
c

)
be the minimum expected distortion between reference views vn and

v encoded at rates rvn and rv , when the remaining rate budget for each layer, including the

subset of camera views that can be added between vn and v , is B
C
c =

[
B c ,B c+1, · · · ,BC

]
. Based

on the above observations, (4.3) and (4.6), this minimum distortion can be recursively defined

as follows:

ΦC
c

(
vn , v,rvn ,rv ,B

C
c

)
= min

vn<vn+1≤v |vn+1∈V o \V c−1
1

0≤rvn+1≤B c |rvn+1∈Ro

0≤bC
c+1≤B

C
c+1

q(c)∆c (vn , vn+1,rvn ,rvn+1 ) +

ΦC
c+1

(
vn , vn+1,rvn ,rvn+1 ,bC

c+1

) + ΦC
c

(
vn+1, v,rvn+1 ,rv ,B

C
c −

[
rvi

bC
c+1

])
(4.7)

In each recursive call, (4.7) finds the optimal {vn+1, rvn+1 } and eventually bC
c+1, that minimizes

the distortion between views vn and v given the bit budget B
C
c between layer c and C . The

first term in (4.7) corresponds to the layer distortion∆c between views vn and vn+1, as defined

in (4.5). The second term defines the minimum distortion between views vn and vn+1 from

layer c +1 to layer C , when the rate constraint assigned to each layer is bC
c+1 = [bc+1, · · · ,bC ],

for bC
c+1 ≤ B

C
c+1. Finally, the third term is associated to the minimum expected distortion

for clients receiving the views from layer c to C , between views vn+1 and v when the rate

constraint is B
C
c −

[
rvn+1

bC
c+1

]
. Given the first view is always selected in the first layer, (4.7) can be

solved via the following initial call for the first layer:

min
0≤r1≤B1

r1∈Ro

q(1) ∆1(1,r1)+ΦC
2 (1,r1,;) +ΦC

1

(
1,V ,r1,rV ,BC

1 −
[

r1

;

])
(4.8)

If vn+1 = v , meaning it is the rightmost view between the two reference views, then the last

recursive term in (4.7),ΦC
c (.), is not needed. Similarly, if c =C , meaning that the current layer

is the last considered layer, then the first recursive term in (4.7), ΦC
c+1(.), is not needed. The

three terms in (4.7) are illustrated in Fig. 4.2a for views from layer c to layer c +1.

A DP-table is used to store the solution of each sub-problemΦC
c

(
vn , v,rvn ,rv ,B

C
c

)
for a given

layer c. Each solution is stored in the entry [vn][v][rvn ][rv ][B
C
c ] of the c DP-table. Hence, the

complexity of the algorithm is bounded by the size of each DP-table O (V 2R2BC ), where R is

the size of the set Ro of available rates and B as the larger budget value in B. The complexity

is also determined by the complexity of calculating each table entry: O (V RBC ). Thus, given C

DP-tables, the total complexity of the algorithm is O
(
CV 3R3B 2C

)
, which is exponential with
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the number of layers C .

4.3.2 Greedy Algorithm

The computational time to solve the optimization problem with the above DP algorithm is

exponential and rapidly grows with the number of available layers. Therefore, we propose

a greedy approximate solution where the optimization problem defined in (4.2) is solved

successively for each layer, starting from the first layer. When solving the optimization problem

for each layer, the optimal reference views are selected from the full set of captured views

when optimizing the first layer, while for the following layers, the solution is restricted to the

views that have not been selected as reference views in the previous layers. However, the

intuition behind this greedy algorithm is that, in our system, the lowest layers are necessary to

most of the clients, for which our greedy algorithm tends to be close to optimal. Therefore, it is

expected that our greedy algorithm leads to an effective solution in terms of overall expected

distortion. Formally, the greedy algorithm considers the following optimization problem for

each layer c:

min
V ∗

c ,R∗
c

q(c)Dc (V c
1 ,Rc

1) such that,
∑

vi∈Vc

rvi ≤ Bc (4.9)

where, Rc stands for the set of coding rates of the views selected as reference views in layer c.

To obtain an approximate solution, meaning the optimal solution in each particular layer

given the set of available reference views, we propose a DP algorithm inspired on the algorithm

presented in Section 4.3.1. Let Φc

(
vn ,rvn ,B c

)
be the minimum expected distortion at layer

c between reference views vn , encoded at rate rvn , and the last view of the set V o , V , as it is

always selected. The remaining rate budget B c is available for selecting new views in layer c

between the given reference views, vn and V . This optimal solution is again a recursive func-

tion that finds the optimal {vn+1,rvn+1 }, with vn < vn+1 <V , minimizing ∆c (vn , vn+1,rvn ,rvn+1 )

and the optimal solutionΦc in the remaining set of views between vn+1 and V . This can be

formally written as:

Φc

(
vn ,rvn ,B c

)
= min

vn<vn+1≤V |vn+1∈V o \V c−1
1

0≤rvn+1≤B c |rvn+1∈Ro

∆c (vn , vn+1,rvn ,rvn+1 )+Φc

(
vn+1,rvn+1 ,B c − rvn+1

)

(4.10)

A DP algorithm implements the recursive formulation in (4.10) to determine the optimal

allocation of views in layer c , given the allocation in previous layers. In each recursive call, the
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Figure 4.2 – (a) Illustration of the optimal algorithm with the three terms from (4.7) for views

in layers c and c +1 that are in the recursive evaluation of ΦC
c

(
vn , v,rvn ,rv ,B

C
c

)
. (b) Greedy

algorithm illustration with the two terms from (4.10) for views in layer c and the recursive

functionΦc

(
vn ,rvn ,B c

)
.

optimal vn+1 and corresponding rvn+1 that minimizes the distortion between vn and V given

the available rate budget B c is found. The algorithm runs for each layer successively, starting

from the first layer. Similarly to (4.8), given that the first view in V o is always selected, (4.10)

can be solved via the following initial call in each layer c:

min
0≤rv1≤B c

r1∈Ro

∆c (1,r1)+Φc

(
1,r1,B c − r1

)
(4.11)

In (4.10), if vn+1 = V , then the recursive term is not needed. In Fig. 4.2b, the two terms in

(4.10) are illustrated for views in a general layer c.

Finally, following a similar analysis than the one followed in Section 4.3.1, the algorithm in

(4.10) has a complexity O
(
CV 2R2B

)
. The size of the DP-table in this case is V RB , and the

complexity due to filling each entry of the table is O (V R). Moreover, the algorithm should run

C times, one time for each layer. By solving every layer successively in the greedy algorithm, we

are able to remove the exponential dependency with the number of layers, in the complexity of

the algorithm; hence to seriously reduce the overall computational complexity of the optimal

optimization algorithm. Note that, as for the complexity estimated for the optimal algorithm in

Section 4.3.1, this estimated complexity is not related to the encoding process followed in each

camera or the decoding and view synthesis process done at the decoder side. It corresponds

to the complexity of solving the problem defined in (4.2) with the corresponding proposed

algorithm.
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4.4 Performance Assessment

This section presents the test conditions and performance results obtained in different scenar-

ios when the search of the optimal subset of coded views per layer and rate allocation per view

is performed with the algorithms proposed in this paper. We study the optimal allocation in

different settings and compare it to the solution of a baseline camera distance-based solution.

4.4.1 General Test Conditions

We consider four different data sets for evaluating the performance of our optimization

algorithms. We first study the performance on two multiview video datasets, Ballet (1024×768,

15Hz) [2] and Undo Dancer (1920×1080, 25Hz) [79]. Though the main target of this work is on

video delivery, we also consider two multiview image datasets, Statue (2622×1718) and Bikes

(2676×1752) [4], due to the relatively high quality of their depth maps compared with the ones

available in multiview video sequences. Multiview image experiments permits to appreciate

the benefits of our solution in allocating resources based on scene content properties. The

3D-HEVC reference software HTM 6.2 [75] has been used to encode jointly texture and depth

maps in each dataset. The views are encoded independently and temporal prediction is used

for each view in the video sequences. The depth maps are encoded at high quality (we set a

quantizer scale factor of QP=25 for the depth maps), while a set of different rate values Ro is

considered for encoding the texture information. For each sequence, the following conditions

have been considered:

• Statue – A total of |V o | = 7 captured views and |U | = 10 equally spaced rendered views

are considered. In this dataset, the cameras are horizontally arranged with a fixed

distance between neighboring cameras of 5.33mm. We have chosen the ten available

views to have a separation of at least 26.65mm between pair of views, such that U =
{50 55 60 65 70 75 80 85 90 95} and V o = {50 55 65 70 80 85 95}, in terms of view indexes in

the dataset.

• Bikes – A total of |V o | = 7 and |U | = 7 captured and rendered views are considered,

respectively. In this dataset, the cameras are horizontally arranged with a spacing of

5mm. As for Statue dataset, to increase the distance between available views, we have

chosen the available views by fixing the minimum distance between views to be 25mm.

In detail, the seven views correspond to the views V o = U = {10 20 25 30 35 40 50}, in

terms of dataset indexes.

• Ballet – A total of |V o | = 7 captured views and |U | = 8 rendered views are considered.

The views follow a circular arrangement and correspond to V o = {0 1 2 4 5 6 7} and

U = {0 1 2 3 4 5 6 7}, regarding the view indexes in the dataset.

• Undo Dancer – A total of |V o | = 5 captured views and |U | = 9 equally spaced rendered

views are considered. The cameras for this sequence are horizontally arranged with a
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(a) Statue multiview image, view 1. (b) Bikes multiview image, view 1.

(c) Ballet multiview sequence, view 1,
frame 1.

(d) Undo Dancer multiview sequence,
view 3, frame 1.

Figure 4.3 – Content characteristics example for a frame of each considered multiview image
and video dataset: (a) Statue, (b) Bikes, (c) Ballet, (d) Undo Dancer.

fixed distance of 20 cm between neighboring views. They correspond to the captured

views V o = {1 2 3 5 9} and the nine available views for rendering U = {1 2 3 4 5 6 7 8 9}, in

terms of dataset indexes.

In Fig. 4.3 a frame of each of the considered multiview video and image dataset is illustrated.

The distortion of any synthesized view u at the decoder depends on the quality of the reference

views used for synthesis, namely vL and vR , and on their distance to the synthesized view. For

the simulations, we use a distortion model, which considers these two factors in estimating

the distortion of the synthetic view du as:

du(vL , vR ) = (1−α)
(
dv t

1
(vL , vR )+dvd

1
(vL , vR )

)
+(1−γ)α

(
dv t

2
(vL , vR )+dv̂d

2
(vL , vR )

)
+γαI

(4.12)

where, dv t
i

and dvd
i

, for i ∈ {1,2}, denote the average distortion per pixel for the texture and the

depth map of the first and second views that are used as references for view synthesis, where

vi ∈ {vL , vR }. The parameters α and γ are respectively the proportion of disoccluded pixels in

the projection of the first reference view and in the projections of both reference views in the
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DIBR view synthesis. Their values depend only on the scene geometry and they are obtained

from the depth maps of the reference views. Finally, the average distortion per pixel in the

inpainted areas is denoted by I , which is assumed to take a constant value that only depends

on the scene content. This distortion model is further explained in Appendix A.

Throughout this section, performance results are shown in terms of the expected distortion

that we denote here as D , and it is defined as
∑C

c=1 q(c)Dc , with Dc in (4.1). Although simula-

tions are done using the distortion model in (4.12), the distortion shown as D in this section, is

estimated after using the 3D-HEVC encoder to encode the selected reference views and after

synthesizing the missing views using DIBR.

In the rest of this section, we carry out simulations for different system settings to evaluate

the performance of our greedy and our optimal algorithms presented in Sections 4.3.1 and

4.3.2. We compare their performance to those of a baseline algorithm, which selects a subset

of coded views per layer such that the average distance between reference and synthetic views

is minimized in each layer.

4.4.2 Greedy vs. Optimal Algorithm

In this section, we compare the performance of both the optimal and greedy algorithms

proposed in Sections 4.3.1 and 4.3.2. Due to the exponential complexity of our optimal

algorithm, a small discrete set of available rates Ro to encode the texture information is used

and only two layers are considered in the layered multiview representation, which means that

the clients are clustered in only two groups depending on their bandwidth capabilities.

We consider two different distributions for the proportion of clients that subscribe to each

layer. In particular, we set q = [0.5 0.5], when the first half of the clients can only get V1 and

the second half get both V1 and V2, and we set q = [0.1 0.9], when most of the clients have

high bandwidth capabilities and only 10% of them can only get the views in the first layer, V1.

We also assume that all the views in U have the same probability of being requested, which

results in a uniform view probability distribution p.

The results are presented in Table 4.1, where the set of views per layer V ∗ and the expected

distortion D are shown for each considered data set. The rate constraint per layer Bc and the

set of available rates Ro to encode the texture information for each of the considered datasets

are given in Table 4.1. The views selected by each algorithm in each layer are given in terms

of the rate, Vc = {r1, · · · ,rv , · · ·rV }, where rv = 0 means that the view is not transmitted in that

particular layer and rv > 0 means that the view is encoded at rate rv in the corresponding layer.

The indexes of the views correspond to the views arrangement in the set of captured views V .

It can be seen from the results in Table 4.1 that the same optimal set of views per layer V ∗ has

been chosen for both the greedy and optimal solutions when a uniform distribution of q for

the clients is assumed. The same results have been obtained for values of q(1) higher than

0.5, but they are not presented here due to space restrictions. When q(2) increases, meaning
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Table 4.1 – Comparison of the optimal and greedy algorithms in terms of view selection and
rate allocation V ∗ and average distortion D .

Sequence Optimal Greedy

& Settings q V ∗ D(dB) V ∗ D(dB)

Statue [0.5 0.5] V1 = {2 0 2 0 2 0 2} 38.22 V1 = {2 0 2 0 2 0 2} 38.22

Bc = 8Mb V2 = {0 2 0 2 0 4 0} V2 = {0 2 0 2 0 4 0}

Ro = {0 2 4}Mb [0.1 0.9] V1 = {2 0 2 0 2 0 2} 39.45 V1 = {2 0 2 0 2 0 2} 39.45

V2 = {0 2 0 2 0 4 0} V2 = {0 2 0 2 0 4 0}

Bikes [0.5 0.5] V1 = {1.5 1.5 0 2 0 1.5 1.5} 37.13 V1 = {1.5 1.5 0 2 0 1.5 1.5} 37.13

Bc = 8Mb V2 = {0 0 2 0 2 0 0} V2 = {0 0 2 0 2 0 0}

Ro = {0 1.5 2}Mb [0.1 0.9] V1 = {2 0 2 0 2 0 2} 38.48 V1 = {1.5 1.5 0 2 0 1.5 1.5} 38.11

V2 = {0 2 0 2 0 2 0} V2 = {0 0 2 0 2 0 0}

Ballet [0.5 0.5] V1 = {0.3 0 0 0.3 0 0 0.3} 38.56 V1 = {0.3 0 0 0.3 0 0 0.3} 38.56

Bc = 1 Mbps V2 = {0 0.3 0.3 0 0.3 0 0} V2 = {0 0.3 0.3 0 0.3 0 0}

Ro = {0 0.25 0.3}Mbps [0.1 0.9] V1 = {0.3 0 0 0.3 0 0 0.3} 40.37 V1 = {0.3 0 0 0.3 0 0 0.3} 40.37

V2 = {0 0.3 0.3 0 0.3 0 0} V2 = {0 0.3 0.3 0 0.3 0 0}

Undo Dancer [0.5 0.5] V1 = {0.5 0 0 1 0.5} 36.87 V1 = {0.5 0 0 1 0.5} 36.87

Bc = 2 Mbps V2 = {0 1 1 0 0} V2 = {0 1 1 0 0}

Ro = {0 0.5 1}Mbps [0.1 0.9] V1 = {0.5 0 0 1 0.5} 36.98 V1 = {0.5 0 0 1 0.5} 36.98

V2 = {0 1 1 0 0} V2 = {0 1 1 0 0}

that the second layer is transmitted to a larger group of clients, the greedy algorithm shows

its sub-optimality. For instance, when q(2) = 0.9 the optimal solution is not obtained by the

greedy algorithm for the Bikes dataset; instead, the same V ∗ solution as for q(1) = q(2) = 0.5 is

computed. This sub-optimality is due to the fact that, in our greedy algorithm, the problem is

solved successively for each layer, starting from the first layer. This means that the optimal

solution V ∗ does not depend on the probability distribution q of clients requesting each layer.

Therefore, the solution V ∗ for each dataset is the same for any distribution q ; it only affects the

expected distortion D . This successive approach of our greedy algorithm also means that the

first layer is prioritized, where the layer c = 1 always has an optimal set of views independently

of the other layers. This explains the good performance of the greedy algorithm when the first

layer has high probability of being transmitted alone, i.e., high value of q(1). Nevertheless,

even when the second layer is transmitted to a larger group of clients, q(2) = 0.9, the greedy

algorithm shows a good performance, presenting an optimal solution for three of the four

datasets considered in our experiments. This good performance of the greedy algorithm can

be explained by the fact that the first layer is always received by all the clients, independently

of the probability distribution q of clients requesting each layer. Therefore, optimizing the

allocation of the views in the first layer is never really bad, which further justifies the design

of our greedy algorithm. In addition, it has a lower complexity compared with the optimal

algorithm, as demonstrated in Section 4.3.2. Therefore, for the rest of the paper we only

consider the greedy algorithm and we compare it with a baseline solution for view selection
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and rate allocation.

4.4.3 Greedy Algorithm Performance

After showing the good performance of our greedy algorithm in the previous section, we

now study its performance in different scenarios and compare it with a baseline algorithm,

namely distance-based view selection solution [84]. In this algorithm, the views in each layer

are selected such that the distance between encoded and synthesized views is minimized.

Views are encoded at the same rate in each layer and the rate per view and the number of

views are chosen such that the available bandwidth per layer is used to its maximum. Layers

are filled in successive order, as for our greedy algorithm.

The algorithms are compared in different settings where the layer rate constraint and view

popularity effects are evaluated. A total of four layers are considered in all the simulations

presented in this section, representing four groups of clients that are clustered depending

on their bandwidth capabilities. Note that, since we do not consider our optimal algorithm

in these simulations, we are able to increase the set of available coding rates Ro for each

dataset and the number of layers in the multiview layered representation, compared with the

experiments in Section 4.4.2.

Layer Rate Constraint Variations

In this subsection the greedy algorithm is compared with the distance-based solution in terms

of the expected distortion when varying the layer rate constraint. We use an illustrative layer

rate distribution that follows a linear relationship: Bc = x × c + y . By varying the values of x

and y , we can study the performance of the view selection algorithm in different settings. The

corresponding results are presented in Table 4.2, where the solution from the greedy algorithm

outperforms the distance-based solution in terms of the expected distortion D in 4 out of

6 experiments. On the other two cases, the same result is obtained by both algorithm. The

performance gain obtained with our greedy algorithm is mainly due to its rate allocation

capability compared to the homogeneous rate assignment in the distance-based algorithm.

The non-uniform rate allocation characteristic of our greedy algorithm permits the fully use

of the available rate per layer, allocating more bits to views used as references in the view

synthesis process; e.g., for layer c = 2 with Undo Dancer sequence when {x y} = {0.5 0.5}.

In Fig. 4.4, we show the visual quality and the Y-PSNR value of the view 20 from the Bikes

image dataset given the results shown in Table 4.2 when {x y} = {0.5 4} for our greedy and

the distance-based algorithms. In particular, in Fig. 4.4a we show the synthesized imaged

using the reference views 10 and 30, encoded at rates r10 = r30 = 1.5Mb of Bikes image dataset,

which corresponds to the visual quality achieved by users receiving only layer 1. Then, in Fig.

4.4b and 4.4c, we show the image encoded at rates r20 = 2Mb and r20 = 1.5Mb, as selected

by our gredy algorithm and the distance-based solution, respectively. These are the images

consumed at layer 2 and 3 when view 20 is requested by the users. As it can be seen the visual
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Table 4.2 – Comparison of the greedy and distance-based algorithm for different layer rate
constraints.

Sequence Rate Greedy Distance-based

& Settings {x, y} V ∗ D(dB) V ∗ D(dB)

Bikes {2, 2} V1 = {2 0 0 0 0 0 2} V1 = {2 0 0 0 0 0 2}

Ro = {0 1 1.5 V2 = {0 1.5 1.5 0 1.5 1.5 0} 33.75 V2 = {0 1.5 1.5 0 1.5 1.5 0} 33.75

2 2.5 2.7} Mb V3 = {0 0 0 2.7 0 0 0} V3 = {0 0 0 2.7 0 0 0}

{0.5, 4} V1 = {1.5 0 0 1.5 0 0 1.5} V1 = {1.5 0 0 1.5 0 0 1.5}

V2 = {0 2 0 0 1.5 1.5 0} 35.33 V2 = {0 1.5 0 0 1.5 1.5 0} 35.22

V3 = {0 0 2.7 0 0 0 0} V3 = {0 0 2.7 0 0 0 0}

Ballet {0.25, 0.25} V1 = {0.15 0 0 0.2 0 0 0.15} V1 = {0.25 0 0 0 0 0 0.25}

Ro = {0 0.15 0.18 V2 = {0 0.2 0.25 0 0 0.3 0} 39.35 V2 = {0 0 0.25 0.25 0 0.25 0} 37.73

0.20 0.25 0.3} Mbps V3 = {0 0 0 0 0.3 0 0} V3 = {0 0.3 0 0 0.3 0 0}

{0.2, 0.1} V1 = {0.15 0 0 0 0 0 0.15} V1 = {0.15 0 0 0 0 0 0.15}

V2 = {0 0.25 0 0.25 0 0 0} 37.95 V2 = {0 0 0.25 0 0.25 0 0} 37.90

V3 = {0 0 0.3 0 0 0.3 0} V3 = {0 0.3 0 0 0 0.3 0}

V4 = {0 0 0 0 0.3 0 0} V4 = {0 0 0 0.3 0 0 0}

Undo Dancer {0.5, 0.5} V1 = {0.5 0 0 0 0.5} V1 = {0.5 0 0 0 0.5}

Ro = {0 0.25 0.5 V2 = {0 0 0.5 1 0} 36.48 V2 = {0 0 0.75 0.75 0} 36.35

0.75 1 1.25} Mbps V3 = {0 1.25 0 0 0} V3 = {0 1.25 0 0 0}

{0.25, 0.75} V1 = {0.5 0 0 0 0.5} V1 = {0.5 0 0 0 0.5}

V2 = {0 0 0 1.25 0} 36.63 V2 = {0 0 0 1.25 0} 36.63

V3 = {0 0.75 0.75 0 0} V3 = {0 0.75 0.75 0 0}

quality increased with the number of layers received.

In general, the distance-based view selection solution shows to be relatively close to the

optimal solution, where most of the selected views in each layer are almost equally spaced.

This can be also seen by comparing the visual quality of Fig. 4.4b and Fig. 4.4c. This is due to

the small change in content among different views, which is due to the small distance between

the cameras and/or the low scene complexity in most of the available datasets. Nevertheless,

these experiments have shown that a simple distance-based solution with a uniform rate

allocation among the selected views in each layer, is not ideal as it cannot take into account

the actual content of the scene, contrarily to our algorithm.

View Popularity Distribution Variations

Now we compare our greedy algorithm with the distance-based solution when views have

different popularities. The results are shown for an exponential popularity distribution, where

the leftmost and rightmost views in the set of captured views V are the most and the least

popular view, respectively. Note that a different popularity distribution could have been used.

The results are presented in Table 4.3, where the optimal set of views per layer V ∗ and the total
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(a) Greedy and distance-based algorithm - view synthesized by the
users in layer 1 (PSNR=29.3 dB).

(b) Distance-based algorithm - view decoded by the users in layers 2
and 3 (PSNR=35.6 dB).

(c) Greedy algorithm - view decoded by the users in layers 2 and 3
(PSNR=36.8 dB).

Figure 4.4 – View 20 of Bikes dataset as rendered for users in layers 1, 2 and 3 using the greedy
and the distance-based algorithm.
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Table 4.3 – Greedy and distance-based solutions comparison for an exponential view popular-
ity distribution.

Sequence Greedy Distance-based

& Settings V ∗ D(dB) V ∗ D(dB)

Statue V1 = {4 0 2 0 0 0 0 2} V1 = {4 0 0 0 0 0 0 4}

Bc = 8 Mb V2 = {0 4 0 0 0 4 0 0} 37.13 V2 = {0 0 4 0 0 4 0 0} 36.87

Ro = {0 2 4 V3 = {0 0 0 4 4 0 0 0} V3 = {0 0 0 4 4 0 0 0}

5 6 8} Mb V4 = {0 0 0 0 0 0 4 0} V4 = {0 4 0 0 0 0 4 0}

Bikes V1 = {2 0 0 0 0 0 1.5} V1 = {1.5 0 0 0 0 0 1.5}

Bc = 3.5Mb V2 = {0 1.5 2 0 0 0 0} 35.49 V2 = {0 0 1.5 0 1.5 0 0} 33.89

Ro = {0 1 1.5 V3 = {0 0 0 2 1.5 0 0} V3 = {0 1.5 0 0 0 1.5 0}

2 2.5 2.7} Mb V4 = {0 0 0 0 0 2.7 0} V4 = {0 0 0 2.7 0 0 0}

Ballet V1 = {0.25 0 0 0 0 0 0.25} V1 = {0.25 0 0 0 0 0 0.25}

Bc = 0.5Mbps V2 = {0 0 0.3 0.2 0 0 0} 39.29 V2 = {0 0 0.25 0 0.25 0 0} 39.13

Ro = {0 0.15 0.18 V3 = {0 0.3 0 0 0.2 0 0} V3 = {0 0.25 0 0 0 0.25 0}

0.20 0.25 0.3} Mbps V4 = {0 0 0 0 0 0.3 0} V4 = {0 0 0 0.3 0 0 0}

Undo Dancer V1 = {0.75 0 0 0 0.5} V1 = {0.5 0 0 0 0.5}

Bc = 1.25Mbps V2 = {0 0.75 0 0.5 0} 36.57 V2 = {0 0 0 1.25 0} 36.48

Ro = {0 0.25 0.5 V3 = {0 0 1.25 0 0} V3 = {0 0 1.25 0 0}

0.75 1 1.25} Mbps V4 = {0 0 0 0 0} V4 = {0 1.25 0 0 0}

expected distortion D are shown for the greedy and distance-based solutions. The settings

for the different sequences are specified in the Table 4.3. The total expected distortion D is

calculated assuming a uniform distribution of the proportion clients accessing each layer,

meaning q = [0.25 0.25 0.25 0.25], for the four layers. The results show that the solution from

the greedy algorithm outperforms the distance-based solution in terms of the total expected

distortion. This is due to the fact that the distance-base solution does not consider neither

the popularity distribution of the views nor an optimized rate allocation among the views.

In particular, in the greedy algorithm the views close to the leftmost view (the most popular

views) are selected in the first layers, to ensure that most of the clients receive the most popular

views and therefore enjoy a higher expected navigation quality. Similar conclusions can be

drawn when considering other view popularities distributions.

An alternative presentation of the gain of our greedy algorithm is shown in Fig. 4.5. A bar plot

illustrates the expected quality (Y-PSNR) of our greedy algorithm (GA) and of the distance-

based approach (DBA) for the four considered layers in these simulations. We consider the

Bikes and Ballet datasets, with the same settings as the ones of the results in Table 4.3. In

addition, we have included horizontal lines representing the average quality of each algorithm
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Figure 4.5 – Layer-by-layer Y-PSNR(dB) for the conditions specified in Table 4.3, for (a) Bikes
and (b) Ballet datasets when comparing our greedy algorithm (GA) and the distance-based
algorithm (DBA) performance.

across the whole client population (the four client clusters), using the same bar color. The

distortion is calculated with the views received in the current layer and in all the previous

layers, as clients subscribed to a particular layer receive all the views up to that layer. Therefore,

for both approaches, the overall quality increases as the layer index increases since clients

are able to receive more views. Note that, in general, our greedy algorithm outperforms the

distance-based approach, achieving the highest average quality. In the case of the Ballet

sequence, we can see however that the group of clients receiving up to layer c = 4 enjoy a

slightly higher quality with the distance-based approach than with the greedy algorithm. This

is due to the fact that in the fourth layer all the reference views are selected and most of

them are encoded at the highest possible rate for the distance-based approach, as it was the

only option for the algorithm to fully use the available bandwidth and have a uniform rate

allocation among the selected views. However, this view and rate selection of the distance-

based solution only favors clients in the last cluster (highest bandwidth capabilities). In fact,

the overall performance for the Ballet sequence is better for our greedy algorithm, as for the

first layers the view selection and rate allocation offer a higher quality to the first three group

of clients.

4.5 Conclusions

We have proposed a novel adaptive transmission solution that jointly selects the optimal

subsets of views and the rate allocation per view for an adaptive transmission in IMVS applica-

tions. We consider a system where the network is characterized by clients with heterogeneous

bandwidth capabilities, and we aim to minimize their expected navigation distortion. To do so,
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clients are clustered according to their bandwidth capabilities and the different camera views

are distributed in layers to be transmitted to the different groups of users in a progressive

way, such that the clients with higher capabilities receive more layers (more views), hence

benefiting of a better navigation quality. We have formulated an optimization problem to

jointly determine the optimal arrangement of views in layers along with the coding rate of

the views, such that the expected rendering quality is maximized in the navigation window,

while the rate of each layer is constrained by network and clients capabilities. To solve this

problem, we have proposed an optimal algorithm and a greedy algorithm with a reduced

complexity, both based on dynamic-programming. It has been shown through simulations

that the proposed algorithms are able to reduce the navigation distortion in a IMVS system. In

addition, our greedy algorithm has close-to-optimal performance and outperforms a baseline

algorithm based on an equidistant view distribution with an uniform rate allocation among

the selected views in each layer. Our results show that, considering the client capabilities

and their preferences in navigation, as well as the 3D scene content, is key in the design of

an effective adaptive transmission solution for IMVS systems. However, due to complexity

reasons, we do not allow here inter-view prediction, which would increase the compression

efficiency of the presented solution. Therefore, in the next chapter, we focus on the rate

allocation problem. Based on the solutions presented in this chapter, we propose a general

reduced-complexity rate allocation algorithm that allows inter-view prediction in multiview

video settings.
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5
Optimal Lagrange Multiplier Values for

Constrained Rate Allocation Problems

5.1 Introduction

In rate allocation problems, the goal is to optimally distribute a rate budget among a set of

coding units 1. As there is a common trade-off between lossy compression rate and resulting

distortion, the optimal rate distribution is normally the one minimizing the distortion given a

rate budget.

To control the rate allocation, the selection of the quantization parameters (QPs) and the

sub-sampling of coding units are commonly used strategies. By modifying the QP of each

coding unit we are able to control the coding rate and the quality, where a larger QP results

in a low bit-rate (low quality) and a smaller QP results in a high bit-rate (high quality). In

some cases, not encoding and transmitting some units can even be a better strategy in terms

of rate-distortion (R-D) trade-off value than using a large QP. In this case, missing units can

still be rendered at the decoder side in a post-processing step using available surrounding

coded units; e.g., using depth-image based rendering (DIBR) [86], [17] method to synthesize

missing views in multiview scenarios when texture and depth maps are available. By skipping

coding units, the QP assigned to the remaining units can be decreased as the available rate

budget gets distributed on a smaller number of coding units, increasing the quality of the

1The term coding unit should not be confused with the term used by HEVC standard to denote a particular type
of block after the frame partitioning [85]. Here it refers to images captured at a given time instant or from a given
viewpoint, namely coded views in a multiview video or coded frames in a traditional monoview video.
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coded units. However, the quality of the uncoded units that are reconstructed at the decoder

depends on the distance to the coded units used as references and on their quality. Thus, the

QP and the set of units skipped from encoding need to be jointly adjusted to reach optimal

R-D performance.

In order to solve rate allocation problems, different approaches based on dynamic programing

[87] or Lagrangian optimization [50], [51], [52] [48], [49] have been proposed. Methods based

on dynamic programming provide optimal solutions; however the complexity is rather high

as it basically compares all the possible solutions. Thus, rate allocation problems are usually

solved by considering an unconstrained problem based on Lagrangian optimization, where a

Lagrange multiplier λ is used to define a Lagrangian cost function in the form D +λR, which

permits to trade-off rate R and distortion D . There exists an optimal λ value that defines the

best performance under constraints on either the rate or the distortion. Usually, the search for

this optimal λ is done by swapping its value from an initial lower bound to an upper bound

from a predetermined set of λ values, where a bisection search can be used to reduce the

number of iterations. However, finding the optimal λ value is not guaranteed as the accuracy

of the solution depends on the granularity of the search space. An algorithm to find the

optimal Lagrange multiplier is proposed in [50] for the specific case of independently coded

units with a fixed unit rate.

In this chapter, we study the rate allocation problem of finding the optimal subset of coding

units and QPs in a multiview video scenario such that the expected distortion (i.e, view

popularity-weighted distortion) among all the available units at the users is minimized. In

particular, we propose an algorithm that finds the optimal Lagrange multiplier value with

a minimum number of iterations. We consider the rate allocation problem introduced in

Chapter 4, where for each layer the optimal subset of independently encoded views and QPs

are optimized in multiview video given a layer rate constraint. We first review the complexity

of the dynamic programming solution in Chapter 4, in the context of predictively coded units,

and then we propose a reduced-complexity algorithm that is able to solve the rate allocation

problem in polynomial time. We consider a general rate allocation problem with a Lagrangian

formulation, where the Lagrange multipliers are optimally selected. Compared to [50], our

solution is more general as the set of coding units are unknown (i.e, they need to be optimized)

and they are predictively coded.

The rest of the chapter is organized as follows. In Section 5.2, we provide a brief description of

the system model and we formulate our optimization problem for constrained rate allocation

with predictively or dependent coded units. Then, in Section 5.3, we first show the high

complexity of a dynamic programming algorithm for computing the optimal rate allocation

for predictively encoded units. Then, by combining dynamic programming and a Lagrangian-

based algorithm with an optimal search of the Lagrange multipliers we are able to reduce the

complexity of the rate allocation solution. In Section 5.4, we propose an algorithm that finds

the optimal Lagrange multiplier in a Lagrangian-based rate allocation problem. Simulation

results, in Section 5.5, show the performance of the proposed rate allocation algorithm with
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optimal Lagrange multiplier selection when units are independently or predictively coded

for multiview and monoview video scenarios. We show that, our simple solution compares

favorably to rate control solutions adopted in the reference softwares of current monoview

and multiview video standards, namely HEVC [9] and 3D-HEVC [10]; with more complex rate

control algorithms.

5.2 Rate Allocation Problem

In a classical rate allocation problem setup, the objective is to minimize the expected distortion

of a set of coding units, which may be independently or differentially coded, subject to a single

rate budget constraint. In this section, we first describe the system under consideration; then,

we formulate a general constrained rate allocation problem for dependent coded units as a

discrete optimization problem.

5.2.1 Multiview Video System

We consider a general coding scenario where we seek to allocate a total rate budget B to a set of

V coding units. Specifically, let V o = {1,2, . . . ,V } be an ordered set of V coding units (e.g., con-

secutive viewpoint images or views in a multiview sequence). We define V = {v1, v2, · · · , vN },

where V o ⊆ V , as the subset of N units, N ≤V , that are considered for coding. We assume that

an intermediate unit v can be skipped at the encoder, and is estimated or synthesized at the

decoder using the two surrounding coded units vL and vR , where vL < v < vR and vL , vR ∈ V .

This implies that the boundary units cannot be synthesized at the decoder and are always

selected for coding, i.e., v1 = 1 and vN =V are always coded.

Each unit vn ∈ V , selected for coding, is coded using a quantization parameter (QP) qvn ∈Q,

where Q is the set of possible QPs for a given codec. Assuming that predictive coding is

employed between units, unit vn coded with a QP of qvn using as a predictor unit vn−1

coded with a QP of qvn−1 will result in the rate rvn (vn−1, qvn−1 , qvn ) and expected distortion

∆vn (vn−1, qvn−1 , qvn ), where the user interaction behavior is characterized by a view popularity

distribution used to penalize the distortion of each unit. Note that if vn−1 and vn are not

consecutive units in V o , then the intermediate units in V \V o between vn−1 and vn must be

synthesized at the decoder. The expected distortion ∆vn (vn−1, qvn−1 , qvn ) at the decoder must

account for the distortion of all synthesized units in the range (vn−1, vn) as well as the coded

distortion at vn . Hence, the distortion ∆vn (vn−1, qvn−1 , qvn ) can be formally written as:

∆vn (vn−1, qvn−1 , qvn ) = ∑
vn−1<v≤vn |v∈V o

qvn−1 ,qvn ∈Q

p(v)dv (vn−1, vn , qvn−1 , qvn ) (5.1)

where, p(v) stands for the popularity or the probability of requesting/receiving unit v and
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dv (.) stands for the distortion of unit v , v ∈ V o , synthesized using the reference units vn−1

and vn coded using QPs qvn−1 and qvn , respectively. If v = vn , then dv (.) corresponds to the

distortion of coding unit vn using unit vn−1 for prediction. Recall that the first coded unit in V

is independently encoded; its distortion depends only on its own QP qv1 . For this particular

case, Eq. (5.1) can be re-written as:

∆v1 (qv1 ) = p(v1)dv1 (qv1 ) (5.2)

A more general definition of the distortion with predictive coding is also possible [51], where

the rate and distortion depend on the QPs of all the previous coded units. However, due to

complexity reasons, we assume here that the rate rvn and the distortion ∆vn depend only on

the QP qvn−1 of the unit vn−1 used for prediction. This is a good approximation of the rate and

distortion in practical predictive coding, as it has been shown in [49].

5.2.2 Problem Formulation

Given the above system model, our objective is to find the optimal subset of units V =
{v1, v2, · · · , vN } ⊆ V o with their corresponding QPs q = [qv1 , qv2 , · · · , qvN ] such that the expected

distortion at the decoder is minimized, subject to a global rate budget constraint B . The

optimization problem can be defined as follows:

min
V ,q

∆v1 (qv1 )+
|V |∑

n=2
∆vn (vn−1, qvn−1 , qvn ) (5.3)

s.t. rv1 (qv1 )+
|V |∑

n=2
rvn (vn−1, qvn−1 , qvn ) ≤ B

where ∆v1 (qv1 ) and rv1 (qv1 ) are the distortion and rate for the first selected unit v1, and ∆vn (.)

and rvn (.) are the distortion and rate for a predictively coded unit vn , as described above.

Note that a special case of the problem defined in (5.3) is when units are independently

coded. In this case, the units do not depend on previous coded units as temporal and/or

inter-view prediction are ignored, i.e. rvn (vn−1, qvn−1 , qvn ) = rvn (qvn ). The problem posed in

(5.3) is reduced to:

min
V ,q

∆v1 (qv1 )+
|V |∑

n=2
∆vn (vn−1, qvn−1 , qvn ) s.t.

|V |∑
n=1

rvn (qvn ) ≤ B (5.4)
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In this work, we assume that the problem is solved for each set of units (i.e., a GOP in monoview

video sequences or a set of views in a multiview video sequence), where all but the first unit

are predictively encoded using an I PP · · · coding model. Meaning that the coding model is

not optimized.

5.2.3 NP-Hardness Proof

We now prove that the optimization problem presented in (5.3) is NP-hard, by reducing it

to a well-known NP-complete problem, the Knapsack problem. The Knapsack problem is a

combinatorial problem that can be characterized as follows:

Settings – Non-negative weights w1, w2, · · · , wV , profits c1,c2, · · · ,cV , and capacity W .

Problem – Given a set of items, each with a weight and a profit, find a subset of these items

such that the corresponding profit is as large as possible and the total weight is less than or

equal to W .

We now consider a simplified instance of our problem posed in (5.3), where each coding unit is

associated to a unique QP value. Intuitively, if the problem is NP-hard for this simplified case

it will also be NP-hard for the full optimization problem. We reduce this simplified problem

from the Knapsack problem. First, we map each weight wv to a unit QP qvi . Then, when an

unit vi is considered as a coded unit, the profit is quantified by the distortion reduction that

it brings, denoted here as θ(vi ), where θ(vi ) = ∆vn (vn−1, qvn−1 , qvn )− [∆vi (vn−1, qvn−1 , qvi )+
∆vn (vi , qvi , qvn )], for vn , vn−1 as consecutive coded units in V before considering coding unit

vi . However, differently from the Knapsack problem, the profit θ(vi ) is not independent

of previously selected units. This increases the complexity of the unit selection and rate

allocation problem compared to the classic Knapsack problem. Therefore, if the problem is

NP-hard when the profit of a particular unit θ(vi ) is independent of the previously selected

units, then it will be NP-hard for our simplified problem. Then, assuming an independent

profit for each view, our simplified problem can be rewritten as:

Settings – QPs of the possible coding units q1, q2, · · · , qV , independent profit for each unit

θ(1),θ(2), · · · ,θ(V ), and bandwidth capacity B .

Problem – Given a set of units, each with an associated QP and profit, find the subset of coding

units such that the distortion reduction is as large as possible and the total rate is less than or

equal to B .

This reduced problem is equivalent to the Knapsack problem. Hence, this proves that our

original optimization problem is at least as hard as the Knapsack problem. Therefore, our

problem in (5.3) is NP-hard.
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5.3 Lagrangian Optimization

We first present an algorithm based on dynamic programming (DP) that returns the optimal

solution to the problem in (5.3). We then show that, the complexity of this algorithm is

exponential, and thus we propose a polynomial-time alternative by relaxing the problem

constraint with a Lagrangian problem formulation.

5.3.1 Constrained DP Algorithm

To obtain an optimal solution to the problem (5.3), we propose a DP algorithm that recursively

divides the original problem into sub-problems. Whenever a sub-problem is solved, its

solution is stored in a DP table. At next recurrence of the same sub-problem, the solution

can be simply looked up in the table [54]. The key here is to identify useful structures in the

problem (5.3) so that it can be cleanly divided into sub-problems.

LetΦvn (qvn , B̄) denote the minimum distortion sum from coding unit vn to coding unit vN ,

given that vn is coded with QP qvn , and that there is an available rate budget of B̄ , B̄ ≤ B , for

coding the units vn+1, . . . , vN . This distortion sumΦvn (qvn , B̄) can be recursively written as:

Φvn (qvn , B̄) = min
vn+1∈V o | vn+1>vn

qvn+1∈Q

∆vn+1 (vn , qvn , qvn+1 )+Φvn+1 (qvn+1 , B̄ −rvn+1 (vn , qvn , qvn+1 )) (5.5)

In each recursive call, (5.5) computes the optimal unit vn+1 and the corresponding QP qvn+1

that minimize the distortion between vn and vN given the rate budget B̄ . It corresponds to

minimizing the sum of the distortion between consecutive coding units vn and vn+1 in V

and the minimum distortion sum from coding unit vn+1 to coding unit vN . For the latter,

the budget is reduced to B̄ − rvn+1 (vn , qvn , qvn+1 )) to code the units between vn+1 and vN . If

vn+1 =V , the recursion has reached the rightmost unit in V o , such that the recursive term in

(5.5) is not necessary. Fig. 5.1 illustrates the structure of Eq. (5.5).

Given the first unit v1 = 1 is always selected, (5.3) can be solved via the following initial call:

min
q1∈Q

∆1(q1)+Φ1(q1,B − r1(q1)) (5.6)

The solution of each sub-problem Φvn (qvn , B̄) is stored in entry [vn][qvn ][B̄ ] of a DP table.

Hence, the complexity of the DP algorithm is bounded by the size of the DP table, V QB ,

multiplied by the complexity of computing each entry O(V Q). Thus, the complexity of the

DP algorithm is O(V 2Q2B). This is polynomial in B , but B is encoded in log2(B) bits as input

to the algorithm, and thus the algorithm is exponential in the size of the input. (This is also
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Figure 5.1 – Illustration of the distortion function Φvn (qvn , B̄), which is composed by two
terms. The first one is∆vn+1 (vn , qvn , qvn+1 ), that corresponds to the distortion between units vn

and vn+1, coded with QPs qvn and qvn+1 . The second term,Φvn+1 (qvn+1 , B̄ − rvn+1 (vn , qvn , qvn+1 ),
corresponds to the minimum distortion sum from coding unit vn+1 to coding unit vN when
the budget is reduced to B̄ − rvn+1 (vn , qvn , qvn+1 ) to code the units between vn+1 and vN .

called pseudo-polynomial time in the complexity literature [88]).

5.3.2 Lagrangian DP Algorithm

The DP solution of the problem in (5.5) has a relatively large complexity. We propose to

reduce the complexity of the DP algorithm by eliminating the rate dimension B in the DP

table. Towards that goal, we consider a Lagrange relaxed version of our constrained resource

allocation problem in Eq. (5.3), where we move the rate consideration from the constraint

to the objective function as a penalty term. This results in a new rate-distortion (R-D) cost

formulation. The optimization problem can be rewritten as:

min
V ,q

[
∆v1 (qv1 )+

|V |∑
n=2

∆vn+1 (vn , qvn , qvn+1 )+λ
(

rv1 (qv1 )+
|V |∑

n=2
rvn+1 (vn , qvn , qvn+1 )

)]
(5.7)

where the multiplier λ > 0 is a parameter that weighs the importance of the rate against

distortion in the optimal rate allocation solution.

To solve (5.7) for a given λ, we first denoteΦvn (qvn ) as the minimum R-D cost from the unit

vn to the unit vN , given that vn is coded with QP qvn . This minimum cost can be defined

recursively as:

Φvn (qvn ) = min
vn+1∈V o | vn+1>vn

qvn+1∈Q

∆vn+1 (vn , qvn , qvn+1 )+λ rvn+1 (vn , qvn , qvn+1 )+Φvn+1 (qvn+1 ) (5.8)

For a given λ value, in each recursive call of Eq. (5.8) the optimal unit vn+1 and the corre-
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sponding QP qvn+1 are computed such that the distortion between vn and vN are minimized.

The expression in Eq. (5.8) corresponds to minimizing the sum of the distortion between

consecutive units vn and vn+1 in V , the λ-weighted rate of the selected unit vn+1, and the

minimum distortion sum from unit vn+1 to unit vN . If vn+1 = V , then the recursion has

reached the rightmost unit in V o , such that the recursive term in (5.8) is not necessary. Figure

5.2 illustrates the structure of Eq. (5.8).

�vn
(qvn

)

�vn+1

�
qvn+1

�

�vn+1
(vn, qvn

, qvn+1
) + � rvn+1

(vn, qvn
, qvn+1

)

Views Vvn vn+11

Figure 5.2 – Illustration ofΦvn (qvn ) definition, which is composed by three terms. The first one
is ∆vn+1 (vn , qvn , qvn+1 ), that corresponds to the distortion between units vn and vn+1, coded
with QPs qvn and qvn+1 . The second term stands for the λ-weighted rate of the selected unit
vn+1. The third term,Φvn+1 (qvn+1 ), corresponds to the minimum distortion sum from coding
unit vn+1 to coding unit vN =V .

Given the first unit v1 = 1 is always selected, (5.7) can be solved via the following initial call:

min
q1∈Q

∆1(q1)+λr1(q1)+Φ1(q1) (5.9)

The solution of each sub-problemΦvn (qvn ) is stored in entry [vn][qvn ] of a DP table. Hence,

the complexity of the DP algorithm is bounded by the size of the DP table, V Q, multiplied

by the complexity of computing each entry, O(V Q). This results in a complexity of O(V 2Q2),

which is polynomial time.

The relationship between the constrained problem in (5.3) and its Lagrangian relaxed version

in (5.7) is as follows. Denote by (Vλ,qλ) the optimal solution of (5.7) for a given λ, solved via

(5.8), with resulting distortion D(Vλ,qλ) and rate R(Vλ,qλ). One can show that for a particular

choice of λ = λ∗, if R(Vλ∗ ,qλ∗) = B then, (Vλ∗ ,qλ∗) is an optimal solution to (5.3) (refer to

Appendix B).

However, because R(Vλ,qλ) is discrete, there may not exist a value of λ such that R(Vλ,qλ) = B

exactly. In this case, we can pick a value λ = λ1 with an approximate Lagrangian solution

(Vλ1 ,qλ1 ), R(Vλ1 ,qλ1 ) < B , with the following performance bound. Given two solutions (Vλ1 ,qλ1 )

and (Vλ2 ,qλ2 ) to (5.7) using λ1 and λ2 with resulting rates R(Vλ1 ,qλ1 ) < B < R(Vλ2 ,qλ2 ), the

difference in distortion between Lagrangian solution (Vλ1 ,qλ1 ) and the true optimal solution
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Figure 5.3 – Relationship between the rate R(Vλ,qλ) and the Lagrange multiplier λ.

(V ∗,q∗) of (5.3) is bounded:

|D(Vλ1 ,qλ1 )−D(V ∗,q∗)| ≤ |D(Vλ1 ,qλ1 )−D(Vλ2 ,qλ2 )| (5.10)

See Appendix C for a proof. Clearly, the bound is tightest when the difference in distortion

between the two Lagrangian solutions is the smallest.

We have shown how the complexity of the original DP algorithm can be reduced by our

proposed Lagrangian DP solution for a given λ value. However, we still need to find the

optimal λ value. Next, we propose an algorithm that efficiently finds the optimal Lagrange

multiplier λ.

5.4 Optimal Lagrange Multiplier

In order to find the optimal λ value, it is important to note that R(Vλ,qλ) is a monotonically

non-increasing discrete function with respect toλ. In other words, ifλ1 ≤λ2, then R(Vλ2 ,qλ2 ) ≤
R(Vλ1 ,qλ1 ). Thus, in the search of the λ value that yields R(Vλ,qλ) = B , we should decrease λ if

R(Vλ,qλ) < B (and vice-versa). Intuitively, this means that we need to decrease the multiplier

value to decrease the penalty and allow an increase of the total rate value. Moreover, as

R(Vλ,qλ) is discrete, due to the discrete set of QPs Q considered, it implies that there are λ

values at which multiple Lagrangian solutions exist; these are called singular values [50] [89].

Figure 5.3 illustrates the behaviour just described of the rate R(Vλ,qλ) as a function of λ. In the

following, we explain the importance of these singular values of λ on the search of the optimal

Lagrange multiplier and we describe how they are computed.
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5.4.1 Importance of Singular Values

The notion of singular values is fundamental to find the optimal Lagrange multiplier. Two

important properties of the singular values are:

1. Two neighboring singular values share one common Lagrangian solution.

2. Different values of λ between two neighboring singular values all yield to the same

solution of the discrete rate allocation problem.

These two properties imply that singular values yield all solutions of the problem defined in

(??) with λ values going from 0 to ∞. Thus, we only need to check neighboring singular values

of λ in order to find the optimal one. Figure 5.3 shows sigular values of the different Lagrange

multipliers, λ2,λ∗,λ1, · · · , with dots representing their multiple solutions. Note that, between

singular points, different λ values do not lead to new solutions.

Further, the singular value λ∗ that generates the two corresponding solutions (V l
λ∗ ,ql

λ∗) and

(V u
λ∗ ,qu

λ∗) with rate R(V l
λ∗ ,ql

λ∗) < B < R(V u
λ∗ ,qu

λ∗) is the best λ value that yields the best approxi-

mate Lagrangian solution (V l
λ∗ ,ql

λ∗) to (5.3). Note that the performance bound presented in

Eq. (5.10) can be rewritten for this case as:

|D(V l
λ∗ ,ql

λ∗)−D(V ∗,q∗)| ≤ |D(V l
λ∗ ,ql

λ∗)−D(V u
λ∗ ,qu

λ∗)| (5.11)

In the following, we propose a novel solution for the search of the singular values, given the

problem defined in (5.3), which leads us to the search of the optimal Lagrange multiplier.

5.4.2 Singular Values Computation

The fact that R(Vλ,qλ) is monotone-non-increasing function with respect to λ, it means that

by marching through successive singular values to span the rates of optimal rate allocation

solutions R(Vλ,qλ) to problem (5.7) towards a rate budget B , one can arrive at the best λ∗

with solutions R(V l
λ∗ ,ql

λ∗) < B < R(V u
λ∗ ,qu

λ∗). For example, in Fig. 5.3, after testing λ0 and

λ1 successively, we arrive at the best value λ∗ that satisfy the rate constraint B with the

performance bound given in (5.11). The technical challenge thus consists in marching through

successive singular values efficiently towards the optimal λ∗.

Towards this goal, we first define (v∗
n+1, q∗

vn+1
) to be the argument that minimizes the sub-

problem Φvn (qvn ) in (5.8) for a given λ. We further denote by Ψvn (qvn ) and Υvn (qvn ) the

distortion and the rate of the sub-problemΦvn (qvn ), which can be computed using the solution

(v∗
n+1, q∗

vn+1
) and stored in similar DP tables when (5.8) is solved recursively. We have:
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Ψvn (qvn ) =∆v∗
n+1

(vn , qvn , qv∗
n+1

)+Ψv∗
n+1

(qv∗
n+1

) (5.12)

Υvn (qvn ) = rv∗
n+1

(vn , qvn , qv∗
n+1

)+Υv∗
n+1

(qv∗
n+1

) (5.13)

To find the neighboring singular value λ−, where λ− < λ, we know that λ− and λ share an

optimal solution, and that λ− has an additional solution with rate larger than the rate of the

shared solution. This additional global solution (Vλ− ,qλ−) may stem from a new solution of

the sub-problem Φvn (qvn ) as λ decreases. In particular, for each sub-problem Φvn (qvn ) we

find the neighboring singular value λ−
vn

(qvn ), where λ−
vn

(qvn ) <λ, considering only the entry

[vn][qvn ] in the DP-table.

First, let Υvn (qvn ), as defined in (5.13), be the common optimal solution of λ−
vn

(qvn ) and λ.

Since λ−
vn

(qvn ) is singular, we know that there is at least one more solution in addition to

Υvn (qvn ). Thus, there exists a v ∈ V o |v > vn and a qv ∈Q such that:

Ψvn (qvn )+λ−
vn

(qvn )Υvn (qvn ) = (∆v (vn , qvn , qv )+Ψv (qv ))+λ−
vn

(qvn )(rv (vn , qvn , qv )+Υv (qv ))

(5.14)

For other values of v and qv , we have:

Ψvn (qvn )+λ−
vn

(qvn )Υvn (qvn ) ≤ (∆v (vn , qvn , qv )+Ψv (qv ))+λ−
vn

(qvn )(rv (vn , qvn , qv )+Υv (qv ))

(5.15)

Then, since λ−
vn

(qvn ) is the closest singular value from below to λ, it is computed as:

λ−
vn

(qvn ) = max
v∈V o |v>vn

qv∈Q

Ψvn (qvn )− (∆v (vn , qvn , qv )+Ψv (qv ))

(rv (vn , qvn , qv )+Υv (qv ))−Υvn (qvn )
(5.16)

where the search for the maximization is over the set of units v and QPs qv with a resulting

rate rv (vn , qvn , qv )+Υv (qv ) >Υvn (qvn ). In other words, λ−
vn

(qvn ) is the closest λ value at which

sub-problemΦvn (qvn ) will result in a different solution as λ decreases.

Note that the birth of a new global solution (Vλ− ,qλ−) can stem from any sub-problemΦvn (qvn )
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as λ decreases. Thus λ− is the largest of all λ−
vn

(qvn ):

λ− = max
vn∈V o ,qvn ∈Q

λ−
vn

(qvn ) (5.17)

Similarly, the neighboring singular value λ+, where λ+ >λ, is computed for each sub-problem

Φvn (qvn ) as:

λ+
vn

(qvn ) = min
v∈V o |v>vn

qv∈Q

(
∆v (vn , qvn , qv )+Ψv (qv )

)−Ψvn (qvn )

Υvn (qvn )− (rv (vn , qvn , qv )+Υv (qv ))
(5.18)

Then, the singular value λ+ is the smallest of all λ+
vn

(qvn ):

λ+ = min
vn∈V o ,qvn ∈Q

λ+
vn

(qvn ) (5.19)

Updating the DP table for the new Lagrange multiplier, λ− or λ+, has a complexity of O (V Q),

and not of O (V 2Q2) that refers to the complexity of creating the DP table for an initial λ.

The complexity is reduced since it only depends on the size of the DP table as the update

computation of each entry is constant.

We have presented in this section a method to update λ towards its optimal value λ∗. Next, we

define a good starting value for λ.

5.4.3 Initial Lagrange Multiplier Value

The complexity of the algorithm for searching through the singular values depends on the

initial guess of a good Lagrange multiplier value. The closer this initial guess is to the optimal

value, the fewer the number of iterations of the above search algorithm until reaching λ∗. We

start by defining a possible optimal solution {V̂ , q̂} for a given λ, e.g., a selection of N equally

spaced units that are all coded with the same QP q , which corresponds to an average of the

QPs available in Q. This has been experimentally proven to be close to optimal solution. Then,

we consider a different case where the QP for a unit vn ∈ V ∗ is qvn = q +a, while the rest of the

units are all coded using the same QP q . If {V̂ , q̂} is a solution of (5.7) for a given λ, then the
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following condition is met:

∆vn+1 (vn , q, q) −∆vn+1 (vn , (q +a), q) ≤λ (rvn+1 (vn , q, q)− rvn+1 (vn , q +a, q)) (5.20)

Then, the initial value of λ can be approximated as :

λ≈ ∆vn+1 (vn , q, q) − (∆vn+1 (vn , (q +a), q)

rvn+1 (vn , q, q)− rvn+1 (vn , q +a, q)
(5.21)

Note that a different initialization can be also used with our algorithm.

5.4.4 Lagrange Multiplier Search Algorithm

Given the definitions above, we now have an algorithm to solve the constrained problem in

(5.3) through an unconstrained formulation of the problem using Lagrangian cost function.

The algorithm is based on an optimized search of the Lagrange multiplier using the concept

of singular values, through Eq. (5.16) and Eq. (5.18). More formally, the search strategy for

the best multiplier λ∗ to obtain the closest approximate Lagrangian solution to (5.3) can be

described as follows:

Step 1 Initalize λ (described in Section 5.4.3) and solve (5.7) via algorithm (5.8) with unique

solution R(Vλ,qλ).

Step 2 If R(Vλ,qλ) < B , find next smaller singular value λ− via (5.17), λ− <λ. Otherwise, find

next larger singular value λ+ via (5.19), λ+ >λ.

Step 3 Find simultaneous solutions (V l
λ

,ql
λ

) and (V u
λ

,qu
λ

) for the selected singular value, where

R(V l
λ

,ql
λ

) < R(V u
λ

,qu
λ

).

Step 4 If R(V u
λ

,qu
λ

) < B̄ , find next smaller singular value λ− via (5.17), λ− <λ. Goto step 3.

Step 5 If B̄ < R(V l
λ

,ql
λ

), find next larger singular value λ+ via (5.19), λ+ >λ. Goto step 3.

Step 6 If R(V l
λ

,ql
λ

) ≤ B̄ ≤ R(V u
λ

,qu
λ

), declare (V l
λ

,ql
λ

) as the best approximate Lagrangian solu-

tion. Stop.

5.5 Performance Assessment

We now evaluate the performance of our new optimized Lagrange multiplier selection in rate

allocation problems. In addition to multiview video settings, we also consider traditional
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monoview video cases. Indeed, our formulation and our new rate allocation algorithm are

general enough to encompass both cases, meaning that coding units can be either views in a

multiview video scenario or frames in a monoview video.

We considered the monoview video datasets Hall Monitor (352 × 288, 30fps)[90] [91] and

Kimono (1920 × 1080, 24fps), provided by Tokyo Institute of Technology - Nakajima Laboratory;

both sequences have a GOP size of 1s, with 30 frames and 24 frames, respectively. For the

multiview video datasets, we used three sequences: Shark (1920 × 1088, 30 fps, 9 views),

provided by NICT for MPEG FTV standardization [1], Undo Dancer (1920 × 1088, 25 fps, 5

views) [79] and Soccer Linear2 (1600 × 1200, 60 fps, 7 views) [92]. The camera views are

equally spaced for the Shark and the Soccer Linear2 datasets, with inter-view separation of

70.04mm and 2m, respectively. For Undo Dancer sequence, only the camera views {1,2,3,5,9}

are available in the dataset. Thus, these views are possibly chosen for coding in our algorithm

and the remaining views {4,6,7,8} can be synthesized at the decoder. Finally, the interview

separation distance in the set of available views at the user is of 20cm. We used a GOP size of

8 frames and an intra-period of 24 frames as defined under the common test conditions by

JCT-3V [93]. In Fig. 5.4 a frame of each of the considered monoview and multiview video is

illustrated.

Our algorithm finds only one optimal QP value for each unit selected for coding. Thus, in the

case of traditional monoview video, the set of frames for coding and their corresponding QP

are optimized with our rate allocation algorithm. In the case of multiview video, we optimize

the set of views to encode and the QP of each view. As each view has a texture and depth

components and each one has a set of frames, instead of coding all the frames in a view with

the same selected QP value, we follow the following strategy:

1. We assume that the depth maps are all encoded at the same high quality (QP=30),

as accurate depth information is important for view synthesis. Note that a different

QP value could have been used to encode the depth maps, we have chosen QP=30 as

it offers a good compromise between view synthesis quality and rate for considered

sequences. Thus, in our rate allocation algorithm we only optimize the QP of the texture

information.

2. We adopt the hierarchical B-frames/slices coding mode [85] in the temporal domain of

each view, where B-frames are hierarchically predicted from other B or anchor frames

(i.e. frames that do not have any temporal prediction), where a cascading quantization

parameters (CQP) [65] strategy is normally used, as suggested in the reference software

of 3D-HEVC. This means that by finding the optimal QP value for the texture of each view,

we only find the optimal QP value for the anchor frames and the CQP strategy is used

for the rest of frames in the GOP. In this strategy, the anchor frames of the texture and

depth are encoded with the optimized QP value and QP=30, respectively; while the other

frames in the GOP use a∆QP that is added to the selected QP value of the anchor frames.

This ∆QP depends on the position of the frame in the GOP, where references frames
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(a) Hallmonitor monoview sequence,
frame 30.

(b) Kimono monoview sequence, frame
150.

(c) Soccer Linear2 multiview sequence,
view 1, frame 1.

(d) Undo Dancer multiview sequence,
view 3, frame 1.

(e) Shark multiview sequence, view 20,
frame 1.

Figure 5.4 – Content characteristics example for a frame of each considered monoview or
multiview sequence: (a) Hallmonitor, (b) Kimono, (c) Soccer Linear2, (d) Undo Dancer, (e)
Shark.

used for the prediction of frames in higher temporal layers have a lower ∆QP. Given

the 8 frames of a GOP for the considered dataset, we used a ∆QP= {0,1,2,3,4,4,3,4} as

suggested in the reference software of 3D-HEVC.

In our experiments, we compute the distortion in terms of PSNR of the luminance (Y-PSNR)

that is evaluated on both coded and synthesized units, in case units are dropped at the encoder.

To reconstruct missing frames in monoview videos we considered a commonly used method

based on motion estimation [94][95], where given two frames v0 and v1 and an estimate of
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the optical flow f between these frames, a missing frame vi , i ∈ (0,1) is estimated as:

vi (x) = 1/2(v0(x +a f )+ v1(x − (1−a) f )), (5.22)

where a represents the distance between the reference frames v0, v1 and the reconstructed

frame. For the missing views in multiview video, we used a simple depth-image based ren-

dering (DIBR) method at the decoder where pixels from the closest right and left coded views

are projected to the intermediate missing viewpoint using the texture information and the

intensity of the depth value per pixel. Then, the projected pixels from the reference views are

merged together, e.g., using a linear weighting function that considers the distance between

reference and virtual views [96].

To better illustrate the performance of our algorithm, we also show the performance of the

rate control (RC) solutions [9][10] adopted by the reference software HM 15.0 [97] of the High

Efficiency Video Coding (HEVC) standard [85], for monoview videos, and by the reference

software HTM 13.0 [98] of the 3D extension of HEVC (3D-HEVC) [99], for multiview video.

These solutions only optimize the QPs of the different frames and they do not skip units at the

encoder. For a more fair illustration of both solutions, in the multiview video case, we also

also fix the QP value of the depth maps when the rate control of the reference software for

3D-HEVC is tested, so only the QPs of the texture component of the views are optimized.

In the following, the performance of our algorithm is evaluated for monoview and multiview

videos considering two scenarios: (i) when units are independently coded and (ii) when units

are predictively coded.

5.5.1 Experiments with Independently Coded Units

We first evaluate the performance of our rate allocation algorithm in the case of independently

encoded units for monoview and multiview video sequences. The available set of QPs for the

coding units are Q = {25,26, · · · ,51} for both cases.

In Fig. 5.5a, the QP selection for each frame of our algorithm solution is compared to the

QP adaptation solution of the RC of HEVC, for one GOP (from frame 15 to 44) of the Hall

Monitor monoview sequence. For these results, we consider a rate budget of 500 kbps where

our algorithm achieved a rate of 490.60 kbps and the RC of HEVC a rate of 499.53 kbps. Note

that a QP=0 means that the frame is skipped and needs to be reconstructed at the decoder.

Most of the frames that are skipped with our algorithm are the frames between frames 15 and

23, which corresponds to the lowest motion part in the GOP under consideration. In addition,

it can be seen that our algorithm assigns low QP values to the frames that are neighbors of the

dropped frames, since they are used as reference frames in their reconstruction at the decoder.

In Fig. 5.5b, we show the quality values (Y-PSNR) of coded (QP > 0) and reconstructed (QP

80



5.5. Performance Assessment

15 20 30 40 44
34

36

38

40

42

44

Frames

Q
P

QPs - Proposed algorithm
QPs - RC HEVC

(a)

15 20 30 40 44

30

32

34

36

38

40

Frames

Y-
P

SN
R

Y-PSNR - Proposed algorithm
Y-PSNR - RC HEVC

(b)

Figure 5.5 – Frame-to-frame comparison of our proposed algorithm and the RC of HEVC
for Hall Monitor monoview video sequence: (a) QP selection and (b) quality comparison
(Y-PSNR). Rate budget B = 500kbps, with our proposed solution rate R = 490.60kbps, and the
rate of RC of HEVC rate R = 499.53kbps.

=0) frames, for the same test as in Fig. 5.5a. It can be seen how the solution of the proposed

algorithm achieves a higher average quality compared to the solution of the RC of HEVC,

achieving an average Y-PSNR=32.11 dB, while the RC solution has an average Y-PSNR=30.50

dB. The quality fluctuations are due to the drop in quality when frames are skipped at the

encoder and reconstructed at the decoder. The proposed algorithm takes advantage of the

frame skipping property to skip frames when the motion is low in the sequence, so that it save

bits to enhance the quality of coded frames in counterpart.

The QP selection for each frame in each view in the multiview video case is illustrated in Fig.

5.6 for our algorithm and for the RC of 3D-HEVC. We consider the Shark multiview video

sequence and a rate budget of 250 kbps. In this solution, the consumed rate of the proposed

algorithm is 245.49 kbps, while the RC of 3D-HEVC uses 242.55 kbps. We observe that no

view is skipped by our algorithm. For the same conditions a view to view quality comparison,

resulting from the QP selection shown in Fig. 5.6, is now illustrated in Fig. 5.7. In general,

our algorithm achieves a higher average Y-PSNR, 30.49 dB, compared to the RC of 3D-HEVC,

29.98 dB. Given the specified rate budget, the RC of 3D-HEVC solution selects a low QP to

encode the anchor frame of each view and the other frames in the GOP are encoded using the

maximum QP value (QP=51). Differently, by adopting the CQP strategy, the QP selected for the

anchor frame by our algorithm is always higher than the ones used by the RC of 3D-HEVC,

but the QPs of the inter-predicted frames can be lower. By using this strategy, our algorithm

performs better in terms of average quality.
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Figure 5.6 – Frame-to-frame per view comparison of the QP selection of our proposed al-
gorithm and the RC of 3D-HEVC for Shark multiview video sequence. Rate budget B =
250kbps, with our proposed solution rate R = 245.49kbps, and the rate of RC of 3D-HEVC
R = 242.55kbps.
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Figure 5.7 – View-to-view average quality comparison (Y-PSNR) of our proposed algorithm
and the RC of 3D-HEVC for Shark multiview video sequence. Rate budget B = 250kbps, with
our proposed solution rate R = 245.49kbps, and R = 242.55kbps in RC of 3D-HEVC.

Tables 5.1 and 5.2 present the performance of both, our rate allocation algorithm and the RC

of HEVC, in terms of average Y-PSNR given a rate budget B for the monoview sequences Hall

Monitor and Kimono. The difference, ∆Y-PSNR, between both quality values is also presented

where a positive value means a quality gain of the proposed algorithm. From the results, we

can see that our algorithm always gets a solution with a rate that is under the rate budget

B and it always achieves the highest quality, with a ∆ Y-PSNR of up-to 2.34dB . The visual

quality is illustrated in Fig. 5.8 for Hall Monitor for frames 15 and 17, when the rate budget
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is B = 150 kbps. Our algorithm tends to skip frames with low motion, as frame 17, which are

then reconstructed at the decoder achieving a final higher visual quality compared to the RC

of HEVC that uses a higher QP value to satisfy the rate budget.

Table 5.1 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
and for the RC of HEVC, given the Hall Monitor monoview video sequence with independently
encoded frames.

B Proposed algorithm RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

150 149.39 26.62 149.96 24.93 1.69

200 198.13 27.60 200.16 25.26 2.34

300 298.88 29.57 300.31 27.29 2.28

400 366.10 30.66 400.09 28.98 1.68

500 490.60 32.11 499.53 30.50 1.61

Table 5.2 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
and for the RC of HEVC, given the Kimono monoview video sequence with independently
encoded frames.

B Proposed algorithm RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

150 149.03 27.44 149.81 26.42 1.02

200 198.80 28.59 200.46 27.20 1.39

300 296.32 29.56 299.97 28.37 1.19

400 391.20 30.03 400.36 29.35 0.68

500 499.61 30.23 502.06 30.17 0.06

Similarly, Tables 5.3, 5.4 and 5.5 present the performance of our algorithm and the RC of

3D-HEVC in terms of average Y-PSNR and ∆Y-PSNR, with given rate budgets for the multiview

sequences Shark, Undo Dancer and Soccer Linear2. In general, the gains in quality are smaller

for multiview video sequences compared with the monoview sequences. The main reason

is that by skipping frames in traditional monoview videos, a higher average quality could be

achieved. However, multiview video views are not easily skipped as the impact on the final

average quality is larger. In addition, we only optimize one QP per view, the QP of the anchor

frame of each view while the CQP strategy is used for the other frames in the GOP. Differently,

the RC of 3D-HEVC adapts the QP of all the frames in each view, getting rate values that are

closer to the rate budget. This is the case of the results for Soccer Linear2 sequence with a rate

budget of 250 kbps and 400 kbps, where our solution has a slightly lower quality compared to

the solutions of the RC of 3D-HEVC.
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(a) Frame 15 - Proposed algorithm - QP= 43 (b) Frame 15 - RC HEVC - QP= 47

(c) Frame 17 - Proposed algorithm - Recon-
structed frame

(d) Frame 17 - RC HEVC - QP= 51

Figure 5.8 – Visual quality illustration for the Hall Monitor monoview video sequence with
independently encoded frames when the proposed algorithm and the RC of HEVC are used
(B = 150 kbps). (a) and (b) Show frame 15 encoded according to our proposed algorithm and
the RC of HEVC, respectively. (c) Shows frame 17, that has has been skipped at the encoder
and reconstructed at the decoder according to the proposed algorithm, achieving a higher
visual quality compared to the RC of HEVC output in (d).

5.5.2 Experiments with Predictively Coded Units

We consider now the predictive coding case, in particular, an I PP · · · coding model for both

monoview (inter-frame coding model) and multiview video (inter-view coding model). As

the computational complexity due to coding increases, compared to the independently

coded case, we decrease the granularity of the available QPs in our search space to Q =
{25,28,31 · · · ,51}

For different rate constraints B , Tables 5.6 and 5.7 show the performance, in terms of rate

and average quality, of our proposed algorithm and the RC of HEVC for the Hall Monitor and

Kimono monoview sequences. As mentioned in Section 5.2.1, due to complexity reasons, in
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Table 5.3 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
and for the RC of 3D-HEVC, given the Shark multiview video sequence with independently
encoded views.

B Proposed algorithm RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

175 174.41 29.25 162.45 28.22 1.03

200 196.26 29.26 198.75 29.22 0.04

300 287.61 31.08 287.49 30.57 0.51

400 381.54 32.35 389.28 31.51 0.84

500 481.71 33.49 485.13 32.22 1.27

Table 5.4 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algo-
rithm and for the RC of 3D-HEVC, given the Undo Dancer multiview video sequence with
independently encoded views.

B Proposed algorithm RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

175 169.15 27.71 169.55 26.99 0.72

200 199.15 28.39 197.32 27.51 0.88

300 280.55 29.57 286.95 28.74 0.83

400 383.05 30.79 380.70 29.69 1.1

500 476.78 31.63 486.15 30.47 1.16

Table 5.5 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algo-
rithm and for the RC of 3D-HEVC, given the Soccer Linear2 multiview video sequence with
independently encoded views.

B Proposed algorithm RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

175 172.90 28.15 173.28 27.70 0.45

250 245.98 28.89 249.06 28.99 -0.1

300 296.23 29.44 288.82 29.24 0.2

400 395.32 30.30 398.11 30.77 -0.47

500 487.4 31.42 482.24 31.03 0.39

this work, we assume that each coded unit only depends on the previous coded one and not on

all previous coded units, until the first independently coded unit. However, this assumption

tends to underestimate the coding rate, as it limits the effect of previously encoded units to
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the first reference view used for prediction. Thus, to solve this problem, we adopt a post-

processing method, where previous solutions of our algorithm (i.e., when marching towards

the optimal Lagrange multiplier, moving from a lower to a higher rate, thus using Eq. (5.18))

are saved and the first one satisfying the rate constraint is selected as the new solution. For this

reason, in Tables 5.6 and 5.7 the results of the proposed algorithm is showed in two columns,

(I) and (II). In the first column, the solution of our original algorithm is presented, where the

rate is usually slightly higher than the rate budget. In the second column, the adjusted values

obtained with the post-processing step just described are shown. This second column repeats

first column result if the original algorithm already satisfies the rate constraint B . Compared

to the independent coding case, in the predictive coding scenario, the RC of HEVC did not

show a good performance for the two monoview video sequences considered. This is evident

for the Kimono dataset where the rate of some solutions are far above from the rate budget

constraint, in particular for low rate constraint values. Thus, it becomes difficult to compare

both solutions performance in terms of quality. However, it can be seen that, in the cases

where the RC of HEVC achieves a good rate value (i.e., under or close to the rate constraint),

our algorithm achieves a better average quality or close to HEVC performance. Moreover, we

use a coarser set of QPs than the RC of HEVC, so that our results could be generally improved

if the same set of QPs Q is used by both schemes. Compared to the independently coded

units case, the gain achieved by our algorithm is now smaller. This is due to the fact that when

frames are predictively encoded, skipped frames have higher impact in the overall quality as

the distance increases between a coded frame and its reference used for prediction.

Table 5.6 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
(first and second solution) and for the RC of HEVC, given the Hall Monitor monoview video
sequence with predictively coded frames.

Proposed algorithm
RC HEVC

B [kbps]

(I) (II)

R [kbps] R [kbps] R [kbps] ∆ Y-PSNR [dB ]

Y-PSNR [dB ] Y-PSNR [dB ] Y-PSNR [dB ]

25
28.94 24.41 37.49

27.92 27.06 28.10 -1.04

50
57.62 47.96 50.14

30.46 30.06 29.92 0.14

75
78.77 74.82 75.06

34.35 33.92 33.70 0.22

100
105.06 96.84 99.89

34.69 34.17 34.28 -0.11

150
156.34 148.16 150.09

36.66 36.26 36.02 0.24
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Table 5.7 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algo-
rithm (first and second solution) and for the RC of HEVC, given the Kimono monoview video
sequence with predictively coded frames.

Proposed algorithm
RC HEVC

B [kbps]

(I) (II)

R [kbps] R [kbps] R [kbps] ∆ Y-PSNR [dB ]

Y-PSNR [dB ] Y-PSNR [dB ] Y-PSNR [dB ]

50
59.88 48.80 79.60

26.88 26.33 27.09 -0.76

75
80.94 73.01 96.44

27.70 27.21 28.01 -0.8

100
113.99 97.06 120

28.96 28.40 29.02 -0.62

150
155.31 148.34 152.44

30.96 29.75 29.54 0.21

200
186.44 186.44 204.12

30.41 30.41 30.24 0.17

Finally, Tables 5.8, 5.9 and 5.10 present the performance in terms of rate and average quality

of our proposed algorithm and the RC of 3D-HEVC for the Shark, Undo Dancer and Soccer

Linear2 multiview video sequences. Here, compared to the monoview video cases in Tables

5.6 and 5.7, the proposed algorithm has a better performance, as the obtained solution tends

to satisfy the rate budget most of the time with our original algorithm and there is usually not

need to use the post-processing step. This is due to the length in the prediction paths. In the

case of multiview video, the maximum length of the (inter-view) prediction path is 9 views

(e.g., Shark), compared to 30 and 24 frames (GOP size) for Hall Monitor and Kimono monoview

video sequences. This means that, for the multiview video case, the effect of previously coded

units in a current predicted unit is much more limited than in monoview video cases, thus

making our assumption more reasonable. In general, from these results we can conclude that

when our algorithm is close to the rate budget (i.e., the granularity of the available QPs is not

affecting the solution) it achieves a higher overall quality than the RC of 3D-HEVC.

5.6 Conclusions

A new solution for the optimal selection of the Lagrange multiplier in Lagrangian-based rate

allocation optimization problems has been addressed in this chapter. We have considered a

general rate allocation formulation that can be applied in different scenarios, in particular

for multiview video with views that are independently or predictively coded. Given the high

87



Chapter 5. Optimal Lagrange Multiplier Values for Constrained Rate Allocation Problems

Table 5.8 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
and for the RC of HEVC, given the Shark multiview video sequence with predictively coded
views.

B Our solution RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

75 74.48 28.97 107.64 28.03 0.94

100 98.19 29.15 107.64 28.03 1.12

150 147.25 31.02 147.60 29.51 1.51

200 195.47 32.68 190.59 30.69 1.99

300 297.22 33.51 290.91 32.59 0.92

Table 5.9 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
and for the RC of HEVC, given the Undo Dancer multiview video sequence with predictively
coded views.

B Our solution RC HEVC

[kbps] R [kbps] Y-PSNR [dB ] R [kbps] Y-PSNR [dB ] ∆ Y-PSNR [dB ]

50 49.93 25.87 46.85 25.32 0.55

75 74.15 28.23 74.75 27.54 0.69

100 76.72 28.29 82.22 27.96 0.33

150 129.81 30.25 148.07 30.47 0.22

200 191.9 32.12 194.00 31.50 0.62

complexity of a classic dynamic programming (DP) algorithm, we modified the problem

formulation to consider a Lagrangian cost function that permits to reduce the complexity of the

DP solution. Moreover, we proposed a new method to optimally select the Lagrange multiplier

in these types of problems. Rate control solutions adopted by the reference softwares of

current monoview and multiview video reference encoders, HEVC and 3D-HEVC, have been

used to illustrate the performance of our proposed algorithm. Overall, our proposed simple

solution compares favorably to these complex solutions in terms of average Y-PSNR when

frames (in monoview video) and views (in multiview video) are independently or predictively

coded.
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Table 5.10 – Rate budget B , actual rate R and average Y-PSNR value for the proposed algorithm
(first and second solution) and for the RC of HEVC, given the Soccer Linear2 multiview video
sequence with predictively coded views.

Proposed algorithm
RC HEVC

B [kbps]

(I) (II)

R [kbps] R [kbps] R [kbps] ∆ Y-PSNR [dB ]

Y-PSNR [dB ] Y-PSNR [dB ] Y-PSNR [dB ]

100
98.96 98.96 93.06

28.06 28.06 26.09 1.97

200
180.48 180.48 184.08

30.77 30.77 29.72 1.05

250
252.70 180.48 247.02

32.68 30.77 31.04 -0.27

300
303.72 296.27 289.02

33.33 33.27 32.18 1.09

400
396.18 396.18 376.14

34.71 34.71 33.53 1.18
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6
Conclusions

6.1 Main Contributions

Application specific coding strategies for IMV is key to ensure mass acceptance by users of

novel interactive services in the near future. The role of efficient coding strategies becomes

much more important in multiview applications, due to the enormous amount of data that

needs to be stored and transmitted. This has been the main target of this thesis, where, we

have described current limitations in IMV and we have proposed novel coding solutions to

provide high quality interactive services in resource constrained settings.

First, in the scenario of IMVS, where users periodically request view switches, we have pro-

posed a greedy algorithm to find the optimal interview PS and QPs for the texture and depth

maps given an MVD representation of the data, such that the amount of data transmitted to

the user is minimized. The challenge here is that, without knowing the path that each user

will follow in his/her interactive navigation, the content should be efficiently coded a priori.

Differently from most of the works in the literature that target efficient compression of the

multiview data where all the views are stored and transmitted together, the optimal PS and

QPs resulting from our algorithm trades-off transmission rate or interaction flexibility and

compression efficiency. In particular, the optimal PS and QPs minimize the distortion in a

system where the point-to-point transmission bandwidth and the storage capacity are scarce

resources. We have shown through simulations that the proposed algorithm is able to identify

a near-optimal PS in the sense of minimizing the distortion while trading off the transmission

and storage costs. Moreover, compared with an exhaustive search approach the associated

complexity is considerably reduced.
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Next, we have considered the scenario where access link bandwidth capabilities can be hetero-

geneous across the network. In this context, we proposed a layered multiview representation,

a solution that adapts to the different bandwidth capabilities of the clients. In this solution,

the users are clustered according to their bandwidth capabilities and the set of views trans-

mitted to each group of clients, and their corresponding rate, are carefully selected so that

their navigation quality is maximized. The layered organization of the views allows a scalable

solution, where users with low bandwidth capabilities have access to only the first layers

and users with higher capabilities are able to receive more layers (more views), hence ben-

efiting of a better navigation quality. We proposed a globally optimal solution based on the

dynamic-programing (DP) algorithm and a greedy reduced-complexity algorithm, where the

optimal subset of views and their coding rates are computed successively for each layer by

a DP-based approach. Simulation results have shown that our greedy algorithm achieves

a close-to-optimal performance in terms of total expected distortion, and outperforms a

distance-based view and uniform rate allocation strategy used as a baseline algorithm for the

layer construction.

Finally, we have focused on the rate allocation problem, where the goal is to optimally dis-

tribute a rate budget among a set of views (named, coding units) in a multiview video. Based on

the greedy algorithm presented in the context of adaptive solutions for IMV, we have proposed

a rate allocation algorithm that combines dynamic programming and Lagrange optimization

to further decrease the complexity of the rate allocation algorithm. The main contribution

resides in effectively finding the optimal Lagrange multiplier. To study the performance of

our proposed algorithm, we have considered both multiview video and traditional monoview

video demonstrating the generalization capabilities of the algorithm. Moreover, to appreci-

ate the results of our algorithm we used the rate control solutions adopted in the reference

softwares of current monoview and multiview video standards, namely HEVC and 3D-HEVC.

We showed how our solution compares favorably with these two more complex rate control

methods.

Overall, in this thesis we have proposed different coding strategies for solving problems

arising in the context of IMV. In particular, the main contributions of this thesis can be

summarized as: (i) an algorithm that permits to efficiently use the bandwidth available and

storage capacity (i.e., trading off the interaction flexibility and the compression efficiency) by

optimizing inter-view dependencies on the PS, where the user preferences are considered.

(ii) an adaptive solution for IMV service in heterogeneous networks, and (iii) an algorithm

for optimal Lagrange multiplier for Lagrangian optimization in rate allocation problems for

multiview video.

6.2 Future Directions

While this thesis has demonstrated the importance of effective coding solutions for IMV, many

opportunities for extending the scope of this thesis remain. This section presents some of
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these future research directions.

In Chapter 3, we have proposed an algorithm that selects the optimal PS and QPs of texture

and depth maps for IMVS. However, a unique QP is found for a given PS (one for the texture

and one for the depth map), under the assumption that different views in the same dataset

are very similar. An interesting extension of this work would be to optimize the QPs of the

different views considering the popularity distribution across the views, where views that are

more popular among the users have higher quality (low QP value) and vice-versa. In addition,

a future research may focus on the extension of the current optimization algorithm to systems

where the reference views used to synthesize the considered virtual views are not restricted to

be the closest ones, but their choice can be optimized to further improve the performance of

our algorithm. Also, the implementation of a non-static view temporal popularity model is left

for future work, where frames popularity change over the time.

When optimizing the PSs of texture and depth maps for IMVS an important component

that should be consider is the energy consumption. For instance, in embedded systems

the memories are limited by power constraint and encoding/decoding and view synthesis

in multiview video are processes that pose the need of drastically reducing the “memory

bandwidth” consumption. The selection of PSs are a dominant factor in energy efficient

multiview video systems. The energy consumption is related to the type of frames used, where

I-frames are the lightest ones as motion and disparity estimation (ME/DE) are skipped and

B-frames require the highest processing compared to I- and P-frames, as ME/DE is done using

multiple reference frames/views. The energy consumption is also related to the content of the

video, where a view or a set of frames may require less power due to easier-to-encode video

content (e.g., video content with lower motion intensity). In general, the work presented in

Chapter 3 can be extended by including a power constraint in the formulated problem.

Then, in Chapter 4, we have investigated the problem of IMV in heterogeneous networks,

proposing an adapting solution that allows users with different bandwidth capabilities to

enjoy IMV at the maximum possible quality. In our simulations we only considered views

independently encoded, not exploiting the interview correlation across the views. Therefore,

another interesting extension of our problem is to consider inter-view coding in the layered

multiview representation, where, for instance, inter-view coding is limited to views in the

same or lower layers. This is certainly a challenging problem, as inter-view dependencies may

bring exponential complexity in the DP algorithm proposed.

The development of a simple and effective view synthesis distortion model, able to quantify

the impact of the texture and the depth maps of views used as references during the view

synthesis, is crucial in order to further reduce the complexity of rate allocation algorithms,

avoiding the multiple encodings of texture and depth maps. It is not an easy problem, as

they depend on the particular scene geometry characteristics of the multiview videos. In this

thesis, we have proposed a distortion model for the synthesized views that has been used in

our simulations. However, the parameters related to the proportion of pixels disoccluded in
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the projection of the reference views in the virtual view position are estimated from available

texture and depth maps. Thus, it would be interesting to extend this work and model these

parameters.

Finally, we have dealt with the rate allocation problem in Chapter 5. We have proposed a

rate allocation algorithm where inter-view prediction is allowed. However, due to complexity

reasons we have assumed that the effect of inter-view dependencies is limited to the first

reference view of any predictively encoded view. Therefore, a possible extension of this work

is to consider the effect of all previous reference views. Moreover, we also assumed that a view

has only one reference view, which corresponds to the closest one. Thus, another interesting

future research direction would be to allow more than one reference view (e.g., B-frames ) and

optimize their selection. Such extensions would require efficient algorithms due to the high

complexity of the problem.

The main emphasis of recent works on IMV has been on linear camera arrangements, where

navigation is limited to horizontal displacements. Thus, a 3D navigation where camera and

virtual views are available for an horizontal and vertical navigation, as well as allowing the

user to zoom into areas of interest, is an exciting research topic. This requires new coding and

view synthesis strategies as reference views for prediction or synthesis may not be horizontally

aligned.

An additional limitation of current IMV systems is the narrow navigation range provided to

the users. First, the number of camera views that can be transmitted is constrained by the

network bandwidth. Second, the quality of synthesized images using IBR or DIBR techniques

is determined by the distance between reference and virtual viewpoints. Thus, new render-

ing techniques are needed in order to improve the view synthesis quality and increase the

navigation window offered to the user by using a small set of views. For instance, the plenop-

tic function [100] can be further exploited for image based-representations. The plenoptic

function describes the intensity of each light ray in the world as a function of viewing angle,

wavelength, time and viewing position. It captures everything that can potentially be seen

by an optical device. Thus, by better exploiting the plenoptic function the number of view

samples required to render a wider navigation domain can be better optimized to provide an

improved user interaction. Recent solutions considering the plenoptic function are based on

the use of multiple cameras, called super multiview video (SMV), and on the use of a single

holoscopic camera that has an array of microlenses producing images with slightly different

viewing angles. However, a novel imaging representation based on the plenoptic function

will require the processing and transmission of a huge amount of information, meaning that

efficient coding solutions are needed.

Overall, IMV will find many applications in different fields such as sports, advertising, edu-

cation, design, exhibition, medicine, surveillance and so on. Thus, a rapid progress of the

different stages of a processing chain of IMV, such as capturing, coding, transmission and

display are needed to accelerate the introduction of this exciting technology.
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A
Virtual View Distortion Model

In this appendix, we present an analytical model of the distortion of a rendered virtual view,

where texture and depth maps quality information of the reference views are considered. This

distortion model has been used for simulations in Chapter 4.

At the decoder side, if a requested view u ∈U is not available, then it needs to be synthesized.

We consider the depth-image-based rendering (DIBR) technique to render a view u ∈U , using

the closest available right and left reference texture and associated depth maps, vR = {v t
R , vd

R }

and vL = {v t
L , vd

L }, for (vR , vL) ∈ V . First, for each reference view, each pixel (x, y) is projected

into the virtual view position (x ′, y ′). These projected pixels, from the right and left reference

views, form the textures v̂ t
R,u and v̂ t

L,u , respectively. We follow a similar approach to the one

in [101], where one of the reference views is considered as the dominant view. In particular,

we first consider the pixels projected from the closest reference view to the virtual viewpoint.

This view is denoted as v t
1, for v t

1 ∈ {v t
R , v t

L}, and its projection as v̂ t
1,u . Then, the missing pixels

in v̂ t
1,u are filled from the projection of the second reference view, v̂ t

2,u .

Note also that some pixels may not be available from any of the reference views, due to

rounding error and/or disocclussions, these pixels are filled with inpainting methods [102].

In our model, a simple inpainting approach based on the interpolation of the neighboring

available pixel values is assumed.
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Appendix A. Virtual View Distortion Model

Overall, for each pixel (x, y) of the virtual view u, we have:

u(x, y) =


v̂ t

1,u(x, y) if (x, y) ∈ (1−α)u

v̂ t
2,u(x, y) if (x, y) ∈ (1−γ)αu

i (x, y) if (x, y) ∈ γαu

(A.1)

where i (x, y) refers to the inpainting at pixel position (x, y), α denotes the proportion of pixels

disoccluded in the closest reference view projection, and γ the proportion of pixels from αu

that are not available in neither the right nor the left reference view projection.

This leads to the following virtual view distortion model:

du(vL , vR ) = (1−α)
(
dv̂ t

1,u
(vL , vR )+dv̂d

1,u
(vL , vR )

)
+(1−γ)α

(
dv̂ t

2,u
(vL , vR )+dv̂d

2,u
(vL , vR )

)
+γαI

(A.2)

where, dv̂ t
i ,u

and dv̂d
i ,u

, for i ∈ {1,2}, denote the average distortion per pixel due to texture and

to depth map errors, respectively. The average distortion per pixel in the inpainted areas is

denoted by I , which is assumed to take a constant value that only depends on the scene

content. The proportion of disoccluded pixels, α and γ, are obtained from the depth maps of

the reference views, which are available at the sender side.

As pixel intensity values are copied from the reference views to their projections, the distortion

of the projected views, dv̂ t
i ,u

, corresponds to the distortion of the reference views dv t
i
, which

can be modeled in terms of the rate as σ22−2R [103]. Then, we can assume that dv̂ t
1,u

= dv t
1

and

dv̂ t
2,u

= dv t
2
, simplifying the notation of (A.2).

Depth maps errors accounts for position errors, and it has been shown that the distortion

value of the projected image linearly increases with the distance to the virtual view u [104].

Therefore, in this work, dv̂d
1,u

and dv̂d
2,u

, are linearly modeled as a function of the distance to

the reference view, i.e., dv̂d
1,u

= md ·b1,u , where, b1,u stands for the baseline distance between

virtual view u and reference view v1, while md is the growing rate of the distortion of the

projected view. The distortion dv̂d
2,u

is similarly defined. In this work, we opt for depth maps

encoded at low compression ratio (high quality), since they contribute with a small proportion

of the overall rate, compared to texture data. Thus, we only consider the distortion due to

errors originally present in the depth maps, due to capturing or estimation error. In order to

simplify the notation of (A.2), we write dv̂ t
i ,u

, dv̂d
i ,u

as dv t
i
, dvd

i
, when referering to the distortion

model.

In Fig. A.1 the distortion model is illustrated using the image dataset Bikes [4], where views
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Figure A.1 – Distortion model illustration for Bikes [4] image dataset, for a virtual view u =
43, right reference views vR = {44,45,47,48,50} and fixed left reference view vL = 40. (a)
Comparison of modeled and real distortion of the right view projection due to depth map
dvd

i
= md bi ,u , with md = 1.372. (b) Comparison of virtual view distortion modeled and real by

fixing the left reference view vL = 40.

have a baseline separation of 5mm. We consider view u = 43 as a virtual view, synthesized

using a set of possible right reference views vR = {44,45,47,48,50}, while the left reference view

is kept fixed vL = 40. First, the linear behavior of the distortion of the right view projection due

to depth map dvd
i

is shown in Fig. A.1a, where md = 1.372. Both the modeled and real values

of the distotion of virtual view u = 43 is presented in Fig. A.1b when different right reference

views are used. Although, the distortion values obtained by the proposed model are not close

enough to the real values, the model is able to capture the behaviour of the distortion, which

has proven to be sufficient for rate allocation problems as the one tackled in Chapter 4. Further

studies will be necessary to have a model that better fits the distortion of a synthesized view.
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B
Proof of Optimality

In this appendix, we prove that by solving the equivalent Lagrangian unconstrained problem

(5.7) of the original constrained formulation (5.3) we are able to find the optimal solution.

Lemma 1: if an optimal solution (Vλ∗ ,qλ∗) to the unconstrained Lagrangian problem corre-

sponding to multiplier value λ∗ satisfies the rate constraint exactly, i.e.,

R(Vλ∗ ,qλ∗) = B , (B.1)

then, (Vλ∗ ,qλ∗) is also the optimal solution to the original constrained problem.

Proof: The optimality of the solution (Vλ∗ ,qλ∗) implies:

D(Vλ∗ ,qλ∗)+λ∗R(Vλ∗ ,qλ∗) ≤ D(V ,q)+λ∗R(V ,q), ∀{V ,q} (B.2)

Rearranging the terms, we get:
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Appendix B. Proof of Optimality

λ∗ [
R(Vλ∗ ,qλ∗)−R(V ,q)

]≤ D(V ,q)−D(Vλ∗ ,qλ∗)

λ∗ [
B −R(V ,q)

]≤ D(V ,q)−D(Vλ∗ ,qλ∗) (B.3)

Now we restrict our solution space to a subspace S where R(V ,q) ≤ B . Then,

0 ≤λ∗ [
B −R(V ,q)

]≤ D(V ,q)−D(Vλ∗ ,qλ∗), ∀(V ,q) ∈S

D(Vλ∗ ,qλ∗) ≤ D(V ,q), ∀(V ,q) ∈S (B.4)

We can thus conclude that (Vλ∗ ,qλ∗) is an optimal solution to the original constrained problem

as well. ä
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C
Performance Bound

We now prove the performance bound given in Eq. (5.10) of Chapter 5.

Let (Vλ1 ,qλ1 ) and (Vλ2 ,qλ2 ) be two solutions of the problem in (5.7) using λ1 and λ2 with

resulting rates:

R(Vλ1 ,qλ1 ) < B < R(Vλ2 ,qλ2 ) (C.1)

We can derive a performance bound for feasible solution (Vλ1 ,qλ1 ) as follows. Denote by

(V ∗,q∗) the optimal solution to the original constrained problem. By the optimality of

(Vλ2 ,qλ2 ), we can write:

0 ≤λ∗ [
R(Vλ2 ,qλ2 )−R(V ∗,q∗)

]≤ D(V ∗,q∗)−D(Vλ2 ,qλ2 )

D(Vλ2 ,qλ2 ) ≤ D(V ∗,q∗) (C.2)

where the second line is true because B < R(Vλ2 ,qλ2 ) and R(V ∗,q∗) ≤ B . By the optimality of
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Appendix C. Performance Bound

(V ∗,q∗), we also know that:

D(V ∗,q∗) ≤ D(V ,q), ∀(V ,q) ∈S (C.3)

where, S denotes the set of solutions that have a total rate lower than B . Note that S includes

(Vλ1 ,qλ1 ), since R(Vλ1 ,qλ1 ) < B . Combining the inequalities in (C.2) and (C.3), we can write:

D(Vλ2 ,qλ2 ) ≤ D(V ∗,q∗) ≤ D(Vλ1 ,qλ1 )∣∣D(Vλ1 ,qλ1 )−D(V ∗,q∗)
∣∣≤ ∣∣D(Vλ1 ,qλ1 )−D(Vλ2 ,qλ2 )

∣∣ (C.4)

which concludes the proof. ä
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