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Summary 

Nanoparticles have a variety of unique physicochemical properties attributable to their small 

dimensions, and are attractive to manufactures and researchers alike. The global production and 

application of nanoparticles lead to a raised concern for their environmental impacts, 

particularly on those aquatic organisms that are likely exposed to the particles. Algae are of high 

ecological importance, functioning as oxygen producers and as energy and food base for almost 

all aquatic life. In the present thesis, interactions of nanoparticles with different fresh water algal 

strains were examined.  

First, the toxicity and uptake of citrate-coated silver nanoparticles (AgNP, ~50 nm) and AgNO3 

(added as Ag+ source) were examined in the green alga Euglena gracilis, which has no cell wall 

but a pellicle surrounding the cell. To assess whether the effects were due to the particles or the 

Ag+ ions present in the AgNP suspensions, exposures were performed in the presence of a silver 

ligand to complex the Ag+ ions. Secondly, to examine the role of algal cell wall in determining 

the particle interactions with algae, four strains were selected, including Euglena gracilis, 

Haematococcus pluvialis, and Chlamydomonas reinhardtii wild type and a cell wall free mutant. 

Their interactions with fluorescent polystyrene nanoparticles (PSNP) of two sizes, 50 nm 

(PSNP50) and 500 nm (PSNP500), were investigated. Third, interactions of three differently coated 

AgNP with alkaline phosphatase (AP), an extracellular enzyme responsible for phosphorus 

acquisition, were assessed. The selected coatings were citrate (CIT), polyvinylpyrrolidone (PVP) 

and gelatin (GEL), allowing for evaluation of how particle surface chemistry influences the 

particle interactions with the enzyme. 

Exposure to AgNP and AgNO3 for 1-2 hours led to a decrease in photosynthetic yield, in a 

concentration-dependent manner, and changes in cell morphology in E. gracilis. Based on total 

silver added, AgNP were less toxic than AgNO3. Concentrations causing a 50% reduction in 

photosynthetic yield (EC50) after 1 hour exposure were 1.9 µM and 85 n  M for AgNP and 

AgNO3, respectively, and extending to 2 hours exposure did not lead to a higher toxicity. 

Damaging effects of AgNP on photosynthesis and morphology were completely prevented by 

cysteine, suggesting that the toxicity of AgNP was mediated by Ag+ ions. Uptake studies 
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Summary 

showed that the maximal cell-associated silver measured after 1 hour exposure was higher in 

AgNP compared to AgNO3, amounting to 5.1 × 10-4 mol Lcell-1 and 1.4 × 10-4 mol Lcell-1 for AgNP 

and AgNO3, respectively. The higher silver level determined in AgNP exposures was shown to 

correspond to particles adsorbed to the pellicle.  

By examining four algal strains, it was found that no strain internalized PSNP, emphasizing the 

role of algal cell walls as barrier for nanoparticle uptake. Interactions of PSNP with algae were 

found to be unique for each strain, and dependent on particle size. PSNP50 were associated with 

E. gracilis cells displaying a non-homogeneous distribution pattern on the pellicle, and resulted 

in significant morphological changes of the cells and loss of the flagella. In H. pluvialis, PSNP50 

were distributed homogeneously around the cells. The wild type and cell wall free mutant of C. 

reinhardtii cells exposed to PSNP50 were found to clump together packed within the extracellular 

polymeric substances (EPS). The particles were associated with the EPS. Other than the PSNP50, 

the larger PSNP500 were observed to interact only with the two C. reinhardtii strains. Taken 

together, these results indicate that the algal cell walls hinder the crossing of nanoparticles at 

least in case of those displaying sizes of ~50 nm and larger. The absence of particle 

internalization in the cell wall free mutant of C. reinhardtii suggests that no efficient transport 

routes for the assessed nanoparticles are available in the plasma membrane of this algae. The 

different patterns of interaction strongly depended on both the particle size and the 

characteristics of the algal cells, in particular their surface architecture and potential to secrete 

biomolecules. The localization of these biomolecules determined the distribution of the 

nanoparticles, either on the algal surfaces or in the exposure medium. 

Assessing the sorption of  AP to AgNPCIT, AgNPPVP, and AgNPGEL showed that the 

physiochemical properties of both the particle coatings and the enzyme were determinant for 

the binding. The presence of AP did not affect the stability of the three AgNP in the 

experimental medium, though the enzyme did adsorb to the AgNPCIT and AgNPPVP, leading to a 

10% and 70% coverage of the particle surface area, respectively. No adsorption of AP was found 

in the case of AgNPGEL. The three types of AgNP decreased the AP activity in a concentration-

dependent manner, however, the inhibitory effects only occurred when the AgNP were added 

after addition of the substrate to the enzyme, not vice versa. AgNO3 did not affect the AP 
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activity. Thus, the results of this study indicate particle-specific effects due to interactions with 

the enzyme-substrate intermediate. In addition, the conformation of the AP was important in 

determining its interaction with the nanoparticles. 

To conclude, this thesis provides fundamental information on environmental risk assessment of 

nanoparticles. The results confirm that toxicity of AgNP to E. gracilis was due to Ag+ ions. 

Interactions of nanoparticles with algae depend on particle size, algae characteristics and cell 

response to the particles. No uptake occurred in the examined algal strains. Moreover, 

adsorption of the extracellular enzyme to AgNP was determined by the physicochemical 

properties of the particle coatings and the enzyme, as well as the conformation of the enzyme. 

 

Keywords 

Silver nanoparticles, algae, cell wall, toxicity, uptake, adsorption, extracellular enzyme, 

nanoparticle enzyme interactions 
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Résumé 

Les nanoparticules (NP) ont des propriétés physico-chimiques uniques conférées par leurs 

petites dimensions. Elles sont aussi attractives pour les chercheurs que pour les industriels. Au 

niveau mondial, la production et l'application des nanoparticules conduisent à une 

préoccupation importante pour leurs impacts sur l'environnement, en particulier sur les 

organismes aquatiques qui se retrouvent probablement exposés à ces particules. Les algues ont 

une importance hautement écologique en tant que productrices d'oxygène et d'énergie mais 

aussi en tant que base de la chaine alimentaire pour presque toute la vie aquatique. Dans cette 

thèse, les interactions des nanoparticules avec différentes souches algales d’eaux douces ont été 

examinées. 

Dans un premier temps, la toxicité et l'assimilation de nanoparticules d’AgNO3 (ajouté comme 

source de Ag+) ou de nanoparticules d'argent enrobé de citrate (AgNP, ~50 nm) ont été 

examinées dans l'algue verte Euglena gracilis, qui n'a pas de paroi cellulaire mais une pellicule 

entourant la cellule. Pour déterminer si les effets étaient dus à des particules ou des ions Ag+ 

présents dans les suspensions de AgNP, les expositions ont été réalisées en présence d'un ligand 

d'argent en complément des ions Ag+. Dans un deuxième temps, le rôle de la paroi cellulaire 

chez l’algue dans la détermination des interactions des particules avec les algues a été examiné. 

Quatre souches ont été sélectionnées, incluant Euglena gracilis, Haematococcus pluvialis, et 

Chlamydomonas reinhardtii (une souche de type sauvage et un mutant libre de la paroi cellulaire 

pour cette dernière souche). Les interactions de ces quatre souches avec les nanoparticules de 

polystyrène fluorescentes (PSNP) de deux tailles, 50 nm (PSNP50) et 500 nm (PSNP500), ont été 

étudiées. Enfin, les interactions de trois AgNP différemment enrobé avec de la phosphatase 

alcaline (AP), une enzyme extracellulaire responsable de l'acquisition de phosphore, ont été 

évaluées. Les revêtements choisis étaient le citrate (CIT), la polyvinylpyrrolidone (PVP) et la 

gélatine (GEL), permettant l'évaluation de la façon dont la chimie de surface des particules 

influence leurs interactions avec l'enzyme. 

L'exposition à des NPAg et à AgNO3 pendant 1-2 heures conduit à diminuer le rendement 

photosynthétique, d'une manière concentration-dépendante, et induit des changements dans la 
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morphologie des cellules de E. gracilis. Si on se base sur l'argent total ajouté, les AgNP sont 

moins toxiques qu’AgNO3. La concentration qui entraine une réduction de 50% du rendement 

photosynthétique (EC50) après 1 heure d'exposition est de 1,9 µM pour AgNP et de 85 nM pour 

AgNO3. L'extension à 2 heures d'exposition ne conduit pas à une toxicité plus élevée. Les effets 

néfastes de AgNP sur la morphologie et la photosynthèse ont été empêchés complètement par la 

cysteine, ce qui suggère que la toxicité de AgNP est médiée par des ions Ag+. Des études sur 

l’assimilation ont montré que le maximum des cellules associées à l’argent, mesurée après une 

heure d’exposition, était plus élevée pour AgNP que pour AgNO3, soit 5.1 × 10-4 mol Lcell-1 et 1.4 × 

10-4 mol Lcell-1 pour AgNP et pour AgNO3, respectivement. Il a été montré que le niveau élevé 

d'argent déterminé dans les expositions de AgNP correspond à des particules adsorbées sur la 

pellicule. 

En examinant les 4 souches algales, il a été trouvé qu’aucune souche n’internalisait les PSNP, 

soulignant le rôle des parois cellulaires des algues comme barrière contre l’absorption des 

nanoparticules. Les interactions entre PSNP et les algues sont uniques pour chaque souche, et 

dépendent de la taille des particules. Les PSNP50 qui sont associé avec les cellules de E. gracilis 

présentant un modèle de distribution non homogène sur la pellicule, résultent de changements 

morphologiques importants des cellules et de la perte des flagelles. Chez H. pluvialis, les PSNP50 

sont distribués de manière homogène autour des cellules. Le type sauvage et le type mutant 

libre de la paroi cellulaire chez les cellules de C. reinhardtii exposées à des PSNP50 s’agglutinent 

ensemble, empaqueté au sein de  substances polymères extracellulaires (EPS). Les particules ont 

été associées avec les EPS. En dehors des PSNP50, les interactions des PSNP500, plus grosses, ont 

été observées uniquement avec les deux souches de C. reinhardtii. Pris ensemble, ces résultats 

indiquent que les parois cellulaires des algues empêchent le passage de nanoparticules, au 

moins dans le cas où les tailles sont de ~50 nm et plus. L'absence d'internalisation des particules 

du mutant libre de paroi cellulaire de C. reinhardtii suggère qu’il n’y a pas de voie de transport 

efficace pour ces nanoparticules dans la membrane plasmique de cette algue. Les différents 

modes d’interactions dépendent fortement à la fois de la taille de la particule et des 

caractéristiques de la cellule algale, en particulier de l’architecture de la surface et de leur 
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potentiel à sécréter des biomolécules. La localisation de ces biomolécules détermine la 

distribution des nanoparticules, soit sur la surface des algues soit dans le milieu d’exposition. 

L’évaluation de la sorption de AP sur AgNPCIT, AgNPPVP, et sur AgNPGEL a montré que les 

propriétés physico-chimiques des revêtements des particules et de l'enzyme ont été 

déterminantes pour la liaison. La présence de AP n'a pas affecté la stabilité des trois AgNP dans 

le milieu expérimental, bien que l'enzyme se soit adsorbé au AgNPCIT et AgNPPVP, conduisant à 

une couverture des particules de la zone de surface de 10% et 70%, respectivement. Aucune 

adsorption de AP n’a été trouvée dans le cas de AgNPGEL. Les trois types de AgNP diminue 

l'activité de AP de manière concentration-dépendante. Cependant, les effets inhibiteurs 

apparaissent seulement lorsque les AgNP sont ajoutés après l'addition du substrat de l'enzyme, 

et non l'inverse. AgNO3 n'affecte pas l'activité de AP. Ainsi, les résultats de cette étude indiquent 

des effets particules-spécifiques dues aux interactions avec l'enzyme-substrat intermédiaire. En 

outre, la conformation de AP est importante dans la détermination de ses interactions avec les 

nanoparticules.  

En conclusion, cette thèse fournit des informations fondamentales sur l'évaluation des risques 

environnementaux des nanoparticules. Les résultats confirment que la toxicité de AgNP sur E. 

gracilis était due à ions Ag+. Les interactions des nanoparticules avec les algues dépendent à la 

fois la taille des particules, des caractéristiques des algues et de la réponse cellulaire aux 

particules. Aucune absorption n’a eu lieu dans les souches d'algues étudiées. En outre, 

l'adsorption d’enzyme extracellulaire sur les AgNP a été déterminée par les propriétés physico-

chimiques des revêtements de particules et de l’enzyme, ainsi que la conformation de l'enzyme. 

Mots clefs : Nanoparticules d’argent, algues, paroi cellulaire, toxicité, absorption, adsorption, 

enzyme extracellulaire, interactions enzyme-nanoparticules 
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Chapter 1 General introduction 
Incredibly small by definition (less than 100 nm), nanoparticles have been increasingly used in 

various consumer products, which makes the release of nanoparticles into the environment very 

likely. Such environmental exposure to nanoparticles leads to rising concerns on their potential 

impacts on organisms, such as those living in surface water (Kahru and Dubourguier, 2010). 

This thesis focuses on interactions of nanoparticles with fresh water algae. In the introductory 

chapter, I provide an overview of the nanoparticle characteristics, environmental fate and state 

of knowledge of nanoparticle interactions with aquatic organisms as a background leading to 

the research questions addressed in this thesis.  

1.1 Engineered nanoparticles 

1.1.1 Production and application  

The recent innovations and promising applications of nanotechnology have led to a strongly 

increased production and application of engineered nanoparticles (ENP) during the last 

decades. Inorganic ENP based on metals/metal oxides include silver nanoparticles (AgNP), gold 

nanoparticles (AuNP), titanium dioxide nanoparticles (TiO2NP), and zinc oxide nanoparticles 

(ZnONP) (Peralta-Videa et al., 2011; Srivastava et al., 2015). The annual production of these 

nanoparticles has been estimated at global and regional levels. For instance, the European yearly 

production of TiO2NP was reported to range between 55-3,000 tons (Piccinno et al., 2012). For 

AgNP, a global production of 5.5-500 tons per year was reported (Aschberger et al., 2011; 

Piccinno et al., 2012; Windler et al., 2013), while in Europe, a AgNP production of around 30 

tons per year was calculated (Sun et al., 2014a). Specifically in Switzerland, the annual 

production volume was estimated to be 0.026-4.03 tons for AgNP (Gottschalk et al., 2010).   

Nanoparticles are currently used in broad fields covering household and industrial applications. 

According to the estimation of ENP distribution within grouped product categories, TiO2 NP, 

ZnO NP and AgNP are largely used in paints, cosmetics, filters, cleaning agents, and other 

applications (Gottschalk et al., 2009; Gottschalk et al., 2010; Keller et al., 2013; Piccinno et al., 

2012). TiO2 NP exhibit strong optical and catalytic properties, which facilitate their application in 
1 

 



Chapter 1 General introduction 

environmental- and energy- related fields, such as photocatalysis and photovoltaics (Boucle and 

Ackermann, 2012; Fujishima et al., 2008). Owing to their well-known antimicrobial activities, 

AgNP have been widely used in household products, such as plastics, textiles and food 

containers, as well as in medical applications (Chen and Schluesener, 2008; Rai et al., 2009; 

Sharma et al., 2009). As chemically inert and biocompatible nanoparticles, AuNP have been 

extensively exploited in biological and medical fields (Boisselier and Astruc, 2009; Shah et al., 

2014).    

1.1.2 Physicochemical properties  

Their physicochemical properties make nanoparticles distinct from bulk materials and provide 

them with attractive features for various applications (described above). At the same time, these 

physicochemical properties are important when considering their interactions with the 

surrounding environment. Such properties include elemental composition, size, charge, surface 

coatings, aggregation/agglomeration state, and solubility. 

The nanometer dimensions of the particles provide more pronounced interfacial properties and 

surface reactivity than compared to larger particles (Auffan et al., 2009). For instance, the 

adsorption of molecules to the nanoparticle surface was found to be largely enhanced in the case 

of smaller-sized particles due to their increased surface area (Bottero et al., 2011; Jegadeesan et 

al., 2010).  

When dispersed in aqueous solutions, nanoparticles become charged due to protonation or 

deprotonation processes on their surfaces. The resulting charges receive and accumulate the 

counter ions from the solution, resulting in an electric double layer surrounding the particles. 

Surface charge is the most important factor in determining particle stability, with more 

positively or negatively charged particles being more stable than the more neutral particles. 

Interactions between adjacent nanoparticles, such as electrostatic interactions and Van der Waals 

forces, may lead to the aggregation or agglomeration of particles in the suspension. Based on 

DLVO theory (named after Derjaguin, Landau, Verwey and Overbeek), the balance between the 

two forces, electrostatic repulsion and van der Waals attraction, determines whether 

aggregation or agglomeration occurs between particles. Aggregation refers to particles joining 

 2 
 



Chapter 1 General introduction 

together to form a larger assemblage, while agglomeration refers to weakly interacting particles. 

To stabilize the nanoparticle dispersion, the surface of nanoparticles can be intentionally coated 

with chemically defined molecules, such as citrate and carbonate, and various polymers like 

polyvinylpyrrolidone (PVP), polyethylene glycol (PEG) and gelatin (Gupta and Gupta, 2005). 

Such coatings provide the nanoparticle with additional charge or steric forces, and thus 

increased stability. Generally, the steric coatings, like PVP and PEG, are more efficient in 

stabilizing the particles compared to the electrostatic coatings (Tejamaya et al., 2012). 

Metallic nanoparticles, such as AgNP, ZnONP and copper nanoparticles, tend to dissolve in the 

suspension, resulting in the release of metal ions. The dissolution of nanoparticles is a dynamic 

process and has been found to be dependent on particle size, coating, and the chemical 

composition of the exposure media (Misra et al., 2012; Navarro et al., 2015). 

1.1.3 Nanoparticle characterization 

Various techniques for nanoparticle characterization can be exploited in ecotoxicological studies. 

While microscopy techniques, such as scanning electron microscopy (SEM) and transmission 

electron microscopy (TEM) (Dudkiewicz et al., 2011; Luo et al., 2013; Tiede et al., 2009), can 

directly .visualize the particles, it is highly time consuming to assess a large number of 

nanoparticles. Fluorescent microscopy can be specifically exploited in the case of fluorescently 

labelled nanoparticles, like polystyrene nanoparticles (PSNP), which have well-established 

surface functionalization and a wide range of choices for the fluorescence spectra.  

Other techniques, such as dynamic light scattering (DLS) and nanoparticle tracking analysis 

(NTA), provide measurements of the hydrodynamic diameter of nanoparticles based on 

fluctuation of scattering light as a result of the Brownian movement of particles in suspensions 

(Montes-Burgos et al., 2010). DLS measures the scattered light of the entire suspension, whereas 

NTA is based on single particle analysis. Measurements with DLS can be limited for highly 

dispersed particle suspensions, where the average size of particles might be biased to the 

presence of a few large particles. NTA is more efficient than DLS in the analysis of polydisperse 

samples, and moreover, NTA can provide particle concentration information which can be 

beneficial when evaluating polydisperse sample.  
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UV-vis spectroscopy is a commonly used and convenient technique, allowing the estimation of 

particle aggregation/agglomeration state, primarily based on the surface plasma resonance of 

the nanoparticles (Amendola and Meneghetti, 2009; Piccapietra et al., 2012b). However, the 

ability to characterize nanoparticles by this method is limited to a few types of nanoparticles 

having plasma resonance properties (e.g. AgNP and AuNP), and can be dependent on factors 

such as sample concentration and media composition. Additionally, surface analytical 

techniques, like time-of-flight secondary ion mass spectrometry (TOF-SIMS), have been used to 

investigate nanoparticle coatings (Neunzehn et al., 2013). 

1.2 Silver nanoparticles (AgNP) in the aquatic environment 

My thesis is mainly based on the examination of the effects of AgNP in the aquatic environment. 

This nanoparticle was selected due to its wide application in daily life and exceptional 

antibacterial properties. The release of AgNP into the environment is certain (Benn and 

Westerhoff, 2008; Kaegi et al., 2010). Once entered the aquatic system, AgNP are chemically 

modified, which results in the generation of various silver-related species. The interaction of 

AgNP with aquatic organisms requires careful consideration with regard to the silver species 

present in the exposure medium. 

1.2.1 Release of AgNP into the aquatic environment 

Nanoparticles can be released into environmental compartments during their whole life cycle, 

through both intended and unintended routes. Different release scenarios, including outdoor 

weathering, washing, and incineration, have been reviewed for nanoparticles (Froggett et al., 

2014). For AgNP, about 30% of the total silver content in a paint used for outdoor facades was 

found to be released to the water column through runoff during one year (Kaegi et al., 2010). 

Other studies showed the release of AgNP from different commercially available textiles during 

washing and rinsing (Benn and Westerhoff, 2008; Lorenz et al., 2012). 

Quantitative data on environmental concentrations of AgNP in the aquatic system are currently 

not available due to the limitation of analytical methods on measuring nanoparticles at trace 

concentrations. Several modeling studies provide information on predicted environmental 

concentrations of AgNP based on the whole life cycle assessment of AgNP from production to 

 4 
 



Chapter 1 General introduction 

disposal (Blaser et al., 2008; Gottschalk and Nowack, 2011; Gottschalk et al., 2009; Gottschalk et 

al., 2010; Mueller and Nowack, 2008; Sun et al., 2014a). According to the modelling, AgNP 

concentrations in the surface water in Switzerland were reported to be in the ranges of 0.56-2.63 

ng L-1 (Gottschalk et al., 2009), and 0.51 to 0.94 ng L-1 as calculated in a more recent study (Sun et 

al., 2014a).  

1.2.2 Fate of AgNP in the aquatic environment 

Silver is a highly chemically active species (Adams and Kramer, 1999b; Dobias and Bernier-

Latmani, 2013; Levard et al., 2012), which challenges the analysis and prediction of the fate of 

AgNP in aquatic environments. Previous studies on AgNP behavior in synthetic media and 

natural water showed that the intrinsic nanoparticle physiochemical properties, for instance 

size, shape, and coatings, and also diverse environmental factors in aqueous systems, such as 

pH, ionic strength, divalent ions, inorganic and organic ligands, can influence the particle 

stability, fate, and environmental transformations. Humic acids were found to enhance the 

stability of AgNP due to additional electrostatic repulsion induced by adsorption of the organic 

molecules (Huynh and Chen, 2011). On the other hand, studies investigating the behavior of 

AgNP in different aqueous solutions showed that AgNP tend to agglomerate at acidic pH and 

high ionic strength (El Badawy et al., 2010; Piccapietra et al., 2012b). AgNP can dissolve under 

oxidative conditions, resulting in the formation of silver ions (Ag+) (Dobias and Bernier-Latmani, 

2013; Lee et al., 2012). Size-dependent dissolution of AgNP was found in both neutral and acidic 

conditions, with smaller nanoparticles being more soluble (Peretyazhko et al., 2014). The 

released Ag+  tend to react with other organic and inorganic molecules, and form different silver 

species that may precipitate in the natural environment. Due to the strong affinity of silver for 

sulfur (Adams and Kramer, 1999a), formation of Ag2S is expected upon interaction with 

inorganic HS- or organic thiols. At environmentally realistic concentrations of HS-, Cl-, and CO32-, 

the dominant silver species in fresh water are suggested to be Ag2S, AgCl, and elemental silver 

(Ag0) (Levard et al., 2012).  
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1.2.3 Impacts of AgNP on aquatic organisms 

Quantitative ecotoxicological data are required to evaluate the sensitivity of different organisms 

and estimate the corresponding effective concentrations. The toxicity data concerning the half-

maximal effective concentration (EC50) of AgNP as well as other metallic nanoparticles to 

various aquatic organisms have been summarized in several reviews (Bondarenko et al., 2013; 

Fabrega et al., 2011a; Kahru and Dubourguier, 2010). The assessed organisms include bacteria, 

yeast, protozoa, algae, nematode, crustaceans, and fish, which cover different levels of the 

aquatic food chain (Bondarenko et al., 2013). The reported EC50 values are in the range of µg L-1 

to mg L-1 of total silver in the exposure media.  

Toxicity studies on AgNP have suggested that the observed effects on organisms are due to the 

released silver ions in the AgNP suspensions, which are considered as the most toxic form of 

silver in aquatic environments (Ratte, 1999), and the nanoparticle interactions with cells 

(Morones et al., 2005; Pal et al., 2007; Xiu et al., 2012; Zhao and Wang, 2012). To determine 

whether the Ag+ or the AgNP per se is the main cause of the toxicity, experiments are conducted 

using silver ligands, like cysteine, to complex and reduce the bioavailability of the Ag+. The 

complete prevention of toxicity in the presence of the silver ligands indicates the determinant 

role of Ag+, as shown in several studies with bacteria and algae (Miao et al., 2009; Navarro et al., 

2008b; Xiu et al., 2011). On the other hand, a few studies have suggested the contribution of 

AgNP per se to the overall toxicity in bacteria, algae, and a fish cell line (Fabrega et al., 2009; 

Miao et al., 2010; Yue et al., 2015). Direct interaction of AgNP with bacterial cell surfaces might 

affect the cell membrane and induce intracellular accumulation of reactive oxygen species (ROS) 

(Amro et al., 2000; Choi and Hu, 2008). Also in algae, increased generation of ROS has been 

detected upon exposure to silver (He et al., 2012; Szivak et al., 2009).  

1.3 Interaction of AgNP with algae 

Unicellular algae are important in nanoecotoxicity studies because they are primary producers 

and represent the base of aquatic food webs. To evaluate the particle effects and their transfer 

along the food chain in the aquatic environment, it is necessary to determine the uptake and 
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accumulation of AgNP in algae, as well as in other aquatic organisms. However, whether the 

particle internalization is a prerequisite for specific effects is not yet known.  

1.3.1 Cellular uptake of nanoparticles in algae 

Algae cells are typically surrounded by a rigid cell wall in addition to the plasma membrane. 

The cell wall maintains the integrity of the algae and constitutes a primary site for interaction 

with the surrounding environment. Algal cell walls are remarkably diverse among different 

species in their biochemical composition and structural features. Some algae have cell walls that 

are similar to the typical terrestrial plant cell walls (Sorensen et al., 2010; Sorensen et al., 2011), 

which are comprised of networks of cellulose microfibrils and cross-linking glycans. Other 

algae, for instance, the alga Chlamydomonas reinhardtii, do not have cellulose but mainly 

glycoproteins in their cell walls which are composed of multiple crystalline layers of about 100 

nm in thickness (Monk et al., 1983). The Euglenids species, e.g. Euglena gracilis, are distinguished 

from other algal species by the lack of a typical cell wall but the possession of a pellicle that is 

mainly composed of protein, lipid and carbohydrate (Nakano et al., 1987). The pellicle has 

unique surface characteristics: each individual pellicle stripe is helically arranged, and cavities 

are present between two stripes (Leander and Farmer, 2001; Leander et al., 2001). The algal cell 

wall composition and structure can undergo dynamic changes during the different stages of cell 

development. For instance, in the vegetative flagellate Haemotococcus pluvialis, the cell wall is 

mainly composed of carbohydrates and proteins, which are linked to a 35 nm thick layer, while 

during aplanospore formation, the cell wall contains additionally cellulose and thickens to 2.2 

µm (Hagen et al., 2002; Wang et al., 2004). Additionally, the alga Ochromonas danica represents a 

special algal species that does not possess a cell wall, having a specialized cell membrane as the 

outer surface instead (Cole and Wynne, 1974). 

For nanoparticles to enter algal cells, they must first pass through the cell wall and subsequently 

through the plasma membrane via endocytotic processes or passive diffusion. The algal cell wall 

is semi-permeable, however, little is known about the pore size. Large particles that are above 

the size of the pores might be excluded from passing through the cell wall (Navarro et al., 

2008a). The diversity in algal cell wall composition and structure may influence the passage of 

the particles into, and through the cell wall. Few studies have demonstrated endocytosis in 
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algae. Euglenid species are claimed to acquire particulate nutrients by phagocytosis in the 

absence of light (Leander et al., 2007). Specifically for the algae O. danica, microsized blue-green 

algae were visualized to be internalized using electron microscopy (Cole and Wynne, 1974).  

Permeability of the cells can change during their life cycles. As shown in the alga H. pluvialis, 

some particular molecules were found to be taken up by cells exclusively during cell division 

(Praveenkumar et al., 2015). During growth, the cell wall may have an increased porosity, due to 

the insertion of newly synthesized wall materials (Denobel and Barnett, 1991; Yamamoto et al., 

2003). Moreover, the adsorption of nanoparticles to the cell surface, or dissolved metal ions, 

might cause damage to the cell walls or membranes (Machado and Soares, 2015). It is not known 

yet whether the changes in cell permeability will facilitate nanoparticle internalization.  

Internalization of nanoparticles in algae was suggested in only a few studies (Miao et al., 2010; 

Taylor et al., 2015; Wang et al., 2013), all of which used metal-based nanoparticles that tend to 

release metal ions. For instance, AgNP were visualized inside the cell wall deficient alga O. 

danica using TEM imaging (Miao et al., 2010). More often, nanoparticle uptake was not 

evidenced in algae (Leclerc and Wilkinson, 2014; Piccapietra et al., 2012a; Röhder, 2014; Van 

Hoecke et al., 2009), which emphasizes the role of the algal surface as a barrier against 

nanoparticle entry to the cells. As shown in a systematic study with the alga C. reinhardtii wild 

type and a cell wall-free mutant, neither AgNP nor cerium dioxide nanoparticles were 

evidenced to be internalized by the algal cells, as measured by inductively coupled plasma mass 

spectrometry (ICP-MS) (Piccapietra et al., 2012a; Röhder, 2014). This suggests that both the cell 

wall and the cell membrane may hinder the particle entry. Using hyperspectral imaging, 

particulate forms of silver were found to be intracellular in AgNP-exposed C. reinhardtii cells, yet 

the presence of particles was attributed to the reduction or precipitation of Ag+ ions that were 

released from AgNP, rather than a direct uptake of AgNP in the exposure medium (Barwal et 

al., 2011; Leclerc and Wilkinson, 2014). Some studies reported that nanoparticles were clustered 

onto the algal cell wall (Hartmann et al., 2013; Van Hoecke et al., 2008; Van Hoecke et al., 2009), 

however, it is not clear whether the particles have direct contact with the cells.  

 8 
 



Chapter 1 General introduction 

1.3.2 Toxicity of AgNP to algae 

Algae have been examined for their sensitivity to AgNP and other types of nanoparticles 

(Bondarenko et al., 2013; Fabrega et al., 2011a; Kahru and Dubourguier, 2010). Toxicity studies 

have reported inhibitory effects of AgNP to algal growth (Burchardt et al., 2012; Fabrega et al., 

2011a; Ribeiro et al., 2014; Sorensen and Baun, 2015), and to photosynthesis (Dewez and 

Oukarroum, 2012; Navarro et al., 2008b; Navarro et al., 2015). The effective concentrations 

reported in these studies range from µg L-1 to mg L-1 (Bondarenko et al., 2013). 

While it is accepted that the silver ions released from AgNP are highly toxic and contribute to 

the observed AgNP effects in algae, it remains unclear to what extent the AgNP per se contribute 

to the overall toxicity. For instance, the toxicity of AgNP to the freshwater alga C. reinhardtii 

(Navarro et al., 2008b), and to a marine diatom, Thalassiosira weissflogii (Miao et al., 2009), was 

found to be completely prevented in the presence of thiol ligands, thereby indicating that 

inhibitory effects of AgNP were caused solely by the silver ions. In another study, the addition 

of thiol ligands reduced, but not fully prevented, the inhibitory effects of AgNP on the growth of 

the freshwater algae, O. danica, suggesting that, besides the silver ions, also the AgNP 

contributed to the toxicity (Miao et al., 2010).  

Algae are known to secrete extracellular biomolecules, especially enzymes used for nutrient 

acquisition (Sinsabaugh et al., 1991). Such enzymes include a variety of hydrolytic and oxidative 

enzymes, such as alkaline phosphatase, β-glucosidase, leucine aminopeptidase, and 

phenoloxidase, which cleave recalcitrant organic matter, and produce molecules that are readily 

transported across the cell membranes. Studies on the interactions of nanoparticles with these 

extracellular enzymes have reported a decreased enzyme activity upon exposure to the particles 

(Gil-Allue et al., 2015; Schug et al., 2014). In case of AgNP, the effects on extracellular enzymatic 

activity were attributed to both the silver ions and the particles (Gil-Allue et al., 2015).  

1.4  Interactions of nanoparticles with proteins  

The high surface-to-volume ratio of nanoparticles greatly favors the adsorption of proteins 

present in surrounding fluid. Proteins possess different functional groups, such as carboxylate, 

phosphate, hydroxyl, amine, and sulfhydryl, which offer a range of active sites to interact and 
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bind with nanoparticles. The adsorbed proteins, termed ‘protein corona’, form single or multiple 

layers surrounding the nanoparticle surface. The corona determines the fate and interaction of 

nanoparticles in biological systems (Lynch et al., 2007; Lynch and Dawson, 2008; Monopoli et al., 

2012). Most of the data regarding identification and quantification of the protein corona are 

available from human proteins (Ge et al., 2015; Gunawan et al., 2014; Shemetov et al., 2012). 

Very limited studies have examined the interaction of nanoparticles with yeast and bacterial 

proteins (Eigenheer et al., 2014; Khan et al., 2011c; Wigginton et al., 2010). No information about 

interactions of nanoparticles with proteins in algae exists thus far. 

1.4.1 Formation of protein corona 

Interactions of nanoparticles with proteins have been studied with different biological systems, 

including single selected proteins (Sun et al., 2014b; Wen et al., 2013), extracellular proteins 

(Albanese et al., 2014; Khan et al., 2011c), human plasma (Lundqvist et al., 2008; Walczyk et al., 

2010; Walkey et al., 2014), cell extracts (Eigenheer et al., 2014; Giri et al., 2014; Wigginton et al., 

2010), and intact cells (Bertoli et al., 2014; Hofmann et al., 2014).  

The formation of protein corona is dynamic in nature. Adsorption of proteins to nanoparticles is 

driven by colloidal forces and other biophysicochemical interactions present at the interface, 

including Van der Waals forces, electrostatic interactions, and hydrophobic/hydrophilic 

interactions (Gunawan et al., 2014; Nel et al., 2009). The type of proteins dominating the corona 

depends on its binding affinity to the particle surfaces and its relative abundance in the 

surrounding fluid. The corona will be first dominated by abundant proteins, but later by less-

abundant proteins with a higher affinity (Mahmoudi et al., 2011). When the equilibrium is 

reached, the adsorption/desorption of proteins continues at the interface. Depending on the 

binding affinity, the corona can be classified as a ‘hard’ corona, composed of high-affinity low-

exchange-rate proteins, and a ‘soft’ corona, composed of low-affinity high-exchange-rate 

proteins  (Fleischer and Payne, 2014). 

The binding of proteins to nanoparticle surfaces is influenced by the physiochemical 

characteristics of particles. It has been shown for AuNP that the adsorbed protein pattern varied 

significantly as a function of size, charge and surface coatings of the particles (Benetti et al., 2013; 
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Deng et al., 2013; Walkey et al., 2012). Also for AgNP, proteins were found to bind differently to 

bare surfaces of the particles or to chemically modified surfaces (Eigenheer et al., 2014; Podila et 

al., 2012). Knowing the influence of particle physicochemical properties on corona formation 

may allow the controlled synthesis of nanoparticles with a tunable reactivity with the biological 

systems, and therefore lower the toxicity of nanoparticles. 

1.4.2 Impacts of protein-nanoparticle interactions on nanoparticles 

Adsorption of proteins to the nanoparticle surface may affect the particle stability. The surface 

charge of nanoparticles might be either neutralized, if adsorbed proteins possess the opposite 

electrical property, or enhanced, if the protein is carrying the same charge. Changes of surface 

charge will further affect the stability of nanoparticles. Nanoparticle agglomeration might be 

driven by molecular forces, like presence of hydrogen bonding between the particles and 

proteins (Yoo et al., 2008). On the other hand, interacting proteins might stabilize the particles, 

as a result of enhanced electrostatic interactions or steric stabilization. For instance, tungsten 

carbide nanoparticles quickly agglomerated in the protein-free medium, but remained dispersed 

when the serum protein was supplemented, sterically stabilizing the particles (Kuhnel et al., 

2009). Moreover, the concentration of proteins was found to affect the stability of nanoparticles, 

with more agglomerates formed in the presence of a higher concentration of proteins (Meissner 

et al., 2010).  

1.4.3 Impacts of protein-nanoparticle interactions on proteins  

The native conformation of proteins determines their biological functions. During the formation 

of a protein corona, the proteins undergo a partial loss of structure, which may expose 

undesired epitopes and render the proteins dysfunctional. Rearrangements of myoglobin 

structure upon binding to different nanoparticle surfaces have been reported (Bellezza et al., 

2009; Bellezza et al., 2007). Using both experiments and simulations, destabilization of α-helix 

but increased β-sheet were shown in AgNP-adsorbed ubiquitins (Ding et al., 2013). In another 

study, fibrillation of 2-microglobulin (human plasma protein) was found to occur on various 

types of nanoparticle surfaces, including copolymer nanoparticle, CeO2NP, and carbon 

nanotubes (Linse et al., 2007). The fibrillation process led to formation of insoluble protein 
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aggregates, which are typically found in many human diseases e.g. Alzheimer’s disease. In 

addition, chemical modifications of proteins, such as carboxylation, might occur upon 

interactions with nanoparticles  (Tedesco et al., 2008). 

Different kinds of enzymes, including lysozyme, horseradish peroxidase, catalase, and trypsin, 

were characterized for their interaction with silicon nanoparticles (SiO2 NP) and showed that the 

strong association with the nanoparticles caused conformational changes and significant loss in 

their enzymatic activities (Czeslik and Winter, 2001; Kondo et al., 1993; Norde and Anusiem, 

1992). The sorption to nanoparticles was found to induce alterations of enzyme structure and 

function in a size-dependent manner (Shang et al., 2007; Vertegel et al., 2004). In contrast, the 

adsorption of luciferase to AgNP did not induce conformational changes in this enzyme, though 

reduced enzymatic activity was measured upon interaction with the AgNP, which was 

attributed to the silver ions released from the particles (Kakinen et al., 2013). 

1.5  Scope of the thesis 

The main scope of this Ph.D. thesis was to investigate the interactions of nanoparticles with 

fresh water algae, with major focus on AgNP. For certain research questions, fluorescent 

labelled PSNP (polystyrene nanoparticles) were used, due to their chemically inert properties 

and feasible assessment using microscopy. In this thesis, I addressed the following research 

questions:   

(i) What are the effects of AgNP to algae and can AgNP be internalized? 

(ii) How do algae differing in their cell walls interact with PSNP? 

(iii) How do extracellular enzymes interact with AgNP and are these interactions 

influenced by the particle coatings? 

The effects and uptake of citrate-coated AgNP were examined using E. gracilis as a model 

organism, considering the barrier role of the algal cell wall and the lack of typical cell wall in this 

algal species. The effects of AgNP were evaluated upon comparison with the effects caused by 

Ag+ ions. Thus, experiments were performed with AgNO3 added as silver source, and in 

presence of silver ligand to discriminate between the particle specific effects and the effects 

caused by the Ag+ ions. To further investigate the uptake of nanoparticles in algae differing in 
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their cell wall composition and structure, four fresh water algal strains were selected, including 

E. gracilis, H. pluvialis, and C. reinhardtii wild type and cell wall free mutant. Furthermore, 

interactions of nanoparticles with alkaline phosphatase, selected enzyme as a representative 

extracellular enzyme secreted by aquatic organisms, were assessed. To evaluate the influence of 

particle coating on protein-nanoparticle interactions, AgNP with different coatings were tested. 

In Chapter 2, a study on the effects and uptake of citrate-coated AgNP and AgNO3 in E. gracilis 

is presented. The algae were exposed to various concentrations of AgNP and AgNO3 in the short 

term. Effects on photosynthesis and morphology were assessed, and cellular silver content was 

quantified by ICP-MS. Toxicity experiments were also performed with cysteine, which 

complexed the silver ions and consequently allowed for discrimination between the effects 

caused by AgNP per se and by Ag+. To gather information on whether the AgNP were associated 

with cells, the algal cell surfaces following exposure to AgNP and AgNO3 were chemically 

analyzed using TOF-SIMS. Results indicated effects on algal photosynthesis and cell 

morphology upon exposure to AgNP, yet the effects were attributed to Ag+ ions only. AgNP 

were found to be associated with the cells, but particles were localized on the surface rather than 

intracellularly. This study has been submitted to Environmental Science: Nano. 

In Chapter 3, a study on the interactions of PSNP, of 50 nm and 500 nm in size, with four fresh 

water algal strains differing in their surface characteristics, is presented. In this work, cell 

response to PSNP exposure, uptake, and association of PSNP were assessed using confocal laser 

scanning microscopy. Results were examined in relation to the characteristics of the algae and of 

the particles. Considered characteristics included the physicochemical properties of 

nanoparticles, algal cell wall composition, structure and thickness, and the response of algae to 

particle exposures. Results indicated that no particle internalization occurred in all examined 

algal strains, confirming the role of algal cell walls and plasma membranes as a  barrier for 

nanoparticle uptake in algae, though the pattern of interaction was unique for each algae. The 

interactions were found to depend on the particle size, algal surface characteristics, and cell 

response to particle exposures, in particular, the excretion of extracellular molecules.  

In Chapter 4, a study on the interactions of AgNP with alkaline phosphatase is presented. The 

tested AgNP were differently coated: : citrate, polyvinylpyrrolidone and gelatin. The influence 
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of enzymes on particle stability was examined by DLS. Adsorption of alkaline phosphatase to 

AgNP was assessed by isolating the enzyme-AgNP complex using sucrose cushion 

centrifugation and then the enzyme was released from the particle. Quantification of the 

adsorbed enzyme was assessed using electrophoresis. Effects on enzymatic activity were 

assessed either following addition of the substrate to AP-AgNP mixture, or, alternatively, 

following addition of AgNP to AP-substrate mixture. Results showed that the presence of the 

enzyme did not alter the stability of the particles. The binding of alkaline phosphatase to AgNP 

depended on the physicochemical properties of the coatings, and the confirmation of the 

enzyme. AgNP decreased the enzyme activity in a concentration-dependent manner, but only 

when AgNP were added to AP-substrate mixture. 
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Chapter 2 Silver nanoparticle toxicity and association with the alga Euglena gracilis 

Impact of silver nanoparticles (AgNP) on aquatic algae has largely been studied with model 

species that possess a rigid cell wall. Here we explored the interactions of AgNP with Euglena 

gracilis, a green alga having no cell wall but a pellicle. The toxicity and silver uptake upon 1-2 h 

exposures to various concentrations of AgNO3 and AgNP, having a mean size of 47 nm 

measured in the exposure medium, were examined. The photosynthetic yield decreased in a 

concentration-dependent manner and AgNP were less toxic than AgNO3 based on total silver 

added. Cell morphology was significantly altered by AgNP and AgNO3. Damaging effects of 

AgNP on photosynthesis and morphology were completely prevented by cysteine, suggesting 

that the toxicity of AgNP was mediated by dissolved Ag. Uptake experiments showed that the 

maximal cell-associated silver was higher in AgNP compared to AgNO3 exposures, amounting 

to 5.1 × 10-4 mol Lcell-1 and 1.4 × 10-4 mol Lcell-1 for AgNP and AgNO3, respectively. The higher level 

of silver measured in AgNP exposures was corresponded to sorption of AgNP to the pellicle. 

2.1 Introduction 

The growing production, use and disposal of silver nanoparticles (AgNP) will eventually lead to 

their presence in aquatic environments (Benn and Westerhoff, 2008; Kaegi et al., 2010), with 

difficult to predict ecological consequences (Behra et al., 2013; Fabrega et al., 2011a; Navarro et 

al., 2008a). In studies with AgNP and algae, inhibition of algal photosynthesis and growth have 

been reported (Miao et al., 2010; Miao et al., 2009; Navarro et al., 2008b; Navarro et al., 2015; 

Ribeiro et al., 2014). While it is accepted that the dissolved Ag released from AgNP are highly 

toxic and contribute to observed AgNP effects, it remains unclear to what extent the AgNP by 

themselves contribute to the overall toxicity. For instance, AgNP were shown to inhibit 

photosynthesis in the freshwater algae, Chlamydomonas reinhardtii (Navarro et al., 2008b), but 

toxicity was completely prevented in the presence of cysteine, a strong silver ligand, thereby 

indicating that inhibitory effects of AgNP were caused solely by the dissolved Ag. Likewise, 

toxicity of AgNP on growth, photosynthesis, and chlorophyll production in the marine diatom, 

Thalassiosira weissflogii, was prevented following addition of the thiols glutathione and cysteine 

in the exposure medium (Miao et al., 2009). In another study, inhibitory effects of AgNP on 

growth of the freshwater algae, Ochromonas danica, were reduced but not fully prevented in the 
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presence of high concentrations of glutathione, suggesting that, besides the dissolved Ag, also 

the AgNP directly contributed to toxicity (Miao et al., 2010).  

Whether nanoparticle internalization in algae cells is a pre-requisite for toxicity is not yet 

understood (Behra et al., 2013). The algae cell is typically surrounded by a cell wall that could 

represent a barrier against nanoparticle uptake. The algal cell wall is composed of multiple 

layers that are chemically heterogeneous among different algal species. The major cell wall 

constituents in algae include cellulose, glycoproteins and polysaccharides, which are linked with 

other structural or functional components to form a rigid complex network (Domozych et al., 

2012; Heredia et al., 1993; Knox, 1995). The diatom algae possess a special type of cell wall which 

is composed of hydrated silicon dioxide. In general, the algal cell wall is semi-permeable, and 

the pore size has been estimated to be a few nanometers (5-20 nm) (Fleischer et al., 1999). 

Comparing the size of nanoparticles to the pore size of the algal cell wall, it has been 

hypothesized that only nanoparticles with sizes that are smaller than the size of the pores may 

cross the cell wall and be internalized in cells via endocytosis (Moore, 2006; Navarro et al., 

2008a). Internalization of AgNP was reported for in the alga O. danica (Miao et al., 2010). This 

algal species lacks a cell wall, and has been previously proved to be capable of endocytosis (Cole 

and Wynne, 1974). On the other hand, a systematic study with the alga C. reinhardtii did not 

evidence particle internalization either in the wild type or in the cell wall free mutant, 

suggesting that both the cell wall and the cell membrane constitute a barrier for particle 

internalization (Piccapietra et al., 2012a). 

In order to address the questions if 1) nanoparticle uptake occurs in algae and 2) to what extent 

the nanoparticles contribute to toxicity, we here examine the interactions of citrate-coated AgNP 

with the freshwater alga Euglena gracilis. This algae species was selected because it does not 

possess a cell wall but a glycoprotein composed pellicle, with longitudinal articulated stripes 

aligned on the surface (Leander and Farmer, 2001; Nakano et al., 1987). Together with the 

assessment of toxicity upon short-term exposure, silver uptake and accumulation in E. gracilis 

was studied.  
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2.2 Materials and methods 

2.2.1 Materials 

Citrate-coated AgNP were provided as an aqueous solution with a concentration of 1 g/L (9.27 

mM, pH 6.5) from NanoSys (Wolfhalden, Switzerland). The AgNP stock solution was kept in 

the dark to prevent redox reactions, and experimental solutions were freshly prepared in the 

exposure medium. A stock solution of 50 mM AgNO3 (Sigma) was prepared in deionized water 

(Barnstead Nanopure, Switzerland) and stored in the dark. 

All materials for algal growth were autoclaved to prevent biological contamination. To avoid 

metal contaminations in silver uptake experiments, polycarbonate and Teflon materials were 

washed in acid (0.03 M HNO3), and cellulose filters (0.45 µm, Sartorius) were boiled in acid for 1 

h and then dried.  

2.2.2 Nanoparticle characterization 

The hydrodiameter and ζ-potential of 10-100 µM AgNP in 10 mM 3-morpholine 

propanesulfonic acid (MOPS) at pH 7.5 were measured between 15 min to 4 h by dynamic light 

scattering (DLS) using a Zetasizer (Nano ZS, Malvern Instruments). UV–vis absorbance of 

AgNP was recorded after 1 h exposure in MOPS using a spectrophotometer (UVIKON 930). 

Dissolution of AgNP was determined after 2 h exposure in MOPS. The fraction of dissolved Ag 

was separated from nanoparticles via ultrafiltration through a 3 kDa filter unit (Millipore 

centrifugal concentrators), and via ultracentrifugation (145,000 × g, 3 h, CENTRIKON T-2000). 

The filtrate obtained from ultrafiltration and the supernatant (0.5 mL aliquot from the upper 

volume) obtained from ultracentrifugation were acidified for analysis of Ag.  

2.2.3 Algae culture and exposure medium 

The alga E. gracilis strain Z (Culture Collection of Algae, Göttingen, Germany) was cultured in 

the synthetic medium Talaquil buffered with 10 mM MOPS at pH 7.5 (Scheidegger et al., 2011), 

and supplemented with vitamin B1 and B12 (Shehata and Kempner, 1978). Algae were 

maintained at 20°C on a shaker (90 rpm, Infors, Switzerland) under light-dark cycles of 12 h 
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each. Cell number and volume were measured using an electronic particle counter (Beckman Z2 

Coulter, USA).  

To avoid silver complexation, MOPS (10 mM, pH 7.5) was selected as the exposure medium. In 

this medium, algae maintain their maximal photosynthetic activity up to 4 h (Supplementary 

Information (SI) Figure S 2.1), while all exposures were performed within 2 h in MOPS. Before 

exposure to AgNO3 and AgNP, exponentially growing algae were first centrifuged (2000 × g, 10 

min) and then resuspended in MOPS. For the toxicity experiment, the final cell density was 1.5 × 

104 cell mL-1, while a higher cell density of 1 × 105 cell mL-1 was used in the uptake experiments 

to ensure sufficient amounts of silver for quantification. Additionally, effects of AgNO3 and 

AgNP on photosynthesis were also measured at a cell density of 1 × 105 cell mL-1. 

2.2.4 Photosynthesis  

Toxicity to photosynthesis was assessed under increasing concentrations of AgNO3 (0-400 nM) 

and AgNP (0-40 µM). After 1 and 2 h, the photosynthetic yield was measured by fluorometry 

using a PHYTO-PAM (Heinz Walz GmbH, Germany). Maximum fluorescence (Fmʹ) was 

measured under a short saturating pulse of light, and compared to the fluorescence in the 

steady-state (F). Photosynthetic yield was determined according to the equation: photosynthetic 

yield = (Fmʹ-F)/Fmʹ. Values were represented as percentage of controls, and were plotted as a 

function of measured total Ag, dissolved Ag, and also to cell-associated Ag. 

To determine the contribution of dissolved Ag to AgNP toxicity, cysteine was used as silver 

ligand. AgNP (5 µM) and AgNO3 (100 nM) were first pre-equilibrated with cysteine (1 µM) for 

15 min. Then algae were exposed to the AgNP-cysteine or AgNO3-cysteine mixture for 1 h and 

photosynthetic yield was measured.  

2.2.5 Cell morphology  

The morphology of algal cells after 1 h exposure to AgNO3 (100 nM) and AgNP (5 µM) in the 

presence and absence of cysteine (1 µM) was examined after fixation in 4% paraformaldehyde 

(10 min), using a confocal laser scanning microscope (CLSM, Leica SP5 DMI 6000). Both the 

chlorophyll fluorescence and the transmitted light image were obtained at different depths 
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along the z-axis. The output image was generated by average intensity projection of the z-axis 

image stack (Image J, version 1.44).  

2.2.6 Uptake experiments 

Algae were exposed to 0-10 µM AgNP and to 0-500 nM AgNO3 at a cell density of 1 × 105 cell 

mL-1. After 1 h exposure, algae were washed to remove loosely bound AgNP or adsorbed silver 

ions following a protocol established in preliminary experiments (SI Figure S 2.2). Algae 

exposed to AgNP were first centrifuged (2000 × g, 10 min) and resuspended in MOPS. After 2 

wash cycles, algae were resuspended in cysteine-MOPS, and gently stirred for 5 min. Algae 

exposed to AgNO3 were centrifuged and resuspended in cysteine-MOPS, followed by 5 min 

stirring. After the wash, algae were filtered (SM 16510, Sartorius) and digested for metal 

analysis. The silver which was measured after the wash steps was operationally defined as cell-

associated silver ({Ag}cell). The measured {Ag}cell was either related to cell number and expressed 

as mol cell-1, or related to the measured cell volume and expressed as mol Lcell-1. Experiments 

were performed in technical triplicates and repeated at least twice.  

2.2.7 Metal analysis 

For metal determination, filters with algae were transferred into Teflon flasks and digested 

in 3 mL of 65% HNO3 and 0.5 mL of 30% H2O2 in a microwave oven (195°C, mls 1200 

mega; Microwave Laboratory System, Switzerland). Each sample was then filled to 25 

mL with deionized water in a volumetric flask. Total silver mass (1:10 dilution) was 

measured by inductively coupled plasma mass spectrometry (ICP-MS, Thermo Finnigan, 

Germany) using the isotope 107Ag. To control the reliability of the quantification, water 

references (M105A, IFA-Tull, Austria) with a known silver content were measured.  

2.2.8 ToF-SIMS analysis 

E. gracilis cells were exposed to 250 nM AgNO3, 1 and 5 µM AgNP at a cell density of 1 × 

105 cell mL-1. After 1 h, algae were washed as described above. Then, algae were fixed in 

2.5% glutaraldehyde on ice for 10 min, and washed twice with deionized water. After 
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centrifugation (2000 × g, 10 min), the algae pellet was soaked in 0.6% ammonium acetate 

for 10 sec, deposited on a silicon substrate and dried using nitrogen gas flow. 

The ToF-SIMS analysis (ToF-SIMS.5 instrument, ION-TOF GmbH) was performed in both 

spectral and imaging mode. Using the spectral mode, 107Ag+ and 109Ag+ were detected with 

high mass resolution at masses 106.91 and 108.90, respectively. 25keV Bi1+ primary ions were 

used to ensure a high sensitivity to silver, together with electron flooding to compensate for 

charge accumulation at the sample surface. Based on an in-depth sputtering with 2keV O2 over 

23.4 sec (20 scans), 5.2 sec sputtering was selected as optimal sputtering time for silver detection 

(SI Figure S 2.4). Secondary ions of positive polarity were analysed from surface areas of 150 × 

150 µm2, before and after sputtering of 5.2 sec (4 scans). To ensure a reasonable signal over noise 

ratio, each measurement accounted for a total of 200 scans, which represents a surface ion dose 

of 5.5 × 1013 ions/cm2. Additionally, each analysed cell was characterized in imaging mode with 

high lateral resolution (~200 nm) to gain insights into its spatial conformation. To ensure the 

reliability and reproducibility of measurements, a minimum of five cells of each sample 

were randomly selected and analysed. 

2.2.9 Data analysis 

Concentrations leading to 50% inhibition (EC50s) of photosynthetic yield were 

determined by the nonlinear regression sigmoidal dose-response curve fitting using the 

Hill slope equation (GraphPad Prism version 4.00, USA), and were presented as mean of 

three independent experiments, with 95% confidence interval. Differences in the 

concentration-response curves were compared based on the Hill slope and the EC50 

values using F-test. Photosynthetic values and cell volume in the cysteine experiment 

were analysed by ANOVA followed by Dunnett’s post-test. 

2.3 Results 

2.3.1 Nanoparticle characterization  

The AgNP in the original stock solution (9.27 mM) displayed an average size of 20 ± 0.2 

nm and an average ζ- potential of -34 ± 2 mV. When diluted in 10 mM MOPS at pH 7.5, 
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AgNP remained stable up to 4 h with an average size between 38 and 73 nm (Figure 2.1 

A), and a ζ-potential between -23 and -28 mV for AgNP concentrations between 10 and 

100 µM (Figure 2.1 B). The AgNP suspension displayed a maximal UV-vis absorbance at 

410-420 nm (Figure 2.1 C). The dissolved silver in AgNP suspensions (10-100 µM) was 

0.5-3.5% as determined by ultracentrifugation, and 1.3-2.6% by ultrafiltration, with a 

combined mean value of 1.7% (Table 2.1). 

2.3.2 Effects on algal photosynthesis  

Inhibition of photosynthetic yield increased with increasing concentrations of AgNO3 and 

AgNP. After 1 hour exposure, AgNO3 displayed a higher toxicity than AgNP based on 

total silver added (Figure 2.2 A). At the highest applied concentration of AgNO3 (400 nM) 

and AgNP (40 µM), the photosynthetic yield decreased to 6% and 18%, respectively, 

compared to that of control cells. The EC50 values were 85 nM for AgNO3 and 1858 nM for 

AgNP (Table 2.2). Extending the exposure time to 2 h yielded similar concentration-

response curves compared to 1 h for both AgNO3 and AgNP, with EC50 values of 89 nM 

and 1487 nM,  respectively. 

By plotting the photosynthetic yield as a function of the mean value of dissolved silver 

(1.7% of total Ag), AgNP appeared to be more toxic than AgNO3 (Figure 2.2 B). The 

calculated EC50 values were 32 nM after 1 h, and 16 nM after 2 h (Table 2.2). Based on the 

whole range of measured dissolved silver (0.5-3.5%), the resulting EC50 values of AgNP 

were all significantly lower compared to those of AgNO3 (SI Table S 2.1). 

The role of dissolved Ag in AgNP toxicity was examined using the silver ligand cysteine. 

The photosynthetic yield was reduced to 30% of control cells after 1 h exposure to 100 nM 

AgNO3, and to 8% after exposure to 5 μM AgNP (Figure 2.2 C). In the presence of 5 µM 

cysteine, no decrease of photosynthetic yield was detectable, suggesting that the AgNP toxicity 

was mediated by dissolved Ag.  

 22 
 



Chapter 2 Silver nanoparticle toxicity and association with the alga Euglena gracilis 

2.3.3 Effects on cell morphology 

CLSM examination of algae exposed to 100 nM AgNO3 and 5 µM AgNP revealed morphological 

changes. Control cells displayed a spindle-like morphology with an average cell volume of 1532 

± 81 fL (Figure 2.3 A). Cells exposed to AgNO3 were less elongated compared to control cells and 

the cell volume increased up to 2654 ± 132 fL (Figure 2.3 B). In case of AgNP, cells were 

completely round, and the cell volume increased to 2774 ± 172 fL (Figure 2.3 C). In presence of 

cysteine, the cell morphology and cell volume of algae exposed to AgNO3 and AgNP were 

similar to those of control cells (Figure 2.3 E, F), while cysteine had no effect on morphology or 

cell volume (Figure 2.3 D). 

2.3.4 Uptake experiments  

Cell-associated silver ({Ag}cell) in E. gracilis after 1 h exposure increased with increasing 

concentrations of AgNO3. The increase of {Ag}cell per algal cell was linear (R2 = 0.99) over 

the AgNO3 concentration range between 25 and 500 nM (Figure 2.4 A). Detailed values of 

{Ag}cell are listed in Table S 2.2 (SI). At the highest AgNO3 concentration, the {Ag}cell was 

6.2 × 10-16 mole cell-1. When {Ag}cell was related to the measured cell volume, ranging from 

1317 to 4260 fL in the case of AgNO3 and from 1797 to 3262 fL in the case of AgNP, silver 

uptake was non-linear. A maximal {Ag}cell value of 1.4 × 10-4 mol Lcell-1 was measured at 

500 nM AgNO3. In case of AgNP, {Ag}cell increased with increasing AgNP concentrations 

up to 2.5 µM AgNP and remained constant upon further increase of the AgNP 

concentration up to 10 µM (Figure 2.4 B). Above 2.5 µM AgNP, maximal values of 1.5 × 

10-15 mol cell-1 and 5.1 × 10-4 mol Lcell-1 were measured. A comparison of {Ag}cell in the 

AgNO3 and AgNP treatments was carried out as a function of dissolved silver (Figure 2.4 

C). In the concentration range of 25-200 nM dissolved Ag, {Ag}cell was 5-15 times higher in 

AgNP exposed cells.  

2.3.5 ToF-SIMS analysis  

After 1 h exposure to AgNO3 and AgNP, the surface of E. gracilis was analyzed using ToF-SIMS. 

The chemical map of three positive ions, Si+, CxHy+ and Ag+, was resolved in the spectral mode 

(Figure 2.5). The signal of the Si+ ion refers to the substrate where the algae were deposited on. 
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The fragment ion type CxHy+ is typically representative of organic matter, and was thereby used 

to locate the algae cells. The Ag+ ions in the chemical map were resolved from both mass type, 

107 and 109, to enhance the overall signals. The silver spectrum of mass 107 is shown in Figure 

2.5 (right column), this mass being the most representative silver mass detected. Silver mass 109 

behaved similarly yet with lower intensity (data not shown). The overall algae structure was 

additionally characterized in the imaging mode with the sum of total ion counts (Figure 2.5, left 

column), showing that cells remained intact after sample preparation.  

The ToF-SIMS analysis revealed the presence and the distribution of silver at the surface of E. 

gracilis cells. A comparison of chemical analysis before and after O2 sputtering is shown in 

Figure S 2.5 (SI). Before sputtering, silver was detected over the whole sample surface, including 

both the cell area and the surrounding substrate. Quantitative analysis of silver intensity 

showed that, before sputtering, the overall silver intensity, Isubtrate + Icell, increased from control 

(193), to AgNO3 (382), 1 µM AgNP (491), and to 5 µM AgNP (1045) treatments (Table 2.3). After 

the short sputtering, most of the silver from the substrate was removed, while silver from the 

cell area remained unaffected (SI Figure S 2.5). This was further confirmed by the quantitative 

analysis showing that the sputtering significantly decreased the total silver intensity Isubtrate + Icell 

in all samples, whereas silver intensity from the cell area (Icell) was not affected by the sputtering 

procedure (Table 2.3). Comparison of Icell after sputtering can be visualized directly from the 

silver spectrum (Figure 2.5, right column). In the control (Figure 2.5 A) and the AgNO3 exposed 

cells (Figure 2.5 B), silver intensity was found to be very low. For 1 µM (note two cells were 

analyzed, Figure 2.5 C) and 5 µM AgNP (Figure 2.5 D), increased silver intensity was detected 

with a distinct silver peak representing the silver counts from the cell area. Silver was found 

being distributed homogeneously on the cell surface. Icell of 5 µM AgNP exposed cells was more 

than 2 times higher compared to that of 1 µM AgNP (Table 2.3). The intensity ratio, Icellʹ / Isubstrateʹ, 

was calculated with respect to the corresponding cell or substrate area (Table 2.3). The ratio 

increased from AgNO3 (3.6) to 1 µM AgNP (5.5), and to 5 µM AgNP (18.0).   

2.4 Discussion 

Since nanoparticles may display different agglomeration behaviour in aqueous solutions (Behra 

and Krug, 2008), and size of nanoparticles is expected to influence biological effects, we first 
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characterized the AgNP suspensions in the exposure medium used in the experiments. 

Assessing the size of the AgNP showed that nanoparticles remained stabilized over 4 h of 

exposure with a mean size of 47 nm. The UV-vis spectra, which showed maximal absorbance at 

around 410-420 nm, confirmed that the AgNP did not agglomerate during that time. Also the 

fraction of dissolved silver after 2 h exposure in the medium varied only slightly for the 

different AgNP concentrations, between 0.5 and 3.5% as determined by ultracentrifugation and 

between 1.3 and 2.6% as determined by membrane filtration. Similar values of dissolved silver 

were previously determined with the AgNP dispersed in MOPS as well as other media 

containing inorganic salts and organic substances (Gil-Allue et al., 2015; Piccapietra et al., 2012b; 

Yue et al., 2015), indicating that there was little particle dissolution. 

Both AgNP and AgNO3 proved to decrease the photosynthetic yield. The inhibition of 

photosynthesis was concentration dependent, with EC50 values of 85 nM for AgNO3 and 1858 

nM for AgNP after 1 h of exposure. The EC50 values of AgNP determined in our study were 

within the range of the EC50s (43-4800 nM) reported for the other algal species (Bondarenko et 

al., 2013; Fabrega et al., 2011b). Based on total silver concentrations in the exposure medium, 

AgNO3 was more toxic than AgNP, with a 22 times lower EC50 value compared to that of AgNP. 

With reference to previous studies showing that the toxicity of AgNP to algae was dependent on 

dissolved Ag in the exposure medium (Miao et al., 2009; Navarro et al., 2008b; Navarro et al., 

2015; Ribeiro et al., 2014), we hypothesized that also in E. gracilis the dissolved Ag was a major 

contributor of AgNP toxicity. Experiments were carried out in the presence of cysteine, in order 

to complex the dissolved Ag and decrease Ag bioavailability. Accordingly, the effects on 

photosynthesis were completely prevented, thus supporting our hypothesis that the toxicity of 

AgNP was due to dissolved Ag. Recalculation of the photosynthetic yield based on the 

measured values of dissolved Ag shifted the AgNP concentration-response curve to lower 

effective concentrations than for AgNO3, although the extent of this difference depended on the 

chosen percentage of dissolution (SI Table S 2.1). The lower EC50s of AgNP might be explained 

by increased AgNP dissolution upon interaction with algal exudates, such as H2O2 (He et al., 

2012; Suarez et al., 2013). 
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AgNP and AgNO3 also affected the morphology of E. gracilis cells. Examined by CLSM, the cells 

exhibited an irregular round morphology which coincided with a doubling of cell volume, 

reflecting an algal stress response induced by silver. The alteration of algal cell morphology and 

increase in cell size upon exposure to silver was reported with the marine algae, Chattonella 

marina (He et al., 2012). The addition of cysteine abolished the morphological effects in E. 

gracilis, further confirming that the dissolved Ag was the determinant factor of AgNP toxicity. 

The enlargement of cells might result from unspecific interactions of silver ions with thiol 

groups of glycoproteins, which are the major components of the E. gracilis pellicle (Nakano et al., 

1987) Interactions with glycoproteins of the cell wall were also suggested from a study 

evidencing regulation of cell wall proteins in C. reinhardtii exposed to similar concentrations of 

AgNO3 (Pillai et al., 2014).  

Cell-associated silver ({Ag}cell) was measured after 1 hour exposure to AgNO3 and AgNP. Upon 

exposure to nanomolar concentrations of AgNO3 (25-500 nM), silver accumulated up to 35-150 

µmol Lcell-1, resulting in high bioconcentration factors (BCF, SI Table S 2.2) up to 1713 L Lcell-1. The 

estimated BCF in our study were comparable to the values reported for the algae C. reinhardtii 

(803-2246 L Lcell-1) (Piccapietra et al., 2012a). In the case of AgNP (1-10 µM), an increase of {Ag}cell 

was measured up to 2.5 µM AgNP exposure, and then the {Ag}cell remained almost constant 

with a maximal value of 513 µmol Lcell-1. The {Ag}cell measured in AgNP exposed algae may 

derive from the AgNP and the dissolved Ag present in AgNP suspensions. Thus the {Ag}cell of 

AgNP and AgNO3 exposures were plotted as a function of dissolved Ag (Figure 2.4 C), and the 

fraction derived from dissolved Ag in AgNP suspensions was subtracted based on the {Ag}cell 

measured in AgNO3 exposures at the same dissolved Ag concentrations (SI Table S 2.2). Since 

ICP-MS measurements do not inform whether the measured silver is derived from ionic or 

particulate form, the {Ag}cell after subtraction was calculated to correspond to 68~289 AgNP per 

cell, based on the mean nanoparticle size of 47 nm. On the other hand, assuming that the {Ag}cell 

corresponded to the uptake of dissolved Ag only, up to 44% of AgNP should have dissolved in 

the exposure medium, which by far exceeded the experimentally determined values (0.5-3.5%). 

In the study of C. reinhardtii, the measured {Ag}cell after AgNP exposure was calculated to 

correspond to a maximal number of 2-10 nanoparticles per cell, or to 0.4-2.1% increased AgNP 

dissolution (Piccapietra et al., 2012a), indicating that the {Ag}cell was mostly derived from 
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dissolved Ag. We therefore assumed that the {Ag}cell measured in E. gracilis exposed to AgNP 

reflected the AgNP tightly adsorbed to the cells.  

Despite the apparently strong association of AgNP with E. gracilis cells, several lines of evidence 

support the notion that AgNP were not internalized, but were instead strongly attached to the 

pellicle. First, the cell-associated AgNP were not toxic to the algae. For instance, at the same 

concentration of {Ag}cell, photosynthesis was significantly inhibited upon exposure to AgNO3, 

whereas no inhibition was observed with AgNP exposures (SI Figure S 2.3). Moreover, at the 

same inhibition level, {Ag}cell was 3.6 times higher upon exposure to AgNP compared to AgNO3. 

Secondly, qualitative and quantitative surface analysis by ToF-SIMS revealed the sorption of 

AgNP onto the pellicle. This technique has been recently used to explore the interactions of 

nanoparticles with mammalian cells (Draude et al., 2013; Haase et al., 2011; Hagenhoff et al., 

2013; Lee et al., 2014). The short sputtering (5.2 sec) applied during the measurement led to the 

ablation of a few nanometers from the topmost layer of the cell, while the thickness of E. gracilis 

pellicle was estimated to be 30-40 nm (Vismara et al., 2000), thus the ToF-SIMS analysis only 

focused on the surface of the cells. The removal of silver from the substrate but not from the cell 

area suggests that there were two distinct sources, silver ions and AgNP, contributing to the 

detected silver signals before sputtering (Table 2.3 and SI Figure S 2.5). The silver ions were 

easily removed by the sputtering procedure, which is typical for loosely adsorbed atoms or 

small molecules, while AgNP as large assembles were much harder to sputter away. The 

analysis of intensity ratio demonstrated a 2.8-4.8 times increase of silver intensity per cell area to 

substrate area after sputtering, indicating strong adsorption of AgNP on the cells (Table 2.3). 

The silver intensity from the cell area after sputtering was more than doubled upon exposure to 

5 µM AgNP compared to 1 µM (Figure 2.5 and Table 2.3), supporting that the amount of AgNP 

adsorbed onto pellicle was related to the exposure concentration. Whether the sorption was due 

to specific interactions with E. gracilis pellicle proteins or physical restraint within pellicle stripes 

cannot be sorted out. The surface of algae may play an important role in governing their 

interaction with nanoparticles. In the case of O. danica having no cell wall or pellicle, AgNP were 

visualized to be inside the cells (Miao et al., 2010). In C. reinhardtii, which has a rigid cell wall 

mainly composed of glycoproteins, no evidence for uptake of AgNP was seen (Piccapietra et al., 
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2012a). Our results therefore highlight the importance of taking the large diversity in cell wall 

composition and surface architecture among different algal species into account. 

Contributions: 

I prepared the analytical samples for ICP-MS and the measurement was performed by David 

Kistler in our department. ToF-SIMS analysis was conducted in collaboration with Laetitia 

Bernard (EMPA, Dübendorf). I worked on the sample preparation and participated in the 

measurement and data analysis. 
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2.5 Figures and tables 

 

Figure 2.1 Average size (A), ζ-potential (B), and UV-vis spectra of 10, 50, 100 µM AgNP in 10 
mM MOPS, pH 7.5.   

 

 

Table 2.1 Percentage of dissolved silver in AgNP suspensions. 

AgNP, µM ultracentrifugation 
 

ultrafiltration 
Mean SD 

 
Mean SD 

10 3.5% 0.7% 
 

1.3% 0.7% 
25 0.8% 0.2% 

 
2.6% 0.1% 

100 0.5% 0.1% 
 

1.6% 0.1% 
Combined mean 1.7% 
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Figure 2.2 Inhibition of photosynthesis upon 1 and 2 h exposure to AgNO3 and AgNP. 
Concentration-response curves were plotted as a function of total Ag (A) and dissolved Ag 
measured in exposure medium (B). Data were analysed using F-test. Based on total Ag, AgNO3 
was more toxic than AgNP (p <0.0001). There was no significant difference between 1 and 2 h 
exposure for both AgNO3 (p =0.8331) and AgNP (p =0.1947). Based on dissolved Ag, AgNP 
toxicity was significantly higher than AgNO3 (p <0.0001). The photosynthetic yield was 
measured upon 1 h exposure to 100 nM AgNO3 and 5 µM AgNP in the presence of cysteine (C). 
** = significantly different from control, p <0.01, ANOVA, Dunnett’s multiple comparison test. 
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Table 2.2 AgNO3 and AgNP EC50 values for photosynthetic yield in E. gracilis, expressed on the 
basis of measured total and dissolved Ag concentrations. 

Treatment Time EC50, nM 95% CI, nM 
as a function of total Ag 
AgNO3 1 h 85 74-97 
AgNP 1 h 1858 1511-2284 
AgNO3 2 h 89 78-102 
AgNP 2 h 1487 1286-1719 
as a function of dissolved Ag (assuming 1.7% of dissolution) 
AgNP 1 h 32 26-39 
AgNP 2 h 16 14-19 

  

 

  

Figure 2.3 CLSM images and measured cell volume of algae exposed to AgNO3 and AgNP in the 
absence and presence of cysteine. Control cells (A), cells after 1 h exposure to 100 nM AgNO3 
(B), 5 µM AgNP (C), cysteine (D), 100 nM AgNO3 + cysteine (E), and 5 µM AgNP + cysteine (F). 
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Figure 2.4 Cell-associated silver ({Ag}cell) measured in E. gracilis after 1 h exposure to various 
concentrations of AgNO3 (A) and AgNP (B) expressed as mol Lcell-1 (left y-axis) and mol cell-1 
(right y-axis), and comparison of {Ag}cell between AgNO3 and AgNP exposures based on 
dissolved silver (C). 
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Figure 2.5 ToF-SIMS chemical analysis after sputtering of control cells (A), cells exposed to 250 
nM AgNO3 (B), 1 µM AgNP (C) and 5 µM AgNP (D). From left to right: total counts (imaging 
mode), chemical map of substrate (Si+), cell (CxHy+) and silver (107Ag++109Ag+), and mass 107 
spectrum of silver from cell area. Surface area: 150 × 150 µm2. 

Table 2.3 Quantitative analysis of silver intensity (107Ag++109Ag+) in control cells, cells exposed to 
250 nM AgNO3, 1 µM  and 5 µM AgNP, before and after sputtering. 

Treatment 

Ag from total area* 
(Isubstrate + Icell) 

Ag from cell area 
(Icell) 

Intensity ratio#  
Icellʹ / Isubstrateʹ 

before 
sputtering 

after  
sputtering 

before 
sputtering 

after  
sputtering 

before 
sputtering 

after  
sputtering 

control 193 50 3 4 0.4 1.7 
250 nM AgNO3 382 55 7 8 0.4 3.6 
1 µM AgNP 491 219 70 69 2.0 5.5 
5 µM AgNP 1045 289 201 154 3.8 18.0 
* Total area of 150 x 150 µm2 was analyzed.  
# The intensity ratios were normalized by the respective areas.  
Icellʹ = Icell / cell area.  
Isubstrateʹ = Isubstrate / substrate area. 
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2.6 Supporting information 

 

 
Figure S 2.1 Photosynthetic yield of E. gracilis in 10 mM MOPS, pH 7.5 as a function of time. 

 

 

 

 

 
Table S 2.1 Recalculated AgNP EC50 values based on different percentages of measured 
dissolved silver 

Dissolved 
silver 

Time AgNP EC50, nM 95% CI, nM p valuea 

0.5% 1 h 10 8-11 <0.0001 
 2 h 7 6-9 <0.0001 
1.7% 1 h 32 26-39 <0.0001 
 2 h 16 14-19 <0.0001 
3.5% 1 h 65 53-80 0.0036 
 2 h 52 45-60 <0.0001 
a Data analyzed using F-test. p < 0.001, AgNP significantly different from AgNO3 
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Figure S 2.2 Preliminary experiments for establishing the wash protocol for the uptake studies. 
Algae were exposed to 50 nM AgNO3 and 5 µM AgNP for 1 h. To remove surface adsorbed 
silver ions in AgNO3 exposure, algae were centrifuged (1200 × g, 5 min), resuspended in fresh 
MOPS (10 mM, pH 7.5) containing 0.5 mM cysteine, and then gently stirred. Between 5-60 min, 
algae were filtrated for metal analysis. Algae without washing were also measured to determine 
total silver. The metal analysis showed that the cysteine wash after as little as 5 min resulted in a 
constant level of cell-associated silver {Ag}cell and therefore was selected as optimal washing 
protocol for AgNO3 (A). To remove the surface adsorbed AgNP, algae were centrifuged and 
resuspended in MOPS. After 1-4 wash cycles, algae were resuspended in cysteine-MOPS and 
stirred for 5 min to remove adsorbed silver ions. Algae washed for different cycle number as 
well as unwashed algae were filtrated for metal analysis. The {Ag}cell showed to remain constant 
after two wash cycles followed by a 5 min cysteine-MOPS wash (B). 
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Table S 2.2 Calculation of bioconcentration factors (BCF) for AgNO3, possible number of AgNP 
per cell, and dissolution of AgNP based on {Ag}cell measured in the uptake experiments. 

Treatment 
{Ag}cell, 

mol cell-1 
{Ag}cell, 

mol Lcell-1 
*[Ag]out, 

mol L-1 
BCF, 

L Lcell-1 
No. of NP Dissol. % 

25 nM AgNO3 5.31E-17 3.49E-05 2.49E-08 1713   
50 nM AgNO3 7.32E-17 4.71E-05 4.99E-08 1080   
100 nM AgNO3 1.17E-16 8.07E-05 9.98E-08 898   
200 nM AgNO3 1.95E-16 1.39E-04 2.00E-07 756   
500 nM AgNO3 6.17E-16 1.44E-04 4.99E-07 339   
1 µM AgNP 3.57E-16 1.86E-04   68 35 
2.5 µM AgNP 1.14E-15 4.18E-04   215 44 
4 µM AgNP 1.53E-15 5.13E-04   289 37 
5 µM AgNP 8.76E-16 4.47E-04   166 18 
10 µM AgNP 1.08E-15 3.48E-04   205 11 

* [Ag]out is the silver concentration in the medium after subtracting the silver taken up by cells 

BCF were calculated as the ratio between cell-associated silver and silver remaining in the 

exposure medium, based on Equation 1.  

The {Ag}cell measured in AgNP exposures include silver from the AgNP ({Ag}AgNP) and the 

dissolved Ag ({Ag}d) in AgNP suspensions. For each AgNP exposure concentration (1.7% 

dissolved Ag), {Ag}d was calculated according to the linear uptake model established in the 

uptake experiments with AgNO3 (Equation 2). Then the fraction derived from {Ag}d in AgNP 

suspensions was subtracted. The {Ag}cell after subtraction (∆{Ag}cell) was calculated to correspond 

to 68~289 AgNP per cell, based on the mean nanoparticle size of 47 nm, silver density (ρAg) of 

10.49 g cm-3, and silver mass (MAg) of 107.8682 g mol-1 (Equation 3).  

On the other hand, assuming that the ∆{Ag}cell corresponded to the uptake of dissolved Ag only, 

the amount of Ag needed to be present as dissolved Ag ([Ag]exp) was estimated according to 

Equation 2. The dissolution of AgNP was then calculated as the percentage of dissolved Ag to 

AgNP exposure concentration, based on  Equation 4. As a result, 11-44% of AgNP should have 

dissolved in the exposure medium.  
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Equation 1. Calculation of BCF. [Ag]exp is the exposure concentration of AgNO3. 

BCF (
𝐿𝐿

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
) =

{Ag}cell �
mol
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�

[Ag]out �
mol

L �
=  

{Ag}cell �
mol
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�

[Ag]exp �
𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿 � −  {Ag}cell �

mol
cell� × No. of cells  

𝐿𝐿  
 

 

Equation 2. Linear uptake model of dissolved Ag ({Ag}d) upon exposure to different 

concentrations of AgNO3.  

{Ag}d �
mol
cell

� = [Ag]exp(nM) × 10−18 + 3 × 10−18 

Equation 3. Calculation of nanoparticle number per cell (a). ∆{Ag}cell representing the {Ag}cell 

after subtraction the {Ag}d in AgNP suspensions. (b) Calculation of  MAgNP based on dAgNP = 47 

nm, VAgNP, and MAgNP, representing diameter, volume and mass of single AgNP, ρAg (silver 

density) = 10.49 g cm-3, and MAg (silver mass) = 107.8682 g mol-1. 

(a) 

No. of AgNP
cell

=
∆{Ag}cell �

mol
cell� × MAg �

g
mol�

MAgNP �
g

AgNP�
 

(b) 

 MAgNP �
g

AgNP
� = VAgNP �

m3

AgNP�
× ρAg �

g
m3� = �

dAgNP
2 �

3
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Equation 4. Calculation of nanoparticle dissolution. [Ag]exp is calculated based on Equation 2. 

[AgNP]exp is the exposure concentration of AgNP. 

% of AgNP dissolution =
[Ag]exp(nM) × 10−3

[AgNP]exp(µM) × 100 
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Figure S 2.3 Photosynthetic yield plotted as a function of {Ag}cell. The photosynthetic yield was 
measured at a cell density of 1.0 × 105 cell/mL upon 1 h exposure to AgNO3 and AgNP (B). 
The estimated EC50s were 312 nM for AgNO3 and 77 µM for AgNP. {Ag}cell were obtained 
from uptake experiments. For 100 nM AgNO3, the {Ag}cell was 8.1 × 10-5  mol Lcell-1 and the 
photosynthetic yield of algae was close to control (105%). At a higher AgNO3 exposure 
concentration, 500 nM, the photosynthetic yield decreased to 8.7% of control cells while the 
{Ag}cell reached 1.4 × 10-4 mol Lcell-1. In case of 1 µM AgNP, the measured {Ag}cell was 1.9 × 10-4 mol 
Lcell-1, yet the photosynthetic yield remained uninhibited (102%). The decrease of photosynthetic 
yield to 12% was observed when {Ag}cell reached 5.1 × 10-4 mol Lcell-1 upon exposure to 10 µM 
AgNP. 
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Figure S 2.4 ToF-SIMS in-depth sputtering on cells after 1 h of exposure to 5 µM AgNP. Silver 
maps (107Ag+ + 109Ag+) of the topmost surface, after 5.2, 10.4, 15.6 and 20.8 sec of sputtering (A). 
Surface area: 150 × 150 µm2. Silver intensity as a function of the sputtering time, with the full 
area (black line) and cell area (red line) analyzed. The carbon map shows the position of the cells 
and the areas taken into account for the intensity plot (insert). 
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Figure S 2.5 ToF-SIMS chemical analysis of silver before and after sputtering of the control cell 
(A), cell exposed to 250 nM AgNO3 (B), 1 µM (C) and 5 µM AgNP (D). Surface area: 150 × 150 
µm2. 
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Chapter 3  Interactions of polystyrene nanoparticles with four fresh water algal strains 

While effects of nanoparticles have been demonstrated with various algae species, no studies 

have proved that the effects are related to cellular internalization of the particles. Algal cells are 

surrounded by a cell wall which represents a primary site to interact with the nanoparticles. To 

examine whether algal cell walls influence the particle interactions with algae, four strains 

specifically Euglena gracilis, Haematococcus pluvialis, and Chlamydomonas reinhardtii wild type and 

a cell wall free mutant, were selected. Their interactions with fluorescent polystyrene 

nanoparticles (PSNP) of two sizes, 50 nm (PSNP50) and 500 nm (PSNP500) were investigated 

using confocal laser scanning microscopy. No strain internalized PSNP. Interactions of PSNP 

with algae were found to be unique for each strain, and depend on both the particle size and the 

characteristics of the algal cells, in particular their surface architecture and potential to secrete 

biomolecules.  

3.1 Introduction 

Owing to their extremely small dimensions and unique physicochemical properties, 

nanoparticles have been increasingly produced and used in widespread applications in the last 

decade. The massive usage of nanoparticles makes them likely to be present in the aquatic 

environment (Gottschalk et al., 2009; Lorenz et al., 2012; Mitrano et al., 2014; Sun et al., 2014a), 

and eventually become a concern to the aquatic organisms that are potentially exposed to such 

pollutants. Algae, as primary producers at the base of aquatic food chains, have been examined 

for their sensitivity to various types of nanoparticles (Bondarenko et al., 2013; Fabrega et al., 

2011a; Kahru and Dubourguier, 2010). While most of the toxicity studies have reported the 

inhibitory effects of nanoparticles on algal growth (Aruoja et al., 2009; Cardinale et al., 2012; 

Fabrega et al., 2011a; Franklin et al., 2007; Lee and An, 2013; Van Hoecke et al., 2008; Van Hoecke 

et al., 2009), others have examined the sensitivity of photosynthesis to nanoparticles (Dewez and 

Oukarroum, 2012; Navarro et al., 2008b; Navarro et al., 2015; Röhder, 2014). The effective 

concentrations reported in these studies range from µg/L to mg/L (Bondarenko et al., 2013), 

though it is not generally known whether measured effects result from particle internalization 

into algae cells. In case of metal-based nanoparticles with high solubility, toxicity has rather 

been related to the uptake of metal ions released from particles than to direct particle effects 

(Aruoja et al., 2009; Franklin et al., 2007; He et al., 2012; Navarro et al., 2008b; Navarro et al., 
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2015). For less soluble nanoparticles, toxicity has been attributed to indirect effects like shading 

of algae by aggregated particles (Bhattacharya et al., 2010; Handy et al., 2012; Hartmann et al., 

2013; Hartmann et al., 2010). However, no studies available so far have proved the occurrence of 

particle specific effects on algae as a result of cellular internalization of particles.  

For nanoparticles to enter algal cells, they must first cross the cell wall in order to reach the cell 

membrane, where they might be internalized via endocytotic pathways or by passive diffusion 

(Behra et al., 2013; Navarro et al., 2008a). Algal cell walls are fairly rigid structures that serve to 

maintain cell shape and to protect the cell membrane from mechanical stress. The biochemical 

composition of algal cell walls differs across algal species (Popper et al., 2014; Sorensen et al., 

2010; Sorensen et al., 2011). Its main components include cellulose, glycoproteins, and 

polysaccharides (Domozych et al., 2012), each possessing a variety of functional groups such as 

carboxylic, phosphate and sulfhydryl groups. The structural organization and thickness of algal 

cell walls are also diverse and species specific (Domozych et al., 2012). The algal cell wall is 

freely permeable to low molecular weight molecules, but little information is available on its 

pore size. One can assume that the crossing of nanoparticles through the algal cell wall is limited 

to those particles having sizes that are smaller than the size exclusion of the pore.  

Information on nanoparticle uptake in algae is so far limited to a few studies. Silver 

nanoparticles (AgNP) were visualized by transmission electron microscopy (TEM) inside a cell 

wall deficient alga Ochromonas danica (Miao et al., 2010). On the other hand, studies with the 

green alga Chlamydomonas reinhardtii did not evidence any uptake of AgNP nor of cerium 

dioxide nanoparticles (CeO2NP) by Inductively Coupled Plasma Mass Spectrometry 

measurements (Piccapietra et al., 2012a; Röhder, 2014). Similarly, no uptake of AgNP was 

evidenced in the fresh water algae Euglena gracilis, though  particles were found to be sorbed to 

the surface of the algal cells based on Time-of-Flight Secondary Ion Mass Spectrometry 

measurements (Chapter 2).  

In this study, we investigated the interactions of nanoparticles with fresh water algae differing 

in their cell surface characteristics (Supporting information (SI) Figure S 3.1). The selected 

unicellular strains were Euglena gracilis, Haemotococcus pluvialis, and the wild type and a cell wall 

free mutant of Chlamydomonas reinhardtii. E. gracilis cells do not possess a typical cell wall but a 
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thin glycoprotein-based pellicle of ~40 nm in thickness (Leforttran et al., 1980; Nakano et al., 

1987), which allows the cells to flexibly alter their morphology during movement. The pellicle is 

unique in its architecture, displaying regular stripes connected via longitudinal cavities (Vismara 

et al., 2000) (SI Figure S 3.1 A). In the case of H. pluvialis, following dynamic regulation through 

the whole cell-cycle, the composition, thickness and structure of the cell wall is variable, with 

remarkable increase of the thickness from 35 nm up to 2.2 µm (Hagen et al., 2002; Wang et al., 

2004). Characteristically, cell walls of H. pluvialis are covered by a multilayered gelatinous 

extracellular matrix containing carbohydrates and proteins, which is also localized between the 

cell wall and the plasma membrane (Hagen et al., 2002) (SI Figure S 3.1 B). The cell wall of C. 

reinhardtii is about 100 nm thick and is mainly composed of glycoproteins, which are linked to 

multiple crystalline layers (Monk et al., 1983) (SI Figure S 3.1 C). To assess whether the plasma 

membrane is a barrier for nanoparticle uptake, a cell wall free mutant of C. reinhardtii, with the 

membrane as the outer surface (SI Figure S 3.1 D), was also included in this study. The 

interactions of nanoparticles with the algal strains were investigated upon exposure of the algae 

to fluorescently labeled polystyrene nanoparticles (PSNP) of 50 and 500 nm size, and examined 

using confocal laser scanning microscopy (CLSM). 

3.2 Materials and methods 

3.2.1 PSNP and characterization in exposure media 

Fluorescent PSNP50 (mean primary size 50 nm, size range 40-60 nm) and PSNP500 (mean primary 

size 500 nm, size range 400-600 nm) were purchased from Corpuscular Inc. (Microspheres-

Nanospheres, USA). The particles were provided in deionized water at a concentration of 10 

mg/mL. The fluorophores of the PSNP50 and PSNP500 have excitation/emission wavelengths at 

465/ 480 nm and 565/580 nm, respectively. Both PSNP were negatively charged, given by the 

fluorophore residues. The nanoparticle stock solutions were kept in dark at 4 °C. 

PSNP were characterized in the different algal media used in the exposure experiments. The 

PSNP50 and PSNP500 stock solutions were diluted in Talaquil, organic medium, and 10 mM 3-

morpholine propanesulfonic acid (MOPS) at pH 7.5, used as simple buffer control, to a final 

concentration of 0.01 mg/mL. Average size and Zeta potential of particles were measured 2 
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hours after dilution by dynamic light scattering (DLS) using a Zeta Sizer (Nano ZS, Malvern 

Instruments). For the settings, the material was set to polystyrene latex with refraction index 

1.59 and absorption 0.01; the dispersant was set to water; and the automatic settings were used 

for other parameters, including measurement duration, attenuation and optimum measurement 

position. For Zeta potential, automatic attenuation and voltage, a minimum of 10 runs and a 

maximum of 30 runs, and a Smolvchowski model were set. Three measurement replicates were 

performed for each sample. A mean size with standard deviation, and a polydispersity index 

(PDI) were calculated per sample based on cumulant analysis algorithm.  

3.2.2 Algae culture  

The stock culture of the alga E. gracilis strain Z (SAG 1224-5/25), and H. pluvialis (SAG 34-1n) 

were obtained from the Institute of Plant Physiology at the University of Göettingen (Germany). 

The wild type of the freshwater algae C. reinhardtii, strain CC-125, and the cell wall free mutant, 

strain CC-400, were obtained from the Chlamydomonas Genetics Centre (Durham, USA).  

All algae strains were grown in glass Erlenmeyer flask under controlled conditions. E. gracilis 

and H. pluvialis were maintained at 20 °C (90 rpm, 40 µE m-2 s-1) using a High Technology Infors 

shaker (Infors, Bottmingen, Switzerland) under 12-hour light-dark cycles. Both C. reinhardtii 

strains were cultured at 25 °C in the shaker under continuous light (90 rpm, 120 µE m-2 s-1).  

Algae were cultured in different types of synthetic media established to fulfill their nutrient 

requirements. E. gracilis were grown in an inorganic Talaquil medium buffered with 10 mM 

MOPS at pH 7.5 (composition listed in SI Table S3.1), and supplemented with Vitamin B1 (3.32 × 

10-7 M) and B12 (3.69 × 10-12 M). H. pluvialis were grown in either Talaquil or an organic medium 

containing tryptone (0.2%), yeast extract (2%) and CaCl2 (5 × 10-4 M) buffered with 10 mM MOPS 

at pH 7.5. Both strains of C. reinhardtii were grown in Talaquil. All culture media were 

autoclaved before use.  

3.2.3 Exposure experiments 

For all experiments, exponentially growing algae were centrifuged and resuspended in fresh 

culture media. Due to different sensitivities to mechanical stress among the strains, different 
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centrifugation protocols were applied for pelleting the algae cells (10 min, 2000 rpm for E. 

gracilis; 5 min, 1000 rpm for H. pluvialis; 10 min, 3000 rpm for C. reinhardtii wild type; 10 min, 

1500 rpm for C. reinhardtii mutant). E. gracilis and H. pluvialis, at a cell density of 1 × 105 cell/mL, 

and both strains of C. reinhardtii, at a cell density of 1 × 106 cell/mL, were exposed to 1 mg/mL 

PSNP50 or PSNP500 in their culture media. Exposure was performed under shaking and dark 

conditions to prevent fluorescence bleaching of the PSNP. After 2 hours, algae were chemically 

fixed with 2% glutaraldehyde for 10 min. Fixed algae were transferred to a glass slide, covered 

with coverslip and directly examined using confocal laser scanning microscopy (CLSM).  

3.2.4 CLSM 

Examination of nanoparticle interaction with the algae was performed by CLSM using a Leica 

SP5 DMI 6000 microscope (Germany). Images were recorded using  the software LAS AF v2.7.9 

and a 63× oil immersion lens with a numerical aperture of 1.4. For all samples, sequential mode 

was applied to distinguish between the  fluorescent signals given by the PSNP and the algal 

chlorophyll. The PSNP50 fluorescence was excited using a 476 nm laser light and detected at 500-

550 nm in the photomultiplier tube (PMT). The chlorophyll was excited with a 488 nm laser and 

detected at the PMT in the range of 650-750 nm. For PSNP500, the laser light of 514 nm was 

exploited and the fluorescence was detected at 570-633 nm PMT. Transmission images of the 

cells were recorded under bright field illumination. All images were acquired at 200 Hz 

scanning speed, averaged from two frame recording and output in 1024 × 1024 pixel format. The 

autofluorescence of the algal cells was checked by imaging non-nanoparticle-exposed cells 

under the same settings described above. For several samples, a xyz scan was performed to 

record multiple optical planes of the cells. The z-depth (10-15 µm) was adjusted to allow for a 

complete z-stack imaging of the entire cell from top to down views. The step size (typically 

around 0.2 µm) was kept as default settings that was optimized by the software.  

3.2.5 Image analysis 

All image analysis was performed with the software Image J version 1.44. The fluorescent 

images are presented as an overlay of the PSNP and the chlorophyll fluorescence. Based on z-
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stack images, three-dimensional (3D) analysis was performed and displayed as xz projections or 

3D volume viewer. The xyz coordinates of the 3D visualization were indicated on the images.  

3.3 Results 

3.3.1 Characterization of PSNP in culture media 

Two hours after dilution in 10 mM MOPS at pH 7.5, PSNP50 at 0.01 mg/mL displayed an average 

diameter of 73.8 nm as measured by DLS (Table 3.1). The measured diameter of the particles 

was comparable to the diameter indicated by the supplier (40-60 nm). When diluted at the same 

concentration in the two media used for exposure experiments, Talaquil and organic medium, 

PSNP50 showed a similar average diameter of 84.7 and 72.6 nm, respectively. The size 

distribution of all particle suspensions was between 20 and 120 nm (SI Figure S 3.2 A, B). 

Meausurements of Zeta potential displayed sligtly less negative charges in Talaquil and organic 

medium compared to MOPS.  

Two hours after dilution in MOPS, PSNP500 at 0.01 mg/mL showed an average diameter of 467.4 

nm (Table 3.1), which is comparable to the size stated by the supplier (400-600 nm). When 

dispersed in the exposure medium Talaquil, a similar average size of 443.9 nm was measured. 

Analysis of the PSNP500 at the same concentration in the organic medium showed an increase in 

particle size to 524.4 nm. The size distributation was in the range between 200 to 1000 nm (SI 

Figure S 3.2 C, D). The Zeta potential became less negative when the particles were dispersed in 

Talaquil and the organic medium compared to MOPS.  

3.3.2 Interaction of PSNP with Euglena gracilis 

E. gracilis cells in the absence of nanoparticles exhibit an elongated shape, with flagella located 

on the anterior end of the cells (SI Figure S 3.3). As revealed by CLSM, exposure to PSNP50 led to 

morphological changes of the cells that displayed a less elongated and rounder shape compared 

to control cells (Figure 3.1 A, B). In most of the cells, flagella were disassociated from the cell 

bodies.  

As shown in the CLSM micrographs, fluorescence of PSNP50 was observed to be in close 

association with the cells (Figure 3.1 A, B). In order to get detailed information about the 
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localization and distribution of the particles, sequential z-stack imaging was applied to an 

individual E. gracilis cell. The 3D analysis of the z-stack images displayed as xz projections 

(Figure 3.1 C1-C5) or volume viewing (Figure 3.1 E), showed PSNP50 to adsorb and aggregate on 

the pellicle, in a non-homogeneous manner. No particles were detected to be localized in an 

intracellular compartment during the entire sequential z-stack imaging and 3D analysis.  

Upon exposure to the PSNP500, the morphology of E. gracilis cells was elongated and comparable 

to control cells (Figure 3.1 F, G). Particles appeared to be dispersed in the exposure medium and 

were not detectable in association with the pellicle. 

3.3.3 Interaction of PSNP with Haematococcus pluvialis 

The morphology of H. pluvialis cells was comparable in both the inorganic (Talaquil) and organic 

media, displaying a typical spherical or ellipsoidal shape with two equal-length flagella 

emerging from the anterior end of the cells (SI Figure S 3.4). Exposure to PSNP50 or PSNP500 did 

not induce morphological changes in H. pluvialis in either media (Figure 3.2 and Figure 3.3).  

The CLSM micrographs revealed that PSNP50 were associated with the H. pluvialis cells cultured 

in Talaquil (Figure 3.2 A,B). The localization and distribution of the particles were further 

investigated by 3D analysis based on sequential z-stack imaging. As shown in the xz projections 

and volume viewing, PSNP50 were homogenously distributed over the entire cell surface (Figure 

3.2 C1-C5, E). Large aggregates were observed to occur at the root region of flagella. For all the 

analyzed images, no particle internalization was evident. In case of PSNP500 exposures, no direct 

contact was observed between the nanoparticles and the cells (Figure 3.2 F, G).  

The interactions of PSNP with H. pluvialis cultured in organic medium were similar to those 

observed for H. pluvialis cultured in Talaquil (Figure 3.3). PSNP50 were clearly associated with 

the cells (Figure 3.3 A, B). Again, homogeneous distribution of PSNP50 on algal cell surface was 

shown in the xyz projection and 3D volume viewing (Figure 3.3 C1-C5, E). Also, large aggregates 

of PSNP50 were found to attach to the root region of the algal flagella. No intracellular particles 

were detected throughout the sequential z-stack imaging. PSNP500 were dispersed in the 

medium and not associated with the cells (Figure 3.3 F, G). 
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3.3.  Interaction of PSNP with Chlamydomonas reinhardtii 

The C. reinhardtii wild type cells are spherical shaped and possess two flagella (SI Figure S 3.5 A, 

B). The morphology of cells from the wild type strain was not altered after 2 hour exposure to 

PSNP50 or PSNP500 (Figure 3.4). As shown in the transmission CLSM images (Figure 3.4 B), the 

algae exposed to PSNP50 excreted extracellular polymeric substances (EPS) to the periphery of 

the cells and to the medium. Cells clumped together and were packed with the EPS (Figure 3.4 

B). PSNP50 appeared to be associated with the EPS (Figure 3.4 A, B). In the presence of PSNP500, 

cells secreted less EPS and did not clump together (Figure 3.4 C, D). In this case, PSNP500 were 

associated only with the algal flagella.  

Similar to the wild type, the wall free mutant strain of C. reinhardtii cell also has a spherical 

shape, but do not possess flagella (SI Figure S 3.5 C, D). The morphology of the mutant was not 

altered in the presence of PSNP50 nor PSNP500 (Figure 3.5). As shown in the transmission images, 

exposure to PSNP50 led to excretion of EPS and clumping of the cells (Figure 3.5 B). The secreted 

EPS was not released to the medium but remained associated with the cell membrane (Figure 

3.5 B). PSNP50 were associated with the EPS (Figure 3.5 A, B). Cells exposed to PSNP500 also 

secreted EPS though the cells did not clump to larger aggregates (Figure 3.5 C, D). The particles 

were found to be primarily associated with the EPS. 

3.4 Discussion 

In this study, we aimed to examine how PSNP interact with fresh water algae and, in particular, 

whether particles are taken up by the algae. Therefore, we exploited the distinct characteristics 

of four algal strains belonging to three species to aid a systematic investigation of the role of 

algal surface characteristics on resulting interactions with the nanoparticles. Using fluorescent-

labeled PSNP and detection by confocal microscopy, we demonstrate that no nanoparticle 

internalization occurred in the examined algal strains. However, patterns of interaction 

appeared to be unique for each strain, as summarized in Table 3.2. 
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3.4.1 Euglena gracilis 

In E. gracilis cultures, particle interactions were clearly size-dependent. While the PSNP50 

strongly adsorbed and aggregated on the pellicle (Figure 3.1A-E), PSNP500 were observed to be 

dispersed in the medium and not particularly associated with the cells (Figure 3.1 F, G). Since 

both PSNP50 and PSNP500 were stable in the exposure medium (Table 3.1), the observed 

aggregation of PSNP50 on the pellicle appears to result from the interaction with the surface of E. 

gracilis. Considering the unique surface features of the pellicle, which has longitudinal cavities 

with a width of ~ 250 nm (Cruenberger, 2007; Vismara et al., 2000), the absence of sorption of the 

PSNP500 suggests that the sorption of the PSNP50 might be driven by their physical entrapment 

into the cavities. However, since the PSNP50 were not homogeneously positioned along the 

whole cavity, additional factors might determine their sorption. Euglenoid species are known to 

excrete mucilaginous material along these cavities, which is deposited locally and randomly by 

sub-pellicle compartments (Leander and Farmer, 2000). Thus, sorption of the PSNP50 might be 

further influenced by chemical interaction with mucopolysaccharides which are randomly 

distributed along the cavities. Sorption of particles onto the pellicle of E. gracilis was also 

detected in a previous study with AgNP of comparable size (Chapter 2), indicating size-

dependent physical entrapment as one determinant factor for particle adsorption. 

Despite the close association of PSNP50 with the pellicle of E. gracilis, the 3D analysis upon z-

stack imaging shows no particle internalization in this algae (Figure 3.1C-E). These results 

suggest that the glycoprotein-based pellicle prevents the crossing of nanoparticles, at least in 

case of those displaying sizes of ~50 nm and larger, though, depending on the pore size the 

passage of smaller particles cannot be excluded.  

Exposure of E. gracilis to PSNP50 particles led to cellular damages manifested as morphological 

changes and the loss of the flagella. On the other hand, no damage was detectable in cells 

exposed to the larger PSPN500. These results strongly suggest that the observed cellular damage 

in PSNP50 exposed algae results from the sorption of the nanoparticles. Previous studies showed 

inhibition of photosynthesis and alteration of cell morphology in E. gracilis exposed to AgNP 

(Chapter 2). However, and despite the sorption of AgNP on the pellicle, damaging effects were 

attributed to the action of dissolved Ag+ ions released by the particles. Other studies have shown 
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that sorption of PSNP on the algal surface of Chlorella sp. inhibits photosynthesis, probably as a 

result of shading effects (Bhattacharya et al., 2010).  

3.4.2 Haematococcus pluvialis 

The CLSM analysis of H. pluvialis cells was not indicative of any cell damages in PSNP exposed 

cells, suggesting a lower sensitivity of this species to PSNP compared to the other examined 

algal strains.  

Nanoparticle interactions with H. pluvialis were comparable in cultures grown in organic and 

inorganic media, which were selected considering the influence of environmental factors like 

nutrients availability on the chemical composition of the cell wall, as demonstrated in a 

proteomic study with this alga (Wang et al., 2004). As shown in Figures 3.2 and 3.3, PSNP50 were 

found to be homogeneously distributed over the whole surface of the algal cell, while the larger 

PSPN500 were not sorbed to the cells, but remained dispersed in both media. This difference 

suggests that also in the case of H. pluvialis, particle interactions depend on size. Indeed, 

ultrastructural analysis of the cell wall of this alga shows that the cell wall surface is irregular 

displaying a patchwork like construction (Hagen et al., 2002). These patchworks seem to fit the 

smaller but not the larger PSNP500. CLSM analysis of cells does not allow to image whether the 

homogeneous distribution of the PSNP50 results from direct contact of the particles to the cell 

wall. Nevertheless, considering that cells of H. pluvialis are embedded in a gelatinous matrix 

surrounding the cell wall (Hagen et al., 2002), we suggest that sorption depends also on 

chemical interactions of the particles with chemical components of the matrix, which mainly 

consists of proteins and a small fraction of carbohydrates. 

As indicated by the 3D analysis using xz projections and volume viewing (Figure 3.2 C1-C5, E 

and Figure 3.3 C1-C5, E), no PSNP50 were evidenced to be intracellular. These results suggest 

that, given by the pore size exclusion of the H. pluvialis cell wall, 50 nm and larger sized 

nanoparticles are not able to enter the cells. Moreover, considering that during the cell division 

the cell wall thickens from ~35 nm up to 2.2 µm and changes chemical composition (Hagen et al., 

2002), even the entry of smaller particles might be hampered also by the thickness of the cell 

wall. 
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3.4.3 Chlamydomonas reinhardtii 

The wild type of C. reinhardtii displayed different stress responses to PSNP50 and PSNP500 

exposure. As clearly visible in the transmission images, algae exposed to PSNP50 secreted EPS, 

leading cells to strongly clump together packed within the surrounding EPS (Figure 3.4 B). 

Differently, algae exposed to PSNP500 released less EPS and did not clump together (Figure 3.4 

D). Both EPS secretion and flocculation are general responses of C. reinhardtii to environmental 

stress that were detected also upon exposure to other nanoparticles (Ma et al., 2015; Röhder et al., 

2014). Distribution of PSNP50 matched the distribution of EPS (Figure 3.4 A, B), indicating an 

association of the PSNP50 with the EPS and an absence of direct contact of the particles with the 

cells. The EPS of C. reinhardtii has been previously characterized to contain mainly proteins and 

polysaccharides (Zhu et al., 2012), which might chemically interact with the fluorophore 

residues of PSNP50 and affect the particle stability. However, the CLSM used in this study does 

not allow to assess the aggregation state of the particles within the EPS. Other studies have 

shown that EPS derived from bacteria and periphyton sorbed to AgNP and increased their 

stability (Khan et al., 2011a; Khan et al., 2011b; Kroll et al., 2014).  

The PSNP500 appeared to be specifically localized in the flagella region of the wild type of C. 

reinhardtii, showing unique interactions of larger particles with algae cells (Figure 3.4 C). 

Association of particles with flagella was observed also in H. pluvialis, but only with the smaller 

PSNP50 (Figure 3.2 C-E and Figure 3.3 C-E). However, the flagella-associated PSNP50 formed 

large aggregates in H. pluvialis while in C. reinhardtii the PSNP500 occurred as individual particles. 

The association of particles with the flagella of these algae is indicative of specific interactions 

between the PSNP and flagellar components, which chemically differ from the cell wall 

components (Pazour and Bloodgood, 2008). The flagella of Chlamydomonas are covered by a 

membrane that emerges from the plasma membrane, but has different protein and lipid 

composition (Luck et al., 1977; Mitchell, 2000; Pazour et al., 2005).  

Different interactions occurred between PSNP and the cell wall free mutant of C. reinhardtii 

compared to the wild type. As visible in the transmission images, the mutant exposed to both 

the PSNP50 and the PSNP500 secreted EPS, which, in case of the PSNP50 appeared to be 

homogeneously associated with the algal surfaces, while in case of the PSNP500 the EPS was 
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secreted into the medium (Figure 3.5 B, D). The PSNP50 appeared to be localized around the cells, 

suggesting their binding to the EPS rather than their direct contact to the plasma membrane 

(Figure 3.5 A, B). Similarly, the PSNP500 seemed to bind to the EPS released by the cells in the 

medium (Figure 3.5 C, D).  

The CLSM analysis of both the wild type and cell wall free mutant of C. reinhardtii showed no 

internalization of the PSNP. These results suggest that the cell wall of C reinhardtii, as in case of 

the other two examined algae, is not permeable for nanoparticles of ~50 nm in size. Moreover, 

the absence of particle internalization in the cell wall free mutant indicates that, besides the cell 

wall, also the plasma membrane is a barrier for nanoparticle uptake. Similarly, previous studies 

did not evidence any particle uptake in both strains of C. reinhardtii exposed to AgNP and 

CeO2NP (Piccapietra et al., 2012a; Röhder, 2014). Thus, it seems that the plasma membrane of C. 

reinhardtii lacks pathways for the internalization of these particles, which, depending on their 

physicochemical properties, are taken up by endocytosis or passive diffusion in animal cells 

(Kuhn et al., 2014; Moore, 2006; Yacobi et al., 2010). 

The results of this study have shown that no PSNP internalization occurred across all examined 

algal strains, and different factors affected the interaction of PSNP with the algal cells. The 

patterns of interaction strongly depend on both the particle size and the characteristics of the 

algal cells, in particular their surface architecture and secretion of biomolecules (i.e. mucilage, 

gelatinous matrix, and EPS). The localization of these biomolecules determined the distribution 

of the nanoparticles either on the algal surfaces or in the exposure medium.  
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3.5 Figures and tables 

 

Table 3.1 Mean particle diameter, standard deviation (SD), polydispersity index (PDI), and Zeta 
potential (ZP) of PSNP50 and PSNP500 measured by DLS, 2 hours after dilution of the stock 
solution in different algal media. 

PSNP Media Size, nm SD PDI ZP, -mV SD 

PSNP50 

MOPS 73.8 2.9 0.2 -35.0 1.1 

Talaquil 84.7 1.2 0.5 -24.3 0.6 

organic 72.6 7.3 0.2 -19.9 1.7 

PSNP500 

MOPS 457.4 5.1 0.1 -67.1 1.2 

Talaquil 443.9 4.6 0.0 -44.3 0.6 

organic 524.4 23.1 0.2 -27.0 1.1 
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Figure 3.1 CLSM micrographs of Euglena gracilis after two hours exposure to PSNP50 (A-E) and 
PSNP500 (F-G) in Talaquil. Overlay of the chlorophyll (green) with PSNP50 (magenta, A,C,E), 3D 
analysis displayed as xz projections (C1-C5), volume viewing (E), overlay of the chlorophyll 
(green) with PSNP500 (red, F), and transmission images (B,D,G) are shown.  
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Figure 3.2 CLSM micrographs of Haematococcus pluvialis after two hours exposure to PSNP50 (A-
E) and PSNP500 (F-G) in Talaquil. Overlay of the chlorophyll (green) with PSNP50 (magenta, 
A,C,E), 3D analysis displayed as xz projections (C1-C5), volume viewing (E), overlay of the 
chlorophyll (green) with PSNP500 (red, F), and transmission images (B,D,G) are shown. 

 56 
 



Chapter 3  Interactions of polystyrene nanoparticles with four fresh water algal strains 

 

 

Figure 3.3 CLSM micrographs of Haematococcus pluvialis after two hours exposure to PSNP50 (A-
E) and PSNP500 (F-G) in organic medium. Overlay of the chlorophyll (green) with PSNP50 
(magenta, A,C,E), 3D analysis displayed as xz projections (C1-C5), volume viewing (E), overlay 
of the chlorophyll (green) with PSNP500 (red, F), and transmission images (B,D,G) are shown. 
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Figure 3.4 CLSM micrographs of Chlamydomonas reinhardtii wild type after two hours exposure 
to PSNP50 (A,B) and PSNP500 (C,D) in Talaquil. Overlay of the chlorophyll (green) with PSNP50 
(magenta, A), or PSNP500 (red, C), and transmission images (B,D) are shown. 
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Figure 3.5 CLSM micrographs of Chlamydomonas reinhardtii cell wall free mutant after two hours 
exposure to PSNP50 (A,B) and PSNP500 (C,D) in Talaquil. Overlay of the chlorophyll (green) with 
PSNP50 (magenta, A), or PSNP500 (red, C), and transmission images (B,D) are shown. 
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Table 3.2 Summary of observed interaction patterns of PSNP50 and PSNP500 with the four algal 
strains 

Algal strains PSNP50 PSNP500 

E. gracilis 

• Morphological changes and loss of 
flagella 

• Sorption and aggregation on pellicle 
• Non-homogeneous distribution 

• No morphological changes 
• No sorption 

H. pluvialis 
• No morphological changes 
• Sorption to cells 
• Homogeneous distribution 

• No morphological changes 
• No sorption 

C. reinhardtii 

wild type 

• Clumping of cells with EPS  
• Sorption to EPS  

• Excretion of EPS, no clumping  
• Sorption to flagella 

C. reinhardtii 

cell wall free 

mutant 

• Clumping of cells with EPS 
• Sorption to EPS  

• Excretion of EPS, no clumping 
• Sorption to EPS  
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3.6 Supporting information 

 

Figure S 3.1 Scheme of cell surface of the algae Euglena gracilis (A), Haematococcus pluvialis (B), 
and Chlamydomonas reinhardtii wild type (C) and cell wall free mutant (D). ECM: extracellular 
matrix. 
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Table S 3.1 Composition of the inorganic medium Talaquil 

Salts Concentration, M 

CaCl2.2H2O 5e-4 

MgSO4.7H2O 1.5e-4 

NaHCO3 1.2e-3 

K2HPO4.3H2O  5e-5 

NH4Cl 1e-3 

Trace metals 

CoCl2.6H2O 5e-8 

H3BO3 5e-5 

Na2MoO4 .2H2O 8e-8 

CuSO4 1.63e-7 

65 MnCl2.4 H2O  1.22e-6 

ZnSO4.7H2O 1.58e-7 

FeCl3.6 H2O 9e-7 

Metal ligand 

Na2 EDTA  2e-5 

Buffer 

MOPS, pH 7.5 1e-2 
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Figure S 3.2 Intensity and volume size distributions of PSNP50 and PSNP500 measured by DLS 
after 2 hours diluted in MOPS, Talaquil and organic medium. 
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Figure S 3.3 CLSM micrographs of Euglena gracilis control cells in Talaquil. Chlorophyll (A,C,E) 
and transmission image (B,D,F) are shown. 
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Figure S 3.4 CLSM micrographs of Haematococcus pluvialis control cells in Talaquil (A,B) and 
organic medium (C,D). Chlorophyll (A,C) and transmission image (B,D) are shown. 
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Figure S 3.5 CLSM micrographs of Chlamydomonas reinhardtii wild type (A,C) and cell wall free 
mutant (C,D) control cells in Talaquil. Chlorophyll (A,C) and transmission images (B,D) are 
shown. 
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Chapter 4 Interactions of differently coated silver nanoparticles with alkaline phosphatase 

Extracellular enzymes play an important role in nutrient acquisition for aquatic organisms. Due 

to their extracellular localization, they are likely to have direct contact and interactions with 

nanoparticles in aquatic environments. In this study, interactions of three differently coated 

silver nanoparticles (AgNP) and alkaline phosphatase (AP), a representative example of 

extracellular enzymes, were investigated. After incubating the enzyme with AgNP for 2 hours, 

the AP-AgNP complex was isolated using a sucrose cushion centrifugation and the adsorbed AP 

was quantified. To assess the effects of AgNP on AP activity, enzyme assays were started either 

by addition of the substrate to AP-AgNP mixture, or, alternatively, by the addition of AgNP to 

the AP-substrate mixture. The sorption was found to differ across the examined AgNP, and 

various factors influencing the sorption are discussed. The enzymatic activity was affected by 

the three types of AgNP, though the inhibitory effects of AgNP depended on the sequence of 

addition of the AgNP and substrate to the enzyme. Overall, the present study showed that the 

adsorption of AP to AgNP was determined by the physicochemical properties the particle 

coating and the conformation of the enzyme. 

4.1 Introduction 

The small dimension and high surface area of nanoparticles provide them with various 

attractive properties of interest to researchers and manufactures alike. In the last decades, the 

production and application of nanoparticles have been rapidly expanded. For this reason, they 

are likely to be present and accumulate in the environment, and thus challenge the biosafety and 

sustainable development of nanotechnology (Kahru and Dubourguier, 2010; Moore, 2006; 

Navarro et al., 2008a).  

Upon introduction into environments, nanoparticles readily interact with biomolecules, like 

proteins. As a result of this interaction, the proteins adsorb to the particles, forming a corona 

surrounding the particle surfaces. The adsorption of proteins to nanoparticles is driven by 

various biophysicochemical interactions occurring at the interface, including Van der Waals 

forces, electrostatic interactions, and hydrophobic/hydrophilic interactions (Gunawan et al., 2014; 

Nel et al., 2009). The composition of the protein corona is dynamically modified depending on 

the protein binding affinity to the particle surfaces and its relative abundance in the fluid 

(Mahmoudi et al., 2011). The ‘hard’ corona consists of high-affinity low-exchange-rate proteins 
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(Fleischer and Payne, 2014), and determines the nanoparticle fate and interactions in biological 

systems (Lynch et al., 2007; Lynch and Dawson, 2008; Monopoli et al., 2012).  

Interactions of nanoparticles with proteins have mainly been studied using human proteins (Ge 

et al., 2015; Gunawan et al., 2014; Lundqvist et al., 2008; Shemetov et al., 2012; Walczyk et al., 

2010; Walkey et al., 2014), and limited information exists on environmental relevant systems 

thus far (Eigenheer et al., 2014; Gil-Allue et al., 2015; Khan et al., 2011c; Schug et al., 2014; 

Wigginton et al., 2010). The protein-nanoparticle interactions can be influenced by the 

physiochemical characteristics of the particles. It has been shown for gold nanoparticles that the 

adsorbed protein pattern varied significantly as a function of size, charge and surface coatings of 

the particles (Benetti et al., 2013; Deng et al., 2013; Walkey et al., 2012). Also for silver 

nanoparticles (AgNP), proteins were found to bind differently to the bare surfaces of the 

particles and to chemically modified surfaces (Eigenheer et al., 2014; Podila et al., 2012). The 

binding of proteins to the nanoparticles might affect the stability and environmental reactivity of 

the particles, as well as structure and function of proteins. Upon binding by proteins, 

nanoparticles tend to agglomerate, resulting from hydrogen bonds present between the particles 

and proteins (Yoo et al., 2008), or to be stabilized due to enhanced electrostatic interactions or 

steric stabilization (Kuhnel et al., 2009). During the formation of a protein corona, the proteins 

may undergo conformational changes (Bellezza et al., 2007; Ding et al., 2013; Linse et al., 2007), 

making the proteins dysfunctional. Significant loss of enzymatic activity was reported as a result 

of enzyme association with the nanoparticles (Czeslik and Winter, 2001; Kondo et al., 1993; 

Norde and Anusiem, 1992).  

Many aquatic organisms, like bacterial and algae, are known to excrete extracellular enzymes 

which are essential for nutrient acquisition (Sinsabaugh et al., 1991). Such enzymes are widely 

present in aquatic environments and might potentially interact with nanoparticles. Previous 

studies with heterotrophic and autotrophic biofilms have reported the effects of nanoparticles 

on extracellular enzyme activity (Gil-Allue et al., 2015; Schug et al., 2014). For heterotrophic 

biofilms, a decreased activity was found to result from reactive oxygen species formed by 

titanium oxide nanoparticles (Schug et al., 2014). In periphyton, inhibition of extracellular 
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enzyme activity by AgNP was attributed to dissolved Ag+ ions which were released from the 

particles, and to direct AgNP effects (Gil-Allue et al., 2015).  

Alkaline phosphatase (AP) is an extracellular enzyme responsible for phosphorus acquisition. 

This enzyme is highly abundant in aquatic environments, and is produced by a wide range of 

organisms including bacteria, fungi, algae and zooplankton (Jansson et al., 1988; Rier et al., 2007; 

Rose and Axler, 1998). The AP activity in periphyton has been shown not to be adversely 

affected by AgNP (Gil-Allue et al., 2015). However, since this study was conducted in the 

presence of the organisms, which continuously synthesized enzymes and secreted to the 

medium, it could not be determined whether the absence of inhibitory effects was due to a low 

sensitivity of this enzyme to AgNP. Further studies on isolated enzyme are required to assess 

whether nanoparticles directly interact with the enzyme.  

In this study, we investigated the interaction of three differently coated AgNP with AP. The 

selected coatings were a small molecular weight ligand, citrate (CIT), a long chained polymer 

polyvinylpyrrolidone (PVP), and a protein-based gelatin (GEL). These coatings have differing 

physicochemical properties, such as charge, functional groups, and confirmation, and would 

allow the evaluation of the influence of surface chemistry on their interactions with the enzyme. 

In this study, the sorption of AP to the differently coated AgNP was quantified and effects on 

enzymatic activity were assessed. To evaluate the contribution of Ag+ to the effects caused by 

AgNP, enzymatic activity was also measured following addition of AgNO3. 

4.2 Materials and methods 

4.2.1 Materials 

AgNPCIT, AgNPPVP, and AgNPGEL were provided by NanoSys GmbH (Wolfhalden, Switzerland) 

as aqueous suspensions of 1 g L-1 determined on total silver (nominal concentrations). Stock 

AgNP suspensions were kept in the dark. For exposure studies, AgNP and AgNO3 solutions 

were freshly prepared in the experimental medium, 10 mM 3-morpholinepropanesulfonic acid 

(MOPS) at pH 7.5. Alkaline phosphatase (AP) isolated from Escherichia coli was provided by 

Sigma-Aldrich as lyophilized powder (30-60 units mg protein-1), and used without further 

purification. Unless otherwise indicated, all chemicals were purchased from Sigma-Aldrich. 
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4.2.2 AgNP characterization 

To assess the effects of AP on particle stability, the three types of AgNP were dispersed in MOPS 

at a concentration of 5 mg L-1 with and without the addition of the enzyme (7.15 mg L-1). After a 

2 hour exposure, AgNP suspensions were characterized for size and Zeta potential by dynamic 

light scattering (DLS) using a Zeta Sizer (Nano ZS, Malvern Instruments). The average value of 

three technical replicates, each measured with three analytical replicates, is presented. Statistical 

significance was determined by F- and t-test.   

4.2.3 Adsorption assay 

For adsorption experiments, AP was added to a final concentration of 14.5 and 145 mg L-1 in 1 

mL MOPS (10 mM, pH 7.5), and incubated with 100 mg L-1 of the three differently coated AgNP 

for 2 h at 25 °C. All exposures were carried out in 1.5 mL Eppendorf Protein LoBind Tubes to 

ensure high recovery of proteins. Each exposure was performed with three replicates.  

After exposure, nanoparticles associated with AP were separated from non-associated AP via 

centrifugation through a sucrose cushion (Supporting Information (SI) Figure S 4.1), which 

allows nanoparticles above a certain size to pellet down. For these experiments, 200 µL of 

sucrose (0.7 M in 10 mM MOPS) were added to the bottom of the tube, and then 1 mL of the 

enzyme-AgNP mixture solution was loaded onto the sucrose cushion. After centrifugation 

(20,000 × g, 1 h, 4 °C), the supernatant (~1.2 mL), containing free enzyme, small AgNP, and 

sucrose was carefully removed. The pellet was washed in fresh MOPS, and again centrifuged to 

remove the loosely bound enzyme. The resulting pellet was resuspended in 20 µL 

Urea/Thiourea buffer (30 mM Tris/HCl, 7 M Urea, 2 M Thiourea, pH 8.5) and boiled at 95 °C for 

10 min to release the associated enzyme from the AgNP. Then, the released enzyme was 

separated from the remaining AgNP by centrifugation (20,000 × g, 15 min, 4 °C). The 

supernatant containing AP was transferred to a new Protein LoBind tube for protein analysis, 

and the AgNP in the pellet was digested for metal analysis. 
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4.2.4 Protein analysis 

An Agilent 2100 Bioanalyzer equipped with a laser-induced fluorescence detector  was used to 

assess the size and quantity of AP associated with AgNP (High Sensitivity Protein 250 Kit). All 

sample preparations were performed in 0.5 mL Protein LoBind tubes. The prepared samples, 

including AP released from AgNP, AP reference of a known concentration, and protein 

molecular weight ladder, were fluorescently labeled in the Urea/Thiourea/ Tris/HCl buffer at pH 

8.5, and excess dye was quenched after reaction with Ethanolamine.  

For the on-chip analysis, the labeled samples were diluted 200 times in deionized water to 

decrease the background fluorescence. Immediately after dilution, 4 µL of the diluted labeled 

sample were mixed with 2 µL of a sodium dodecyl sulfate (SDS)-based denaturing buffer 

containing a 5 kDa lower molecular weight marker, and heated for 5 min at 95 °C. After cooling, 

6 µL of sample, together with 12 µL of a size sieving polymer matrix, and 12 µL of a destaining 

solution were loaded into each well on the protein chip. Proteins were separated by 

electrophoresis based on size, and detected by laser-induced fluorescence in the Agilent 2100 

Bioanalyzer. One sample per run was analyzed. The molecular weight ladder was analyzed first, 

followed by experimental samples. The instrument constructs, based on recognized size and 

intensity, a calibration curve that is used for size determination and quantification of protein 

concentrations. The 5 kDa marker was used for alignment of all the data in order to compensate 

for drift effects that may occur during the course of the run of the entire chip. Moreover, the AP 

concentration in experimental samples was quantified based on intensity comparison with the 

AP reference.  

4.2.5 Metal analysis 

To determine the amount of silver pelleted after sucrose centrifugation, the pellet was digested 

with HNO3 in a microwave oven (195°C, MSL 1200 mega; Microwave Laboratory System, 

Switzerland). Silver concentration was measured by inductively coupled plasma mass 

spectrometry (ICP-MS, Thermo Finnigan, Germany) using the isotope 107Ag. The reliability of 

measurements was controlled by measuring a water reference solution with a known silver 

concentration (M105A, IFA-Tull, Austria).  
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4.2.6 Effects of AgNP on AP activity 

Enzyme activity was assayed with 1.43 mg L-1 AP in 200 µL MOPS (10 mM) at pH 7.5, using 

fluorescently linked 4-methylumbelliferyl phosphate disodium salt (5 mM) as substrate. The 

conversion of substrate was measured over 2 min in a multi-well plate reader (Tecan, Infinite 

M200; Switzerland) at excitation and emission wavelengths of 366 and 442 nm, respectively. The 

slope of the linear reaction was calculated to determine the enzyme activity.  

To assess the effects of AgNP on AP activity, enzyme assays were started either by addition of 

the substrate to AP-AgNP mixture, or, alternatively, by the addition of AgNP to the AP-

substrate mixture. The assessed AgNP concentrations were 0.25, 0.5, 1, 2, and 2.5 mg L-1. The 

incubation time was 2 hours for AP-AgNP mixture, and 2 minutes for the AP-substrate mixture. 

Effects of AgNO3 were assessed at concentrations of 0.025, 0.05, and 0.1 mg L-1, covering the 

range of dissolved silver concentrations that were previously measured in the three AgNP 

suspensions (Navarro et al., 2015). Final enzyme activity was presented as a mean of three 

replicates, which were normalized to an untreated control, allowing for a better comparison 

between independent experiments.  

4.3 Results 

4.3.1 Characterization of AgNP 

After being diluted in the experimental medium (10 mM MOPS, pH 7.5) for 2 hours, the three 

types of AgNP (5 mg L-1) displayed similar average diameters, ranging from 52 nm (AgNPCIT) to 

76 nm (AgNPGEL) (Figure 4.1 A). In the presence of AP (7.15 mg L-1),  the average diameters were 

similar to the values measured in MOPS, ranging from 40 nm (AgNPCIT) to 79 nm (AgNPGEL). 

The DLS analysis showed that the three types of AgNP were all negatively charged in MOPS, 

with Zeta potentials ranging from -5.2 mV (AgNPPVP) to -29.6 mV (AgNPGEL) (Figure 4.1 B). 

Following the addition of the AP, the Zeta potential values of AgNPCIT and AgNPGEL were 

comparable to the values measured in MOPS. AgNPPVP became more negatively charged in the 

presence of the enzyme (Figure 4.1 B). 
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4.3.2 Adsorption assay 

Quantification of AgNP pellet 

An adsorption assay was performed with the three types of AgNP at the same mass 

concentration (100 mg L-1). Based on their average size determined by DLS, the total surface area 

of each AgNP suspension available for enzyme binding was calculated to be 11 cm2 for AgNPCIT, 

9.1 cm2 for AgNPPVP, and 7.5 cm2 for AgNPGEL (Table 4.1). As measured by ICP-MS, the amount 

of silver in the AgNP pellet, obtained after sucrose cushion centrifugation, ranged from 11.0 to 

66.6 µg. Similar amounts of silver were found for the same type of AgNP incubated with AP at 

two exposure concentrations (14.5 and 145 mg L-1). Less AgNPPVP (11.0-11.2 µg) were pelleted 

compared to AgNPCIT (64.3-66.6 µg) and AgNPGEL (48.8-49.7 µg). 

Quantification of AP 

The electrophoresis gel obtained using 2100 Bioanalyzer shows the molecular weight (kDa) and 

abundance of the AgNP associated AP (Figure 4.2). The molecular weight protein ladder 

displayed clearly resolved bands in the gel (Figure 4.2 A-C, lane Ladder) and electropherogram 

peaks (Figure 4.2 D) for each marker protein, having relative molecular weights of 240, 150, 95, 

63, 46, and 15 kDa, and a lower molecular weight marker of 5 kDa. The size of proteins in the 

analyzed samples was derived from alignment of each lane to the resolved protein bands in the 

molecular weight ladder. The AP reference displayed a clear protein band between 46-63 kDa 

(Figure 4.2 A-C, Lane AP Ref.). In the electropherogram, the AP reference displayed a distinct 

peak in the same molecular weight range (Figure 4.2 E). The AP released from AgNPCIT and 

AgNPPVP showed protein bands positioned similarly to the AP reference (Figure 4.2 A,B). Also, 

the electropherograms of the analyzed samples from AgNPCIT and AgNPPVP showed distinct 

peaks between 46-63 kDa. The electropherograms of AP released from AgNPCIT was shown as 

an example (Figure 4.2 F,G). Similar electropherograms were obtained for AgNPPVP (data not 

shown). No clear protein bands or electropherogram peaks were detected in the samples 

derived from AgNPGEL exposure (Figure 4.2 C). 

Absolute quantification of the AP was achieved upon comparison of the intensity of the protein 

band between the samples and the AP reference. More AP were found to be associated with 
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AgNPCIT (956 µg) than AgNPPVP (615 µg) at the lower exposure concentration of AP (14.5 mg L-1), 

while at the higher AP concentration (145 mg L-1) the amounts of adsorbed AP were comparable 

(Table 4.2). When the sorption data were related to the determined silver in AgNP pellets, and 

corresponding AgNP surface area calculated based on average size previously measured by 

DLS (Figure 4.1), the binding of AP was found to be higher on AgNPPVP compared to AgNPCIT 

for both AP exposure concentrations. No AP was quantifiable with AgNPGEL. 

4.3.3 Effects on enzyme activity 

When the substrate was added to the AP-AgNP mixture, no decrease in enzymatic activity was 

measured for the three types of AgNP at concentrations ranging from 0.25 to 2.5 mg L-1 (Figure 

4.3). When AgNP were added to the AP-substrate mixture, a concentration-dependent decrease 

of enzymatic activity was measured for the three types of AgNP, with the inhibitory effects 

starting at 0.25 mg L-1 of AgNP in all cases (Figure 4.4). No effects of AgNO3 on AP activity were 

measured up to 0.1 mg L-1 of silver following the two different sequences of addition of AgNO3 

and substrate to the enzyme (Figure 4.5). 

4.4 Discussion 

In this study, we were interested in examining the interactions of three differently coated AgNP 

with alkaline phosphatase (AP) as a representative extracellular enzyme in aquatic 

environments. The AP is a dimeric enzyme and catalyzes the hydrolysis of phosphate esters. 

The selected coatings (i.e. CIT, PVP and GEL) have different physicochemical properties, which 

were expected to influence the particle interactions with AP. Experiments were carried out in 

vitro in a simple buffer, MOPS (10 mM, pH p.5), in which particles maintain their stability 

(Chapter 2; Navarro et al., 2008b; Navarro et al., 2015; Piccapietra et al., 2012b). Characterization 

of nanoparticles in the presence of AP showed the three differently coated AgNP to remain 

stable. However, DLS measurements do not allow to detect changes in particle size due to AP 

adsorption, since the formation of an AP monolayer around the particles would correspond to 

an increase of the average diameter of only ~10 nm (SI Table S 4.1).   

The sucrose cushion centrifugation applied to isolate the enzyme-AgNP complex in the sorption 

experiments showed to be very reproducible for all the types of AgNP. However, depending on 
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the coating, different amounts of silver were determined in the pellet. While more than 50% of 

total AgNP pelleted for AgNPCIT and AgNPGEL, only 10% was determined in the case of AgNPPVP 

(Table 4.1). The pelleting through the sucrose cushion is density- and size-dependent, thus for 

similar sizes and density the quantity of pelleted particles is expected to be comparable. The 

three types of AgNP used in our study were comparable in their hydrodynamic size. However, 

the PVP coating, as a long chained polymer, contributes to the hydrodynamic size of the 

particles. Hence, the real size of the AgNPPVP core must be smaller than the other types of AgNP, 

leading to a lower amount of pelleted particles.  

Protein analysis of the pelleted AgNP using Bioanalyzer provides both sizing and quantitative 

information of the AP, representing an adequate method for analyzing small amounts of 

nanoparticle associated proteins. Binding of AP to AgNP was found to differ between the three 

differently coated AgNP (Figure 4.6). The highest binding of AP was detected on the AgNPPVP 

with an estimated ~70% of the total surface area covered, followed by AgNPCIT with ~10% 

coverage, and AgNPGEL with no AP adsorption (Table 4.2). Different experimental conditions 

might influence the sorption of AP, such as amounts of the enzyme, particle surface area, and 

characteristics of the coatings. In our study, the lowest exposure concentration of AP was 

already two times in excess to that needed to cover the AgNP with a monolayer (SI Table S 4.1). 

Additionally, the surface area of the three types of AgNP was comparable (Table 4.1). Thus, the 

characteristics of the surface coatings of AgNP were responsible for AP binding.  

Depending on the physicochemical characteristics of both the particle coatings and the enzyme, 

different factors favoring or resisting adsorption of AP to the three types of AgNP might account 

for the measured differential binding. Electrostatic interactions, which have been regarded as 

one of the major driving forces in protein-nanoparticle interactions (Nel et al., 2009), might play 

a determinant role in our study. Considering that AP has an isoelectric point at 4~5 (Garen and 

Levinthal, 1960), and thus displays a negative net charge under the experimental conditions (pH 

7.5), a particle surface with negative charge is expected to repel the enzyme. Indeed, the binding 

of AP was found to be proportional to the Zeta potential of the AgNP (Table 4.1, Table 4.2), with 

higher binding to the less negatively charged AgNPPVP. For AgNPCIT, the adsorption of AP might 
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also involve specific interactions of the positively charged residues of the enzyme with the 

carboxyl groups of the CIT.  

In case of AgNPPVP, additional factors might explain the high binding of AP. PVP is a nonionic 

polymer chain that has to be of sufficient length in order to stabilize the particles by steric 

repulsion. One important characteristic given by the long chained polymer is that it displays a 

brush-like conformation on the particle surface, which might allow the AP to readily partition 

and be embedded into the polymer brush structure (Luzinov et al., 2008). Moreover, considering 

the amphiphilic nature of PVP polymers, the relatively high adsorption of AP to AgNPPVP 

suggests that the binding might also be driven by hydrophilic interactions between PVP and the 

functional groups displaying low hydrophobicity and located at the surface of the enzyme. 

Difference in protein sorption to PVP- and CIT-coated AgNP were also found by others, though 

the higher binding to PVP-coated nanoparticles was related to increased changes in protein 

conformation upon interaction with the PVP polymer (Podila et al., 2012; Shannahan et al., 2013).  

The lack of AP adsorption to the AgNPGEL might be a consequence of protein-protein repulsion. 

GEL is a mixture of single- and multi-stranded polypeptides and proteins derived from collagen 

and known to have little interactions with biomolecules, which makes GEL biocompatible 

(Elzoghby, 2013). The low potential of GEL to interact with proteins is known and exploited for 

the isolation of specific proteins displaying high affinity to GEL (Speziale et al., 2008). Thus, we 

conclude that the characteristics of AP dot not allow for specific interactions and binding with 

GEL proteins.  

In order to capture the effects of  AgNP on the activity of AP, we first examined the influence of 

AgNO3, as many of the AgNP effects on heterotrophic and autotrophic aquatic organisms have 

been attributed to dissolved Ag+ ions (Gil-Allue et al., 2015; Navarro et al., 2008b; Navarro et al., 

2015; Xiu et al., 2012). In our study, AP activity was not decreased even at the highest Ag+ 

concentration (Figure 4.5), which corresponded to the level of dissolved silver measured in the 

AgNP suspensions (Navarro et al., 2015), suggesting a low sensitivity of the AP to Ag+ ions. 

Effects of AgNP on enzyme activity were found to depend on the exposure concentration of 

AgNP and the sequence of addition of AgNP and substrate to the enzyme, with inhibition 

occurring only when AgNP were added to the enzyme-substrate complex (Figure 4.3 and Figure 
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4.4). The mechanism of catalytic reaction of AP might explain the different effects of the AgNP. 

The reaction involves formation of an enzyme-substrate intermediate in which the AP displays a 

different conformation compared to the free enzyme (Coleman, 1992; Halford et al., 1969; Holtz 

and Kantrowitz, 1999). We thus propose that the AgNP, irrespective of the coatings, interact 

with the enzyme-substrate intermediate leading to a decreased activity. These results indicate 

that the conformation of AP can influence its interaction with nanoparticles, which is in 

agreement with previous studies showing the significant role of protein conformation in 

determining adsorption to nanoparticles (Podila et al., 2012; Shannahan et al., 2013). In addition, 

the lack of effects of AgNO3 together with the detected inhibitory effect of the AgNP indicate 

particle-specific effects, as noted for some other extracellular enzymes (Gil-Allue et al., 2015; 

Schug et al., 2014).   

  

 78 
 



Chapter 4 Interactions of differently coated silver nanoparticles with alkaline phosphatase 

4.5 Figures and tables   

 

Figure 4.1 Average size and Zeta potential of the three differently coated AgNP measured by 
DLS after 2 hours of dilution in 10 mM MOPS at pH 7.5, in the absence and presence of alkaline 
phosphatase (AP). Standard deviations (SD) correspond to three technical replicates. Statistically 
significant differences between the AgNP suspensions with and without the addition of enzyme 
were assessed with F- and t-test (** p < 0.001). 

 

 

Table 4.1 Quantification of silver in the AgNP pellet obtained after sucrose cushion 
centrifugation. Data were related to mass, surface area and percentage of total AgNP, and 
expressed as mean ( n = 3 technical replicates) ± SD.   

AgNP 
exposure AgNP in pellet 

AgNPsurf, cm2 AP, mg L-1 mass, µg surface, cm2 % of AgNP 

CIT 11 
14.5 64.3 ± 4.9 6.9 ± 0.5 64.3 ± 4.9 

145 66.9 ± 5.7 7.2 ± 0.6 66.9 ± 5.7 

PVP 9.1 
14.5 11.0 ± 2.1 1.0 ± 0.2 11.0 ± 2.1 

145 11.2 ± 2.1 1.0 ± 0.2 11.2 ± 2.1 

GEL  
7.5 

14.5 49.7 ± 11.0 3.7 ± 0.8 49.7 ± 11.0 

145 48.8 ± 1.9 3.6 ± 0.1 48.8 ± 1.9 
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Figure 4.2 Protein analysis of AP released from CIT (A), PVP (B), and GEL(C) coated AgNP. Gel-
like images (A-C) with protein molecular weight ladder, AP reference, and two analyzed 
samples for each type of AgNP are shown as examples. Electropherogram of molecular weight 
ladder (D), AP reference (E) and AP released from AgNPCIT (F,G) were shown as examples of 
electropherogram results. 
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Table 4.2 Quantification of AP adsorption to the three differently coated AgNP related to mass, 
surface area, and surface coverage of the AgNP. Data were expressed as mean ( n = 3 technical 
replicates) ± SD.  

AgNP  AP,  

mg L-1 

APadsorb, ng APadsorb,  

ng of AP per µg 

of AgNP 

APadsorb, 

ng of AP per cm2 

AgNP 

% coverage of 

AgNP surface 

CIT 14.5 956 ± 297 15.1 ± 5.8 141.3 ± 54.3 12.6% ±  4.8% 

145 385 ± 127 5.7 ± 1.6 53.1 ± 14.7 4.7% ± 1.3% 

PVP 14.5 615 ± 95 58.3 ± 19.1 642.9 ± 210.9 57.5% ± 18.8% 

145 470 ± 29 70.4 ± 4.6 776.0 ± 50.5 69.3% ± 4.5% 

GEL 14.5 0 0 0 0 

145 0 0 0 0 
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Figure 4.3 Enzyme activity of AP in 10 mM MOPS at pH 7.5 assayed by adding substrate to AP-
AgNP mixture. The data were normalized such that the enzymatic activity of the control is set to 
100%. Error bars represent SD of three technical replicates. 

 
Figure 4.4 Enzyme activity of AP in 10 mM MOPS at pH 7.5 assayed by adding AgNP to AP-
substrate mixture. The data were normalized such that the enzymatic activity of the control is 
set to 100%. Error bars represent SD of three technical replicates.  

 
Figure 4.5 Enzymatic activity of AP in 10 mM MOPS at pH 7.5 assayed by adding substrate to 
AP-AgNP mixture (A) or by adding AgNP to AP-substrate mixture. The data were normalized 
such that the enzymatic activity of the control is set to 100%. Error bars represent SD of three 
technical replicates. 
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Figure 4.6 Scheme of differential adsorption of AP to differently coated AgNP. 
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4.6 Supporting information 

 

Figure S 4.1 Scheme depicting the experimental procedures for the adsorption assay involving 
AP-AgNP complex isolation by sucrose cushion centrifugation and protein analysis by 
Bioanalyzer.  
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Table S 4.1 Calculation of the protein amount needed to cover 100% of the total AgNP surface 
area. Used parameters include an AP radius of 6 nm, assuming molecular weight of 98 kDa and 
globular protein structure (see calculation below), and surface area of AP of 2.91E-13 cm2. 
Calculations refer to 1 mL of total volume. 

AgNP 
AgNP total surface, 
cm2 

100% coverage, AP amount 

mol ng 
CIT 11.0 6.28E-11 6155.0 
PVP 9.1 5.20E-11 5091.8 
GEL 7.5 4.28E-11 4196.6 

 

Calculation of AP radius: 

Partial specific volume = volume of protein / molecular weight, which is a reciprocal of the 

protein molecule density (1.37 g/cm3 reported for an average density of proteins). Hence, an 

average of 0.73 cm3/g is determined for the partial specific volume of a protein molecule. 

Based on the equation below, the radius of a given protein molecule can be calculated as a 

function of molecular weight. 

𝑉𝑉(𝑛𝑛𝑛𝑛3) =
�0.73 𝑐𝑐𝑐𝑐3

𝑔𝑔 �× �1021 𝑛𝑛𝑛𝑛3

𝑐𝑐𝑐𝑐3 �

6.023 × 1023𝐷𝐷𝐷𝐷/𝑔𝑔
 

    = 1.212 × 10−3(𝑛𝑛𝑛𝑛
3

𝐷𝐷𝐷𝐷
) ×𝑀𝑀(𝐷𝐷𝐷𝐷) 

𝑀𝑀 (𝐷𝐷𝐷𝐷) = 825 𝑉𝑉(𝑛𝑛𝑛𝑛3) 

𝑟𝑟 = (3𝑉𝑉/4𝜋𝜋)1/3 = 0.066 𝑀𝑀1/3 (for M in Dalton, r in nanometer) 
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Chapter 5 Outlook 
This thesis gathered information on interactions of nanoparticles with algae. It was shown that 

in the freshwater algae Euglena gracilis, silver nanoparticles (AgNP) affected photosynthesis and 

cell morphology due to released Ag+ ions. AgNP were not evidenced to be internalized by this 

algae, though association of particles with the algal cells was found. The absence of particle 

uptake in algae was confirmed using polystyrene nanoparticles (PSNP) and four different algal 

strains, E. gracilis, Haemotococcus pluvialis, Chlamydomonas reinhardtii wild type and cell wall free 

mutant. Further, the extracellular enzyme alkaline phosphatase did adsorb to AgNP though the 

sorption was largely dependent on the particle coatings. The enzymatic activity was decreased 

by the AgNP upon interactions with the enzyme-substrate intermediate. In the following 

chapter, several questions arising from this thesis work are discussed. 

5.1 Uptake of nanoparticles in algae 

The uptake experiments with citrate-coated AgNP (chapter 2) and the confocal laser scanning 

microscopy (CLSM) examinations of PSNP (chapter 3) did not evidence particle uptake in algae, 

though interactions of PSNP were found to differ across the selected algal strains. Both studies 

used nanoparticles of average diameters of 50 nm or larger, however, uptake of smaller sized 

nanoparticles could not be excluded.  

To address this question, uptake experiments can be carried out by exposing algae to fluorescent 

PSNP of less than 10 nm and assessed using CLSM. This techniques allows to visualize whether 

the particles are localized on or inside the cells upon z-stack imaging and 3D analysis, yet due to 

the resolution of light microscopy, the visualization of small PSNP would be possible only when 

a cluster of nanoparticles were internalized simultaneously. Particular attention should be given 

to the spectral properties of experimental PSNP and autofluorescence of algae pigments to 

enable particle detection by CLSM. The ideal PSNP would have fluorescent spectrum with least 

overlapping with the spectrum of the autofluorescence from algae pigments. Alternatively, 

algae can be exposed to metal-based nanoparticles of less than 10 nm in diameter, and followed 

by metal analysis with inductively coupled plasma mass spectrometry (ICP MS). In case of 
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particles displaying solubility, ICP MS measurements on nanoparticle exposed samples do not 

allow to determine whether the analyzed metal is derived from the particles or the metal ions 

which were present in the particle suspension. Parallel uptake experiments with metal ion could 

be carried out, and the difference at the same level of metal ion concentration in the particle 

suspensions could indicate the metal derived from the particles (Behra et al., 2013). To avoid the 

contribution of metal ions to ICP MS measurements in uptake experiments, metal-based 

nanoparticles with low solubility as for instance gold nanoparticles seem more appropriate.  

The surface distribution of nanoparticles on algae can be investigated using time-of-flight 

secondary ion mass spectrometry (TOF-SIMS), which as shown in Chapter 2 provides 

information on both chemical analysis and lateral distribution of the metals. Transmission 

electron microscopy (TEM) can be used to examine whether particles internalized in cells. Yet, 

the imaging by TEM requires tedious work to gain statistically meaningful data, thus is not 

feasible to systematically assess uptake of a large number of nanoparticles in different algae 

species.  

Since the size of pores that span through cell walls is expected to influence whether a particle 

can be internalized, it is also of relevance to determine typical pore sizes of cell walls of the algae 

of interest. Fluorescent dextran conjugates in several molecular weight ranges are commercially 

available and could be used for algae exposures and their cellular localization assessed by CLSM. 

5.2 Interactions of nanoparticles with algal cell walls  

In chapter 3, it was shown that PSNP were associated with extracellular molecules secreted by 

algae, such as mucilage, gelatinous matrix, and extracellular polymeric substances (EPS). These 

molecules determined the distribution of PSNP through their localization on cell surface or in 

the exposure medium. Thus, it remains unclear whether PSNP were directly in contact with the 

cell wall or associated through interaction with extracellular molecules on the outer surface. 

Upon selection of appropriate molecular probes that would enable imaging cell walls, the 

plasma membrane, and extracellular molecules by CLSM, and their use to stain algae exposed to 

fluorescent PSNP, would allow to clarify this question. The possibility of using the CLSM in 
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sequential multi-channel mode would allow to record multi-markers in separate channels 

without cross talking.  

Various fluorescent probes have been exploited for staining cell wall, plasma membrane, and 

extracellular molecules. It has been reported that a whole range of fluorescently labeled lectins 

can efficiently stain glycoconjugates, and have been used to characterize a wide range of cell 

walls and EPS in biofilms (Johnsen et al., 2000; Michael and Smith, 1995). Glycoconjugates are 

commonly present in many algal cell walls, the plasma membrane, and extracellular molecules, 

and thus can be used as targets for lectin probes in algae. Depending on the type of glycoprotein 

and its abundance in the examined algae, a screening of all the commercially available lectin 

probes should carried out as an initial step, in order to evaluate the specificity of staining and 

select lectins suitable for the specific glycoconjugates present in a particular sample (Peltola et al., 

2008; Zippel and Neu, 2011). For plasma membrane staining, there are other probes available to 

generally stain all types of membrane, without testing lectin specificity (Cogger et al., 2010; Jiang 

et al., 2010). Moreover, the fluorescence conjugated to the probes should be chosen to avoid 

cross talk of signals given by the staining, PSNP and autofluorescent algal pigments.  

5.3 Nanoparticle interactions with extracellular molecules 

In chapter 4, it was shown that the adsorption of alkaline phosphatase, as a representative of 

extracellular enzymes, to AgNP depended on the physicochemical properties of particle 

coatings and the enzyme. Despite various forces present at the interface of the particles and 

enzyme, which might potentially facilitate the sorption of the enzyme to AgNP, low sorption 

was determined in all cases in our study. In aquatic environments, extracellular enzymes play 

an important role in nutrient acquisition for many organisms, therefore it is of interest to further 

study interactions of nanoparticles with other types of enzymes. In addition to extracellular 

enzymes, other molecules secreted and released by aquatic organisms could also be studied, due 

to their extracellular localization and likely contact with nanoparticles.  

Interactions of nanoparticles with other extracellular enzymes in heterotrophic and autotrophic 

biofilms have been suggested in previous studies (Gil-Allue et al., 2015; Schug et al., 2014). It is 

thus of particular interest to examine the sorption of these enzymes to AgNP, as well as the 
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influence of particle coatings on adsorption. For instance, leucine aminopeptidase is a 

commonly analyzed extracellular enzyme in biofilms involved in the degradation of peptide. 

Inhibition of leucine aminopeptidase activity by AgNP has been shown to be caused by particle-

specific effects (Gil-Allue et al., 2015), indicating a direct particle interaction with the enzyme. To 

assess the interactions of nanoparticles with other extracellular enzymes, commercially available 

isolated enzymes could be used, and sorption experiments would be carried out using the same 

techniques as applied in the sorption study in  this thesis (chapter 4). Since the sorption assay 

requires the enzyme to be pure enough for the analysis and quantification, the purity of the 

enzyme should be evaluated before incubating with nanoparticles using the Bioanalyzer. 

Impure enzymes should be further purified.  

Interactions of nanoparticles with other extracellular molecules, like EPS produced from a single 

algae species  (chapter 3) or a biofilm have also been reported (Kroll et al., 2014). EPS contain 

mainly polysaccharides, proteins, lipids and low molecular weight acids, and maintain the 

mechanical stability of biofilm and protect organisms against pollution toxicity (Cogan and 

Keener, 2004; Stewart et al., 2013). Determining which EPS components do adsorb to 

nanoparticles is of great importance to evaluate particle fate, transport and toxicity in aquatic 

environments. For exploring nanoparticle interactions with EPS, the EPS should be first 

separated from the biomass using centrifugation, and then incubated with the nanoparticles. 

The EPS-nanoparticle complex can be isolated using sucrose cushion centrifugation (chapter 4), 

and then the EPS can be released and analyzed. Since the EPS contain a high level of 

polysaccharide, and the Bioanalyzer cannot be used to efficiently separate the proteins with high 

saccharide background, a label-free quantitative analysis approach, i.e. electrospray liquid 

chromatography mass spectrometry (LC MS/MS) could be applied to identify the molecules 

with high binding to the particles. 
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