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Abstract
People are surrounded by an unprecedented wealth of information. Access to it depends on

the availability of suitable search engines, but even when these are available, people often

do not initiate a search, because their current activity does not allow them, or they are not

aware of the existence of this information. Just-in-time retrieval brings a radical change to

the process of query-based retrieval, by proactively retrieving documents relevant to users’

current activities, in an easily accessible and non-intrusive manner.

This thesis presents a novel set of methods intended to improve the relevance of a just-in-time

retrieval system, specifically a document recommender system designed for conversations, in

terms of precision and diversity of results. Additionally, we designed an evaluation protocol to

compare the proposed methods in the thesis with other ones using crowdsourcing.

In contrast to previous systems, which model users’ information needs by extracting key-

words from clean and well-structured texts, this system models them from the conversation

transcripts, which contain noise from automatic speech recognition (ASR) and have a free

structure, often switching between several topics. To deal with these issues, we first propose

a novel keyword extraction method which preserves both the relevance and the diversity of

topics of the conversation, to properly capture possible users’ needs with minimum ASR noise.

Implicit queries are then built from these keywords. However, the presence of multiple

unrelated topics in one query introduces significant noise into the retrieval results. To reduce

this effect, we separate users’ needs by topically clustering keyword sets into several subsets or

implicit queries.

We introduce a merging method which combines the results of multiple queries which are

prepared from users’ conversation to generate a concise, diverse and relevant list of documents.

This method ensures that the system does not distract its users from their current conversation

by frequently recommending them a large number of documents.

Moreover, we address the problem of explicit queries that may be asked by users during a

conversation. We introduce a query refinement method which leverages the conversation

context to answer the users’ information needs without asking for additional clarifications

and therefore, again, avoiding to distract users during their conversation.

Finally, we implemented the end-to-end document recommender system by integrating the
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Abstract

ideas proposed in this thesis and then proposed an evaluation scenario with human users in a

brainstorming meeting.

Keywords: Just-in-time Retrieval, Keyword Extraction, Diverse Merging of document lists,

Query Refinement, Crowdsourcing.
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Résumé
Jamais auparavant les humains n’avaient été entourés par autant d’information. Mais accé-

der à des informations pertinentes n’est possible que si des systèmes de recherche adaptés

existent. Toutefois, même lorsque de tels systèmes sont disponibles, les utilisateurs n’initient

souvent pas des recherches, soit parce que leur activité en cours ne leur permet de le faire, soit

parce qu’ils ne pensent pas que de telles informations existent. Le paradigme de recherche

d’information “juste à temps” se distingue radicalement des recherches à base de requêtes

explicites. Cette approche propose de trouver des documents pertinents pour l’utilisateur

sans la nécessité d’une requête explicite, de manière transparente et non-intrusive.

Cette thèse propose un ensemble de méthodes originales pour l’améliorer la pertinence d’un

système de recherche d’information “juste à temps”, et plus spécifiquement un système de

recommandation des documents conçu pour des conversations. Les méhodes améliorent

la précision et la diversité des résultats. De plus, la thèse propose un protocole d’évaluation

pour comparer diverses méthodes fondé sur les jugements d’un grand nombre de sujets

(“crowdsourcing”).

Contrairement à de précédents systèmes qui modélisent les besoins d’information d’utilisateur

par le biais de mots clés extraits de textes sans erreurs et clairement structurés, notre système

modélise ces besoins à partir de la reconnaissance vocale des conversations. Or, celle-ci

contient souvent de nombreuses erreurs de reconnaissance, et la nature des conversations

fait qu’elles passent souvent d’un sujet à un autre. Pour répondre à ces défis, nous proposons

d’abord une nouvelle méthode d’extraction de mots clés qui génère des mots clés à la fois

pertinents et reflétant la diversité des sujets de la conversation. Ces mots clés représentent les

besoins d’information des utilisateurs tout en réduisant le bruit dû à la reconnaissance vocale.

Des requêtes implicites sont ensuite construites à partir de ces mots clés. Toutefois, dans la

mesure où celles-ci peuvent inclure plusieurs sujets, nous proposons de séparer ceux-ci en

regroupant les mots-clés selon leur sujet, formant ainsi plusieurs requêtes implicites.

Nous définissons également une méthode pour fusionner les résultats de plusieurs requêtes,

préparées comme ci-dessus à partir d’un fragment de conversation, afin de générer une liste

concise, diverse et pertinente de documents à recommander. La méthode évite d’interrompre

les utilisateurs avec un grand nombre de suggestions.

De plus, nous traitons aussi le problème des requêtes explicites que les utilisateurs souhaite-
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Résumé

raient poser au système. Nous proposons une méthode pour affiner les requêtes qui utilise les

mots du contexte de la conversation, sans chercher à établir un dialogue avec les utilisateurs

pour préciser ces requêtes, afin de ne pas perturber le cours de la conversation.

Enfin, nous avons implémenté le système de recommandation de documents, en intégrant

toutes les idées proposées dans cette thèse, et avons proposé un scenario d’évaluation avec

des utilisateurs humains en situation de réunion.

Mots clés : recherche d’information, extraction de mots clés, fusions de listes de résultats,

affinage de requêtes.
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1 Introduction

Human beings face an unexpectedly high volume of information, available as documents,

databases, or multimedia resources. However, humans often do not initiate a search to access

new information, because their current activity does not allow them to do so, or because they

are not aware that relevant information is available.

Just-in-time retrieval systems automate the process of information access. They continuously

look at their users’ activities to capture their information needs, and proactively retrieve

information that is potentially relevant to their information needs. These distinctive features

make them different from ordinary search engines and personalized software which require a

query from users.

In this thesis, we develop our research study within the framework of the Automatic Content

Linking Device (ACLD), which is a particular just-in-time retrieval system intended to be used

in conversations, specifically by a small group of people interacting in a meeting. The main

motivation to design such a just-in-time retrieval system is to help meeting participants to find

documents from the Web or from local databases which contain facts related to the current

conversation fragment, while the participants do not have the time to search for these facts

during their conversation. Therefore, the ACLD assists them by running the search in the

background, and offering the potentially valuable results to the participants. The participants

can easily and quickly refer to the results when they need them, which might happen at crucial

moments during a meeting.

1.1 Initial Framework of the ACLD

The initial version of the ACLD constantly listens to the users’ conversation and proactively

retrieves documents that might be useful to them, in real time. The ACLD receives as input raw

words from an Automatic Speech Recognition (ASR) system at regular time intervals. The raw

words are preprocessed by stop word removal and word stemming. Then, the ACLD attempts

to represent users’ information needs as “implicit queries”. These queries are made of sets
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Chapter 1. Introduction

of keywords extracted from the conversation fragment by simply matching the preprocessed

ASR output against a predefined list of content words. The queries are submitted to a retrieval

system to suggest documents from the Web or local databases (e.g. including fragments of

previous conversations) to the users.

Similar to other just-in-time retrieval systems, the ACLD displays results in a condensed

form, along with other types of information. The system displays: (1) the transcript of the

conversation; (2) the keywords extracted from the transcript that were used to build implicit

queries, in a tag-cloud format; the links to the recommendations obtained by running implicit

queries on a search engine, either (3) over a local database or (4) over the Web. Users can easily

have access to the content of documents by clicking on the links.

1.2 Motivation

In the present thesis, we propose a set of original, theoretically-grounded techniques to

increase the low precision of the initial ACLD in terms of retrieval results. In addition, we

enable the system to answer queries which are explicitly asked by users, because the initial

ACLD cannot properly answer them. Although we have shown that the results of explicit

queries are more precise than those of obtained by implicit ones in case users do formulate

explicit queries, the explicit ones require more effort from users. Our recommendation system

can implicitly prepare queries from the users’ conversation, so users do not need to make the

effort of formulating queries. Using implicit queries, the system may provide some results

that users may be not aware of. In this section, we discuss the limitations of the initial version

of the ACLD for answering both implicit queries and explicit ones, and explain why existing

techniques cannot overcome these issues.

In contrast to the short queries which are explicitly addressed to the general commercial

web search engines, the just-in-time-retrieval systems must construct implicit queries from

the words that are written or spoken by users during their activities, which contain a much

larger number of words than the short queries. Moreover, the retrieval results should be

presented in a non-intrusive manner (typically a very concise list) to avoid distracting users.

The just-in-time retrieval systems should also be able to refine explicit queries without asking

for additional clarifications from users to avoid users interruption during their main activities.

These differences with ordinary retrieval systems open the door for new research toward

just-in-time retrieval systems.

The methods used in previously proposed just-in-time retrieval systems are not directly

applicable to systems intended to be used in a conversation, such as the ACLD. Previous

just-in-time retrieval systems build implicit queries from written documents which are mostly

planed, while the ACLD must build its implicit queries from the ASR transcript of users’

conversation. The conversational ASR transcripts can contain off-topic content which is

introduced by ASR noise. In addition to the detrimental effect of the ASR noise on retrieval

results, the implicit query may often refer to several topics of interest, as the conversations are
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usually unplanned, with users turning from one topic to another. To answer this problem, in

this thesis, we propose a new keyword extraction technique which automatically identifies the

main topics of a conversation fragment, and then extracts keywords for implicit queries by

rewarding both their diversity and their relevance to the main topics, in order to maximize the

coverage of the main topics that were mentioned in the conversation fragment.

Previous just-in-time retrieval systems prepare a single implicit query from the entire keyword

set extracted from a written document, which is generally focused on a single topic. On the

contrary, we propose to prepare several topically-separated implicit queries by dividing the

keyword set extracted from each fragment into several subsets, using a topic-aware clustering

method. As mentioned above, since conversations are usually unfocused and unplanned, they

mention multiple topics; there is a risk that the mixture of topics in a single query will degrade

the retrieval results of an implicit query. As we will show, the representation of queries as

multiple topically-separated queries improves the retrieval results of the system.

Moreover, just-in-time retrieval systems should present a concise list of documents because

users are regularly unwilling to examine a large number of recommended documents – in

other words, examining a long list of results distracts the users from their conversation. The

solution which was used by previous just-in-time retrieval systems, for a single implicit query,

was to cluster its retrieval results and then to select the best representative from each cluster

to display. However, this method is only applicable when the clusters have comparable levels

of importance. Inspired by previous diverse retrieval re-ranking techniques for single queries

with multiple aspects, we propose a new diverse merging technique which is applicable to

multiple topically-separated queries. The method merges the retrieval results of implicit

queries by rewarding at the same time the topical similarity of documents to the queries as

well as the diversity over lists of documents.

In the case of explicit short queries asked by users from a just-in-time retrieval system, the

retrieval results can be erroneous in a similar way as other short queries addressed to a general

purpose search engine. Here, the use of the context could help to better determine the users’

information needs. Several techniques have been proposed in the field of information retrieval

for the refinement of explicit short queries. They interactively or automatically select relevant

interpretations of queries obtained from a data source or a relevant part of it. However, users

of the ACLD might be reluctant or unable to interactively specify their real needs during their

activities. Moreover, using a data source outside the users’ local context may cause the real

users’ intent to be misinterpreted. Existing solutions take advantage of users’ local context and

refine explicit queries by inserting keywords elicited from written documents in the context,

which are (again) planned and focused. However, this is less suitable for conversational

environments, because of the nature of the vocabulary and the errors introduced by the ASR

system. In this thesis, we propose a query refinement technique which inserts keywords

extracted from the transcript of the conversation fragment preceding the query, along with a

weight value that represents the topical similarity of each expansion keyword to the explicit

query.
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1.3 Contributions of the Thesis

In this section, we first present an overall perspective on the thesis by situating its contributions

in the framework of the initial ACLD system described above (1.3.1). Then, we provide a

detailed overview of the content of the thesis, divided into chapters (1.3.2).

1.3.1 Proposed Methods for the ACLD

In this thesis we propose new approaches for the ACLD, as schematically shown in Fig 1.1.

Starting from the users’ conversation transcribed using ASR and divided into fragments, we

prepare implicit queries, at regular time intervals, with the following approach. Similarly

to the initial version, first we apply stop word removal and stemming techniques to extract

meaningful words from the transcript. However, in contrast to the existing system1, we propose

a two-stage approach to the formulation of implicit queries, as represented in Figure 1.2.

Figure 1.1: Representation of the proposed ACLD system. The ACLD receives fragments of
ASR transcript of users’ discussion, and prepares implicit queries by: (1) applying stopword
removal and stemming; (2) performing diverse keyword extraction; and (3) constructing
multiple topically-separated queries. Then, the retrieval results of the implicit queries are
merged into a short and concise list of documents. Moreover, the system can recognize explicit
queries and expand them using the context. Finally, the system displays and justifies through
keywords the retrieval.

In the first stage, we propose a diverse keyword extraction technique from the list of content

1Which formulates each implicit query by selecting a subset of meaningful words based on matching to a
predefined list of keywords.
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words through steps 1 to 3 of Figure 1.2. These keywords should cover as much as possible

the topics detected in the conversation, and if possible avoid words that are obviously ASR

mistakes. The second stage is the clustering of the keyword set into the form of several

topically-disjoint queries to reduce the noisy effect of mixture of topics in a query in step 4

of Fig 1.2. Briefly, at step 1, a topic model is used to represent the distribution of the abstract

topic z for each word w noted p(z|w). The abstract topics are not pre-defined manually but

are represented by latent variables using a generative topic modeling technique. These topics

occur in a collection of documents – preferably, one that is representative of the domain of the

conversations. At step 2, these topic models are used to determine weights for the abstract

topics in each conversation fragment represented by βz . At step 3, the keywords C = {c1, ...,ck }

which cover a maximum number of the most important topics are selected by rewarding

diversity, using an original algorithm. Finally, at step 4, the implicit queries are constructed by

clustering the keyword set into several topically-separated subsets, each one corresponding to

an abstract topic. Each subset forms an implicit query, Qi , and is weighted by wei m,Qi based

on the importance of the topic to which it is associated.

Figure 1.2: The four steps of the proposed implicit query formulation method: (1) topic
modeling; (2) representation of the main topics of the transcript; (3) diverse keyword selection;
and (4) formulation of topically-separated implicit queries along with their weights.

To obtain document results from the implicit queries, similarly to the existing ACLD, we submit

each implicit query to a search engine, as shown in the first step of Figure 1.3. However, to

manage several lists of relevant articles (each retrieved for one implicit query), we propose
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a diverse merging method leading to a concise list of results shown to users. The merging

algorithm rewards diversity by decreasing the gain of selecting documents from a list as the

number of its previously selected documents increases. First, we represent the union of the

implicit queries constructed for the conversation fragment and the lists of document results

using topic modeling information as shown in the second step of Figure 1.3. Then we merge

documents by rewarding the topical similarity of documents to the queries as well as the

coverage of different lists based on the importance of the list which is specified by the weight

of implicit queries (step 3 of Fig. 1.3) normalized over the sum of the weights of all implicit

queries prepared for a fragment.

Figure 1.3: The three steps to prepare a concise list of documents from the retrieval results of
several topically-separated queries: (1) separately submitting M implicit queries to a retrieval
system to create M lists of results; (2) representing the document results and the set of key-
words C using topical information; and (3) merging the retrieval results of M lists to prepare
the final list of recommendations.

We have taken advantage of the above theoretical framework to allow the ACLD to also process

explicit queries submitted to it. The users can simply address the system by using a pre-defined

unambiguous name, which is robustly recognized by the ASR (e.g. “John”). We expand the

explicit queries using the keywords extracted by the proposed diverse keyword extraction

method, as shown in Fig 1.4. In the first step, the explicit query with the terms wex,i and the

keywords in the set C which are extracted from the conversation are represented using topical

information. In the second step, each keyword in the list ci ∈C is given a weight based on its

topical similarity to the entire query (noted weci ). In the final step, this keywords along with

their weights are added to the explicit query.
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Figure 1.4: The three stages of the proposed query refinement method: (1) topic modeling;
(2) computation of topical similarity of keywords to the explicit query; and (3) appending the
keywords to the explicit query along with their weights.

Given the new proposed approach to document recommendation for conversations, we

also designed a new user interface, shown in Figure 1.5. In the interface, users can easily

observe the ASR transcript of their conversation as well as the keywords of their conversation,

highlighted in green, as a summary of their discussion. Moreover, the links to the relevant

document results, along with the first sentence of each of them, marked with the keywords

found in the transcript, are displayed as well. To provide an explanation of the results, we show

the content words relevant to each document in the transcript highlighted in cyan when the

mouse hovers over the link to the document. Moreover, users can move forward or backward

through the results by pressing specific buttons.

1.3.2 Thesis Outline

This introduction (Chapter 1) aims to provide the big picture of the problem, of the moti-

vations underlying this study, and of the specific goals and contributions of the thesis. The

remaining chapters of the thesis are organized as follows. In Chapter 2, the context of this

study is reviewed, i.e. the literature published on the subject. We survey the existing just-in-

time information retrieval systems along with the approaches they used to formulate implicit

queries from users current activity. Moreover, we review the current keyword extraction meth-

ods, diverse retrieval re-ranking or merging techniques, and query refinement policies. We
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Figure 1.5: The new user interface of the ACLD. The interface shows reasons for each suggested
document, in terms of keywords, in addition to displaying transcripts and content words.

also review the possible evaluation methods for this study. Through Chapters 3, 4, 5, 6, and 7

(which are briefly summarized below), we describe the proposed solutions along with data

and evaluation metrics used for their evaluation. We also provide the results obtained by

comparing our solutions with the baselines. Then in Chapter 8, we present a scenario for

user-centric evaluation of the end-to-end system we implemented, including a new interface,

along with the results of a pilot experiment. In Chapter 9, the main findings of the thesis are

summarized, and future directions are considered to address several remaining issues among

the goals of this thesis. At the end, in appendices, we first present a method we proposed for

improving the results of machine translation by taking advantage of the keywords extracted us-

ing our diverse keyword extraction method. Then, we provide the transcripts for the examples

given at the end of several chapters.

Chapter 3: Comparative Evaluation Method Using Crowdsourcing

In Chapter 3, we explore a crowdsourcing approach to evaluate the retrieval results of a just-in-

time retrieval system for conversational environments. To validate the approach, we compare

several initial versions of the ACLD, including one that uses the entire conversation fragment

as a query and two which extract keywords from the fragment and use them directly as a query.

We employed two keyword extraction techniques which were used by the initial version of the

ACLD.

The chapter defines a comparison method to compare the retrieval results of two different

methods used for query formulation, using a crowdsourcing platform, Amazon’s Mechanical
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Turk, as an alternative to hiring expert workers for offline evaluation and to setting up real

meetings to collect clickthrough data for online evaluation. Crowdsourcing, as an offline

evaluation method, allows researchers to easily prototype and test their systems, in addition

to being a cheap and fast approach. We first design and publish comparison tasks “Human

Intelligence Tasks” (HITs) to gather users judgments. Each HIT demonstrates the transcript

of a conversation fragment with two lists of documents to be compared to users. Then users

should compare the lists by selecting options provided in the HIT (e.g. for a four option HIT

design workers should select among these options: “X” is better than “Y”, “Y” is better than

“X”, both are equally good, both are equally poor).

To measure the improvement brought by one method over the others with sufficient confi-

dence using workers’ judgments, various qualification control techniques exist. However, they

do not consider both workers reliability and the level of task difficulty, or if they consider them,

they need a large amount of data with ground truth annotation for each task and worker.

In this chapter, we introduce a new qualification control method called PCC-H which considers

workers’ reliability and the difficulty of the task at the same time, without the need for large

ground truth data sets to validate the workers’ judgments. We measure the workers’ reliability

by the inter-rater agreement of each of them against all the others, and use entropy to weight

the difficulty of each comparison task. It is shown that the proposed evaluation method

provides similar comparison scores for two different task designs and also is reliable when

compared to human judgments. The method is utilized for the comparative evaluation of the

methods proposed throughout this thesis.2

Chapter 4: Diverse Keyword Extraction from Conversational Transcripts

In Chapter 4, we present a keyword extraction method from conversations which preserves

the diversity of topics that may appear even in a short conversation fragment, with the overall

goal of providing a set of keywords that are representative of the semantic content of each

fragment. As the maximum coverage problem is NP-hard, we proposed a new submodular

reward function which rewards both the diversity and the relevance of topics in the set of

keywords in order to find the keyword set in polynomial time. The proposed method, which

is inspired from recent summarization methods, maximizes the coverage of topics that are

recognized automatically in manual or ASR transcripts of conversation fragments.

The method is evaluated on excerpts of manual transcripts of the Fisher Corpus and both the

manual and the ASR transcripts of conversation fragments from the AMI Meeting Corpus. As

presented in Chapter 3, we use crowdsourcing to elicit a large number of comparative judg-

ments for sets of keywords, aiming to evaluate which set is most representative of a fragment.

To enhance the readability of the keyword lists, we present a word cloud representation of

them to the workers.

2This method was presented at the Workshop on Recommendation Utility Evaluation (RUE 2012), a satellite
workshop of the 6th Conference on Recommender Systems (RecSys) (Habibi and Popescu-Belis, 2012).
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The results demonstrate that our method outperforms two competitive baselines, one based

on word frequency, and the other one considering topics but not enforcing diversity. We also

show that the final keyword lists that we extract contain a smaller number of words from the

ASR noise compared to those obtained by other competitive methods. 3

To demonstrate applicability to other settings, the method was used to represent the content of

a lecture segment, or an entire lecture, within the MUST-VIS system for multimedia navigation

and recommendation.4 The results show that the recommendations automatically provided

by the MUST-VIS system are judged to be relevant by human experts.

Chapter 5: Formulation of Implicit Queries from Conversations

In Chapter 5, we address the problem of formulating implicit queries from a set of keywords –

extracted as in Chapter 4 above – with the goal of using the keywords to retrieve, for each short

conversation fragment, a small number of potentially relevant documents for the conversation

participants. We construct two types of implicit queries for each conversation fragment from

a keyword list. The first one is simply the entire keyword list, while the second one is a set of

queries obtained by dividing the list into several topically-separated subsets. The queries are

given to a standard search engine over the English Wikipedia.

We experimented with the manual transcripts of the ELEA conversational corpus (see Sec-

tion 5.3), because there are enough articles in the Wikipedia to retrieve for the discussion of

the ELEA Corpus, and people also jump from one topic to another even in short fragments. We

use crowdsourcing to evaluate our method in terms of the relevance or the utility of suggested

documents to the meeting participants at the time of the corresponding fragment.

We first show that the retrieval results of the single queries made of the keyword list obtained

by the method proposed in Chapter 4 outperforms those of the baseline keyword extraction

methods. Then we compare the retrieval results of single queries with the retrieval results of

the multiple queries (merged into a single result list). The results show that the representation

of users’ information needs with multiple topically-separated queries and then merging the

retrieval results of queries, each submitted separately to a search engine improve the final list

of results.5

3We presented an initial version of our proposal at the 51th Annual Meeting of the Association for Computational
Linguistics (ACL) as a short paper (Habibi and Popescu-Belis, 2013), while the complete study appears in our
article in the IEEE/ACM Transactions on Audio, Speech and Language Processing (Habibi and Popescu-Belis, 2015b).

4The system was the winner of the ACM Multimedia 2013 Grand Challenge on Temporal Segmentation and
Annotation (Bhatt et al., 2013).

5These results were published as part of our article in the IEEE/ACM Transactions on Audio, Speech and Language
Processing (Habibi and Popescu-Belis, 2015b).
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1.3. Contributions of the Thesis

Chapter 6: Diverse Merging of Document Lists

In Chapter 6, we propose a solution to the problem of building concise, diverse and relevant

lists of documents, which can be recommended to the participants of a conversation. These

lists are retrieved periodically by submitting multiple implicit queries derived from the pro-

nounced words as described in Chapter 5. Each query is related to one of the topics identified

in the conversation fragment preceding the recommendation, and is submitted to a search

engine (in our experiments, over the English Wikipedia).

We propose an algorithm for diverse merging of these lists, using a submodular reward func-

tion that rewards the topical similarity of documents to the conversation keywords as well

as the diversity over lists of document results. We evaluate the proposed method through

crowdsourcing over the manual transcript of the ELEA conversational corpus. The results

show the superiority of the diverse merging technique over several others which not enforce

both topical relevance and diversity simultaneously.6

Chapter 7: Refinement of Explicit Queries

In Chapter 7, we introduce a context-based query refinement method applied to queries asked

by users during a meeting or a conversation, thus extending the capabilities of the ACLD to

answer spoken explicit queries. The proposed technique first implicitly extracts keywords

from users’ conversation fragments preceding explicit queries to represent the local context,

and then refines the queries (actually expanding them) by inserting into them these keywords

along with a weight value based on their topical similarity to the initial query.

To evaluate our proposal, we constructed a dataset called AREX: AMI Requests for Explanations

and Relevance Judgments for their Answers. This dataset contains a set of explicit queries

inserted in several conversations of the AMI Meeting Corpus, along with a set of relevance

judgments, over sample retrieval results from Wikipedia, collected by crowdsourcing. More-

over, an automatic evaluation metric based on Mean Average Precision (MAP) is provided with

the AREX dataset.

We compare our query expansion approach with other methods in terms of the relevance of

the retrieved documents using the AREX data set and metric. This comparison indicates the

superiority of our method using either the manual or the ASR transcripts.7

6This work was presented at the 25th International Conference on Computational Linguistics (Coling), as a long
paper (Habibi and Popescu-Belis, 2014).

7This work was presented at the 20th International Conference on Applications of Natural Language to Informa-
tion Systems (NLDB), as a long paper (Habibi and Popescu-Belis, 2015a).
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2 Related Work

In this chapter, we first review the previous work related to retrieval evaluation methods,

especially based on crowdsourcing, in Section 2.1. Then we review existing just-in-time

retrieval systems and the policies they use for automatically understanding users’ information

needs and building implicit queries to represent them, in Section 2.2. This review motivates us

to propose a new keyword extraction technique from conversational transcripts produced by

automatic speech recognition (ASR), in order to formulate implicit queries. Hence, we analyze

previous methods for keyword extraction from a text or transcript in Section 2.3. In Section 2.4

we survey current techniques for merging and re-ranking lists of search results which are

applicable to our just-in-time information retrieval system for conversations. Additionally, we

study the main methods which have been proposed for the refinement of short queries that

are explicitly asked by users in Section 2.5.

2.1 Retrieval Evaluation Methods

Evaluating the relevance of retrieval results is a difficult task, because it is subjective and

expensive to perform. Two well-known methods which are frequently used for this task are the

use of clickthrough data or the use of human experts (Thomas and Hawking, 2006). However, in

our case, producing clickthrough data or hiring professional workers for relevance evaluation

of the results suggested by our just-in-time retrieval system would be overly expensive and

challenging.

Moreover, it is not clear that evaluation results provided by a narrow range of experts would be

generalizable to a broader range of end users. In contrast, crowdsourcing is relatively easy to

prototype and to test experimentally, and also provides a cheap and fast approach for offline

evaluation. However, it is necessary to consider some problems which are associated to this

approach, mainly the reliability of the workers’ judgments (including spammers) and the

intrinsic competencies of the workers (Alonso and Lease, 2011).

The Technique for Evaluating Relevance by Crowdsourcing (TERC, see Alonso et al. (2008))
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emphasized the importance of qualification control, e.g. by creating qualification tests that

must be passed before performing the actual task. However, another study (Alonso and

Baeza-Yates, 2011) observed that workers may still perform tasks randomly even after passing

qualification tests. Therefore, it is important to perform partial validation of each worker’s

tasks, and weight the judgments of several workers to produce aggregate scores (Alonso et al.,

2008).

Several other studies have focused on Amazon’s Mechanical Turk crowdsourcing platform

and have proposed techniques to measure the quality of workers’ judgments when there is

no ground truth to verify them directly (Carletta, 1996; Smyth et al., 1994; Chittaranjan et al.,

2011; Karger et al., 2011; Whitehill et al., 2009; Khattak and Salleb-Aouissi, 2011). For instance,

Carletta (1996) measured the quality of judgments for a labeling task using the inter-rater

agreement and majority voting. Alternatively, expectation maximization (EM) has been used

to estimate true labels in the absence of ground truth for an image labeling task (Smyth et al.,

1994). In order to improve EM-based estimation of the reliability of workers, the confidence

of workers in each of their judgments has been used as an additional feature – the task being

dominance level estimation for participants in a conversation (Chittaranjan et al., 2011). As

the performance of the EM algorithm is not guaranteed, a new method was introduced by

Karger et al. (2011) to estimate reliability based on low-rank matrix approximation.

All of the above-mentioned studies assumed that tasks share the same level of difficulty.

To model both task difficulty and workers’ reliability, an EM-based method named GLAD

(for Generative model of Labels, Abilities, and Difficulties) was proposed by Whitehill et al.

(2009) for an image labeling task. However, this method is sensitive to the initialization

value, hence a good estimation of labels requires a small amount of data with ground truth

annotation (Khattak and Salleb-Aouissi, 2011). In this thesis (see Chapter 3), we will introduce

a qualification control technique which predicts both task difficulty and workers’ reliability,

even if no ground truth is available to validate workers’ judgments.

2.2 Just-in-Time Retrieval Systems and their Strategies for Query

Formulation

The just-in-time information retrieval paradigm aims to reverse the traditional model of search

for information, by offering users the possibility to spontaneously receive recommendations,

based on their current activity, in a query-free manner. One of the first systems for document

recommendation, referred to as query-free search, was the Fixit system (Hart and Graham,

1997), an assistant to an expert diagnostic system for the products of a specific company (fax

machines and copiers). Fixit monitored the state of the user’s interaction with the diagnostic

system, in terms of the positions in a belief network built from the relations among symptoms

and faults, and ran background searches on a database of maintenance manuals to provide

additional support information related to the current state of the interaction.
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The Remembrance Agent (Rhodes and Starner, 1996; Rhodes and Maes, 2000), another early

just-in-time retrieval system, is closer in concept to the system considered in this thesis. The

Remembrance Agent was integrated into the Emacs text editor, and ran searches at regular

time intervals (every few seconds) using a query that was based on the latest words typed by

the user, for instance using a buffer of 20–500 words ranked by frequency. The Remembrance

Agent was extended to a multimodal context under the name of Jimminy, a wearable assistant

that helped users with taking notes and accessing information when they could not use a

standard computer keyboard, e.g. while discussing with another person (Rhodes, 1997). Using

TFIDF for keyword extraction, Jimminy augmented these keywords with features from other

modalities, for example the user’s position and the name of their interlocutor(s).

The Watson just-in-time information retrieval system (Budzik and Hammond, 2000) assisted

users with finding relevant documents while writing or browsing the Web. Watson built a single

query based on a more sophisticated mechanism than the Remembrance Agent, by taking

advantage of knowledge about the structure of the written text, e.g. by emphasizing the words

mentioned in the abstract or written with larger fonts, in addition to word frequency. The

Implicit Queries (IQ) system (Czerwinski et al., 1999; Dumais et al., 2004) generated context-

sensitive searches by analyzing the text that a user is reading or composing. IQ automatically

identified important words to use in a query using TFIDF weights. Another query-free system

was designed for enriching television news with articles from the Web (Henzinger et al., 2005).

Similar to IQ or Watson, queries were constructed from the ASR transcripts using several

variants of TFIDF weighting, and considering also the previous queries made by the system.

Other real-time assistants were conversational. They interacted with users to answer their

explicit information needs or to provide recommendations based on their conversation. For

instance, Ada and Grace1 were twin virtual museum guides (Traum et al., 2012), which interact

with visitors to answer their questions, suggest exhibits, or explain the technology that makes

them work. Moreover, a collaborative tourist information retrieval system (Arif et al., 2014,

2012) interacted with tourists to provide travel information such as weather conditions, at-

tractive sites, holidays, and transportation, in order to improve their travel plans. MindMeld2,

another conversation assistant agent, is a commercial voice assistant for mobile devices such

as tablets, which listens to conversations between people, and shows related information

from a number of Web-based information sources, such as local directories. MindMeld im-

proves the retrieval results by adding the users’ location information to the keywords of the

conversation obtained using an ASR system. As far as is known, the system employes the

state-of-the-art methods for language analysis and information retrieval (Zaino, 2014).

In collaboration with other researchers, we have designed the Automatic Content Linking

Device (ACLD) (Popescu-Belis et al., 2008, 2011) which is a just-in-time retrieval system for

conversational environments, especially intended to be used jointly by a small group of people

in a meeting. The system monitors the users’ conversation and prepares implicit queries from

1See http://ict.usc.edu/prototypes/museum-guides/.
2See http://www.expectlabs.com/mindmeld/.
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words recognized through an ASR system. The current system models users’ information needs

as a set of keywords extracted at regular time intervals, by comparing the words transcribed by

the ASR system against a list of keywords fixed before the meeting. We will show in Chapter 3

that this method outperforms the use of the entire set of words from a conversation fragment

as an implicit query (Habibi and Popescu-Belis, 2012) . Moreover, experiments with the use

of semantic similarity between a conversation fragment and documents as a criterion for

recommendation have shown that, although this improves relevance, its high computation

cost makes it unpractical for just-in-time retrieval from a large repository (Yazdani, 2013, 4.12).

We will provide a detailed explanation and analysis of this claim in Chapter 3. These findings

motivated us to design innovative methods for modeling users’ information needs from their

conversation.

2.3 Keyword Extraction Methods

As mentioned in the introduction, since even short conversation fragments include words

potentially pertaining to several topics, and the ASR transcript adds additional ambiguities, a

poor keyword selection method leads to non-informative queries, which often fail to capture

users’ information needs, thus leading to low precision and user satisfaction in terms of the

relevance of recommended document results.

Numerous methods have been proposed to automatically extract keywords from a text, and

many are applicable also to the ASR transcript of a conversation fragment. The earliest

techniques have used word frequencies (Luhn, 1957) and TFIDF values (Salton et al., 1975;

Salton and Buckley, 1988) to rank words for extraction. Alternatively, words have been ranked

by counting pairwise word co-occurrence frequencies (Matsuo and Ishizuka, 2004). These

approaches have not considered word meaning, so they may ignore low-frequency words

which together indicate a highly-salient topic. For instance, the words ‘car’, ‘wheel’, ‘seat’, and

‘passenger’ occurring together indicate that automobiles are a salient topic even if each word

is not itself frequent (Nenkova and McKeown, 2012).

To improve over frequency-based methods, several ways to use lexical semantic information

have been proposed. Semantic relations between words can be obtained from a manually-

constructed thesaurus such as WordNet, or from Wikipedia, or from an automatically-built

thesaurus using latent topic modeling techniques such as LSA, PLSA, or LDA. For instance,

one approach has used the frequency of all words belonging to the same WordNet concept

set (Ye et al., 2007), while the Wikifier system (Csomai and Mihalcea, 2007) relied on Wikipedia

links to compute a substitute to word frequency.

Hazen (2011a) applied latent topic modeling techniques to audio files. In another study, he

used PLSA to build a thesaurus, which was then used to rank the words of a conversation

transcript with respect to each topic using a weighted point-wise mutual information scoring

function (Hazen, 2011b). Harwath and Hazen (2012) utilized PLSA to represent the topics of a

transcribed conversation, and then ranked words in the transcript based on topical similarity
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to the topics found in the conversation. Furthermore, Harwath et al. (2013) extracted the

keywords or key phrases of an audio file by directly applying PLSA on the links among audio

frames obtained using segmental dynamic time warping, and then using mutual information

measure for ranking the key concepts in the form of audio file snippets. In addition, a semi-

supervised latent concept classification algorithm was presented by Celikyilmaz and Hakkani-

Tur (2011) using LDA topic modeling for multi-document information extraction.

Graph-based methods are also used for keyword extraction. For instance, word co-occurrence

has been combined with PageRank (Mihalcea and Tarau, 2004), and additionally with Word-

Net (Wang et al., 2007a), or with topical information (Liu et al., 2010). However, as shown

empirically by Mihalcea and Tarau (2004) and by Liu et al. (2010), such approaches have

difficulties modeling long-range dependencies between words related to the same topic,

which occur frequently in texts and conversations. Moreover, Liu et al. (2009a) have shown

that graph-based approaches are not appropriate to extract keywords from conversational

transcripts due to lack of well structure in these transcripts.

To consider dependencies among selected words, Riedhammer et al. (2008) considered the

dependencies among surrounding words by merging n-gram information obtained from

WordNet with word frequency, in order to extract keywords from a meeting transcript. To

reduce the effect of noise in meeting environments, this method removed all n-grams which

appear only once or are included in longer n-grams with the same frequencies. In another

study, part-of-speech information and word clustering techniques were used for keyword

extraction (Liu et al., 2009b), while later this information was added to TFIDF so as to consider

both word dependency and semantic information (Liu et al., 2009a).

In a recent paper, a keyword extraction technique from a set of documents was introduced

by Jiang et al. (2015) based on the word2vec vector space representation of a word in which

the dependencies between each word and its surrounding words are modeled using a neural

network language model (Mikolov et al., 2013a,b). They first extracted a set of keywords from

the title of all the documents as the initial keyword set and then added words from the abstract

and the body of documents. Their method selected words which have higher similarity with

the initial set using cosine similarity over their word2vec vector representations. Although

they considered topical similarity and dependency among words, the above methods did

not explicitly reward diversity and therefore might miss secondary topics in a conversation

fragment, by giving too much importance to the first main topic only.

Supervised machine learning methods have been used to learn models for extracting keywords.

This approach was first introduced by Turney (1999), who combined heuristic rules with a

genetic algorithm. Other learning algorithms such as Naive Bayes (Frank et al., 1999), Bagging

(Hulth, 2003), or Conditional Random Fields (Zhang et al., 2008) have been used to improve

accuracy. These approaches, however, rely on the availability of in-domain training data

(which is not the case in our setting), and the objective functions they use for learning still

do not consider the diversity of keywords. Therefore, we propose a new keyword extraction
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method in Chapter 4 to maximize the coverage of the main topics discussed in the conversation

as well as reduce the effect of the ASR noise within the keyword set.

2.4 Diverse Retrieval Merging and Re-ranking Techniques

Just-in-time retrieval systems, as presented above, have been designed to recommend docu-

ments which are potentially relevant to users’ activities (Hart and Graham, 1997; Rhodes and

Maes, 2000; Popescu-Belis et al., 2008). When using a just-in-time retrieval system, people are

generally not willing to inspect a large number of recommended documents, mainly because

this would distract them from their main activity. Several solutions to this problem have been

proposed.

The Watson just-in-time information retrieval system (Budzik and Hammond, 2000), which

is designed for reading or writing activities, clustered the retrieval results and selected from

each cluster the best representative, so as to recommend only a short list of document results.

However, clustering the results is not suitable for our application, because the mixture of

topics in a single query will degrade the document results aimed to be clustered (Bhogal et al.,

2007; Carpineto and Romano, 2012), and consequently may have a damaging effect on the

clusters’ representatives. Moreover, in Chapter 5, we will experimentally show that the list of

documents suggested to users by merging the retrieval results of multiple topically-separated

queries contains more relevant documents compared to that of a single query. The second part

of the method proposed by Budzik and Hammond (2000), which selects the best representative

of the clusters in the final document list, will be shown to be helpful in Chapter 5. We will use

it there as a simple method to merge the lists of results retrieved for multiple queries; however,

its effectiveness relies on having clusters with similar levels of importance (Wu and McClean,

2007).

Many studies in information retrieval have addressed the problem of diverse ranking, which

can be stated as a tradeoff between finding relevant versus finding a diverse set of results

(Robertson, 1997). The existing diverse ranking proposals differ in their diversifying poli-

cies and definitions, which can be categorized into implicit methods (Carbonell and Gold-

stein, 1998; Zhai et al., 2003; Radlinski and Dumais, 2006; Wang and Zhu, 2009) or explicit

ones (Agrawal et al., 2009; Carterette and Chandar, 2009; Santos et al., 2010; Vargas et al., 2012).

The implicit approaches assume that similar documents will cover similar aspects of a query,

and have to be demoted in the ranking to promote relative novelty and reduce overall redun-

dancy. In one of the earliest approaches, Carbonell and Goldstein (1998) introduced Maximal

Marginal Relevance (MMR) to re-rank documents based on a tradeoff between the relevance

of document results and the relative novelty as a measure of diversity. MMR was used by

Radlinski and Dumais (2006) to re-rank results from a query set which is generated for a user

query and represents a variety of potential user intents.

Instead of implicitly accounting for the aspects covered by each document, another option
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is to explicitly model these aspects within the diversification approach. Agrawal et al. (2009)

introduced a submodular objective function to minimize the probability of average user dis-

satisfaction by producing a set of diversified results that cover different interpretation of a

query. For each query, aspects are represented by topics which are modeled using a taxonomy

of information available through the Open Directory Project (ODP). Moreover, Carterette and

Chandar (2009) represented query aspects as topics estimated from the top ranked documents.

Alternatively, Santos et al. (2010) proposed another submodular objective function to maxi-

mize coverage and minimize redundancy with respect to query aspects, which were modeled

using a keyword-based representation instead of a predefined taxonomy. In Chapter 6, Sec-

tion 6.5.1, we will show experimentally that the use of diverse re-ranking methods cannot

improve the retrieval results of a single implicit query made of the entire keyword set extracted

from a conversation fragment.

In fact, our just-in-time retrieval system requires a diverse merging method applicable to

the retrieval results of multiple implicit queries, rather than a diverse re-ranking technique

intended for a single query (even possibly a multi-aspect one). Several studies have been

previously carried out on merging lists of results in information retrieval, mostly for distributed

information retrieval, where several lists of results from different search engines for the same

query must be merged (Callan, 2000; Aslam and Montague, 2001; Wu and McClean, 2007).

However, despite the superficial similarity, the problem here is in fact different, which is why a

new approach will be proposed in Chapter 6 of this thesis.

2.5 Query Refinement Methods

Some just-in-time retrieval systems allow users to also express explicitly their information

needs. Explicit queries can be ambiguous because the query words can refer to multiple

notions. Several methods for the refinement of explicit queries asked by users have been

proposed in the field of information retrieval, and are often classified into automatic query

expansion techniques and relevance feedback ones (Carpineto and Romano, 2012).

Methods based on query expansion generate one or more hypotheses for query refinement

by recognizing possible interpretations of a query, using knowledge coming either from a

corpus (Attar and Fraenkel, 1977; Xu and Croft, 1996; Robertson et al., 1999; Carpineto et al.,

2001; Bai et al., 2005) or from Web data or personal profiles in the case of Web search (Xu

and Croft, 2000; Diaz and Metzler, 2006; Chirita et al., 2007; Park and Ramamohanarao, 2007).

Query expansion techniques select suggestions for query refinement either interactively

or automatically (Carpineto and Romano, 2012). For instance, relevance feedback gathers

judgments obtained from users on sample results obtained from an initial query (Rocchio,

1971; Salton and Buckley, 1997; Lavrenko and Croft, 2001).

These methods are not ideal for the refinement of explicit queries asked during a conversa-

tion, because they require to interrupt users during their conversation for obtaining further

clarifications. On the contrary, our overall goal (as for implicit queries) is to estimate users’
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information needs from their explicit queries as unobtrusively as possible. Moreover, using

the local context for query refinement instead of external, non-contextual resources has the

potential to improve retrieval results (Budzik and Hammond, 2000).

To the best of our knowledge, two previous systems have utilized the local context for the aug-

mentation of explicit queries. The JIT-MobIR system for mobile devices (Alidin and Crestani,

2013) used contextual features from the physical and the human environment, although the

content of the activities itself was not used as a feature. The Watson system already introduced

above (Budzik and Hammond, 2000) refined explicit queries by concatenating them with the

preceding implicit query, which is made of keywords extracted from the documents being

edited or viewed by the user. However, in order to apply this method to a retrieval system for

which the local context is a conversation, the keyword lists must avoid considering irrelevant

topics from ASR errors. Moreover, in contrast to written documents which generally follow

a planned and well-focused structure, in a conversation users often shift from one topic to

another. Such expansion terms from ASR noise and irrelevant topics might deteriorate the

retrieval results of explicit queries (Jin et al., 2003; Bhogal et al., 2007; Carpineto and Romano,

2012). Therefore, we propose a query refinement technique which expands an explicit query

by the keywords extracted from the ASR transcript of users’ conversation fragment coming

before the query and also is robust to ASR noise and off-topic keywords.
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3 Comparative Evaluation Method Us-
ing Crowdsourcing

Evaluating the relevance of recommendations produced by the just-in-time retrieval system

described in this thesis is a challenging task. The evaluation in use requires the full deployment

of the system and the setup of numerous evaluation sessions with realistic meetings. That

is why alternative solutions based on simulations are important to find. In this chapter, we

propose to run the system over a corpus of conversations and to use crowdsourcing to compare

the relevance of results in various configurations of the system. As this method is essential to

quantify the advantages of our just-in-time retrieval methods, we have chosen to present it

as the first research contribution of the thesis, before the actual work on keyword extraction,

query formulation, and merging of result lists.

3.1 Introduction

A crowdsourcing platform, here Amazon’s Mechanical Turk (AMT), is helpful to evaluate the

relevance of documents recommended by a just-in-time retrieval system for several reasons.

First, we can evaluate a large amount of results in a fast and inexpensive manner. Second,

workers are sampled from the general public, and have no contact with each other, which

might represent a more realistic user model than system developers or graduate students

for instance. However, in order to use workers’ judgments for relevance evaluation, we have

to assess the quality of their evaluations, and to factor out the possible biases of individual

contributions.

We formulate in this chapter an evaluation protocol using crowdsourcing, which assesses

the quality of workers’ judgments by estimating task difficulty and workers’ reliability, even

if no ground truth to validate the judgments is available. This approach, named Pearson

Correlation Coefficient-Information Entropy (PCC-H), builds upon previous studies of inter-

rater agreement and uses notions of information theory.

Moreover, we present in this chapter several experiments using the proposed evaluation

method to several preliminary designs of the Automatic Content Linking Device (ACLD),
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a just-in-time retrieval system pre-dating this thesis, which lead to different lists of docu-

ment recommendations. The results demonstrate that using the keywords extracted (using

a dictionary-based method) from a fragment for query formulation provides more relevant

list of documents compared to using all the words of the fragment. Besides, the findings

presented here also confirm that the system’s recommendations cannot appropriately answer

users’ explicit queries, thus justifying the need for the separate module specified in Chapter 7.

This chapter is organized as follows. Section 3.2 describes the different versions of the system

which will be compared. Section 3.3 presents our design of the evaluation micro-tasks on the

crowdsourcing platform, here Amazon’s Mechanical Turk. In Section 3.4, the proposed PCC-H

method for measuring the quality of judgments is defined. Section 3.5 presents the results of

our evaluation experiments, which on the one hand validate the proposed method, and on

the other hand indicate the comparative relevance of the different versions of the system.

3.2 Versions of the ACLD System Compared in the Study

As it is difficult to assess the utility of a just-in-time retrieval system designed for conversational

environments from an absolute perspective, we aim instead at comparing preliminary versions

of the ACLD system, in order to assess the improvement (or lack thereof) due to various designs.

Here, we will compare four different approaches to the recommendation problem, with the

ACLD system (presented in 2.2 above) simply aiming to find the closest documents to a given

stretch of conversation.

The four compared versions of the ACLD are the following ones. Two standard versions (Popescu-

Belis et al., 2008) differ by the filtering procedure used to construct implicit queries. One of

them (noted AW ) uses all the words (except stopwords) spoken by users during a specific

period as an implicit query to retrieve related documents. The other one (noted KW ) filters

the words, keeping only keywords from a pre-defined list related to the topic of the meeting as

implicit queries.

Two other methods depart from the standard versions. One of them implements semantic

search (noted SS) as proposed by Yazdani (2013), which uses a graph-based semantic related-

ness measure to perform retrieval (Popescu-Belis et al., 2011). The other one (noted EQ) allows

users to ask their explicit queries and recognizes their addressing to the system by requiring

them to start their explicit queries with a specific unambiguous word chosen as the system’s

name, such as “John”.

In the evaluation experiments presented here, we only use human transcriptions of meetings,

to focus on the meta-evaluation of the retrieval strategy itself. We use one meeting (ES2008b)

from the AMI Meeting Corpus (Carletta, 2007) in which the design of a new remote control for

a TV set is discussed. The explicit users’ requests for the EQ version are simulated by modifying

the transcript at 24 different locations where we believe that users are likely to ask explicit

queries. We restrict the search to the Wikipedia pages, mainly because the semantic search
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system is adapted to this data, using a local copy of it obtained through the Freebase Wikipedia

Extraction(WEX) dataset1 from Metaweb Technologies (version dated 2009-06-16). Wikipedia

is one of the most popular general reference works on the Internet, and recommendations

over it are clearly of potential interest. But alternatively, all our versions except SS could also

be executed with non-restricted web searches via the Google API, or could be limited to other

web domains or websites.

The 24 fragments of the meeting containing the implicit and explicit queries are submitted for

comparison. That is, we want to know which of the results displayed by the various versions at

the moment following the implicit or explicit query are considered most relevant by external

judges. As the method allows only binary comparisons, we will compare EQ with the AW and

KW versions, and then SS with KW.

3.3 Designing the Comparative Evaluation Tasks

Amazon’s Mechanical Turk (AMT) is a crowdsourcing platform which gives access to a large

pool of online workers paid by requesters to complete short “Human Intelligence Tasks” (HITs).

Once the tasks are designed and published, registered workers that fulfill the requesters’

selection criteria are invited by the AMT service to work on HITs in exchange for a small

amount of money per HIT (Alonso and Lease, 2011).

Since it is difficult to find an absolute relevance score, we only aim for comparative relevance

evaluation between versions. For each pair of versions, a batch of HITs is designed with

their results. Each HIT, as exemplified in Figure 3.1, contains the transcript of a conversation

fragment with the two lists of document results to be compared. Only the first six document

results are made visible for each version. The lists from the two compared versions are placed

in random positions (first or second, i.e. left or right) across HITs, to avoid biases from a

constant position.

We experiment with two different HIT designs. The first design offers evaluators a binary

choice: either the first list is considered more relevant than the second one, or vice-versa. In

other words, workers are obliged to express a preference for one of the two recommendation

lists. This encourages decision making, but of course may be inappropriate when the two

answers are of comparable quality, though this may be evened out when averaging over

workers. The second design gives workers four choices, as in Figure 3.1: in addition to the

previous two options, workers can indicate either that both lists appear to be equally relevant,

or equally irrelevant. In both designs, workers must select exactly one option. Then, the

relevance value of each recommendation list is computed using the PCC-H score defined in

the next section.

There are 24 meeting fragments, hence 24 HITs in each batch for comparing pairs of systems,

for EQ vs. AW and EQ vs. KW. However, the results obtained by the team using semantic

1See http://download.freebase.com/wex.
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Figure 3.1: Illustration of a four-choice HIT: workers read the conversation transcript, examine
the two document lists (with recommended documents for the respective conversation frag-
ment from two different systems) and select one of the four comparative options (#1 better
than #2, #2 better than #1, both equally good, both equally poor). They also can add a short
comment at the end.

search were based on a different segmentation: hence, to compare SS vs. KW, we obtained

36 HITs. There are 10 workers per HIT, so there are 240 total assignments for EQ vs. KW and

for EQ vs. AW (with a two-choice and four-choice design for each), and 360 for SS vs. KW. As

workers are paid 0.02 USD per HIT, the cost for the five separate experiments is 33 USD, with

an apparent average hourly rate of 1.60 USD. The average observed time per assignment is

almost 50 seconds. All five tasks took only 17 hours to be fully performed by workers via AMT.

For the qualification control procedure, we accept workers with greater than 95% approval

rate (i.e. 95% of the worker’s submitted HITs for previous tasks have been approved by their

requesters) and with more than 1000 approved HITs.

3.4 The PCC-H Score

Majority voting is frequently used to aggregate multiple sources of comparative relevance

evaluation. However, this approach is not directly appropriate to compute the comparative

relevance scores from the judgements obtained via crowdsourcing (Carletta, 1996; Smyth et al.,

1994; Chittaranjan et al., 2011; Karger et al., 2011; Whitehill et al., 2009; Khattak and Salleb-

Aouissi, 2011), because it assumes that all HITs share the same difficulty and all the workers are

equally reliable. We will address this issue by introducing a new computation method based

on weighted averages of the judgments, considering both the task difficulty and the workers’

reliability. The method is called PCC-H, for Pearson Correlation Coefficient-Information

Entropy.
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3.4.1 Estimating Worker Reliability

First, we apply a qualification control factor to the human judgments noted cv . The factor

reduces the impact of workers who disagree with the majority, using the Pearson correlation

of one worker’s judgment with the average of all others as computed in Equation 3.1.

cv = 1

|A|
A∑

a=1

∑|T |
t=1(St v (a)−µSt v (a))(S′

t v (a)−µS′
t v (a))

(T −1)σSt v (a)σS′
t v (a)

(3.1)

In this equation, |T | is the number of meeting fragments and St v (a) is the value that the worker

v assigned to the option a (among the two or four possible answers) for the fragment t (i.e.

St v (a) is 1 if option a is selected by worker v , otherwise it is 0). µSt v (a) and σSt v (a) are the

expected value and the standard deviation of the variable St v (a) over the entire fragment,

respectively. S′
t v (a) is the average value that all other workers (except v) assign to the option a

of the fragment t . µS′
t v (a) and σS′

t v (a) are the expected value and the standard deviation of the

variable S′
t v (a) as well.

The value of cv computed above is used as a weight for computing C St (a), which is the

relevance value of the document list corresponding to option a of the fragment t , according

to Equation 3.2. Note that the values of cv is in the range of -1 to 1. Although the negative

values are appeared, they are few (usually subjects follow each other and there are a small

number of them which perform malicious behaviours), and we still use them as weights in our

experiments. However, in particular (in all our experiments), they are positive.

CSt (a) =
(

V∑
v=1

cv St v (a)

)
/

(
V∑

v=1
cv

)
(3.2)

3.4.2 Estimating Task Difficulty

In addition to the workers’ reliability computed above, the PCC-H method considers the task

difficulty for each fragment of the meeting, noted D t . The goal is to reduce the effect on the

final score of those fragments of the meeting in which there is an uncertainty among the

workers’ judgments.

To reduce the effect of uncertainty in our judgments, we factor out the impact of undecided

fragments by using a measure of the entropy of the answer distribution for each fragment t .

The entropy of answers for each fragment of the meeting is computed in Equation 3.3. The

task difficulty is then calculated as a function of the entropy as written in Equation 3.4, and is

used as a weight for each fragment t in Equation 3.5.

Ht =−
∑A

a=1 C St (a) ln(C St (a))

ln(|A|) (3.3)
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D t = 1−Ht (3.4)

3.4.3 Comparative Relevance Score

We computed the comparative relevance scores for HIT designs with two options and four

options. For the two-option HIT designs, a final comparative score, noted C S(a), is computed

for each set of judgments. To compare two competitive methods, we average the weighted

scores over all the fragments, as shown in Equation 3.5. When comparing two sets of answers,

the sum of the two scores is always 100%.

%CS(a) =
∑|T |

t=1 Dt CSt(a)∑|T |
t=1 Dt

×100 (3.5)

For four-option HIT designs, we provided two different approaches. The first approach

computes the average comparative score for each list and task, C St (l ), which is called the

global relevance value for the answer list l and is formulated as Equation 3.6 below:

C St (l ) =C St (al )+ C St (ab)

2
− C St (an)

2
(3.6)

This can be weighted by task difficulty as formulated in Equation 3.5. In this equation, half of

the relevance value of the case in which both lists are relevant C S(ab) is added as a reward (ab

denotes the answer “both are relevant”), and half of the relevance value of the case in which

both lists are irrelevant C S(an) is subtracted as a penalty (an denotes the answer “none is

relevant”) from the relevance value of each answer list C S(al ) (al denotes the answer “answer

list l is relevant”). We normalize the values to keep the sum of scores equal to 100%.

In the second approach, the relevance value for an answer list is defined as the probability of

being equally relevant or more relevant compared to the other answer list. Assuming that the

probability of workers’ judgments for each task has a normal distribution, we can estimate

the probability of selecting each option by the workers using maximum likelihood estimation.

Therefore, the probability of answer list l1 being equally relevant or more relevant than answer

list l2 for task t is computed as:

CSt (al1 ≥ al2 ) = CSt (al1 )+CSt (ab) (3.7)

The corresponding value for answer list l2 is similar to the above formula. Then, the score of

answer list l1 for all the tasks is defined in Equation 3.8 and can be computed similarly for

answer list l2 as well.

CS(l1) =
( |T |∑

t=1
D t CSt (l1)

)
/

( |T |∑
t=1

D t

)
(3.8)
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This formulation allows us to calculate the confidence interval for each comparative relevance

value. Although we do not have the real mean and variance of workers judgments, we can

compute the confidence interval using weighted Student’s t-distribution. If the comparison

scores of two answer lists do not overlap for p = 0.05, then the two methods generated the two

answer lists are distinguishable, and we can infer that the difference between the results is

statistically significant. The confidence interval for each answer list retrieved for the tasks with

different task difficulty values is calculated as follows:

C I (l1) = t(1− p
2 ,|T |−1)

√√√√S2
C S(l1)/

|T |∑
t=1

D t (3.9)

where S2
C S(l1) is the weighted variance of the probability score computed for the answer list

l1 based on the task difficulty values, as shown below in Equation 3.10, and t(1− p
2 ,|T |−1) is

obtained from the t-table of Student’s t-distribution.

S2
C S(l1) =

( |T |∑
t=1

D t (C St (l1)−C S(l1))2

)
/

(
(|T |−1)

∑|T |
t−1 D t

|T |

)
(3.10)

In this chapter we only present the scores using the first approach for four-option HIT designs,

but in all the following chapters we present the relevance scores using both approaches and

assess the statistical significance of the improvements brought by our methods using the

method presented above.

3.5 Results of the Experiments

Two sets of experiments will be described. First, we attempt to validate the PCC-H method.

Then, we apply the PCC-H method to perform a binary comparison between the four prelimi-

nary versions of the system presented above. Here, we will first show that the results of implicit

queries cannot appropriately cover the answers to explicit queries, and confirm the need for

adding an extra module that supports to properly answer users explicit queries. Second, we

will validate our motivations for proposing a novel keyword extraction method by demonstrat-

ing that using as an implicit query the set of keywords extracted by a baseline method, instead

of all the words of a conversation fragment, already improves the recommendation results.

3.5.1 Validation of the Worker Reliability Values

To provide an initial validation of the workers’ judgments, we compare the judgments of

individual workers with those of an expert. For each worker, the number of fragments for

which the answer is the same as the expert’s answer is counted, and the total is divided

by the number of fragments, to compute accuracy. Then we compare this value with cv ,

which is estimated as the reliability measurement for each worker’s judgment. The number

of agreements between each worker vs. the expert over all HITs ev and the value of cv for
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each worker for one of the batches of HITs is shown in Table 3.1. The numbers indicate

an overall agreement between these two values for each worker, with a Pearson correlation

coefficient of 0.89 over all workers (strong correlation). In other words, workers who have more

similarity with our expert also have more inter-rater agreement with other workers. Since in

the general case there is no ground truth (expert) to verify workers judgments, we will rely on

the inter-rater agreement values for the other experiments.

Table 3.1: The number of agreements between a single worker and the expert over all HITs,
and a single worker and the other workers, provided by 10 workers for the KW system and
four-option HIT design. There is an agreement between these values among workers.

worker # 1 2 3 4 5 6 7 8 9 10

ev 0.66 0.54 0.54 0.50 0.50 0.50 0.41 0.39 0.36 0.31
cv 0.81 0.65 0.64 0.71 0.60 0.35 0.24 0.33 0.34 0.12

3.5.2 Validation of the PCC-H Method

In order to show that our method is stable on different HIT designs, we use two different HIT

designs for each pair as mentioned in Section 3.3. Firstly, we assume that all the workers are

reliable and all the fragments share the same difficulty by assigning equal weights to all the

user evaluations and fragments (majority voting) to compute comparative relevance scores

for two answer lists of our experiments, which are shown in Table 3.2.

Table 3.2: Comparative relevance scores computed by the assumption that all workers are
equally reliable and all tasks are equally difficult. The compared methods are AW vs. EQ and
KW vs. EQ. The scores are provided for both two-option and four-option HIT designs.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) two-option HIT design four-option HIT design

m1m1m1 m2m2m2 m1m1m1 m2m2m2

AW vs. EQ 30 70 26 74
KW vs. EQ 45 55 35 65

In this Table, the comparative relevance scores of KW vs. EQ differ between the two types of

HIT design. To overcome this issue, we considered the workers reliability factor. One approach

is to consider the workers with low cv values as outliers, and remove all outliers. For instance,

the four workers with lowest cv , shown in Table 3.1, are considered outliers and are deleted,

and then equal weights are given to the remaining six workers. For now, it is still assumed that

all the tasks have the same level of difficulty by assigning equal weights to them. The results of

comparative evaluation based on removing outliers are shown in Table 3.3.

However, there is no convergence of comparative relevance scores in the different HIT designs.

To make these values closer, instead of deleting workers with lower cv , which might still have

potentially useful insights on relevance, it is rational to give a weight to all workers’ judgments

based on this value as a confidence value. The comparative relevance score for each answer
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Table 3.3: Comparative relevance scores computed after removing the judgments of outlier
workers with low reliability factor. The method assigns equal reliability to the judgments of
the remaining workers. It is also assumed that tasks have the same level of difficulty and are
given equal weights. The compared methods are AW vs. EQ and KW vs. EQ. The scores are
provided for both two-option and four-option HIT designs.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) two-option HIT design four-option HIT design

m1m1m1 m2m2m2 m1m1m1 m2m2m2

AW vs. EQ 24 76 13 86
KW vs. EQ 46 54 33 67

list of four experiments based on assigning weight cv to each worker’s evaluation, and equal

weights to all meeting fragments are shown in Table 3.4.

Table 3.4: Comparative relevance scores computed by considering the workers reliability
weights. However, the fragments are still given equal weights with the assumption that all the
tasks have the same level of difficulty. The compared methods are AW vs. EQ and KW vs. EQ.
The scores are provided for both two-option and four-option HIT designs.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) two-option HIT design four-option HIT design

m1m1m1 m2m2m2 m1m1m1 m2m2m2

AW vs. EQ 24 76 18 82
KW vs. EQ 33 67 34 66

Although the comparative relevance scores are very close under different HIT designs by

considering only worker’s reliablity factors for AW vs. EQ comparison, we show that these

values approximately converge to the same value for each pair with different HIT designs. As

observed in Table 3.4, the comparative relevance scores of AW vs. EQ are not quite similar for

two different HIT designs, although the answer lists are the same. In fact, we observed that,

in several cases, there is no strong agreement among workers to decide which answer list is

more relevant to that meeting fragment, and we consider that these are “difficult” fragments.

Since the source of uncertainty is undefined, we can reduce the effect of that fragment on the

comparison by giving a weight to each fragment in proportion of the difficulty of assigning

C St (a). The comparative relevance values thus obtained for all experiments are represented

in Table 3.5. As shown in this table, the comparative relevance values of AW vs. EQ are now

very similar for two-option and four-option HIT designs. Moreover, the difference between

the system versions is emphasized, which indicates that the sensitivity of the comparison

method has increased.

Moreover, we compare the PCC-H method with the majority voting method and the GLAD

method (Generative model of Labels, Abilities, and Difficulties (Whitehill et al., 2009)) for

estimating comparative relevance values by considering task difficulty and worker reliability

parameters. We run the GLAD algorithm with the same initial values for all four experiments.
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Table 3.5: Comparative relevance scores computed by considering both the workers reliability
and task difficulty weights, noted as the PCC-H score. The compared methods are AW vs. EQ
and KW vs. EQ. The scores are provided for both two-option and four-option HIT designs.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) two-option HIT design four-option HIT design

m1m1m1 m2m2m2 m1m1m1 m2m2m2

AW vs. EQ 19 81 15 85
KW vs. EQ 23 77 26 74

The comparative relevance scores which are computed by the majority voting, the PCC-H and

the GLAD methods are shown in Table 3.6.

Table 3.6: Comparative relevance scores computed by majority voting, PCC-H, and the GLAD
methods. The compared methods are AW vs. EQ and KW vs. EQ. The scores are provided for
both two-option and four-option HIT designs.

Compared methods Majority voting, PCC-H, GLAD
(m1m1m1 vs. m2m2m2) two-option HIT design four-option HIT design

AW vs. EQ
m1m1m1 30%, 19%, 23% 26%, 15%, 13%
m2m2m2 70%, 81%, 77% 74%, 85%, 87%

KW vs. EQ
m1m1m1 45%, 23%, 47% 35%, 26%, 23%
m2m2m2 55%, 77%, 53% 65%, 74%, 77%

As shown in Table 3.6, the comparative relevance scores which are computed by the PCC-H

method for both HIT designs are very close to those of GLAD for the four-option HIT design.

Moreover, the comparative relevance values obtained by the PCC-H method for the two

different HIT designs are very similar, which is less the case for majority voting and GLAD.

This means that PCC-H is able to calculate the comparative relevance scores independent of

the exact HIT design. Moreover, the comparative relevance values calculated using PCC-H

are more robust since the proposed method is not dependent on initialization values, as

GLAD is. Therefore, using PCC-H for measuring the reliability of workers judgments is also an

appropriate method for qualification control of workers from crowdsourcing platforms.

3.5.3 Comparison across Various Versions of the System

As shown in Table 3.6, regardless of the type of the qualification control technique which is

used for the comparative evaluation of AW vs. EQ and KW vs. EQ, the EQ version outperforms

the KW version and more considerably the AW one.

The proposed method is also applied for the comparative evaluation of SS vs. KW search

results (semantic search vs. keyword-based search). The comparative scores are calculated by

three different methods as shown in Table 3.7. The first method is the majority voting method

which considers all the workers and fragments with the same weight. The second method is
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Table 3.7: Comparative relevance scores computed by majority voting, PCC-H, and GLAD. The
compared method is SS vs. KW. The scores are provided for both two-option and four-option
HIT designs.

Compared methods Majority voting, PCC-H, GLAD
(m1m1m1 vs. m2m2m2) four-option HIT design

SS vs. KW
m1m1m1 88%, 93%, 88%
m2m2m2 12%, 7%, 12%

PCC-H and the third one is the GLAD method. It appears that the SS version outperforms the

KW version according to all three scores.

3.6 Conclusion

In all the evaluation steps, the EQ system appeared to produce more relevant recommen-

dations than AW or KW. This means that using EQ, i.e. when users ask explicit queries in

conversation, improves over the AW or KW versions, i.e. with spontaneous recommendations.

Using KW instead of AW improved the scores by 10 percent, which indicates the superiority of

keywords over the entire fragment words for formulation of implicit queries.

KW can be used as an assistant which suggests documents based on the context of the meeting

along with the EQ version. Moreover, the SS version works better than the KW version, which

shows the advantage of semantic search. However, the high computation cost of SS version

makes it untractable for the just-in-time recommendation.

As for the evaluation method, PCC-H outperformed the GLAD method proposed earlier for

estimating task difficulty and reliability of workers in the absence of ground truth. Based

on the evaluation results, the PCC-H method is acceptable for qualification control of AMT

workers or judgments, because it provides a more stable comparative score across different

HIT designs. Moreover, PCC-H does not require any initialization.

The comparative nature of PCC-H imposes some restrictions on the evaluations that can be

carried out. For instance, if N versions must be compared, this calls in theory for N ∗ (N −1)/2

comparisons, which is clearly impractical when N grows. This can be solved if initial hypothe-

ses about the quality of the systems are available, to avoid redundant comparisons. Moreover,

an existing approach to reduce the number of pairwise comparisons which are required from

human raters (Llorà et al., 2005) could be ported to our context if needed. For progress evalua-

tion, a new version must be compared with the best performing previous version, looking for

measurable improvement, in which case PCC-H fully answers the evaluation needs.

As seen in the scores above, there are many instances in which the search results of both

versions are irrelevant. In the next chapters we will improve the quality of recommendations

by defining new approaches for the formulation of implicit queries or re-ranking of the
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retrieved results. We also will deal with ambiguous explicit queries by expanding them using

the context of the conversation.

32



4 Diverse Keyword Extraction from
Conversational Transcripts

In this chapter, we propose a diverse keyword extraction method which is applicable to

conversational fragments that are transcribed by a real-time ASR system. The two main aims

with respect to existing methods are: (a) to maximize the number of conversation topics that

are covered by the extracted keywords; and (b) to minimize the number of words produced

by the ASR noise that are selected as keywords. For this reason, our method rewards at

the same time the relevance of the keywords and the diversity of topics they cover. The

method is compared with baselines in terms of extracting keywords which better represent

the content of a conversation fragment using a crowdsourcing platform to collect a large

number of comparative judgments for sets of keywords, as presented in Chapter 3. Specifically,

the method is evaluated on fragments from the manual transcripts of the Fisher and the

AMI conversational corpora. Besides, we evaluate the method on the ASR transcripts of the

AMI corpus to measure the noise reduction power of the proposed method compared to

the baselines. The results demonstrate that our method outperforms two other methods, a

classical one based on word frequency, and a more recent one considering topics but not

enforcing diversity.

To demonstrate its versatility, our method is also applied to the ASR transcripts of video

lectures, within Idiap’s MUST-VIS system (Multi-factor Segmentation for Topic Visualization

and Recommendation). In this application, the keywords are used for the visualization of the

content of video lectures or segments, as well as for the computation of the similarity value

among them in order to suggest other relevant segments or lectures based on the one that is

currently viewed by a user.

4.1 Introduction

The goal of keyword extraction from texts is to provide a set of words that are the best represen-

tative of the semantic content of the conversational fragments. For instance, in the example

discussed in Section 4.4.5 below, in which four people are discussing about the impact on sales

of some features of remote controls (a fragment of 110 seconds including about 380 words), a
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variety of topics are mentioned, such as “remote control”, “losing a remote control”, “buying a

remote control”, and “different suitable colors for remote controls”. What would then be the

most representative keyword list to the fragment?

Given the potential multiplicity of topics and the potential ASR errors, our goal is to maintain

multiple hypotheses about users’ information needs. Therefore, we aim at extracting a relevant

and diverse set of keywords. The diversity of keywords increases the chance of extracting

better representative keywords by maximizing the coverage of the main topics conveyed

in the conversation. However, current keyword extraction methods are based on word or

topic frequencies and do not consider the diversity of topics that may appear even in a

short conversation fragment. For example, while a method based on topic similarity but

not enforcing the diversity of topics represents the topics pertaining to “electronic devices”,

“buying a device” or “different colors of a device” , it also misses other topics such as “remote

control”, and “losing a remote control” which are also representative of the fragment. On

the contrary, our novel keyword extraction technique maximizes the coverage of topics and

reduces the number of irrelevant words by rewarding at the same time topical similarity and

topical diversity.

This chapter is organized as follows. In Section 4.2 we describe the novel topic-aware diverse

keyword extraction algorithm intended for just-in-time retrieval systems. Section 4.3 presents

the data and the definition of the evaluation protocol as a set of micro-tasks (comparing

sets of keywords), which are crowdsourced using Amazon’s Mechanical Turk. In Section 4.4,

we provide and discuss the comparative results of two existing methods and our own one,

which outperforms both of them, in terms of diversity and overall representativeness of the

conversation over both the manual and the ASR transcripts of two conversational corpora. We

also exemplify the results on one conversation fragment given in the Figure 4.7 of the thesis.

Finally, in Section 4.5, we illustrate another application of the method, to the ASR transcripts

of the video lectures instead of those of conversations, within the MUST-VIS multimedia

recommender system.

4.2 Diverse Keyword Extraction

We propose to take advantage of topic modeling techniques to build a topical representation of

a conversation fragment, and then select content words as keywords by using topical similarity,

while also rewarding the coverage of a diverse range of topics, following an approach that was

inspired to us by recent summarization methods (Lin and Bilmes, 2011; Li et al., 2012). The

benefit of diverse keyword extraction is that the coverage of the main topics of the conversation

fragment is maximized. Moreover, in order to cover more topics, the proposed algorithm will

select a smaller number of keywords from each topic, which leads to the selection of a smaller

number of noisy keywords (compared to the algorithms which ignore diversity) when words

which are in reality ASR noise are associated to important topics in a fragment.

The proposed method for diverse keyword extraction proceeds in three steps, represented
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schematically in Figure 4.1. First, a topic model is used to represent the distribution of the

abstract topic z for each word w , noted p(z|w), as shown in Figure 4.1. The abstract topics

are not pre-defined manually but are represented by latent variables using a generative topic

modeling technique. These topics are inferred from a collection of documents – preferably,

one that is representative of the domain of the conversations. Second, these topic models

are used to determine weights for the abstract topics in each conversation fragment, noted

βz , as shown in the second step of Figure 4.1. Finally, the keyword list C = {c1, ...,ck } which

covers a maximum number of the most important topics is selected by rewarding relevance

and diversity, using an original algorithm introduced in this section.

Figure 4.1: The three steps of the proposed keyword extraction method: (1) topic modeling,
(2) representation of the main topics of the transcript, and (3) diverse keyword selection.

4.2.1 Modeling Topics in Conversations

Topic models such as Probabilistic Latent Semantic Analysis (PLSA) (Hofmann, 1999) or Latent

Dirichlet Allocation (LDA) (Blei et al., 2003) can be used to determine the distribution over

the topic z ∈ Z of each word w , noted p(z|w), from a large amount of training documents.

LDA implemented in the Mallet toolkit (McCallum, 2002) is used here because it does not

suffer from the overfitting issue of PLSA, as discussed by Blei et al. (2003). The smoothing

parameters of the model are initially set to α= 50/|Z | and β= 0.01 as these values work well

with different corpora (Steyvers and Griffiths, 2007), and they are then updated using the

optimization algorithm of the Mallet toolkit.

When a conversation fragment is considered for keyword extraction, its topics are weighted
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by the βz values (Equation 4.1 below), which are obtained by averaging over all probabilities

p(z|w) of the N words w spoken in the fragment t . The value of p(z|w) is computed as in

Equation 4.2.

βz = 1

N

∑
w∈t

p(z|w) (4.1)

p(z|w) = p(w |z)p(z)

p(w)
(4.2)

In the above equations, p(w |z) = nw,z /nz and p(z) = nz /
∑

z∈Z nz , where nw,z is the number of

times the word w is assigned to topic z, and nz is the number of times all the words assigned

to topic z, which can be computed using the output of the Mallet toolkit. Finally, p(w) is

computed as follows:

p(w) = ∑
z∈Z

p(w |z)p(z) (4.3)

4.2.2 Diverse Keyword Extraction Problem

The goal of the keyword extraction technique with maximal topic coverage is formulated as

follows. If a conversation fragment t mentions a set of topics Z , and each word w from the

fragment t is related to a subset of the topics in Z , then the goal is to find a subset C of k

unique words (C ⊆ t and |C | = k) which maximizes the number of covered topics.

This problem is an instance of the maximum coverage problem, which is known to be NP-hard.

If the coverage function is submodular and monotone nondecreasing, a greedy algorithm can

find an approximate solution guaranteed to be within (1− 1
e ) = 0.63 of the optimal solution

in polynomial time (Nemhauser et al., 1978). A function F is submodular if ∀A ⊆ B ⊆U \ u,

F (A +u)−F (A) ≥ F (B +u)−F (B) (diminishing returns) and is monotone nondecreasing if

∀A ⊆ B , F (A) ≤ F (B).

To achieve our goal, we define the relationship of a topic z with respect to each set of words

C ⊆ t of size k by summing over all probabilities p(z|w) of the words in the set. Afterward, we

propose a reward function, for each set C and topic z, to model the contribution of the set C

to the topic z. Finally, we select one of the sets C ⊆ t which maximizes the cumulative reward

values over all the topics. This procedure is formalized below.

36



4.2. Diverse Keyword Extraction

4.2.3 Definition of a Diverse Reward Function

We introduce rC ,z , the contribution towards topic z of the keyword set C selected from the

fragment t :

rC ,z =
∑

w∈C
p(z|w) (4.4)

We propose the following reward function for each topic, where βz represents the weight of

topic z over all the words of the fragment and λ is a parameter between 0 and 1. This is a

submodular function with diminishing returns when rC ,z increases, as proved in the next

section.

f : rC ,z →βz · rλC ,z (4.5)

Finally, the keyword set C ⊆ t is chosen by maximizing a cumulative reward function R(C )

over all the topics, formulated as follows:

R(C ) = ∑
z∈Z

βz · rλC ,z (4.6)

Following this definition, if candidate keywords which are in fact ASR errors (insertions or

substitutions) are associated with topics with lowerβz , as is most often the case, the probability

of their selection by the algorithm will reduced, because their contribution to the reward will

be small. If λ = 1, the reward function is linear and only measures the topical similarity of

words with the main topics of t . However, when 0 < λ < 1, as soon as a word is selected

from a topic, other words from the same topic start having diminishing gains as candidates

for selection. Therefore, decreasing the value of λ increases the diversity constraint, which

increases the chance of selecting keywords from secondary topics. As these words may reduce

the overall relevance of the keyword set, it is essential to find a value of the hyper-parameter λ

which leads to the desired balance between relevance and diversity in the keyword set.

4.2.4 Proof of the Submodularity of the Reward Function

We will first show that f (rC ,z ) is monotone nondecreasing and then shown that it is submodular

(diminishing returns property). These properties are illustrated in Figure 4.2 for various values

of λ, and are proven as follows.

To show that f (rC ,z ) is monotone nondecreasing, let A and B be two arbitrary sets of keywords

such that A ⊆ B , and let us show that f (r A,z ) ≤ f (rB ,z ). If D = B \ A, then:

f (rB ,z ) = f (r A∪D,z ) =βz · rλA∪D,z =βz · (r A,z + rD,z )λ

If we substitute βz · (r A,z +rD,z )λ with its binomial expansion by an infinite series (because λ is
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Figure 4.2: The reward value given to the topic z is decreasing when the contribution of this
topic is increasing for various λ values (1, 0.75, 0.5, and 0.25) and βz = 0.5.

not an integer), then:

f (rB ,z ) =βz ·
(

rλA,z +
∞∑

k=1

(
λ

k

)
rλ−k

A,z r k
D,z

)
.

Since r A,z and rD,z are obtained by summing over positive probability values,
∑∞

k=1

(
λ

k

)
rλ−k

A,z r k
D,z

is a positive value. So we conclude that f (r A,z ) ≤ f (rB ,z ), and the function is monotone.

Second, we prove that f (rC ,z ) has the diminishing returns property. Let A and B be two

arbitrary sets of keywords such that A ⊆ B . Let w be a keyword not in B , and A′ = A ∪ {w}

and B ′ = B ∪ {w}. We will now show that f (rB ′,z )− f (rB ,z ) ≤ f (r A′,z )− f (r A,z ), which is the

diminishing returns property.

f (r A′,z )− f (r A,z ) =βz · rλA′,z −βz · rλA,z =βz · (r A,z +p(z|w))λ−βz · rλA,z

If we substitute βz · (r A,z +p(z|w))λ with its binomial expansion, as above, then:

f (r A′,z )− f (r A,z ) =βz ·
(

rλA,z +
∞∑

k=1

(
λ

k

)
rλ−k

A,z p(z|w)k − rλA,z

)
=βz ·

∞∑
k=1

(
λ

k

)
rλ−k

A,z p(z|w)k .

Similarly, we can establish that

f (rB ′,z )− f (rB ,z ) =βz ·
∞∑

k=1

(
λ

k

)
rλ−k

B ,z p(z|w)k .
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Since A ⊆ B then rλA,z ≤ rλB ,z . We also know that (λ−k) < 0 for all positive integers k, because

0 ≤ λ ≤ 1. So we have rλ−k
B ,z ≤ rλ−k

A,z , and consequently βz ·∑∞
k=1

(
λ

k

)
rλ−k

B ,z p(z|w)k ≤ βz ·

∑∞
k=1

(
λ

k

)
rλ−k

A,z p(z|w)k , which concludes the proof for diminishing returns.

Since it is monotone nondecreasing and has diminishing returns, f (rC ,z ) is a monotone

submodular function. Moreover, since the class of submodular functions is closed under

non-negative linear combinations (Nemhauser et al., 1978), R(C ) is also a monotone non-

decreasing submodular function.

According to a different perspective, the definition of R(C ) in Equation 4.6 can be seen as the

dot product in the topic space between the weights βz obtained from the topic probabilities

given the fragment t and the reward function over the sum of topic probabilities rλC ,z with a

scaling exponent λ and identical coefficients over all topics. However, despite what this appar-

ent similarity suggests, the use of cosine similarity for R(C ) would not lead to an appropriate

definition because it would not provide a monotone non-decreasing submodular function.

Indeed, if vector length normalization is introduced in R(C ), for cosine similarity, then we

can show that R(C ) is no longer monotone submodular, e.g. using the second example in the

following subsection.

4.2.5 Examples for the Diverse Reward Function

We will illustrate the motivation for our definition of R(C ) on the following example. Let

us consider a situation with four words w1, w2, w3, w4. The goal is to select two of them as

keywords which cover the main topics presented by these four words. Suppose that each word

can be related to two topics z1 and z2. The probability of topic z1 for words w1 and w2 is

1, and for words w3 and w4 it is zero, and vice versa for topic z2. Therefore, βz1 = βz2 = 0.5.

For two sample sets C1 = {w1, w2} and C2 = {w1, w3} the cumulative rewards are respectively

R(C1) = 0.5 ·(1+1)λ+0.5 ·0λ and R(C2) = 0.5 ·1λ+0.5 ·1λ. Since R(C1) ≤ R(C2) for 0 <λ< 1, the

keyword set C2 which covers two main topics is selected. If λ= 1 then the cumulative reward

for the two sets C1 and C2 is equal, which does not guarantee to select the set which covers

both topics.

The example above has the desirable values of R(C ) regardless of whether the dot product or

the cosine similarity (discussed at the end of the previous section) are used for the definition

of R(C ) in Equation 4.6. However, this is not always the case. In the example shown in Table 4.1

on page 41 (to which we will refer again below), if we consider A = {w5}, B = {w3, w5} and

λ= 0.75, then A ⊆ B but R(A) = 0.76 > R(B) = 0.70 if cosine similarity is used, hence a cosine-

based definition of R(S) would not be monotone non-decreasing. If we add keyword w4 to

both keyword sets A and B , then R(A∪ {w4})−R(A) = 0.02 < R(B ∪ {w4})−R(B) = 0.09, hence

R(C ) would neither have the diminishing returns property, if cosine similarity was used to

define it.
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4.2.6 Comparison with the Function Used for Summarization

In our definition of a monotone submodular function for keyword extraction, we have been

inspired by recent work on extractive summarization methods (Lin and Bilmes, 2011; Li et al.,

2012). This work proposed a square root function as a reward function for the selection of

sentences, to cover the maximum number of concepts of a given document. This function

rewards diversity by increasing the gain of selecting a sentence including a concept that was

not yet covered by a previously selected sentence. However, we propose a reward function for

diverse selection of keywords as a power function with a scaling exponent between 0 and 1, and

a coefficient corresponding to the weight of each topic conveyed in the fragment. Therefore, we

considerably generalize over the previous function (square root) and the constant coefficient

(1) for all concepts.

In our reward function, the scaling exponent between 0 and 1 applies diversity by decreasing

the reward of keyword selection from a topic when the number of keywords representing that

topic increases, and increasing the reward of selecting keywords from the topics which are

not covered yet. In contrast to the summarization techniques proposed by Lin and Bilmes

(2011), and Li et al. (2012) which add a separate term for considering the relevance and the

coverage of the main concepts of the given text by summary sentences, we used a coefficient

corresponding to the weight of topics conveyed in the fragment.

4.2.7 Finding the Optimal Keyword Set

To maximize R(C ) in polynomial time under the cardinality constraint of |C | = k we present a

greedy algorithm shown as Algorithm 1. In the first step of the algorithm, C is empty. At each

step, the algorithm selects one of the unselected words from the conversation fragment w ∈
t \C which has the maximum similarity to the main topics of the conversation fragment and

also maximizes the coverage of the topics with respect to the previously selected keywords in C .

The coverage is defined as h(w,C ) =∑
z∈Z βz [p(z|w)+rC ,z ]λ, where p(z|w) is the contribution

to topic z by word w ∈ t \C which is added to the contribution of the topic z in the set C . The

algorithm updates the set C by adding one of the words w ∈ t \C to the set C which maximizes

h(w,C ). This procedure continues until reaching k keywords from the fragment t .

Input :a given text t , a set of topics Z , the number of keywords k
Output :a set of keywords C
C ←;;
while |C | ≤ k do

C ←C ∪ {ar g maxw∈t\C (h(w,C ))where
h(w,C ) =∑

z∈Z βz [p(z|w)+ rC ,z ]λ;

end
return C ;

Algorithm 1: Algorithm for diverse keyword extraction.
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4.2.8 Illustration of the Greedy Algorithm

We will exemplify the mechanism of the proposed algorithm using a simple example. Let

us consider a conversation fragment with five words, each represented by four topics. The

distributions of topics for each word are given in Table 4.1. The topics are thus weighted as

follows: βz1 = 0.42, βz2 = 0.20, βz3 = 0.06, and βz4 = 0.32. We run the algorithm to extract two

keywords out of five, for two different values of λ. For λ= 1, the algorithm selects words based

on their topical similarity to the main topics of the conversation, and for λ= .75 it considers

both topical diversity and similarity for keyword extraction.

Table 4.1: Sample input to the greedy algorithm.

Words p(z1|·)p(z1|·)p(z1|·) p(z2|·)p(z2|·)p(z2|·) p(z3|·)p(z3|·)p(z3|·) p(z4|·)p(z4|·)p(z4|·)
w1 1.00 0.00 0.00 0.00
w2 0.90 0.00 0.10 0.00
w3 0.00 0.00 0.20 0.80
w4 0.10 0.90 0.00 0.00
w5 0.10 0.10 0.00 0.80

Initially C is empty. The reward values, h(w,C =;), for all words and λ ∈ {.75,1} are shown in

Table 4.2. In the first step of the algorithm, w1 (the best representative of topic z1) is added to

the set C for both values of λ. In the second step, the h(w,C = {w1}) values are computed for

the remaining unselected words and both values of λ, and are shown in Table 4.2. According

to these values, λ= 1 selects w2 as the second word from the topic z1. However, λ= .75 selects

w5 as the second keyword (the best representative of topic z4), the second main topic of the

conversation fragment, because it rewards topical diversity in the keyword set.

Table 4.2: The h(w,C ) values calculated using Algorithm 1 to select two keywords out of 5
words for λ= .75 and 1.

λ= 1λ= 1λ= 1 λ= .75λ= .75λ= .75
Words h(·,;)h(·,;)h(·,;) h(·, {w1})h(·, {w1})h(·, {w1}) h(·,;)h(·,;)h(·,;) h(·, {w1})h(·, {w1})h(·, {w1})

w1 0.420 – 0.420 –
w2 0.384 0.804 0.398 0.690
w3 0.268 0.688 0.288 0.708
w4 0.222 0.642 0.259 0.635
w5 0.318 0.738 0.380 0.757

4.3 Data and Evaluation Methods

The proposed keyword extraction method is tested on two conversational corpora, the Fisher

Corpus (Cieri et al., 2004), and the AMI Meeting Corpus (Carletta, 2007). The relevance of the

keywords is assessed by designing first a comparison task, and then averaging the judgments
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obtained by crowdsourcing the task through the Amazon Mechanical Turk (AMT) platform1.

For the qualification control, we use the PCC-H method defined in Chapter 3. In addition, the

α-NDCG measure (Clarke et al., 2008) is used to measure topic diversity in the list of keywords.

4.3.1 Conversational Corpora Used for Experiments

The Fisher Corpus (Cieri et al., 2004) contains about 11,000 topic-labeled telephone conver-

sations, on 40 pre-selected topics (one per conversation). In our experiments, we use the

manual reference transcripts available with the corpus. We create a topic model using the

Mallet (McCallum, 2002) implementation of LDA, over two thirds of the Fisher Corpus, given

the sufficient number of single-topic documents, fixing the number of abstract topics at 40.

The remaining data is used to build 11 artificial conversation fragments (1-2 minutes long)

for testing, by concatenating 11 times three fragments about three different topics. Therefore,

each test fragment is composed of three parts, each one about a different topic.

The AMI Meeting Corpus (Carletta, 2007) contains conversations on designing remote controls,

in series of four scenario-based meetings each, for a total of 138 meetings. Speakers are not

constrained to talk about a single topic throughout a meeting, hence these transcripts are

multi-topic. The annotation of “episodes” that is provided with the AMI Corpus considers

goal-based rather than topic-based episodes, therefore this annotation is not usable here to

determine topical changes. Instead, we perform automatic topic analysis with LDA. However,

the number of meetings in the AMI Corpus is not large enough for building topic models with

LDA, which is why we use a subset of the English Wikipedia with 124,684 articles. Following

several previous studies (Boyd-Graber et al., 2009; Hoffman et al., 2010), we fix the number of

topics at 100.

We use 8 conversation fragment, each having 1-2 minutes length, from the AMI Meeting

Corpus to set the parameters in our experiments. We also select a separate set of conversation

fragments for testing which contains 8 conversation fragments, each 1-2 minutes long, from

the AMI Corpus. We use both manual and ASR transcripts of these fragments. The ASR

transcripts are generated by the AMI real-time ASR system for meetings (Garner et al., 2009),

with an average word error rate (WER) of 36%.

In addition, for experimenting with a variable range of WER values, we simulate ASR noise

over the AMI manual transcripts in terms of word deletions, insertions and substitutions.

Namely, we randomly delete words, or add new words, or substitute words by other words,

in a systematic manner, i.e. all occurrences of a given word type are altered. We randomly

select the word types to be deleted or substituted, as well as the words to be inserted (from the

vocabulary of the English Wikipedia), using a variable percentage of noise from 5% to 50%.

1Following other researchers who designed methods for extracting keywords from conversational transcripts,
such as like Harwath and Hazen (2012), we compare the methods using Amazon Mechanical Turk (AMT). If ground
truth data were available, we could also use other evaluation techniques used in previous studies on keyword
extraction from texts, but this is not the case here. Generating ground truth keywords for our conversations
appeared to require much more effort than the AMT-based evaluation.
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The result of this simulation technique is actually more challenging to our application than

real ASR errors, because these are not created randomly and tend to spare long content words

as they have fewer homophones.

4.3.2 Designing Tasks to Compare the Representativeness of Keyword Lists

We define comparison tasks to evaluate the relevance or the representativeness of extracted

keywords with respect to each conversation fragment. Similarly to the four-choice “Human

Intelligence Tasks” (HITs) designed in Chapter 3, for each task shown to a human subject,

we first display the transcript of the fragment in a web browser, followed by several control

questions about its content, and then by two lists of keywords (typically, with nine keywords

each in our experiments). To improve readability, the keyword lists are presented using a word

cloud representation generated by the Wordle™ tool2, in which the words ranked higher are

emphasized in the cloud. The subjects have to read the conversation transcript, answer the

control questions, and then decide which keyword cloud better represents the content of the

conversation fragment. The task is exemplified in Figure 4.3, without the control questions.

The conversation transcript for this example is given in Figure 4.7.

(a) (b)

Please select one of the following options:
1. Image (a) represents the conversation fragment better than (b).
2. Image (b) represents the conversation fragment better than (a).
3. Both (a) and (b) offer a good representation of the conversation.
4. None of (a) and (b) offer a good representation of the conversation.

Figure 4.3: Examples of an evaluation task based on an AMI discussion about the impact of
the features of a remote control on its sales. The word clouds are generated using Wordle™
from the lists produced in this example by: (a) the diverse keyword technique with λ=0.75,
and (b) a topical similarity method. The latter over-represents the topic ‘color’ by selecting
three words related to it, but misses other topics such as ‘remote control’, ‘losing a device’ and
‘buying a device’ which are also representative of the fragment.

For the comparisons presented in this section, we use 11 conversation fragments from the

Fisher Corpus and 8 conversation fragments from the AMI Meeting Corpus, hence 19 HITs.

There are 10 workers per HIT, and each one is paid 0.20 USD per HIT. The average time per

assignment is almost 2.5 minutes. For qualification control, we accept workers with greater

than 95% approval rate or with more than 1000 approved HITs. We also reject answers from

2http://www.wordle.net
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the workers who answered incorrectly the control questions.

The results obtained on the eight manual transcripts of the AMI conversation fragments used

for testing (noted A–H) are shown in Table 4.3, for the comparison of the representativeness

of the keywords extracted by the proposed keyword extraction (noted D(.75) as explained in

Section 4.4) with a method using only topic similarity (noted TS). The ten subjects can choose

between the four comparative answers presented in Figure 4.3, which amount to: ‘X better

than Y’, ‘Y better than X’, ‘both good’, or ‘both bad’. No answers are rejected for these HITs.

The total counts for each answer and each HIT from Table 4.3 indicate that subjects agreed

strongly on certain answers to some HITs (e.g. C, D, H) but disagreed on others (mainly A).

Table 4.3: Number of answers for each of the four options of the evaluation task, from ten
judges. The 8 HITs (A through H) compare our diverse keyword extraction method (D(.75))
and the topical similarity (TS) one.

A B C D E F G H

Keywords obtained by the topical similarity
method (TS) are more relevant

4 1 1 1 2 2 1 1

Keywords extracted by the diverse technique
(D(.75)) are more relevant

4 1 8 9 6 6 6 8

Both keyword lists are relevant 2 5 1 0 2 2 3 1
Both keyword lists are irrelevant 0 3 0 0 0 0 0 0

4.3.3 Measure for Evaluating Topical Diversity

To evaluate the diversity of a keyword set C = {c1, · · · ,ck }, we use the α-NDCG measure pro-

posed for information retrieval (Clarke et al., 2008), which rewards a mixture of relevance

and diversity. We set the α parameter to 0.5, which rewards both relevance and diversity with

equal weights, as used in the TREC 09 Web track (Clarke et al., 2009) and several other studies

(Chandar and Carterette, 2011; Yin et al., 2009). We only apply α-NDCG to the three-topic

conversation fragments from the Fisher Corpus, because this is the only dataset with explicitly

marked topics.

The values are computed according to Equation 4.7, where DCG[k ′] is obtained by Equa-

tion 4.8 at rank k ′ and DCGideal[k
′] is computed by reordering keywords in a way that max-

imizes DCG[k ′] values in each rank. In Equation 4.8, Zt is the set of mono-topic dialogues

included in the conversation fragment t , N rzt ,i−1 is the number of relevant keywords to the

mono-topic dialogue zt up to the rank i , and Jr (ci , zt ) measures the relevance of the keyword

c at the rank i to the mono-topic dialogue zt according to Equation 4.9. We set the relevance

of a keyword to a conversation topic at 1 when the keyword belongs to the corresponding

fragment, as shown in Equation 4.9 (note that a keyword may thus be relevant to several

topics). A higher α-NDCG value indicates that keywords from the set are more uniformly

44



4.4. Experimental Results

distributed across the three topics.

α-NDCG[k ′] = DCG[k ′]/DCGideal[k
′] (4.7)

DCG[k ′] =
k ′∑

i=1

∑
zt∈Zt

Jr (ci , zt )(1−α)N rzt ,i−1

log2(1+ i )
(4.8)

Jr (ci , zt ) =
{

1 if ci ∈ zt

0 otherwise
(4.9)

4.4 Experimental Results

In this section, the diverse keyword extraction technique is compared with two state-of-the-art

methods, showing that our proposal extracts more relevant keywords, which cover more topics,

and are less likely to be ASR errors. We compare the following systems:

• two versions of the proposed diverse keyword extraction method (Algorithm 1) noted

D(λ) for λ ∈ {.5, .75};

• a method using only word frequency (excluding stopwords), noted WF;

• a recent method based on topical similarity but which does not enforce diversity (Har-

wath and Hazen, 2012), noted TS. This method coincides with one version of the pro-

posed method D(λ) for λ= 1 as well.

4.4.1 Selection of Configurations

The tested values of λ are motivated as follows. As the relevance of keywords for D(.5) appears

to be quite low, we do not test lower values of λ. Similarly, we do not test additional values

of λ between .5 and 1, apart from .75, because the resulting word lists are very similar to

the tested values. The similarity comparison scores between two keyword lists at rank 15

over 8 conversation fragments used as our development set are shown in Figure 4.4. In

this figure, we compare the keyword lists obtained with various values of λ above .5 with

keyword lists obtained with the three tested values of λ (.5, .75, and 1), using the rank biased

overlap (RBO, Webber et al. (2010)) as a similarity metric, based on the fraction of keywords

overlapping at different ranks.3

3RBO is computed as follows. Let A and B be two ranked lists, and let ai be the keyword at the rank i in the set
A. The set of the keywords up to the rank j in A is {ai : i ≤ j }, noted as A1: j . RBO is calculated as in Equation 4.10,
in which k is the size of the ranked lists:

RBO(A,B) = 1∑k
j=1( 1

2 ) j−1

k∑
j=1

(
1

2
) j−1 |A1: j ∩B1: j |

|A1: j ∪B1: j |
(4.10)
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Figure 4.4: Comparison of keyword lists generated by D(λ) when .5 ≤ λ ≤ 1 using the rank
biased overlap metric (RBO) computed between D(λ) and the three keyword lists generated
by D(1), D(.5) and D(.75). The differences in RBO are small enough to allow clustering around
the three values of λ.

The variations of RBO across the sampled values ofλ, with respect to three main configurations

of the system, show that these values can indeed be clustered into three groups: .5 ≤ λ< .7

can be clustered around λ = .5 as a representative value; .7 ≤ λ ≤ .8 can be assigned to the

λ = .75 cluster; and .8 < λ ≤ 1 can be represented by λ = 1. As mentioned above, TS can

be reformulated by D(1), because the diversity factor of λ = 1 just considers the similarity

of topics, but not the diversity of them in the final keyword set. Therefore, in our human

evaluations, we will consider only the D(.5), D(.75).

4.4.2 Results for the Topical Diversity of Keywords

First of all, we compare the four keyword extraction methods (WF, TS, D(.5) and D(.75)) in

terms of the diversity of their results over the concatenated fragments of the Fisher Corpus, by

using α-NDCG (Equation 4.7) to measure how evenly the extracted keywords are distributed

across the three topics of each fragment.

Figure 4.5 shows results averaged over the 11 three-topic conversation fragments of the Fisher

Corpus, for various sizes of the keyword set, between 1 and 15. The average α-NDCG values

for D(.75) and D(.5) are similar, and they are clearly higher than those for WF and TS for all

ranks (except, of course, in the case of a single keyword, when they coincide). The values for

TS are particularly low, and only increase for a large number of keywords, demonstrating that

TS does not cope well with topic diversity, but on the contrary emphasizes keywords from the

dominant topic. The values for WF are more uniform as it does not consider topics at all.
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Figure 4.5: Average α-NDCG values over the 11 three-topic conversation fragments of the
Fisher Corpus, for a number of keywords varying from 1 to 15. The most difficult task is to
extract exactly one keyword from each topic, hence the lowest scores are for three keywords.
The best performing methods are always the diversity-preserving ones, D(.5) and D(.75).

4.4.3 Results for Keyword Relevance

We perform binary comparisons between the outputs of each keyword extraction method at

rank 9. We only experimented with a fixed rank because we cannot compare the methods at

different ranks using crowdsourcing because this would be very time-consuming. Moreover,

since the keyword cloud representation which contains too many keywords is not readable

enough to be judged by human subjects, we decided to select only 9 keywords by each method

for comparison, which is on average one-third of all the words except stopwords of each

fragment (Mihalcea and Tarau, 2004; Rose et al., 2010). The length of each conversation

fragment is approximately two minutes. The experiments are performed using crowdsourcing,

over 11 fragments from the manual transcripts of the Fisher Corpus and 8 fragments from the

manual transcripts of the AMI Corpus. We assume that our comparative evaluation method

is transitive, as exemplified for instance by the complete set of comparisons in Table 5.1.

Therefore, we only report here the binary comparisons that allowed us to determine the

ordering of the four methods, and exclude redundant comparisons, which we tried to minimize

because of their costs.

We compute comparative relevance values using the PCC-H method using the two approaches

described in Section 3.4, noted here PCC-H Score 1 and Score 2 respectively. In addition to

PCC-H scores, we also report the raw preference scores for each comparison, i.e. the number

of times a system is preferred over the other, although PCC-H was shown to be a more reliable

indicator of quality.

Table 4.3 (in Section 4.3.2) shows as an illustration the judgments that are collected when

comparing the output of D(.75) with TS on the 8 HITs of the AMI Corpus. Workers tend to

disagree about the first two HITs, but then clearly find that the keywords extracted by D(.75) for

the subsequent six HITs better represent the conversation compared to TS. For these results,

our comparative relevance score (PCC-H) is 78% for D(.75) vs. 22% for TS.

The averaged relevance values for all comparisons needed to rank the four methods are shown
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Table 4.4: Comparative relevance scores based on human judgments for four keyword extrac-
tion methods over both manual and ASR transcripts. The following ranking can be inferred:
D(.75) > TS > WF > D(.5).

Corpus Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) PCC-H Score 1 PCC-H Score 2 Raw Score

m1m1m1 m2m2m2 m1m1m1 m2m2m2 m1m1m1 m2m2m2

Fisher D(.75) vs. TS 68 32 .72±.17 .37±.19 60 40
manual TS vs. WF 82 18 .74±.24 .20±.20 71 29
transcripts WF vs. D(.5) 95 5 .89±.09 .09±.08 93 7

AMI D(.75) vs. TS 78 22 .84±.08 .28±.13 74 26
manual TS vs. WF 60 40 .63±.10 .43±.11 59 41
transcripts WF vs. D(.5) 78 22 .85±.07 .31±.10 73 27

AMI D(.75) vs. TS 79 21 .80±.14 .46±.17 68 32
ASR TS vs. WF 65 35 66±.11 .43±.19 62 37
transcripts WF vs. D(.5) 73 27 .77±.14 .37±.20 70 30

in Table 4.4, for the manual transcripts of the Fisher and the AMI corpora. Although the exact

differences vary, the human judgments over both corpora indicate the following ranking:

D(.75) > TS > WF > D(.5). The optimal value of λ is thus .75, and with this value, our diversity-

aware method D(.75) extracts keyword sets that are judged to be more representative than

those extracted by TS or WF. The differences between TS and WF, as well as WF and D(.5) are

larger for the Fisher Corpus, likely due to the artificial fragments with three topics, but they

are still visible on the natural fragments of the AMI Corpus. The low scores of D(.5) are due to

the low overall relevance of keywords. In particular, the difference in relevance of D(.75) vs.

D(.5) on the Fisher Corpus is very large (96% vs. 4%).

4.4.4 Results for Noise Reduction Power

Turning now to ASR output, we perform binary comparisons between the keyword lists at the

rank 9 over the 8 fragments from the transcripts of the AMI Corpus produced by the real time

ASR system. The averaged relevance values for all comparisons needed to rank these methods

are shown in the last three lines of Table 4.4. The differences between comparison values

are similar for the ASR transcripts and the manual ones, although we notice a degradation of

WF due to ASR noise. As D(.75) still outperforms TS, the ranking remains unchanged in the

presence of the ASR noise: D(.75) > TS > WF > D(.5). The results confirm that our method is

robust to ASR noise4.

We have counted the number of keywords selected by each method among ASR errors, which

are artificially generated as explained in Section 4.3.1, so that these words are precisely known.

The average numbers of such erroneous keywords are shown in Figure 4.6 for a noise level

4Our results corroborate those obtained in the field of spoken document retrieval: for instance, Garofolo et al.
(2000) have shown that their retrieval method is robust to ASR noise.
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Figure 4.6: Average number of noisy keywords which are chosen by the algorithms over the
8 conversation fragments of the AMI Corpus, for a percentage of artificial ASR noise varying
from 5% to 50%. The best performing method is D(.75).

varying from 5% to 50% on the AMI Corpus. The results show that D(.75) selects a smaller num-

ber of noisy keywords compared to TS and WF. The WF method does not consider topics and

only selects words with higher frequency, so it may select noisy keywords if they correspond to

a systematic mistake of the ASR system. Conversely, if noisy words are located in insignificant

topics, the probability of selection by both TS and D(.75) will be reduced because both select

the keywords placed in the main topics. Moreover, if a systematic ASR error generates words

that produce a main topic, the advantage of D(.75) over TS is that D(.75) selects a smaller

number of noisy keywords from it.

4.4.5 Examples of Keyword Clouds

To illustrate the superiority of D(.75) over the other techniques, we consider an example from

one of the conversation fragments of the AMI Meeting Corpus, the transcript of which is given

in Figure 4.7. In this fragment, four individuals are discussing the impact on sales of several

features of a remote control. The lists of keywords of size |C | = 9 extracted from this fragment

using the four techniques of D(.75), TS, WF and D(.5) are presented using word clouds in

Figure 4.8.

The topical similarity method, TS, over-represents the “color” topic by selecting three words

related to it, as well as “electronic devices” by choosing two relevant words. However, TS misses

other topics such as “remote control”, and “losing a device” which are also representative of

the fragment. Although the word frequency method, WF, can recognize the keywords related

to the “remote control” and “buying a remote control” topics, the method has difficulties
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A: The only the only remote controls I’ve used usually come with the television, and they’re
fairly basic. So uh
D: Yeah. Yeah.
C: Mm-hmm.
D: Yeah, I was thinking that as well, I think the the only ones that I’ve seen that you buy are the
sort of one for all type things where they’re, yeah.
D: So presumably that might be an idea to
C: Yeah the universal ones. Yeah.
A: Mm. But but to sell it for twenty five you need a lot of neat features. For sure.
D: put into.
B: Slim.
C: Yeah.
D: Yeah, yeah.
D: Uh ’cause I mean, what uh twenty five Euros, that’s about I dunno, fifteen Pounds or so?
C: Mm-hmm, it’s about that.
D: And that’s quite a lot for a remote control.
A: Yeah, yeah.
C: Mm. Um well my first thoughts would be most remote controls are grey or black.
C: As you said they come with the TV so it’s normally just your basic grey black remote control
functions, so maybe we could think about colour?
C: Make that might make it a bit different from the rest at least. Um, and as you say, we need
to have some kind of gimmick, so um I thought maybe something like if you lose it and you
can whistle, you know those things?
D: Uh-huh. Mm-hmm. Okay. The the keyrings, yeah yeah. Okay, that’s cool.
C: Because we always lose our remote control.
A: Right.
B: Uh yeah uh, being as a Marketing Expert I will like to say like before deciding the cost of this
remote control or any other things we must see the market potential for this product like what
is the competition in the market?
B: What are the available prices of the other remote controls in the prices? What speciality
other remote controls are having and how complicated it is to use these remote controls as
compared to other remote controls available in the market.
D: Okay.
B: So before deciding or before finalising this project, we must discuss all these things, like and
apart from this, it should be having a good look also, because people really uh like to play with
it when they are watching movies or playing with or playing with their CD player, MP three
player like any electronic devices. They really want to have something good, having a good
design in their hands, so, yes, all this.

Figure 4.7: Transcript of a sample fragment from a four-party conversation (speakers noted
A through D) from the AMI Meeting Corpus, which was submitted to our diverse keyword
extraction method and to the three baselines, with results shown in Figure 4.8.
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(a) (b)

(c) (d)

Figure 4.8: Examples of keyword sets (9 words each) obtained by four keyword extraction
methods for a fragment of the AMI Corpus discussing the impact of the features of a remote
control on its sales. The word clouds are generated using Wordle™ from the lists produced in
this example by: (a) diverse keyword extraction with λ=0.75, (b) topical similarity, (c) word
frequency, and (d) diverse keyword extraction with λ=0.5 methods.

to extract keywords related to “different colors of a remote control” and “losing a remote

control” (low-frequency words which represent a main topic), and also selects keywords that

are not relevant to the main topics such as “basic” and “playing”, because it ignores topical

information. The diverse keyword extraction method with λ= .5 chooses keywords relevant

to minor topics of the fragment by giving more reward to topical diversity than to topical

similarity. The diverse method with λ = .75 provides a list of keywords which covers the

maximum number of main topics by rewarding both topical diversity and relevance. Moreover,

this method does not select keywords from irrelevant topics thanks to its appropriate balance

between topical diversity and relevance.

4.5 Using Diverse Keyword Extraction for Content Representation

To demonstrate its generality beyond the just-in-time retrieval scenario (ACLD), we apply the

proposed diverse keyword extraction technique to a multimedia recommendation system,

MUST-VIS. This system was designed by the Idiap NLP group (Bhatt et al., 2013) for the

MediaMixer/VideoLectures.NET Temporal Segmentation and Annotation Grand Challenge at

ACM Multimedia 2013, and was declared the winner of this challenge.

Users of lecture databases are confronted with the problem of efficient browsing or search,
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especially for specific pieces of information such as facts, arguments or references. Moreover,

understanding the main content of a lecture at a glance without totally watching it is another

challenge for lecture browsers. The MUST-VIS system allows users to visualize a lecture as a

series of segments which are represented by keyword clouds, with relations to other similar

lectures and segments.

Our diverse keyword extraction method is utilized to represent each piece of information (a

segment or a lecture) as a keyword set. These keywords are then used by a content-based

recommendation system to compute the cosine similarity between segments or lectures. They

are also used to visualize the content of segments or lectures as keyword clouds.

4.5.1 Description of the MUST-VIS System

The MUST-VIS system presents to users a graphical user interface as shown in Figure 4.9. When

users hover over lecture segments with the mouse, an overview of them is shown to users by

magnifying the keyword clouds. The segments of each lecture are arranged in chronological

order in a clockwise circular manner around a keyframe of the lecture. The lecture presented

at the center of the screen is considered to be in focus and can be played (audio, video, and

slides) by clicking on it.

Figure 4.9: Navigation graph of the MUST-VIS system (Bhatt et al., 2013). Each lecture is
represented with a keyframe and keyword clouds for each segment around it. The lecture in
focus is surrounded by other lectures with related segments.

Using content-based recommendation techniques (Pappas and Popescu-Belis, 2015), each

segment and each lecture are related to the similar ones, by a navigation graph. The inter-
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face displays segment-to-segment similarity links (color-coded) and lecture-to-lecture ones

(dashed). In Figure 4.9, the content of the lecture in focus is highly similar to the ones in the

right side according to the information provided by the user interface. However, the ones in

the left side have less similarity to the focused lecture, based on the links and word clouds.

Overall, the segment-to-segment links and the keyword clouds make the browsing of relevant

segments easier and faster for users.

Figure 4.10: Lecture processing in MUST-VIS (Bhatt et al., 2013).

The MUST-VIS system uses state-of-the-art methods for multimodal processing of audios,

videos and texts. The components of the system are shown in Figure 4.10. The ASR transcripts

or the subtitles of each lecture of the dataset are segmented using the TextTiling algorithm

implemented in the NLTK toolkit (Bird, 2006). Then the words in each segment are ranked

using the proposed diverse keyword extraction technique, which selects keywords so that they

cover the maximum number of topics mentioned in each segment. Word clouds are generated

using WordCram5 for each segment and also for entire lectures. Words ranked higher become

graphically emphasized in the word cloud. Similarity across lectures and segments is then

computed using a state-of-the-art content-based recommendation algorithm based on cosine

similarity and is used to generate the navigation graph.

4.5.2 Evaluation Results

In a pilot experiment, we recruited two experts to assign ground-truth recommendations

to all the lectures of the dataset. We compare in Table 4.5 the ground-truth rankings with

the automated methods: lecture-to-lecture (LL), segment-to-segment (SS), and a random

5http://www.wordcram.org
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policy (R),using Mean Reciprocal Rank (MRR) and Mean Average Precision (MAP). The highest

agreement is between the two annotators, followed very closely by the agreement between LL

and averaged SS similarities. The lecture-level recommendation is slightly closer to the ground-

truth than the averaged segment-level one, although both are at considerable distance with

respect to inter-coder agreement. Both recommendation techniques benefit from keyword

extraction, though in these experiments it was not possible to assess independently the

contributions of alternative keyword extraction methods to recommendation relevance.

Table 4.5: Comparison of ground-truth recommendations (A1, A2) with automated ones:
lecture-to-lecture (LL), segment-to-segment (SS) and random (R, as baseline, 500 draws),
using MAP (a) and MRR (b) over 1–5 top recommendations. LL, using lecture-level keywords,
is the closest to the ground truth.

A1 A2 LL SS R
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

A1 1.0 1.0 .91 .54 .33 .14 .28 .10 .13 .03
A2 - - 1.0 1.0 .31 .15 .22 .10 .10 .02
LL - - - - 1.0 1.0 .91 .52 .29 .11
SS - - - - - - 1.0 1.0 .30 .11
R - - - - - - - - 1.0 1.0

4.6 Conclusion

We compared the diverse keyword extraction technique with existing methods based on word

frequency or topical similarity, in terms of the representativeness of the extracted keywords.

The comparisons involved both the manual and the ASR transcripts of two conversational cor-

pora. The keywords were judged by human raters recruited via the Amazon Mechanical Turk

crowdsourcing platform. The experiments showed that the diverse keyword extraction method

provides on average the most representative keyword sets, with the highest α-NDCG value

for topical diversity. Moreover, we have shown that the diverse keyword extraction method

selects fewer words from ASR noise compared to the other methods. Therefore, enforcing

both relevance and diversity brings an effective improvement to keyword extraction. We also

exemplified the use of this method to extract keywords for visualizing and recommending

segments of video lectures transcripts.

In the next chapter, we will use keywords to build queries in order to retrieve documents from

a repository and recommend them to conversation participants. We will assess the retrieval

results of queries made by the proposed technique in comparison to others. We will then

divide the keyword list into several topically-separated keyword subsets, perform separate

retrieval operations, and merge the results.

54



5 Formulation of Implicit Queries from
Conversations

The focus of this chapter is on the formulation of implicit query for a just-in-time-retrieval

system, which is in our case a recommender system designed for conversations. The goal

is to use these queries to retrieve, for each short conversation fragment, a small number of

potentially relevant documents, which can be recommended to participants.

As people in a conversation often shift from one topic to another, conversation fragments are

usually multi-topic. The proposed method relies on the diverse keyword extraction method

proposed in Chapter 4 to maximize the coverage of potential users’ information needs as well

as to reduce the impact of ASR noise. Then, the method clusters the extracted keywords into

several topically-separated subsets, and builds from each of them an implicit query.

The presented method is evaluated in terms of the relevance of document results, retrieved

using the implicit queries over the English Wikipedia, rated by several human judges. We show

that the document results of the queries obtained by the diverse keyword extraction technique

surpass those of other techniques. Moreover, we show that modeling users’ information needs

using multiple topically-separated queries instead of a single query made of the entire keyword

set generates more relevant results to recommend. In this chapter, the experiments are carried

out over conversation fragments from the ELEA (Emergent LEader Analysis) conversational

corpus (Sanchez-Cortes et al., 2012), based on a brainstorming task.

5.1 Introduction

In Chapter 4, we have shown that even a short fragment of a conversation contains a variety

of words, which are potentially related to several topics. We have also demonstrated that

the diverse keyword extraction technique provides the best representative keyword set for a

fragment by rewarding both the relevance and the diversity of topics. Here, we aim to define

different policies to construct implicit queries out of these keywords, for each fragment, and

then compare different types of queries in terms of the relevance of retrieved documents. For

instance, in the example discussed in Section 5.4.4 below, in which four people put together a

55



Chapter 5. Formulation of Implicit Queries from Conversations

list of items to help them survive in the mountains, a short fragment of 120 seconds contains

about 250 words, pertaining to a variety of domains, such as ‘chocolate’, ‘pistol’, or ‘lighter’.

What would then be the most helpful 3–5 Wikipedia pages to recommend, and how would a

system determine them?

Previous methods for implicit query formulation used in existing just-in-time retrieval systems

rely on the entire keyword list extracted either with word frequency or with TFIDF (Luhn, 1957;

Salton and Buckley, 1988). As we have shown in the previous chapter, these techniques do

not optimally capture users’ information needs. For instance, while a method based on word

frequency would retrieve the following Wikipedia pages: “Light”, “Lighting”, and “Light My

Fire” for the fragment discussed in Section 5.4.4 below, users would likely prefer a set such

as “Lighter”, “Wool” and “Chocolate” which covers more main topics of their conversation.

Moreover, using the entire keyword set as a single multi-topic query is not an optimal solution

either, because irrelevant topics in a query might cause poor retrieval results (Bhogal et al.,

2007; Carpineto and Romano, 2012).

Given the potential multiplicity of topics, reinforced by potential ASR errors or speech disflu-

encies (such as ‘whisk’ in the example fragment), our goal is to maintain multiple hypotheses

about users’ information needs, and to present a small sample of recommendations based on

the most likely ones. Following this goal, we first extract a relevant and diverse set of keywords

from each conversation fragment using the method from Chapter 4, and then cluster the

keywords into topic-specific queries ranked by importance. Finally we present to users a

sample of document results from these queries. In this chapter, we select the best document

representative from the retrieval results of each query and rank them based on the importance

of the query to be answered, but in the following chapter, we will improve over this strategy

and propose a diverse merging method.

In the proposed method for building implicit queries, the topical diversity of keywords in-

creases the chances to cover the main topics discussed in a fragment, and decreases the effect

of keywords which are actually ASR noise. In addition, the topic-based clustering decreases

the noisy effect of the mixture of topics in queries.

The chapter is organized as follows. In Section 5.2 we describe the proposed technique

for implicit query formulation, which relies on the proposed diverse keyword extraction

algorithm (Chapter 4) and a topic-aware clustering method (5.2.2). Section 5.3 introduces

the data and our method for comparing the relevance of sets of recommended documents

using crowdsourcing, while in Section 5.4 we present and discuss the experimental results,

including sample results for the conversation fragment given in Figure 5.1.

5.2 Method for the Formulation of Implicit Queries

We propose a two-stage approach to the formulation of implicit queries. We first extract a

set of keywords C = {c1, . . . ,ck } from the transcript of users’ conversation using the diverse
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keyword extraction technique defined in Section 4.2. The diverse set of extracted keywords is

hypothesized to represent the information needs of the participants in a conversation, in terms

of the notions and topics that they mention. We will split this set into several topically-disjoint

subsets, to maintain the diversity of topics and to reduce the noisy effect of each topic on

the others (if they appeared in the same query). Each subset corresponds then to an implicit

query that can be sent to a document retrieval system.

Our proposal consists of two stages: we first represent the entire conversation fragment and

each keyword using topical information, and then we build implicit queries by topically

clustering of keywords, as explained in the following subsections.

5.2.1 Keyword Representation Using Topic Models

We extract topic models using the LDA topic modeling technique (Blei et al., 2003) as we did in

Chapter 4, Section 4.2.1. The hyper-parameters of the LDA topic model are again optimized

using the Gibbs sampling implemented by the Mallet toolkit. We note the distribution over

the topic z of each keyword ci ∈C by p(z|ci ). We also represent each conversation fragment t

by the set of weights (noted βz
1) for each topic of the fragment. βz is computed by averaging

over all probabilities p(z|w) of the N words w spoken in the fragment t , as formulated in

Equation 4.1 on page 36.

5.2.2 Topic-aware Keyword Clustering

Clusters of keywords are built by ranking keywords for each main topic of the fragment, as

follows. The keywords are ordered for each topic z by the decreasing value of the similarity

in the topic space (dot product) between the keyword ci ∈ C and the entire conversation

fragment:

sci ,z = p(z|ci ) ·βz (5.1)

For each cluster (representing a main topic), only the keywords with topical similarity values

higher than a threshold are kept. Note that a given keyword can appear in more than one

cluster. Following this ordering criterion, keywords with higher value of p(z|ci ) (i.e. more

representative of the topic) will be ranked higher in the cluster of topic z and these keywords

will be selected from the topics with higher value of βz .

Each cluster of keywords represents one implicit query Qi . The clusters are ranked and

weighed by wei m,Qi which are equal to their βz values. Therefore, a set of topically-separated

implicit queries along with their weights is defined in Equation 5.2:

Qi mpl i ci t = {(Q1, wei m,Q1 ), . . . , (Qi , wei m,Qi ), . . . , (QM , wei m,QM )} (5.2)

1This weight is different from the hyperparameter of the LDA topic model β.
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where M is the number of implicit queries.

5.3 Data and Evaluation Method

Our proposal is tested on the ELEA Corpus (Emergent LEader Analysis, collected by Sanchez-

Cortes et al. (2012)) because there are several relevant documents from the Wikipedia articles

to the topics discussed in this corpus. Moreover, it is a transcribed conversational corpus with

a brainstorming task, so receiving just-in-time recommendations from a system would be

beneficial to their participants.

The quality of implicit queries is assessed by estimating the relevance of the documents

that are retrieved when submitting these queries to the Lucene search engine2 over the

English Wikipedia3 (version dated 2009-06-16) and merging the results as explained below.

The comparison scores are obtained by designing a comparison task and averaging several

judgments obtained by crowdsourcing this task through the Amazon Mechanical Turk (AMT)

platform. For the qualification control, we use the PCC-H method which is described in

Chapter 3.

5.3.1 Conversational Corpus Used for Experiments

The ELEA Corpus (Sanchez-Cortes et al., 2012) consists of approximately ten hours of recorded

and transcribed meetings, in English and French. Each meeting is a role play game in which

participants are supposed to be survivors of an airplane crash, and must rank a list of 12

items with respect to their utility for surviving in the mountains until they are rescued. In our

experiments, we consider 5 conversations in English, of about 15 minutes each, and divide

their transcripts into 35 segments, of about two minutes each.

We perform our experiments only over the manual transcripts of the ELEA Corpus, as the study

of ASR noise is less central to this chapter. In fact, we showed in the previous chapter that the

diverse keyword extraction method was more robust to ASR noise compared to other methods.

We also showed experimentally that the proposed method adds fewer than one noisy word out

of nine when word error rate is smaller than 30%, which is assumed to be the case here, as the

best recognition accuracy reaches around 70% for conversational activities (Hain et al., 2010).

In Chapter 4, we compared the keyword clouds, each contains 9 keywords and, have shown

experimentally the ones prepared by D(0.75) method outperform those of the others in terms

of relevance and diversity over main topics. Therefore, we decide to extract 9 keywords from

each conversation fragment of the ELEA corpus and hope to properly cover three or four main

topics conveyed in the fragment within the keyword set. Finally we build implicit queries by

2Version (Lucene 4.2.1 API) is available in http://lucene.apache.org. We employed the Standard Analyzer for
indexing, and TF-IDF similarity values between documents and queries for ranking document results.

3A local copy downloaded from the Freebase Wikipedia Extraction (WEX) dataset from http://dumps.wikimedia.
org.
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clustering these keywords. We also set the threshold of the clustering to 0.10. This threshold

value is tuned using 9 conversation fragments out of 35 in terms of achieving meaningful

queries. To obtain these queries, the keywords which have a very small distribution over the

topic z are not selected in the implicit query formulated for the topic z. Moreover, having

duplicate implicit queries in the list of queries is avoided. Finally, the 26 remaining fragments

are utilized to evaluate the policies used for query formulation.

Since the number of meetings in the ELEA Corpus is not large enough for building topic

models with LDA, we use a subset of the English Wikipedia with 124,684 articles. Following

several previous studies (Boyd-Graber et al., 2009; Hoffman et al., 2010), we fix the number of

topics at 100.

5.3.2 From Keywords to Document Recommendations

We submit the implicit queries to the Lucene search engine to retrieve documents from the

English Wikipedia articles. We perform our experiments using two types of queries made

of keywords extracted from the conversation: (1) a single implicit query per conversation

fragment formulated using the entire keyword list; (2) multiple topically-separated implicit

queries with the keywords of each cluster as described above.

In the experiments with only one implicit query per conversation fragment, the document

results corresponding to each conversation fragment are prepared by selecting the first six

documents retrieved for the implicit query.

In the experiments with multiple implicit queries, we prepare a single document list per

conversation fragment using a simple merging method. The merging method first takes the

first-best document retrieved for each implicit query, and then ranks these documents based

on their corresponding query weights. This procedure is then repeated for the second-best

results and so on. Similar to our experiments with single implicit queries, we show to users

the first six documents obtained by this merging method. This is a baseline algorithm, but we

will describe an improved ranking method in Chapter 6.

5.3.3 Designing Tasks to Compare the Relevance of Recommended Documents

We compare the relevance of two lists of recommended documents for the same conversation

fragment by designing the four-choice “Human Intelligence Tasks” (HITs) as described in

Section 3.3.

For each comparison task we recruit 10 workers. Each worker is paid 0.20 USD per HIT. The

average time spent per HIT is about 2.5 minutes. For qualification control, we only accept

workers with greater than 95% approval rate and with more than 1000 approved HITs. We only

keep answers from the workers who answer correctly our control questions about each HIT.

Finally, we compute the comparative relevance scores based on the PCC-H method proposed

59



Chapter 5. Formulation of Implicit Queries from Conversations

in Section 3.4. Moreover, we present the averaged raw preference scores for each comparison

in addition to PCC-H scores.

5.4 Experimental Results

We compare the two policies for deriving implicit queries from keyword lists, to which we refer

as “single query” and respectively “multiple queries”. A single query is made by simply using

the entire keyword set, while multiple queries are constructed by dividing the keyword set into

multiple topically-independent sub-sets (5.2.2) and using each sub-set as one implicit query,

merging afterward the results into a unique document set (5.3.2).4

We also compare the retrieval results of queries built from keyword lists obtained by the three

keyword extraction techniques presented in Section 4.4. Firstly, we build single queries from

the keyword sets provided by the D(.75), TS and WF keyword extraction methods, and compare

the three resulting document sets. Secondly, we build multiple queries from the same methods

and perform similar comparisons between the resulting document sets.

Finally, we compare the best results of multiple queries with the best results of the single

queries. This procedure is used because evaluation with human subjects is time-consuming,

therefore we attempt to carry out the minimal number of binary comparisons allowing the

ordering of the methods.

5.4.1 Comparison across Single Queries

Binary comparisons are performed between the retrieval results from single queries based

respectively on D(.75), TS, and WF, over 26 fragments from the ELEA Corpus. The workers

compare two document lists in terms of the relevance or utility of suggested documents to the

meeting participants at the time of each fragment, represented through its transcript.

The average relevance scores for the comparisons needed to rank the three methods are shown

in Table 5.1. These values are computed based on the first approach proposed for calculating

comparative scores presented in Section 3.4. The human judgments indicate the following

ranking: D(.75) > WF > TS which shows the superiority of diversity-aware keyword extraction

technique in terms of the relevance of the resulting document sets when these keywords are

used as a single query. The comparison value obtained by the second approach for D(.75) vs.

TS is .69±.10 vs. .39±.10. This comparison shows that our method significantly outperforms

the TS method.

4In the initial version of the system described in Chapter 3, we used the entire conversation fragment, minus
the stopwords, as a single (long) query. We also evaluated this approach, comparing its results with those of the
keyword lists based on word frequency (WF). We found that WF outperformed the use of the entire fragment, with
87% vs. 13% comparative relevance scores. Moreover, several previous just-in-time retrieval systems such as the
Remembrance Agent also used WF rather than all words. Therefore, we will not discuss the approach using the
entire conversation fragment any further in this section.

60



5.4. Experimental Results

Table 5.1: Comparative relevance scores, as well as raw preference scores, of document result
lists using single queries obtained from three keyword extraction methods on the ELEA Corpus.
The following ranking can be inferred: D(.75) > WF > TS.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) PCC-H Score 1 Raw Score

m1m1m1 m2m2m2 m1m1m1 m2m2m2

WF vs. TS 54 46 55 45
D(.75) vs. WF 58 42 53 47
D(.75) vs. TS 70 30 62 38

5.4.2 Comparison Across Multiple Queries

Binary comparisons are then performed between the retrieval results of multiple topically-

disjoint queries. Multiple queries are prepared from the keyword lists obtained from the TS

and D(.75) keyword extraction methods. The two tested methods are noted CTS and CD(.75)

(with ‘C’ for clusters of keywords), respectively derived from the TS and D(.75) keyword lists.

Clustering the results of WF is unpractical since the method does not rely on topic modeling.

Human judgments gathered over the 26 fragments from the ELEA Corpus show that CD(.75)

outperforms CTS, with an averaged relevance value obtained by the first PCC-H approach of

62% vs. 38% as shown in the last line of Table 5.2.

Table 5.2: Comparative relevance scores, as well as raw preference scores, of document results
using CD(0.75), D(.75), CTS, and TS on the ELEA Corpus. Methods using multiple queries
outperform those using single queries, and among the former, CD(0.75) surpasses CTS.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) PCC-H Scores 1 Raw Scores

m1m1m1 m2m2m2 m1m1m1 m2m2m2

CD(.75) vs. D(.75) 65 35 60 40
CTS vs. TS 65 35 62 38
CD(.75) vs. CTS 62 38 60 40

5.4.3 Single Queries Versus Multiple Queries

Finally, we compare single queries with multiple queries derived from the same keyword lists,

namely D(.75) and TS, on the 26 fragments from the ELEA Corpus. The averaged relevance

values obtained from human judgments, in the first two lines of Table 5.2, reveal that using

multiple queries, for both types of keyword extraction techniques, leads to more relevant

document results compared to single queries, i.e. CD(.75) > D(.75) and CTS > TS. For both

comparisons, the averaged relevance scores obtained by the first approach vary in the same

proportion, namely 65% to 35%, which also shows that the improvement brought by multiple

queries has a similar order of magnitude for D(.75) and for TS. These values also are com-

puted by the PCC-H second approach, in which the mean and the confidence interval of the
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estimation are calculated for each comparison. The values for CD(.75) vs. D(.75) are .76±.06

vs. .51±.12, and the values for CTS vs. TS are .70±.07 vs. .46±.07, again demonstrating the

statistical significance of the difference.

5.4.4 Example of Document Results

To illustrate the superiority of CD(.75) over the other techniques, we consider an example

from one of the conversation fragments of the ELEA Corpus, given in Figure 5.1.As described

in Section 5.3, for these meetings, the speakers had to select a list of 12 items vital to survive in

cold mountainous conditions while they waited to be rescued. The lists of keywords extracted

for this fragment by D(.75), TS, and WF are shown in Table 5.3. As WF does not consider topical

information, the keywords it selects (‘lighted’, ‘light’, and ‘lighter’) all revolve around the same

notion.

A: that should be almost the same okay.
B: of the same proportions.
A: so now we have the – the axe, the extra clothing and the whiskey.
C: where is the whiskey
A: whiskey is useless, I don’t want – if nobody is bothered – if we have fire – but that is -
B: can whisk – can whiskey be fire? can whiskey be lighted -
C: err I thought about it and err -
A: yes we may but yes, it may be possible – yes whiskey can be good for the fire; but I don’t
know if it is highly flammable.
B: well it can be – it – if it can be fired – I mean lighted it can be the fluid of the cigarette lighter.
C: yes but I think it is not strong enough.
A: I think it doesn’t
D: almost done?
A: almost done. I am to put first the clothes then the axe, and then the whiskey.
B: yes.
A: because I feel like I didn’t have that -
B: but – but – I mean the last two things it doesn’t – it doesn’t matter too much I think.
A: okay. so I am – yes we have like the canvas first, then the chocolate, shortening; the cigarette
lighter, the pistol; and the newspaper. and then the clothes, the axe, whiskey, map, compass.
wool, steel wool. wool.
B: where did you put the newspaper?
A: to err light the fire.
B: okay.
A: and the to light in your shoes, to get warmer.
B: do we have – okay. then we have extra shirts and pants. yes.
D: are you done?

Figure 5.1: Sample transcript of a four-party conversation (speakers A–D) from the ELEA
Corpus which was submitted to the document recommendation system.

Table 5.4 shows the topically-aware implicit queries prepared from the keyword lists provided
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Table 5.3: Examples of keyword sets obtained by three keyword extraction methods for a
fragment of the ELEA Corpus.

WF TS D(.75)

C = {whiskey, fire, axe, C = {chocolate, cigarette, C = {chocolate, cigarette,
wool, extra, lighted, whiskey, whisk, shortening, lighter, whiskey, pistol,
light, lighter} shoe, pistol, lighter} wool, shoe, fire}

Table 5.4: Examples of implicit queries built from the keyword list extracted from a fragment
of the ELEA Corpus. Each implicit query covers one of the abstract topics of the fragment.

CTS CD(.75)

Q1 = {chocolate, cigarette, whiskey, Q1 = {chocolate, cigarette, whiskey, lighter}
whisk, shortening, lighter} Q2 = {shoe, wool, lighter}
Q2 = {shoe, lighter} Q3 = {pistol, fire, lighter}
Q3 = {pistol, lighter} Q4 = {wool}

Table 5.5: Examples of retrieved Wikipedia pages from five different methods for a fragment
of the ELEA Corpus. Results of diverse keyword extraction (D(.75)) cover more topics, and
multiple implicit queries reduce noise (CD(.75)).

WF TS D(.75) CTS CD(.75)

Light Cigarette Wool Cigarette Cigarette
Lighting Lighter Cigarette Shoe Wool
Light My Fire Shortening Lighter Lighter Lighter
Lightness Shorten 25 m rapid fire pistol Shortening Mineral wool
Light On Whisk Fire safe cigarettes Lighter than air Chocolate
In the Light Fly-whisk 25 m center-fire pistol Lighter (barge) Shoe

by the D(.75) and TS keyword extraction methods (Table 5.3), ordered based on their impor-

tance in the fragment. The TS method starts by covering the first main topic of this fragment

with the keywords ‘chocolate’, ‘cigarette’, ‘whiskey’, ‘whisk’, and ‘shortening’. Then it selects

‘shoe’ and ‘pistol’ to cover the second and third main topics respectively. However, the D(.75)

method which considers also topical diversity, first selects two keywords ( ‘chocolate’ and

‘cigarette’) to cover the first main topic. Then it selects the third keyword of the first main topic,

‘whiskey’, only after the selection of a keyword shared by the first three main topics. Afterward,

it selects the keywords ‘pistol’, ‘wool’, ‘shoe’, and ‘fire’ to cover the second, third and fourth

main topics of the fragment.

Finally, Table 5.5 shows the retrieval results (six highest-ranked Wikipedia pages) obtained by

WF, TS, D(.75), CTS, and CD(.75). First of all, WF recommends almost no relevant document

to participants. The single query made by the diverse keyword extraction technique (D(.75))

retrieves documents which cover the largest number of topics mentioned in the conversation

fragment. Moreover, multiple queries (CTS and CD(.75)) retrieve a large number of relevant

documents compared to single queries (TS and D(.75)), likely because single queries do not
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separate the mixture of topics in the conversation, and lead to irrelevant results such as

‘Shorten’, ‘Whisk’, ‘Fly-whisk’ (found by TS) and ‘25 metre rapid fire pistol’, ‘Fire safe cigarettes’,

‘25 metre center-fire pistol’ (found by D(.75)). In addition, CD(.75) finds documents which

cover more topics mentioned in the conversation fragment in comparison to CTS.

5.5 Conclusion

In this chapter, we focused on modeling the users’ information needs by deriving implicit

queries from short conversation fragments. These queries were based on sets of keywords

extracted from the conversation. We proposed to use the diverse keyword extraction technique

from Chapter 4, which covers the maximal number of important topics in a fragment, to

extract users’ information needs in the form of keywords. We proposed in this chapter a

clustering technique to divide the set of keywords into smaller topically-independent subsets

constituting implicit queries, to reduce the noisy effect of the mixture of topics in a single

query.

We compared the diverse keyword extraction technique with methods based on word fre-

quency or topical similarity, in terms of the relevance of retrieved documents. These were

judged by human raters recruited via Amazon’s Mechanical Turk. The experiments showed

that the diverse keyword extraction method provides the most relevant lists of recommended

documents through multiple topically-separated implicit queries. Therefore, enforcing both

relevance and diversity brings an effective improvement to retrieved documents.

In the next chapter, the goal is to rank document results with the objective of maximizing

the coverage of all the information needs, while minimizing redundancy in a short list of

documents. First, we will experimentally show that the use of diverse re-ranking techniques

does not improve the retrieval results of a single query made from keywords related to multiple

irrelevant topics, because off-topic words can ruin the retrieval results of the initial single

query and consequently the re-ranking of the results does not help anymore. This again

confirms the usefulness of preparing multiple topic-aware implicit queries instead of a single

implicit query. Then we will propose a novel diverse merging method that can be applicable

to the several document lists retrieved for multiple topically independent queries.
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In this chapter, we propose a diverse merging technique for lists of documents, to combine

the retrieval results of the topic-aware implicit queries prepared from the transcripts of con-

versation fragments, as explained in the previous chapter. Our goal is to suggest a unique

and concise list of documents, every couple of minutes, to the participants in conversation.

The recommended result list should cover the maximum number of implicit queries and

should be as small as possible, because a long list of results may distract users from their actual

conversation. In this chapter, we propose an algorithm for diverse merging of these lists, using

a submodular reward function that rewards both topical similarity of documents to the users’

information needs and their diversity. The method is evaluated through crowdsourcing in

terms of both the relevance and diversity of recommended documents.

6.1 Introduction

We address the problem of merging lists of documents that are retrieved based on implicit

queries into a concise, diverse and relevant list. In Chapter 4, we stated that even a short

fragment is comprised of a variety of words, which can refer to several topics as people often

jump from one topic to another during a conversation. Then, in Chapter 5, we showed that

modeling users’ information needs in the form of multiple topically-separated implicit queries

(accompanied by a weight) instead of a single multi-topic implicit query can reduce the noisy

effect of the mixture of topics on the retrieval results.

Here, we propose a new method to combine the lists of recommendations retrieved for

implicit queries to build a single, short and comprehensive list of results. For instance, in

the example discussed in Section 6.5.4 below, in which four people must select a list of the

12 items that would most help them to survive in the mountains, five implicit queries are

derived from a short fragment of 120 seconds (with about 250 words). These queries have

different weights: two queries are more important to be answered compared to the others.

Therefore, which Wikipedia pages would best answer users needs at the respective moment of

their conversation, and how would a system proceed to find them?
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The chapter is organized as follows. In Section 6.2 we briefly present the motivation of our

proposal, and in Section 6.3, we describe the proposed algorithm for diverse merging of lists of

recommendations. Section 6.4 presents the data, the parameters setting, and evaluation tasks

for comparing document lists. In Section 6.5, we first demonstrate empirically the benefits, for

just-in-time retrieval, of separating users’ information needs into multiple topically-separated

queries rather than using a unique query. Then, we compare the proposed diverse merging

technique with several alternative ones, showing that it outperforms them according to human

judgments of relevance, and also exemplify the results on one conversation fragment given in

Figure 6.2.

6.2 Motivation

Several diverse re-ranking methods have been previously proposed to create a concise list

from the retrieval results of a single query. We will show in this chapter that diversification

does not improve the results of such a multi-topic single query produced from a conversation

fragment. For instance, a diverse re-ranking method applied on the retrieval results of a single

query would suggest (for the example used in this chapter) the following irrelevant Wikipedia

pages: “Cold Fire (Koontz novel)” or “Extended Cold Weather Clothing System” which are

produced because of the mixture of independent topics in a single query. However, users

would be more interested in “Igloo”, “Shoe”, “Lighter”, “Flint Spark Lighter”, and “Clothing”.

Alternatively, the Round-robin merging method presents the best representative of the doc-

uments relevant to each implicit queries in the final list can be more helpful; however, its

effectiveness is optimal when implicit queries have the same level of importance (Wu and

McClean, 2007). For the example of this chapter, a merging method based on Round-robin

would recommend the document “Die Hard” to answer an implicit query with a low level of

importance, before suggesting enough documents like “Flint Spark Lighter” related to one of

the implicit queries with a higher weight.

To improve over these approaches, we will use inspiration from extractive text summariza-

tion (Lin and Bilmes, 2011; Li et al., 2012) and from our diverse keyword extraction method

proposed in Chapter 4. The merging method proposed here rewards at the same time topic

similarity, to select the most relevant documents to the conversation fragment, and topic

diversity, to cover the maximum number of implicit queries in a concise and relevant list of

recommendations.

6.3 Definition of Diverse Merging Method

The diverse merging of retrieved document lists is the process of creating a short, diverse and

relevant list of recommended documents which covers the maximum number of the main

topics of each conversation fragment. The merging algorithm rewards diversity by decreasing

the gain of selecting documents from a list of documents (retrieved for an implicit query)
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as the number of its previously selected documents increases. The method proceeds in two

steps. We first represent queries and the corresponding list of candidate documents from the

Apache Lucene search engine1 using topic models, and then rank documents by using topical

similarity and rewarding the coverage of different lists of documents. These steps are defined

respectively in the following subsections.

6.3.1 Representation of Documents and Queries

We first learn a probability model for observing a word w in a document d through the set

of abstract topics Z = {z1, ..., z|Z |}, using LDA (Blei et al., 2003) as implemented in the Mallet

toolkit (McCallum, 2002). The hyperparameters of the model are initialized with α= 50/|Z |,
and β= 0.01 following Steyvers and Griffiths (2007) research and are then optimized using the

Gibbs sampling also implemented in Mallet. The topic models can be obtained using PLSA as

well, but we selected here LDA because it does not suffer from the over-fitting issue of PLSA

(Blei et al., 2003). The topic-word distribution p(w |zk ) and the document-topic distribution

p(zk |d) show the contribution of a word w to the construction of a topic zk . A distribution of

topic zk in a document d with respect to the other topics is finally inferred, using again Gibbs

sampling implemented in Mallet.

We represent each new text or fragment t (e.g. from a conversation or document) by a set

of probability distributions over all topics Z , noted as P (t ) = {p(z1|t ), ..., p(zk |t ), ..., p(z|Z ||t )},

where p(zk |t) is inferred using Gibbs sampling given the topic models previously learned.

We associate to each new document d j and query Qi a set of topic probabilities according

to the above definition noted respectively as P (d j ) = {p(z1|d j ), ..., p(zk |d j ), ..., p(z|Z ||d j )} and

P (Qi ) = {p(z1|Qi ), ..., p(zk |Qi ), ..., p(z|Z ||Qi )}.

6.3.2 Diverse Merging Problem

As stated above, our goal is to recommend a short ranked list of documents answering the

users’ information needs hypothesized in a conversation fragment, which are modeled by

multiple topic-aware implicit queries (see Section 5.2). We build the final list of recommended

documents by merging the document lists, one from each implicit query, with the objective of

the maximum coverage of the main topics of the conversation fragment. Since each document

list contains documents found by a search engine in response to an implicit query, which

was prepared for one of the main topics of the conversation fragment, we merge the lists

by selecting documents from the maximum number of lists in addition to maximizing their

topical similarity to the conversation fragment. Our solution is formalized as follows.

We consider a set of implicit queries Qimplicit = {Q1, ...,QM }, and the corresponding set of

document lists L = {l1, ..., lM } resulting from each query. M is the number of implicit queries

1Version (Lucene 4.2.1 API) is available in http://lucene.apache.org. We employed the Standard Analyzer for
indexing, and TF-IDF similarity values between documents and queries for ranking document results.
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of the fragment, and each li is a list of documents {d1, ...,dNi } which are retrieved for the query

Qi . We define the weight weli of each list li as the weight of the implicit query Qi (as defined

in Section 5.2.2 on page 57) normalized over the sum of the weights of all implicit queries.

Moreover, we define the “collective query” Q which is made of the union of all implicit queries.

This query is different from the single query which is used in Section 5.3.2 for preliminary

retrieval experiments, because some of the keywords from the keyword set C appear in the

single query but are not covered by any of the implicit queries, so they do not appear in

the collective query. We associate to Q a set of probabilities over abstract topics, P (Q) =
{p(z1|Q), ..., p(z|Z ||Q)} as well.

The problem of diverse merging of lists amounts to finding a ranked subset of documents S

from the union of all the documents retrieved for all the implicit queries,
⋃M

i=1 li . The final

result list S should contain documents which are the most representative of all the individual

result lists li , and potentially the most informative with respect to the conversation fragment

and the information needs that are implicitly stated.

6.3.3 Defining a Diverse Reward Function

The diverse merging problem is a form of the maximum coverage problem. Although this

problem is NP-hard, it has been shown that a greedy algorithm can find an approximate

solution guaranteed to be within a factor of (1−1/e) ' 0.63 of the optimal one if the coverage

function is submodular and monotone non-decreasing, as first stated in Section 4.2.2 on

page 36, where we also provided the definition of a monotone submodular function.

Several monotone submodular functions have been proposed in various domains for a similar

underlying problem, such as explicit diverse re-ranking of retrieval results (Agrawal et al., 2009;

Santos et al., 2010; Vargas et al., 2012), extractive summarization of a text (Lin and Bilmes,

2011; Li et al., 2012), or our own model of diverse keyword extraction from a conversation

fragment presented in Chapter 4 of this thesis.

We aim to define a monotone submodular function for diverse merging of document lists

inspired by our diverse keyword extraction method, in which we proposed a power function

with a scaling exponent between 0 and 1 for diverse selection of keywords covering the

maximum number of main topics of a text with a fixed number of items. Each text was

represented by a set of abstract topics inferred using LDA. However, this method is not directly

applicable for the problem of diverse merging of result lists, for the following reason. Suppose

that there are two implicit queries and for each implicit query two document results are

retrieved. The goal is to show two documents out of four documents to users. Suppose that the

two documents which are retrieved for the first implicit query are highly related to two abstract

topics but they have only one topic in common which is discussed in the conversation. If we

apply diversity on the abstract topics which represent documents (like in the algorithm used

for the diverse keyword extraction method), both of them can be selected by the algorithm to
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address topical diversity. The two documents are related to two main abstract topics but they

answer only one of the main topics discussed in the conversation fragment, and therefore, the

second main topic is not covered by the final document list.

To adapt this method to the problem of diverse merging, from the perspective of capturing

users’ information needs in the set of recommended documents, we define here a reward

function enforcing the merging process to select documents from a diverse range of document

lists. The proposed method covers the maximum number of document lists instead of the

abstract topics which are used to represent documents and queries.

We start by estimating the cosine similarity of a subset of the documents in the final list S

which are selected from the list li to the collective query Q (see Subsection 6.3.2) in topic

space (Guo and Diab, 2012) as rS,i :

rS,i =
∑
d∈S

1(d∩li )

∑
zk∈Z {p(zk |d) ·p(zk |Q)}√∑

zk∈Z {p(zk |d) ·p(zk |d)} ·√∑
zk∈Z {p(zk |Q) ·p(zk |Q)}

(6.1)

In Equation 6.1, if the document d ∈ S is chosen from the list li then it is counted in the

summation otherwise it is not.

We then propose the following reward function f for any subset of the list S with relevant

documents selected from li (results of implicit query Qi ), where weli is the weight of the list li ,

and λ is a parameter between 0 and 1. This reward function is submodular because it has the

diminishing returns property when rS,i increases.

f : rS,i → weli · rλS,i (6.2)

The set S is ultimately ranked by maximizing the cumulative reward function R(S) over all the

lists from all implicit queries, defined as follows:

R(S) =
M∑

i=1
weli · rλS,i (6.3)

The probability of selecting documents from the list of results for Qi thus depends on weli , the

topical similarity of the query to the conversation fragment. This is in contrast to choosing the

best representative document from the list of documents of each query, as in the Watson sys-

tem, which does not select more documents for queries with higher weight before considering

lower weight ones. Moreover, our model rewards diversity to increase the chance of choosing

documents from all the document lists retrieved for implicit queries.

6.3.4 Finding the Optimal Document List

If λ= 1, the reward function ignores the diversity constraint, because it does not penalize mul-

tiple selections from the same list li and ranks documents only depending on their similarity

to the collective query and the weights of implicit queries. However, when 0<λ<1, as soon as
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a document is selected from the list of results of an implicit query, other documents from the

same list start having diminishing returns as competitors for selection. Decreasing the value

of λ increases the impact of the diversity constraint on ranking documents, which augments

the chance of recommending documents from other document lists.

Since R(S) is a monotone submodular function, we propose the greedy algorithm shown in

Algorithm 2 to maximize R(S). In contrast to the greedy algorithm proposed in Section 4.2.7

on page 40 for the diverse keyword extraction problem in which keywords are distributed in

all topics with a probability value, in this problem the documents in the lists of results are

represented by a binary value (i.e. if they are included in the list the value is 1 otherwise it is 0).

In the first step of the algorithm, S is empty. At each step, the algorithm selects a document d

among the unselected documents from the union of all the result lists (i.e. d ∈ (
⋃M

i=1 li \ S)), so

that d has the maximum similarity to the collective query and also maximizes the coverage of

the main topics of the conversation with respect to the previously selected documents in S.

This coverage is defined as:

g (d ,S) =
M∑

i=1
weli

(
rS,i +1(d∩li )

∑
zk∈Z [p(zk |d) ·p(zk |Q)]√∑

zk∈Z [p(zk |d) ·p(zk |d)] ·√∑
zk∈Z [p(zk |Q) ·p(zk |Q)]

)λ
(6.4)

where the second term of the sum (starting with 1(d∩li )) is the topical similarity of the doc-

ument d included in the lists li to the collective query Q. The algorithm updates the set S

by adding one of the documents d ∈ (∪M
i=1li \ S) which maximizes g (d ,S). This procedure

continues until reaching K documents from (∪M
i=1li ).

Input :collective query Q, query set Qi mpl i ci t of size M with probabilities, set of
weights We, set of lists of document results L with probabilities, number of
recommended documents K

Output :set of recommended documents S
S ←;;
while |S| ≤ K do

S ← S ∪ar g maxd∈((∪M
i=1li )\S)g (d ,S)

where g (d ,S) =∑M
i=1 weli · {rS,i +1(d∩li )

∑
zk∈Z [p(zk |d)·p(zk |Q)]√∑

zk∈Z [p(zk |d)·p(zk |d)]·p∑
zk∈Z [p(zk |Q)·p(zk |Q)]

}λ;

end
return S;

Algorithm 2: Diverse merging of document results for recommendation.

6.3.5 A Toy Example

We provide a toy example to illustrate the above greedy algorithm. Suppose that for a con-

versation fragment we build two implicit queries, resulting in the corresponding document

lists l1 = {d11,d12} and l2 = {d21,d22}. Let us assume that the documents and queries are repre-

sented by three topics z1, z2, and z3, and the topics are weighted as follows: βz1 = 0.4, βz2 = 0.4,
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and βz3 = 0.2. Then the weights of lists can be inferred as follows: wel1 = 0.5, and wel2 = 0.5. A

sample distribution of the topic weights for each document and the collective query is also

shown in Table 6.1.

Table 6.1: Sample input to the greedy algorithm.

Texts p(z1|·)p(z1|·)p(z1|·) p(z2|·)p(z2|·)p(z2|·) p(z3|·)p(z3|·)p(z3|·)
Q 0.40 0.40 0.20

d11 0.60 0.00 0.40
d12 0.60 0.20 0.20
d21 0.40 0.50 0.10
d22 0.35 0.60 0.05

Table 6.2: The reward values h(d ,S) for λ = .75 and g (d ,S) for λ = .75 and λ = 1 calculated
respectively using Algorithms 1 (on page 40) and 2 (on page 70) to select two documents out
of four, from two lists of documents retrieved for two topically-separated implicit queries.

λ= .75λ= .75λ= .75 λ= 1λ= 1λ= 1 λ= .75λ= .75λ= .75
Documents h(·,;)h(·,;)h(·,;) h(·, {d22})h(·, {d22})h(·, {d22}) g (·,;)g (·,;)g (·,;) g (·, {d21})g (·, {d21})g (·, {d21}) g (·,;)g (·,;)g (·,;) g (·, {d21})g (·, {d21})g (·, {d21})

d11 0.373 0.767 0.370 0.858 0.399 0.890
d12 0.452 0.794 0.452 0.940 0.463 0.954
d21 0.474 0.800 0.488 – 0.491 –
d22 0.476 – 0.466 0.954 0.475 0.812

For comparison purposes, we will run the algorithm for diverse keyword extraction with

λ= .75 by substituting words with documents, and also run the algorithm proposed here for

λ= .75 and λ= 1. The goal is to compare the selection of two documents out of four in terms

of the coverage of the main topics of the conversation.

Initially S is empty. In Table 6.2, we provide the h(d ,S) values which are generated by the

diverse keyword extraction method and by the method proposed here for all documents. The

first algorithm selects d22 as the first document from l2 and then selects d21 from the same

list. Although these documents are covering the two main topics, they do not cover well the

first implicit query, which is mostly about the first topic and not the mixture of them. In

contrast, the merging algorithm (with both values of λ) adds d21 from l2 as the first document

in the final list S. Then the algorithm with λ= 1, which only considers the relevance of the

documents to the collective query, selects d22 again from l2. However, the algorithm with

λ = .75, which considers the diversity of implicit queries, selects d12 from l1 as the second

document to show in the list S to users.

6.4 Data, Settings and Evaluation Method

The experiments were performed on conversational data from the ELEA Corpus (Emergent

LEader Analysis, (Sanchez-Cortes et al., 2012)). Implicit queries are formulated as presented
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in Chapter 5, using the keywords extracted from each conversation fragment by the method

proposed in Chapter 4. The lists of document results for each implicit query are obtained

by submitting the query to the Apache Lucene search engine2 over the English Wikipedia3.

The initial lists of results are merged and/or re-ranked into a final list of recommended

documents using several baseline methods, as well as the diverse merging method proposed

in Section 6.3.4 above. This section presents the data, the framework of the system and

parameters of the method, and also the evaluation techniques used in our experiments.

6.4.1 Conversational Corpus

The ELEA Corpus was introduced above in Section 5.3.1 on page 58. As we already evaluated

the keyword extraction method over the ASR transcripts of the AMI Meeting Corpus and have

shown that it is robust to ASR noise (Chapter 4), we only performed our experiments over

manual transcripts of the ELEA Corpus here.

We use from the ELEA Corpus 5 conversations of around fifteen minutes each, which have

been manually transcribed. Our data comprises 35 two-minute segments, each of them ending

at a speaker change, like the data used in Chapter 5. We first use 9 conversation fragments

out of 35 to set the parameters of our experiments. On average, these fragments contain 278

words including stop words. Once topic modeling is applied, the average number of main

topics per fragment is 5, with an observed minimum of 3 and a maximum of 9. The remaining

26 fragments are used as a test set to evaluate the methods listed below.

6.4.2 Methods Compared in the Evaluation

The recommendation process starts by extracting a set of keywords, C , from the words recog-

nized by the ASR system from the users’ conversations as depicted in Figure 6.1. The keywords

are extracted using the diverse keyword extraction technique that we proposed in Chapter 4.

Then, implicit queries are formulated using this keyword set, following the two alternative

approaches depicted in step 2 of Figure 6.1. In a simple model (right side of the figure), a single

query is built for the conversation fragment using the entire keyword list as an implicit query.

Conversely, in the approach we proposed in Chapter 5 (step 2, left side of the figure), multiple

implicit queries are produced for the conversation fragment by clustering the keyword set

into several topically-separated subsets, weighted based on the strength of the topic in the

conversation fragment.

In step 3, we separately submit each implicit query to the Apache Lucene search engine over

the English Wikipedia and obtain several lists of relevant articles. Finally, in step 4, we merge

and re-rank these lists before recommendation. One baseline is the explicit diverse re-ranking

technique proposed by Santos et al. (2010) for diversifying the primary search results retrieved

2Version (Lucene 4.2.1 API) available in http://lucene.apache.org.
3A local copy obtained using the Freebase Wikipedia Extraction(WEX) dataset Metaweb Technologies (version

dated 2009-06-16) was downloaded from http://download.freebase.com/wex.
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Transcript of conversation fragment

Extract the best k keywords that cover all the 
main topics with high probability

Topical clustering of keywords to prepare M
multiple topic-aware queries 

},...,{ 1 kccC �

Retrieval system

},...,{},,...,{ 11 MM wwWqqQ ��

Retrieval system

},...,{ 1 MllL � l

Diverse ranking 
(DivS)

Similarity merging 
(SimM)

Round-robin
merging

Diverse merging 
(DivM)

},...,{ 1 NddS �},...,{ 1 NddS �},...,{ 1 NddS �},...,{ 1 NddS �

list of relevant documents,

(1)

(2)

(3)

(4)

Figure 6.1: The four stages of our document recommendation approach (shown vertically as
(1)–(4)) and the four options considered for comparative evaluation (shown horizontally at
the bottom as SimM, Round-robin, DivM, and DivS).

for a single query, shown on the right side of Figure 6.1. To compare the methods, we adapted

it to our system, when a single implicit query is built for a conversation fragment, by defining

query aspects using the abstract topics employed for query and document representation.

The method is noted DivS as it diversifies documents from a single list.

The method proposed in this chapter, noted DivM, appears at step 4. As shown on the left

side of Figure 6.1, we merge the lists of documents retrieved for multiple implicit queries. We

compare DivM with two other techniques. The first one, noted SimM, ignores the diversity of

topics in the list of results and ranks documents only by considering their topic similarity to

the conversation fragment. The second one is the Round-robin merging technique, used e.g.

in the Watson just-in-time information retrieval system (Budzik and Hammond, 2000).

6.4.3 Parameter Settings for Experimentation

Since document search is performed over the English Wikipedia, we train our topic models

on this corpus as well. We use only a subset of it for tractability reasons, i.e. about 125,000
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articles as in other studies (Hoffman et al., 2010). The subset is randomly selected from the

entire English Wikipedia. Like previous studies, we fix the number of abstract topics at 100

(Boyd-Graber et al., 2009; Hoffman et al., 2010).

The exponent of the submodular function is set to λ= .75, as in our diverse keyword extraction

method (Chapter 4). This is found to be the best value for diverse merging of lists of results,

as it leads to a reasonable balance between relevance and diversity in the aggregated list. Of

course, if sufficient training data were available, it could be used to optimize λ.

The number of recommended documents is fixed at five. This is the value of the average

number of topics in a conversation fragment, which allows the system to cover on average

one result per topic. Experiments with other values were not carried out due to the cost of

evaluation.

6.4.4 Method for Comparing Recommended Documents

We design four-choice “Human Intelligence Tasks” (HITs) that measure the relevance of rec-

ommended document lists for each of the test conversation fragment, following the approach

described in Section 3.3 on page 23. The tasks require subjects to compare two lists obtained

by two different methods. Here, we ask human judges to compare two lists of recommended

documents in terms of their comprehensiveness, in addition to their relevance to the tran-

script of the conversation fragment. So we asked workers to select one of the ranking lists

which contains relevant documents covering more main topics of the conversation fragment.

The 26 comparison tasks were crowdsourced via Amazon’s Mechanical Turk. For each HIT we

recruited 10 workers, only accepting those with greater than 95% approval rate and more than

1000 previously approved HITs. We only consider judgements from the workers who answered

correctly our control questions about each HIT. Each worker was paid 0.20 USD per HIT. We

observed that the average time spent per HIT was around 90 seconds.

To compute the comparative relevance scores over a large number of subjects and conversation

fragments, we use the PCC-H qualification control method which was defined and validated in

Section 3.4 on page 24. This method provides two scores, one for each document list that are

compared, summing up to 100%; a higher value indicates a better list. In addition to PCC-H

scores, we also provide the raw preference scores for each comparison, i.e. simply the number

of times a system is preferred over another one in the comparison.

6.5 Experimental Results

We merge and re-rank the document lists – intended to be recommended during a conversa-

tion – generated by the four methods presented above in Section 6.4.2 and Figure 6.1. Three

methods merge lists of results from topically-separated queries: SimM only considers their

similarity with the fragment; Round-robin picks the best document in each list; and our pro-
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posal, DivM, considers the diversity and importance of topics. A fourth method, DivS, uses

one query made of all keywords extracted from the conversation fragment, and ranks the

documents using the diverse re-ranking technique proposed by Santos et al. (2010).

Binary comparisons were performed between pairs of techniques, using crowdsourcing over

26 conversation fragments of the ELEA Corpus. We aimed to minimize the number of binary

comparisons while still ordering completely the methods according to their quality.

6.5.1 Diverse Re-ranking vs. Similarity Merging

We first perform a comparison between DivS and SimM. The PCC-H relevance score is 75% for

SimM vs. 25% for DivS, as shown in Table 6.3. These values indicate the superiority of SimM

over DivS. In other words, separating the mixture of topics of a fragment into multiple topically-

separated queries mitigates the negative effect of the mixture of topics on the suggestions.

6.5.2 Comparison across Merging Techniques

Binary comparisons are then performed between pairs of merging techniques including SimM,

Round-robin, and DivM. The PCC-H scores computed by the first approach are: 62% for DivM

vs. 38% for Round-robin; 59% for DivM vs. 41% for SimM ; and 56% for Round-robin vs. 44%

for SimM, as shown in Table 6.3. The differences are confirmed by the PCC-H scores obtained

by the second approach, according to the results in Table 6.3. The SimM method does not

outperform the Round-robin method significantly, so both techniques are state-of-the-art

ones. The reason is related to the dependency of these methods on the proportion of the

number of recommended documents with respect to the number of implicit queries, which is

discussed in more detail in the next section. The scores show that the diverse merging of lists

of documents improves recommendations, and indicate the following high to low ranking:

DivM > Round-robin > SimM.

SimM ranks lowest in this ordering, likely because of the ignorance of diversity in the list of

results. Round-robin is second, likely because it disregards the major differences of importance

among implicit queries in a conversation fragment. The results of the comparisons confirm

that the DivM technique is the most satisfying to the majority of human subjects.

6.5.3 Impact of the Topical Diversity of Fragments

To further examine the benefits of the proposed method, DivM, we study its sensitivity to

the number of topics in the conversation fragments. For this purpose, we divide the set of

test fragments into two subsets. The first one (noted ‘A’ in Table 6.4) gathers the fragments

for which fewer than or exactly five main topics (and therefore implicit queries) have been

computed. The other fragments, with more than five main topics, form the second subset

(noted ‘B’). The value of five corresponds to the average number of main topics per fragment
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Table 6.3: Comparative scores of the recommended document lists from four methods: DivS,
SimM, Round-robin, and DivM, evaluated by human judges over the 26 fragments of the ELEA
Corpus. The results imply the following ranking: DivM > Round-robin > SimM > DivS.

Compared methods Relevance (%)
(m1m1m1 vs. m2m2m2) PCC-H Score 1 PCC-H Score 2 Raw Score

m1m1m1 m2m2m2 m1m1m1 m2m2m2 m1m1m1 m2m2m2

SimM vs. DivS 75 25 .70±.08 .32±.06 70 30
Round-robin vs. SimM 56 44 .48±.20 .57±.21 52 48
DivM vs. Round-robin 62 38 .66±.07 .46±.09 58 42
DivM vs. SimM 59 41 .75±.07 .47±.13 58 42

as well as to the number of allowed recommended documents in our experiments.

Table 6.4: Comparative scores of the recommended document lists from four methods: DivS,
SimM, Round-robin, and DivM, evaluated by averaging human judges over two separate
subsets of the ELEA Corpus. Subset A gathers fragments with fewer than or exactly five topics,
while subset B gathers all the other fragments.

PCC-H relevance score 1 (%)
Compared methods A B

(m1m1m1 vs. m2m2m2) m1m1m1 m2m2m2 m1m1m1 m2m2m2

SimM vs. DivS 80 20 70 30
Round-robin vs. SimM 33 67 68 32
DivM vs. Round-robin 64 36 60 40

DivM vs. SimM 54 46 60 40

As shown in Table 6.4, although there is an improvement in the comparison scores of DivS

over SimM when the number of conveyed topics in the fragments is higher than the number of

allowed recommended documents (subset B vs. subset A), the comparison scores indicate the

superiority of SimM over DivS in both cases, and confirm the benefit of the diverse merging

techniques.

When comparing Round-robin versus SimM, the scores show the superiority of the former

method when the number of conveyed topics in fragments is higher than the number of rec-

ommended documents, because it provides a diverse lists of documents in which documents

relevant to less important topics are not displayed.

However, when the number of topics is smaller than the number of recommendations, SimM

provides better results. The reason of the decrease in the scores of Round-robin is likely the

ignorance of the actual importance of the main topics when ranking documents. Overall,

as shown in Table 6.4, regardless of the number of topics conveyed in the fragments, DivM

always outperforms Round-robin and SimM.
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6.5.4 Example of Document Results

To illustrate how DivM surpasses the other techniques, we consider an example from one of

the conversation fragments of the ELEA Corpus. The manual transcript of this conversation

fragment is given in the Figure 6.2 on page 77.

A: okay I start.
B: how – how do you want to proceed?
A: I guess -
C: yes what is the most important?
A: I guess fire light.
B: fire lighter?
A: fire, yes. I would say if we had something we can fire with – I guess that the lighter is useful
in getting some sparks.
B: hopefully.
A: so we can use either newspaper or – something like that.
C: but again - first it is more important to have enough err clothes.
A: and for me, more important to know where to go. I would say that the compass.
C: I mean – if you don’t have enough clothes so – at one point you can –
B: you can die.
C: yes you can – you will die. so first issue, try to keep yourself alive and then you can –
A: but – but you already have some –
B: basics. you everything. you have enormous which is and so is no shoes here.
C: okay that we have shoes so – okay.
B: because seventy kilometers will take you how many days? err in the snow – what do you
think?
A: two or three.
B: it can be two or three days?
C: yes, but okay you cannot always have fire with you – but you need always have clothes with
you. I mean it is the only thing that protects you when you are walking.
B: oh yes. and erm you can make an igloo during the evening. not that cold. only about five
degrees. so lighting a fire is not so important.
C: I guess fire is an extra. I mean it is important but err for me first it is important that when
you keep walking you should be protected.

Figure 6.2: Sample transcript of a conversation fragment (speakers noted A through C) from
the ELEA Corpus which was submitted to the document recommender system.

As described above, the conversation participants had to select a list of 12 items vital to survive

in winter while waiting to be rescued. The keyword set extracted from the manual transcript of

this fragment by the proposed diverse keyword extraction method (see Chapter 4) is C = {fire,

lighter, cloth, shoe, cold, die, igloo, walking}. As our keyword extraction method was shown to

be robust to ASR noise, we only use here the reference transcripts.

We display the topically-aware implicit queries prepared by our method from this keyword

list along with the weights in Table 6.5. Each implicit query corresponds to one of the main
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topics of the fragment with a specific weight. In this example, the main topics spoken in the

fragment are about “making an igloo”, “lightening a fire”, “having warm clothes”, and “suitable

shoes for walking”.

Table 6.5: Examples of implicit queries built from the keyword list extracted from a sample
fragment of the ELEA Corpus given in Figure 6.2. Each query covers one of the main topics of
the fragment and has a different weight.

Implicit queries Weights
Q1 = {fire, cold, igloo, lighter} wel1 = 0.332
Q2 = {shoe, lighter, walking} wel2 = 0.293
Q3 = {cloth} wel3 = 0.175
Q4 = {die} wel4 = 0.120
Q5 = {igloo} wel5 = 0.078

Table 6.6: Examples of retrieved Wikipedia pages from the four different methods tested here.
Results of diverse merging (DivM) appear to cover more topics relevant to the conversation
fragment than other methods. The average ranking (DivM > Round-robin > SimM > DivS) is
also observed in this example.

DivS SimM Round-robin DivM
Flint spark Igloo Igloo Igloo
lighter
Extended Cold Flint spark Shoe Shoe
Weather Clothing lighter
System
Cold Fire Lighter Jersey Flint spark
(Koontz novel) (clothing) lighter
Igloo Lighter (barge) Die Hard Jersey

(clothing)
Walking Worcester Flint spark Lighter

Cold Storage lighter
Warehouse fire

In Table 6.6 we show the retrieval results (five highest-ranked Wikipedia pages) obtained by

the four methods using the reference transcript of this fragment. DivS provides two irrelevant

documents (Wikipedia pages) such as “Cold Fire (Koontz novel)”, likely because the single

query does not separate the mixture of topics in the conversation fragment. SimM slightly

improves the results by separating the discussed topics of the conversation fragment into

multiple queries. However, it does not cover all the topics mentioned in the fragment due

to mostly focusing on the single topic represented by Q1. Round-robin further enhances the

results by adding diversity, but as it gives the same level of importance to all topics, it provides

a poor result like “Die Hard” from a topic of the conversation fragment with a small weight.

The results of DivM appear to be the most useful ones, as they include other articles relevant to

Q1, Q2, and Q3 before showing results relevant to the low weight queries Q4 and Q5. Therefore,
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in this example, DivM provides better ranking of documents by covering the largest number

of main topics mentioned in the fragment.

6.6 Conclusion

We proposed a diverse merging technique for combining lists of documents from multiple

topically-separated implicit queries, prepared using keyword lists obtained from the tran-

scripts of conversation fragments. Our diverse merging method DivM provides a short, diverse,

and relevant list of recommendations, which avoids distracting participants that would con-

sider it during the conversation. We also compared DivM to existing merging techniques, in

terms of comprehensiveness and relevance of the final recommended list of documents to the

conversation fragment. The human judgments collected via Amazon Mechanical Turk showed

that DivM outperforms all other methods.

Moreover, these results emphasized the benefit of splitting the keyword set into multiple

topically-separated queries: the suggested lists of documents from DivS (which accounts

for the diversity of results by re-ranking the documents of a single list) were indeed found

less relevant than those from SimM and the other two methods, which merged results from

multiple queries.

In the following chapter, we will enable our system to answer explicit queries asked by users,

considering contextual factors to improve the relevance of the answers, which will complement

the recommendation functionality based on implicit queries.
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This chapter introduces a query refinement method applied to queries asked explicitly by

users during a meeting or a conversation. The method thus adds a new functionality to a

just-in-time retrieval system, building upon the methods presented in the previous chap-

ters, and answering a set of attested user needs (Popescu-Belis et al., 2011). The method

proposed for answering explicit queries does not require further clarifications from users,

to avoid distracting them from their conversation, but leverages instead the local context of

the conversation. The method first represents the local context by the keywords which are

extracted from the transcript of the conversation using the diverse keyword extraction method

proposed in Chapter 4 of this thesis. It then expands the queries with keywords that best

represent the topic of the query, i.e. expansion keywords accompanied by weights indicating

their topical similarity to the query.

To evaluate our proposal, we built over the AMI Corpus a new dataset called AREX with sample

queries accompanied by relevance judgments collected in a crowdsourcing experiment. We

compare our query expansion approach with other methods, over the queries from the AREX

dataset, showing the superiority of our method when either manual or ASR transcripts of the

AMI Meeting Corpus are used.

7.1 Introduction

We specify in this chapter a query refinement technique for explicit queries addressed by users

to a system during a conversation. Retrieval based on these queries can be erroneous, due to

their inherent ambiguity. The proposed technique uses the local context of the conversation to

properly answer the users’ information needs, without the need for explicit query refinement.

For instance, in the example discussed in Section 7.4.4, people are talking about the design of

a remote control (see Figure 7.6 for the full transcript), and a participant expresses the need

for more information about the acronym“LCD”. Our goal is to find the most helpful Wikipedia

pages to answer this need in the context of designing a remote control.
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Previous query refinement techniques – reviewed in Chapter 2, Section 2.5 on page 19 – enrich

queries either interactively, or automatically, by adding relevant specifiers obtained from an

external data source. However, interacting with users for query refinement may distract them

from their current conversation, while using an external data source outside the users’ local

context may cause misinterpretations. For example, the acronym “LCD” can be interpreted as

“lowest common denominator” or “Lesotho Congress for Democracy”, in addition to “liquid-

crystal display”, which is the correct interpretation in the context of our example. To address

this issue, there are several techniques which have attempted to use the local context of users’

activities, without requiring user interaction (Alidin and Crestani, 2013; Budzik and Hammond,

2000). However, as we will show, these are less suitable for a conversational environment,

because of the nature of the vocabulary and the errors introduced by the ASR, such as ‘recap’

in the example below.

In this chapter, the local context of an explicit query is represented by a set of keywords

automatically obtained from the conversation fragment preceding each query using the

diverse keyword extraction technique proposed in Chapter 4. We assign a weight value to

each keyword, based on its topical similarity to the explicit query, to reduce the effect of the

ASR noise, and to recognize appropriate interpretations of the query. In order to evaluate the

improvement brought by this method, we have constructed the AREX dataset (AMI Requests

for Explanations and Relevance Judgments for their Answers). This dataset embodies a set

of explicit queries inserted in several locations of the conversations from the AMI Meeting

Corpus (Carletta, 2007), along with a set of human relevance judgments gathered over sample

retrieval results from Wikipedia for each query, and an automatic evaluation metric based on

Mean Average Precision (MAP).

The chapter is organized as follows. In Section 7.2, we describe the proposed query refinement

method. Section 7.3 explains how the AREX dataset was constructed and specifies the evalua-

tion metric. Section 7.4 presents and discusses the experimental results obtained both with

ASR output and human-made transcripts of the AMI Meeting Corpus, showing the superiority

of our technique over previous ones and its robustness with respect to unrelated keywords or

ASR noise.

7.2 Content-based Query Refinement

Our goal in this chapter is to enable the just-in-time retrieval system proposed in this thesis to

answer explicit queries formulated by users, in addition to spontaneous recommendations

resulting from the implicit queries prepared by the system. The users can simply address

the system by using a pre-defined unambiguous name, which is robustly recognized by the

real-time ASR component (Garner et al., 2009). More sophisticated strategies for addressing a

system in a multi-party dialogue context have been studied (Bohus and Horvitz, 2009; Wang

et al., 2013), but they are beyond the scope of this chapter, which is concerned with the

processing of the query itself by the system. As for the query results, once they are generated
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by the system, they can be displayed on a shared projection screen or on each user’s device.

To answer an explicit query Qexplicit , the process of query refinement starts by modeling the

local context using the transcript of the conversation fragment preceding the query. Conver-

sation fragments have a fixed length for all queries. From each fragment, we extract a set of

keywords C = {c1, · · · ,ck } as the expansion terms, where k is the number of extracted keywords.

The keywords are extracted using the diverse keyword extraction technique proposed in Chap-

ter 4, because the diverse keyword extraction method maximizes the coverage of the main

topics discussed in the conversation fragment while reducing the effect of ASR noise by the set

of keywords. As the keyword set is related to several main topics, we weigh each expansion

term by using a filter that assigns a weight weci , with 0 ≤ weci < 1, to the term ci ∈C \Q based

on its similarity to the explicit query.

To compute the weight for each expansion term, we first represent both query and the terms

using topical information. p(z|w) is the distribution of the topic z given an arbitrary word w

from the dictionary. These topic distributions are created using the LDA topic modeling tech-

nique (Blei et al., 2003), implemented in the Mallet toolkit (McCallum, 2002) as we explained

in Chapter 4, Section 4.2.1 on page 35. The topic models are learned over a large subset of

the English Wikipedia with around 125,000 randomly sampled documents (Hoffman et al.,

2010) as we did in the previous chapters. Moreover, we again fixed the number of topics at

100 (Boyd-Graber et al., 2009; Hoffman et al., 2010).

We then calculate the weight of each keyword wci based on its normalized topical similarity to

the explicit query, as formulated in the following equation:

weci =
∑

z∈Z p(z|Qexplicit)p(z|ci )√∑
z∈Z p(z|ci )2

√∑
z∈Z p(z|Qexplicit)2

(7.1)

where Z is the set of abstract topics which correspond to latent variables, and p(z|ci ) is the

distribution of topic z in relation to the keyword ci . Similarly, the averaged distribution of

topic z in relation to the query Qexplicit made of words wex,i is calculated as follows:

p(z|Qexplicit) = 1

|Qexplicit |
∑

wex,i∈Qexplicit

p(z|wex,i ) (7.2)

Each query Qexplicit is refined by adding additional keywords extracted from the fragment,

with a certain weight. Note that we do not weigh all the words of the fragment, but only

those selected as keywords, in order to avoid expanding the query with words that may be

relevant to one of the query aspects but not to the main topics of the fragment. We obtain a

parametrized refined query RQ(γ) ( γ represents an exponent on the topical similarity values

for each weight) which is defined as a set of weighted keywords, i.e. pairs of (word, weight), as

shown below:

RQ(γ) = {(wex,1,1), . . . , (wex,|Qexplicit |,1), (c1, weγc1
), . . . , (ck , weγck

)} (7.3)
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In other words, the refined query contains the words from the explicit query with weight 1,

plus the expansion keywords with a weight proportional to their topic similarity to the query.

The γ parameter has the following role. If γ=∞, the refined query is the same as the initial

explicit query (with no refinement) because the weights become zero. By setting γ to 0, the

query is like the one used in the Watson system (Budzik and Hammond, 2000), giving the

same weight to the query words and to the keywords representing the local context. Because

the keywords are related to topics that have various relevance values to the explicit query, we

will set the intermediate value γ= 1 in our experiments, to weigh each keyword based on its

relevance to the topics of the query. The value of γ could be optimized if more training data

were available.

7.3 Dataset and Evaluation Method

Our experiments are conducted on the AREX dataset1. AREX stands for “AMI Requests for

Explanations and Relevance Judgments for their Answers”. The dataset contains a set of

explicit queries, inserted at various locations of the conversations from the AMI Meeting

Corpus (Carletta, 2007), as we will explain in Section 7.3.1. The dataset also includes relevance

judgments gathered for each query using a crowdsourcing platform, over a set of documents

retrieved for the four different methods described in Sections 7.3.2. These judgments will then

be used as ground truth to evaluate a retrieval system automatically.

7.3.1 Explicit Queries in the AREX Dataset

The AMI Meeting Corpus contains 138 meetings on designing remote controls. Our dataset is

made of a set of explicit queries with the time of their occurrence in the AMI Corpus. Since the

number of naturally-occurring queries in the corpus is insufficient for evaluating our system,

we artificially generate a set of queries using the following procedure.

First, utterances containing an acronym X are automatically detected, because acronyms

are one of the typical items which are likely to require explanations due to their potential

ambiguity. Moreover, such utterances include the queries which appear naturally in the AMI

Corpus. Of course, our query expansion technique is in fact applicable to any explicit query.

We formulate an explicit query such as “I need more information about X”, and add it after

these utterances. Seven acronyms, all-but-one broadly related to the domain of remote con-

trols, are considered: LCD (liquid-crystal display), VCR (videocassette recorder), PCB (printed

circuit board), TFT (thin-film-transistor liquid-crystal display), NTSC (National Television

System Committee), IC (integrated circuit), and RSI (repetitive strain injury). These acronyms

occur 74 times in the scenario-based meetings of the AMI Corpus.

1See www.idiap.ch/dataset/arex
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We use both manual and ASR transcripts of the fragments from the AMI Corpus in our ex-

periments. The ASR transcripts are generated by the AMI real-time ASR system for meetings

(Garner et al., 2009), which has an average word error rate (WER) of 36%. In addition, for

experimenting with a variable range of WER values, we have simulated speech recognition

mistakes as stated in Section 4.3.1 on page 42, by applying to the manual transcripts three

different types of the ASR noise: deletion, insertion and substitution. The percentage of

simulated ASR noise varies from 10% to 30%, as the best recognition accuracy reaches around

70% in conversational environments (Hain et al., 2010). However, noise is never applied to the

explicit query itself.

7.3.2 Ground Truth Relevance Judgments

Following a classical approach for evaluating information retrieval (Voorhees and Harman,

2005), we build a reference set of retrieval results by merging the lists of the top 10 results from

four different methods used to answer users’ explicit queries. The retrieval results are obtained

by the Apache Lucene search engine2 over the English Wikipedia3. Three of the methods are

listed in Sections 7.2. One is the method proposed in this paper, and the other two methods

are baseline methods, one is the original query and the other one is implemented by the

Watson just-in-time retrieval system. The fourth one builds a query which consists of only

the keywords extracted from conversation fragments, with no words from the queries. We

found that each explicit query (over 74) has at least 31 different results in the merged list, and

therefore we decided to limit the reference set to 31 documents for each query.

Each fragment is about 400 words long, and this value was selected based on the following

observation. We computed the sum of the weights assigned to the keywords extracted from

each fragment by the RQ(1) method, which weighs keywords based on their relevance to

the query topics. Then we averaged them over 25 queries, randomly selected from AREX to

serve as a development set for parameter tuning. The average weight values obtained from

five repetitions of the experiment with fragment lengths varying from 100 to 500 words in

increments of 100 were, respectively: 2.14, 2.32, 2.08, 2.08, and 2.08. Since there is no variation

in these values for the last three values, we set fragment size to 400 words. We have also limited

the weighting to the first 10 keywords extracted from each fragment following several previous

studies (Carpineto and Romano, 2012) in which the typical number of expansion terms are in

the rang of 10-30, thus speeding up the query processing.

We designed a set of tasks to gather relevance judgments from human subjects over the

document set for each query. We showed to the subjects the transcript of the conversation

fragment ending with the query: “I need more information about X” with ‘X’ being one of

the acronyms considered here. This was followed by a control question about the content

of the conversation, and then by the list of 31 documents from the reference document set.

2The used version (Lucene 4.2.1 API) is in http://lucene.apache.org.
3Version dated 2009-06-16 is available in http://dumps.wikimedia.org.
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The subjects had to decide on the relevance value of each document by selecting one of the

three options among ‘irrelevant’, ‘somewhat relevant’ and ‘relevant’ (these will be noted in the

formulas below as A = {a0, a1, a2}).

We collected judgments for the 74 queries of our dataset from 10 subjects per query. The tasks

were crowdsourced via Amazon’s Mechanical Turk, each judgment becoming a “Human Intel-

ligence Task" (HIT). The average time spend per HIT was around 2 minutes. For qualification

control, we only accepted subjects with greater than 95% approval rate and with more than

1000 previously approved HITs, and we only kept answers from the subjects who answered

correctly the control questions. We applied furthermore a qualification control factor to the

human judgments, in order to reduce the impact of “undecided” cases, inferred from the

low agreement of the subjects. We computed the entropy of the judgment distribution Htj as

the measure of the uncertainty of subjects regarding the relevance of the document j to the

query and the conversation fragment t (similar to the approach described in Section 3.4.2 on

page 25) as follows:

Htj =− ∑
a∈A

stj(a) ln(stj(a))

ln |A| (7.4)

where stj(a) is the proportion in which the 10 subjects have selected each of the allowed

options a ∈ A for the document j and the conversation fragment t . Then, the relevance value

assigned to each option a was computed as s′tj(a) = stj(a) · (1−Htj), i.e. the raw score weighted

by the subjects’ uncertainty. These values are part of the distributed AREX dataset, along with

the queries and pointers to fragments of the AMI Corpus and to Wikipedia pages.

7.3.3 Evaluation Using Ground Truth

Using the ground truth relevance of each document in the reference set, weighted by the

subjects’ uncertainty, we will measure the MAP score at rank k ′ of a candidate document result

list. Then we will compare two lists of results using their corresponding MAP scores.

Scoring a List of Documents. We start by computing grtj, the global relevance value for the

conversation fragment t and the document j by giving a weight of 2 for each “relevant” answer

(a2) and 1 for each “somewhat relevant” answer (a1).

grtj =
s
′
tj(a1)+2s

′
tj(a2)

s
′
tj(a0)+ s

′
tj(a1)+2s

′
tj(a2)

(7.5)

Then we compute the MAP score at the rank k ′. The procedure starts by calculating AvePtO(k ′),

the Average Precision at the rank k ′ for the conversation fragment t and the candidate list of

results (output) of a system O, as follows:

AvePtO(k ′) =
k ′∑

i=1
PtO(i )4rtO(i ) (7.6)

86



7.4. Experimental Results

where PtO(i ) = ∑i
τ=1 grtltO(τ)/i is the precision at cut-off i in the list of results ltO, 4rtO(i ) =

grtltO(i)/
∑

j∈lt
grtj is the change in recall from the document in the rank i −1 to the rank i over

the list ltO, and lt is the reference set for fragment t .

Finally, we compute MAPO(k ′), the MAP score at rank k ′ for a system O by averaging the

Average Precision of all the queries at the rank k ′ as follows, where |T | is the number of queries

or fragments.

MAPO(k ′) =
|T |∑
t=1

AvePt ,O(k ′)
|T | (7.7)

Comparing two Lists of Documents. We compare two lists of documents obtained by two

systems O1 and O2 through the percentage of the relative MAP improvement at the rank k ′,
defined as follows:

%RSO1,O2 (k ′) = MAPO1 (k ′)−MAPO2 (k ′)
MAPO2 (k ′)

×100. (7.8)

This method emphasizes on the magnitude of the MAP score change at rank k ′ presented by

percentage value. It measures the difference between the MAP score obtained by the proposed

method O1 and that of the baseline method O2 normalized by the MAP score of the baseline

system O2. %RSO1,O2 is meaningful for non-zero denominators (i.e. MAPO2 (k ′) 6= 0).

7.4 Experimental Results

We defined in Section 7.2 three methods for expanding queries based on the values of γ in

Equation 7.3. The first method has γ=∞ and is therefore noted RQ(∞) – it only uses explicit

query keywords, with no refinement. The second one refines explicit queries using the method

of the Watson system (Budzik and Hammond, 2000), with γ= 0, hence noted RQ(0). The third

method has γ= 1 and is noted RQ(1) – this is the novel method proposed here, which expands

the query with keywords from the conversation fragment based on their topical similarity to

the query. Comparisons are performed over the human-made transcripts and the ASR output,

using as a test set the remaining 49 queries not used for development.

7.4.1 Variation of Fragment Length

We study first the effect of the length of the conversation fragment on the retrieval results of

the three methods, RQ(1), RQ(∞), and RQ(0). Keyword sets used for expansion are extracted

here from the manual transcript of the conversation fragments preceding each query, and

have a fixed-length per experiment. Although for the AREX dataset we considered 400-word

fragments when building the reference document set, we vary the length below between 100

and 500 words.
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The relative MAP scores of RQ(1) over RQ(∞) for different ranks k ′ from 1 to 4 are provided in

Figure 7.1, showing that although RQ(∞) is superior at k ′ = 1, RQ(1) surpasses it for ranks 2,

3 and 4. The improvement over RQ(∞) slightly decreases when increasing the length of the

conversation fragment, likely because of the topic drift in longer fragments. Indeed, when

increasing the fragment length, the proposed method RQ(1) behaves more similarly to RQ(∞)

by assigning small weight values (close to zero) to the candidate expansion keywords.
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Figure 7.1: Relative MAP scores of RQ(1) over RQ(∞) up to rank 4 obtained using manual
transcripts with fragment lengths of 100, 200, 300, 400 and 500 words. RQ(1) outperforms the
RQ(∞) methods, except at rank k ′ = 1.
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Figure 7.2: Relative MAP scores of RQ(1) over RQ(0) up to rank 2, obtained using manual
transcripts with fragment lengths of 100, 200, 300, 400 and 500 words. RQ(1) outperforms the
RQ(0) method.

The relative MAP scores of RQ(1) over RQ(0) are reported at ranks k ′ = 1 and k ′ = 2 in Figure 7.2.

We do not report values for higher ranks, because of the lack of enough judgments for the

retrieval results of RQ(0) among the reference set. The improvements over RQ(0) at rank k ′ = 1

are approximately the same for different fragment lengths. They, nevertheless, vary a lot with

the length of fragments when looking at rank k ′ = 2. The improvement is minimum at length

200 words, likely due to more relevant candidate expansion keywords at this length compared

to the others. As shown above, the average sum of the weights of the expansion keywords is
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maximized by our method, RQ(1), at length 200 words, so there are more keywords with topical

similarity value closer to 1, an exponent of 0 or 1 over them makes no significant change. The

improvement over RQ(0) is increased by decreasing or increasing the length from 200 words

at rank k ′ = 2. Probably because, the query topics are not completely covered, or the topics

are changed , when the length increased or decreased from 200 words respectively. Thus the

results show that RQ(1) is more robust to out-of-topic keywords than RQ(0).

7.4.2 Comparisons on Manual Transcripts

We now compare the proposed method RQ(1) with two methods, RQ(0) and RQ(∞) over the

manual transcripts of the 49 conversation fragments with 400 words length preceding each

query. We first provide the comparative relevance scores computed with the direct evaluation

of list of document results by humans as proposed in Chapter 3. We design the comparative

tasks as explained in Section 3.3. The subjects have to read the conversation transcript and the

corresponding explicit query, answer a control question about its content, and then decide

which of the two result lists (top 6 retrieved documents) contains more relevant documents,

with the following options: the first list is better than the second one; the second is better than

the first; both are equally relevant; or both are equally irrelevant.

Table 7.1: Comparative relevance scores at rank 6 of RQ(1) vs. RQ(0) (first line) and vs. RQ(∞)
(second line), obtained over manual transcripts. The values show RQ(1) surpasses the others.

Compared methods Relevance (%)
RQ(1) vs. RQ(∞) 58 vs. 42
RQ(1) vs. RQ(0) 59 vs. 41
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Figure 7.3: Relative MAP scores of RQ(1) over the two methods RQ(∞) and RQ(0) up to rank 8,
obtained over the manual transcript of the 49 fragments with 400 words from the AMI Corpus.
RQ(1) surpasses both methods for ranks 2 to 8.

For these experiments, we recruited 10 human subjects via Amazon’s Mechanical Turk crowd-

sourcing platform to perform each HIT, i.e. perform binary comparisons between the lists
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of top six documents generated by two pairs of systems. The scores obtained manually by

this comparison method are shown in Table 7.1. The results confirm the superiority of RQ(1)

compared to the other two methods.

Then we compare the methods using the AREX dataset, for ranks k ′ from k ′ = 1 to k ′ = 8. The

improvements obtained by RQ(1) over the two others are represented in Figure 7.3 (the results

for 400 words from Figures 7.1 and 7.2 are reused in this figure).

The relative MAP scores of RQ(1) over RQ(∞), except at rank k ′ = 1, demonstrate the significant

superiority of RQ(1) over RQ(∞) (between 7% to 11%) up to rank k ′ = 6 on average. There are

also on average small improvements around 2% over RQ(∞) at ranks k ′ = 7 and 8, because of

retrieving the documents which are relevant to both the queries and the fragments by RQ(∞)

(which does not disambiguate the query) at ranks k ′ = 1,7 and 8.

The relative MAP scores of RQ(1) over RQ(0) show significant improvements of more than 15%

for ranks k ′ = 1 and k ′ = 2. Although the improvements decrease from rank 2, they remain

considerably high at around 7%.

7.4.3 Comparisons on ASR Transcripts

We compare RQ(1) with RQ(∞) and RQ(0) over the ASR transcripts of the conversations, in

order to consider the effect of ASR noise on the retrieval results of the expanded queries.

We experiment with real ASR transcripts with an average word error rate of 36% and with

simulated ones with a noise level varying from 10% to 30%, as explained above, at the end of

Section 7.3.1. We compute the average of the scores over five repetitions of the experiment

with simulated ASR transcripts, which are randomly generated, and we provide below the

relative MAP scores of RQ(1) over RQ(∞) up to rank 3, and over RQ(0) up to rank 2. Moreover,

upon manual inspection, we found that there are many relevant documents retrieved in the

presence of ASR noise, which have no judgment in the AREX dataset, because they do not

overlap with the 31 documents obtained by pooling four methods.

First we compare the two contextual expansion methods, RQ(0) and RQ(1), in terms of the

proportion of noisy keywords that each method added to the refined queries. This proportion

is computed by summing up the weight value of the keywords used for query refinement that

are in fact ASR errors (their set is noted EC ), normalized by the sum of the weight value of all

keywords used for the refinement of a query, as follows:

pn =
∑

ci∈(C∩EC ) weγci∑
ci∈C weγci

×100% (7.9)

We average these values over the 49 explicit queries and the five experimental runs with

different random ASR errors. The results shown in Table 7.2 reveal that the proposed method,

RQ(1), is more robust to the ASR noise than RQ(0). We also represent the relative scores of RQ(1)

over RQ(0) in Figure 7.4. The improvement over RQ(0) increases when the percentage of noise
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added to the fragments increases, and shows that our method exceeds RQ(0) considerably.

Table 7.2: Effect of ASR noise on the two query refinement methods RQ(1) and RQ(0) over the
49 explicit queries from our dataset, for a noise level varying from 10% to 30%. RQ(1) is clearly
more robust to noise than RQ(0).

Average Percentage of the ASR noise added to queries (%)
ASR noise 10% 20% 30%

RQ(1) 0.78 1.30 2.27
RQ(0) 5.64 12.07 21.07
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Figure 7.4: Relative MAP scores of RQ(1) vs. RQ(0) up to rank 2 obtained over the real and
simulated ASR transcripts of the AMI Meeting Corpus. The results show the superiority of
RQ(1) over RQ(0).
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Figure 7.5: Relative MAP scores of RQ(1) vs. RQ(∞) up to rank 3 obtained over the real and
simulated ASR transcripts of the AMI Meeting Corpus. The results show that RQ(1) outperforms
the RQ(∞) method.
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Moreover, we compare the retrieval results of RQ(1) and RQ(∞) (which does not consider

context) in noisy conditions, in Figure 7.5. Although the improvement over RQ(∞) slightly

decreases with the noise level, RQ(1) still outperforms RQ(∞) in terms of relevance, and is

generally more robust to ASR noise.

7.4.4 Examples of Expanded Queries and Retrieval Results

To illustrate how RQ(1) surpasses the other techniques, we consider an example from one

of the queries of our dataset, using the ASR transcript of the conversation fragment given

in Figure 7.6.The query is: “I need more information about LCD”, in other words, it bears

on the acronym “LCD”. The list of keywords extracted for this fragment is the following one:

C = {‘interface’, ‘design’, ‘decision’, ‘recap’, ‘user’, ‘control’, ‘final’, ‘remote’, ‘discuss’, ‘sleek’,

‘snowman’}. Among these keywords, three of them (‘recap’, ‘sleek’, and ‘snowman’) correspond

in fact to ASR noise.

A: Okay well All sacked Right Oh i see a kind of detailed design meeting Um We’re gonna discuss
the the look-and-feel design user interface design and We’re gonna evaluate the product And
For The end result of this meeting has to be a decision on the details of this remote control like
a sleek final decision Uh-huh Um i’m then i’m gonna have to specify the final design In the
final report.
B: Yeah So um just from from last time To recap So we’re gonna have a snowman shaped
remote control with no LCD display new need for tap bracket so if you’re gonna be kinetic
power and battery Uh with rubber buttons maybe park lighting the buttons with um Internal
LEDs to shine through the casing Um hopefully a job down and incorporating the slogan
somewhere as well I think i missed Okey Um so Uhuh If you want to present your prototype
Go ahead.
QUERY: I need more information about LCD.

Figure 7.6: A 150-word conversation fragment from the ASR transcripts of the AMI Meeting
Corpus (segmented by the ASR into utterances) about designing a remote control. A query is
inserted at the end of the fragment for the AREX dataset.

In this example, the proposed method, RQ(1), assigns a weight of zero to keywords from ASR

noise and to those unrelated to the conversation topics. Its corresponding expanded query is:

RQ(1) = {(lcd,1.0), (control,0.7), (remote,0.4), (design,0.1), (interface,0.1), (user,0.1)}.

RQ(0) assigns a weight 1 to each keyword of the list C and uses all of them for expansion,

regardless of their importance to the query. Therefore, the expanded query contains many

more irrelevant words than the query for RQ(1). Finally, RQ(∞) does not expand the query so

it considers only ‘lcd’.

The retrieval results up to rank 8 obtained for the three methods are displayed in Table 7.3. All

the results of RQ(1) are related to ‘liquid-crystal display’, which is the correct interpretation of

the query, while RQ(∞) provides three irrelevant documents: ‘lowest common denominator’

(a mathematical function), ‘LCD Soundsystem’ (an American dance band), and ‘Pakalitha
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Table 7.3: Examples of retrieved Wikipedia pages (ranked lists) for a query on “LCD” using the
three methods, with the conversational context shown in Figure 7.6. Results of RQ(1) are more
relevant both to the query and to the conversation topics.

RQ(1)RQ(1)RQ(1) RQ(∞)RQ(∞)RQ(∞) RQ(0)RQ(0)RQ(0)
Liquid-crystal display Liquid-crystal display User interface
Backlight Backlight X Window System
Liquid-crystal display Liquid-crystal display Usability
television television
Thin-film transistor Lowest common denominator Wii Remote
LCD projector LCD Soundsystem Walkman
LG Display LCD projector Information hiding
LCD shutter glasses Pakalitha Mosisili Screensaver
Universal remote LG Display Apple IIc

Mosisili’ (a politician at Lesotho Congress for Democracy). None of the results provided by

RQ(0) addresses ‘liquid-crystal display’ directly, due to irrelevant keywords added to the query

from topics of conversation unrelated to the query or from ASR noise.

7.5 Conclusion

In this chapter, we proposed a query refinement technique which is applicable to explicit

queries asked during a conversation. The method expanded queries based on the context

of the conversation. We experimentally showed that the best method for contextual query

refinement appears to be the proposed method RQ(1) over both manual and ASR transcripts.

Although, RQ(∞) outperforms RQ(1) at rank k ′ = 1, the scores of RQ(1) show a significant

improvement up to rank 8 over manual transcripts and up to rank 3 over ASR ones. Moreover,

RQ(1) outperforms RQ(0) on both manually-made transcripts up to rank 8 and ASR transcripts

up to rank 2. The scores also demonstrate that the proposed method RQ(1) is robust to various

ASR noise levels and to the length of the conversation fragment used for expansion.

In addition, we built the AREX dataset accompanying these experiments which includes

explicit queries added to the AMI Meeting Corpus with relevance judgments for the documents

retrieved for these queries. The dataset can be used for future comparisons of conversational

query-based retrieval systems.
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8 System Integration and Scenario for
User-based Evaluation

In this chapter, we present the implementation of the document recommender system based

on the ideas proposed in Chapters 4, 5 and 6. We first describe the system architecture

in Section 8.1 and state the programming techniques used for the implementation of the

different modules of the system. In Section 8.2, we define a subjective evaluation task which

we designed to measure the usability of the system. Finally, we present in Section 8.3 a pilot

experiment that we ran to verify that the implemented system and the defined task appear to

be suitable for user-centric evaluation. However, full-fledged user experiments are beyond the

scope of the thesis, as we discuss in the final section of the chapter.

8.1 Overall Architecture

The document recommender system for conversations is made of several components that

interact through a central module called the Connector Module (CM). The main components

are the Speech-to-Text Module (ST), the Query Processor Module (PM), and the User Interface

Module (UI). There are as many instances of the UI as participants to the conversation, so

that each user can consult the recommendations on their own laptop. The architecture of the

system that was implemented is represented in Figure 8.1. We present the modules in more

detail below.

Connector Module (CM). The CM reads the file contains the transcript of users’ conversation

(obtained by the ST module described below) every minute, and sends it to Query Processor

Module (PM). Once the execution of the PM is finished, the CM calls the UI to read the results

of PM from files and then present them to users. CM also keeps track of all the previous

conversation fragments and their results, so that users can go back in time and consult earlier

results (possibly even after the end of the meeting).

Speech-to-Text Module (ST). The ST module provides the transcript of users’ conversation as

a text file. This module contains two components work sequentially: the SDK of the Microcone

device, and the Automatic Speech Recognition (ASR) system. The speech signal is captured
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Figure 8.1: Architecture of the document recommender system.

using a Microcone device, i.e. a microphone array with seven microphones (McCowan, 2012)1.

It can capture and enhance speech signal using beamforming, and identify the direction of

the speaker, which is mainly useful for recording meetings. The audio signals enhanced by the

SDK of the Microcone device are sent to a real-time ASR system designed for meetings (Garner

et al., 2009). The system processes the speech signal in batches using an integrated speech

segmenter which relies on silences or minimal of the speech signal. The output of the ASR

system is simply written to a file, which is read by the Connector Module and sent to the

Processor Module.

Query Processor Module (PM). The PM receives the transcript of users’ conversation at regu-

lar time intervals from the CM. The PM first extracts keywords from this transcript using the

diverse keyword extraction technique proposed in Chapter 4, and writes this list of keywords

to a file. Then it prepares implicit queries based on the approach proposed in Chapter 5 and

submits each implicit query to the Lucene search engine over the English Wikipedia pages.

The PM stores queries along with their weights and their retrieval results in another set of files.

Finally, the PM merges the document results based on the method introduced in Chapter 6,

and writes the final list to a file, which is used by the instances of the User Interface. The

source code of the module is available at https://github.com/idiap/DocRec.

User Interface Module (UI). The UI is run on each participant’s laptop, and communicates

with the CM via the network. Thus, several instances of the UI can be created, so that each

user in a meeting can have their own UI displayed on their laptop, and consult the recommen-

1See www.dev-audio.com. This product was developed from original Idiap research in the IM2 NCCR.
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dations as they see fit. A snapshot of the UI within a meeting is depicted in Figure 8.2. Each UI

displays the ASR transcript of the conversation fragment (to increase the understandability

of results) as well as the extracted keywords, highlighted in green. Mainly, the list of recom-

mended documents is displayed below the fragment, with hyperlinks to the full documents

(Wikipedia pages) which can be opened in a browser by clicking on the link. Moreover, the first

sentence of each document is displayed, marked with the keywords found in the transcript.

When the user hovers the mouse over the link to the document, the UI shows the keywords

relevant to each document in the transcript, highlighted in cyan. The UI allows users to

launch or stop the recommendations, and to move forward or backward through the results

by pressing specific buttons: the single arrows on the left and right sides allow respectively

to move one conversation fragment backward or forward in time, while the left/right double

arrows move to the beginning of the meeting, and, respectively, the “present” (latest fragment).

Figure 8.2: Snapshot of the user interface of the document recommender system, as seen by
each user on their laptop. The transcript of the current fragment is at the top, and the list of
recommended Wikipedia pages at the bottom. Here, the mouse was hovered over the link to
the recommended document “Compass”, and as a result the system highlighted the words of
the query that the system built for retrieving this document (cyan color).

Implementation. The CM and the UI modules are implemented on the Java language. How-

ever, based on the algorithms presented in previous chapters, the PM module is written in the

Matlab language. To run all the modules together, we first prepared an executable file from

the Matlab code of the PM, and then called this file from Java by designing a shell script. The

output of each component is stored in a shared repository, which is made accessible using a

URL address over our local computer network. Each instance of the UI module obtains all the

necessary information to display from this repository found at the above URL. Thus, each user

can run an instance of UI (also written in Java) on their own laptop, to use the results of the
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system, on condition that their laptop is connected to the local network.

8.2 Task Definition

The four participants are seated at a square table, as shown in Figure 8.3. The Microcone is

placed in the middle of the table to capture users’ voices, and is connected via USB to the

main workstation running the CM, ST, and PM modules. Each participant is connected via the

network to the recommender system, running the User Interface module on his/her personal

laptop and receiving the recommendations.

Evaluating the document recommender system has major challenges because several factors

need to be separated: quality and timeliness of recommendations, usability of the graphical

user interface, utility of the recommendations with respect to the participants’ task. Therefore,

the evaluation will require a large number of subjects and conditions to separate all these

factors. Here, we propose a simple scenario that could be used in such a set of tests.

Figure 8.3: Setting of the pilot experiment. Four participants, each with their individual laptop
running an instance of the UI, participate in a brainstorming meeting. The Microcone is
visible at the center of the table, and the screen of the master workstation (running the CM, ST
and PM modules) is partially visible in the lower right corner.

We consider teams of four people, as in the scenario of the AMI Meeting Corpus (Carletta,

2007). Each team is required to organize four lectures introducing scientific topics, for children

aged 12–14, at a school festival. The team is given four one-hour slots. In each slot, one of the

participants will present (using slides) some of the most attractive topics and innovations of a

science. The group is asked to decide on the four scientific branches that they will present,

and for each of them write down the title of the lecture and 3-4 bullet points indicating the

main ideas they will present in the lecture. Each of the participants will be responsible for one

lecture, but the contents should be decided jointly. For example, one would like to present

some advances of “Physics”, and therefore he/she could choose to talk about “nuclear energy”,

“solar system”, “lasers and optic fibers” or “gravity law”. Before actually holding the meeting

with this task, we sent the following instructions by email to participants.
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Figure 8.4: Images designating scientific branches, from a website with scientific topics for
children (www.sciencekids.co.nz/topics.html). Each participant to the meeting was given a
printed version to serve as initial inspiration for the task.

At the meeting, each participant is given two sheets. One is the instruction of the task, following

the description above set in more concrete terms. The other one includes a set of images

indicating several scientific branches, shown in Figure 8.4, as an inspiration for selection of

one of the scientific branches.

At the end of the meeting, the participants are asked to fill in the evaluation questionnaire

shown in Figure 8.5. The first ten questions of the questionnaire are intended to measure

the usability of the system, and they were reproduced from Brooke (1996), who used them to

evaluate helper applications for people with brain injury. The scores can be integrated and

assessed using the well-known System Usability Scale (SUS). We added three more questions

to measure the usefulness of the recommendations as well.

Regarding the first ten questions, we can extract from them a unique score demonstrating

the percentage of the usability of our system. To calculate the unique score, we sum over the

score contributions of ten questions. To compute the score contribution of each question,

first the answers are quantified by assigning a numeric value to each answer based on their

position ranging from 0 (strongly disagree) to 4 (strongly agree). For questions 1,3,5,7,and 9

the score contribution is the value of the position minus one. For questions 2,4,6,8 and 10, the

contribution is five minus the value of the position. Then the sum of the scores is multiplied

by 2.5 to obtain the overall percentage value of the system usability (Brooke, 1996).

Regarding question 11, we can simply report the average number of the clicked documents

by participants. For questions 12 and 13, the numeric value of each answer is based on its

position (0: high, 3: low). The contribution of question 12 is five minus the value of the
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Questionnaire for measuring the usability of the recommender system 
 

Name:…………………………… 
 
               Strongly  Disagree  Neutral    Agree   Strongly  
                 disagree    agree 
 
1. I think that I would like to use this system 
frequently  
     
     

2. I found the system unnecessarily complex 
 
 
 

3. I thought the system was easy to use 
                           
 
4. I think that I would need the support of a 
technical person to be able to use this system 
 
 
5. I found the various functions in this system 
were well integrated 
     
 

6. I thought there was too much inconsistency in 
this system 
 
     

7. I would imagine that most people would learn 
to use this system very quickly  
  
8. I found the system very cumbersome to use 
    
 
9. I felt very confident using the system 
  
 
 

10. I needed to learn a lot of things before I 
could get going with this system   
 
 
11. How many times did you click on the system's suggestions? (Please count the  
number of open tabs in your browser.) 
 
12. How useful were the Wikipedia pages that you opened? 
 

 Most of them were useful 
 Some were and some weren't, but more were useful 
 Some were and some weren't, but more were useless 
 Most of them were useless 
 
13. How many of the bullet points selected for your talks are directly inspired from the 
system's suggestions? 
 

 Almost none 
 About one or two per lecture 
 About half 
 All most all 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5  

Figure 8.5: Evaluation questionnaire for the pilot experiment. The first part (questions 1–10)
is the system usability scale, and is inspired from the one used by Brooke (1996), while the
second part (questions 11–13) measures the utility of the document recommendations.
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position, and that of question 13 is the value of the position plus two. The sum of the scores is

multiplied by 10 to obtain again a percentage value of the utility of recommendations.

8.3 Observations from a Pilot Experiment

We performed a pilot experiment using four participants using the implemented system

according to the above scenario. The main goal was to test that the proposed setting was

functional and ready for large user study, which is beyond the scope of this thesis.

In the pilot experiment, the four users spent the first 20 minutes to determine the scientific

branch about which each of them preferred to talk. Then, for each participant, 10 minutes

were spent to discuss about the title of his/her lecture and 3–4 main topics of the lecture. The

title of the lectures along with the main topics are shown in Table 8.1 for four participants.

According to our observations about one third of the topics were obtained from the Wikipedia

pages suggested by our system.

Table 8.1: Titles and contents of the talks designed during the pilot experiment by the four
participants, using suggestions from our document recommender system.

Participant ID Title of the lecture Main topics chosen
(Scientific branch)

1-Different branches of medicine study
A “What doctors study to different parts of the body

(Medicine) make you be healthy” 2-How vaccines work: weakened bacteria
3-X-ray / medical imaging
1-Classical mechanics (object movement)

B “Principles of 2-Solar system
(Physics) Physics” 3-Electricity

4-Electromagnetism
C “How the math appear 1-Logic rules

(Math) in our daily life?” 2-Probability rules
3-Mathematical thinking

D “Planting more trees for 1-Climate harmonization
(Nature) making a greener planet” 2-Preventing the global warming

3-Protection from natural disasters

The sample scores of system usability and recommendation utility obtained in this pilot

experiment are shown in Table 8.2 for each participant. The average system usability and rec-

ommendation usability values over four participants are 65.6 and 77.5 respectively. Moreover,

the average number of recommended Wikipedia pages that people opened in their browsers

(number of open tabs at the end of the experiment) was 10 documents per participant. Of

course, these are scores obtained through a single experiment, and serve to show how the

evaluation settings and metrics can be used. To be interpretable, such numbers should be ob-
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tained from a large number of groups, which should compare, if possible, several experimental

conditions.

Table 8.2: System usability and recommendation utility scores computed from questionnaires
filled in by each participant, noted A through D. These are only sample scores, obtained from
the pilot experiment, and serve to test the evaluation framework rather than provide reliable
evaluation results.

Participant System Recommendation
ID usability score usability score
A 65 90
B 57.5 80
C 72.5 70
D 67.5 70

8.4 Discussion

In this chapter, we implemented the ideas proposed in this thesis to generate relevant and

diverse suggestions within a document recommender system for conversations. Moreover, we

designed a new user interface to show the results along with some indications about why they

are recommended through the highlighting of shared keywords.

We conducted a pilot experiment by defining a brainstorming scenario and setting up a

meeting, in which four people decide on the title and main topics of their lectures about

science to an audience of children. We proposed a way to measure the system’s usability and

the utility of recommendations, using questionnaires filled after the meeting.

In this chapter, we performed only a pilot evaluation, because a large-scale evaluation of the

system needs a large pool of teams, which make the process of online evaluation difficult in

terms of money and time required (Post et al., 2007). Moreover, such evaluations are often

adapted to the comparison of two conditions, and do not produce absolute results about a

system’s quality. In fact, user-oriented design and evaluation of meeting support technology

were intended as large topics of research in the IM2 NCCR and the AMI/AMIDA EU projects.

The synthesis books published after the end of these projects (Renals et al., 2012; Bourlard

and Popescu-Belis, 2013) show the difficulties of such evaluations and the need for more

standardized evaluation methods and tasks.
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In this thesis, we have defined a set of novel methods to improve the relevance and the

diversity of documents suggested or retrieved by a just-in-time retrieval system designed

for conversational environments. We have addressed the issue of maximizing the coverage

of users’ information needs in the presence of the potential multiplicity of topics and ASR

noise within lists of document results. Moreover, we have aimed at generating concise list

of documents instead of a long one, which needs more inspection from users, and also have

minimized the interaction of users with the system to avoid distracting users from the main

topics of their discussion, which is one of the main goals of such systems. To conclude, we

summarize the main contributions of our thesis, and provide the future perspectives arising

from these findings.

9.1 Summary of Contributions

We have presented a set of techniques to improve the relevance and diversity of the documents

provided by a document recommender system during a meeting or a conversation. The

system helps users to find relevant documents when they are reluctant to do a search during

their conversation, by recommending a list of documents which are relevant to the topics of

their conversation. Moreover, the system can automatically provide clarifications during the

discussion in response to explicit queries, by disambiguating them using the conversational

context.

First, we proposed an offline evaluation method based on crowdsourcing to compare the

methods proposed in this thesis with state-of-the-art ones in Chapter 3. The evaluation

method is affordable, as it does not need setting up a long series of meetings. To increase

the reliability of the comparative scores obtained from crowdsourcing the task, we proposed

a qualification control method. The method was applied both to individual judgments, to

reduce the effect of those which disagree with the majority vote, and to entire tasks, to reduce

the impact of undecided ones on the global scores. We concluded that the average of crowds’

judgments which are passed through this qualification control filter is more robust to different
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designs of the task compared to other options. Moreover, the method does not need any prior

knowledge to compute scores.

Using this evaluation method, we first compared several initial versions of the just-in-time

retrieval framework which existed before this thesis in Chapter 3. We showed that submit-

ting implicit queries made from dictionary-based keywords instead of the entire words of a

fragment to a search engine provides documents which are more relevant to the content of

the conversation. We also retrieved documents that answer queries explicitly asked by users.

We compared the documents retrieved for these queries with those obtained by just-in-time

retrieval from the conversation fragment preceding the query. The results demonstrated that

the just-in-time retrieval system cannot be as accurate as the documents answering explicit

queries. Therefore, we answered explicit queries using a separate module in addition to the

part that provides recommendations based on the system’s implicit queries.

As the queries prepared from keywords extracted from the conversation fragment lead to

more relevant results than those made from the entire text, we developed a diverse keyword

extraction method to represent users’ information needs using a set of keywords extracted at

regular time intervals from the ASR transcript of their conversation. The method maximizes

the coverage of topics conveyed in the conversation fragment while minimizing the effect of

ASR noise on the keyword set. We have first measured the topical diversity and relevance of

keywords to the transcript of a conversation fragment in Chapter 4. We performed binary

comparisons between the proposed method and several baselines based on word and topic

frequency using the proposed evaluation method. To demonstrate the generality of our

keyword extraction technique in terms of the level of representativeness of keywords, we

performed our experiments over the manual and ASR transcripts of the AMI Meeting Corpus,

in addition to the fragments that were artificially constructed as multi-topic from the Fisher

Corpus. The results show the superiority of the proposed method compared to the baselines

in terms of the representativeness of keyword sets, topical diversity with the highest α-NDCG

value and additionally less number of words from ASR noise. As a secondary application, we

utilized these keywords to represent the content of videos in a video recommendation setting.

We then compared the proposed diverse keyword extraction method with the baselines in

terms of the documents that were retrieved when submitting the keyword sets as queries to

a search engine in Chapter 5. We performed our comparisons (using again crowdsourcing)

over the ELEA conversational corpus, due to its natural diversity in the conversations and

the existence of Wikipedia articles relevant to the topics that are discussed. The results again

showed that the documents retrieved for the keyword sets extracted by our method surpasses

those from other methods.

Furthermore, we presented several policies for constructing implicit queries from the keyword

sets extracted from conversation fragments. We prepared two types of queries for each con-

versation fragment, single queries vs. multiple queries. A single query is made of the entire

keyword set, and carries various topics, while multiple queries are obtained by clustering the

104



9.2. Future Directions

keyword set into topically separated subsets, each containing one main topic of the fragment.

We compared these policies in terms of the relevance of the recommended documents to

the content of a conversation again using the ELEA Corpus and the comparison method

we proposed. The scores confirmed that the document results from multiple queries were

preferable in comparison to those of single queries.

This achievement along with the goal of displaying a short list of recommended documents to

the users compelled us to propose a diverse merging method to combine the lists of documents

retrieved for multiple implicit queries in Chapter 6. The proposed method generates one

concise and diverse list of documents for each fragment. The list is built by merging documents

from the document lists retrieved for each implicit query, with the goal of maximizing the

selection of documents from all the result lists while considering the significance of each

query in terms of their relevance to the corresponding conversation fragment. The evaluation

has been performed over the manual transcripts of the ELEA Corpus using our evaluation

method. The results confirmed the superiority of preparing multiple queries instead of a

single query for each conversation fragment, by showing that the diverse re-ranking methods

do not improve the retrieval results of single queries. Moreover, the scores pointed out the

superiority of the proposed diverse merging method compared to existing merging methods,

including one used by another just-in-time retrieval system.

To address the need for a separate module that answers users’ explicit spoken queries, without

interrupting them for clarifications, we introduced a query refinement method which expands

queries using the content of users’ conversation in Chapter 7. The method represents the con-

tent using the keywords extracted from the conversation fragment preceding the query using

the diverse keyword extraction method, selected for its representativeness and robustness to

ASR noise. To evaluate our method, we built the AREX dataset which contains explicit queries

added at different locations in the AMI Meeting Corpus, along with relevance judgments

for a pool of documents allowing to compute MAP scores (in a modified way that supports

non-binary judgments). The scores on both manual and ASR conversation fragments indicate

the superiority of our query expansion method.

9.2 Future Directions

Future directions of research can extend the methods proposed in this thesis in several direc-

tions: using novel word representation methods, employing emotional information to detect

when to interrupt users for recommendation, designing new user interfaces to improve the

system’s usability, and performing end-to-end evaluation of the system in context.

To improve the performance of the methods proposed in Chapters 4, 6, and 7, instead of using

the LDA topic model with the bag-of-words assumption, our proposal can be extended with

methods which include syntactic or hierarchical information to represent each fragment or a

word within the fragment, in addition to semantic information. For instance, our proposal

could be combined with methods that represent words by considering both short-range syn-
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tactic dependencies and long-range semantic dependencies, such as topical n-grams (Wang

et al., 2007b) or paragraph vector representation (Le and Mikolov, 2014).

To reduce the effect of ASR noise, the users’ information needs could be extracted directly

from their speech signal or the ASR lattice, instead of the ASR transcript containing the first

hypothesis of the ASR lattice. The implicit queries can be expanded with similar words instead

of only using the words from users’ conversation, taking advantage of the numerous existing

techniques for word similarity (Yazdani and Popescu-Belis, 2013). Considering the order of

the words in implicit queries instead of using them as the bag of words also has the potential

to improve the retrieval results.

Quite naturally, the diverse merging method proposed in Chapter 6 can be applied to other

settings as well. One interesting application is the diverse ranking of the results of an ambigu-

ous query. Current diverse retrieval methods re-rank the first N documents retrieved for an

ambiguous query. However, the first N document results may not cover all the aspects of the

ambiguous query. One solution is to prepare several queries for each ambiguous query, each

one addressing a single aspect of the query, which are obtained by expanding the ambiguous

query based the corresponding aspect. Then diverse merging method can be applied so that

in the final list of documents, the coverage of all the aspects of the query is maximized.

One of the important issues for a document recommender system is to determine the appro-

priate timing of the recommendations. In this thesis, we recommended documents every

two minutes, at the end of an ongoing speaker turn, and considered as input all the words

uttered during this time. A segment size of two minutes enabled us to collect an appropriate

number of words (neither too small nor too large) in order to extract keywords, model the

topics, and formulate implicit queries. Although it is possible to use verbal information to

detect topic changes and perform online segmentation (Mohri et al., 2010), topic changes are

not necessarily appropriate moments to make recommendations, because it would be useless

to recommend documents about a topic that the users no longer discuss (Jones and Brown,

2004). Rather, it should be possible to analyze non-verbal information to detect emotional

changes and recommend the results only after detecting specific emotions like “unconvinc-

ing”, “confusing”, “informativeness” and so on. Using verbal and non-verbal features within a

cognitively-grounded model of “interruptibility” is a promising future research direction.

Furthermore, it is essential to adjust the number of documents recommended for every frag-

ment. In this thesis, we performed our experiments over the first five or six top results to cover

on average all implicit queries of a fragment within the list of documents. However, we have

not considered the level of users’ interest, to avoid annoying them with too many documents.

Again, emotional analysis could serve here to adjust the number of recommendations based

on the level of user “interest” in the discussion.

We believe that users do not wish to be overloaded with demands for clarification regarding

their explicit queries. Thus, another future direction could be dynamic recognition of the

situations in which it is necessary to ask users for further clarification instead of automatically
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inferring it from the context of users conversation. For instance, this is certainly needed when

the query is truly ambiguous and the system could not properly disambiguate it from the

users’ conversation, as we have shown, in the presence of a high level of ASR noise (in that

case, the MAP score over the results of the proposed query refinement method were very close

to those of the non-refined method).

Besides, it should be possible to significantly assist users with moving through the previous

fragments and their corresponding recommended documents faster and easier, for instance by

using the navigation graph previously defined for the MUST-VIS lecture recommender system

(Bhatt et al., 2013). Fragments of conversation and recommended documents would occupy

the nodes of such a graph. Each fragment would be connected to other fragments and to the

corresponding recommended documents using the edges of the graph. The explanations could

appear as labels assigned to both nodes and edges, containing the summary of a fragment or

a retrieved document, e.g. using a keyword cloud representation. The link from each fragment

to a recommended document could moreover be labeled with the keywords of the implicit

query for which they were retrieved. The evaluation of such a system would follow the path

sketched in our last chapter.

The usability and the utility of the system should be measured with user-oriented experiments,

having groups of subjects comparing the two systems: the system providing explanations

using a navigation graph vs. the one not using it. The task which will be likely used can

be a brainstorming meeting, e.g. for design or planning – a context in which document

recommendations are particularly useful.
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A Machine Translation Using Contextual
Information

In this appendix, we will show that the diverse keyword extraction method proposed in

Chapter 4 can be used for a different application than just-in-time retrieval. Indeed, the

keywords can be used to improve the results of sentence-level machine translation (MT)

by adding them as a representation of a sentence’s context. In this case, the keywords are

extracted from sentences that are adjacent to the source sentence in a text.

We propose to re-rank the N-best sentences in the target language obtained by the Moses

statistical MT system based on their topical similarity to the source sentence augmented with

the keywords. We compare our method with the baselines using a subjective evaluation. The

results show a small improvement brought by our method, under certain conditions.

A.1 Introduction

One of the most popular approaches to MT is statistical MT, which learns the translation

models from parallel corpora aligned at the sentence level, and translates the source sentences

by the most probable target sentences obtained by these models. However, this approach

ignores the document level information to select the best translation candidate. Several studies

employ the document-level information to improve translation, either through monolingual

topic models using a corpus in the source language, or through multilingual topic models

using parallel document pairs.

However, because of the lack of enough parallel corpora at document level, the researchers

mostly focused on capturing multilingual topics from comparable corpora at document level,

which are more available. Nevertheless, the topic models extracted from comparable corpora

are generally used to rank the potential translations of a word in context, instead of being used

for translation at the sentence level, because they do not have the syntactic or grammatical

information to translate sentences. In previous studies, the N-best results of a phrase-based

statistical machine translation (SMT) system have been re-ranked using multilingual topical

information. The candidate target sentences were re-scored based on the topical similarity
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defined among the topics of a target sentence and the entire source document (Tam et al.,

2007). However, the weakness of this method is that there are many sentences in a document

whose topics may be different from those of the entire document.

In the method presented here, we aim to utilize the information obtained by a phrase-based

SMT system using parallel corpora at the sentence level, and in addition the contextual

information obtained by bilingual topic models inferred from comparable corpora at the

document level. Specifically, we expect to improve the quality of translations in the case of

ambiguous words with various meanings.

In our model, we will first disambiguate source sentences by augmenting them with a set

of keywords as the representatives of their local context. Each representative keyword is

weighted based on its topical similarity to the source sentence. Then we re-rank the target

sentences obtained by the Moses SMT system for each source sentence based on their topical

similarity to the augmented source sentence. Topics are modeled using the polylingual topic

model (Mimno et al., 2009) which is an extension of the Latent Dirichlet allocation method

(LDA) for multilingual settings.

This appendix is structured as follows. In Section A.2, related work is reviewed, especially

previous studies on multilingual topic models. In Section A.3, we describe our proposal for

re-ranking translation candidates by employing the local context of a sentence in a document,

represented through keywords. Section A.3.4 describes the data and evaluation method,

followed by Section A.4 which presents the experimental results and their analysis.

A.2 Related Work

The phrase-based statistical machine translation approach provides state-of-the-art results.

Phrase probabilities measure the co-occurrence frequency of a phrase pair, and are estimated

from parallel corpora aligned at the phrase level (Zens et al., 2002; Koehn et al., 2003). However,

this approach does not capture document-level constraints on the meaning and the relation

of the words and phrases.

Several studies circumvent this deficiency by representing words or phrases using monolingual

topic models (Su et al., 2012) or multilingual topic models obtained from parallel corpora

aligned at document level (Zhao and Xing, 2008; Tam et al., 2007). Xiao et al. (2012) suppose

that all the sentences in a document share the same topic with their document. Although this

is true for many sentences, Xiong and Zhang (2013) have found that around 40% of sentences

have topics different from those of their document obtained by experimenting over NIST

MT03/05 datasets, and thus replaced the document topics with the topics of neighboring

sentences. However, because of a relative insufficiency of parallel corpora for several language

pairs and different domains, other approaches which depend on comparable corpora have

obtained much interest.
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To this end, multilingual topic models are inferred using comparable corpora aligned at

document level (Ni et al., 2009; Mimno et al., 2009), but they were mostly utilized to identify

the potential translations of a word in a document, instead of translating the entire sentence

including the word, because the phrase-level information was not embedded in them. For

instance, Vulić et al. (2011) ranked the potential word candidates in the target language based

on the topical similarity between words in the source and target language. In further studies,

Vulić and Moens augmented each word using the semantic information from the entire words

of source and target vocabulary(Vulić and Moens, 2013a), or the contextual information

defined by the co-occurrence words in a predefined context window (Vulić and Moens, 2013b),

and then measured the similarity of words based on these semantic or contextual information.

However, the state-of-the-art MT systems (phrase-based SMT such as Moses) translate sen-

tences by using sequences of phrases, instead of translating word by word. Therefore, Gong

et al. (2011) re-ranked the N-best target candidate sentences obtained by a phrase-based

SMT by scoring them based on the topical similarity of them with those of the entire source

document. The topics were defined by a multilingual topic model as the extension of latent

semantic analysis topic model (LSA) for multilingual applications (Tam et al., 2007). Never-

theless, there are sentences in a document, the topics of which are different from those of

the entire document (Xiong and Zhang, 2013). To overcome this problem with the use of

comparable corpora aligned at document level for the translation of sentences, in this chapter,

we re-rank the N-best target candidate sentences based on their topical similarity with the

augmented source sentences that are obtained by adding topically-relevant keywords from

the source document. Moreover, each keyword is also weighted based on its topical similarity

to the source sentence.

A.3 A Model for Sentence-Level Content-based Translation Using

Comparable Corpora

The proposed MT system re-ranks the N-best translation candidates in the target language

for each source sentence. The N-best candidates are obtained from a phrase-based baseline

system (Moses) as described in Subsection A.3.1. We first represent words in both source and

target languages using topical information obtained by a polylingual topic model (Mimno

et al., 2009) as explained in Subsection A.3.2. The procedure of re-scoring target candidates

then augments each source sentence with the content keywords that are relevant to the source

sentence, which are extracted from the nearby sentences in the document. The amount of

relevance of keywords to the source sentence is represented by a weight which is measured

by computing the topical similarity between each keyword and the source sentence. Finally,

we re-score and re-rank candidate target sentences based on their topical similarity with the

augmented source sentence. The whole procedure is detailed in Subsection A.3.3.
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A.3.1 Baseline Phrase-based Statistical Machine Translation

The phrase-based SMT models are frequently used and have state-of-the-art performance

(Koehn et al., 2003). The phrase probability is computed from the co-occurrence frequency of

a phrase pair in the phrase-aligned training data, and lexical probability is used to validate the

quality of the phrase pair by checking how well its words are translated to each other.

According to the definition proposed by Koehn et al. (2003), the phrase-based translation

model uses Bayes’ rule to reformulate the translation probability for translating a source

sentence into a target language as:

argmax
f

p( f |e) = argmax
f

p(e| f )p( f ) (A.1)

where p( f ) is the probability given by the language model and p(e| f ) is the probability given

by the translation model. For each sentence in the source language, the method can provide

a lattice of hypotheses with their probabilities, from which a ranked list which contains the

N-best translation candidates in the target language can be derived. Here, we use Moses, an

open-source phrase-based SMT system (Koehn et al., 2007), to generate the N-best target

sentences for each source sentence.

A.3.2 Representing Words Using Multilingual Topic Models

We train a BiLDA topic model defined by Mimno et al. (2009), which is an extension of the

standard LDA model (Blei et al., 2003) for bilingual purposes. The method assumes that the

document pairs share the same distribution over topics. The probabilities p(zT |wT ) and

p(zS |wS) represent the distributions over the topic z of each word w in the target T and source

S languages respectively.

For BiLDA topic model training, we use the implementation available in PolyLDA++1 provided

by Richardson et al. (2013). We set the hyper–parameters as α = 50
k and β = 0.01 following

Vulić et al. (2011), where k denotes the number of topics. We train the BiLDA topic model

using Gibbs sampling with 1000 iterations.

A.3.3 Re-ranking the N-best Target Sentences Using Topical Information

We first extract the set of content words C from an interval Q which includes M sentences

before and after the source sentence to be translated. We apply our diverse keyword extraction

method (defined in Chapter 4 of this thesis) to determine C . The method maximizes the

coverage of the topics of the selected interval with the keyword list C .

In addition, we weigh each extracted keyword ci ∈C with a weight wi , with 0 ≤ wi < 1, based

on the likelihood of observing the keyword ci given the source sentence e, as formulated in

1https://bitbucket.org/trickytoforget/polylda
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the following equation:

wi = p(ci |e) = ∑
zS∈ZS

p(ci |zS) ·p(zS |e) (A.2)

where p(zS |e) is the average distribution of topic z in relation to the source sentence e, and

p(ci |zS) is the topic-word distribution calculated using the topic model. We define the aug-

mented source sentence as follows:

eaug = {(e1,1), · · · , (e|e|,1), (c1, w1), · · · , (c|C |, w|C |)} (A.3)

In other words, eaug contains the words from the source sentence to be translated, e, with the

weight 1, and the content words with a weight calculated in Equation A.2. We compute the

score sn for each target sentence fn as follows:

sn = p( fn |e) = ∑
zT ∈ZT ,zS∈ZS

p( fn |zT )p(zT |zS)p(zS |eaug ) (A.4)

In this equation, p(zT |zS) is considered to be 1(zT =zS ), and p( fn |zT ) is the average distribution

of topic z in relation to the target sentence fn . We also compute p(zS |eaug ) as follows:

p(zS |eaug ) = 1

|e|+∑|C |
i=1 wi

{
∑
a∈e

p(zS |a)+
|C |∑
i=1

wi ·p(zS |ci )} (A.5)

Finally, the best candidate f̂ for the source sentence e is computed by maximizing the following

equation:

f̂ = argmax
fn

sn (A.6)

A.3.4 Data and Evaluation Method

We first describe the data and the evaluation method we used to assess our proposal, and then

provide the results of our experiments and their analysis.

We trained the bilingual topic models, and also learned the translation and language models

from the Europarl corpus. The European Parliament Proceedings Parallel Corpus (2011 release)

is a corpus used for machine translation, extracted from the proceedings of the European

Parliament (Koehn, 2005). It has versions in 21 European languages but we used only the

English-French language pair.

For extracting topic models we used document aligned texts and for learning translation mod-

els we utilized sentence aligned texts. Although we trained topic models using a parallel corpus

in our experiments, any comparable corpus can be used like Wikipedia articles. Following

Mimno et al. (2009) who extract 400 topics from Europarl corpus, we set the number of topics

to 400.
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We obtained the N-best translation for each source sentence using the Moses SMT system

(version 2.1.1 released in March 2014). We extracted five keywords using our diverse keyword

extraction method from the five sentences before and five sentences after the source sentence

and augmented this sentence with these keywords. We extracted the first 200 best translations

of Moses and then re-ranked them based on the method proposed above.

As our method only contributes to improving the semantic of the translation sentences, not

their syntax, and also to avoid skipping words which do not fit the topic models, we selected

when re-ranking the 200 candidate sentences only the ones that have the same length as the

1-best translation candidate obtained by the Moses.

To evaluate the quality of the translations obtained using different approaches, BLEU score

usually can be used. BLEU automatically calculates the precision score for each sentence

translated by a machine translation system by comparing it against reference translation

provided by human and then averages over all the sentences in the test set (Papineni et al.,

2002). However, since the BLEU scores of all methods were very close, we performed subjective

evaluation using an expert proficient in both French and English (in future work, several

experts would increase the reliability of the conclusions). We used five documents from the

test set (news-test-2013) from WMT ’13 for performing subjective evaluation. The documents

are about the following topics: voting rights and ID documents in the USA; taking or not the

test for prostate cancer; the discovery of Higgs’ boson; palliative care institutions in Canada;

and an interview about the Paris Saint-Germain football team.

For evaluation, the expert looked at the sentences obtained by the three MT systems presented

below, considering only the triples where at least one sentence differed from the others. The

expert examined only the content (not the inflection) of the words which are different across

the sentences, by comparing them with the words from the reference sentence and with regard

to the words from the source sentence. The evaluation for each version is coded as follows. If

the word(s) are identical to the reference word then a code value of 2 is assigned to them. If

the word(s) are correct but not like the reference, then a code value of 1 is assigned to them.

Otherwise the word(s) will be given 0 value. One possibility is to group together the values

of 2 and 1, and count how many non-zero values were assigned to the words found different

by the expert. However, keeping the three possible scores (2, 1 or 0), we assign a score to

each translation method by counting the number of sentences with higher scores compared

to those of the counterpart translation method (2 vs. 1 or 1 vs. 0). Thus, we can assess the

improvement brought by one method.

A.4 Experimental Results

We compared our method – noted KC for Keyword-based Context – with two baseline methods.

The first baseline is simply the translation obtained by the Moses system, noted M. The second

method is similar to the proposed method here, but augments the source sentences using the

entire words in 5 sentences before and after the source sentences instead of using content
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words. Then the method re-ranks the N-best results of the Moses, and selects the best one. This

method is noted EC for Entire Context. We also compared our method with EC to emphasize

the contribution brought by the diverse keyword extraction method in comparison with a

simpler use of context for re-ranking MT hypotheses.

Table A.1: Comparison scores obtained using subjective evaluation over five different docu-
ments from test set. The compared methods are noted KC (the proposed method), M (the
Moses baseline), and EC (method using all words of adjacent sentences as context). The num-
bers show the proportion of times one system is better than the other, hence the scores for “EC
> M” and “EC < M” sum up to 100%. The results indicate the following ranking: EC < M < KC.

Comparison values (%)
Compared USA politics Cancer Higgs’ Palliative PSG football Average over
Methods test boson care team all documents
EC > M 43 67 22 50 52 46
EC < M 57 33 78 50 48 54
KC > M 50 67 40 50 50 52
KC < M 50 33 60 50 50 48
KC > EC 57 50 100 62 50 64
KC < EC 43 50 0 38 50 36

The results of our comparisons are provided for each of the five test documents in Table A.1.

The numbers show the proportion of times one system is better than the other, hence the

scores for “EC > M” and “EC < M” sum up to 100% (only different translations are counted).

The average comparison values are 52% for KC vs. 48% for M, 46% for EC vs. 54% for M, and

36% for EC vs. 64% for KC. These results indicate the following ranking: EC < M < KC. The

ranking shows that words from minor topics added by EC from the adjacent sentences can

degrade the results of machine translation systems, while relevant keywords selected from the

context by our method can improve the translation output.

There are a few cases in which the scores assigned to the sentences are zero by all three

compared methods. In these cases, we examined the 200 best candidate translations and

found out that among them there was no better translation to be selected. While it is possible

that a better translation could be found below the 200 best ones, it is also likely that in many

cases the translation model did not learn an appropriate phrase pair to use.

We provide two examples of the results in Table A.2. In the first example, KC outperforms M. In

this example, the English word “charge” from the source sentence has two possible meanings

in French, equivalent to “electric charge” and “accusation”. The correct translation in this

example is by “electric charge” which is indeed correctly selected by our method.

In the second example, we compare KC and EC translation results. In this example, the word

“require” in the English source should be translated into “exigent” in French (third person plural

of transitive verb “exiger”). However, the EC method translated it into “ont besoin” which

means “need”, which has the reverse meaning. The KC method translated it into “exiger”,
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Table A.2: Two examples of machine translation results: example (1) shows KC outperforms M,
and example (2) shows the superiority of KC over EC.

Example (1)
Source sentence When, in fact, a particle having an electric charge

accelerates or changes direction, ...
Reference sentence Quand , en effet , une particule ayant une charge

électrique accélère ou change de direction , ...
M translation Lorsque , en fait , une accusation électriques

particules avoir une légère modification direction , ...
KC translation Lorsque , en fait , une charge électriques particules

avoir une légère modification direction , ...

Example (2)
Source sentence The new election laws require voters to show a photo

ID card and proof of US citizenship.
Reference sentence Les nouvelles lois électorales exigent que les

électeurs présentent une carte, d’identité avec
photo et une preuve de citoyenneté américaine .

EC translation Les nouvelles lois électorales ont besoin d’électeurs
de montrer une photo de carte d’identité et la
preuve de la citoyenneté américaine.

KC translation Les nouvelles lois électorales exiger que les
électeurs de montrer une photo carte d’identité et la
preuve de la citoyenneté américaine .

which has the correct meaning, though not the correct mode/number/person.

A.5 Conclusion

We integrated the local context of the source sentence captured by our diverse keyword

extraction method with the translation information obtained from the Moses SMT system.

We used sentence-aligned parallel corpora for training the model used by the Moses and

document-aligned parallel corpora for learning multilingual topic models. Unlike previous

methods which require document-aligned parallel corpora to utilize contextual information

for machine translation, our method can perform this using comparable corpora as well.

We showed that keywords selected by the diverse keyword extraction method from adjacent

sentences and added to the source sentence can improve the results of machine translation.

We also provided an example of the results obtained by our method and the baselines.
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