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Abstract

A macroscopic loading model for multi-directional, time-varying and con-
gested pedestrian flows is proposed in this paper. Walkable space is rep-
resented by a network of streams that are each associated with an area in
which they interact. To describe this interaction, a stream-based pedes-
trian fundamental diagram is used that relates density and walking speed
in multi-directional flow. The proposed model is applied to two differ-
ent case studies. The explicit modeling of anisotropy in walking speed is
shown to significantly improve the ability of the model to reproduce empir-
ically observed walking time distributions. Moreover, the obtained model
parametrization is in excellent agreement with the literature.

Keywords: Pedestrian flow, network loading, macroscopic model,
pedestrian fundamental diagram, anisotropy, calibration.

1 Introduction

There is a general need to better understand pedestrian traffic in
densely populated areas such as airports, train stations, shopping malls
or on busy pedestrian walkways. While particular applications like
evacuation have received considerable attention (Helbing et al., 2002;
Kirchner and Schadschneider, 2002), the simulation of general pedestrian
flow is still insufficiently understood, in particular if multiple, potentially
intersecting pedestrian ‘streams’ are involved.

It can be broadly distinguished between microscopic and macroscopic
modeling approaches. Microscopic models describe the movement of in-
dividual agents through space and time (e.g. Helbing and Molnár, 1995;
Blue and Adler, 2001; Robin et al., 2009; Asano et al., 2010). They are
relatively costly in their application and typically hard to calibrate
(Hoogendoorn and Daamen, 2007). Macroscopic models consider traffic as
a continuum, both as far as pedestrian movements and trip-maker deci-
sions are concerned (e.g. Helbing, 1992; Hughes, 2002; Guo et al., 2011;
Hoogendoorn et al., 2014). They are typically less accurate in describing
complex crowd movements, such as they occur in congested or anisotropic
flow. In return, their computation cost is independent of the number
of pedestrians, which is beneficial for applications on large networks, for
dynamic traffic assignment or for demand estimation (Abdelghany et al.,
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2012; Hänseler et al., 2015b).
In this paper, we present a macroscopic network loading model that

explicitly takes anisotropy into account, i.e., the fact that the speed of
pedestrians may differ depending on their walking direction. This has
not been achieved at the macroscopic level so far, at least for the case
of general multi-directional flow. We note that Jiang et al. (2009) con-
sider an anisotropic model which however is only capable of describing
bi-directional flow. Besides, there is a range of macroscopic models consid-
ering ‘multi-directional’ flow, but no anisotropy (Hughes, 2002; Guo et al.,
2011; Hänseler et al., 2014). In the remainder of this paper, we first re-
view the relevant body of literature on macroscopic modeling and empiri-
cal characterization of multi-directional pedestrian flow. We then propose
an anisotropic loading model for pedestrians flows. The proposed model is
calibrated on real data and applied to two real case studies.

2 Literature review

Among the macroscopic approaches for modeling pedestrian flows, we fo-
cus on continuum models, and on related phenomenological models. The
review is not meant to be exhaustive, but rather to provide the necessary
context for the modeling framework presented in Section 3. For a compre-
hensive review of pedestrian flow models including microscopic and hybrid
models, we refer to Duives et al. (2013).

Continuum models interpret pedestrians as particles of flow that are
conserved. They formulate a set of partial differential equations (PDEs), in
which walking speed is typically determined by a fundamental diagram re-
lating pedestrian density and speed. Inspired by the kinematic wave theory,
it is assumed that the fundamental diagram also holds for non-stationary
traffic, implying that pedestrians adapt their speed instantaneously with
infinite acceleration.

One of the first continuum models for pedestrian movements is pro-
posed by Al-Gadhi and Mahmassani (1990), who study circular move-
ments around religious stone monuments during the Hajj, a Muslim pil-
grimage to Makkah, Saudi Arabia. Their approach has been general-
ized by Hughes (2002) in his seminal ‘continuum theory for the flow of
pedestrians’. This theory is a two-dimensional extension of the Lighthill–
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Whitham–Richard (LWR) model that is used to approximate the traf-
fic movement on a uni-directional highway (Lighthill and Whitham, 1955;
Richards, 1956). Hughes’ continuum theory allows for multi-commodity
flow involving pedestrians with different walking directions and destina-
tions.

Huang et al. (2009) show that the pedestrian route choice strategy in
Hughes’ model satisfies the reactive dynamic user equilibrium. A numerical
procedure to solve the coupled system of PDEs is presented and applied to
a numerical example. Jiang et al. (2009) extend this approach by adopting
a bi-directional density-speed relationship that can be used to simulate two
groups of pedestrians traveling on crossing paths. The emergence of lanes
and strips is reported. Such phenomena of self-organization had already
been observed previously in a similar model by Treuille et al. (2006), as
well as later by Colombo et al. (2012) who study pattern formation from a
mathematical point of view.

Hoogendoorn et al. (2014, 2015) derive a continuum model from a mi-
croscopic pedestrian model. As for the previous models, pedestrian flow
is assumed in equilibrium by setting all acceleration terms to zero. A
closed-form expression for the walking speed is obtained by approximat-
ing the density using a first-order Taylor series expansion. The model is
then specified such that a linear and isotropic density-speed relationship
results. Several numerical examples are considered using a two-dimensional
Godunov scheme (Lebacque, 1996; van Wageningen-Kessels et al., 2015).

There are several further macroscopic continuum models that are note-
worthy. Inspired by classical fluid dynamics, Bellomo and Dogbé (2008)
study the motion of pedestrians by describing a system of two PDEs in-
voking the conservation of mass and the balance of linear momentum.
Piccoli and Tosin (2011) present a measure-based model, in which a family
of measures are pushed forward by some flow maps, providing an estimate
of the space occupation of pedestrians at successive times. Schwandt et al.
(2013) use a multiphase approach based on a convection-diffusion equa-
tion and apply it to a cross-flow experiment. Recently, Degond et al.
(2013) have derived a continuum model from a vision-based agent model
(Ondřej et al., 2010), and Degond and Hua (2013) study a hydrodynamic
model of self-organized dynamics that is inspired from interactions of ani-
mals observed in nature.

All the above models have in common that they express a system of
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PDEs that are solved numerically by discretization. The resulting solution
schemes are similar to a group of models that are referred to as ‘phenomeno-
logical’. Phenomenological models may provide a comparable level of detail
in terms of spatial and temporal dynamics, but they are not a direct prod-
uct of the discretization of a system of PDEs. Having said that, they lend
many ideas from such discretization schemes, in particular the cell trans-
mission model (CTM, Daganzo, 1994, 1995). Phenomenological models
leave more freedom to the modeler and are sometimes more accurate, as
the system of PDEs discussed previously do not represent any physical law
in the first place. Furthermore, they are typically less costly to apply in
practice. In fact, with the exception of Al-Gadhi and Mahmassani (1990),
none of the above approaches have been calibrated on a real case study.

Asano et al. (2007) have been first to propose a generalized CTM to de-
scribe pedestrian flows. As used by Daganzo in the context of car traffic, an
isotropic trapezoidal fundamental diagram is assumed in their pedestrian
cell-transmission model. No framework for estimating ‘turning proportions’
is provided. Instead, the fraction of pedestrians associated with each walk-
ing direction are exogenously given, and the exact sequence of cells that
a pedestrian traverses must be known in advance. This can be a severe
constraint for the application of their model in practice.

Extended by a discrete potential field, Guo et al. (2011) present a re-
lated framework to study pedestrian route choice behavior and congestion
during evacuation. A specification of the exact sequence of cells for pedes-
trian is no longer required. However, their framework is only capable of
dealing with a trapezoidal fundamental diagram, which is shown for the
case of uni-directional flow. The use of a more general density-flow rela-
tionship, as it may be found in applications different from evacuation, is
not possible.

In a recent study, we have undertaken such an extension (Hänseler et al.,
2014). The proposed formulation allows for a general, non-linear pedestrian
density-flow relationship, which however needs to be isotropic. The concept
of a cell-based potential field is adapted, and combined with a logit-type en-
route path choice model. It is shown that, depending on the specification
of the pedestrian model, various types of bottleneck behavior ranging from
disciplined queueing to impatient ‘jostling’ can be reproduced.

The large majority of macroscopic pedestrian models men-
tioned thus far rely on isotropic density-speed relationships. Only
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Al-Gadhi and Mahmassani (1990) and Jiang et al. (2009) consider a
bi-directional fundamental diagram for two specific applications. Yet
pedestrian flow is in many cases multi-directional, and in particular
under congested conditions, anisotropic. In the following, some findings
from empirical pedestrian research are recapitulated, which are then
used to construct a dynamic network loading model that can describe
multi-directional, anisotropic and congested pedestrian flows. This has
been achieved only at the microscopic level so far.

Several empirical studies consider a ‘stream’-based interpretation of
flow to construct an anisotropic pedestrian density-speed relationship.
In these studies, multi-directional pedestrian flow is decomposed into
a set of uni-directional streams that interact within the same space
(Nikolić and Bierlaire, 2014). The direction of these streams depends on
the type of walking facilities and may be known a priori, or inferred from
available data.

One of the earliest studies investigating anisotropy in pedestrian flow is
due to Navin and Wheeler (1969). They observe that counter-flow reduces
walking speed, with a maximum reduction of about 14.5% in case of a
flow ratio of 10% : 90%, and a minimal reduction of about 4% in case of
symmetric flow. This is in qualitative agreement with a later finding by
Lam et al. (2002) who report that the maximum reduction in capacity is
around 19% for a split ratio of 10% : 90%.

Several researchers calibrate anisotropic density-speed relationships for
pedestrian counter-flow, some of the earliest being Al-Gadhi et al. (2002).
These relationships have in common that the speed of a group of pedestrians
moving in one direction depends on the density of each of the two opposing
streams. Zhang et al. (2012) provide a review of more than two decades
of research on bi-directional pedestrian fundamental diagrams. While it
seems widely acknowledged that the minor flow is slower than the ma-
jor one, they conclude that no commonly accepted model formulation for
bi-directional pedestrian fundamental diagram exists yet. Based on their
own experiments, they find that anisotropy becomes apparent for densities
beyond 1ped/m2, and that the maximum specific flow in uni-directional
streams is significantly larger than that in a bi-directional setting.

In a later study, Zhang and Seyfried (2014) extend their experiments
to include cross-flow, i.e., bi-directional pedestrian flow with an orthogonal
crossing. They find little difference in the shape of the pedestrian fun-
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damental diagram between counter- and cross-flow and hypothesize that
the anisotropic effects reducing the walking speed are independent of the
intersection angle.

These results are in contrast with the findings by Wong et al. (2010)
who experimentally investigate the bi-directional pedestrian flow with in-
tersection angles of 45◦, 90◦, 135◦ and 180◦. They find that the conflicting
effect maximizes for a head-on situation with a 180◦-intersection angle.
Based on their experimental results, they propose a bi-directional pedes-
trian density-speed relationship that considers the stream densities, flow
ratio and intersection angle. In a related study, Xie and Wong (2015) gen-
eralize that approach to a n-directional pedestrian stream model, i.e., a
pedestrian fundamental diagram that explicitly considers the joint pres-
ence of n uni-directional streams.

Empirical observations show that it is often problematic to relate a sin-
gle speed to each density level in pedestrian flow. Nikolić et al. (2015) con-
sider probabilistic formulations of an isotropic density-speed relationship
to relax this assumption. Depending on factors such as the local flow pat-
tern, trip purpose, age and gender, different pedestrians may walk slowly
or run fast under the same conditions. In the context of macroscopic mod-
els, a density-speed relationship is primarily used to approach the expected
speed at a given density. Thus, deterministic formulations are sufficient for
the remainder of this work.

A typical phenomenon of multi-directional pedestrian flow is the
formation of patterns of self-organization (Helbing et al., 2005). Self-
organization, such as the dynamic formation of lanes, leads to more efficient
behavior when pedestrians walk in different directions (Moussaïd et al.,
2010). Pedestrian fundamental diagrams can capture these patterns only
implicitly (see e.g. Zhang et al., 2012). The explicit modeling of phenom-
ena of self-organization at both the microscopic and macroscopic level
is already discussed widely in the literature (Helbing and Molnár, 1995;
Treuille et al., 2006; Jiang et al., 2009; Hoogendoorn et al., 2014).

In this paper, we aim to overcome the assumption of isotropy adopted in
macroscopic pedestrian models by developing a dynamic network loading
model that relies on a stream-based formulation of a pedestrian funda-
mental diagram. The proposed model is motivated by Hughes’ continuum
theory and recent research focusing on the empirical characterization of
multi-directional pedestrian flow. The mathematical formulation is based
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on a heuristic, multi-directional discretization scheme that is related to the
cell transmission model. Besides the explicit consideration of anisotropy,
the model is designed to be easily applicable to large and complex real-
world applications. A Java implementation and several illustrative test
cases are available on GitHub (Hänseler and Lederrey, 2015).

3 Model framework

Inspired by the cell transmission model (Daganzo, 1994), we consider a
discrete-time discrete-space model where each time interval τ ∈ T is of
uniform length ∆T .

As suggested by Løvås (1994), walkable space is represented by a di-
rected graph G = (N , Λ), where N represents the set of nodes ν ∈ N , and
Λ the set of directed streams λ ∈ Λ. The topology of the network depends
on the specific application, particularly the major prevailing movement di-
rections. Nodes through which pedestrian traffic is discharged and leaves
the network are referred to as origin/destination nodes, and their set is
denoted by NOD ⊆ N . While their typical position is at the border of a
walking facility, OD nodes can also be located in the interior if they rep-
resent an access way to e.g. an elevator or an escalator. Nodes have no
physical length.

A stream λ connects two nodes and has a fixed length Lλ > 0. It carries
pedestrians only in one direction. Streams are obtained by decomposing
the generally multi-directional flow. This decomposition depends on the
prevalent pedestrian flow, and the geometry of the walking facility. It
is assumed that a meaningful decomposition is known a priori. In the
literature on empirical flow characterization, several ways of decomposition
are discussed (Nikolić and Bierlaire, 2014; Xie and Wong, 2015).

Walkable space is partitioned into a set of areas X . Every stream λ

is associated with an area ξ ∈ X , defining a space in which it interacts
with other streams. The surface size of an area ξ is denoted by Aξ, which
takes into account a potential presence of internal obstacles. Such obstacles
include any object that reduces the walkable space, such as a pillar or a
trash bin. No prior assumptions about the shape and size of areas are
necessary. The set of streams associated with area ξ is denoted by Λξ,
with Λξ ⊂ Λ and Λξ ∩Λξ′ = ∅ if ξ 6= ξ′.
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Fig. 1 illustrates the proposed space representation at the example of
a longitudinal corridor with an orthogonal space discretization. In this
illustration, multi-directional flow is decomposed into left-right as well as
diagonal movements, resulting in six distinct flow directions. Areas are
delimited by solid lines, streams represented by dashed lines, and nodes
by circles. Since streams are direction-specific, each dashed line in Fig. 1
represents two streams, one in each direction. Pedestrians may cross from
one area to another at any position along the joint boundary, and not
only through nodes. Likewise, when traversing areas, pedestrians are not
confined to the dashed lines, which only represent their direction of flow
conceptually. Origin/destination nodes at both ends of the corridor are
represented by the two stars.

λ

ξ

ν

Figure 1: Illustration of space representation.

An orthogonal discretization as in Fig. 1 represents the most com-
mon specification for flow models relying on a fundamental diagram
(Treuille et al., 2006; Huang et al., 2009). The size of areas is typically
between 1 m2 and 10 m2. In this range, the model dynamics are approxi-
mately scale-invariant (Asano et al., 2007; Hänseler et al., 2014). Daganzo
(1994, 1995) discusses this property theoretically in the context of the
cell-transmission model. The main alternatives to an orthogonal space
discretization are triangular or hexagonal grids, which are not explicitly
considered in this work (Guo et al., 2011; Chen et al., 2014).

A route ρ is defined by a pair of origin and destination nodes (νρ
o, ν

ρ
d),

νρ
o, ν

ρ
d ∈ NOD, and a set of streams Λρ that connect them. The set Λρ may

be obtained by selecting streams individually, or by including all streams
that are associated with a set of areas. There can be several routes con-
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necting the same pair of OD nodes. Each route starts and ends at an OD
node, but cannot contain any OD node in between. The set of all routes
is denoted by R. For each pedestrian, the route is assumed to be known a
priori. It may be known by observation, or estimated using a route choice
model (Hoogendoorn and Bovy, 2004).

Depending on the network G and the set of streams Λρ, multiple ‘stream
sequences’ may connect the origin and destination of a route ρ. Such stream
sequences are referred to as paths. To avoid their explicit enumeration, the
concept of a path is not explicitly used. Instead, the choice of a path within
a route is considered by means of turning proportions that are computed
at every node. They may depend both on the route and the prevailing
traffic conditions. Depending on their specification, pedestrians may be
distributed across multiple paths within a route, or stick to a single one,
for instance the shortest path.

Pedestrians are organized in groups. A pedestrian group ℓ is character-
ized by a route ρℓ, a departure time interval τℓ, and the number of people
Xℓ that it contains. In contrast to the definition of a ‘pedestrian type’ by
Hughes (2002), a pedestrian group is attributed a departure time and a
route, instead of only a destination. On the other hand, pedestrian types
in Hughes (2002) may differ with respect to their walking characteristics,
whereas pedestrian groups as defined in this work may not (for a multi-
commodity framework, see e.g. Cooper, 2014).

The set of all groups is denoted by L ⊂ R×T . The size Xℓ of each pedes-
trian group ℓ ∈ L is assumed to be known a priori, and the corresponding
demand vector is denoted by X = [Xℓ]. Such information can be inferred
from a demand estimation framework in combination with a suitable route
choice model, which are readily found in the literature (Cascetta et al.,
1993; Hoogendoorn and Bovy, 2004; Hänseler et al., 2015b).

A conservation principle with respect to the number of pedestrians on
each stream is combined with an empirical density-speed relationship for
calculating the flows between them. Within a stream, pedestrians are as-
sumed to be homogeneously distributed, and their movements are not mod-
eled explicitly. This concept is similar to that of the cell-transmission model
(Daganzo, 1994), with the difference that it is formulated at the level of
streams instead of areas.

When the pedestrian groups are propagated along the streams, they
typically split up into fragments. These fragments can further split, or
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merge with other fragments belonging to the same group, such that there
is at most one fragment per group in a stream. The state of the model
at any time interval is described by the distribution of the fragments on
the network. The number of pedestrians associated with group ℓ in stream
λ during time interval τ is denoted by Mℓ

λ,τ and referred to as the corre-
sponding ‘fragment size’. The sum of all fragments in a stream λ during
time interval τ is denoted by Mλ,τ and referred to as the stream accumula-
tion. The vector of stream accumulations associated with area ξ and time
interval τ is denoted by Mξ,τ = [Mλ,τ], with λ ∈ Λξ.

Each stream λ during time interval τ is associated with a walking speed
Vλ,τ. The velocity vector of area ξ, Vξ,τ = [Vλ,τ], groups these stream
speeds.

For each area ξ and time interval τ, a functional relationship between the
vector of stream accumulations and the stream velocity vector is assumed
to exist. This relationship may for instance be a stream-based fundamental
diagram. In practice, time-invariant specifications are mostly used due to
the difficulty of calibrating time-dependent models.

If Vf represents the ‘global’ free-flow walking speed, the stream velocity
vector associated with area ξ during time interval τ is expressed as

Vξ,τ = VfFξ,τ(Mξ,τ), (1)

where Fξ,τ(Mξ,τ) represents the corresponding dimensionless density-speed
relationship. Eq. (1) describes the relationship between the accumulation
of each stream in an area, and the corresponding pedestrian stream speeds.
Several possible specifications, both isotropic and anisotropic, are provided
in Section 4.

The assumption of a fundamental diagram implies that pedestrians in-
stantaneously adapt their speed if a change in accumulation occurs. In
traffic flow theory, this is characteristic for first-order flow models. For
pedestrian models, such an assumption is particularly well suited, since
pedestrian can accelerate from standstill to free-flow walking speed almost
immediately and vice versa (Weidmann, 1992). Besides allowing for infinite
acceleration, Eq. (1) implies that all pedestrians follow the same density-
speed relationship, irrespective of the group they belong to.

Regarding the functional form of the vectorial density-speed relation-
ship Fξ,τ(Mξ,τ), two assumptions are made. These are inspired by Hughes’
continuum theory for pedestrian flows (Hughes, 2002).
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First, it is hypothesized that in an unoccupied area, the walking speed
in every stream must be larger than zero, but may not exceed the global
free-flow speed. If Fλ,τ represents the entry in Fξ,τ associated with stream
λ ∈ Λξ, this translates to

0 < Fλ,τ(0) ≤ 1 ∀ λ ∈ Λξ, ξ ∈ X , τ ∈ T , (2)

where 0 represents the null vector of length |Λξ|. The walking speed at zero
density can be lower than the global free-flow speed, which may be adequate
for instance in uneven terrain. It may however not be zero, excluding
phenomena like waiting. The resulting formulation therefore represents an
exclusive walking model as most macroscopic approaches in the literature.

Second, the fundamental diagram is assumed to be monotonically de-
creasing, i.e.,

∂Fλ,τ

∂Mλ′,τ

≤ 0 ∀ λ, λ ′ ∈ Λξ, ξ ∈ X , τ ∈ T . (3)

The assumption of monotonicity is widely accepted under ‘normal’ condi-
tions (Daganzo, 1994; Hughes, 2002).

Some fundamental diagrams specify a jam density kjam, i.e., a density
at which all pedestrian movement halts. Equivalently, at the area level,
a storage capacity M

jam
ξ = kjamAξ may be considered, representing the

maximum number of pedestrians that can be present in the area at any
time. In that case, it is further required that

Fλ,τ(Mξ,τ) = 0 if
∑

λ∈Λξ
Mλ,τ = Mjam

ξ . (4)

As discussed by Daganzo (1994), the time discretization has to be such
that pedestrians cannot traverse more than one stream in a single time
step. In numerical mathematics, this consideration is referred to as the
Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967). It can
be expressed as

∆T ≤
Lλ

Vf

, ∀ λ ∈ Λ. (5)

According to Eq. (5), the ratio of the shortest stream length and the free-
flow walking speed represents an upper bound for the time discretization.
The actual choice of the time step ∆T is not critical for the stability of
the model, but known to have an influence on numerical dispersion and
computational cost (van Wageningen-Kessels et al., 2015). In practice, it
has been observed that such dispersion can even lead to more realistic
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results (Lebacque, 1996). As such, the time step can be seen as a calibration
parameter. In this work, this possibility is not explored, and as in most
traffic flow studies, the bound defined in Eq. (5) is used to specify the time
step, i.e.,

∆T = min
λ∈Λ

{Lλ/Vf} . (6)

Given that pedestrian streams are uni-directional, the associated flow
is given by the hydrodynamic theory as the product of speed and density.
Specifically, for stream λ ∈ Λξ during time interval τ, the flow increment
during an infinitesimal time interval dt can be expressed as

dQλ,τ =
Mλ,τ

Lλ

VfFλ,τ(Mξ,τ)dt. (7)

Based on Eq. (6), and by defining the minimum stream length as Lmin =

minλ∈Λ Lλ, the cumulative hydrodynamic flow of stream λ during time in-
terval τ is given by

∆Qλ,τ =
Lmin

Lλ

Mλ,τFλ,τ(Mξ,τ). (8)

The cumulative hydrodynamic stream flow does not represent an actual
flow, but is a characteristic quantity from which further stream properties
can be calculated (Daganzo, 1994).

Due to properties (2) and (3), the function defined in Eq. (8) is known
to reach a maximum ∆Qcrit

λ,τ at a characteristic accumulation Mcrit
λ,τ , referred

to as the critical cumulative hydrodynamic flow and the critical stream
accumulation, respectively. For each stream and time interval, the criti-
cal accumulation Mcrit

λ,τ divides the density-flow relationship (Eq. 8) into a
free-flow and a congested regime. In the free-flow regime, an infinitesimal
increase in accumulation leads to an increased cumulative hydrodynamic
flow. In the congested regime, inversely an increase in accumulation leads
to a decrease in pedestrian flow.

A diminishing flow with increasing density beyond a critical accumu-
lation is a characteristic property of most traffic networks. For multi-
directional flow, the main cause is friction between different pedestrian
streams that lead to degradation of traffic conditions. In uni-directional
flow, a ‘capacity drop’ may result from the faster-is-slower effect due to an
increasing ‘pedestrian pressure’ (Helbing, 2001).
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The critical accumulation associated with stream λ during time interval
τ is computed by assuming that the accumulation of all other pedestrian
streams in the same area, M

′
ξ,τ with λ′ ∈ Λξ and λ′ 6= λ, are known, i.e.,

Mcrit
λ,τ = arg max

M≥0

MFλ,τ(M;M′
ξ,τ). (9)

If the critical walking speed of stream λ during time interval τ is given
by Vcrit

λ,τ = VfFλ,τ(M
crit
λ,τ ;M

′
ξ,τ), the critical cumulative hydrodynamic flow of

stream λ during time interval τ is given by

∆Qcrit
λ,τ =

Lmin

Lλ

Mcrit
λ,τ

Vcrit
λ,τ

Vf

. (10)

The cumulative hydrodynamic flow allows to determine an outflow ca-
pacity at the end of a stream, and an inflow capacity at the beginning
(Lebacque, 1996). The hydrodynamic outflow capacity can be thought of
as the maximum amount of pedestrians that could be sent to a next stream
in case of an unlimited supply. It is defined as equal to the cumulative hy-
drodynamic flow if the stream is in the free-flow regime, and set equal to
the critical cumulative hydrodynamic flow if it is in the congested regime.
The hydrodynamic outflow capacity of stream λ during time interval τ is
thus given by

∆Qout
λ,τ =

{
∆Qλ,τ if Mλ,τ ≤ Mcrit

λ,τ ,

∆Qcrit
λ,τ otherwise.

(11)

Likewise, the hydrodynamic inflow capacity can be considered as the
maximum amount of pedestrians that can be received by a stream in case
of an infinite traffic demand. It is equal to the critical cumulative hydro-
dynamic flow if the stream is in the free-flow regime, and set equal to the
cumulative hydrodynamic flow otherwise. This is, the cumulative hydro-
dynamic inflow capacity of stream λ′ during time interval τ is given by

∆Qin
λ′,τ =

{
∆Qcrit

λ′,τ if Mλ′,τ ≤ Mcrit
λ′,τ,

∆Qλ′,τ otherwise.
(12)

Eq. (11) and Eq. (12) are as defined in the cell transmission model
(Daganzo, 1994).

To propagate pedestrians from one stream to the next, route-specific
turning proportions at each node need to be known. They may be exoge-
nous, or computed by an en-route path choice model based on the prevail-
ing pedestrian traffic conditions. Assuming that all pedestrians embarked

13



on a given route have the same walking behavior, the turning proportion
corresponding to the stream sequence λ → λ′ for the ensemble of people
following route ρ that are in stream λ during time interval τ may be de-
noted by δρλ→λ′,τ. Since pedestrians can only be sent to adjacent streams
that are part of their route, it must hold that

∑

λ′∈Θ
ρ
λ

δρλ→λ′,τ = 1, (13)

where Θρ
λ denotes the set of streams that originate from the end of stream

λ and are part of route ρ. Typically, a potential field is assumed to ex-
ist from which the turning proportions for local path choice can be in-
ferred (Hughes, 2002; Guo et al., 2011). These turning proportions guide
the pedestrians along their route to their desired destination, taking the
prevailing pedestrian traffic conditions into account. Depending on their
specification, the en-route path choice may resemble a diffusion model, a
shortest path model, or a mixture of both. In Section 4, a specification is
provided that can reproduce such walking behavior.

Following Daganzo (1994, 1995), the cumulative hydrodynamic inflow
and outflow capacity are used to define the receiving and sending capacity,
respectively. The receiving capacity of stream λ′ during time interval τ is
equal to the cumulative hydrodynamic inflow capacity

Rλ′,τ = ∆Qin
λ′,τ, (14)

where a separate variable is defined for notational consistency with the
original CTM. Different from the original CTM, the receiving capacity is
stream- and not area-specific, and does not take the area storage capacity
Mjam

ξ into account. Instead, the storage capacity is considered at the area
level as described below.

The counterpart of the receiving capacity is the sending capacity. The
sending capacity from stream λ to stream λ′ ∈ Θρ

λ for pedestrian group ℓ

during time interval τ is given by

Sℓ
λ→λ′,τ = δρℓλ→λ′,τ min

{

Mℓ
λ,τ,

Mℓ
λ,τ

Mλ,τ

∆Qout
λ,τ

}

. (15)

The first term in the curly brackets ensures the conservation of pedestrian
flow, i.e., not more pedestrians may advance than are actually on the emit-
ting stream. The second term applies when the hydrodynamic outflow
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capacity does not suffice to advance all pedestrians present on the stream
concerned. In that case, a demand-proportional supply distribution scheme
is applied to determine the fraction of each pedestrian group that is part
of the sending capacity. Clearly, not only groups sharing the same stream,
but also streams originating or terminating at the same node are subject
to joint capacity constraints. This is elaborated further below.

Whenever demand exceeds supply, dispersion occurs, i.e., pedestrian
groups split up in several fractions across streams. Generally, dispersion
is present on all except the shortest stream, or whenever the prevailing
walking speed is lower than the global free-flow walking speed. From a
practical view point, dispersion can be seen as mimicking the presence
of slow and fast pedestrians. This is an interesting property for traffic
assignment, where estimates of walking time distributions are more useful
than simple point estimates.

So far, the sending and receiving capacities have been considered sep-
arately. If the sending capacities exceed the available receiving capacity,
they can only be accommodated partially. Let the candidate inflow to
stream λ′ during time interval τ be given by

Sλ′,τ =
∑

λ′′∈Φ
ρ

λ′

∑

ℓ∈L

Sℓ
λ′′→λ′,τ, (16)

where Φρ
λ is the set of streams that terminate at the start node of stream

λ and are part of route ρ.
Taking the constraints at the stream level into account, the candidate

transition flow from stream λ to λ′ during time interval τ associated with
pedestrian group ℓ is expressed as

Yℓ
λ→λ′,τ =

{
Sℓ
λ→λ′,τ if Sλ′,τ ≤ Rλ′,τ,

ζℓλ→λ′,τRλ′,τ otherwise.
(17)

If the candidate inflow to stream λ′ is inferior or equal to the corre-
sponding receiving capacity, the candidate transition flow is equal to the
sending capacity. Otherwise, the flow disperses and a demand-proportional
supply distribution scheme is applied (Asano et al., 2007), i.e.,

ζℓλ→λ′,τ =
Sℓ
λ→λ′,τ

Sλ′,τ

. (18)
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In principle, specifications different from Eq. (18) can be envisaged. A
variety of related models have been proposed in the literature dealing with
multi-legged junctions in road networks (Daganzo, 1995; Lebacque, 1996;
Jin and Zhang, 2003). Most of these approaches are however specific to the
case of car traffic (such as strict first-in-first-out, FIFO), and not directly
applicable in the context of pedestrian flows.

Finally, besides constraints at the stream level, also a storage constraint
at the area level should be considered if a jam density has been defined.
Let the candidate inflow to area ξ′ during time interval τ be given by

Yξ′,τ =
∑

λ′∈Λξ′

∑

λ′′∈Φλ′

∑

ℓ∈L

Yℓ
λ′′→λ′,τ. (19)

The actual transition flow from stream λ to λ′ ∈ Λξ′ during time interval τ
associated with pedestrian group ℓ can then be expressed as

Gℓ
λ→λ′,τ =






Yℓ
λ→λ′,τ if Yξ′,τ ≤ Mjam

ξ′ −Mξ′,τ,

ηℓ
λ→λ′,τ

(

Mjam
ξ′ −Mξ′,τ

)

otherwise.
(20)

If the residual storage capacity at the area level is sufficient, all candidate
transition flows are accommodated. Otherwise, a demand-proportional
supply distribution is applied, i.e.,

ηℓ
λ→λ′,τ =

Yℓ
λ→λ′,τ

Yξ′,τ

. (21)

If there is no storage capacity at the area level, it holds Mjam
ξ → ∞, and

thus Gℓ
λ→λ′,τ ≡ Yℓ

λ→λ′,τ. This is the case for the large class of fundamental
diagrams that do not define a jam density (see Nikolić et al., 2015, for an
overview).

The above formulation makes use of a ‘demand-proportional supply
distribution’ at various levels. An advantage of this approach is that no a
priori assumption is required for the distribution of supply capacity with
respect to specific directions. For particular applications, such as e.g. cir-
cular movements around a monument, other distributional schemes may
be more appropriate (Al-Gadhi and Mahmassani, 1990).

For streams adjacent to origin/destination nodes, source and sink terms
need to be included. The generation term for stream λ : νλ

o → νλ
d during
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time interval τ associated with pedestrian group ℓ is expressed as

Wℓ
λ,τ =






Xℓ if νλ
o = νρℓ

o , τ = τℓ,

−Mℓ
λ,τ if νλ

d = νρℓ
d ,

0 otherwise.

(22)

Source/sink areas are assumed to have infinite capacity. Newly added
pedestrians that are unable to advance to a next stream are retained in
their origin area until the pedestrian traffic situation allows them to do so.
Pedestrians reaching their destination are immediately cleared out. If an
exit capacity needs to be considered, this may be done by interposing an
area with a corresponding static capacity.

Once the transition flows and generation terms defined in Eq. (20) and
Eq. (22) are known, a flow balance equation allows to update the accumu-
lation of each group in every stream using the difference scheme

Mℓ
λ,τ+1 = Mℓ

λ,τ +
∑

λ′∈Φ
ρℓ
λ

Gℓ
λ′→λ,τ −

∑

λ′′∈Θ
ρℓ
λ

Gℓ
λ→λ′′,τ +Wℓ

λ,τ. (23)

If the demand and the initial state of the system, i.e., the fragment size
of all pedestrian groups on all streams at τ = 0, are known, the propagation
of pedestrian groups along their routes can be computed by sequentially
applying Eq. (23) to all groups ℓ ∈ L, streams λ ∈ Λ and time intervals
τ ∈ T .

Recursion (23) is independent of the processing order within a time
interval, i.e., the order in which streams are updated does not have an in-
fluence on the dynamics of the model (Daganzo, 1994). Moreover, Eq. (23)
guarantees the conservation of each group and thus represents the discrete
counterpart of the continuity equation that is used in fluid dynamics. In
the simulations we conducted, the numerical violation of the conservation
principle was negligibly small.

In summary, the proposed model requires four types of exogenous in-
puts. These are (i) the route flow demand in the form of the set of pedes-
trian groups L, (ii) a network representation in the form of the set of
streams Λ and their associated areas X , (iii) a fundamental diagram, i.e., a
possibly anisotropic density-speed relationship, and (iv) an en-route path
choice model that provides the turning proportions at nodes. The first
may be obtained by a demand estimation model, or by direct observation.
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The second is given by the infrastructure of interest. The third and fourth
input are discussed in the following section.

4 Model specification and calibration

A specification of the stream-based pedestrian density-speed relationship
and the turning proportions is provided in the following. To assess the com-
parative advantage of an anisotropic density-speed relationship, additional
isotropic specifications are considered.

4.1 Density-speed relationship

To demonstrate the anisotropic features of the model, we propose a stream-
based pedestrian fundamental diagram (SbFD). It represents a generaliza-
tion of the formulation by Wong et al. (2010) to multiple streams that
interact in a pair-wise manner as described by Xie and Wong (2015). We
however do not directly use Xie and Wong’s approach, as it requires solving
a fixed-point problem, for which the existence and uniqueness of a solution
is not a priori guaranteed. The specification is a means to explore the
walking behavior in the network loading model, and not the main focus of
this research.

Let φλ,λ′ denote the intersection angle between streams λ and λ′ with
φλ,λ′ = 0 if λ = λ′, and let β and ϑ denote model parameters. We assume
that the walking speed of stream λ ∈ Λξ is given by the time-invariant
relationship

Vλ = Vf exp

(

−ϑ

(

Mξ

Aξ

)2
)

∏

λ′∈Λξ

exp

(

−β(1− cosφλ,λ′)
Mλ′

Aξ

)

. (24)

Eq. (24) represents a generalization of Drake’s one-dimensional traf-
fic model (Drake et al., 1967). The first exponential term considers the
isotropic reduction in walking speed induced by the overall accumulation in
an area. A large value of ϑ implies a strong reduction in walking speed with
increasing accumulation, and vice versa. The second term, i.e., the prod-
uct of exponentials, represents the combined reduction in walking speed
due to ‘friction’ with other pedestrian streams, depending on their den-
sity and the intersection angle. Similarly, a large value of β increases the
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magnitude of these anisotropic conflicting effects. In Appendix A, some
properties of Eq. (24) are discussed, and further explanation for the choice
of the specification is provided.

Wong et al. (2010) estimate Vf at 1.034m/s and ϑ at 0.075m4, and
Xie and Wong (2015) at 1.070m/s and 0.065m4, respectively. For β, no
parameter estimates are available in the literature. If it is set to zero,
Drake’s anisotropic fundamental diagram,

Vλ = Vf exp

(

−ϑ

(

Mξ

Aξ

)2
)

, (25)

results.
For a rectangular space discretization, multi-directional flow is gener-

ally decomposed in 12 uni-directional streams connecting each pair of area
edges. There are eight distinct directions to cross an area, namely left/right,
up/down, and diagonally. In the subsequent case studies, accordingly there
are up to eight directions of flow and up to 12 streams per area (see Fig. 3b).

Based on Eq. (9), the critical accumulation of pedestrian stream λ ∈ Λξ

associated with Eq. (24) can be expressed as

Mcrit
λ = −

MΛ′

2
+

√

(

MΛ′

2

)2

+
A2

ξ

2ϑ
, (26)

where the accumulation of all but the current stream is given by

MΛ′ =
∑

λ′∈Λξ

λ′ 6=λ

Mλ′. (27)

We note that other, more advanced anisotropic formulations of pedes-
trian fundamental diagrams can be envisaged. In multi-directional pedes-
trian flow, different behavioral regimes are likely to exist. For instance, for
the major stream, a leader-follower behavior may be predominant, while
for the minor stream, collision avoidance is more important. Both of these
mechanisms probably depend differently on the intersection angle. A case
distinction for acute, right and obtuse angles may be beneficial. The ex-
ploration of such advanced specifications is left for future research.

In terms of isotropic pedestrian density-speed relationships, one of the
most widely used specifications is that of Weidmann (1992), who defines
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the isotropic walking speed of any stream λ in area ξ as

Vλ = Vf

{

1− exp

[

−γ

(

Aξ

Mξ

−
1

kjam

)]}

. (28)

According to Weidmann (1992), the free-flow walking speed is estimated at
Vf = 1.34m/s, the shape parameter at γ = 1.913m−2, and the jam density
at 5.4m−2.

The critical stream accumulation Mcrit
λ associated with Eq. (28) corre-

sponds to the root finding problem

1− exp

[

−γ

(

Aξ

Mcrit
λ +MΛ′

−
1

kjam

)]

(

1+ γ
Mcrit

λ Aξ
(

Mcrit
λ +MΛ′

)2

)

= 0. (29)

Finally, as a benchmark for the assessment of the various formulations,
a ‘zero-model’ is considered, where the walking speed is constant over space
and time and given by

Vλ = Vf. (30)

For this specification, the critical stream accumulation is infinite, i.e.,
Mcrit

λ = ∞, and no congested traffic regime exists.

4.2 Turning proportions

It is assumed that a potential field exists from which local turning propor-
tions at each node can be inferred. These turning proportions are traffic-
dependent and group-specific. Inspired by Guo et al. (2011), each node ν

is assigned a potential Pρ
ν,τ representing the remaining travel time along the

fastest path on route ρ at traffic conditions as they are prevalent during
time interval τ. The potential Pρ

ν,τ can be calculated using any shortest
path algorithm (Dijkstra, 1959). For any node ν that is not associated
with route ρ, it is set to infinity.

Using a logit-type model with weight µ, the turning proportion associ-
ated with the stream sequence λ → λ′ and route ρ during time interval τ,
with λ′ ∈ Θρ

λ and ν the joint node of streams λ and λ′, can be calculated
by (Hänseler et al., 2014)

δρλ→λ′,τ =
exp

(

−µPρ

νd
λ′
,τ

)

∑
λ′′∈O

ρ
ν
exp

(

−µPρ

νd
λ′′

,τ

) , (31)
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where the set of streams emanating from node ν ∈ N associated with route
ρ is denoted by Oρ

ν. This specification is memory-less in that the choice
of the next stream λ′ depends only on the current node, but not on the
previous stream λ. This property can be exploited to reduce the cost of
computing these fractions.

Moreover, specification (31) assumes that pedestrians rely solely on in-
stantaneous information to make their path-choice decisions. No predictive
information is available to them, and travel cost to the respective destina-
tion is minimized in a reactive manner (Hoogendoorn and Bovy, 2004).

Some researchers consider specifications with more than one parame-
ter. Besides its impact on travel times, the influence of local density can
also be taken into account (Hughes, 2002; Guo et al., 2011; Hänseler et al.,
2014). In particular, such specifications allow for the emergence of phenom-
ena of self-organization such as lane or stripe formation in pedestrian flow
(Treuille et al., 2006; Jiang et al., 2009; Hoogendoorn et al., 2014). For
most cases, these models have not been calibrated with actual data, and it
turns out that parameter identifiability is a problem (Hänseler et al., 2014).
We emphasize that the proposed version of the en-route path choice model
is sufficient to illustrate the pedestrian loading model, which is the focus
of our study.

4.3 Calibration

A pseudo maximum likelihood framework is used for the model calibration
(Besag, 1975; Gourieroux et al., 1984). It is assumed that for each pedes-
trian i, the route ρi, the departure time t

dep
i and the travel time tti are

known by observation without measurement error. The observed travel
time ttobs

i of pedestrian i is considered as a draw from a random variable
TT obs

i , whose distribution fobs
i is unknown. In practice, knowledge of that

distribution is not available, except if the same experiment is run multiple
times (Kretz et al., 2006).

Let fest
i (tt|X,θ) denote the travel time probability density of pedestrian

i that is generated by the model for a demand X and a set of parameters θ.
It is given by the travel time distribution of the corresponding pedestrian
group ℓ(i), with tdep

i ∈ τℓ and ρi = ρℓ.
The pseudo log-likelihood to reproduce the travel time vector ttobs =
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[ttobs
i ] for a sample of N pedestrians can then be expressed as

L̃(ttobs|X,θ) =

N∑

i=1

log
(

fest
i (ttobs

i |X,θ)
)

. (32)

The objective of the calibration is to find a parametrization θ such that the
pseudo likelihood of reproducing the observed travel times is maximized,
i.e.,

θ̂ = arg max L̃(ttobs|X,θ). (33)

Eq. (33) is referred to as the pseudo maximum likelihood estimator. It dif-
fers from the actual maximum likelihood estimator in that any correlation
between measurements is neglected. There are generally two sources of cor-
relation, namely serial and spatial. Serial correlation is mostly an issue if
multiple measurements of the same pedestrian are considered. This is not
the case here, since only one travel time estimate per person is available.
Spatial correlation occurs if observations are dependent across pedestrians.
Such clustering is indeed present in that several pedestrians may be asso-
ciated with the same pedestrian group, and thus be described by the same
estimated travel time distribution. This leads to an artificial weighting of
these distribution terms, which the pseudo likelihood does not account for.

With decreasing group sizes, the clustering effect vanishes. By changing
the space discretization, the time discretization changes through Eq. (6),
and indirectly the group sizes can be influenced. In the case studies de-
scribed in the next section, the discretization is such that a large majority
of groups contain at most two or three pedestrians, and are of similar size.
We have tested different discretizations and found only a very small influ-
ence on the estimates (Lederrey, 2015). At least if groups are small, the role
of spatial correlation seems to be negligible, and the maximization of the
pseudo likelihood defined in Eq. (32) provides a consistent estimate of the
parameters. If large groups are present, other estimation techniques such
as indirect inference may be more appropriate (Gourieroux et al., 1993).

Even if it is unbiased, the pseudo likelihood estimator is less efficient
than the actual maximum likelihood estimator. Standard techniques for
statistical inference need in principle to be adapted for use in a pseudo like-
lihood setting. Specifically, the Cramér-Rao bound is generally not reached,
and the standard likelihood-ratio test does not apply, as the asymptotic dis-
tribution of the differences in pseudo log-likelihoods is not χ2-distributed
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(Dodge, 2006). Following Hoogendoorn and Daamen (2007), and taking
into account the negligible role of clustering in the considered case studies,
we still provide standard variance estimates. We note however that their
significance in a pseudo likelihood framework is limited, and refer to the
literature for generalized approaches that should be used if groups are large
(Bai, 1999; Moreira, 2003). To assess the goodness-of-fit of a specification,
the Akaike information criterion (AIC) based on the pseudo likelihood is
reported. We have also computed the Bayesian information criterion (BIC),
and found that it agrees with the AIC on the preferred model for each of
the studied cases.

To solve Eq. (33), a derivative-free trust-region method for constrained
optimization in combination with random sampling of initial parameters is
used (Powell, 2009). Other globally convergent optimization methods such
as simulated annealing or evolutionary algorithms yield the same results,
but turn out to be slower. Derivative-based optimization methods are not
recommended, as no derivative information of Eq. (33) is available.

5 Case studies

Two case studies are considered, one based on a set of pedestrian counter-
flow experiments conducted in Hong Kong, China, and one based on a
pedestrian cross-flow experiment in Berlin, Germany. The first is particu-
larly useful in that it explores a large range of pedestrian traffic conditions,
and the second in that it considers the walking behavior of a typical stu-
dent population in their daily environment. From a methodological point
of view, the first case study allows us to investigate aspects such as model
performance, robustness and predictive power, and the second case study is
useful for obtaining a concrete specification applicable to real case studies.

5.1 Counter-flow experiments

Wong et al. (2010) provide a set of 89 controlled experiments in which two
pedestrian groups of varying size intersect at different angles. These exper-
iments were carried out in a sports hall in Hong Kong, and video footage is
available. Among the set of experiments, those with high densities and an
intersection angle of 180◦ yield the highest level of anisotropy (Wong et al.,
2010). Table 1 provides a list of the corresponding experiments, and Fig. 2
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describes the 3 m wide and 9 m long walking corridor for the controlled
experiments.

(a) Sample image extracted from experiment #85
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(b) Walkway configuration

Figure 2: Experimental setup of counter-flow experiments (Wong et al., 2010).

Table 1: Observed walking speeds in counter-flow experiments.

Exp. major group minor group

#84 87 ped 1.08± 0.15 m/s – –
#85 79 1.19± 0.13 9 ped 0.80± 0.14 m/s
#86 68 0.90± 0.10 18 0.74± 0.15

#87 61 0.82± 0.06 26 0.67± 0.10

#88 53 0.83± 0.09 30 0.79± 0.15

#89 44 0.79± 0.10 44 0.79± 0.18

Each experiment is conducted once and lasts about 1 min. Pedestri-
ans associated with the major group wear blue hats, and those associated
with the minor group wear green hats. Due to a flat viewing angle and
high density, no automatic data processing is feasible. Instead, we have
manually extracted the departure and travel time of each pedestrian in the
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six experiments of interest. The ratio of the pedestrian group size varies
from approximately 10:0, 9:1, 8:2, 7:3, 6:4 to 5:5, of which the first and last
experiment yield isotropic flows.

To evaluate the proposed model, we calibrate the various specifications
on two experiments, and cross-validate on the remaining ones. We have
tested different compositions and sizes of the training and validation sets,
but the results do not change significantly. Importantly, the training set
should contain experiments with anisotropic walking behavior. In the fol-
lowing, experiments #85 and #87 are used for calibration, and experiments
#84, 86, 88 and 89 for validation. Table 2 shows the obtained parameter
values and the corresponding AIC values. The number of observations
available for each experiment corresponds to number of pedestrians in-
volved, and is indicated in brackets. The number of estimation parameters
is two, three, four and four for the Zero-, Drake-, Weidmann and SbFD-
model, respectively.

Table 2: Results of calibration and validation on counter-flow experiments.

Zero-Model Drake SbFD Weidmann

AICcalib
85,87 (175 obs.) 837.7 754.0 704.5 729.4

vf [m/s] 1.166 ± 0.001 1.170± 0.001 1.115± 0.000 1.169 ± 0.001

µ [-] 1.43± 0.06 12.15 ± 0.29 10.18 ± 2.02 14.84 ± 0.30

ϑ [m4] 0.078± 0.000 0.001± 0.004

β [m2] 0.210 ± 0.005

γ [m-2] 4.92± 0.20

kj [m-2] 6.58± 0.46

AICvalid
84 (87 obs.) 355.2 338.4 311.4 348.2

AICvalid
86 (86 obs.) 381.7 371.3 355.3 401.4

AICvalid
88 (83 obs.) 400.3 384.6 364.0 435.3

AICvalid
89 (88 obs.) 458.2 408.8 396.8 454.6

The stream-based pedestrian fundamental diagram (SbFD) reaches a
better AIC value than the two other fundamental diagrams (Weidmann,
Drake), both as far as the training set and the validation experiments are
concerned. Interestingly, this not only holds for the anisotropic experi-
ments (#86, #88), but also for the uni-directional pedestrian flow exper-
iment (#84) and that with equal flow shares (#89). A look at the mean
travel times for the major and minor pedestrian groups in each experiment
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corroborates that finding (see Table 3). The SbFD-model is able to esti-
mate travel times that are closer to the ones observed, in particular for the
minor group. This can also be seen from the significant reduction in the
squared error reported at the bottom of Table 3.

Table 3: Travel times for counter-flow validation experiments.

Exp. Groups ttobs [s] ttZero [s] ttDrake [s] ttSbFD [s] ttWeidmann [s]

#84 87 / 0 8.5 / - 9.5 / - 9.1 / - 8.1 / - 8.3 / -
#86 68 / 18 10.1 /12.7 9.5 / 9.5 10.0 / 10.8 9.4 /12.5 8.8 / 9.5
#88 53 / 31 10.9 /11.8 9.5 / 9.5 10.0 / 10.6 10.3 /11.7 8.9 / 9.2
#89 44 / 44 11.8 /11.6 9.5 / 9.5 11.6 / 11.4 11.7 /11.6 9.7 / 9.9

L2-error (weighted, [s]) 21.4 / 23.4 9.0 / 10.5 7.9 / 0.7 22.3 / 23.3

In Table 2, the obtained estimates for the free-flow walking speed vary
between 1.115 m/s and 1.170 m/s with generally small errors. For the same
parameter, Wong et al. (2010) report a value of 1.034 m/s, which is slightly
lower. With the exception of the result for the zero-model (µ = 1.43), the
values obtained for the path choice parameter µ lie in the range between
10 and 15, which is relatively high (as a comparison to the second case
study will show). A high value implies that pedestrians tend to stick to
the fastest path, which in an experiment like this is expected. A low value
on the other hand leads to dispersion, which explains the low estimate
obtained by the zero-model. Dispersion is the only way for the zero-model
to reproduce a distribution of travel times for a given route, since it does
not take into account any density-speed interaction.

The remaining parameters shown in Table 2 are in line with the lit-
erature, too. For the Drake-model, the obtained value of ϑ (0.078 m4)
is in good agreement with previous estimates by Wong et al. (2010) and
Xie and Wong (2015), reporting 0.075 m4 and 0.065 m4, respectively. The
same parameter estimate for SbFD is significantly lower (ϑ = 0.001 m4)
since a significant reduction in walking speed at high densities is ‘explained’
by the friction with opposing pedestrian streams instead. This effect is
quantified by the parameter β, for which no comparison to the literature
exists. Regarding the Weidmann-specification, the values obtained for the
jam density and shape parameter, kj = 6.58 m−2 and γ = 4.92 m−2, are
high compared to a European context, for which values of kj = 5.4 m−2
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and γ = 1.913 m−2 are reported (Weidmann, 1992). In the Hong Kong
experiment, pedestrians are apparently particularly tolerant towards high
densities, reducing their walking speed less with increasing density. This
is in line with observations from the video footage, and with observations
from previous researchers investigating differences in fundamental diagrams
across countries (Chattaraj et al., 2009).

5.2 Cross-flow experiment

Plaue et al. (2014) present a multi-directional pedestrian flow experiment
taking place in the entrance hall of a university building at TU Berlin,
Germany. Unlike in the previous example, pedestrians are not confined to
a pre-defined corridor, and not ‘conditioned’ from foregoing experiments.
The observed population consists primarily of students, of which many
carry backpacks, musical instruments, or wear heavy winter clothing. The
setting is video-recorded using three networked cameras, and trajectories of
pedestrians are extracted using a semi-automatic photogrammetric method.

In total, 142 pedestrians traverse the hall from left to right, and 83
pedestrians from top to bottom (see Fig. 3). They intersect at an angle of
roughly 90◦ in a region of about 25 m2. According to Plaue et al. (2014), the
maximum density amounts to 5 ped/m2 and the duration of the experiment
is 69 s. Fig. 3 shows a sample image of the experimental environment, as
well as of the modeling configuration of the walking area concerned. As can
be seen from Fig. 3b, the various entrance and exit zones are modeled by
six origin/destination nodes. Local obstacles, namely the two supporting
columns, are considered by an according reduction of the surface size of the
affected areas.

The various model parameters are calibrated on the full data set (see
Table 4). The number of observations corresponds to 225 measurements of
travel times. Considering the decrease in the AIC value as compared to the
zero-model, all ‘non-trivial’ fundamental diagrams represent improvements,
with the anisotropic SbFD having the lowest AIC value overall.

The parameter estimates shown in Table 4 are in agreement with in-
tuitive expectations. The free-flow walking speeds are estimated between
1.307 m/s and 1.332 m/s, which is similar to previous studies from Europe
(e.g. 1.34 m/s according to Weidmann, 1992). The path choice parameter
lies in the range between 1.16 and 2.64, which is significantly lower than
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(a) Sample image
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Figure 3: Setting of cross-flow experiment at TU Berlin (Plaue et al., 2014).

Table 4: Results of calibration on cross-flow experiment.

Zero-Model Drake SbFD Weidmann

AIC 1160.0 1101.0 1062.6 1098.8

vf [m/s] 1.307 ± 0.005 1.308± 0.001 1.308± 0.006 1.332 ± 0.002

µ [-] 1.16 ± 0.03 1.39± 0.02 2.64 ± 0.41 2.05± 0.20

ϑ [m4] 0.139± 0.004 0.143± 0.004

β [m2] 0.300± 0.008

γ [m-2] 1.76± 0.15

kj [m-2] 5.99± 0.61

that in the Hong Kong experiments. Pedestrians seem more willing to de-
viate from the fastest path, for instance to avoid zones of high density. The
entrance hall at TU Berlin leaves more room for such deviations than the
narrow corridor used in the Hong Kong experiments. The values obtained
for the remaining parameters are comparable to the ones found in the pre-
vious case study. The sensitivity to density is however larger, as can be
seen from the higher values of ϑ and β, as well as the lower values of γ

and kj. Besides differences in the experimental conditions, this is likely
due to the larger physique of European people and their lower tolerance to
invasion of space (Lam et al., 2002).

Of all parameters, the path choice parameter µ has the largest relative
standard deviation from the mean, referred to as the coefficient of variation
(CoV). For SbFD, the CoV of µ corresponds to 15.6%. In turn, the relative
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standard deviation of the free-flow walking speed vf is the lowest with
a CoV of 0.5%. This is in agreement with our experience, according to
which identifying the optimal value of vf is relatively easy, whereas the
calibration of µ takes more computational time. It is likely that a more
realistic specification of the en-route path choice model, or the use of other
data than travel times would improve its identifiability.

A further way to validate the estimation results is with the observed
travel times. Fig. 4 provides a scatter plot, comparing the observed travel
time of pedestrian i, ttobs

i , to the estimated travel time distribution of the
corresponding pedestrian group ℓ(i), as approximated by the mean tt

est
ℓ(i)

(denoted by circles) and the standard deviation (error bars). For visual
guidance, a 45◦-reference line (dashed), as well as two isolines (dotted)
representing a deviation of ∆t = ±5 s are shown. In the figure captions,
the squared error is given for each specification.

As expected, the zero-model (Fig. 4a) cannot reproduce the full range
of observed travel times, as they are simply proportional to the walked
path lengths. It can be seen by the horizontal ‘stripes’ that appear in
the scatter plot. Similarly, the Drake-specification (Fig. 4b) predicts travel
times that are confined to a relatively narrow band that does not represent
the bandwidth observed in reality. The Weidmann-specification (Fig. 4c)
is able to reproduce the full width, but with such significant scattering
that no improvement in the squared error as compared to the Drake-model
is achieved. The SbFD-specification (Fig. 4d) finally is able to reproduce
the observed width, and the squared error is significantly reduced. The
spreading is narrower than that for Weidmann, and the estimated walking
time distributions come to lie closer to the 45◦-reference line.

Table 5: Aggregate route travel times for Berlin case study.

Nped ttobs [s] ttZero [s] ttWeidmann [s] ttDrake [s] ttSbFD [s]

W→E (9 m) 118 12.4 (base) 10.8 (-12.7%) 14.0 (+12.6%) 13.3 (+7.2%) 12.6 (+1.8%)

N→SE/SW (7 m) 46 10.6 (base) 8.4 (-21.3%) 9.9 (-6.8%) 10.0 (-6.2%) 10.9 (+2.2%)

In relation to these scatter plots for the Berlin case study, Table 5
summarizes both the observed and estimated aggregate travel times for the
two most frequently used routes. Route ‘W→E’ (right to left) carries the
major pedestrian flow, and has a length of 9 m. Route ‘N → SE/SW’ (top
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Figure 4: Scatter plot of walking times for Berlin case study.

to lateral nodes at the bottom) carries the minor pedestrian flow, and is
approximately 7 m long. The observed average walking speed of the major
stream amounts to 0.72 m/s (= 9 m/12.4 s), whereas for the minor stream
a walking speed of 0.66 m/s (= 7 m/10.6 s) is observed, i.e., anisotropy is
clearly present. This anisotropy is not reproduced by neither the Drake-
nor the Weidmann-based specification, which both overestimate the travel
time of the major stream, and underestimate the travel time of the minor
stream. The stream-based fundamental diagram (SbFD), however, yields
travel time estimates with errors falling in the range between 1.8% and 2.2%
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only. This shows that the explicit consideration of anisotropy for estimating
the walking times is not only highly beneficial at the disaggregate, but also
at the aggregate level.

6 Discussion

A strength of the proposed model is its computational performance, which
stems from its three constituting components. These are Hughes’ con-
tinuum theory on which it is phenomenologically based, the concept of a
stream-based pedestrian fundamental diagram to capture anisotropy, and
an adapted version of the cell transmission model for the numerical dis-
cretization. On a standard desktop machine, the pedestrian flows occur-
ring in the Berlin case study can be computed for a given parameter set
in about one second, which is almost 100 times faster than real-time. By
making use of multiple cores, as done for the calibration, the computation
speed can be further increased with the number of available processors.

The parametrization obtained for the two case studies differ slightly,
but these differences are well explained. The tightly controlled experimen-
tal conditions and high conformity of the test subjects in the Hong Kong
experiments lead to a route choice behavior that is mainly characterized
by the pursuit of the shortest path. In the Berlin case study, pedestrians
tend to deviate more from the shortest path, for instance to avoid areas
of high density. The resulting values of the en-route path choice param-
eter µ reflect that behavior. The obtained values for free-flow speed and
shape parameters of the fundamental diagrams are in good agreement with
the literature. They are consistent with the regional differences between
Europe and Asia that are reported in the literature, namely differences
in physiques and personal space (Lam et al., 2002; Chattaraj et al., 2009).
The successful calibration is particularly encouraging since only the pedes-
trian demand and walking times are required, while typically the estimation
of fundamental diagrams necessitates measurements of density and speed.
For the calibration of multi-directional fundamental diagrams, usually even
trajectory data is required, which is expensive to collect.

Due to the pseudo likelihood setting, standard tools for statistical test-
ing cannot be directly applied. However, the investigated values of travel
times and AIC consistently favor the proposed anisotropic formulation
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throughout the analysis. Importantly, the AIC value takes the different
number of parameters across specifications into account. The use of a
stream-based pedestrian fundamental diagram thus clearly improves the
accuracy of the results. We hope that this finding will inspire other re-
searchers to consider the impact of anisotropy in macroscopic pedestrian
flow models.

If the proposed model is to be used for a practical application with-
out further calibration, we suggest to use the parametrization obtained
from the Berlin case study, whose experimental conditions are particularly
realistic. The corresponding specification of the stream-based pedestrian
fundamental diagram is illustrated by Fig. 5. The contour plot shows the
expected walking speeds in a bi-directional counter-flow scenario for various
total densities (represented by the x-axis), and different flow ratios (y-axis).
Due to the symmetry of the problem, only the speed of one stream is shown.
At low densities, the difference in speed between the two opposing streams
is relatively small, independent of the flow ratio. The prevalent speeds are
close to the free-flow speed. At high total densities (≥ 1.5 ped/m2), the
prevalent speed of the major stream can be several times higher than that
of the minor stream, and speeds are in general lower.

The proposed model seems highly useful for the planning and de-
sign of congested walking facilities that accommodate multi-directional
flow. Typically, the assessment of pedestrian infrastructures is based
on aggregate quantities such as density and specific flow (Fruin, 1971;
Highway Capacity Manual, 2000). This information is readily available
from the model, allowing a quantitative prediction of the expected level-of-
service in pedestrian facilities (see Hänseler et al., 2015a, for an example).
Due to the performance of the model, a large number of infrastructure
configurations and complex walking networks can be evaluated in little
time. Even an automated optimization may be considered, using for in-
stance an evolutionary framework to ‘streamline’ the design of a facility
(Helbing et al., 2002). Besides, an application of the model within a DTA-
framework or for OD demand estimation seems interesting for further study,
as it is one of very few models that allow to generate reproducible and accu-
rate walking time distributions in a single run and at low cost (Seer et al.,
2008; Hänseler et al., 2015b).

The main limitations of the model, on the other hand, are related to
the exclusive consideration of macroscopic walking, ignoring other activi-
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Figure 5: Walking speed for bi-directional flow (SbFD, Berlin data).

ties such as waiting or phenomena involving social interaction between in-
dividuals. For instance, group walking patterns are known to significantly
influence crowd dynamics (Moussaïd et al., 2010). Moreover, phenomena
of self-organization are not reproduced by the proposed model specifica-
tion. The use of a more complex en-route path choice model may allow
to describe the formation of lanes, in particular if besides the distance to
destination also the local density is taken into account.

7 Conclusions

A dynamic network loading model for congested, multi-directional and
time-varying pedestrian flows has been presented in this paper. Its nov-
elty lies in the explicit consideration of anisotropy within a macroscopic
framework, which is achieved by using a ‘stream-based’ fundamental di-
agram for pedestrian traffic. To assess the performance of the proposed
model, several isotropic and anisotropic specifications are considered, and
evaluated at the example of two case studies. The first considers a set of
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pedestrian counter-flow experiments in Hong Kong, covering a particularly
large range of experimental conditions. The second case study focuses on
a pedestrian cross-flow experiment in Berlin, involving students in a uni-
versity environment. A detailed analysis shows that the consideration of
anisotropy significantly improves the accuracy of the proposed model, and
that a stream-based pedestrian fundamental diagram outperforms all of
the tested isotropic specifications. The obtained specifications of pedes-
trian fundamental diagrams are in excellent agreement with the literature.
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A Stream-based fundamental diagrams

The stream-based fundamental diagram ‘SbFD’ that is defined by Eq. (24)
belongs to a class of density-speed relationships for which the walking speed
of pedestrian stream λ can be expressed as

Vλ = VfR
iso
ξ

∏

λ′∈Λ

exp(−γλ,λ′kλ′). (34)

In Eq. (34), the variable Vf denotes the free-flow walking speed, Riso
ξ ∈ [0, 1]

an isotropic reduction factor, γλ,λ′ a parameter describing the friction of
stream λ′ on stream λ, and kλ′ the density of stream λ′ (defined as Mλ′/Aξ′

in the loading model, where Aξ′ is the size of area ξ′ with λ′ ∈ Λξ′).
The isotropic reduction factor Riso

ξ (kξ) is a function of the area density
kξ =

∑
λ∈Λ kλ. In agreement with the monotonicity assumption stated in
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Eq. (3), it is required that
∂Riso

ξ

∂kξ

≤ 0. (35)

The parameter γλ,λ′ is assumed to be independent of the densities of streams
λ and λ′, as well as independent of the properties of any other stream.
Typically, γλ,λ′ is a function of the intersection angle ϕλ,λ′ between streams
λ and λ′. It is assumed that the pair-wise friction between parallel streams
is zero, i.e.,

γλ,λ′ = 0 if ϕλ,λ′ = 0. (36)

Stream-based fundamental diagrams that can be expressed in the form of
Eq. (34) and fulfill Eq. (36) are ‘self-consistent’. This property is illustrated
at an example. Consider a stream configuration as shown in Fig. 6a, where
streams A, B′ and B′′ with kA, kB′, kB′′ 6= 0 interact. In the limit case

A

B′

B′′

ϕB′,B′′ → 0

(a) Three streams

A B

kB = kB′ + kB′′

(b) Two streams

Figure 6: Illustration of self-consistency.

ϕB′,B′′ → 0, the resulting speeds are equivalent to those obtained for the
configuration shown in Fig. 6b, where the streams B′ and B′′ are ‘merged’
to a single stream B such that kB = kB′ + kB′′ . This can be verified by
computing the resulting stream speeds for both configurations. Assuming
that ϕB′,B′′ = 0 and ϕA,B = ϕA,B′, one obtains for stream A

VfR
iso
ξ exp(−γA,B′kB′) exp(−γA,B′′kB′′) = VfR

iso
ξ exp(−γA,BkB), (37)

where the LHS corresponds to Fig. 6a, and the RHS to Fig. 6b. Eq. (37)
holds true since γA,B = γA,B′ = γA,B′′ and kB = kB′ +kB′′ . For stream B, one
obtains

VfR
iso
ξ exp(−γB′,AkA) exp(−γB′,B′′kB′′) = VfR

iso
ξ exp(−γB,AkA), (38)

which holds true since γB,A = γB′,A and γB′,B′′ = 0.
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The self-consistency of fundamental diagrams associated with Eq. (34)
is notably due to the exponential form of the product terms, the linearity
of the exponent (−γλ,λ′kλ′) in kλ′ , its independence from any other stream
densities, and due to the assumed absence of inner friction as expressed
by Eq. (36). Self-consistency is desirable for theoretical reasons, but also
to avoid a recalibration of the model in case parallel streams are merged
(see Fig. 6). Particular emphasis is given to that property as already in
the Berlin case study multiple parallel streams are present (see diagonal
streams in Fig. 3b). If only a small number of streams with distinct angles
are considered, self-consistency may be less relevant. For instance, the
specifications provided by Wong et al. (2010) and Xie and Wong (2015)
cannot be cast in the form of Eq. (34).

The SbFD defined in Eq. (24) results from Eq. (34) by setting Riso
ξ =

exp(−ϑk2
ξ) as well as γλ,λ′ = β(1− cos(ϕλ,λ′)). We have tested several spec-

ifications of the isotropic reduction term Riso
ξ , including those proposed by

Tregenza (1976) and Weidmann (1992), as well as a linear specification
(Older, 1968; Navin and Wheeler, 1969). This set of specifications is mo-
tivated by the findings of Nikolić et al. (2015). An analysis based on the
case studies discussed in Section 5 shows that the Drake-model performs
best (Fonseca, 2015). This is in line with the results by Wong et al. (2010)
and Xie and Wong (2015), who also use the Drake-model to specify the
isotropic reduction term.

Likewise, we have examined several specifications of the parameter γλ,λ′

that describes the dependency of the pair-wise stream friction on the in-
tersection angle ϕλ,λ′ . A comparison with a linear and a piece-wise linear
model shows that the chosen trigonometric specification yields the best
performance, at least as far as the AIC and BIC are concerned. The speci-
fication γλ,λ′ = β(1− cos(ϕλ,λ′)) naturally respects Eq. (36), and it is sym-
metric with respect to the 180◦-plane and 360◦-periodic. It implies that
the friction between streams is maximal for head-on flow, and that the
friction grows most rapidly at an intersection angle of ϕ = 90◦, i.e., when
the behavioral regime changes from ‘leader-follower’ to ‘collision avoidance’
(Bierlaire and Robin, 2009). Within each of these behavioral regimes, the
friction still grows with an increasing intersection angle, but not as much as
at the transitional angle ϕ = 90◦, where the slope amounts to dγ/dϕ = β.
Wong et al. (2010) propose the same relationship to describe the γ–ϕ-
dependency, whereas Xie and Wong (2015) consider a specification that
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is not symmetric with respect to the 180◦-plane.
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