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Abstract

This thesis looks at efficient information processing for two network applications:
content delivery with caching and collecting summary statistics in wireless sensor
networks. Both applications are studied under the same paradigm: function com-
putation over networks, where distributed source nodes cooperatively communicate
some functions of individual observations to one or multiple destinations. One ap-
proach that always works is to convey all observations and then let the destinations
compute the desired functions by themselves. However, if the available communica-
tion resources are limited, then revealing less unwanted information becomes critical.
Centered on this goal, this thesis develops new coding schemes using information-
theoretic tools.

The first part of this thesis focuses on content delivery with caching. Caching
is a technique that facilitates reallocation of communication resources in order to
avoid network congestion during peak-traffic times. An information-theoretic model,
termed sequential coding for computing, is proposed to analyze the potential gains
offered by the caching technique. For the single-user case, the proposed framework
succeeds in verifying the optimality of some simple caching strategies and in pro-
viding guidance towards optimal caching strategies. For the two-user case, five rep-
resentative subproblems are considered, which draw connections with classic source
coding problems including the Gray–Wyner system, successive refinement, and the
Kaspi/Heegard–Berger problem. Afterwards, the problem of distributed computing
with successive refinement is considered. It is shown that if full data recovery is
required in the second stage of successive refinement, then any information acquired
in the first stage will be useful later in the second stage.

The second part of this thesis looks at the collection of summary statistics in
wireless sensor networks. Summary statistics include arithmetic mean, median,
standard deviation, etc, and they belong to the class of symmetric functions. This
thesis develops arithmetic computation coding in order to efficiently perform in-
network computation for weighted arithmetic sums and symmetric functions. The
developed arithmetic computation coding increases the achievable computation rate
from Θ((logL)/L) to Θ(1/ logL), where L is the number of sensors. Finally, this
thesis demonstrates that interaction among sensors is beneficial for computation of
type-threshold functions, e.g., the maximum and the indicator function, and that a
non-vanishing computation rate is achievable.

Keywords: Coded caching, content delivery networks, distributed computing, Gaus-
sian multiple access channel, information redundancy, interactive computation, joint
source–channel coding, multi-terminal source coding, wireless sensor networks.
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Résumé

Cette thèse se penche sur le traitement efficace de l’information pour deux appli-
cations de réseau : la livraison de contenu avec mise en cache et la collecte des
statistiques sommaires dans les réseaux de capteurs sans fil. Les deux applications
sont étudiées selon le même paradigme : le calcul de fonctions dans les réseaux, où
les nœuds de source distribués transmettent de manière coopérative des fonctions
d’observations individuelles vers une ou plusieurs destinations. Une approche qui
fonctionne toujours est de transmettre toutes les observations et d’ensuite laisser
les destinations calculer les fonctions désirées de manière autonome. Toutefois, si
les ressources de communication disponibles sont limitées, il devient alors critique
de révéler moins d’informations non désirées. Centrée sur cet objectif, cette thèse
développe de nouvelles méthodes de codage faisant recours à des outils de la théorie
de l’information.

La première partie de cette thèse se concentre sur la livraison de contenu avec
mise en cache. La mise en cache est une technique qui facilite la réaffectation
des ressources de communication afin d’éviter la congestion du réseau pendant les
périodes de pointe du trafic. Un modèle de la théorie de l’information, appelé codage
séquentiel pour le calcul de fonctions, est proposé pour analyser les gains potentiels
offerts par la technique de mise en cache. Pour le cas d’un utilisateur unique, le cadre
théorique proposé permet de prouver l’optimalité de certaines stratégies simples de
mise en cache et de donner des pistes pour l’élaboration de stratégies optimales de
mise en cache. Pour le cas de deux utilisateurs, cinq sous-problèmes représentatifs
sont pris en compte, qui font le lien avec des problèmes classiques de codage de
source dont le système de Gray–Wyner, le raffinement successif et le problème de
Kaspi/Heegard–Berger. Ensuite, nous abordons le problème de calcul distribué
avec raffinement successif. Il est démontré que si la reconstruction complète de
données est requise dans la deuxième étape du raffinement successif, alors toutes les
informations recueillies au cours de la première étape seront utiles pour la deuxième
étape.

La deuxième partie de cette thèse examine la collecte des statistiques sommaires
dans les réseaux de capteurs sans fil. Les statistiques sommaires comprennent la
moyenne arithmétique, la médiane, l’écart-type, etc., et ils appartiennent à la classe
des fonctions symétriques. Cette thèse développe le codage pour calcul arithmétique
afin d’effectuer efficacement le calcul en réseau de sommes arithmétiques pondérées
et de fonctions symétriques. Le codage pour calcul arithmétique ainsi développé
augmente le taux de calcul réalisable d’une valeur Θ((logL)/L) à Θ(1/ logL), où
L est le nombre de capteurs. Finalement, cette thèse démontre que l’interaction
entre les capteurs est bénéfique pour le calcul de fonctions de seuil appliquées à des
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iv Résumé

histogrammes, comme par exemple la valeur maximale et la fonction indicatrice, et
qu’un taux de calcul non nul est réalisable.

Mots-clés : mise en cache codée, réseaux de diffusion de contenus, calcul dis-
tribué, canaux gaussiens à accès multiple, redondance de l’information, calcul in-
teractif, codage conjoint de source et de canal, codage de source pour terminaux
multiples, réseaux de capteurs sans fil.
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Introduction 1
Traditionally, redundancy refers to the difference between the number of bits to
transmit a message and the number of bits of actual information in the message. In
his seminal paper [1], Shannon established the foundation of lossless data compres-
sion. For a discrete memoryless source (DMS), say ⟨X⟩, Shannon showed that the
rate of actual information in ⟨X⟩ is its entropy H(X).1 Then, we have a reference
point and the redundancy in terms of rate can be defined formally as the difference
between the compression rate R and the entropy H(X), i.e.,

∆ := R−H(X).

There exist many coding schemes, e.g., the Huffman coding, that can make the
redundancy ∆ arbitrarily close to zero as the length of codes increases.

Next, consider the case where two source sequences xk1 and xk2, generated by a
DMS ⟨X1, X2⟩, are observed at two distributed nodes. If we naively compress the
two sequences separately, the required sum rate is H(X1) + H(X2). However, as
shown by Slepian and Wolf in [2], we can achieve the sum rate H(X1, X2) without
any communication between Nodes 1 and 2. In this case, the redundancy can be
defined as the difference between the sum of the individual compression rates R1, R2

and the joint entropy H(X1, X2), i.e.,

∆2 := R1 +R2 −H(X1, X2).

At this point, the vague term “actual information” can be interpreted either as the
information that the destination wants or the information that the destination does
now know. Then, one natural question comes to mind: Is it always possible to
convey only the desired information, without revealing any unwanted information?

The answer turns out to be no. Namely, if we use the entropy of the desired
information as the reference point, then redundancy is inevitable in general. An
example is provided by Körner and Marton in [3] (see Section 2.6 for the details),
where we need twice the entropy of the desired information. Another example is
the problem of source coding with a helper. We will show in Section 2.2 that if the

1The definition of DMS can be found in the beginning of Chapter 2.
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2 Introduction

helper really participates in the communication, then it is inevitable that part of the
information conveyed by the helper is unwanted. Therefore, although we can always
avoid redundancy in representation, it is in general impossible to avoid redundancy
in information. Since information redundancy is inevitable, the best we can do is
to reduce it or even to exploit it.

In this thesis, we study how to deal with information redundancy for two network
applications: content delivery with caching and collecting summary statistics in
wireless sensor networks, under the paradigm of function computation over networks.

• Content Delivery Networks with Caching. In a small-scale content deliv-
ery network, there is only one server, who has access to a database and serves
content to end users. A typical application is video streaming: End users
first send their individual requests to the server. Then, the server fetches the
videos from the database and delivers them to the end users. Note that some
of the desired videos can be correlated or exactly the same. Usually in the
evening, the server receives more requests than in the early morning and thus
network congestion occurs more often. It is fair to say that the communication
resources are evenly distributed over time. Thus, it is desirable to be capable
of moving some workload from the evening period to the morning period.

Recently, caching has drawn a lot of attention due to its high potential in
reallocating the available communication resources. Before knowing the end
users’ requests, cleverly coded partial content is delivered to the end users and
stored in private and/or shared caches. Since the requests are unknown, the
usefulness of the cache content can not be guaranteed. It is likely that the
cache content turns out to be redundant. Nevertheless, by carefully designing
the caching strategy, we can increase its probability of being useful in the
delivery stage. Therefore, caching is a technique for moving communication
resources from the low-traffic time to the peak-traffic time by tolerating some
information redundancy.

• Wireless Sensor Networks. In a wireless sensor network, multiple spatially
distributed autonomous sensors monitor physical and environmental condi-
tions and report their observations to the fusion center, which analyzes the
collected sensor data and takes necessary actions. Typical applications of
wireless sensor networks include air/water quality monitoring and forest fire
detection. Sensor deployment can be costly, so the lifetime of sensors should
be months or even years. Therefore, power efficiency becomes an important
issue for system design.

Traditionally, sensors simply convey all the measured parameters to the fusion
center. However, for many applications, the fusion center is only interested
in acquiring an indication or, more generally, a function of the parameters,
rather than the parameters themselves. Some common functions include av-
erage, median, standard deviation, etc, which are summary statistics. An-
other example is forest fire detection for which only an alarm signal is needed
instead of the whole temperature and/or humidity readings. If the desired
function is not injective (one-to-one), then conveying all the measured param-
eters reveals redundant information which consumes valuable communication
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resources. Therefore, if possible, it is important to develop coding schemes
that can reveal less redundant information.

1.1 Contributions

• Sequential Coding for Computing (Chapters 3 and 4): Content delivery
with caching is formulated as a multi-terminal source coding problem with side
information. The proposed framework naturally takes care of any interrelation
among the various requested contents. Besides, many coding techniques and
insights can be directly borrowed from the well-developed source coding liter-
ature. In particular, we prove rigorously that some intuitive caching strategies
are indeed optimal for the single-user case. Additionally, when the contents
are requested equally likely, we show that the usefulness of the cache content
can be measured by conditional total correlation, which is Wyner’s common
information for the case of two components. From a theoretical point of view,
this new class of problems draws interesting connections with many classic
source coding problems. Two principles resulting from sequential coding and
the Gray–Wyner system are presented. These two principles assist in identify-
ing manageable subproblems in the general multi-user case, for each of which
a single-letter characterization of the optimal rate region is attainable.

• Distributed Computing with Successive Refinement (Chapter 5): The
classic successive refinement problem is extended to the distributed setting
with an emphasis on function computation. We are interested in successive
refinability, which refers to a property of sources and the desired functions
that successively computing the two functions is without loss of optimality.
We restrict attention to the special case where the source sequences have to
be recovered losslessly in the second stage. Both source coding and joint
source–channel coding are considered. In source coding, we show that all
sources are successively refinable in sum rate, no matter which function has
to be recovered in the first stage. In joint source–channel coding, the sources
are assumed independent. For a class of multiple access channels (MAC), we
show that all sources are successively refinable with respect to a class of linear
functions. Finally, when the sources have equal entropy, we provide a simple
sufficient condition of successive refinability for partially invertible functions.

• Function Computation over Linear Multiple Access Channels (Chap-
ters 6 and 7): This part of work is an extension of linear computation coding
developed by Nazer and Gastpar [4]. Based on the observation that a modulo
sum remains an arithmetic sum as long as there is no “wrap around,” we de-
velop arithmetic computation coding for computing weighted arithmetic sums,
weighted modulo sums, frequency histogram, and general symmetric func-
tions over the Gaussian MAC. The arithmetic computation coding achieves

the worst-case computation rate Θ
(

1
logL

)
, where L is the number of sensors.

Note that conveying the full data only achieves a computation rate scaling as

Θ
(
logL
L

)
in the worst case. Assuming noiseless causal feedback is available,

we show that interaction among sensors, enabled by the feedback link, assists
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in providing a non-vanishing computation rate for the class of type-threshold
functions, which is a subclass of symmetric functions.

1.2 Outline

In Chapter 2, we begin with a review of some classic source coding problems in
network information theory including Slepian–Wolf coding, source coding with a
helper, the Gray–Wyner system, and the Kaspi/Heegard–Berger problem. Then,
we review several developments for function computation which includes lossless
coding for computing, the Körner–Marton problem, and linear computation coding.

Chapters 3 and 4 are devoted to the problem of sequential coding for computing
for the single-user case and the two-user case, respectively. We start with a discussion
on the modeling of content delivery networks. For the single-user case, we present
a single-letter characterization of the optimal rate region and discuss the following
three cases in details: independent components, nested components, and uniform
request. Then, we discuss the distributed compress–bin scheme with successive
decoding and the effect of changing decoding order. We end Chapter 3 with a
look at the single-request model. In Chapter 4, five representative subproblems
of the two-user case are considered. The first two subproblems are extensions of
the Gray–Wyner system and the third subproblem is a special case of distributed
computing with successive refinement. The last configuration draws connection with
the Kaspi/Heegard–Berger problem. Finally, we provide a general achievability for
the entire system, which includes the achievable schemes of the five subproblems as
special cases.

Chapter 5 looks at the problem of distributed computing with successive re-
finement. We consider both source coding and joint source–channel coding. The
emphasis is placed on the case where the source sequences have to be recovered
losslessly in the second stage.

Chapter 6 develops arithmetic computation coding for linear MACs. We start
with computing an arithmetic sum over a modulo-3 MAC to gain some insight. Next,
we demonstrate how to compute an arithmetic sum over a Gaussian MAC efficiently
and then extend to frequency histogram and general symmetric functions. We end
with a look at function computation over a symmetric Rayleigh fading MAC.

We consider the symmetric Gaussian MAC with noiseless causal feedback in
Chapter 7. The emphasis is placed on type-threshold functions. We first introduce
a set of auxiliary random variables, also termed descriptions, with an analysis on
its entropy. These descriptions serve as building blocks for interactive coding for
computing. Building upon the arithmetic computation coding in Chapter 6 and the
introduced descriptions, the proposed multi-round group broadcast is presented.

Finally, a conclusion is drawn in Chapter 8.

1.3 Notation and Terminology

Denote by (R,+,×) the field of real numbers and by (Fq,⊕q,⊗q) the finite field
of order q, where q is assumed to be prime throughout the thesis. Sometimes we
drop the subscript if q = 2. We denote by Z+ the set of positive integers and
N := Z+ ∪ {0}. Let

∑
denote the summation over R and

⊕
denote the summation
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over a finite field, whose order will be clear from context. Throughout the thesis,
all logarithms are to base two.

We use calligraphic symbols (e.g., S) to denote sets. However, the symbols E ,
D, and R are preserved to denote encoding functions, decoding functions, and rate
regions, respectively. Denote by | · | the cardinality of a set. We denote A\B := {x ∈
A|x /∈ B}. Random variables and their realizations are represented by uppercase
letters (e.g., S) and lowercase letters (e.g., s), respectively. The probability of an
event A is denoted by P(A) and the expectation (or expected value) of a random
variable X is denoted by E[X]. The probability distribution of a random variable
X is denoted by pX . We say that X (−− Y (−− Z form a Markov chain if pX,Y,Z =
pY pX|Y pZ|Y . X = ∅ means that X is degenerated, i.e., pX(x) = 1 for some arbitrary
x ∈ X . Denote by 1{·} the indicator function of an event and by 1 an all-one vector
with appropriate dimension.

We denote x+ := max{x, 0} for all x ∈ R, log+(x) := max{log(x), 0} for all
x ≥ 0, and [x] := {1, 2, · · · ⌈x⌉} for all x ≥ 1. Given any sequence, tuple, or vector
(x1, x2, · · · , xk), we use two short-hand notations xJ and xJ for the subsequence
(xi : i ∈ J ), for all J ⊂ [k]. For the case J = [k], we use the notation xk,
x[k], and xT interchangeably, where xT is the transpose of the vector x. With an
abuse of notation, we also use the notations {xi} and {xi}i∈J to denote a sequence
(xi : i ∈ Z+) and a tuple (xi : i ∈ J ), respectively. We use boldface symbols (e.g.,

H) to denote matrices. Denote by ∥x∥ =
√∑k

i=1 x
2
i the Euclidean norm of the

vector x ∈ Rk. The binary entropy function hb : [0, 1] → [0, 1] is defined as

hb(q) =

{
−q log(q)− (1− q) log(1− q) if q ∈ (0, 1),

0 if q ∈ {0, 1}.

The usual notation for entropy, H(X), and mutual information, I(X;Y ), is used.
We follow the ϵ–δ notation in [5]. We follow the robust typicality introduced in [6].
For X ∼ pX and ϵ ∈ (0, 1), the set of typical sequences of length k with respect to

the probability distribution pX and the parameter ϵ is denoted by T (k)
ϵ (X), which

is defined as

T (k)
ϵ (X) :=

{
xk ∈ X k :

∣∣∣∣#(a|xk)
k

− pX(a)

∣∣∣∣ ≤ ϵpX(a), ∀a ∈ X
}
,

where #(a|xk) is the number of occurrences of a in xk.
Given two functions f(n) and g(n), we say that f(n) = O(g(n)) if there exists

k > 0 and n0 such that for all n > n0, f(n) ≤ kg(n). We say that f(n) = Ω(g(n)) if
g(n) = O(f(n)). Finally, we say that f(n) = Θ(g(n)) if it holds that f(n) = O(g(n))
and f(n) = Ω(g(n)).





Preliminaries 2
This chapter consists of two parts. In the first part, we review classic multi-terminal
source coding problems: the Slepian–Wolf problem [2], source coding with a helper
[7, 8], the Gray–Wyner system [9], and the Kaspi/Heegard–Berger problem [10, 11].
For the first three problems, we introduce extra side information at the receiver,
which draws a closer connection with the problem of sequential coding for computing
considered in Chapter 3. In the second part, we provide an overview of function
computation in information theory. We start with the problem of lossless coding for
computing with side information [6] and the Körner–Marton problem [3]. Finally,
we review the linear computation coding developed by Nazer and Gastpar [4].

Definition 2.1 (Discrete Memoryless Source). A discrete memoryless source (DMS)
⟨X⟩ is specified by a finite alphabet X and a probability mass function (pmf) pX
over X . The DMS ⟨X⟩ generates an independent and identically distributed (i.i.d.)
random process {Xi} with Xi ∼ pX .

Note that the above definition also includes the multivariate case. For example, if
X = (S1, S2, · · · , SL), then pX = pS1,S2,··· ,SL

, X = S1 ×S2 × · · · × SL, and the DMS
⟨S1, · · · , SL⟩ generates an i.i.d. random process {(S1i, · · · , SLi)}.

Definition 2.2 (Doubly Symmetric Binary Source). Fix α ∈ [0, 1/2]. A doubly
symmetric binary source (DSBS(α)) is a DMS ⟨X1, X2⟩ with X1 = X2 = {0, 1} and

pX1,X2(0, 0) = pX1,X2(1, 1) =
1− α

2
,

pX1,X2(0, 1) = pX1,X2(1, 0) =
α

2
.

Equivalently, one can think of a DSBS(α) follows from the following construction:
Assume that S ∼ Bernoulli(1/2) and Z ∼ Bernoulli(α) are independent. Then,
⟨S, S ⊕ Z⟩ is a DSBS(α).

Definition 2.3 (Discrete Memoryless Channel). A discrete memoryless channel
(DMC) ⟨pY |X⟩ is specified by a finite input alphabet X , a finite output alphabet Y
and a conditional pmf pY |X over X × Y. If an input symbol x ∈ X is transmitted,
the channel outputs the symbol y ∈ Y with probability pY |X(y|x).

7
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Figure 2.1: The problem of distributed lossless source coding.

2.1 Distributed Lossless Source Coding

A DMS ⟨X1, X2, Y ⟩ generates a source sequence (Xk
1 , X

k
2 , Y

k), where k ∈ Z+. There
are two encoding terminals and one decoding terminal. Encoder j ∈ {1, 2} observes
the sequence Xk

j and sends a description Mj ∈ [2kRj ], which is a function of Xk
j ,

to the decoder. The decoder observes Y k and wishes to recover (Xk
1 , X

k
2 ) from

(M1,M2, Y
k) with vanishing error as the length k increases. The system is depicted

in Figure 2.1. The goal is to characterize all rate pairs (R1, R2) that allow lossless
compression.

The optimal rate region R∗ is characterized by Slepian and Wolf in the following
theorem.1

Theorem 2.1 (Slepian–Wolf). Consider the problem of distributed lossless source
coding. The optimal rate region R∗ is the set of rate pairs (R1, R2) such that

R1 ≥ H(X1|X2, Y ),

R2 ≥ H(X2|X1, Y ),

R1 +R2 ≥ H(X1, X2|Y ).

Theorem 2.1 implies that if the decoder wants to recover the full source, then

1. any cooperation between the encoders cannot lower the sum rate;

2. revealing the side information Y k to the encoders cannot enlarge the achievable
rate region.

Besides the original proof from Slepian and Wolf, a more elegant proof is due
to Cover [12], who introduced the random binning argument. Furthermore, Csiszár
showed that the binning operation can be realized by random linear codes [13].

Theorem 2.2 (Csiszár). Fix ϵ ∈ (0, 1] and a finite field Fq with q ≥ max{|X1|, |X2|}.
For j ∈ {1, 2}, let ϕj be any bijection between Xj and Fq. Consider any rate pair
(R1, R2) in the optimal rate region R∗. For k large enough, there exist matrices H1

1We say that a rate region is optimal if each of its boundary points is Pareto optimal, i.e., it is
impossible to make any one individual entry better off without making at least one individual entry
worse off. In this thesis, the optimal rate region of different problems will all be simply denoted by
R∗. It will be clear from the context which problem we are referring to.
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Figure 2.2: The problem of lossless source coding with a helper.

and H2 of size ⌈ kR1
log q ⌉ × k and ⌈ kR2

log q ⌉ × k, respectively, with entries from Fq and an
associated decoding function D(·) such that

P
(
D(H1X̃

k
1 ,H2X̃

k
2 , Y

k) ̸= (Xk
1 , X

k
2 )
)
< ϵ,

where X̃j = ϕj(Xj), j ∈ {1, 2}.

Finally, we remark that a multi-user extension of the problem can also be tackled
in a similar way. Denote by L the number of encoders. Then, the optimal rate region
is the set of rate tuples (R1, R2, · · · , RL) such that for all S ⊆ [L],∑

ℓ∈S
Rℓ ≥ H(XS |XSc , Y ),

where Sc := [L]\S.

2.2 Lossless Source Coding with a Helper

The problem setup of lossless source coding with a helper, as depicted in Figure
2.2, is almost the same as the problem of distributed lossless source coding except
that now the decoder is only interested in recovering Xk

2 , the sequence observed by
Encoder 2. Thus, Encoder 1 serves as a helper to assist Encoder 2 in communicating
Xk

2 to the decoder. The following theorem gives a single-letter characterization of
the optimal rate region. A proof of Theorem 2.3 can be found in [5, Chapter 10.4].

Theorem 2.3 (Wyner/Ahlswede–Körner). Consider the problem of lossless source
coding with a helper. The optimal rate region R∗ is the set of rate pairs (R1, R2)
such that

R1 ≥ I(X1;V |Y ),

R2 ≥ H(X2|V, Y ),

for some conditional pmf pV |X1
with |V| ≤ |X1|+ 1.

However, different from the problem of distributed lossless source coding, in this
problem setup revealing the side information Y k to Encoder 1 may enlarge the
achievable rate region. One example is the problem of sequential coding for com-
puting considered in Chapter 3. Besides, if Encoder 1 wants to participate in the
communication, then in general information redundancy is inevitable. To see this,
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Figure 2.3: An example of source coding with a helper with (X1, X2) ∼ DSBS(0.1)
and Y = ∅. The optimal rate region R∗ is plotted in blue solid and the lower bound on
sum rate is plotted in black dash.

consider the case where X1 and (X2, Y ) have an indecomposable joint distribution
[14, Problem 15.12]. The optimal sum rate can be lower bounded as

R1 +R2 ≥ I(X1;V |Y ) +H(X2|V, Y )

= I(X1;V |Y ) +H(X2|Y )− I(X2;V |Y )
(a)
= I(X1, X2;V |Y ) +H(X2|Y )− I(X2;V |Y )

= H(X2|Y ) + I(X1;V |X2, Y )

≥ H(X2|Y ),

where (a) follows since V (−− X1 (−− (X2, Y ) form a Markov chain. Therefore,
in order to attain the minimum sum rate, it requires that I(X1;V |X2, Y ) = 0, i.e.,
V (−− (X2, Y ) (−− X1 form a Markov chain. Since X1 and (X2, Y ) have an inde-
composable joint distribution, the two Markov chains imply that V is independent of
(X1, X2, Y ) [14, Problem 16.25]. That is, to achieve the minimum sum rate Encoder
2 cannot accept any help from Encoder 1.

Example 2.1. Let ⟨X1, X2⟩ be a DSBS(α) and Y = ∅. For this case, the optimal
rate region R∗ is characterized by Wyner [15] as the set of rate pairs (R1, R2) such
that

R1 ≥ 1− hb(β),

R2 ≥ hb(β(1− α) + (1− β)α),

for some β ∈ [0, 1/2]. As shown in Figure 2.3, the minimum sum rate can only be
attained at R1 = 0.
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Figure 2.4: The Gray–Wyner system.

2.3 Gray–Wyner System

A DMS ⟨X1, X2, Y ⟩ generates a source sequence (Xk
1 , X

k
2 , Y

k). There are three
encoding terminals and two decoding terminals. The encoders observe the sequence
(Xk

1 , X
k
2 ) and the decoders observe the sequence Y k. Encoder j ∈ {1, 2} sends a

descriptionMj ∈ [2kRj ] to Decoder j and Encoder 0 sends a descriptionM0 ∈ [2kR0 ]
to both decoders. The messages M0,M1,M2 are functions of (Xk

1 , X
k
2 ). Decoder

j ∈ {1, 2} observes Y k and wishes to recover Xk
j from (M0,Mj , Y

k) with vanishing
error as the length k increases. The system is plotted in Figure 2.4. The goal is
to characterize all rate triples (R0, R1, R2) that admit lossless compression. The
following theorem gives a single-letter characterization of the optimal rate region.

Theorem 2.4 (Gray–Wyner). Consider the Gray–Wyner system. The optimal rate
region R∗ is the set of rate triples (R0, R1, R2) such that

R0 ≥ I(X1, X2;V |Y ),

R1 ≥ H(X1|V, Y ),

R2 ≥ H(X2|V, Y ),

for some conditional pmf pV |X1,X2
with |V| ≤ |X1||X2|+ 2.

From Theorem 2.4, we observe that it is optimal that Encoder 0 acts as a helper for
Encoders 1 and 2. The optimal sum rate can be lower bounded as

R0 +R1 +R2 ≥ I(X1, X2;V |Y ) +H(X1|V, Y ) +H(X2|V, Y )

= H(X1, X2|Y ) + I(X1;X2|V, Y )

≥ H(X1, X2|Y ).

As can be seen, in order to attain the minimum sum rate H(X1, X2|Y ), the common
rate R0 should be at least as large as

min
pV |X1,X2

s.t. I(X1;X2|V,Y )=0

I(X1, X2;V |Y ),

which is known as Wyner’s common information [16] when Y = ∅. For other notions
of common information related to the Gray–Wyner system, we refer the reader to
[5, Chapter 14.2.1].
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Figure 2.5: The Kaspi/Heegard–Berger Problem.

2.4 Kaspi/Heegard–Berger Problem

Here we present a lossless version of the Kaspi/Heegard–Berger Problem. A DMS
⟨X1, X2, Y1, Y2⟩ generates a source sequence (Xk

1 , X
k
2 , Y

k
1 , Y

k
2 ). There are one en-

coding terminal and two decoding terminals. The encoder observes the sequences
(Xk

1 , X
k
2 ) and Decoder j ∈ {1, 2} has side information Y k

j . The encoder sends a

description M ∈ [2kR], a function of (Xk
1 , X

k
2 ), to both decoders. Decoder j ∈ {1, 2}

wishes to recover Xk
j from (M,Y k

j ) with vanishing error as the length k increases.
The system is plotted in Figure 2.5. The goal is to characterize the minimum com-
pression rate. Unfortunately, this problem remains open in general. Nevertheless,
for the following special cases, the optimal rates are known:

1. X1 = X2 [17];

2. X1 is a function of X2, or vice versa [18];

3. the side information is physically degraded [11];

4. the side information is conditionally less noisy [19].

The case where the encoder also knows the side information was studied in [20, 21].
The problem has also been extended to multiple decoders [22]. To conclude this
section, we present an achievable compression rate, which follows by first sending a
common description U and then performing the Slepian–Wolf coding for individual
destinations.

Proposition 2.1 ([21, Lemma 1]). Consider the (lossless) Kaspi/Heegard–Berger
problem. The optimal compression rate R∗ is upper bounded by

R∗ ≤ min
pU|X1,X2

{
max

j∈{1,2}
{I(X1, X2;U |Yj)}+H(X1|U, Y1) +H(X2|U, Y2)

}
,

where |U| ≤ |X1||X2|+ 3.
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2.5 Lossless Coding for Computing

We now review the problem of lossless coding for computing with side information [6]
(see Figure 2.6). There is a DMS ⟨X,Y ⟩ which generates a source sequence (Xk, Y k).
The encoder observes the sequence Xk and sends a message M ∈ [2kR] to the
decoder. The decoder observes the sequence Y k and wishes to recover an element-
wise function f(x, y) with vanishing error as k increases. The goal is to characterize
the minimum compression rate such that the decoder can recover the desired function
losslessly. The following theorem gives a single-letter characterization of the optimal
compression rate.

Theorem 2.5 (Orlitsky–Roche). Consider the problem of lossless coding for com-
puting. The optimal rate R∗ can be expressed as

R∗ = min
pV |X

s.t. H(f(X,Y )|V,Y )=0

I(X;V |Y ),

with |V| ≤ |X |+ 1.

We remark that the optimal compression rate can be further refined as the con-
ditional graph entropy [6] (see also [5, Chapter 21.1]). Here we provide a proof of
Theorem 2.5 without the details of the analysis of error probability, which follows
essentially the same lines as [5, Chapter 11.3]. Our main goal is to review the stan-
dard random coding arguments for achievability: joint typicality encoding, binning,
and joint typicality decoding and the standard procedure for the converse proof,
which will be heavily used in Chapters 3 and 4.

Proof: For convenience, denote si = f(xi, yi), i ∈ [k].
(Achievability.) Fix the conditional pmf pV |X such that H(f(X,Y )|V, Y ) = 0.

Let pV (v) =
∑

x∈X pX(x)pV |X(v|x), for all v ∈ V. Since H(f(X,Y )|V, Y ) = 0, there
exists a function g such that g(V, Y ) = f(X,Y ) almost surely.

Codebook generation: Randomly and independently generate ⌈2kR⌉⌈2kR̃⌉ se-
quences vk(m, ℓ),m ∈ [2kR], ℓ ∈ [2kR̃], each according to

∏k
i=1 pV (vi). The codebook

is revealed to both the encoder and the decoder.
Encoding: Upon seeing the sequence xk, the encoder finds an index pair (m, ℓ)

such that (xk, vk(m, ℓ)) ∈ T
(k)
ϵ′ (X,V ). If there is more than one such index, it selects

the one that minimizes m⌈2kR̂⌉+ ℓ. If there is no such index, it sets (m, ℓ) = (1, 1).
Then, the encoder sends the index m to the decoder.

Decoding: Let ϵ > ϵ′. Upon seeing the index m, the decoder finds the unique

index ℓ̂ such that (vk(m, ℓ̂), yk) ∈ T (k)
ϵ (V, Y ); otherwise it sets ℓ̂ = 1. The decoder

then computes the reconstruction sequence ŝi = g(vi(m, ℓ̂), yi) for all i ∈ [k].
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We skip the analysis of error probability, the details of which can be found in [5,

Chapter 11.3.1]. Finally, if it holds that (V k(M,L), Xk, Y k) ∈ T
(k)
ϵ (V,X, Y ), then

from the union bound and the typical average lemma we have

P

(
k∪

i=1

{g(vi, Yi) ̸= f(Xi, Yi)}
∣∣∣(vk, Xk, Y k) ∈ T (k)

ϵ

)

≤
k∑

i=1

P
(
{g(vi, Yi) ̸= f(Xi, Yi)}

∣∣∣(vk, Xk, Y k) ∈ T (k)
ϵ

)
≤ k(1 + ϵ)P(g(V, Y ) ̸= f(X,Y ))

= 0.

(Converse.) Denote by M the message sent by the encoder and by Ŝk the
estimate of Sk. Let Q ∼Uniform([k]) be independent of (Xk, Y k). First, we have

kR ≥ H(M |Y k)

= I(Xk;M |Y k)

=

k∑
i=1

I(Xi;M |Xi−1, Y k)

(a)
=

k∑
i=1

I(Xi;M,Xi−1, Y [k]\{i}|Yi)

(b)
=

k∑
i=1

I(Xi;Vi|Yi),

(c)
=

k∑
i=1

I(Xi;Vi|Yi, Q = i),

= kI(XQ;VQ|YQ, Q),
(d)
= kI(XQ;VQ, Q|YQ),

where (a) follows since (Xi−1, Y [k]\{i}) (−− Yi (−− Xi form a Markov chain and
(c) and (d) follow since Q is independent of (Xk, Y k). For the step (b), we define

Vi = (M,X i−1, Y [k]\{i}). Next, denoting P
(k)
e = P(Ŝk ̸= Sk), we have

hb(P
(k)
e ) + kP

(k)
e log(|S|)

(a)

≥ H(Sk|Ŝk)
(b)

≥ H(Sk|M,Y k)

=
k∑

i=1

H(Si|M,Si−1, Y k)

≥
k∑

i=1

H(Si|Vi, Yi),

=
k∑

i=1

H(Si|Vi, Yi, Q = i),

= kH(SQ|VQ, Q, YQ),
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Figure 2.7: The problem of distributed lossless computing.

where (a) follows from Fano’s inequality and (b) follows from the data processing
inequality. Note that (XQ, YQ) ∼ pX,Y and that (VQ, Q) (−− XQ (−− YQ form a
Markov chain. Thus, we identify (X,Y, S) = (XQ, YQ, SQ) and set V = (VQ, Q) to
obtain

R ≥ I(X;V |Y ),

H(f(X,Y )|V, Y ) ≤ hb(P
(k)
e )/k + P

(k)
e log(|S|).

Finally, by the assumption that limk→∞ P
(k)
e = 0, the converse is established by

letting k → ∞.

Hereafter, we use the shorthand notation ϵk := hb(P
(k)
e )/k + Pe log |A|, where

the set A will be clear from the context.

2.6 Körner–Marton Problem

Consider the problem of distributed lossless computing depicted in Figure 2.7. In
this problem, the decoder only wishes to recover an element-wise function f(x1, x2)
losslessly rather than the entire source sequences. This problem remains open in
general. Now let us consider a special case studied by Körner and Marton: ⟨X1, X2⟩
is a DSBS(α), where α ∈ [0, 1], and the desired function is the modulo-two sum
f(x1, x2) = x1 ⊕ x2. For all previous problems with known optimality results, we
can use a standard random coding argument to establish the achievability. However,
for this particular instance, it is only known that the optimal compression rate can
be achieved by linear codes, which constitute a class of codes with structures.

Theorem 2.6 (Körner–Marton). Consider the problem of distributed lossless com-
puting. Let ⟨X1, X2⟩ ∼ DSBS(α), where α ∈ [0, 1], and f(x1, x2) = x1 ⊕ x2. Then,
the optimal rate region R∗ is the set of rate pairs (R1, R2) such that

R1 ≥ hb(α),

R2 ≥ hb(α).

Proof: (Converse.) The converse follows from evaluating the outer bound:
R1 ≥ H(f(X1, X2)|X2) and R2 ≥ H(f(X1, X2)|X1). Note that X1⊕X2 is indepen-
dent of each Xj , j ∈ {1, 2}.

(Achievability.) For notational convenience, denote Z = X1 ⊕ X2. First, note
that Theorem 2.2 implies that there exist good linear codes for point-to-point source
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coding. Denote by H the compression matrix of size kR × k for the sequence Zk.
For the decoder to recover Zk losslessly, it requires that R ≥ H(Z) = hb(α). The
compression matrix H is revealed to all nodes. Upon seeing xkj , j ∈ {1, 2}, Encoder j
sends the message Mj = Hxkj to the decoder. Upon seeing M1 and M2, the decoder

first computes the bit-wise modulo-two sum (Hxk1)⊕(Hxk2) = Hzk and then use the
typicality decoding to recover zk. Thus, any rate pair (R1, R2) satisfying Rj ≥ hb(α),
j ∈ {1, 2} is achievable.

From Theorem 2.6, we can observe the following. First, decoding the full se-
quences results in the sum rate 1 + hb(α), which is much higher than the optimal
sum rate when α≪ 1. Second, the entropy of the desired information is hb(α), but
the required sum rate is 2hb(α). Note that for each j ∈ {1, 2}, Xj and X1 ⊕X2 are
independent and thus Mj itself only contains unwanted information. Due to lack of
coordination, this kind of redundancy is inevitable.

Recall that we can think of that (X1, X2) = (S, S⊕Z), where S ∼ Bernoulli(1/2)
and Z ∼ Bernoulli(α) are independent. Thus, the modulo-2 sum is more like a dif-
ference between X1 and X2, instead of a sum. Furthermore, if S is not uniformly
distributed, the superiority of the Körner–Marton coding may disappear. The fol-
lowing example is a demonstration.

Example 2.2. Let S,Z ∈ Fq be two independent random variables, where q > 2.
Assume that X1 = S and X2 = S ⊕q Z. Let us first consider computation of the
function f(x1, x2) = x2 ⊖q x1. In this case, the Slepian–Wolf coding achieves the
sum rate H(X1, X2) = H(S) + H(Z) and the Körner–Marton coding achieves the
sum rate 2H(X2 ⊖q X1) = 2H(Z). Thus, if H(S) < H(Z), then the Slepian–Wolf
coding outperforms the Körner–Marton coding. The reason is that in the Körner–
Marton coding, Encoder 1 has to add redundancy in representation to maintain the
linear structure.

Next, consider computation of the function f(x1, x2) = x1⊕qx2. In this case, the
Slepian–Wolf coding again achieves the sum rate H(X1, X2) = H(S) + H(Z) and
the Körner–Marton coding achieves the sum rate 2H(X1 ⊕q X2) = 2H(S ⊕q S ⊕q

Z). Thus, the Slepian–Wolf coding always outperforms the Körner–Marton coding.
Similarly, in the Körner–Marton coding, both encoders have to add redundancy in
representation to maintain the linear structure.

Finally, combining the distributed compress–bin scheme [23, 24] and the Körner–
Marton coding, Ahlswede and Han [25, Section VI] established the following achiev-
ability. They showed through an example that the resulting rate region can be
strictly larger than the union of the individual achievable rate regions of the dis-
tributed compress–bin scheme and the Körner–Marton coding.

Proposition 2.2 (Ahlswede–Han). Consider the problem of distributed lossless
computing. Assume that X1, X2 ∈ Fq and f(x1, x2) = x1⊕q x2. A rate pair (R1, R2)
is achievable if

R1 > I(V1;X1|V2) +H(X1 ⊕q X2|V1, V2),
R2 > I(V2;X2|V1) +H(X1 ⊕q X2|V1, V2),

R1 +R2 > I(V1, V2;X1, X2) + 2H(X1 ⊕X2|V1, V2),

for some conditional pmf pV1,V2|X1,X2
satisfying the Markov chain V1 (−− X1 (−−

X2 (−− V2.
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Figure 2.8: The problem of function computation over a MAC.

2.7 Linear Computation Coding

A discrete memoryless L-input MAC ⟨pY |X1,··· ,XL
⟩ is a DMC governed by the con-

ditional pmf pY |X1,··· ,XL
with multiple distributed channel inputs. The problem

of function computation over a MAC is depicted in Figure 2.8. The destination
wishes to recover an element-wise function f(s1, · · · , sL) of the distributed sequences
(Sk

1 , · · · , Sk
L) generated by a DMS ⟨S1, · · · , SL⟩. The problem statement, including

the definitions of computation code, computation rate, and computation capacity,
can be found in Section 6.1.

Linear computation coding is a coding technique developed by Nazer and Gast-
par [4], which computes linear functions efficiently over MACs with a matched linear
structure.

Definition 2.4. Let Fq be a finite field. An L-input MAC ⟨pY |X1,··· ,XL
⟩ is called

Fq-linear if Xj = Fq and there exists a random variable W such that

W =
L⊕

ℓ=1

aℓ ⊗Xℓ,

where aℓ ∈ Fq for all ℓ ∈ [L] and pY |W,X1,··· ,XL
= pY |W . Similarly, a function

f(s1, · · · , sL) is called Fq-linear if there exists a vector b[L] ∈ FL
q such that

f(s1, · · · , sL) =
L⊕

ℓ=1

bℓ ⊗ sℓ,

Definition 2.5. We say that a DMC is symmetric if the output symbols can be placed
into subsets such that for each subset the probability transition matrix satisfies that

1. each row is a permutation of every other row;

2. each column is a permutation of every other column.

Theorem 2.7 (Nazer–Gastpar). Let ⟨S1, · · · , SL, V ⟩ be a DMS. Consider computing
an element-wise Fq-linear function f(s1, · · · , sL) over the MAC ⟨pY |X1,··· ,XL

⟩ with
decoder side information V . If the MAC is Fq-linear, then any computation rate R
satisfying

R <
I(W ;Y )

H(f(S1, · · · , SL)|V )
=: Rsym
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is achievable, where W ∼ Uniform(Fq). Furthermore, If the Fq-linear MAC is also
symmetric, then Rsym is the computation capacity.

The achievability proof of Theorem 2.7 relies on linear binning (see Theorem
2.2) and is in the same spirit of the Körner–Marton coding.



Sequential Coding for Computing –
The Single-User Case 3
In a content delivery network, every communication involves at least two steps:
request and delivery.1 Each end user first sends a request to the servers and then
the servers deliver the user’s desired content to the end user. From the everyday
experience, at some time of the day, usually in the evening, the servers receive more
requests than in the other time periods, e.g., in the early morning. However, the
available communication resources are more or less evenly distributed over time.
Therefore, end users suffer from network congestion during peak-traffic times.

Caching has recently drawn a lot of attention due to its potential to reduce
congestion and the experienced delay of end users. Caching is a technique for reallo-
cating communication resources which works as follows. First, local servers and/or
end users deploy a special-purpose memory called cache. Based on the collected
statistics of users’ preferences, the servers know which data (files, images, video,
audio, etc.) are most popular. Then, one can develop a caching policy to store some
compressed version of the database in the available caches. If the caching policy is
well-designed, then it should be the case that most of the time the users’ desired
data is already in their caches or can be directly served by the local servers.

Thus, content delivery with caching involves three stages: cache, request, and
update, where the original delivery stage is further divided into the cache and update
stages. In the cache stage, the servers have no knowledge of users’ requests other
than their statistics. As the requests are unknown in the cache stage, redundancy in
the cache content is in general inevitable. However, we can still exploit the request
statistics to increase the chance of being useful. For most applications, requests
require much less communication resources compared to the requested data. Hence,
we consider a simplified model which involves only the cache stage and the update
stage.

To model a content delivery network, we identify its three key ingredients:
database, requests, and the requested data. Then, the database is modeled by a

1The material of this chapter has appeared in
1. C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching,” in Proc. IEEE Int.
Symp. Information Theory (ISIT), Hong Kong, China, Jun. 2015.
2. C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching: Sequential coding for
computing,” in arXiv:1504.00553[cs.IT], Apr. 2015.
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generic random variable X, the request is modeled by a generic random variable
Y , and the requested data is modeled by a function g of the database X and the
request Y , i.e., g(X,Y ).

Depending on the targeted applications, there are various ways to model X, Y ,
and g. To name a few, we have

1. one-shot model: X = X, Y = Y , and g(X,Y ) = f(X,Y );

2. single-request model: X = Xk, Y = Y , and g(X,Y ) = {f(Xi, Y )}i∈[k];

3. multi-request model: X = Xk, Y = Y k, and g(X,Y ) = {f(Xi, Yi)}i∈[k].

Here Xk and Y k are sequences of i.i.d. random variables.
The one-shot model is suitable for delay-sensitive applications which cannot af-

ford coding over multiple instances. The single-request model fits well with ap-
plications in which the users’ requests remain fixed over the entire time period of
interest, e.g., on-demand video streaming of a movie from a given database. Am-
ple results are available for the single-request model at this point: the worst-case
analysis [26], the average-case analysis [27], decentralized [28], delay-sensitive [29],
online [30], multiple layers [31], request of multiple items [32], secure delivery [33],
wireless networks [34, 35], etc. In addition, some improved order-optimal results for
the average case can be found in [36, 37].

By contrast, the multi-request model may be an interesting fit for applications in
which the users’ requests change over time, such as multi-view video systems which
offer the flexibility that the users can freely switch camera views. Furthermore,
the multi-request model fits well with sensor network applications. In many cases,
only the sensor data (modeled as X) with certain properties (modeled as Y ) are
of interest and the desired properties may vary over a timescale of minutes, hours,
or even days. In the following, except Section 3.7, we will restrict attention to the
average-case analysis of the multi-request model.

Chapter Outline: This chapter is devoted to the single-user case. In Section
3.1, a formal problem statement is given. Next, we present the optimal rate region
and its various properties in Section 3.2. In Sections 3.3, 3.4, 3.5, we consider
three special cases: independent source components, nested source components, and
arbitrarily correlated components with uniform requests, respectively. In Section
3.6, we discuss the distributed compress–bin scheme with an emphasis on successive
decoding. Finally, in Section 3.7 we discuss the single-request model and consider
three performance criteria: compound, outage, and adaptive coding.

3.1 Problem Statement

In this and the following chapter, we consider the problem of sequential coding for
computing. The single-user case is formulated as follows. A DMS ⟨X,Y ⟩ gener-
ates i.i.d. source sequences (Xk, Y k). There are two encoding terminals and one
decoding terminal. The cache encoder observes the source sequence Xk, the update
encoder observes the source sequences (Xk, Y k), and the decoder observes Y k. The
cache encoder generates a message Mc ∈ [2kRc ], and the update encoder generates
a message Mu ∈ [2kRu ]. The decoder receives (Mc,Mu) and wishes to recover an
element-wise function f(x, y) losslessly. The messages Mc and Mu are referred to
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Figure 3.1: The problem of sequential coding for computing: the single-user case.

as cache and update, respectively. The system is depicted in Figure 3.1. The stated
problem will be referred to as sequential coding for computing. The name comes from
the two related source coding problems: sequential coding of correlated sources [38]
and coding for computing [6].

A (2kRc , 2kRu , k) distributed multiple description code consists of

• two encoders, where the cache encoder assigns an indexmc(x
k) ∈ [2kRc ] to each

sequence xk ∈ X k and the update encoder assigns an indexmu(x
k, yk) ∈ [2kRu ]

to each pair of sequences (xk, yk) ∈ X k × Yk;

• one decoder, which assigns an estimate ŝk to each tuple (mc,mu, y
k).

We say that a rate pair (Rc, Ru) is achievable if there exists a sequence of
(2kRc , 2kRu , k) codes with

lim
k→∞

P

∪
i∈[k]

{
Ŝi ̸= f(Xi, Yi)

} = 0. (3.1)

The optimal rate region R∗ is the closure of the set of achievable rate pairs.

3.2 The Optimal Rate Region and its Properties

As can be seen from Figure 3.1, this setup is closely related to the problem of
lossless source coding with a helper. That is, the cache itself can be considered as
a helper (see Section 2.2), which helps reducing the required rate for the update.
The following theorem provides a single-letter characterization of the optimal rate
region R∗.

Theorem 3.1. The optimal rate region R∗ is the set of rate pairs (Rc, Ru) such
that

Rc ≥ I(X;V |Y ), (3.2)

Ru ≥ H(f(X,Y )|V, Y ), (3.3)

for some conditional pmf pV |X with |V| ≤ |X |+ 1.
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Proof: (Achievability.) The proof follows from standard random coding ar-
guments as in the problem of lossless source coding with a helper. Here we provide a
high-level description of the coding scheme. First, the cache encoder applies Wyner–
Ziv coding on xk assuming decoder side information yk so that the decoder learns
vk, a quantized version of xk. Then the update encoder applies Slepian–Wolf coding
on {f(xi, yi)}i∈[k] assuming decoder side information (vk, yk).

(Converse.) Denote Si = f(Xi, Yi) for all i ∈ [k]. First, we have

kRc ≥ H(Mc)

≥ H(Mc|Y k)

= I(Xk;Mc|Y k)

=
k∑

i=1

I(Xi;Mc|Xi−1, Y k)

(a)
=

k∑
i=1

I(Xi;Mc, X
i−1, Y [k]\{i}|Yi)

≥
k∑

i=1

I(Xi;Vi|Yi),

where (a) follows since (Xi, Yi) is independent of (X
i−1, Y [k]\{i}). For the last step,

we define Vi = (Mc, S
i−1, Y [k]\{i}). Note that Vi (−− Xi (−− Yi form a Markov

chain.
Next, we have

kRu ≥ H(Mu)

≥ H(Mu|Mc, Y
k)

= H(Sk,Mu|Mc, Y
k)−H(Sk|Mc,Mu, Y

k)
(a)

≥ H(Sk|Mc, Y
k)− kϵk

=

k∑
i=1

H(Si|Mc, S
i−1, Y k)− kϵk

=

k∑
i=1

H(Si|Vi, Yi)− kϵk,

where (a) follows from the data processing inequality and Fano’s inequality. The
rest of the proof follows from the standard time-sharing argument and then letting
k → ∞. The cardinality bound on V can be proved using the convex cover method
[5, Appendix C].

We remark that the converse can also be established by identifying the auxiliary
random variable Vi = (Mc, X

i−1, Y [k]\{i}). The optimal rate region R∗ is convex
since the auxiliary random variable V performs time sharing implicitly. As can be
seen from the achievability, even if the update encoder is restricted to access only
the sequence of functions {f(xi, yi)}i∈[k], instead of (xk, yk), the rate region remains
the same.

A simple consequence of Theorem 3.1 is the following lower bound on the sum
rate.
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Corollary 3.1. Rc +Ru ≥ H(f(X,Y )|Y ) for all (Rc, Ru) ∈ R∗.

Proof: The corollary can be proved by a simple cut-set argument. Alterna-
tively, from Theorem 3.1 we observe that

Rc +Ru ≥ I(X;V |Y ) +H(f(X,Y )|V, Y )

≥ I(f(X,Y );V |Y ) +H(f(X,Y )|V, Y )

= H(f(X,Y )|Y ).

Let us briefly mention the two extreme cases. First, when Rc = 0, the optimal
update rate is R∗

u = H(f(X,Y )|Y ). Second, when the update rate Ru = 0, the
minimum cache rate is

R∗
c = min

pV |X
s.t. H(f(X,Y )|V,Y )=0

I(X;V |Y ).

Thus, we recover the result of lossless coding for computing with side information
(see Section 2.5). Note that R∗

u ≤ R∗
c and the inequality can be strict. Therefore,

there is a penalty when the request Y k is not known at the encoder.
Due to the fact that the update encoder is more informative than the cache

encoder, we have the following two corollaries regarding in which direction we can
move a partial rate such that the resulting rate pair still resides in R∗.

Corollary 3.2. If (Rc, Ru) ∈ R∗, then for all a ∈ [0, Rc], (Rc − a,Ru + a) ∈ R∗.

Proof: Assume that (Rc, Ru) ∈ R∗ and fix any a ∈ [0, Rc]. The case where
Rc = 0 is trivial. Next, we consider the case where Rc > 0. Recall that R∗

u =
H(f(X,Y )|Y ). Then, time sharing between (0, R∗

u) and (Rc, Ru) asserts that(
Rc − a,Ru +

R∗
u −Ru

Rc
a

)
∈ R∗.

Then, Corollary 3.1 implies that

R∗
u −Ru

Rc
≤ 1,

so it holds that (Rc − a,Ru + a) ∈ R∗.

Corollary 3.3. Let (Rc, Ru) be an extreme point of R∗ such that Rc > 0. Then,
for all a > 0, (Rc + a,Ru − a) /∈ R∗.

Proof: Recall that R∗
u = H(f(X,Y )|Y ). Assume that (Rc + a,Ru − a) ∈ R∗.

Then, time sharing between (0, R∗
u) and (Rc + a,Ru − a) asserts that(

Rc,
aR∗

u +Rc(Ru − a)

Rc + a

)
∈ R∗.

However, Corollary 3.1 implies that

aR∗
u +Rc(Ru − a)

Rc + a
≤ Ru,
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which contradicts the assumption that (Rc, Ru) is an extreme point.

In general, the optimal sum rate can only be achieved at the point (Rc, Ru) =
(0,H(f(X,Y )|Y )), i.e., the update encoder does all the work. Nevertheless, for the
class of partially invertible functions, one can arbitrarily distribute the work load
without compromising the sum rate.

Corollary 3.4. If the function f is partially invertible, i.e., H(X|f(X,Y ), Y ) = 0,
then R∗

c = R∗
u = H(X|Y ).

Proof: First, Theorem 3.1 implies that R∗
u ≤ R∗

c ≤ H(X|Y ). Then, the
corollary is an easy consequence of the property of the function f :

R∗
u = H(f(X,Y )|Y ) = H(f(X,Y ), X|Y ) = H(X|Y ).

In other words, Corollary 3.4 says that for partially invertible functions, e.g.,
arithmetic sum and modulo sum, the side information Y at the update encoder is
useless in lowering the compression rate and thus in this case the cache encoder is
as powerful as the update encoder. More generally, it can be shown that R∗

c = R∗
u

if and only if there exists a conditional pmf pV |X such that

1. H(V |f(X,Y ), Y ) = H(V |X,Y ), and

2. H(f(X,Y )|V, Y ) = 0.

For most of the problems, it is challenging to find a closed-form expression for
the optimal rate region R∗. That is, we do not know the optimal caching strategy in
general.2 In the following, we consider three cases where X and Y are independent,
which implies that I(X;V |Y ) = I(X;V ). For the first two cases, we are able to
show that some intuitive caching strategies are indeed optimal. In the last case, we
provide some guidance for the optimal caching strategy. Without loss of generality,
we assume that Y = [N ]. Besides, we will find it convenient to denote x(y) := f(x, y).

Remark 3.1. If X and Y are independent, then the optimal conditional pmf p∗V |X
for a fixed cache rate Rc can be found by solving the following constrained optimiza-
tion problem

maximize I(f(X,Y ), Y ;V )

subject to I(X;V ) ≤ Rc

over all conditional pmf pV |X with |V| ≤ |X |+1. Thus, caching has an information
bottleneck interpretation [39] (see also [40]). Given a fixed-size cache as bottleneck,
we aim to provide the most relevant information of the desired function f(X,Y ). We
can apply the existing algorithms developed for the information bottleneck method to
numerically characterize the optimal rate region R∗.

2A caching strategy is said to be (Pareto) optimal if its achievable rate pair lies on the boundary
of the optimal rate region R∗.
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3.3 Independent Source Components

In this section, we consider the case where H(X(1), · · · , X(N)) =
∑N

n=1H(X(n)),
i.e., the source components are independent of each other. Note that we used the
shorthand notation X(n) = f(X,n). Without loss of generality, we assume that
pY (1) ≥ pY (2) ≥ · · · ≥ pY (N). Then, we have the following proposition.

Proposition 3.1. If X and Y are independent and X(1), · · · , X(N) are independent
as well, then the optimal rate region R∗ is the set of rate pairs (Rc, Ru) such that

Rc ≥ r,

Ru ≥
N∑

n=1

(pY (n)− pY (n+ 1))

 n∑
j=1

H(X(j))− r

+

, (3.4)

for some r ≥ 0, where pY (N + 1) = 0.

Proof: (Converse.) Suppose that (Rc, Ru) ∈ R∗. Then, there exists a condi-
tional pmf pV |X such that Rc ≥ I(X;V |Y ) =: r and Ru ≥ H(f(X,Y )|V, Y ). For all
n ∈ [N ], we have

Rc ≥ r = I(X;V |Y )
(a)
= I(X;V )

≥ I(X(1), · · · , X(n);V )

≥
n∑

j=1

H(X(j))−
n∑

j=1

H(X(j)|V ), (3.5)

where (a) follows since X and Y are independent. Next we show that Ru can be
lower bounded as in (3.4):

Ru ≥ H(f(X,Y )|V, Y )

=

N∑
j=1

pY (j)H(X(j)|V )

(a)

≥ pY (N)

 N∑
j=1

H(X(j))− r −
N−1∑
j=1

H(X(j)|V )

+

+

N−1∑
j=1

pY (j)H(X(j)|V )

(b)

≥ pY (N)

 N∑
j=1

H(X(j))− r

+

+
N−1∑
j=1

(pY (j)− pY (N))H(X(j)|V ), (3.6)

where (a) follows from (3.5) with n = N and H(X(N)|V ) ≥ 0 and (b) follows since
(u− v)+ ≥ (u)+ − v for all v ≥ 0. The term on the right-hand side of (3.6) can be
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lower bounded as

N−1∑
j=1

(pY (j)− pY (N))H(X(j)|V )

(a)

≥ (pY (N − 1)− pY (N))

N−1∑
j=1

H(X(j))− r −
N−2∑
j=1

H(X(j)|V )

+

+
N−2∑
j=1

(pY (j)− pY (N))H(X(j)|V )

≥ (pY (N − 1)− pY (N))

N−1∑
j=1

H(X(j))− r

+

+

N−2∑
j=1

(pY (j)− pY (N − 1))H(X(j)|V ),

where (a) follows from (3.5) with n = N − 1 and H(X(N−1)|V ) ≥ 0. At this point,
it is clear that we can apply the same argument for another N − 2 times and arrive
at

Ru ≥
N∑

n=1

(pY (n)− pY (n+ 1))

 n∑
j=1

H(X(j))− r

+

, (3.7)

where pY (N + 1) = 0.

(Achievability.) Note that the lower bound (3.7) is equivalent to saying that

1. if r ≥
∑N

n=1H(X(n)), then Ru ≥ 0, and

2. if
∑n−1

j=1 H(X(j)) ≤ r <
∑n

j=1H(X(j)) for some n ∈ [N ], then

Ru ≥ pY (n)

 n∑
j=1

H(X(j))− r

+
N∑

j=n+1

pY (j)H(X(j)).

Therefore, for all n ∈ {0}∪ [N ], substituting V = (X(1), · · · , X(n)) in (3.2) and (3.3)
shows that the rate pair

(Rc, Ru) =

 n∑
j=1

H(X(j)),
N∑

j=n+1

pY (j)H(X(j))


is achievable, which corresponds to an extreme point in the region described by
Rc ≥ r and (3.7). Since the rest of points on the boundary can be achieved by time
sharing, the achievability is established.

Thus, Proposition 3.1 indicates that the best caching strategy for independent
source components is to cache the most popular ones, no matter how different the
component sizes are (see also [27] and the references therein).
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3.4 Nested Source Components

Again using the shorthand notation X(n) = f(X,n), in this section we assume
that H(X(n)|X(n+1)) = 0 for all n ∈ [N − 1], i.e., each component corresponds to
a refined version of it predecessor, but pY can be arbitrary. Then, we have the
following proposition.

Proposition 3.2. If X and Y are independent and H(X(n)|X(n+1)) = 0 for all
n ∈ [N − 1], then the optimal rate region R∗ is the set of rate pairs (Rc, Ru) such
that

Rc ≥ r,

Ru ≥
N∑

n=1

pY (n)
(
H(X(n))− r

)+
, (3.8)

for some r ≥ 0.

Proof: (Converse.) Suppose that (Rc, Ru) ∈ R∗. Then, there exists a condi-
tional pmf pV |X such that Rc ≥ I(X;V |Y ) =: r and Ru ≥ H(f(X,Y )|V, Y ). For all
n ∈ [N ], we have

Rc ≥ r = I(X;V |Y )
(a)
= I(X;V )

≥ I(X(1), · · · , X(n);V )

(b)
= H(X(n))−

n∑
j=1

H(X(j)|V,X(j−1)), (3.9)

where (a) follows sinceX and Y are independent and (b) follows from the assumption
that H(X(n)|X(n+1)) = 0 for all n ∈ [N − 1]. Next, we show that Ru can be lower
bounded as in (3.8):

Ru ≥ H(f(X,Y )|V, Y )

=

N∑
n=1

pY (n)H(X(n)|V )

(a)
=

N∑
n=1

pY (n)H(X(1), · · · , X(n)|V )

(b)
=

N∑
n=1

pY (n)
n∑

j=1

H(X(j)|V,X(j−1))

=
N∑
j=1

 N∑
n=j

pY (n)

H(X(j)|V,X(j−1)),

where (a) and (b) follow from the assumption that H(X(n)|X(n+1)) = 0 for all
n ∈ [N − 1]. For notational convenience, let us denote sj =

∑N
n=j pY (n) and
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qj = H(X(j)|V,X(j−1)). Then, we have

Ru ≥
N∑
j=1

sjqj

(a)

≥ sN

H(X(N))− r −
N−1∑
j=1

qj

+

+

N−1∑
j=1

sjqj

(b)

≥ sN

(
H(X(N))− r

)+
+

N−1∑
j=1

(sj − sN )qj

= pY (N)
(
H(X(N))− r

)+
+

N−1∑
j=1

(sj − sN )qj

(c)

≥ pY (N)
(
H(X(N))− r

)+
+ (sN−1 − sN )

H(X(N−1))− r −
N−2∑
j=1

qj

+

+
N−2∑
j=1

(sj − sN )qj

(d)

≥ pY (N)
(
H(X(N))− r

)+
+ (sN−1 − sN )

(
H(X(N−1))− r

)+
+

N−2∑
j=1

(sj − sN−1)qj

=
N∑

n=N−1

pY (n)
(
H(X(n))− r

)+
+

N−2∑
j=1

(sj − sN−1)qj ,

where (a) and (c) follow from (3.9) and H(X(n)|V,X(n−1)) ≥ 0 with n = N and
n = N − 1, respectively, and (b) and (d) follow since (u − v)+ ≥ (u)+ − v for all
v ≥ 0. At this point, it is clear that we can apply the same argument for another
N − 2 times and arrive at

Ru ≥
N∑

n=1

pY (n)
(
H(X(n))− r

)+
. (3.10)

(Achievability.) Note that the lower bound (3.10) is equivalent to saying that

1. if r ≥ H(X(N)), then Ru ≥ 0, and

2. if H(X(j−1)) ≤ r < H(X(j)) for some j ∈ [N ], where H(X(0)) := 0, then

Ru ≥
N∑

n=j

pY (n)
(
H(X(n))− r

)+
.

Therefore, for all n ∈ [N ], substituting V = X(n) in (3.2) and (3.3) shows that the
rate pair

(Rc, Ru) =

H(X(n)),

N∑
j=n+1

pY (j)H(X(j)|X(n))

 ,
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is achievable, which corresponds to an extreme point in the region described by
Rc ≥ r and (3.10). Since the rest of points on the boundary can be achieved by
time sharing, the proposition is established.

Thus, Proposition 2 indicates that the best caching strategy for nested compo-
nents is to cache the coarsest versions up to the cache size.

3.5 Arbitrarily Correlated Components with Uniform
Requests

Here we assume that the request is uniformly distributed, i.e., pY (n) =
1
N for all n ∈

[N ], but X(1), · · · , X(N) can be arbitrarily correlated. Recall that X(n) = f(X,n).
Although we cannot give a closed-form expression of the optimal rate region, we
provide a necessary and sufficient condition on the auxiliary random variable which
characterizes the boundary of the optimal rate region.

Proposition 3.3. If X and Y are independent and pY (n) =
1
N for all n ∈ [N ], then

all points (Rc, Ru) on the boundary of the optimal rate region R∗ can be expressed
as

Rc = r,

Ru =
1

N

H(X)− r + min
pV |X

s.t. I(X;V )=r

C(X|V )

 ,

for some r ∈ [0,H(X)], where X := (X(1), X(2), · · · , X(N)) and

C(X|V ) :=

[
N∑

n=1

H(X(n)|V )

]
−H(X(1), · · · , X(N)|V ).

Proof: Denote by R the set of rate pairs (Rc, Ru) such that

Rc ≥ I(X;V |Y ),

Ru ≥ H(f(X,Y )|V, Y ),

for some conditional pmf pV |X . Since I(X;V |Y ) ≥ I(X;V |Y ), we have R∗ ⊆ R.

Also, it is easy to see that the rate region R is achievable, so we conclude that
R∗ = R. By using the assumptions that I(X;Y ) = 0 and that Y is uniformly
distributed, we can simplify the rate expressions as

Rc ≥ I(X;V ),

Ru ≥ 1

N

N∑
n=1

H(X(n)|V ).

Now denote by pV |X the conditional pmf induced by the conditional pmf pV |X .

As can be checked, both I(X;V ) and {H(X(n)|V )}n∈[N ] can be completely deter-
mined by the induced conditional pmf pV |X . Thus, it suffices to consider the space
of all conditional pmfs pV |X . Finally, noting that

N∑
n=1

H(X(n)|V ) = H(X)− I(X;V ) + C(X|V ),
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it holds that if Rc = r ∈ [0,H(X)], then

min{Ru : Rc = r, (Rc, Ru) ∈ R∗} =
1

N

H(X)− r + min
pV |X

s.t. I(X;V )=r

C(X|V )

 .

If N = 2, we have

C(X|V ) = I(X(1);X(2)|V ),

so the term C(X(1), · · · , X(N)|V ) can be interpreted as a generalization of condi-

tional mutual information. In fact, the term C(X(1), · · · , X(N)) =
[∑N

n=1H(X(n))
]
−

H(X(1), · · · , X(N)) was first studied by Watanabe [41] and given the name total cor-
relation. Following this convention, we refer to C(X(1), · · · , X(N)|V ) as conditional
total correlation. Proposition 3.3 indicates that an optimal caching strategy is to
cache a description of the data set that minimizes the conditional total correlation.

When the cache rate is large enough, there exists a conditional pmf pV |X such
that the conditional total correlation is zero and thus we have the following corollary.

Corollary 3.5. The boundary of the region {(Rc, Ru) ∈ R∗ : Rcrit ≤ Rc ≤ H(X)}
is a segment of the straight line Rc +NRu = H(X), where

Rcrit = min
pV |X

s.t. C(X|V )=0

I(X;V ).

Note that when N = 2, Rcrit is Wyner’s common information [16].
Finally, let us consider an example which covers all three mentioned cases.

Example 3.1. Fix q ∈ [0, 12 ]. Consider Y ∼ Uniform({1, 2}) and X = (X(1), X(2)),

where ⟨X(1), X(2)⟩ is a DSBS(q). Assume that X and Y are independent. We first
consider two extreme cases.

1. If q = 1/2, then the two components are independent and R∗ = {(Rc, Ru) : Rc ≥
0, Ru ≥ 0, Rc + 2Ru ≥ 2}.

2. If q = 0, then the two components are nested and R∗ = {(Rc, Ru) : Rc ≥ 0, Ru ≥
0, Rc +Ru ≥ 1}.

Now consider 0 < q < 1
2 . Wyner’s common information of (X(1), X(2)) is known

as [16]

Rcrit = 1 + hb(q)− 2hb(q
′),

where q′ = 1
2(1−

√
1− 2q). Thus, from Corollary 3.5, we have

min{Ru : Rc ≥ Rcrit, (Rc, Ru) ∈ R∗} =
1

2
(1 + hb(q)−Rc).

Note that Ru ≥ 1
2(1 + hb(q) − Rc)

+ is also a valid lower bound for all Rc ≥ 0.
Besides, from Corollary 3.1 we have Rc +Ru ≥ 1.
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Figure 3.2: Inner bounds and an outer bound for Example 3.1. Here q = 0.1.

As for the case 0 < q < 1
2 and Rc < Rcrit, we do not have a complete charac-

terization. Let us consider the following choice of the auxiliary random variable V .
We set

V =

{
X(1) ⊕ U if X(1) = X(2),

W if X(1) ̸= X(2),
(3.11)

where ⊕ denotes modulo-two sum, U,W ∈ {0, 1} are independent of (X,Y ), and
furthermore W ∼ Bernoulli(1/2). We conjecture that such choice of V characterizes
the boundary of R∗ for Rc < Rcrit. It can be checked that setting

pU (1) =
1

2
−

√
1− 2q

2(1− q)
=: γ

achieves Wyner’s common information Rcrit.

In Figure 3.2 we plot three inner bounds and an outer bound for the case q = 0.1,
where Rcrit ≈ 0.873. The first inner bound is plotted in green dot, which results from
time sharing between the extreme points (R∗

c , 0) and (0, R∗
u). The extreme point(

Rcrit,
1
2(1 + hb(q)−Rcrit)

)
is marked by a blue diamond point. Then, the second

inner bound is formed by time sharing among the three extreme points. The third
inner bound has the same boundary as the second inner bound for Rc ≥ Rcrit. As
for Rc < Rcrit, the third inner bound is plotted in red solid, which results from
evaluating all pU (1) ∈ [γ, 0.5]. Finally, the combined outer bound Ru ≥ max{1

2(1 +
hb(q)−Rc)

+, (1−Rc)
+} is plotted in black solid.

We remark that it can be shown that H(X(n) ⊕ V ) = H(X(n)|V ), n ∈ {1, 2}.
Thus, instead of Slepian–Wolf coding, the update encoder can simply compress X(n)⊕
V and transmit. Then, after recovering X(n) ⊕ V , the decoder removes V to get the
desired component X(n).
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3.6 Distributed Compress–Bin with Successive Decoding

The system depicted in Figure 3.1 can be considered as a special case of distributed
lossy compression: The cache encoder compresses xk into a description vk and the
update encoder compresses (xk, yk) into another description uk. Then, the decoder
uses the two descriptions (uk, vk) with side information yk to reconstruct an estimate
{f̂(xi, yi)}i∈[k]. It can be shown that the distributed compress–bin scheme (see, e.g.,
[5, Section 12.1]) achieves any rate pair (Rc, Ru) satisfying

Rc > I(X;V |U, Y ),

Ru > I(X;U |V, Y )− I(V ;Y ),

Rc +Ru > I(X;U, V |Y ),

for some conditional pmf pV |XpU |X,Y such that H(f(X,Y )|U, V, Y ) = 0. Besides, it
can be easily checked that the distributed compress–bin scheme achieves all rate pairs
inR∗. In the distributed compress–bin scheme, the decoder applies joint decoding on
U and V . Now let us consider two achievable rate regions using successive decoding
instead. If the description generated by the cache encoder, i.e., V , is recovered first,
we refer to the decoding order as “cache → update”. On the other hand, if the
description generated by the update encoder, i.e., U , is recovered first, we refer to
the decoding order as “update → cache”.

Denote by Rc→u the set of rate pairs (Rc, Ru) such that

Rc > I(X;V |Y ),

Ru > I(X;U |V, Y ),

for some conditional pmf pV |XpU |X,Y such that H(f(X,Y )|U, V, Y ) = 0. Also,
denote by Ru→c, the set of rate pairs (Rc, Ru) such that

Ru > I(X;U |Y,Q),

Rc > I(X;V |U, Y,Q),

for some conditional pmf pQpV |X,QpU |X,Y,Q such that H(f(X,Y )|U, V, Y,Q) = 0. It
can be shown that the rate region Rc→u is achievable by the distributed compress–
bin scheme with successive decoding in the order: “cache → update.” If we set
U = f(X,Y ), then it is easy to see that Rc→u = R∗. Also, it can be shown that
the rate region Ru→c is achievable by the distributed compress–bin scheme with
successive decoding in the order “update → cache.”

However, currently we do not know whether Ru→c = R∗ always holds. In the
following we provide two conditions on the optimality of successive decoding with
the order “update → cache.” The condition given in Proposition 3.4 is a necessary
and sufficient condition and the condition given in Proposition 3.5 is a sufficient
condition.

Proposition 3.4. We have Ru→c = R∗ if and only if every extreme point in Rc→u

can be described by some conditional pmf pV |XpU |X,Y such that I(U ;V |Y ) = 0.

Proof: Without loss of generality, we can set Q = ∅ since we consider only
the extreme points. The key observation is that

I(U ;V |Y ) = I(X;V |Y )− I(X;V |U, Y ) = I(X;U |Y )− I(X;U |V, Y ). (3.12)
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(⇒): It is clear that (0, R∗
u) is an extreme point of both Ru→c and Rc→u and

can be achieved with I(U ;V |Y ) = 0. Next, consider any extreme point (Rc, Ru)
of R∗ with Rc > 0. Since we assume that Ru→c = R∗, the point (Rc, Ru) is also
an extreme point of Ru→c. Therefore, there exists a conditional pmf pV |XpU |X,Y

such that (I(X;V |U, Y ), I(X;U |Y )) = (Rc, Ru). Then, Expression (3.12) implies
that (Rc + I(U ;V |Y ), Ru − I(U ;V |Y )) ∈ Rc→u = R∗ = Ru→c. Since (Rc, Ru) is an
extreme point, Lemma 3.3 implies that I(U ;V |Y ) = 0.

(⇐): It suffices to show that every extreme point of R∗ also lies in Ru→c. Let
(Rc, Ru) be any extreme point ofR∗. From the assumption, there exists a conditional
pmf pV |XpU |X,Y achieving (Rc, Ru) such that I(U ;V |Y ) = 0. Then, it implies that

(Rc, Ru) = (I(X;V |Y ), I(X;U |V, Y ))

= (I(X;V |U, Y ), I(X;V |Y ))

lies in Ru→c.

Proposition 3.5. If every extreme point in Rc→u can be described by some condi-
tional pmf pV |XpU |X,Y such that H(V |X) = 0, then Ru→c = R∗.

Proof: It suffices to show that every extreme point in R∗ lies in Ru→c. Con-
sider any extreme point (Rc, Ru) ∈ R∗. Since R∗ = Rc→u, there exists a conditional
pmf pV |XpU |X,Y such that

Rc = I(X;V |Y ),

Ru = I(X;U |V, Y ),

with H(f(X,Y )|U, V, Y ) = 0. Now consider any y ∈ Y . Conditioned on Y = y, the
functional representation lemma [5, Appendix B] says that there exists a random
variable U (y) of cardinality |U (y)| ≤ |V|(|U| − 1) + 1 such that

1. H(U |U (y), V, Y = y) = 0,

2. I(U (y);V |Y = y) = 0,

3. I(X;U (y)|U, V, Y = y) = 0.

Therefore, we have I(U (Y );V |Y ) = 0 and I(X;U |V, Y ) = I(X;U (Y )|V, Y ). Together
with (3.12), it implies that

Rc = I(X;V |U (Y ), Y ),

Ru = I(X;U (Y )|Y ).

Finally, from the assumption H(V |X) = 0, we have pU(Y ),V |X,Y = pV |XpU(Y )|X,Y

and thus (Rc, Ru) ∈ Ru→c.

We remark that if X and Y are independent, then for both the case of indepen-
dent components and the case of nested components, Proposition 3.5 implies that
Ru→c = R∗.
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Figure 3.3: The single-request model, in which we assume that X and Y are indepen-
dent.

3.7 The Single-Request Model

In this section, we discuss the “single-request” model mentioned in the beginning
of this chapter. The system is depicted in Figure 3.3. Fix a joint distribution
pXY = pXpY , i.e., we assume that X and Y are independent. The database is still
modeled by a DMS ⟨X⟩, which generates an i.i.d. source sequence XkB. In the
multi-request model, each Xi is paired with a distinct Yi, i ∈ [kB]. By contrast,
in the single-request model, only each block (X(j−1)B+1, · · · , X(j−1)B+k) is paired

with a distinct Yj , j ∈ [B], where Y B are i.i.d. drawn from pY . Thus, the request
varies less frequently in the single-request model. We can draw an analogy between
the request models for content delivery networks and the fading models for wireless
networks. If we think of the requests as channel states, then the requests behave
like fast fading in the multi-request model. On the other hand, in the single-request
model, the requests behave like slow fading.

Here we assume that each block j ∈ [B] is processed independently. Then,
without loss of generality, we restrict attention to the first block, i.e., j = 1. Fur-
thermore, we assume that Y = [N ], where N ∈ Z+. The cache encoder observes
the source sequence Xk, the update encoder observes the source sequence Xk and
the single request Y1, and the decoder only observes the request Y1.

3 The cache en-
coder generates a message Mc ∈ [2kRc ], and the update encoder generates a message
Mu(Y ) ∈ [2kRu(Y )]. The decoder receives (Mc,Mu(Y )) and wishes to recover the
sequence of functions {f(Xi, Y )}i∈[k] losslessly. Note that the length of the update
message is a function of Y .

A (2kRc , {2kRu(y)}y∈[N ], k) distributed multiple description code consists of

• one cache encoder, which assigns an index mc(x
k) ∈ [2kRc ] to each sequence

xk ∈ X k;

• one update encoder, which assigns N indices mu(x
k, y) ∈ [2kRu(y)], y ∈ [N ], to

each sequence xk ∈ X k;

• one decoder, which assigns an estimate ŝk to each tuple (mc,mu, y).

3For notational convenience, we drop the subscript 1 in Y1 hereafter.



3.7. The Single-Request Model 35

In words, the update encoder and the decoder each has N codebooks, each of which
is served for one request y ∈ [N ]. On the other hand, since the cache encoder does
not observe the request Y and cannot infer anything about Y from the observed
source sequence Xk, the cache encoder only needs one codebook.

In practice, the set of requested functions has to be agreed by the server and the
user in advance. Later on, if the user sends a request not in [N ], then the server
can refuse to act upon such request. Otherwise, the server must deliver the agreed
service. Therefore, we assume that the recovered sequence of estimates Ŝk must
satisfy that

lim
k→∞

P

∪
i∈[k]

{
Ŝi ̸= f(Xi, y)

} = 0, ∀y ∈ [N ]. (3.13)

Thus, for the single-request model, we say that a rate tuple (Rc, {Ru(y)}y∈[N ]) is

achievable if there exists a sequence of (2kRc , {2kRu(y)}y∈[N ], k) codes such that (3.13)
holds. Similarly, the optimal rate region R∗ is the closure of the set of achievable
rate pairs.

The above problem can be considered as an N -user Gray–Wyner system: Each
user y ∈ [N ] receives a private message Mu(y) and a common message Mc. The
common message is received by all users. Each user y ∈ [N ] wishes to recover the
sequence {f(Xi, y)}i∈[k]. Then, we have the following theorem.

Theorem 3.2. Consider the single-request model. The optimal rate region R∗ is
the set of rate tuples (Rc, {Ru(y)}y∈[N ]) such that

Rc ≥ I(X;V ),

Ru(y) ≥ H(f(X, y)|V ), ∀y ∈ [N ],

for some conditional pmf pV |X with |V| ≤ |X |+N .

The single-request model can be studied under more specific performance cri-
teria, which relate the request-dependent update rates {Ru(y)} to a fixed quantity
Ru, which is independent of the realization of Y . In the following, we discuss three
common performance criteria by analogy with slow fading. For convenience, we
denote

R∗(Rc) = {R : (r,R) ∈ R∗, r ≤ Rc},

where R = (Ru(1), Ru(2), · · · , Ru(N)).

3.7.1 Compound

Consider a fixed update rate Ru. The compound formulation requires that for each
block of length k, the update message cannot contain more than ⌈kRu⌉ bits. Namely,
it requires that for all y ∈ [N ],

Ru(y) ≤ Ru.

Thus, the compound-optimal update rate given the cache rate Rc can be defined as

Rcompound(Rc) := min
R∈R∗(Rc)

max
y∈[N ]

Ru(y).

Then, from Theorem 3.2, we have the following corollary.
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Corollary 3.6. Consider the compound formulation of the single-request model.
The compound-optimal update rate given the cache rate Rc can be expressed as

Rcompound(Rc) = min
pV |X

s.t. I(X;V )≤Rc

max
y∈[N ]

H(f(X, y)|V ),

where |V| ≤ |X |+N .

The compound formulation aims to model the worst-case scenario in which the
request statistics is not known and/or the communication resource cannot be redis-
tributed over blocks. However, for most applications, the compound formulation is
too pessimistic.

3.7.2 Outage

The criterion is similar to the compound formulation except that now an excess
probability ρ is permitted. With probability ρ, the server has to assign extra com-
munication resource to fulfill the user’s wish. We say that an outage occurs if the
required update rate Ru(Y ) is larger than the preallocated update rate Ru. Then,
the outage-optimal update rate given the cache rate Rc can be defined as

Routage(Rc) := min
R∈R∗(Rc)

inf{r : P(Ru(Y ) > r) ≤ ρ}.

Similarly, from Theorem 3.2 we have the following corollary.

Corollary 3.7. Consider the outage formulation of the single-request model. The
outage-optimal update rate given the cache rate Rc and the excess probability ρ can
be expressed as

Routage(Rc, ρ) = min
pV |X

s.t. I(X;V )≤Rc

inf{r : P(ϕ(Y ) > r) ≤ ρ},

where ϕ(y) = H(f(X, y)|V ), for all y ∈ [N ], and |V| ≤ |X |+N .

Note that ϕ(Y ) is a random variable induced by the random variable Y .
The outage formulation has the similar issue as the compound formulation. That

is, it does not consider the fact that for most applications, the communication re-
source can indeed be redistributed over blocks. Thus, a model considering the av-
erage behavior would be a better fit. Let us discuss such model to end this chapter.

3.7.3 Adaptive Coding

Different from the previous two criteria, here the unused communication resource
can be saved for the other blocks. The only requirement is that the average number
of bits per block cannot be larger than ⌈kRu⌉. To see the relation of the adaptive
coding formulation with the multi-request model, let us consider the whole rate
region instead. We define the adaptive-optimal rate region as

Radaptive :=
{
(Rc,EY [Ru(Y )]) : (Rc, {Ru(y)}y∈[N ]) ∈ R∗} .

From Theorem 3.2 we have the following corollary.
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Corollary 3.8. Consider the adaptive coding formulation of the single-request model.
The adaptive-optimal rate region Radaptive is the set of rate pairs (Rc, Ru) such that

Rc ≥ I(X;V ),

Ru ≥ H(f(X,Y )|V, Y ),

for some conditional pmf pV |X with |V| ≤ |X |+ 1.

Proof: It suffices to show that EY [ϕ(Y )] = H(f(X,Y )|V, Y ), where ϕ(y) =
H(f(X, y)|V ), for all y ∈ [N ]. Indeed, we have

EY [ϕ(Y )] =
N∑
y=1

pY (y)ϕ(y)

=

N∑
y=1

pY (y)H(f(X, y)|V )

(a)
=

N∑
y=1

pY (y)H(f(X, y)|V, Y = y)

= H(f(X,Y )|V, Y ),

where (a) follows since X is independent of Y , by assumption, and V (−− X (−− Y
form a Markov chain. Finally, we remark that the cardinality bound on V is refined
from |X | + N to |X | + 1, which can be proved using the convex cover method [5,
Appendix C].

As can be seen, assuming X and Y are independent, the adaptive-optimal rate
region of the single-request model is the same as the optimal rate region of the
multi-request model. Actually, it can be verified that all inner bounds and outer
bounds on the subproblems of the multi-request model (see Chapter 4) also work
for the corresponding subproblems of the single-request model under the adaptive
coding formulation.





Sequential Coding for Computing –
The Two-User Case 4
In this chapter, we move on to the two-user case of the problem of sequential coding
for computing.1 Recall that we refer to the first stage as cache and the second stage
as update. One new feature for the two-user case is that we can deploy a common
cache that is shared by both users. When both users have common interests, the
content stored in the common cache can be useful for both of them. Similarly, we
can deploy a common link from the update encoder to the end users so that both
of them can receive a common update. Therefore, for the two-user case, there are
totally six messages: two private caches, two private updates, one common cache,
and one common update.

Since end users usually have distinct requests, we use the notation Y ℓ to denote
the request of User ℓ. Furthermore, each end user may have his/her own request
patterns, so we use the notation gℓ. For most applications, requests require much
less communication resources compared to the requested data. For simplicity, we
assume that the update encoder first broadcasts the requests to both users. That is,
denoting by Y = (Y 1, Y 2) the collection of requests, we assume that Y is globally
known except to the cache encoder. Thus, we denote fℓ(X,Y ) = gℓ(X,Y ℓ) and
focus on the functions {fℓ(·, ·)} hereafter. As in Chapter 3, we restrict attention to
the average-case analysis of the multi-request model.

Unfortunately, even with such simplification, a complete single-letter character-
ization involving all six messages is unavailable at this point. Rather than directly
showing the most general achievability involving every message, here we find it more
informative to take a bottom-up approach. That is, after providing a formal problem
statement in Section 4.1, we consider five representative subproblems (summarized
in Figure 4.1) first:

1. one common cache, two private caches, and two private updates (Figure 4.2);

2. one common cache, one common update, and two private updates (Figure 4.3);

1The material of this chapter has appeared in
1. C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching,” in Proc. IEEE Int.
Symp. Information Theory (ISIT), Hong Kong, China, Jun. 2015.
2. C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic caching: Sequential coding for
computing,” in arXiv:1504.00553[cs.IT], Apr. 2015.
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Figure 4.1: The five representative configurations.

3. one common cache, one common update, one private cache for User 2, and one
private update for User 2 (Figure 4.4);

4. one private cache for User 1, one common update, and one private update for
User 2 (Figure 4.5);

5. two private caches and one common update (Figure 4.6).

The first three subproblems correspond to the subproblems with the largest number
of messages for which we are able to characterize the optimal rate regions. Sub-
problems 1 and 2 are extensions of the Gray–Wyner system and Subproblem 3 is
a special case of distributed successive refinement, which will be discussed later in
Chapter 5. The rest two subproblems are the subproblems with the smallest number
of messages whose optimal rate regions remains unknown. In the end of the chapter,
we will provide a general achievable scheme built upon the developed achievabilities
for different subproblems.

To provide some interesting insights, we find it convenient to classify our coding
strategies via a concept that we will refer to as “decoding order.” More precisely,
in all achievable schemes considered in this chapter, the decoders will proceed in
multiple steps according to a successive decoding logic: A first description of the
source is recovered and then used as side information in the recovery of the second
description, and so on. As discussed in Section 3.6 for the single-user case, employing
the decoding order “cache → update” is without loss of optimality. Recall that for
the decoding order “cache → update,” the decoder first recovers the description
sent by the cache encoder, and then recovers the description sent by the update
encoder. A second example is the Gray and Wyner system reviewed in Section 2.3.
For this scenario, one of the two successive decoding schemes is that each decoder
first recovers the common description, and then leverages the private description
in order to fully decode the object of interest. Here, we would thus say that the
decoding order is “common → private.” Again, for this special case, Theorem 2.4
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shows that employing this decoding order is without loss of optimality. In general,
how should we prioritize the decoding order among private cache, common cache,
private update, and common update?

4.1 Problem Statement

The two-user case of the problem of sequential coding for computing is formulated as
follows. A DMS ⟨X,Y ⟩ generates i.i.d. source sequences (Xk, Y k). There are two en-
coding terminals and two decoding terminals. The cache encoder observes the source
sequence Xk, the update encoder observes the source sequences (Xk, Y k), and both
decoders observe Y k. Decoder ℓ ∈ {1, 2} wishes to recover an element-wise function
fℓ(x, y) losslessly. The cache encoder generates three messages Mc,{1}, Mc,{2}, and
Mc,{1,2} of rate Rc,{1}, Rc,{2}, and Rc,{1,2}, respectively. Similarly, the update en-
coder generates three messages Mu,{1}, Mu,{2}, and Mu,{1,2} of rate Ru,{1}, Ru,{2},
and Ru,{1,2}, respectively. We note that some of these rates may be zero. Then, De-
coder ℓ ∈ {1, 2} receives the set of messages (Mc,{ℓ},Mc,{1,2},Mu,{ℓ},Mu,{1,2}). The
messages Mc,{ℓ} andMu,{ℓ} are called private cache and private update, respectively.
Besides, the messages Mc,{1,2} and Mu,{1,2} are called common cache and common
update, respectively.

Denote na = 2kRa for any subscript a. Also, for convenience we denote

n := (nc,{1}, nc,{2}, nc,{1,2}, nu,{1}, nu,{2}, nu,{1,2}),

R := (Rc,{1}, Rc,{2}, Rc,{1,2}, Ru,{1}, Ru,{2}, Ru,{1,2}).

An (n, k) distributed multiple description code consists of (A ∈ {{1}, {2}, {1, 2}})

• two encoders, where the cache encoder assigns three indices mc,A(x
k) ∈ [nc,A]

to each sequence xk ∈ X k and the update encoder assigns three indices
mu,A(x

k, yk) ∈ [nu,A] to each pair of sequences (xk, yk) ∈ X k × Yk;

• two decoders, where Decoder ℓ ∈ {1, 2} assigns an estimate ŝkℓ to each tuple
(mc,{ℓ},mc,{1,2},mu,{ℓ},mu,{1,2}, y

k).

A rate tuple R is said to be achievable if there exists a sequence of (n, k) codes
with

lim
k→∞

P

 ∪
ℓ∈{1,2}

∪
i∈[k]

{
Ŝℓ,i ̸= fℓ(Xi, Yi)

} = 0.

The optimal rate region R∗ is the closure of the set of achievable rate tuples.

We are also interested in the subsets of R∗, in which some of the rate components
are set to zero. Let Ac and Au be any subsets of {{1}, {2}, {1, 2}}. We use the
notation (Ac|Au), termed configuration, to specify the available caches and updates
in the system. For example, Configuration (Ac|Au) = ({1}, {2}|{1, 2}) says that
each user has his/her own private cache and there is an update common to both
users. Then, we define

R∗(Ac|Au) := {R ∈ R∗ : Rc,Bc = 0, Ru,Bu = 0 for all Bc /∈ Ac,Bu /∈ Au}. (4.1)
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Figure 4.2: The system with Configuration (Ac|Au) = ({1}, {2}, {1, 2}|{1}, {2}).
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Figure 4.3: The system with Configuration (Ac|Au) = ({1, 2}|{1}, {2}, {1, 2}).

4.2 Extension of the Gray–Wyner System

We first consider Configuration (Ac|Au) = ({1}, {2}, {1, 2}|{1}, {2}) and Configura-
tion (Ac|Au) = ({1, 2}|{1}, {2}, {1, 2}), depicted in Figures 4.2 and 4.3, respectively.
These configurations include the Gray–Wyner system [9] as a special case. To see
this, in Configuration ({1}, {2}, {1, 2}|{1}, {2}) set Ru,{1} = Ru,{2} = 0, and in Con-
figuration ({1, 2}|{1}, {2}, {1, 2}) set Rc,{1,2} = 0. We follow the principle “common
→ private” and establish the optimal rate regions of the two configurations in the
following theorems. The proofs are omitted since they follow similar lines as the
proof of Theorem 2.4, which can be found in [9].

Theorem 4.1. The rate region R∗({1}, {2}, {1, 2}|{1}, {2}) is the set of rate tuples
R such that Ru,{1,2} = 0,

Rc,{1,2} ≥ I(X;Vc|Y ),

Rc,{1} ≥ I(X;V1|Vc, Y ),

Rc,{2} ≥ I(X;V2|Vc, Y ),

Ru,{1} ≥ H(f1(X,Y )|Vc, V1, Y ),

Ru,{2} ≥ H(f2(X,Y )|Vc, V2, Y ),



4.3. Sequential Successive Refinement 43

for some conditional pmf pVc|XpV1|Vc,XpV2|Vc,X satisfying |Vc| ≤ |X | + 4, |Vj | ≤
|Vc||X |+ 1, j ∈ {1, 2}.

Theorem 4.2. The rate region R∗({1, 2}|{1}, {2}, {1, 2}) is the set of rate tuples
R such that Rc,{1} = Rc,{2} = 0,

Rc,{1,2} ≥ I(X;Vc|Y ),

Ru,{1,2} ≥ I(X;U |Vc, Y ),

Ru,{1} ≥ H(f1(X,Y )|U, Vc, Y ),

Ru,{2} ≥ H(f2(X,Y )|U, Vc, Y ),

for some conditional pmf pVc|XpU |Vc,X,Y satisfying |Vc| ≤ |X |+3, |U| ≤ |Vc||X ||Y|+2.

As in the Gray–Wyner system, the optimal decoding order is to first recover the
common descriptions at both decoders first, and then each decoder recovers their re-
spective private descriptions. Moreover, in Configuration ({1}, {2}, {1, 2}|{1}, {2}),
to account for the additional update encoder with private links connected to the
decoders, the private descriptions are decoded successively with the order “cache →
update”. Similarly, to account for the additional cache encoder that has a common
link to both decoders in Configuration ({1, 2}|{1}, {2}, {1, 2}), the common descrip-
tions are decoded successively with the order “cache → update”. In summary, the
rate expressions in Theorems 4.1 and 4.2 are established with the following optimal
decoding orders:

1. common cache → private cache → private update, and

2. common cache → common update → private update.

The same principle can be extended to the general multi-user case. For all config-
urations such that there is no conflict between the two decoding orders “cache →
update” and “common → private”, a single-letter characterization of the optimal
rate region can be found. For the rest of the chapter, we consider three configura-
tions in which there is a conflict between the two principles “cache → update” and
“common → private”.

4.3 Sequential Successive Refinement

Configuration (Ac|Au) = ({2}, {1, 2}|{2}, {1, 2}) (see Figure 4.4) is a special case
of the problem of distributed computing with successive refinement, which will be
discussed in Chapter 5. In the first stage, the cache encoder and the private encoder
each send a coarse description to both decoders, and then in the second stage they
each send a refined description only to Decoder 2. Here we can see a conflict between
the principles “cache → update” and “common → private”. It is not clear in the
first place whether Decoder 2 should decode the common update content first or the
private cache content first.

As shown in the following theorem, it turns out that the following decoding order
is optimal for Decoder 2:

common cache → common update → private cache → private update.
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Figure 4.4: The source network with Configuration (Ac|Au) = ({2}, {1, 2}|{2}, {1, 2}).

Theorem 4.3. The rate region R∗({2}, {1, 2}|{2}, {1, 2}) is the set of rate tuples
R such that Rc,{1} = Ru,{1} = 0,

Rc,{1,2} ≥ I(X;Vc|Y ),

Rc,{1,2} +Rc,{2} ≥ I(X;Vc|Y ) + I(X;V2|f1(X,Y ), Vc, Y ),

Ru,{1,2} ≥ H(f1(X,Y )|Vc, Y ),

Ru,{1,2} +Ru,{2} ≥ H(f1(X,Y )|Vc, Y ) +H(f2(X,Y )|V2, f1(X,Y ), Vc, Y ),

for some conditional pmf pV2,Vc|X satisfying |Vc| ≤ |X |+ 3 and |V2| ≤ |Vc||X |+ 1.

Proof: (Achievability.) The achievability can be proved by applying Theo-
rem 3.1 and its straightforward extension. Here we provide a high-level description.
Consider a simple two-stage coding. In the first stage, we communicate the func-
tion f1 using an optimal multiple description code for the single-user case. Each
encoder sends its generated message through its common link. Since both mes-
sages (Mc,{1,2},Mc,{2}) are also received by Decoder 2, Decoder 2 can also learn

(vkc , {f1(xi, yi)}i∈[k]). Then, in the second stage, we use another multiple descrip-
tion code for the single-user case to communicate the function f2 but with the
augmented side information (vkc , {f1(xi, yi)}i∈[k], yk). Depending on the rate alloca-
tion, each encoder can divide its message of the second stage into two parts, one of
which is sent through the common link and the other is sent through the private
link.

(Converse.) Denote S1i = f1(Xi, Yi) and S2i = f2(Xi, Yi) for all i ∈ [k]. The
rates Rc,{1,2} and Ru,{1,2} can be lower bounded in the same manner as the single-

user case and thus the details are omitted. Denote Vci = (Mc,{1,2}, S
i−1
1 , Y [k]\{i}).

Now consider the lower bounds on sum rates Rc,{1,2} +Rc,{2} and Ru,{1,2} +Ru,{2}.
First, we have

k(Rc,{1,2} +Rc,{2})

≥ H(Mc,{1,2},Mc,{2}|Y k)

= I(Xk;Mc,{1,2},Mc,{2}|Y k)

= I(Sk
1 , X

k;Mc,{1,2},Mc,{2}|Y k)

≥ I(Sk
1 ;Mc,{1,2}|Y k) + I(Xk;Mc,{1,2},Mc,{2}|Sk

1 , Y
k)
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=
k∑

i=1

I(S1i;Mc,{1,2}|Si−1
1 , Y k) +

k∑
i=1

I(Xi;Mc,{1,2},Mc,{2}|Xi−1, Sk
1 , Y

k)

(a)
=

k∑
i=1

I(S1i;Mc,{1,2}, S
i−1
1 , Y [k]\{i}|Yi)

+

k∑
i=1

I(Xi;Mc,{1,2}, S
i−1
1 , Y [k]\{i},Mc,{2}, X

i−1, Sk
1,i+1|S1i, Yi)

=

k∑
i=1

I(S1i;Vci|Yi) +
k∑

i=1

I(Xi;Vci, V2i|S1i, Yi),

where (a) follows since (Xi, Yi, S1i) is independent of (X
i−1, S

[k]\{i}
1 , Y [k]\{i}). For the

last step, we define V2i := (Mc,{2}, X
i−1, Sk

1,i+1). Note that (Vci, V2i) (−− Xi (−− Yi
form a Markov chain. Second, we have

k(Ru,{1,2} +Ru,{2})

≥ H(Mu,{1,2}|Mc,{1,2}, Y
k) +H(Mu,{2})

(a)

≥ H(Sk
1 ,Mu,{1,2}|Mc,{1,2}, Y

k) +H(Mu,{2})− kϵ′k

=
k∑

i=1

H(S1i|Mc,{1,2}, S
i−1
1 , Y k) +H(Mu,{1,2}|Sk

1 ,Mc,{1,2}, Y
k) +H(Mu,{2})− kϵ′k

≥
k∑

i=1

H(S1i|Vci, Yi) +H(Mu,{1,2},Mu,{2}|Sk
1 ,Mc,{1,2},Mc,{2}, Y

k)− kϵ′k

(b)

≥
k∑

i=1

H(S1i|Vci, Yi) +H(Sk
2 ,Mu,{1,2},Mu,{2}|Sk

1 ,Mc,{1,2},Mc,{2}, Y
k)− k(ϵ′k + ϵ′′k)

≥
k∑

i=1

H(S1i|Vci, Yi) +H(Sk
2 |Sk

1 ,Mc,{1,2},Mc,{2}, Y
k)− k(ϵ′k + ϵ′′k)

=

k∑
i=1

H(S1i|Vci, Yi) +
k∑

i=1

H(S2i|Si−1
2 , Sk

1 ,Mc,{1,2},Mc,{2}, Y
k)− k(ϵ′k + ϵ′′k)

≥
k∑

i=1

H(S1i|Vci, Yi) +
k∑

i=1

H(S2i|S1i, V2i, Vci, Yi)− k(ϵ′k + ϵ′′k),

where (a) and (b) follow from the data processing inequality and Fano’s inequality.
The rest of the converse proof follows from the standard time-sharing argument,
letting k → ∞, and the fact that

I(f1(X,Y );Vc|Y ) + I(X;Vc, V2|f1(X,Y ), Y )

= I(X;Vc|Y ) + I(X;V2|f1(X,Y ), Vc, Y ).

Finally, the cardinality bounds on Vc and V2 can be proved using the convex cover
method [5, Appendix C].
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Figure 4.5: The source network with Configuration (Ac|Au) = ({1}|{2}, {1, 2}).

4.4 Configuration ({1}|{2}, {1, 2})
In this configuration (see Figure 4.5), User 1 has a private cache, User 2 has a
private update, and additionally they both receive a common update. Again, there
is a conflict at Decoder 1 because it receives both private cache and common update.
Unfortunately, the optimal rate region R∗({1}|{2}, {1, 2}) is unknown.

Let us first consider the special case Configuration ({1}|{1, 2}) to gain some
insight. By symmetry, Configuration ({1}|{1, 2}) is also a special case of the problem
of sequential successive refinement addressed in Section 4.3. Thus, R∗({1}|{1, 2}) is
the set of rate tuples R such that Rc,{2} = Rc,{1,2} = Ru,{1} = Ru,{2} = 0,

Rc,{1} ≥ I(X;V |f2(X,Y ), Y ),

Ru,{1,2} ≥ H(f2(X,Y )|Y ) +H(f1(X,Y )|V, f2(X,Y ), Y ),

for some conditional pmf pV |X . From the rate expressions, we can observe the
following: First, Decoder 2 must recover the desired function f2 from the single
messageMu,{1,2}, which is also received by Decoder 1. Thus, it implies that Decoder
1 can also recover f2 and use it as side information. Second, there are two different
descriptions sent though the common link. From the perspective of Decoder 1, the
description about f2 is reconstructed before recovering the private cache content and
the description about f1 is reconstructed after recovering the private cache content.
Therefore, in the achievability we can see both principles “common → private” and
“cache → update”. Unfortunately, currently there is no concrete example showing
that both principles are required at the same time.

Based on the above observation, we present an inner bound and an outer bound
that uses both principles “common → private” and “cache → update”.

Proposition 4.1 (Inner Bound). A rate tuple R belongs to R∗({1}|{2}, {1, 2}) if
its elements satisfy Rc,{2} = Rc,{1,2} = Ru,{1} = 0, and

Rc,{1} > I(X;V |Y )− I(W ;V |Y ),

Ru,{1,2} > I(V,X;W |Y ) +H(f1(X,Y )|W,V, Y ),

Ru,{2} > H(f2(X,Y )|W,Y ),

for some conditional pmf pV |XpW |V,X,Y .
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Note that by setting W = f2(X,Y ), we recover the rate region R∗({1}|{1, 2}).
Proof: Fix the conditional pmf pV |XpW |V,X,Y . Denote s1i = f1(xi, yi) and

s2i = f2(xi, yi), i ∈ [k]. Assume that ϵ > ϵ′ > 0.

Codebook generation: Randomly and independently generate ⌈2kRc,{1}⌉⌈2kR1⌉
sequences vk(ℓv, ℓ1), ℓv ∈ [2kRc,{1} ] and ℓ1 ∈ [2kR1 ], each according to

∏k
i=1 pV (vi).

Also, for each yk ∈ Yk, randomly and independently generate ⌈2kR2⌉ sequences
wk(ℓ2, y

k), ℓ2 ∈ [2kR2 ], each according to
∏k

i=1 pW |Y (wi|yi). Finally, for each j ∈
{1, 2}, randomly and independently assign a bin index mj(s

k
j ) to each sequence

skj ∈ Sk
j according to a uniform pmf over [2kR2+j ]. The codebooks are revealed to

all nodes.

Encoding: Upon seeing xk, the cache encoder finds an index pair (ℓv, ℓ1) such

that (xk, vk(ℓv, ℓ1)) ∈ T
(k)
ϵ′ (X,V ). If there is more than one such index pair, it

selects the one that minimizes ℓv⌈2kR1⌉ + ℓ1. If there is no such index pair, it sets
(ℓv, ℓ1) = (1, 1). Then, the cache encoder sends the index ℓv to Decoder 1.

Upon seeing (xk, yk), the update encoder first finds the same sequence vk(ℓv, ℓ1)
as the cache encoder. Then, the update encoder finds an index ℓ2 such that

(vk(ℓv, ℓ1), x
k, wk(ℓ2, y

k)) ∈ T
(k)
ϵ (V,X,W |yk). If there is more than one such index,

it selects the smallest one. If there is no such index, it sets ℓ2 = 1. Then, the update
encoder sends the indices (ℓ2,m1(s

k
1)) to Decoders 1 and 2 through the common up-

date link. Finally, the update encoder sends the index m2(s
k
2) to Decoder 2 through

the private update link. Therefore, we have the conditions Ru,{1,2} ≥ R2 + R3 and
Ru,{2} ≥ R4.

Decoding: Upon seeing (ℓv, ℓ2,m1), Decoder 1 finds the unique index ℓ̂1 such

that (wk(ℓ2, y
k), vk(ℓv, ℓ̂1), y

k) ∈ T (k)
ϵ (W,V, Y ); otherwise it sets ℓ̂1 = 1. Then,

Decoder 1 declares the estimate ŝk1 if it is the unique sequence with bin index m1

such that (ŝk1, w
k(ℓ2, y

k), vk(ℓv, ℓ̂1), y
k) ∈ T (k)

ϵ (S1,W, V, Y ); otherwise it declares an
error.

Upon seeing (ℓ2,m1,m2), Decoder 2 declares the estimate ŝk2 if it is the unique

sequence with bin indexm2 such that (ŝk2, w
k(ℓ2, y

k), yk) ∈ T (k)
ϵ (S2,W, Y ); otherwise

it declares an error.

Analysis: The following can be shown using the standard typicality arguments.
Note that each event is conditioned on the success of the previous events.

1. If Rc,{1}+R1 > I(X;V )+δ(ϵ′), then the cache encoder finds an index pair (ℓv, ℓ1)

with high probability (w.h.p.). Note that it implies that (xk, yk, vk(ℓv, ℓ1)) ∈
T
(k)
ϵ (X,Y, V ) w.h.p..

2. If R1 < I(W,Y ;V ) + δ(ϵ), then Decoder 1 identifies the index ℓ1 w.h.p..

3. If R2 > I(V,X;W |Y ) + δ(ϵ), then the update encoder finds an index ℓ2 w.h.p..

4. If R3 > H(f1(X,Y )|W,V, Y ) + δ(ϵ), then Decoder 1 recovers sk1 correctly w.h.p..

5. If R4 > H(f2(X,Y )|W,Y ) + δ(ϵ), then Decoder 2 recovers sk2 correctly w.h.p..

The rest of the proof follows from the Fourier–Motzkin elimination and then by
letting ϵ, ϵ′ → 0.
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Proposition 4.2 (Outer Bound). If R ∈ R∗({1}|{2}, {1, 2}), then its elements
must satisfy Rc,{2} = Rc,{1,2} = Ru,{1} = 0 and the inequalities

Rc,{1} > I(X;V |W,Y ),

Ru,{1,2} > I(X;W |Y ) +H(f1(X,Y )|W,V, Y ),

Ru,{2} > H(f2(X,Y )|W,Y ),

for some conditional pmf pV |XpW |V,X,Y .

The proof of Proposition 4.2 follows similar lines as the converse proof of Theorem
3.1 and is thus omitted. We remark that the outer bound in Proposition 4.2 can be
expressed as

Rc,{1} > I(X;V |Y )− I(W ;V |Y ) + I(W ;V |X,Y ),

Ru,{1,2} > I(V,X;W |Y ) +H(f1(X,Y )|W,V, Y )− I(W ;V |X,Y ),

Ru,{2} > H(f2(X,Y )|W,Y ).

Thus, the inner bound and the outer bound coincide if all the extreme points can
be achieved by some conditional pmf pV |XpW |V,X,Y satisfying I(W ;V |X,Y ) = 0.

4.5 Configuration ({1}, {2}|{1, 2})
Configuration ({1}, {2}|{1, 2}) (see Figure 4.6) is essentially the setup studied by
Maddah-Ali and Niesen [26], where each user has a private cache and both receive a
common update. Similar to Section 4.4, we provide an achievable scheme that uses
both principles “common → private” and “cache → update”.

Proposition 4.3 (Inner Bound). A rate tuple R belongs to R∗({1}, {2}|{1, 2}) if
its elements satisfy Rc,{1,2} = Ru,{1} = Ru,{2} = 0, and

Ru,{1,2} > I(V1, V2, X;W |Y ) + max
j∈{1,2}

I(V3−j , X;U |Vj ,W, Y )

+H(f1(X,Y )|U, V1,W, Y ) +H(f2(X,Y )|U, V2,W, Y ),

Rc,{1} > I(X;V1|Y )− I(W ;V1|Y ),

Rc,{2} > I(X;V2|Y )− I(W ;V2|Y ),

Rc,{1} +Rc,{2} > I(X;V1|Y ) + I(X;V2|Y ) + I(V1;V2|X)

−I(W ;V1|Y )− I(W ;V2|Y ),

for some conditional pmf pV1,V2|XpU,W |V1,V2,X,Y .

Proof: Fix the conditional pmf pV1,V2|XpU,W |V1,V2,X,Y . Denote s1i = f1(xi, yi)
and s2i = f2(xi, yi), i ∈ [k]. Assume that ϵ > ϵ′ > 0.

Codebook generation: For each j ∈ {1, 2}, randomly and independently
generate ⌈2kRc,{j}⌉⌈2kRj⌉ sequences vkj (ℓj , ℓ̃j), ℓj ∈ [2kRc,{j} ] and ℓ̃j ∈ [2kRj ], each ac-

cording to
∏k

i=1 pVj (vji). Next, For each y
k ∈ Yk, randomly and independently gen-

erate ⌈2kRw⌉ sequences wk(ℓw, y
k), ℓw ∈ [2kRw ], each according to

∏k
i=1 pW |Y (wi|yi).

Then, for each pair (ℓw, y
k) ∈ [2kRw ] × Yk, randomly and independently generate

⌈2kRu⌉⌈2kR0⌉ sequences uk(ℓu, ℓ̃0, ℓw, y
k), where ℓu ∈ [2kRu ] and ℓ̃0 ∈ [2kR0 ], each
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Figure 4.6: The source network with Configuration (Ac|Au) = ({1}, {2}|{1, 2}).

according to
∏k

i=1 pU |W,Y (ui|wi, yi). Finally, for each j ∈ {1, 2}, randomly and in-

dependently assign a bin index mj(s
k
j ) to each sequence skj ∈ Sk

j according to a

uniform pmf over [2kR2+j ]. The codebooks are revealed to all nodes.

Encoding: Upon seeing xk, the cache encoder finds an index tuple (ℓ1, ℓ̃1, ℓ2, ℓ̃2)

such that (xk, vk1 (ℓ1, ℓ̃1), v
k
2 (ℓ2, ℓ̃2)) ∈ T

(k)
ϵ′ (X,V1, V2). If there is more than one such

index tuple, it selects one following an arbitrary rule coordinated with the update
encoder. If there is no such index tuple, it sets (ℓ1, ℓ̃1, ℓ2, ℓ̃2) = (1, 1, 1, 1). Finally,
the cache encoder sends the index ℓj to Decoder j, where j ∈ {1, 2}.

Upon seeing (xk, yk), the update encoder first finds the same sequences vk1 (ℓ1, ℓ̃1)
and vk2 (ℓ2, ℓ̃2) as done by the cache encoder. Then, the update encoder finds an

index ℓw such that (xk, vk1 (ℓ1, ℓ̃1), v
k
2 (ℓ2, ℓ̃2), w

k(ℓw, y
k)) ∈ T

(k)
ϵ (X,V1, V2,W |yk). If

there is more than one such index, it selects the smallest one. If there is no such
index, it sets ℓw = 1. Next, the update encoder finds an index pair (ℓu, ℓ̃0) such

that (xk, vk1 (ℓ1, ℓ̃1), v
k
2 (ℓ2, ℓ̃2), u

k(ℓu, ℓ̃0, ℓw, y
k)) ∈ T

(k)
ϵ (X,V1, V2, U |wk, yk). If there

is more than one such index pair, it selects the one that minimizes ℓu⌈2kR0⌉+ ℓ̃0. If
there is no such index pair, it sets (ℓu, ℓ̃0) = (1, 1).

Finally, the update encoder sends the index tuple (ℓw, ℓu,m1(s
k
1),m2(s

k
2)) to

Decoders 1 and 2 through the common link. Therefore, we have the condition
Ru,{1,2} ≥ Rw +Ru +R3 +R4.

Decoding: Consider j ∈ {1, 2}. Upon seeing (ℓj , ℓw, ℓu,m1,m2), Decoder j

first recovers wk(ℓw, y
k). Then, Decoder j finds the unique index ℓ̂j such that

(vkj (ℓj , ℓ̂j), w
k(ℓw, y

k), yk) ∈ T (k)
ϵ (Vj ,W, Y ); otherwise it sets ℓ̂j = 1. Next, Decoder

j finds the unique index ℓ̂u such that (uk(ℓu, ℓ̂0, ℓw, y
k), vkj (ℓj , ℓ̂j), w

k(ℓw, y
k), yk) ∈

T (k)
ϵ (U, Vj ,W, Y ). Finally, Decoder j declares the estimate ŝkj if it is the unique se-

quence with bin index mj such that (ŝkj , u
k(ℓu, ℓ̂0, ℓw, y

k), vkj (ℓj , ℓ̂j), w
k(ℓw, y

k), yk) ∈
T (k)
ϵ (Sj , U, Vj ,W, Y ); otherwise it declares an error.

Analysis: The following can be shown using the standard typicality arguments.
Note that each event is conditioned on the success of the previous events.

1. If it holds that

Rc,{1} +R1 > I(X;V1) + δ(ϵ′),
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Rc,{2} +R2 > I(X;V2) + δ(ϵ′),

Rc,{1} +R1 +Rc,{2} +R2 > I(X;V1) + I(X;V2) + I(V1;V2|X) + δ(ϵ′),

then the cache encoder finds an index tuple (ℓ1, ℓ̃1, ℓ2, ℓ̃2) w.h.p.. Note that it

implies that (xk, yk, vk1 (ℓ1, ℓ̃1), v
k
2 (ℓ2, ℓ̃2)) ∈ T

(k)
ϵ (X,Y, V1, V2) w.h.p..

2. If Rw > I(V1, V2, X;W |Y ) + δ(ϵ), then the update encoder finds an index ℓw
w.h.p..

3. For j ∈ {1, 2}, if Rj < I(W,Y ;Vj) + δ(ϵ), then Decoder j identifies the index ℓ̃j
w.h.p..

4. If Ru +R0 > I(V1, V2, X;U |W,Y )+ δ(ϵ), then the update encoder finds an index
pair (ℓu, ℓ̃0) w.h.p..

5. For j ∈ {1, 2}, if R0 < I(Vj ;U |W,Y ) + δ(ϵ), then Decoder j identifies the index
ℓ̃0 w.h.p..

6. For j ∈ {1, 2}, if R2+j > H(fj(X,Y )|U, Vj ,W, Y )+ δ(ϵ), then Decoder j recovers
skj correctly w.h.p..

The rest of the proof follows from the Fourier–Motzkin elimination and then by
letting ϵ, ϵ′ → 0.

We remark that after Decoders 1 and 2 recover (wk, vk1 ) and (wk, vk2 ), respec-
tively, the system can be treated as a special case of the Kaspi/Heegard–Berger
problem with an informed encoder [20] (see also [21]). The rate region presented in
Proposition 4.3 is not convex in general, but we can easily convexify it by introducing
a time-sharing random variable Q.

Remark 4.1. Let us briefly discuss the scenario in which the requests are only
locally known, i.e., the users have no information about each other’s requests. In
that scenario, every configuration with at least one common link can be simplified to
the Kaspi/Heegard–Berger problem by setting some of the rates to zero. Following the
principle “cache → update,” for each configuration we can develop an achievability
with rate expressions similar to Proposition 4.3 with W = ∅. For example, consider
Configuration ({1}, {2}|{1, 2}) in which the requests are only locally known. It can
be shown that the following rate region is achievable: the set of rate tuples R whose
elements satisfy Rc,{1,2} = Ru,{1} = Ru,{2} = 0, and

Rc,{1} > I(X;V1|Y1),
Rc,{2} > I(X;V2|Y2),

Rc,{1} +Rc,{2} > I(X;V1|Y1) + I(X;V2|Y2) + I(V1;V2|X),

Ru,{1,2} > max{I(V2, Y2, X;U |V1, Y1), I(V1, Y1, X;U |V2, Y2)}
+H(f1(X,Y )|U, V1, Y1) +H(f2(X,Y )|U, V2, Y2),

for some conditional pmf pV1,V2|XpU |V1,V2,X,Y1,Y2
.

Now we present an outer bound which has a similar form as the achievable rate
region in Proposition 4.3 with W = ∅.
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Proposition 4.4 (Outer Bound). If R ∈ R∗({1}, {2}|{1, 2}), then its elements
must satisfy Rc,{1,2} = Ru,{1} = Ru,{2} = 0 and the inequalities

Rc,{1} ≥ I(X;V1|Y ), (4.2)

Rc,{2} ≥ I(X;V2|Y ), (4.3)

Ru,{1,2} ≥ max{I(X;U |V1, Y ), I(X;U |V2, Y )}
+H(f1(X,Y )|U, V1, Y ) +H(f2(X,Y )|U, V2, Y ),

for some conditional pmf pV1,V2|XpU |V1,V2,X,Y such that

I(X;V1|Y ) + I(X;V2|Y ) ≥ I(X;V1, V2|Y ). (4.4)

Proof: Denote S1i = f1(Xi, Yi) and S2i = f2(Xi, Yi) for i ∈ [k]. First, for
each j ∈ {1, 2}, we have

kRc,{j} ≥ H(Mc,{j}|Y k)

= I(Xk;Mc,{j}|Y k)

=
k∑

i=1

I(Xi;Mc,{j}|Xi−1, Y k)

=
k∑

i=1

I(Xi;Mc,{j}, X
i−1, Y [k]\{i}|Yi)

=
k∑

i=1

I(Xi;Vji|Yi).

The last step follows by defining Vji = (Mc,{j}, X
i−1, Y [k]\{i}), j ∈ {1, 2}, for all

i ∈ [k]. Note that for j ∈ {1, 2}, Vji (−− Xi (−− Yi form a Markov chain. Next, for
j ∈ {1, 2}, we have

kRu,{1,2} ≥ H(Mu,{1,2}|Mc,{j}, Y
k)

= I(Xk;Mu,{1,2}|Mc,{j}, Y
k)

=

k∑
i=1

I(Xi;Mu,{1,2}|Xi−1,Mc,{j}, Y
k)

=
k∑

i=1

I(Xi;Mu,{1,2}, X
i−1, Y [k]\{i}|Vji, Yi)

=
k∑

i=1

I(Xi;Ui|Vji, Yi). (4.5)

The last step follows by defining Ui = (Mu,{1,2}, X
i−1, Y [k]\{i}), for all i ∈ [k]. From

the data processing inequality and Fano’s inequality, we have for j ∈ {1, 2},

kϵjk ≥ H(Sk
j |Mc,{j},Mu,{1,2}, Y

k)

=
k∑

i=1

H(Sji|Si−1
j ,Mc,{1},Mu,{1,2}, Y

k)
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≥
k∑

i=1

H(Sji|Xi−1,Mc,{1},Mu,{1,2}, Y
k)

=

k∑
i=1

H(Sji|Ui, Vji, Yi). (4.6)

Thus, the inequalities (4.5) and (4.6) imply that for j ∈ {1, 2},

k(Ru,{1,2} + ϵ1k + ϵ2k)

≥
k∑

i=1

[I(Xi;Ui|Vji, Yi) +H(S1i|Ui, V1i, Yi) +H(S2i|Ui, V2i, Yi)] .

Finally, following a proof step in [42, Theorem 3], we have

k∑
i=1

I(Xi;V1i|Yi) +
k∑

i=1

I(Xi;V2i|Yi)

=
k∑

i=1

I(Xi;Mc,{1}, X
i−1, Y [k]\{i}|Yi) +

k∑
i=1

I(Xi;Mc,{2}, X
i−1, Y [k]\{i}|Yi)

=

k∑
i=1

I(Xi;Mc,{1}|Xi−1, Y k) +

k∑
i=1

I(Xi;Mc,{2}|Xi−1, Y k)

= I(Xk;Mc,{1}|Y k) + I(Xk;Mc,{2}|Y k)

= H(Mc,{1}|Y k) +H(Mc,{2}|Y k)

≥ H(Mc,{1},Mc,{2}|Y k)

= I(Xk;Mc,{1},Mc,{2}|Y k)

=
k∑

i=1

I(Xi;Mc,{1},Mc,{2}|Xi−1, Y k)

=

k∑
i=1

I(Xi;V1i, V2i|Yi).

The rest of the proof follows from the standard time-sharing argument and then
letting k → ∞.

The outer bound in Proposition 4.4 can be relaxed to the following cut-set based
bound.

Corollary 4.1. If R ∈ R∗({1}, {2}|{1, 2}), then its elements must satisfy Rc,{1,2} =
Ru,{1} = Ru,{2} = 0 and the inequalities

Rc,{1} ≥ I(X;V1|Y ),

Rc,{2} ≥ I(X;V2|Y ),

Rc,{1} +Rc,{2} ≥ I(X;V1, V2|Y ),

Ru,{1,2} ≥ max{H(f1(X,Y )|V1, Y ),H(f2(X,Y )|V2, Y ),

H(f1(X,Y ), f2(X,Y )|V1, V2, Y )},

for some conditional pmf pV1,V2|X .
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Proof: First, note that (4.2), (4.3), and (4.4) imply that Rc,{1} + Rc,{2} ≥
I(X;V1, V2|Y ). Next, we show that given any conditional pmf pV1,V2|XpU |V1,V2,X,Y

that satisfies (4.4), it holds that

max
j∈{1,2}

{I(X;U |Vj , Y )}+H(f1(X,Y )|U, V1, Y ) +H(f2(X,Y )|U, V2, Y )

≥ max{H(f1(X,Y )|V1, Y ),H(f2(X,Y )|V2, Y ),H(f1(X,Y ), f2(X,Y )|V1, V2, Y )}.

Indeed, we have for ℓ ∈ {1, 2},

max
j∈{1,2}

{I(X;U |Vj , Y )}+H(f1(X,Y )|U, V1, Y ) +H(f2(X,Y )|U, V2, Y )

≥ I(X;U |Vℓ, Y ) +H(fℓ(X,Y )|U, Vℓ, Y )

≥ I(fℓ(X,Y );U |Vℓ, Y ) +H(fℓ(X,Y )|U, Vℓ, Y )

= H(fℓ(X,Y )|Vℓ, Y ).

Also, we have

max
j∈{1,2}

{I(X;U |Vj , Y )}+H(f1(X,Y )|U, V1, Y ) +H(f2(X,Y )|U, V2, Y )

≥ max
j∈{1,2}

{I(X;U |Vj , Y )}+H(f1(X,Y ), f2(X,Y )|U, V1, V2, Y )

(a)

≥ I(X;U |V1, V2, Y ) +H(f1(X,Y ), f2(X,Y )|U, V1, V2, Y )

≥ I(f1(X,Y ), f2(X,Y );U |V1, V2, Y ) +H(f1(X,Y ), f2(X,Y )|U, V1, V2, Y )

= H(f1(X,Y ), f2(X,Y )|V1, V2, Y ),

where (a) follows from (4.4). Finally, we remove the constraints (4.4) and the desired
corollary is established.

Now let us look at two examples of Configuration ({1}, {2}|{1, 2}).

Example 4.1 (Independent Selection). Let X = (A,B), Y = (Y1, Y2), where
A,B, Y1, Y2 are i.i.d. drawn from Bernoulli(1/2). Assume that

fj(X,Y ) =

{
A if Yj = 0,

B if Yj = 1,

where j ∈ {1, 2}. Unfortunately, the optimal rate region is unknown, even for the
symmetric case, i.e., Rc,{1} = Rc,{2} = Rc. Denote Ru = Ru,{1,2}. It can be eas-
ily checked that (Rc, Ru) = (0, 1.5), (2, 0) are two extreme points of the symmetry-
constrained optimal rate region. Next, borrowing the idea from the achievability in
[26, Example 4], we substitute W = ∅, V1 = A, V2 = B, and

U =


A if (Y1, Y2) = (0, 0),

∅ if (Y1, Y2) = (0, 1),

A⊕B if (Y1, Y2) = (1, 0),

B if (Y1, Y2) = (1, 1),

into the rate expressions of Proposition 4.3. Then, the rate pair (Rc, Ru) = (1, 0.5)
is achievable. The inner bound plotted in solid blue in Figure 4.7 follows by time
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Figure 4.7: The inner and outer bounds for the example of independent selection
(Example 4.1). The inner bound is plotted in solid blue. The outer bound is plotted in
dashed red.

sharing among (0, 1.5), (1, 0.5), and (2, 0). On the other hand, the outer bound in
Corollary 4.1 can be relaxed by only considering the intersection of

{(Rc, Ru) : Rc ≥ I(X;V1|Y ), Ru ≥ H(f1(X,Y )|V1, Y ) for some pV1|X}

and

{(Rc, Ru) : 2Rc ≥ I(X;V1, V2|Y ),

Ru ≥ H(f1(X,Y ), f2(X,Y )|V1, V2, Y ) for some pV1,V2|X}.

Then, following similar steps as the proof of Proposition 3.1, we have that for any
Rc ≥ 0,

Ru ≥ max

{(
1− Rc

2

)+

,

(
3

2
− 3

2
Rc

)+
}
.

The above outer bound is plotted in dashed red in Figure 4.7.

Example 4.2 (Complementary Selection). Let A,B, Y be i.i.d. Bernoulli(1/2) ran-
dom variables and X = (A,B). Assume that

(f1(X,Y ), f2(X,Y )) =

{
(A,B) if Y = 0,

(B,A) if Y = 1.

That is, the desired components of the two users are always complementary to each
other. Again, the optimal rate region is unknown, even for the symmetric case, i.e.,
Rc,{1} = Rc,{2} = Rc. Denote Ru = Ru,{1,2}. It is easy to see that (Rc, Ru) =
(0, 2), (2, 0) are two extreme points of the symmetry-constrained optimal rate region.
Next, we consider the following choice of auxiliary random variables, which borrows
the idea from the achievability in [26, Appendix]. Let A2, B1 be i.i.d. Bernoulli(q)
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Figure 4.8: The inner and outer bounds for the example of complementary selection
(Example 4.2). The inner bound is plotted in solid blue. The outer bound is plotted in
dashed red.

and denote A1 = A ⊕ A2, B2 = B ⊕ B1. We substitute W = ∅, V1 = A1 ⊕ B1,
V2 = A2 ⊕B2, and

U =

{
(A2, B1) if Y = 0,

(A1, B2) if Y = 1,

into the rate expressions of Proposition 4.3. It can be verified that the rate pair
(Rc, Ru) = (1, 0.5) is achievable with q = 0 and (Rc, Ru) = (0.5, 1) is achievable with
q = 1/2. We remark that when q = 1/2, we have I(V1, V2|X) = 1, i.e., V1 and V2
are not conditionally independent given X. The inner bound plotted in solid blue in
Figure 4.8 follows by time sharing among (0, 2), (0.5, 1), (1, 0.5), and (2, 0). Similar
to Example 4.1, the outer bound in Corollary 4.1 implies that for any Rc ≥ 0,

Ru ≥ max

{(
1− Rc

2

)+

, (2− 2Rc)
+

}
.

The above outer bound is plotted in dashed red in Figure 4.8.

To end this chapter, we present a general achievable scheme involving all six rate
components, which includes all achievable schemes in the previous sections as special
cases. The achievable scheme follows by a straightforward extension of Proposition
4.3.

Proposition 4.5 (Inner Bound). A rate tuple R belongs to R∗ if its elements satisfy

Rc,{1,2} > I(X;Vc|Y ), (4.7)

Ru,{1,2} > I(V1, V2, X;W |Vc, Y )

+ max
j∈{1,2}

I(V3−j , X;U |Vj ,W, Vc, Y ), (4.8)

Rc,{1,2} +Rc,{1} > Ic + I(X;V1|Vc, Y )− I(W ;V1|Vc, Y ), (4.9)
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Rc,{1,2} +Rc,{2} > Ic + I(X;V2|Vc, Y )− I(W ;V2|Vc, Y ), (4.10)

Rc,{1,2} +Rc,{1} +Rc,{2} > Ic + I(X;V1|Vc, Y ) + I(X;V2|Vc, Y ) + I(V1;V2|X,Vc)
−I(W ;V1|Vc, Y )− I(W ;V2|Vc, Y ), (4.11)

Ru,{1,2} +Ru,{1} > Iu +H(f1(X,Y )|U, V1,W, Vc, Y ), (4.12)

Ru,{1,2} +Ru,{2} > Iu +H(f2(X,Y )|U, V2,W, Vc, Y ), (4.13)

Ru,{1,2} +Ru,{1} +Ru,{2} > Iu +

2∑
j=1

H(fj(X,Y )|U, Vj ,W, Vc, Y ), (4.14)

for some conditional pmf pVc,V1,V2|XpU,W |Vc,V1,V2,X,Y , where

Ic = I(X;Vc|Y ),

Iu = I(V1, V2, X;W |Vc, Y ) + max
j∈{1,2}

I(V3−j , X;U |Vj ,W, Vc, Y ).

Proof Outline: Fix a conditional pmf pVc,V1,V2|XpU,W |Vc,V1,V2,X,Y . The code-
book generation is similar to Proposition 4.3, except the following two differences:

1. We generate an extra codebook to map each source sequence xk ∈ X k to a
description vkc , each of which is assigned a bin index mc,{1,2};

2. The codebooks for the descriptions (uk, vk1 , v
k
2 , w

k) in Proposition 4.3 are then
generated by superimposing on the descriptions {vkc }.

Then, the entire communication proceeds as follows. First, we apply Wyner–Ziv
coding to convey the description vkc through the common cache link. After recovering
the sequence vkc at the decoders, all nodes have vkc as side information. Then, we
use the extended achievable scheme in Proposition 4.3 to convey (uk, vkj , w

k) to

Decoder j, j ∈ {1, 2}. Note that each private cache description vkj , j ∈ {1, 2} can
be split into two parts: one is sent through the common cache link and the other
is sent through the private cache link. Similarly, each bin index for the sequence
of functions {fj(Xi, Yi)}i∈[k] can be split into two parts: one is sent through the
common update link and the other is sent through the private update link.

Finally, we summarize how to specialize Proposition 4.5 to recover the achievable
schemes for the considered five configurations.

1. Theorem 4.1
Set Ru,{1,2} = 0, U = W = ∅, and pVc,V1,V2|X = pVc|XpV1|Vc,XpV2|Vc,X . Then, the
inequalities (4.8), (4.11), and (4.14) become redundant. Finally, note that for
j ∈ {1, 2}, the bound on sum rate Rc,{1,2} + Rc,{j} can be relaxed to the bound
on individual rate Rc,{j}.

2. Theorem 4.2
Set Rc,{1} = Rc,{2} = 0 and V1 = V2 = W = ∅. Then, the inequalities (4.9),
(4.10), (4.11) become redundant. Finally, note that the bounds on sum rate
(4.12), (4.13), (4.14) can be relaxed to the bounds on the individual private
update rate Ru,{j}, j ∈ {1, 2}.

3. Theorem 4.3
Set Rc,{1} = Ru,{1} = 0, V1 = U = ∅, and W = f1(X,Y ). Then, the inequalities
(4.9), (4.11), (4.12), (4.14) become redundant.
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4. Proposition 4.1
Set Rc,{2} = Rc,{1,2} = Ru,{1} = 0, U = Vc = V2 = ∅, and V1 = V . Then, the
inequalities (4.7), (4.8), (4.10), (4.11), (4.14) become redundant. Finally, note
that the bound on sum rate (4.13) can be relaxed to the bound on the individual
private update rate Ru,{2}.

5. Proposition 4.3
Set Rc,{1,2} = Ru,{1} = Ru,{2} = 0 and Vc = ∅. Then, the inequalities (4.7),
(4.8), (4.12), (4.13) become redundant. Alternatively, we can set Vc = Q, where
Q is a time-sharing random variable independent of (X,Y ). Then, we attain a
convexified achievable rate region.





Distributed Computing with
Successive Refinement 5
In many applications, it is of interest to first acquire a coarse description of the data
(a “thumbnail”).1 If promising, one may then choose to download the data at a high
resolution. Clearly, in this second stage, it is not necessary to transmit the full high-
resolution description — we can exploit the fact that the receiver already has partial
knowledge and merely send an update or refinement. In information theory, this is
known as the successive refinement source coding problem. A question of obvious
interest is whether we can simultaneously be optimal in both stages: Provide the
best possible coarse version in the first stage, given the available rate, yet recover
the high-resolution version using a total rate no larger than what would have been
needed in the regular compression problem. In particular, this would mean that the
coarse description is fully useful for the high-resolution version. Sources for which
things work out in this ideal way are called successively refinable. While important
cases of successively refinable sources have been found, it is also known that general
sources are not successively refinable.

In this chapter, we study successive refinement under the paradigm of function
computation over networks. We assume that the original data sequences are stored
on several, spatially separate terminals. Again, the goal is to first download a
coarse version, and then, a refinement. We first consider the special case where one
of the sources is completely revealed to the decoders, which reduces to coding for
computing with successive refinement. We present a single-letter characterization
of the optimal rate region and then provide the necessary and sufficient conditions
of successive refinability.

Next, for the general setting, we restrict attention to the special case of full
recovery: After the second stage, the receiver can recover the full, original source
sequences. As for the first stage, the desired coarse description can be an arbitrary
element-wise function of the source sequences. For example, when all sources are
binary, the coarse stage might consist in recovering the element-wise modulo-2 sum
of the source sequences. Our main result is that all sources are successively refinable

1The material of this chapter has appeared in
C.-Y. Wang, and M. Gastpar, “On distributed successive refinement with lossless recovery,” in Proc.
IEEE Int. Symp. Information Theory (ISIT), Honolulu, HI, USA, Jul. 2014.
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in sum rate, with respect to any function for the coarse stage, as long as in the second
stage, the full source sequences must be recovered.

In the last part of the chapter, we study the joint source-channel coding problem
of distributed computing with successive refinement. In this case, the encoders no
longer merely produce bit streams at certain rates. Rather, they have to transmit
codewords across a (noisy) MAC towards the decoder. Again, they do so in two
stages: the first stage enables the receiver to recover coarse descriptions, and the
second stage, to fully recover the source sequences. In the case of a single source,
the solution to this problem follows directly from the corresponding source coding
problem. For the distributed case, however, this does not apply, and new methods
and tools are required. This is true even if the sources are independent of each other.
Namely, suppose that the coarse stage requires to recover the sum of the original
sources. Then, it is well known that the solution to this problem does not follow
from the solution to the corresponding source coding problem, see [4]. Hence, not
surprisingly, a full characterization of the joint source-channel coding problem of
distributed computing with successive refinement appears out of reach. Instead, we
characterize a particular class of sources, multiple-access channels, and functions for
the first stage for which again, we have perfect successive refinability (assuming that
in the second stage, the source sequences must be fully recovered).

5.0.1 Successive Refinement for a Single Source

To set the stage, let us briefly review the case of a single source [43, 44, 45]. Recall
that the rate–distortion region R(D1, D2) for successively refining a DMS ⟨X⟩ with
distortion measures d1 and d2 is the set of rate pairs (R1, R2) such that

R1 ≥ I(X; X̂1),

R1 +R2 ≥ I(X; X̂1, X̂2)

for some conditional pmf pX̂1,X̂2|X such that E[dj(X, X̂j)] ≤ Dj , j ∈ {1, 2}.
The DMS ⟨X⟩ is said to be successively refinable with respect to distortion

measures (d1, d2) if the rate pair

(R1, R2) = (Rd1(D1), (Rd2(D2)−Rd1(D1))
+)

is achievable for all distortion pairs (D1, D2), where Rd(D) is the rate–distortion
function with distortion measure d for a single description. Under a common dis-
tortion measure, i.e., d1 = d2 = d, Equitz and Cover [44] showed that the source is
successively refinable if and only if for all D1 ≤ D2, there exists a conditional pmf
pX̂1,X̂2|X satisfying the Markov condition X̂1 (−− X̂2 (−− X such that pX̂1|X and

pX̂2|X attain the rate–distortion function Rd(D1) and Rd(D2), respectively.

5.1 Problem Statement

A DMS ⟨S, T ⟩ generates i.i.d. source sequences (Sk, T k). We consider two scenarios.
In both scenarios, there are two encoding terminals and two decoding terminals. The
two encoding terminals observe the source sequences Sk and T k, respectively. Each
decoding terminal j ∈ {1, 2} wishes to recover an element-wise function fj of the
two source sequences. Denote by ŵk

j the estimate at the j-th decoding terminal.
Now we provide the individual details of the two scenarios.
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Figure 5.1: The source coding problem of distributed computing with successive re-
finement.

5.1.1 Distributed Source Coding

Consider the system depicted in Figure 5.1. Each encoding terminal (indexed by
j ∈ {s, t}) generates two descriptions Mj,1,Mj,2 of rates Rj,1, Rj,2, respectively. The
first decoding terminal only receives the descriptions (Ms,1,Mt,1) and the second
decoding terminal receives all four descriptions (Ms,1,Mt,1,Ms,2,Mt,2).

A (2kRs,1 , 2kRt,1 , 2kRs,2 , 2kRt,2 , k) distributed multiple description code consists of

• four encoders, where Encoder (s, j) (j ∈ {1, 2}) assigns an index ms,j(s
k) ∈

[2kRs,j ] to each sequence sk ∈ Sk and Encoder (t, j) (j ∈ {1, 2}) assigns an
index mt,j(t

k) ∈ [2kRt,j ] to each sequence tk ∈ T k, and

• two decoders, where Decoder 1 assigns an estimate ŵk
1 to each index pair

(ms,1,mt,1) and Decoder 2 assigns an estimate ŵk
2 to each index quadruple

(ms,1,mt,1,ms,2,mt,2).

A rate quadruple (Rs,1, Rt,1, Rs,2, Rt,2) is said to be achievable if there exists a se-
quence of (2kRs,1 , 2kRt,1 , 2kRs,2 , 2kRt,2 , k) codes with

(C1) lim
k→∞

P

(
k∪

i=1

{
Ŵ1i ̸= f1(Si, Ti)

})
= 0;

(C2) lim
k→∞

P

(
k∪

i=1

{
Ŵ2i ̸= f2(Si, Ti)

})
= 0.

The optimal rate region RSuccRef is the closure of the set of achievable rate
quadruples. Let us also introduce the other rate regions of interest. Denote by RCj

the optimal rate region when only (Cj) has to be satisfied, j ∈ {1, 2}.

5.1.2 Joint Source–Channel Coding

Consider the two-hop network depicted in Figure 5.2. In addition to the encoding
and decoding terminals, there is a node in between serving as a passive router.
The channel between the encoding terminals and the router is a 2-sender discrete
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Figure 5.2: The joint source–channel coding problem of distributed computing with
successive refinement.

memoryless MAC ⟨pY |Xs,Xt
⟩. The channels between the router and the decoding

terminals are noiseless links with unlimited capacity. The router passively relays all
received signals to the second decoding terminal but only a fraction of them to the
first decoding terminal.

Let α ∈ [0, 1]. A (|S|k, |T |k, α, n) joint source–channel code consists of

• two encoders, where Encoder s assigns a sequence xns (s
k) ∈ X n

s to each se-
quence sk ∈ Sk and Encoder t assigns a sequence xnt (t

k) ∈ X n
t to each sequence

tk ∈ T k, and

• two decoders, where Decoder 1 assigns an estimate ŵk
1 to each sequence y⌈αn⌉ ∈

Y⌈αn⌉ and Decoder 2 assigns an estimate ŵk
2 to each sequence yn ∈ Yn.

Define the rates R1 := ⌈αn⌉/k and R2 := n/k as the number of channel uses per
letter. We say that a rate pair (R1, R2) is achievable if there exists a sequence
of (|S|k, |T |k, α, n) codes satisfying both (C1) and (C2). The optimal rate region
RSuccRef is the closure of the set of achievable rate pairs.2 Other rate regions of
interest are defined similarly as in Section 5.1.1. Furthermore, we define

R∗
1 := min{R1

∣∣(R1, R2) ∈ RC1},
R∗

2 := min{R2

∣∣(R1, R2) ∈ RC2}.

5.2 Coding for Computing with Successive Refinement

Before going directly to the general distributed setting, let us first consider the ex-
treme case where Rt,1 > H(T ), i.e., the two decoders can learn the whole sequence
T k losslessly. This case can be interpreted as an extension of the successive refine-
ment problem to include common side information at decoders. We remark that
successive refinement with distinct side information has been considered in [46, 47].
Here our emphasis is placed on the lossless reconstruction of element-wise functions
of source and side information, instead of a lossy reconstruction of the source itself.
Let us define

R∗
s|t = {(Rs,1, Rs,2) : (Rs,1, H(T ), Rs,2, 0) ∈ R∗}.

As can be seen from Figure 5.3, this case corresponds to Configuration (Ac|As) =
({2}, {1, 2}|∅) in the problem of sequential coding for computing. Thus, we have the
following theorem, which is a simple consequence of Theorem 4.3.

2For convenience, in both scenarios we use the same set of notations to refer to the rate regions.
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Figure 5.3: Coding for Computing with Successive refinement.

Theorem 5.1. The rate region R∗
s|t is the set of rate pairs (Rs,1, Rs,2) such that

Rs,1 ≥ I(S;V1|T ),
Rs,1 +Rs,2 ≥ I(S;V1, V2|T ),

for some conditional pmf pV1,V2|S with |V1| ≤ |S|+2 and |V2| ≤ |S||V1|+1 such that
H(fj(S, T )|Vj , T ) = 0, j ∈ {1, 2}.

We say that the DMS ⟨S, T ⟩ is successively refinable with respect to the functions
(f1, f2) if the rate pair

(Rs,1, Rs,2) = (R∗
f1 , (R

∗
f2 −R∗

f1)
+)

is achievable, where R∗
f is the optimal compression rate for losslessly computing a

single function f(s, t). Similar to the original setup without side information, we
have the following two necessary and sufficient conditions of successive refinability
depending on whether R∗

f2
−R∗

f1
is nonnegative or nonpositive.

Proposition 5.1. Assume that R∗
f2

≥ R∗
f1
. Then, the DMS ⟨S, T ⟩ is successively

refinable with respect to the functions (f1, f2) if and only if there exists a conditional
pmf pV1,V2|S satisfying the Markov condition V1 (−− (V2, T ) (−− S such that pV1|S
and pV2|S attain the optimal compression rates R∗

f1
and R∗

f2
, respectively.

Proof: First, note that in this case (R∗
f2

−R∗
f1
)+ = R∗

f2
−R∗

f1
.

(Sufficiency) Assume that the conditional pmf pV1,V2|X satisfies the mentioned
condition. Then, we have

Rs,1 ≥ I(S;V1|T ) = R∗
f1 ,

Rs,1 +Rs,2 ≥ I(S;V1, V2|T )
(a)
= I(S;V2|T ) = R∗

f2 ,

where (a) follows from the Markov condition V1 (−− (V2, T ) (−− S . Thus, the rate
pair (Rs,1, Rs,2) = (R∗

f1
, R∗

f2
−R∗

f1
) is achievable.

(Necessity) Assume that the DMS ⟨S, T ⟩ is successively refinable with respect to
the functions (f1, f2). Then, it requires that there exists a conditional pmf pV1,V2|S
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satisfying

R∗
f1 ≥ I(S;V1|T ),

R∗
f2 ≥ I(S;V1, V2|T ) ≥ I(S;V2|T ),

H(fj(S, T )|Vj , T ) = 0, j ∈ {1, 2}.

Since the last condition implies that I(S;Vj |T ) ≥ R∗
fj
, j ∈ {1, 2}, we must have

I(S;V1|T ) = R∗
f1 ,

I(S;V2|T ) = R∗
f2 ,

I(S;V1|V2, T ) = 0.

We remark that Proposition 5.1 implies that all DMSs ⟨S, T ⟩ are successively
refinable with respect to any function f1 in the first stage as long as f2(s, t) = (s, t).

Proposition 5.2. Assume that R∗
f2

≤ R∗
f1
. Then, the DMS ⟨S, T ⟩ is successively

refinable with respect to the functions (f1, f2) if and only if there exists a conditional
pmf pV1|S that satisfies H(f2(S, T )|V1, T ) = 0 and attains the optimal compression
rate R∗

f1
.

Proof: First, note that in this case (R∗
f2

−R∗
f1
)+ = 0.

(Sufficiency) Assume that the conditional pmf pV1|S satisfies the mentioned con-
dition. Then, by setting V2 = V1 in Theorem 5.1, we have

Rs,1 ≥ I(S;V1|T ) = R∗
f1 ,

Rs,1 +Rs,2 ≥ I(S;V1|T ) = R∗
f1 ,

Thus, the rate pair (Rs,1, Rs,2) = (R∗
f1
, 0) is achievable.

(Necessity) Assume that the DMS ⟨S, T ⟩ is successively refinable with respect to
the functions (f1, f2). Then, it requires that there exists a conditional pmf pV1,V2|S
satisfying

R∗
f1 ≥ I(S;V1|T ),

R∗
f1 ≥ I(S;V1, V2|T ) ≥ I(S;V1|T ),

H(fj(S, T )|Vj , T ) = 0, j ∈ {1, 2}.

Since the last condition implies that I(S;V1|T ) ≥ R∗
f1
, we must have

I(S;V1|T ) = R∗
f1 ,

I(S;V2|V1, T ) = 0.

Finally, since the conditions H(f2(S, T )|V2, T ) = 0 and I(S;V2|V1, T ) = 0 imply
that H(f2(S, T )|V1, T ) = 0, the proof is complete.

If R∗
f2

≤ R∗
f1
, the condition H(f2(S, T )|V1, T ) = 0 implies that in order to be

successively refinable, one should be able to recover both functions already in the
first stage. Namely, the second stage becomes degenerated.
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5.3 Distributed Source Coding

In this section, we consider the source coding problem of distributed computing with
successive refinement and restrict attention to full recovery in the second stage, i.e.,
f2(s, t) = (s, t). We are mainly interested in successive refinability, i.e., under what
condition it holds that RSuccRef = RC1 ∩ RC2. A direct approach for solving the
successive refinability problem would be to completely characterize the optimal rate
region RSuccRef . Unfortunately, the problem setup includes distributed (lossless)
coding for computing as a special case, which remains open in general. Thus, we
adopt an indirect approach instead.

Proposition 5.1 in the last section implies that if the source T is known at both
decoders, then all DMSs ⟨S, T ⟩ are successively refinable with respect to any function
f1 in the first stage as long as f2(s, t) = (s, t). One may wonder whether the same
holds for the distributed setting. The following simple example shows that it is in
general not the case. For convenience, in this section f1 is simply denoted by f .

Example 5.1. Let S = (A,B) and T = A, where A,B are i.i.d. Bernoulli(1/2).
Assume that f(s, t) = t. Then, it can be checked that (Rs,1, Rt,1, Rs,2, Rt,2) =
(1, 0, 0, 1) ∈ RC1 ∩ RC2. Indeed, to satisfy (C1), it suffices that Encoder (s, 1)
directly sends ak without coding. In order to satisfy (C2), it suffices that Encoder
(s, 1) sends bk without coding and Encoder (t, 2) sends ak without coding.

However, (1, 0, 0, 1) /∈ RSuccRef . The reason is that such rate requirement results
in the following dilemma: Encoder (s, 1) must communicate ak to Decoder 1 to fulfill
(C1) and at the same time communicate bk to Decoder 2 to fulfill (C2) because it is
the only encoder observing bk.

Then, how about sum rate? Let us define the sum-rate rate losses for the first
and second stage, respectively, as

∆1 := Rs,1 +Rt,1 −R∗(f),

∆2 := Rs,1 +Rt,1 +Rs,2 +Rt,2 −H(S, T ).

where

R∗(f) := min{Rs,1 +Rt,1

∣∣(Rs,1, Rt,1, Rs,2, Rt,2) ∈ RC1}.

Definition 5.1 (Successive Refinability in Sum Rate). The DMS ⟨S, T ⟩ is suc-
cessively refinable in sum rate with respect to f if there exists a rate quadruple in
RSuccRef satisfying ∆1 = ∆2 = 0.

We now present the main theorem in this chapter, which says that both decoding
terminals can attain their individual optimal sum rates.

Theorem 5.2. Consider the source coding problem of distributed computing with
successive refinement. If full recovery in the second stage is required, then all DMSs
⟨S, T ⟩ are successively refinable in sum rate with respect to any function f .

Proof: Given any code for the first (coarse) stage of our problem, we first con-
struct an improved version of that code by removing possible redundancies. Then,
we construct a code for the second stage and show that for our overall code, we have
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∆2 = 0. However, since the code of the first stage was arbitrary, the argument in
particular also applies to the optimal code for the first stage, i.e., the code for which
(by definition) ∆1 = 0 (though, as pointed out, for most instances of the problem,
no efficient explicit description of this code is known). This proves the theorem.

Stage 1: More explicitly, to remove possible redundancies from the first-stage
code, we construct an extended “super-letter” code, as follows: Run Encoder (s, 1)
and (t, 1) for B blocks of k source letters to output the sequences of descriptions
MB

u,1 and MB
v,1. Then, we treat (Ms,1,Mt,1) as super letters and apply Slepian–Wolf

coding on (Ms,1,Mt,1).
Both decoding terminals can recover the super letters with vanishing error as B

increases if

Rs,1 >
1

k
H(Ms,1|Mt,1),

Rt,1 >
1

k
H(Mt,1|Ms,1),

Rs,1 +Rt,1 >
1

k
H(Ms,1,Mt,1). (5.1)

Finally, at the first decoding terminal, we run Decoder 1 on each pair of the estimated
descriptions (m̂s,1, m̂t,1) to get the estimates ŵk

1 . Hence, this improved code has rates
no larger than the rates of the original code and enables the same reconstruction
quality.

Stage 2 (refinement): If we treat (Sk, T k) as super letters, then Decoder 2
can use (Ms,1,Mt,1) recovered in the first stage as side information. For the refine-
ment, we apply Slepian–Wolf coding on (Sk, T k) assuming decoder side information
(Ms,1,Mt,1).

At the second decoding terminal, the super letters (Sk, T k) can be recovered
with vanishing error as the number of blocks B increases if

Rs,2 >
1

k
H(Sk|T k,Ms,1,Mt,1),

Rt,2 >
1

k
H(T k|Sk,Ms,1,Mt,1),

Rs,2 +Rt,2 >
1

k
H(Sk, T k

∣∣Ms,1,Mt,1). (5.2)

Thus, Expressions (5.1) and (5.2) imply that the sum-rate rate loss ∆2 can be driven
to zero as closely as desired by increasing B. We remark that even if k remains fixed,
∆2 = 0 is still achievable.

In the proof of Theorem 5.2, we have used the so-called “super-letter” argument,
in which we use an existing code as a module to build a larger block code. In some
cases, it suffices to simply append additional components to the existing code. The
following is an example for which we have a simple solution to successive refinement.

Example 5.2. Let S ∼ Bernoulli(1/2) and T = S ⊕ Z for some Z ∼ Bernoulli(q)
independent of S, where q ∈ (0, 1/2]. We assume that the first decoding terminal
wishes to recover S ⊕ T (= Z). In this case, Körner–Marton coding achieves the
optimal sum rate 2H(Z) [3]. To perform successive refinement in the second stage,
we use random linear binning again. Denote by H1 the compression matrix used
in the first stage, which is of size kH(Z) × k. In the second stage, we fix a rate
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pair (Rs,2, Rt,2) satisfying Rs,2 + Rt,2 = 1 − H(Z) (and the appropriate side rate
constraints). Then, we generate a matrix H2 of size kmax{Rs,2, Rt,2}×k with i.i.d.

Bernoulli(1/2) entries. Denote H =
[
HT

1 HT
2

]T
. To the best of our knowledge,

in all achievability proofs of Slepian–Wolf rate region via random (linear) binning,
the codebooks are generated independently. However, as demonstrated in Appendix,
under the assumption that P(S ̸= T ) > 0, it suffices to use H at one encoder and
a submatrix of H at the other.3 Therefore, a lossless recovery of the full source
sequences can be achieved and ∆2 = 0 is achievable in a simple manner.

In fact, the above example satisfies that RSuccRef = RC1 ∩ RC2. The optimal
sum rate of (C1) is achieved at only one point (H(Z),H(Z)), which allows us to
move to any point achieving the optimal sum rate of (C2). On the other hand, if
Decoder 2 only uses the recovered Zk as decoder side information, then it requires
Rs,2 + Rt,2 ≥ H(S, T |Z) to recover the entire source sequences. The sum-rate rate
loss becomes

∆2 = 2H(Z) +H(S, T |Z)−H(S, T ) = H(Z).

Therefore, in general, in order to attain ∆2 = 0, Decoder 2 must use both descrip-
tions Ms,1,Mt,1 as side information.

5.4 Joint Source–Channel Coding

Let us turn to joint source–channel coding. In this section, we assume that the
sources are independent and again restrict attention to full recovery in the second
stage, i.e., f2(s, t) = (s, t). For convenience, in this section f1 is simply denoted by
f . We are mainly interested in successive refinability.

Definition 5.2 (Successive Refinability). The DMS ⟨S, T ⟩ is successively refinable
over the MAC ⟨pY |Xs,Xt

⟩ with respect to f if (R∗
1, R

∗
2) ∈ RSuccRef .

If only (C1) is demanded, the problem reduces to computation over MAC but
R∗

1 is not known in general. Thus, RSuccRef is also not known in general and we need
to address the successive refinability using an indirect approach. We remark that
if only (C2) is demanded, the problem reduces to communication of independent
sources over MAC and R∗

2 is known [5, Example 14.2].
Let us define

R∗
refine := min{R2

∣∣(R∗
1, R2) ∈ RSuccRef} −R∗

1,

and then we have

R∗
1 +R∗

refine ≥ R∗
2. (5.3)

Thus, an equivalent condition of successive refinability is that the equality in (5.3)
holds. An operational meaning for R∗

refine is as follows. Assume that in the first kR∗
1

time slots, we use an optimal code targeted on (C1). Then, kR∗
refine is the minimum

time slots required to recover all source letters at the second decoding terminal.

3We remark that the same construction has been used in [48].
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Again, we start with an example showing that even if we ask full recovery in the
second stage, a DMS can still fail to be successively refinable with respect to some
function f .

Example 5.3. Let S and T be i.i.d. Bernoulli(1/2). Consider the following arith-
metic adder MAC:

Y = Xs +Xt,

where Xs, Xt ∈ {0, 1} and Y ∈ {0, 1, 2}. Assume that the first decoding terminal
simply wishes to recover S losslessly, i.e., f(s, t) = s. We have

R∗
1 =

H(S)

max
pXs ,xt

I(Xs;Y |Xt = xt)
= 1,

R∗
2 =

H(S) +H(T )

max
pXs ,pXt

I(Xs, Xt;Y )
= 4/3.

From the perspective of the first decoding terminal, any information about T sent in
the first stage is interference since S and T are independent. In order to achieve
R∗

1, the second decoding terminal cannot learn any information about T in the first
stage and we have R∗

refine = 1. Therefore, in this case the inequality in (5.3) is strict.

Next, we provide an upper bound on R∗
refine and consider two special cases in the

following subsections.

Proposition 5.3.

R∗
refine ≤ min

pQpXs|QpXt|Q
max

{
H(S|T, f(S, T ))
I(Xs;Y |Xt, Q)

,
H(T |S, f(S, T ))
I(Xt;Y |Xs, Q)

,
H(S, T |f(S, T ))
I(Xs, Xt;Y |Q)

}
,

(5.4)

where |Q| ≤ 4.

Proof: After the first stage, the second decoding terminal can also recover
{f(si, ti)}i∈[k] and then use them as side information. The rest follows from [49,
Theorem 5.3] immediately.

5.4.1 Computing Linear functions over Linear and Symmetric MACs

Consider any finite field F. Let f(s, t) be an F-linear function and let the MAC
⟨pY |Xs,Xt

⟩ be F-linear and symmetric (see Section 2.7). Then, we have the following
proposition.

Proposition 5.4. Consider the joint source–channel coding problem of distributed
computing with successive refinement. If full recovery in the second stage is required,
then all DMSs ⟨S, T ⟩ are successively refinable over any F-linear and symmetric
MAC ⟨pY |Xs,Xt

⟩ with respect to any F-linear function f .

Proof: From [4, Theorem 1], we have

R∗
1 =

H(f(S, T ))

C
,
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where C := maxpXspXt
I(Xs, Xt;Y ) can be achieved by the uniform distribution.

Also, it is easy to show that R∗
2 = H(S,T )

C . By setting Q = ∅ and pXs , pXt uniform
in Proposition 5.3, we have the upper bound

R∗
refine ≤

H(S, T |f(S, T ))
C

.

Finally, it is a simple task to establish that Expression (5.3) holds with equality.
Particularly, Proposition 5.4 implies that if in Example 5.3 the arithmetic adder

MAC is replaced by a modulo-2 adder MAC, i.e., Y = Xs ⊕Xt, the DMS becomes
successively refinable.

5.4.2 Computing Partially Invertible Functions of Sources with Equal
Entropy

A function f(s, t) is said to be partially invertible with respect to s if s can be
deduced from f(s, t) and t. If H(S) = H(T ) and f(s, t) is partially invertible with
respect to both s and t, then we have the following sufficient condition of successive
refinability.

Proposition 5.5. Consider the joint source–channel coding problem of distributed
computing with successive refinement. Assume full recovery in the second stage.
Furthermore, assume that H(S) = H(T ) and that f(s, t) is partially invertible with
respect to both s and t. Then, the DMS ⟨S, T ⟩ is successively refinable over the MAC
⟨pY |Xs,Xt

⟩ with respect to f if

R∗
1 =

H(f(S, T ))

max
pXspXt

I(Xs, Xt;Y )
. (5.5)

Proof: Since f is partially invertible with respect to both s and t, we have
H(S|T, f(S, T )) = H(T |S, f(S, T )) = 0. Thus, Expression (5.4) can be simplified as

R∗
refine ≤

H(S, T |f(S, T ))
max
pXspXt

I(Xs, Xt;Y )
. (5.6)

On the other hand, since H(S, T ) = H(S) +H(T ) = 2H(S), it can be easily shown
that

R∗
2 =

H(S, T )

max
pXspXt

I(Xs, Xt;Y )
. (5.7)

Thus, if (5.5) holds, combining with (5.6) and (5.7) shows that (5.3) holds with
equality and the proposition is established.

Finally, we provide an example which shows that the upper bound (5.4) of R∗
refine

is in general loose and thus Condition (5.5) is not a necessary condition.

Example 5.4. Let S and T be i.i.d. Bernoulli(1/2). Consider the following deter-
ministic MAC:

Xs = (Xs,1, Xs,2),

Y = (Xs,1 ⊕Xt, Xs,2),
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where Xs,1, Xs,2, Xt ∈ {0, 1}. The desired function at the first decoding terminal is
f(s, t) = s⊕ t.

Since H(S) = H(T ), we have R∗
2 = 1 from Expression (5.7). Also, we have the

lower bound

R∗
1 ≥ H(f(S, T )|S)

max
pXspXt

I(Xt;Y |Xs)
= 1.

Since R∗
2 ≥ R∗

1, we conclude that R∗
1 = 1. Then, since R∗

1 = R∗
2, it means that

the entire source sequences can already be learned in the first stage and the sources
are trivially successively refinable. Finally, we have R∗

refine = 0 < 1/2, so the upper
bound (5.4) is loose.

The above example also shows that it is possible that R∗
refine is not achievable,

even if a code attaining R∗
1 is used in the first stage. Consider Xs = (S, 0) and

Xt = T . With this code, only the desired function can be learned in the first stage
and it is clear that R∗

refine = 0 is not achievable.

Appendix: Dependent Codebooks

The proof is similar to [5, Section 10.3], so we just point out the difference. Denote
by Rs, Rt the compression rates of Encoders s and t, respectively. Without loss of
generality, we assume that Rs ≥ Rt. The compression matrix Hs of size kRs × k is
generated i.i.d. Bernoulli(1/2). Denote by Ht the first kRt rows of Hs. The decoder
uses joint typicality decoding.

We now analyze the probability of error. Fix ϵ ∈ (0, 1). Denote by Ms and Mt

the random bin indices of Sk and T k, respectively. The decoder makes an error if
and only if one or more of the following events occur:

E1 = {(Sk, T k) /∈ T (k)
ϵ },

E2 = {ŝk ∈ Bs(Ms) for some ŝk ̸= Sk, (ŝk, T k) ∈ T (k)
ϵ },

E3 = {t̂k ∈ Bt(Mt) for some t̂k ̸= T k, (Sk, t̂k) ∈ T (k)
ϵ },

E4 = {ŝk ∈ Bs(Ms), t̂
k ∈ Bt(Mt) for some ŝk ̸= Sk, t̂k ̸= T k, (ŝk, t̂k) ∈ T (k)

ϵ },

where Bj(m) is the set of sequences which are assigned the bin index m. Clearly,
using the same compression matrix does not affect the first three error events. Thus,
it suffices to check the last error event E4. It is straightforward to show that

P (E4) ≤
∑
sk,tk

P
(
Sk = sk, T k = tk

) ∑
(ŝk,t̂k)∈T (k)

ϵ

ŝk ̸=sk, t̂k ̸=tk

P
(
ŝk ∈ Bs(Hss

k), t̂k ∈ Bt(Htt
k)
)
.

The assumption P(S ̸= T ) > 0 implies that there exists (s′, t′) ∈ S × T such
that s′ ̸= t′ and pS,T (s

′, t′) > 0. Thus, the joint empirical pmf of any two identical
sequences (ŝk, ŝk) evaluated at (s′, t′) is zero. With ϵ < 1, two identical sequences

cannot be jointly typical, i.e., ŝk ̸= t̂k for all (ŝk, t̂k) ∈ T (k)
ϵ . If additionally ŝk ̸= sk

and t̂k ̸= tk, the two events {ŝk ∈ Bs(Hss
k)} and {t̂k ∈ Bt(Htt

k)} are independent



5.4. Joint Source–Channel Coding 71

and thus

P (E4) ≤
∑

(ŝk,t̂k)∈T (k)
ϵ

ŝk ̸=sk, t̂k ̸=tk

P
(
ŝk ∈ Bs(Hss

k)
)
P
(
t̂k ∈ Bt(Htt

k)
)

≤ 2k(H(S,T )+δ(ϵ))2−k(Rs+Rt).

Therefore, P(E4) → 0 as k → ∞ if Rs +Rt > H(S, T ) + δ(ϵ).





Computation over Linear Multiple
Access Channels 6
To date, wireless sensor networks have been deployed for various applications in en-
vironmental monitoring, e.g., air/water quality monitoring and forest fire detection.1

Typically, a sensor network consists of a single fusion center and multiple sensors
measuring certain parameters. Sensor deployment can be costly, so the lifetime of
sensors is expected to be months or even years. Therefore, power efficiency becomes
an important issue for system design.

Traditionally, sensors simply convey all the measured parameters to the fusion
center. However, for many applications, the fusion center is only interested in ac-
quiring a summary or an indication of the parameters, rather than the parameters
themselves. When the sensor identities are unimportant or irrelevant, it suffices to
collect a summary statistic of the parameters, e.g., the arithmetic mean. Further-
more, in forest fire detection, it suffices to signal an alarm instead of collecting the
whole temperature and/or humidity readings. More generally, in all these cases the
fusion center is only interested in knowing a function of the measured parameters.

In this chapter, we consider an information-theoretic formulation of function
computation over networks. The adopted performance metric is computation rate,
i.e., the number of functions computed reliably per channel use. The adopted chan-
nel model is the Gaussian MAC, which is canonical for wireless sensor networks. In
the Gaussian MAC, the sensors play the role of transmitters and the fusion center
serves as the receiver. If we naively transmit all measured parameters to the fusion

center, the worst-case computation rate is Θ
(
logL
L

)
, where L is the number of sen-

sors.2 However, by exploiting the superposition property of the Gaussian channel,
the developed coding scheme in this chapter, termed arithmetic computation cod-

ing, achieves the worst-case computation rate Θ
(

1
logL

)
for the following (class of)

functions:

1Part of the material in this chapter has appeared in
S.-W. Jeon, C.-Y. Wang, and M. Gastpar, “Computation over Gaussian networks with orthogonal
components,” IEEE Trans. Inf. Theory, vol. 60, p. 7841-7861, Dec. 2014.

2Throughout Chapters 6 and 7, “worst-case” means the worst source distribution for computing
the desired function, which may depend on L.
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Figure 6.1: Function computation over a MAC.

• (weighted) arithmetic sum,

• (weighted) modulo-q sum,

• frequency histogram (type),

• symmetric function.

Chapter outline: First, we provide a problem statement for general MACs in
Section 6.1. In Section 6.2, we consider computation of arithmetic sums over modulo
adder MACs, in which the channel output is the deterministic modulo sum of the
channel inputs. Then, in Sections 6.3 and 6.4, we propose efficient coding schemes
for computing arithmetic sums and frequency histograms over the Gaussian MAC,
respectively. Finally, we extend the arithmetic computation coding to the symmetric
Rayleigh fading MAC in Section 6.5.

6.1 Problem Statement

Let L be a fixed positive integer. A DMS ⟨S1, S2, · · · , SL, T ⟩ generates i.i.d. source
sequences (Sk

1 , S
k
2 , · · · , Sk

L, T
k). We assume that Sℓ = {0, · · · , d − 1}, where d is a

positive prime integer. For convenience, we use the short-hand notation [d]−1 to
denote the set {0, · · · , d− 1}.

Now consider the multiple access communication system depicted in Figure 6.1.
There are L sensors and one fusion center. At time j ∈ [n], each sensor (indexed by
ℓ ∈ [L]) encodes the observed source sequence Sk

ℓ into a symbol Xℓj and transmits
it over the shared memoryless channel governed by pY |X1,···XL

, a pmf for discrete
alphabets or a probability density function for continuous alphabets. The fusion
center has side information T k and receives the sequence Y n. The fusion center
wishes to recover from (Y k, T k) an element-wise function f(s1, · · · , sL) losslessly.

A (k, n) block code for function computation over MAC consists of

• L encoders, where Encoder ℓ ∈ [L] assigns a symbol xℓj(s
k
ℓ ) ∈ Xℓ to each

sequence skℓ ∈ [d]k−1 for all j ∈ [n];

• one decoder, which assigns an estimate ŵk to each tuple (yn, tk) ∈ Yn × T k.
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We say that the computation rate R := k/n is achievable if there exists a se-
quence of (nR, n) computation codes such that the probability of error

P (n)
e := P

 ∪
i∈[nR]

{
Ŵi ̸= f(S1i, · · · , SLi)

}
converges to zero as n tends to infinity. Note that the computation rate is the
number of reliably computed functions per channel use. Finally, the computation
capacity C is the supremum over all achievable computation rates.

6.2 Compute Arithmetic Sum over Modulo Adder MACs

Let us start with a simple model to gain some insight. Consider L = 2. Let S1, S2 ∼
Bernoulli(1/2) and T = ∅. We assume that S1 and S2 are independent. We first
give the definitions of Fq-adder MAC and modulo-q adder MAC.

Definition 6.1 (Fq-Adder MAC). Let q be a positive prime number. Then, the
Fq-adder MAC is the DMC ⟨pY |X1,X2

⟩ where |X1| = |X2| = |Y| = Fq and

pY |X1,X2
(y|x1, x2) = 1{y = x1 ⊕q x2},

for all x1, x2, y ∈ Fq.

Definition 6.2 (Modulo-q Adder MAC). Let q be a positive prime number. Then,
the modulo-q adder MAC is the DMC ⟨pY |X1,X2

⟩ where |X1| = |X2| = |Y| = [q]−1

and

pY |X1,X2
(y|x1, x2) = 1{y = x1 + x2 mod q},

for all x1, x2, y ∈ [q]−1.

Note that the above definitions can be naturally extended to the general L-sensor
case. Since there exists a bijection between the Fq-adder MAC and the modulo-q
adder MAC, hereafter we treat them as the same MAC. For the same reason, we
consider the two sets Fq and [q]−1 equivalent.

Now consider computation of the arithmetic sum S1 + S2 over the modulo-3
adder MAC. Let us first examine two basic achievable schemes:

1. Communicate the full data
Since S1 and S2 are independent, communicating the full data is equivalent
to transmitting two independent messages over the MAC. Then, the corre-
sponding optimal symmetric rate is log(3)

2 . After recovering the full data,
the desired arithmetic sum can be deduced and thus the computation rate
R = log(3)

2 ≈ 0.792 is achievable.

2. Uncoded transmission
If we simply set X1 = S1 and X2 = S2, then the fusion center learns Y =
S1 ⊕3 S2. Since there is no “wrap around” in this case, the modulo-3 sum is
equal to the arithmetic sum S1 +S2. The achievable computation rate is thus
R = 1.
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The above two schemes have their own pros and cons. Communicating the full
data allows us to apply the optimal channel code, but it reveals more redundant
information which leads to a low computation rate. On the other hand, uncoded
transmission reduces the information redundancy, but it is a bad code from the
perspective of channel coding since the symbol “2” is never used.

We now present an achievable scheme preserving the advantages of both the
above coding schemes. The key ingredients of the proposed coding scheme are
linear computation coding and embedding. We have the following proposition.

Proposition 6.1. Consider computation of arithmetic sum over the modulo-3 adder
MAC. Any computation rate R satisfying R ≤ 2 log(3)

3 (≈ 1.057) is achievable.

Proof: First, Encoder ℓ ∈ {1, 2} embeds the source sequence skℓ ∈ Fk
2 into

a sequence s̃kℓ ∈ Fk
3 with the mapping s̃ℓi = sℓi, i ∈ [k]. Then, we use linear

computation coding to communicate the modulo-3 sum S̃1 ⊕3 S̃2. Theorem 2.7 says
that any computation rate R satisfying

R ≤
I(W ;Y )

∣∣∣
W∼Uniform(F3)

H
(
S̃1 ⊕3 S̃2

) =
log(3)

3/2
.

is achievable. Finally, we note that in this case S̃1 ⊕3 S̃2 = S1 + S2 and thus the
computation rate R = log(3)

3/2 is achievable.
We remark that if the desired function is the modulo-2 sum S1 ⊕ S2 instead,

then we can first compute the arithmetic sum and then perform a modulo-2 oper-
ation to recover the desired modulo-2 sum. However, it is not known whether the
computation rate R = log(3)

3/2 is optimal for computing the modulo-2 sum.
In general, by combining the linear computation coding with embedding, we

have the following theorem for computing arithmetic sums over the modulo-q adder
MAC. The converse follows from a simple cut-set argument.

Theorem 6.1. Consider computation of the arithmetic sum
∑L

ℓ=1 Sℓ over the modulo-
q adder MAC. If

P

(
L∑

ℓ=1

Sℓ < q

)
= 1, (6.1)

then the computation capacity is C = log q

H(
∑L

ℓ=1 Sℓ)
.

Note that Condition (6.1) says that “wrap around” happens almost never. Since
any modulo-d sum can be derived from the arithmetic sum, we have the following
corollary.

Corollary 6.1. Consider computation of the modulo-d sum
⊕L

ℓ=1 Sℓ over the modulo-
q adder MAC. If

P

(
L∑

ℓ=1

Sℓ < q

)
= 1,

then any computation rate R satisfying R ≤ log q

H(
∑L

ℓ=1 Sℓ)
is achievable.
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6.3 Arithmetic Computation Coding over the Gaussian
MAC

In this and the next section, we consider the Gaussian MAC which has the following
input–output relation:

Y =

L∑
ℓ=1

hℓXℓ + Z,

where hℓ ∈ R, ℓ ∈ [L], are fixed constants, Z ∼ N (0, 1), and Xℓ ∈ R for all ℓ ∈ [L].
We assume that the channel coefficient vector h is known at all nodes. Additionally,
each encoder (indexed by ℓ ∈ [L]) needs to satisfy the average power constraint

1

n

n∑
j=1

x2ℓj ≤ P,

for some fixed P > 0.
In the previous section, we have seen that linear computation coding with em-

bedding performs well in computing arithmetic sums over modulo-q adder MACs
as long as there is no “wrap around.” To extend to the Gaussian MAC, we need a
scheme to bridge the modulo adder MACs and the Gaussian MAC. One such bridge
is nested lattice codes, which is used to develop the compute-and-forward framework
[50]. Instead of delving into the details of nested lattice codes, we briefly summarize
how to interpret the results offered by the compute-and-forward framework so that
we may use them for computing arithmetic sums over the Gaussian MAC.

Considering the binary presentation of f(S1, · · · , SL), it is meaningful to define
computation bit rate Rbit := H(f(S1, · · · , SL))R, which is the number of computed
bits per channel use.3 Rather than computing a fixed function, the compute-and-
forward targets on maximizing the computation bit rate Rbit over a class of functions
for independent and uniformly distributed messages (M1, · · · ,ML) ∈ [2nRbit ]L.

Fix a ∈ ZL. To each prime number q, we attribute a function fq(M1, · · · ,ML) =
Y ′
[t], where t =

nRbit
log q and

Y ′
j =

L⊕
ℓ=1

(aℓ mod q)⊗X ′
ℓj ,

in which all operations are over Fq, and X
′
ℓj is the j-th entry of the q-ary represen-

tation of Mℓ. Then, Theorem 2 in [50] can be restated as follows.

Theorem 6.2 (Nazer and Gastpar). Let a ∈ ZL be fixed. If it suffices to compute
reliably any one of the functions {fq(M1, · · · ,ML)}{q is prime} over the Gaussian
MAC described in (6.2), then any computation bit rate Rbit satisfying

Rbit <
1

2
log+

(
1 + P∥h∥2

∥a∥2 + P (∥h∥2∥a∥2 − |hTa|2)

)
(6.2)

is achievable.

3The defined computation bit rate is equivalent to the computation rate considered in [50].
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Since the coefficient vector h is available at all nodes, the sensors can apply
beamforming to achieve a higher computation bit rate and we have the following
corollary.

Corollary 6.2. Let a ∈ ZL be fixed. If it suffices to compute reliably any one of the
functions {fq(M1, · · · ,ML)}{q is prime} over the Gaussian MAC described in (6.2),
then any computation bit rate Rbit smaller than

R∗
bit(h,a) := sup

u

1

2
log+

(
1 + P∥u ◦ h∥2

∥a∥2 + P (∥u ◦ h∥2∥a∥2 − |(u ◦ h)Ta|2)

)
(6.3)

is achievable, where u ◦ h = (u1h1, · · · , uLhL)T and the supremum is over all u ∈
[−1, 1]L such that for all ℓ ∈ [L], uℓ = 0 if and only if aℓ = 0.

Remark 6.1. It suffices to assume that a is set-wise coprime, i.e., there exists no
integer c > 1 such that aℓ mod c = 0 for all ℓ ∈ [L]. The reason is that if such
c exists, we can first pretend that the coefficient vector is a/c, and then multiply
the recovered modulo sum with c at the fusion center. Besides, as can be seen from
(6.3), we can acquire an additional gain 1

2 log c in computation bit rate. For the ease
of exposition, we implicitly assume that a is set-wise coprime hereafter.

On the other hand, by setting uℓ =
mini∈[L] |hi/ai|

hℓ/aℓ
, ℓ ∈ [L], we have

R∗
bit(h,a) ≥

1

2
log+

(
1

∥a∥2
+

(
min
ℓ∈[L]

∣∣∣∣hℓaℓ
∣∣∣∣)P) , (6.4)

which is tight in the high power regime.

To achieve a computation bit rate arbitrarily close to R∗
bit(h,a) for all P , cur-

rently the only way is to send q to infinity. This fact is not in favor of computing
modulo sums, but it is useful for computing arithmetic sums as the following theorem
shows.

Theorem 6.3. Fix c ∈ NL. Consider computation of the function

f(s1, · · · , sL) =
L∑

ℓ=1

cℓsℓ

over the Gaussian MAC described in (6.2). Any computation rate R satisfying

R <
R∗

bit(h,a)

H
(∑L

ℓ=1 cℓSℓ

∣∣∣T)
is achievable, where aℓ = 1{cℓ ̸= 0}, ℓ ∈ [L].

Proof: Assume that q > d
∑L

ℓ=1 |cℓ|. For convenience, we denote W =⊕L
ℓ=1(cℓSℓ mod q).

Codebook: Let the matrix H be of size kH(W |T ) × k and let dℓ be a length-kR
vector, ℓ ∈ [L]. All entries are i.i.d. drawn from Uniform(Fq). Besides, we prepare
a lattice codebook resulting from a good nested lattice code. We assume that H,
d[L], and the lattice codebook are revealed to all nodes.
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Encoding: Upon observing the source sequence skℓ ∈ [d]k−1, Encoder ℓ ∈ [L] remains
silent if cℓ = 0. Otherwise, Encoder ℓ embeds skℓ into a sequence s̃kℓ ∈ Fk

q with the
mapping s̃ℓi = cℓsℓi, i ∈ [k]. Then, Encoder ℓ ∈ [L] performs linear binning and
dithering:

mℓ = Hs̃ℓ ⊕q dℓ.

Then, Encoder ℓ ∈ [L] maps mℓ to a codeword xnℓ (mℓ) using the nested lattice code
and transmits xnℓ (mℓ).
Decoding: Upon receiving yn, the decoder first applies lattice decoding to recover
the weighted modulo-q sum vector

msum =
⊕
ℓ:cℓ ̸=0

mℓ

=
⊕
ℓ:cℓ ̸=0

(Hs̃ℓ ⊕q dℓ)

= H

⊕
ℓ:cℓ ̸=0

s̃ℓ

⊕q

⊕
ℓ:cℓ ̸=0

dℓ.

After removing the dithers, the decoder applies joint typicality decoding with side
information tk to recover ŵk.

Using the distributive property of modulo operation, we have that for all i ∈ [k],⊕
ℓ:cℓ ̸=0

s̃ℓi =
L∑

ℓ=1

cℓsℓi mod q

(a)
=

L∑
ℓ=1

cℓsℓi,

where (a) follows since we assume q > d
∑L

ℓ=1 |cℓ|. Finally, Theorems 2.7 and 6.2
imply that as q tends to infinity, any computation rate R satisfying

R <
R∗

bit(h,a)

H
(∑L

ℓ=1 cℓSℓ

∣∣∣T)
is achievable.

Next, we use the facts that any modulo-d sum can be deduced from the arithmetic
sum and that Fd is closed under division to develop a coding scheme for computing
modulo-d sums over the Gaussian MAC.

Theorem 6.4. Fix c ∈ FL
d . Consider computation of the function

f(s1, · · · , sL) =
L⊕

ℓ=1

cℓ ⊗d sℓ

over the Gaussian MAC described in (6.2). Any computation rate R satisfying

R < max
a

R∗
bit(h,a)

H
(∑L

ℓ=1 aℓ(cℓ ⊗d βℓ ⊗d Sℓ)
∣∣∣T)

is achievable, where βℓ ∈ Fd is the inverse of aℓ mod d and the maximum is over all
a ∈ ZL satisfying aℓ = 0 if and only if cℓ = 0 for all ℓ ∈ [L].
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Proof: Consider any a ∈ ZL satisfying aℓ = 0 if and only if cℓ = 0 for all
ℓ ∈ [L]. Assume that q ≥ 2d

∑L
ℓ=1 |aℓ| + 1. For convenience, we denote W =⊕L

ℓ=1(aℓ mod q)(cℓ ⊗d βℓ ⊗d Sℓ).
Codebook: Let the matrix H be of size kH(W |T ) × k and let dℓ be a length-kR
vector, ℓ ∈ [L]. All entries are i.i.d. drawn from Uniform(Fq). Besides, we prepare
a lattice codebook resulting from a good nested lattice code. We assume that H,
d[L], and the lattice codebook are revealed to all nodes.

Encoding: Upon observing the source sequence skℓ ∈ [d]k−1, Encoder ℓ ∈ [L] embeds
skℓ into a sequence s̃kℓ ∈ Fk

q with the mapping s̃ℓi = cℓ ⊗d βℓ ⊗d sℓ, i ∈ [k]. Then,
Encoder ℓ ∈ [L] performs linear binning and dithering:

mℓ = Hs̃ℓ ⊕q dℓ.

Then, Encoder ℓ ∈ [L] maps mℓ to a codeword xnℓ (mℓ) using the nested lattice code
and transmits xnℓ (mℓ).
Decoding: Upon receiving yn, the decoder first applies lattice decoding to recover
the weighted modulo-q sum vector

msum =
L⊕

ℓ=1

(aℓ mod q)⊗q mℓ

=

L⊕
ℓ=1

(aℓ mod q)⊗q (Hs̃ℓ ⊕q dℓ)

= H

(
L⊕

ℓ=1

(aℓ mod q)⊗q s̃ℓ

)
⊕q

L⊕
ℓ=1

(aℓ mod q)⊗q dℓ.

After removing the dithers, the decoder applies joint typicality decoding with side
information tk to recover ŵk.

Using the distributive property of modulo operation, we have for all i ∈ [k],

L⊕
ℓ=1

(aℓ mod q)⊗q s̃ℓi =

L∑
ℓ=1

(aℓ mod q)⊗q (cℓ ⊗d βℓ ⊗d sℓi)

=
L∑

ℓ=1

aℓ(cℓ ⊗d βℓ ⊗d sℓi) mod q.

Since we assume q ≥ 2d
∑L

ℓ=1 |aℓ|+1, there is a bijection between the arithmetic sum∑L
ℓ=1 aℓ(cℓ⊗d βℓ⊗d sℓi) and the corresponding modulo-q sum. Thus, the arithmetic

sum can be recovered from the modulo-q sum. Then, taking modulo-d operation,
we have(

L∑
ℓ=1

aℓ(cℓ ⊗d βℓ ⊗d sℓi)

)
mod d =

L⊕
ℓ=1

(aℓ mod d)⊗d (cℓ ⊗d βℓ ⊗d sℓi)

(a)
=

L⊕
ℓ=1

cℓ ⊗d sℓi,

where (a) follows since βℓ is the inverse of aℓ mod d. Finally, Theorems 2.7 and 6.2
imply that as q tends to infinity, any computation rate R satisfying

R <
R∗

bit(h,a)

H
(∑L

ℓ=1 aℓ(cℓ ⊗d βℓ ⊗d Sℓ)
∣∣∣T)
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Figure 6.2: Computation of the arithmetic mean f(s1, · · · , sL) = 1
L

∑L
ℓ=1 sℓ over the

Gaussian MAC with equal channel gains. The power constraint is P = 20 dB.

is achievable, and the theorem follows by optimizing (6.5) over all a ∈ ZL satisfying
aℓ = 0 if and only if cℓ = 0 for all ℓ ∈ [L].

We refer to the coding scheme used in proving Theorems 6.3 and 6.4 as arithmetic
computation coding. Let us present an example that demonstrates the advantage
of arithmetic computation coding over the simple “communicating the full data”
scheme.

Example 6.1. Assume that (S1, · · · , SL) are i.i.d. drawn from Bernoulli(1/2), T =
∅, and hℓ = 1 for all ℓ ∈ [L]. The fusion center wishes to recover the arithmetic mean
f(s1, · · · , sL) = 1

L

∑L
ℓ=1 sℓ. Let W =

∑L
ℓ=1 Sℓ. Note that W ∼ Binomial(L, 1/2).

Then, the arithmetic computation coding achieves any computation rate R satisfying

R <
1
2 log

+
(
1
L + P

)
H (W )

.

On the other hand, the cut-set bound and the “communicating the full data” scheme
together give the the following bound on the computation capacity:

1
2 log(1 + LP )

L
< C ≤

1
2 log

(
1 + L2P

)
H (W )

.

Figure 6.2 plots the three bounds with respect to the number of sensors L, where P =
20 dB. Since H(W ) scales as Θ(logL) as L increases, the arithmetic computation
coding, the “communicating the full data” scheme, and the cut-set bound have the

scaling Θ
(
logP
logL

)
, Θ

(
logLP

L

)
, and Θ

(
logLP
logL

)
, respectively.
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6.4 Compute Frequency Histogram (Type) over the
Gaussian MAC

In this section, we show that by expanding the framework of arithmetic computation
coding, we can compute frequency histograms and all symmetric functions more
efficiently. We exploit the fact that the sensors and the fusion center can perform
some computations locally and then we have the following theorem.

Theorem 6.5. Assume that a function f : [d]L−1 → Λ can be expressed as

f(s1, · · · , sL) = ϕ

(
L∑

ℓ=1

cℓψℓ(sℓ)

)
, (6.5)

for some c ∈ NL and some functions ϕ : Z → Λ and ψℓ : [d]−1 → Z, ℓ ∈ [L]. Con-
sider computation of the function f over the Gaussian MAC. Then, any computation
rate R satisfying

R <
R∗

bit(h,a)

H
(∑L

ℓ=1 cℓψℓ(Sℓ)
∣∣∣T)

is achievable, where aℓ = 1{cℓ ̸= 0}, ℓ ∈ [L].

We have two comments on Expression (6.5). First, the representation is not
unique. Second, every function f : [d]L−1 → Λ can be expressed as (6.5) since
one can sophisticatedly choose c and ψ[L] such that (s1, · · · , sL) can be deduced

from the arithmetic sum
∑L

ℓ=1 cℓψ(sℓ). Clearly, this is a poor choice since too
much redundant information will be revealed. Therefore, in order to maximize the
achievable computation rate, we need to carefully choose c and ψ[L]. In the ideal
situation, there exist c and ψ[L] such that the resulting ϕ can be a bijection.

Definition 6.3 (Frequency Histogram, Type). The frequency histogram (or type)
of a sequence s[L] ∈ [d]L−1 is a length-d vector b[d]−1

with

bj :=
L∑

ℓ=1

1{sℓ = j}.

The bj is termed frequency of j.

Definition 6.4 (Symmetric Function). Let Λ be a finite alphabet. A function f :
[d]L−1 → Λ is called symmetric if

f(sσ(1), sσ(2), · · · , sσ(L)) = f(s1, s2, · · · , sL),

for every permutation σ on [L].

Note that every symmetric function can be deduced from the frequency histogram.
Now we are ready to demonstrate how to communicate frequency histograms

(types) and any symmetric function efficiently over the Gaussian MAC. A natural
representation of bj in the form of (6.5) is to set cℓ = 1, ψℓ(sℓ) = 1{sℓ = j} for all ℓ ∈
[L], and ϕ(x) = x, i.e., the identity function. Since the identity function is clearly a
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bijection, a frequency can be efficiently communicated using arithmetic computation
coding. Furthermore, the entire frequency histogram can be communicated to the
fusion center by conveying frequencies one by one. The recovered frequencies in the
previous rounds can be treated as side information for the current round. Once the
frequency histogram is recovered, we can compute any desired symmetric function.
Thus, we have the following corollary.

Corollary 6.3. Consider computation of the frequency histogram or any symmetric
function over the Gaussian MAC. Any computation rate R satisfying

R <
R∗

bit(h,1)

H (B0, · · · , Bd−1)

is achievable.

Finally, we remark that the worst-case scaling of the entropy of frequency his-
togram is Θ(logL). Thus, comparing with the worst-case scaling of the entropy of
full data Θ(L), the arithmetic computation coding greatly reduces the amount of
redundant information.

6.5 Computation over the Symmetric Rayleigh Fading
MAC

In this section, we consider the symmetric Rayleigh fading MAC, which has the
following input–output relation:

Y =
L∑

ℓ=1

HℓXℓ + Z, (6.6)

where Xℓ ∈ C for all ℓ ∈ [L], the complex channel coefficients H[L] are i.i.d. drawn
from the circularly-symmetric complex Gaussian distribution CN (0, 1) and Z ∼
CN (0, 1) is independent of H[L]. We assume that the channel coefficients H[L] are
known at all nodes. Additionally, each encoder (indexed by ℓ ∈ [L]) needs to satisfy
the average power constraint

1

n

n∑
j=1

|xℓj |2 ≤ P,

for some fixed P > 0.
The development for the complex-valued channel model is similar to the real-

valued counterpart, so the details are omitted. One main difference at the encoding
side is that the message generated from linear computation coding with embedding is
divided into two equal parts and passed to the complex-valued compute-and-forward
(see [50, Theorems 3 and 4]).

In the high power regime, it is desired that a and h are aligned, i.e., a = ch
for some c, so that the achievable computation rate scales logarithmically with P .
Although we can apply beamforming to force u◦h to align with a, as done in Remark
6.1, most of power ends up unused at most sensors, depending on the amplitudes of
u[L].
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In the fast fading scenario, we can perform adaptive power allocation to fully
utilize the available power at the sensor nodes. That is, the amplitudes of the entries
of the beamforming vector is not restricted to one. We modify Theorem 6.3 to the
fading scenario in a similar approach as [51]. Here we consider the achievable ergodic
computation bit rate. Then, the ergodic computation rate can be similarly derived
as in Theorem 6.5.

We assume a = 1. At each time slot, Sensor ℓ ∈ [L] sets

Uℓ =
Hℓmini∈[L] |Hi|/|Hℓ|2√
E[mini∈[L] |Hi|2/|Hℓ|2]

, (6.7)

where Hℓ is the complex conjugate of Hℓ. Then, combining with Expression (6.4),
any ergodic computation bit rate Rbit satisfying

Rbit < E

[
log+

(
1

L
+

mini∈[L] |Hi|2

E[mini∈[L] |Hi|2/|H1|2]
P

)]
=: Rlower

is achievable.
On the other hand, the cut-set bound is given by

Rbit ≤ max
ϕ1,··· ,ϕL

E

log
1 +

(
L∑

ℓ=1

|Hℓ|ϕℓ(H1, · · · ,HL)

)2
 =: Rupper,

where ϕℓ is the power allocation policy adopted by Sensor ℓ and satisfies that
E[ϕ2ℓ(H1, · · · , HL)] ≤ P . Denote by ϕ∗ℓ the optimal power allocation policy at Sensor
ℓ ∈ [L].

The following proposition shows that with the choice of beamforming vector in
(6.8) and a = 1, the achievable ergodic computation bit rate in (6.7) has a constant
gap, independent of P , from the optimal computation bit rate.

Proposition 6.2. Rupper −Rlower ≤ 2 logL+ log(lnL) + 3 + log e.

Proof: Before bounding the difference between Rupper and Rlower, we evaluate
E
[
mini∈[L] |Hi|2/|H1|2

]
and find a lower bound on E

[
log
(
mini∈[L] |Hi|2

)]
. For con-

venience, denote U = |H1|2 and V = mini∈[L]\{1} |Hℓ|2. Since U ∼ Exponential(1)
and V ∼ Exponential(L− 1), we have

E
[
min
i∈[L]

|Hi|2/|H1|2
]

= E[min{U, V }/U ]

=

∫ ∞

0

∫ ∞

0

min{u, v}
u

e−u(L− 1)e−(L−1)v dudv

=

∫ ∞

0
e−u

[∫ u

0

v

u
(L− 1)e−(L−1)v dv +

∫ ∞

u
(L− 1)e−(L−1)v dv

]
du

=

∫ ∞

0
e−u

[(
1

(L− 1)u
−
(
1 +

1

(L− 1)u

)
e−(L−1)u

)
+ e−(L−1)u

]
du

=
1

L− 1

∫ ∞

0

e−u − e−Lu

u
du
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ν=e−u

=
1

L− 1

∫ 1

0

νL−1 − 1

ln ν
dν

(a)
=

lnL

L− 1
, (6.8)

where (a) follows from [52, 4.267 8]. Next, we have

E
[
log

(
min
i∈[L]

|Hi|2
)]

=

∫ ∞

0
log(u)Le−Lu du

ν=Lu
= − logL+

∫ ∞

0
log(ν)e−ν dν

≥ − logL+

∫ 1

0
log(ν) dν +

∫ ∞

1
log(ν)e−ν dν

≥ − logL− log e.

Now we can bound the difference between Rupper and Rlower as follows:

Rupper −Rlower

(a)

≤ E

log
1 +

(∑L
ℓ=1 |Hℓ|ϕℓ(H1, · · · ,HL)

)2
1 +

L(L−1)mini∈[L] |Hi|2
lnL P


+ logL

≤ E

log
 L(L−1)mini∈[L] |Hi|2

lnL + 1
P

(∑L
ℓ=1 |Hℓ|ϕℓ(H1, · · · ,HL)

)2
L(L−1)mini∈[L] |Hi|2

lnL


+ logL

(b)

≤ E

log
L(L− 1)mini∈[L] |Hi|2

lnL
+

1

P

(
L∑

ℓ=1

|Hℓ|ϕℓ(H1, · · · ,HL)

)2


+(logL+ log e)− log

(
L− 1

lnL

)
(c)

≤ 2E

log
√L(L− 1)mini∈[L] |Hi|2

lnL
+

1√
P

L∑
ℓ=1

|Hℓ|ϕℓ(H1, · · · ,HL)


+ log

(
eL lnL

L− 1

)
(d)

≤ 2 log

√L(L− 1)E
[
mini∈[L] |Hi|2

]
lnL

+
1√
P

L∑
ℓ=1

E [|Hℓ|ϕℓ(H1, · · · ,HL)]


+ log

(
eL lnL

L− 1

)
(e)

≤ 2 log

(√
L− 1

lnL
+ L

)
+ log

(
eL lnL

L− 1

)
≤ 2 logL+ log(lnL) + 3 + log e,

where (a) follows from (6.8) and the fact that log+(u) ≥ log(u), (b) follows from
(6.9), (c) follows since log(u+ v) ≤ 2 log(

√
u+

√
v) for u ≥ 0 and v ≥ 0, (d) follows

from Jensen’s inequality, and (e) follows since E
[
mini∈[L] |Hi|2

]
) = 1/L and

E [|Hℓ|ϕ∗ℓ(H1, · · · ,HL)] ≤
√

E[|Hℓ|2]E
[
(ϕ∗ℓ(H1, · · · ,HL))2

]
≤

√
P .
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Computation over the Gaussian MAC
with Feedback 7
Wireless networks follow the principle of channel reciprocity, i.e., the channel co-
efficient from Antenna 1 to Antenna 2 is the same as the channel coefficient from
Antenna 2 to Antenna 1.1 Therefore, the fusion center not only receives the data
sent by the sensors, but the fusion center is also capable of broadcasting messages
in order to coordinate the sensors. Therefore, we can think of the fusion center as
a bridge which enables interaction among the sensors. A natural question to ask is
whether interaction helps in increasing the computation rate.

It turns out that interaction is beneficial for type-threshold functions, which is
a subclass of symmetric functions and was first introduced in [53]. The class of
type-threshold functions include the maximum, minimum, and indicator functions
as special cases. Intuitively, type-threshold functions have relatively small ranges.
For example, no matter how many dice are thrown, the maximum among them lies
in the set {1, 2, 3, 4, 5, 6}.

As a proof of point, we consider the model of Gaussian MAC with noiseless
causal feedback, in which the feedback link is a simplified model for the wireless
channel from the fusion center to the sensors. Furthermore, we assume that the
sources are independent and that the channel gains are equal, i.e., h = 1. In this
case, it can be shown that (the expression of R∗

bit(1,a) is given in (6.3))

R∗
bit(1,a) =

1

2
log+

(
1

∥a∥2
+ P

)
, (7.1)

for all a ∈ {0, 1}L.
In distributed function compression of independent sources, some functions re-

quire the sources to be received in their entirety [4, Lemma 1], [6]. Amongst them,
one can find many examples of type-threshold functions. This insight implies results
on the worst-case scaling for computing type-threshold functions over various com-
munication models. First, for the collision MAC, where concurrent transmissions
by multiple nodes result in collisions and only the destination receives any signals,

1The material of this chapter has appeared in
C.-Y. Wang, S.-W. Jeon, and M. Gastpar, “Interactive computation of type-threshold functions in
collocated Gaussian networks,” IEEE Trans. Inf. Theory, vol. 61, p. 4765-4775, Sep. 2015.
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Table 7.1: Worst-case scaling laws for the number of sensors.

Full data Symmetric functions Type-threshold functions

Collision MAC Θ
(

1
L

)
Θ
(

1
L

)
[4] Θ

(
1
L

)
[4]

Collision MAC
with Feedback

Θ
(

1
L

)
Θ
(

1
L

)
[53] Θ

(
1

logL

)
[53]

Gaussian MAC Θ
(
logLP

L

)
Ω
(

logP
logL

)
(Corollary 6.3) Ω

(
logP
logL

)
(Corollary 6.3)

Gaussian MAC
with Feedback

Θ
(
logLP

L

)
Ω
(

logP
logL

)
(Corollary 6.3) Ω (logP ) (Corollary 7.1)

the worst-case scaling is Θ
(
1
L

)
. Next, if we consider a collision MAC with noiseless

causal feedback, where feedback enables interaction among the encoding terminals,

the worst-case scaling is Θ
(

1
logL

)
, see [53, 54]. On the other hand, it is interesting

to consider communication models capturing the superposition property of wireless
networks. One canonical example is the Gaussian MAC considered in Chapter 6.
We showed that for all symmetric functions and thus for all type-threshold func-

tions, the worst-case scaling is at least Ω
(

1
logL

)
. Apparently, in all these cases, the

worst-case computation rate vanishes as the number of terminals increases.

The main result in this chapter shows that equipped with both interaction and
superposition, the worst-case computation rate no longer vanishes as the number of
terminals increases. We propose a novel coding scheme termed multi-round group
broadcast, which is an extension of arithmetic computation coding developed in
Chapter 6 to the framework of interactive computation. We show that, for any in-
dependent source distribution, all type-threshold functions are reliably computable
with a non-vanishing rate over the Gaussian MAC with noiseless causal feedback,
even if the number of sensors tends to infinity. That is, the worst-case scaling is
at least Ω(1). Table 7.1 summarizes the worst-case scaling laws for various func-
tions under different network models. For the Gaussian models, the average power
constraint P is also presented for reference. For both the Gaussian MAC and the

Gaussian MAC with feedback, a simple cut-set argument gives O
(
logLP
logL

)
for sym-

metric functions and O(logLP ) for type-threshold functions in the worst case.2

Chapter Outline: In Section 7.1, we provide the problem formulation defining
the network model and type-threshold functions. In Section 7.2, we introduce a
set of auxiliary random variables, also termed descriptions, with an analysis on its
entropy. These descriptions serve as the building blocks for interactive coding for
computing. Building upon the arithmetic computation coding in Chapter 6 and the
introduced descriptions, the proposed multi-round group broadcast is presented in
Section 7.3. For completeness, we provide a simple cut-set based upper bound in
Section 7.4.

2In fact, for computing type-threshold functions over the Gaussian MAC, the upper bound on
the worst-case scaling can be tightened to O(logP ).
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Figure 7.1: Function computation over the Gaussian MAC with noiseless causal feed-
back.

7.1 Problem Statement

Let L be a fixed positive integer. A DMS ⟨S1, S2, · · · , SL⟩ generates i.i.d. source
sequences (Sk

1 , S
k
2 , · · · , Sk

L). We assume that Sℓ = {0, · · · , d − 1}, where d is a
positive prime integer. For convenience, we use the short-hand notation [d]−1 to
denote the set {0, · · · , d− 1}. In this chapter we assume that pS1,··· ,SL

=
∏L

ℓ=1 pSℓ
,

i.e., the sources are independent.

Now consider the Gaussian MAC with noiseless causal feedback depicted in Fig-
ure 7.1. There are L sensors and one fusion center. At time j ∈ [n], each sensor
(indexed by ℓ ∈ [L]) encodes the observed source sequence Sk

ℓ and past received
output symbols Y j−1 into a symbol Xℓj and transmits it over the shared channel

Y =

L∑
ℓ=1

Xℓ + Z,

where Z ∼ N (0, 1) and Xℓ ∈ R for all ℓ ∈ [L]. Additionally, each encoder (indexed
by ℓ ∈ [L]) needs to satisfy the average power constraint

1

n

n∑
j=1

x2ℓj ≤ P,

for some fixed P > 0. The fusion center wishes to recover an element-wise function
f(s1, · · · , sL) losslessly from the received sequence Y n.

A (k, n) block code for function computation over the Gaussian MAC with feed-
back consists of

• L encoders, where Encoder ℓ ∈ [L] assigns a symbol xℓj(s
k
ℓ , y

j−1) ∈ Xℓ to each
tuple (skℓ , y

j−1) ∈ [d]k−1 × Yj−1 for all j ∈ [n];

• one decoder, which assigns an estimate ŵk to each sequence yn ∈ Yn.
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We say that the computation rate R := k/n is achievable if there exists a se-
quence of (nR, n) computation codes such that the probability of error

P (n)
e := P

 ∪
i∈[nR]

{
Ŵi ̸= f(S1i, · · · , SLi)

}
converges to zero as n tends to infinity. Note that the computation rate is the
number of reliably computed functions per channel use. Finally, the computation
capacity C is the supremum over all achievable computation rates.

Next, we provide the defintion of type-threshold functions, which are the focus of
this chapter. Let Λ be a finite alphabet. Let {fL}L∈Z+ be a sequence of symmetric
functions for which there exists a function g : Nd → Λ such that for all L ∈ Z+, if
fL(s1, s2, · · · , sL) = g(b0, b1, · · · , bd−1), then

fL+1(s1, s2, · · · , sL, sL+1) = g(b′0, b
′
1, · · · , b′d−1),

where b′ℓ = bℓ + 1{sL+1 = ℓ}, ℓ ∈ [d]−1.

Definition 7.1 (Type-Threshold Function). We say that the sequence {fL}L∈Z+

belongs to the class of type-threshold functions if there exists a non-negative integer
vector θ[d]−1

and a function g : [θ0]−1 × [θ1]−1 × · · · × [θd−1]−1 → Λ such that for all
L ∈ Z+,

fL(s1, s2, · · · , sL) = g(b0, · · · , bd−1),

where bℓ := min {θℓ, bℓ} for all ℓ ∈ [d]−1. The vector θ[d]−1
is called threshold vector

and bℓ is called clipped frequency of ℓ. In the sequel, we will simply write f and the
number of arguments L will be clear from context.

Some common instances of type-threshold functions are

1. the maximum, with a threshold vector (0, 1, · · · , 1);

2. the number of distinct elements, with a threshold vector (1, 1, · · · , 1);

3. the average of the m largest values max
S⊆[L]:|S|=m

1

ℓ

∑
ℓ∈S

sℓ, with a threshold vector

(0,m, · · · ,m);

4. the frequency indicator 1{∃ℓ ∈ [L] s.t. sℓ = m}, for which a threshold vector is
the standard unit vector with 1 on the m-th position;

5. the list of heavy hitters {ℓ ∈ [d]−1|bℓ ≥ T}, with a threshold vector (T, T, · · · , T ).

Note that while the average of the m largest values is a type-threshold function, the
average 1

L

∑L
ℓ=1 sℓ is not.
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7.2 Exploiting Interaction: Descriptions of the Clipped
Frequencies

We first demonstrate how to exploit interaction through noiseless causal feedback.
One important benefit of interaction is that every sensor is aware of the status
of the fusion center’s knowledge of the desired function. We borrow some ideas
from the framework of interactive source coding [54]. Fix N ∈ Z+ and a mapping
κ : [N ] → [L], where N ≥ L. The basic idea in the achievability of interactive
source coding is as follows. We divide the whole communication into N rounds. In
each round (indexed by ℓ ∈ [N ]), only sensor node κ(ℓ) is activated. The activated
sensor κ(ℓ) quantizes the source vector sκ(ℓ) into a vector v(ℓ) with side information

(v(1), · · · ,v(ℓ−1)) received in previous rounds and then broadcasts this common de-
scription v(ℓ) to all other nodes in the network. After N rounds, the fusion center
computes the desired function based on the received N descriptions.

Thanks to the arithmetic computation coding developed in Section 6.3, the sen-
sors can cooperatively form one single description using linear combination. Intu-
itively, we want to use the superposition property to somehow merge the descriptions
so that the amount of information received at the fusion center is reduced but still
sufficient to deduce the desired function. A simple first attempt is to consider general

descriptions: Consider the descriptions {V (ℓ)
m }m∈[L],ℓ∈[N ] satisfying

1. H(f(S1, · · · , SL)|U[N ]) = 0,

2. V
(ℓ)
m (−− (U[ℓ−1], Sm) (−− S[L]\{m} form a Markov chain,

where

Uℓ =

L∑
m=1

V (ℓ)
m ,

in which the superposition is embedded. These descriptions are very general but
seem hard to analyze. Instead, we next propose a more constrained set of auxiliary
random variables (descriptions). Not only can these descriptions be analyzed, they
also have a natural operational meaning.

Rather than generating descriptions directly for the desired type-threshold func-
tion, we construct descriptions for the clipped frequencies. The reasons are twofold.
First, the clipped frequencies contain all the information needed to deduce the de-
sired type-threshold function. Second, as can be seen in (6.6), the clipped frequencies
are sums of indicators with a clipping. Thus, the indicators can serve as descrip-
tions and the addition can play the role of merge, which is naturally matched with
the superposition property of the Gaussian MAC. In order to reduce the entropy of
the descriptions, it might be unwise to attain the whole frequency and then do the
clipping. Instead, we consider a recursive approach: Update only a partial sum of
indicators and perform the clipping on a regular basis. Now come the details.

First, for each ℓ ∈ [d]−1, we attribute a composition of [L]: A(ℓ)
1 , · · · ,A(ℓ)

Jℓ
, which

satisfies that 1) A(ℓ)
j ̸= ∅ for all j, 2)

∪
j A

(ℓ)
j = [L], 3) A(ℓ)

i

∩
A(ℓ)

j = ∅ for all i ̸= j.

Then, the sensors whose index lies in the same subset, say, A(ℓ)
m , form a group.
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Note that the formation of the groups can be different for each ℓ. Each group is
responsible for a partial sum of indicators.

Denote by U
(ℓ)
1 , U

(ℓ)
2 , · · · the descriptions of the clipped frequency Bℓ, ℓ ∈ [d]−1.

Then, the descriptions of the clipped frequency Bℓ is defined by the following recur-
sion

U (ℓ)
m = U

(ℓ)
m−1 +

∑
i∈A(ℓ)

m

1{U (ℓ)
m−1 < θℓ}

∩
{Si = ℓ}, (7.2)

for allm ∈ [Jℓ], where U
(ℓ)
0 = 0. As can be seen,

∑
i∈A(ℓ)

m
1{Si = ℓ} is the partial sum

of indicators just mentioned and the event {U (ℓ)
m−1 < θℓ} plays the role of clipping.

Note that U
(ℓ)
[Jℓ]

are random variables induced by the sources S[L]. It is clear that the

clipped frequency Bℓ is equal to min{U (ℓ)
Jℓ
, θℓ} and thus the fusion center can deduce

the desired function once it learns all descriptions
(
U

(0)
[J0]
, U

(1)
[J1]
, · · · , U (d−1)

[Jd−1]

)
.

7.2.1 Entropy of Descriptions

As will be clear in Section 7.3, the entropy of
(
U

(0)
[J0]
, U

(1)
[J1]
, · · · , U (d−1)

[Jd−1]

)
determines

the achievable computation rate of the proposed scheme and we want this entropy
to be as small as possible. In particular, we are interested in how this entropy
scales as the number of sensors increases since it directly affects the scaling law of
the achievable computation rate. Since the entropy of the descriptions is governed
by the chosen compositions, the goal is to characterize a pattern of compositions
which results in a bounded entropy as the number of sensors increases. For this,
we will consider different distribution ensembles, which are families of probability
distributions {

∏L
m=1 pSm}L∈Z+ . Let us start with an example.

Example 7.1 (Binary Maximum). Assume that Sm ∈ {0, 1} for all m ∈ [L]. The
binary maximum is defined as Smax := maxS[L]. Intuitively, if we know that one
sensor observes a value of one, then the function value can already be determined
even though the observations at other sensors are unknown. Note that (θ0, θ1) =

(0, 1) is a valid threshold vector of the binary maximum and thus U
(0)
m = 0 for all

m.

Let us consider independent and identically distributed (i.i.d.) ensembles with
Bernoulli(β), where 0 < β < 1 and β might depend on L. For convenience, we use
the term size-a composition, where a ∈ [L], to refer to any composition satisfying
|Aj | = a for all j ∈ [J − 1] and |AJ | = L− (J − 1)a, where J = ⌊L/a⌋. The entropy

of the descriptions U
(1)
[J1]

under size-a compositions can be evaluated as

H
(
U

(1)
[J1]

)
(a)
=

J1∑
m=1

H
(
U (1)
m

∣∣∣U (1)
m−1

)
(b)
=

J1∑
m=1

P
(
U

(1)
m−1 = 0

)
H
(
U (1)
m

∣∣∣U (1)
m−1 = 0

)
(c)
=

1− (1− β)(J1−1)a

1− (1− β)a
H(Qa) + (1− β)(J1−1)aH(QL−(J1−1)a), (7.3)
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Figure 7.2: The entropy of the descriptions U
(1)
[J1]

(Expression (7.3)) under various

compositions for the i.i.d. source ensemble in which each source follows Bernoulli
(

1√
L

)
,

where size-a composition is the composition satisfying that |Aj | = a for all j ∈ [J1−1].

where Qm ∼ Binomial(m,β), (a) follows from the independence of S[L], (b) follows

since U
(1)
m conditioned on {U (1)

m−1 ≥ 1} is deterministic, and (c) follows since

P
(
U

(1)
m−1 = 0

)
= (1− β)(m−1)a,

H
(
U (1)
m

∣∣∣U (1)
m−1 = 0

)
= H

 ∑
i∈A(ℓ)

m

1{Si = 1}

 ,

and
∑

i∈A(ℓ)
m
1{Si = 1} ∼ Binomial(|A(ℓ)

m |, β).
Now we discuss the following three cases.

1) i.i.d. sources each of which follows Bernoulli(c), where c ∈ (0, 1) is a constant
independent of L

If we fix a = 1, then (7.3) becomes

H
(
U

(1)
[J1]

)
=

1

c
(1− (1− c)(L−1))h2(c) −→

L→∞

h2(c)

c
.

For this ensemble, the simple one-at-a-time approach gives a bounded entropy of
descriptions as L increases. By contrast, if we substitute a = L into (7.3), then

H
(
U

(1)
[J1]

)
= H(QL) = Θ(logL). Thus, the size-L composition fails to achieve a

bounded entropy of descriptions.

2) i.i.d. sources each of which follows Bernoulli
(
1
L

)
If we fix a = L, then (7.3) becomes

H
(
U

(1)
[J1]

)
= H(QL)

(a)

≤ 1

2
log

(
2πe

(
1 +

1

12

))
≈ 2.1,
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where (a) follows from [55, Theorems 7 and 8] and [56, Expression (1)]. Thus, for
this ensemble, the size-L composition achieves a bounded entropy of descriptions as
L increases. By contrast, if the size-1 composition is applied, then

H
(
U

(1)
[J1]

)
= L

(
1−

(
1− 1

L

)(L−1)
)
h2

(
1

L

)
≥ 1

2
logL.

Thus, the size-1 composition fails to achieve a bounded entropy of descriptions.

3) i.i.d. sources each of which follows Bernoulli
(

1√
L

)
Figure 7.2 plots H

(
U

(1)
[J1]

)
for the size-1 composition, the size-

√
L composition, and

the size-L composition. As can be seen, as L increases, only the size-
√
L composition

achieves a bounded entropy of descriptions, which will be proved in Lemma 7.1.

As shown in the above example, different distribution ensembles require different
compositions to achieve a bounded entropy of descriptions. The following lemma
shows the existence of compositions that guarantee a bounded entropy of descrip-
tions for any type-threshold function when the sources are independent.

Lemma 7.1. Fix a threshold vector θ[d]−1
and a joint pmf

∏L
m=1 pSm. For each

ℓ ∈ [d]−1, there exists a composition such that

H
(
U

(ℓ)
[Jℓ]

)
<

5

2
log(1 + θℓ) + 12.

Proof: We refer to Appendix for the proof.
Using Lemma 7.1, we can upper bound the entropy of descriptions achieved by

the optimum compositions as

H
(
U

(0)
[J0]
, U

(1)
[J1]
, · · · , U (d−1)

[Jd−1]

)
≤ 12d+

5

2

d−1∑
ℓ=0

log(1 + θℓ), (7.4)

which is independent of the number of sensors.

7.2.2 Tailoring to the Maximum Function

The descriptions introduced in (7.2) are a general framework for every type-threshold
function. However, for many functions, it is unnecessary to acquire specific values
of all clipped frequencies so as to deduce the function value. The simplest example
is the frequency indicators for which we only care about one single frequency. Yet
another example is the maximum function. If we directly use (7.2), then we need
to convey (d− 1) clipped frequencies and the entropy of their descriptions is upper
bounded by Θ(d) as shown in (7.4). However, once all nodes learn that bℓ = 1, then
the values of b[ℓ]−1

are irrelevant since the maximum must be larger than or equal
to ℓ.

In this subsection, we consider an adaptation of the descriptions for the maximum

function based on the binary search algorithm. Fix ⌈log d⌉ compositions: A(ℓ)
[Jℓ]

,

ℓ ∈ [⌈log d⌉]. For each ℓ, define the recursion

Ũ (ℓ)
m = Ũ

(ℓ)
m−1 +

∑
i∈A(ℓ)

m

1{Ũ (ℓ)
m−1 = 0}1{Si ≥ Dℓ},
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where

Dℓ =

 d2ℓ
1 +

ℓ−1∑
j=1

1{Ũ (j)
Jj

> 0}2ℓ−j


is the midpoint in the ℓ-th stage of the binary search. For example, D1 = ⌈d2⌉, D2 ∈
{⌈d4⌉, ⌈

3d
4 ⌉}, D3 ∈ {⌈d8⌉, ⌈

3d
8 ⌉, ⌈

5d
8 ⌉, ⌈

7d
8 ⌉}, and so on. Note that min{D⌈log d⌉, d} =

maxS[L]. Therefore, the fusion center can deduce the maximum once it learns the

sequence
(
Ũ

(1)
[J1]
, Ũ

(2)
[J2]
, · · · , Ũ (⌈log d⌉)

[J⌈log d⌉]

)
. Since the proof of Lemma 7.1 still follows after

replacing P(Si = ℓ) by P(Si ≥ Dℓ) and substituting θℓ = 1, the entropy H
(
Ũ

(ℓ)
[Jℓ]

)
can be upper bounded by a constant. Thus, the entropy of the descriptions for the
maximum function is reduced from Θ(d) to Θ(log d).

7.3 Multi-Round Group Broadcast

In this section, we elaborate the developed coding scheme termed multi-round group
broadcast. In brief, the multi-round group broadcast conveys the descriptions of
clipped frequencies introduced in Section 7.2 over the Gaussian MAC with feedback.
Thanks to the feedback, all sensors can also decode the descriptions of clipped
frequencies. Before going into the details, we first give a high-level overview. To
explain the main idea, it suffices to consider one of the clipped frequencies ℓ. Let

the threshold θℓ and the composition A(ℓ)
[Jℓ]

be fixed. The operations given below are
performed symbol-wise.

Before transmission, each node sets up a counter with initial value zero. There

are totally Jℓ rounds. In roundm ∈ [Jℓ], all nodes inA(ℓ)
m are activated and broadcast

the indicator “ℓ is observed”. The transmitted indicators are superimposed by
the channel. Then, every node decodes the arithmetic sum of the indicators and
increment the counter by the corresponding value. If the value of every counter
reaches or exceeds the threshold θℓ, then every node learns the clipped frequency
bℓ = θℓ and we can jump directly to the next frequency; otherwise, we move on to
the next round.

Since the power constraint is imposed as an average over long time horizons, each
group can use larger transmit power during its active time period by accumulating
power in its non-active time period. Now we present our main theorem.

Theorem 7.1. Consider computation of a type-threshold function with threshold
vector θ[d]−1

over the Gaussian MAC with noiseless causal feedback. Fix a composi-

tion A(ℓ)
[Jℓ]

for each ℓ ∈ [d]−1. Then, for any values α
(ℓ)
m ≥ 0 and P

(ℓ)
m ≥ 0 satisfying∑d−1

ℓ=0

∑Jℓ
m=1 α

(ℓ)
m ≤ 1 and

∑
(ℓ,m) s.t. i∈A(ℓ)

m
α
(ℓ)
m P

(ℓ)
m ≤ P for all i ∈ [L], any compu-

tation rate R satisfying

R < min
ℓ∈[d]−1

min
m∈[Jℓ]

α
(ℓ)
m
2 log+

(
1

|A(ℓ)
m |

+ P
(ℓ)
m

)
H
(
U

(ℓ)
m(Qℓ)

∣∣∣U (0)
[J0]
, U

(1)
[J1]
, · · · , U (ℓ)

[m(Qℓ)
−1], Q[d]−1

) (7.5)
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is achievable, where

U (ℓ)
m(Qℓ)

= U
(ℓ)
m(Qℓ)

−1 +
∑

i∈A(ℓ)
m

1{U (ℓ)
m(Qℓ)

−1 < θℓ}1{Si = ℓ}, (7.6)

U
(ℓ)
0 = 0, m(Qℓ) := ((m+Qℓ − 1) mod Jℓ) + 1, and Qℓ ∼ Uniform([Jℓ]−1).

Proof: Assuming that the descriptions (u
(0)
[J0]
,u

(1)
[J1]
, · · · ,u(ℓ)

[m−1]) are success-

fully decoded at all nodes, we consider the transmission of u
(ℓ)
m by the group A(ℓ)

m .

Denote by R
(ℓ)
m and P

(ℓ)
m the computation rate and the transmit power of u

(ℓ)
m , respec-

tively. Note that we can treat (Si, U
(0)
[J0]
, U

(1)
[J1]
, · · · , U (ℓ)

[m−1]) as an augmented source

observed at Sensor i ∈ [L]. Then, applying Theorem 6.5 and Expression (7.1), we

have that any computation rate R
(ℓ)
m satisfying

R(ℓ)
m <

1
2 log

+

(
1

|A(ℓ)
m |

+ P
(ℓ)
m

)
H
(∑

i∈A(ℓ)
m
1{U (ℓ)

m−1 < θℓ}1{Si = ℓ}
∣∣∣U (0)

[J0]
, U

(1)
[J1]
, · · · , U (ℓ)

[m−1]

)

=

1
2 log

+

(
1

|A(ℓ)
m |

+ P
(ℓ)
m

)
H
(
U

(ℓ)
m

∣∣∣U (0)
[J0]
, U

(1)
[J1]
, · · · , U (ℓ)

[m−1]

)
is achievable, where

U (ℓ)
m = U

(ℓ)
m−1 +

∑
i∈A(ℓ)

m

1{U (ℓ)
m−1 < θℓ}1{Si = ℓ}.

For each ℓ ∈ [d]−1, if the transmission order remains fixed, then the first group
will consume more power than the last group since many times the threshold has
already been reached before the last group has a chance to transmit. To avoid such
unbalanced situation, we apply a block-wise time sharing among different rotations,

i.e., each group takes turns being the first group to transmit. Therefore, with U
(ℓ)
m(Qℓ)

defined as in (7.6), any computation rate R
(ℓ)
m smaller than

1
2 log

+

(
1

|A(ℓ)
m |

+ P
(ℓ)
m

)
H
(
U

(ℓ)
m(Qℓ)

∣∣∣U (0)
[J0]
, U

(1)
[J1]
, · · · , U (ℓ)

[m(Qℓ)
−1], Q[d]−1

)
is achievable, where m(Qℓ) is the transmission order of the group A(ℓ)

m .

Finally, to satisfy the power constraint, we attribute α
(ℓ)
m fraction of time to each

round satisfying

d−1∑
ℓ=0

Jℓ∑
m=1

α(ℓ)
m ≤ 1,∑

(ℓ,m) s.t. i∈A(ℓ)
m

α(ℓ)
m P (ℓ)

m ≤ P for all i ∈ [L],
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and thus any computation rate R satisfying (7.5) is achievable, which establishes
the theorem.

We remark that Expression (7.6) is equivalent to saying that

U (ℓ)
m = U

(ℓ)
m−1 +

∑
i∈A(ℓ)

m(L−Qℓ)

1{U (ℓ)
m−1 < θℓ}1{Si = ℓ}.

Next, we would like to gain insight into (7.5). The denominator of (7.5) can be
upper bounded as

H
(
U (ℓ)
m(Qℓ)

∣∣∣U (0)
[J0]
, U

(1)
[J1]
, · · · , U (ℓ)

[m(Qℓ)
−1], Q[d]−1

)
≤ H

(
U (ℓ)
m(Qℓ)

∣∣∣U (ℓ)
m(Qℓ)

−1, Qℓ

)
=

1

Jℓ

Jℓ−1∑
q=0

H
(
U (ℓ)
m(q)

∣∣∣U (ℓ)
m(q)−1, Qℓ = q

)

=
1

Jℓ

Jℓ−1∑
q=0

H
(
U (ℓ)
m(q)

∣∣∣U (ℓ)
m(q)−1

)
. (7.7)

The following lemma shows the existence of compositions that guarantee (7.7) is
bounded. Note that Lemma 7.1 is a special case of Lemma 7.2 with q = 0.

Lemma 7.2. Fix a threshold vector θ[d]−1
and a joint pmf

∏L
m=1 pSm. For each

ℓ ∈ [d]−1, there exists a composition such that for any q ∈ [Jℓ]−1,

Jℓ−1∑
m=0

H
(
U (ℓ)
m(q)

∣∣∣U (ℓ)
m(q)−1

)
<

5

2
log(1 + θℓ) + 12, (7.8)

where U
(ℓ)
m(q)

is given by (7.6) with Qℓ = q.

Proof: We refer to Appendix for the proof.
If we use Lemma 7.2 to lower bound the rate given in Theorem 7.1 (Expression

(7.5)), we obtain the following corollary:

Corollary 7.1. Consider computation of a type-threshold function with threshold
vector θ[d]−1

over the Gaussian MAC with noiseless causal feedback. Any computa-
tion rate R satisfying

R < max
β∈(0,1]

β
2 log

+
(

1
L +

minℓ∈[d]−1
Jℓ

β P
)

12d+ 5
2

∑d−1
ℓ=0 log(1 + θℓ)

is achievable by the multi-round group broadcast, where J[d]−1
are determined by the

composition used in the proof of Lemma 7.2.

Proof: First, combining Theorem 7.1, Expression (7.7), and Lemma 7.2 shows
that any computation rate R satisfying

R < min
ℓ∈[d]−1

min
m∈[Jℓ]

α
(ℓ)
m
2 log+

(
1

|A(ℓ)
m |

+ P
(ℓ)
m

)
1
Jℓ

(
5
2 log(1 + θℓ) + 12

)
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is achievable. Then, setting α
(ℓ)
m = βαℓ/Jℓ, P

(ℓ)
m = JℓP/β and noticing |A(ℓ)

m | ≤ L
gives

R < min
ℓ∈[d]−1

βαℓ
2 log+

(
1
L + Jℓ

β P
)

5
2 log(1 + θℓ) + 12

,

where αℓ ≥ 0,
∑d−1

ℓ=0 αℓ ≤ 1, and β ∈ (0, 1]. Finally, we set

αℓ =
5
2 log(1 + θℓ) + 12

12d+ 5
2

∑d−1
i=0 log(1 + θi)

,

and thus we have

R <

β
2 log

+
(

1
L +

minℓ∈[d]−1
Jℓ

β P
)

12d+ 5
2

∑d−1
i=0 log(1 + θi)

. (7.9)

The corollary is established after we maximize the right hand side of (7.9) over
β ∈ (0, 1].

Corollary 7.1 establishes two key facts. First, even if the number of sensors
tends to infinity, the multi-round group broadcast still achieves a positive rate as
long as P > 0, which establishes the worst-case scaling law Ω(logP ) (see Table 7.1).
Second, depending on the source distribution, the achievable computation rate can
even increase with the number of sensors through the gain minℓ∈[d]−1

Jℓ.

7.3.1 Scaling Law for the Number of Sensors and the Transmit Power:
Binary Maximum

In this subsection, we study the interplay among the number of sensors and the
transmit power over the Gaussian MAC with feedback. We consider the binary
maximum function introduced in Section 7.2.1. For the binary maximum, the rate
expression (7.5) can be simplified as

R < min
m∈[J ]

1
2 log

+

(
1

|A(1)
m |

+ JP

)
∑J−1

q=0 H
(
U

(1)
m(q)

∣∣∣U (1)
m(q)−1

) . (7.10)

Again, we consider the following three distribution ensembles.
1) i.i.d. sources each of which follows Bernoulli(c), where c ∈ (0, 1) is a constant
independent of L
For this ensemble, the multi-round group broadcast with the size-1 composition
achieves the scaling law of Θ(logLP ). We remark that applying interactive source
coding in [54] can achieve a higher computation rate but within the same scaling
law.
2) i.i.d. sources each of which follows Bernoulli

(
1
L

)
For this ensemble, the size-1 composition achieves the scaling law of Θ

(
logLP
logL

)
. By

contrast, the size-L composition achieves the scaling law of Θ(logP ). Depending on
the available power, there is a trade-off between power accumulation and reduction
of the entropy of descriptions.
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Figure 7.3: Evaluation of (7.10), with P = 20 dB, for the achievable computation
rates of the binary maximum function for the i.i.d. source ensemble in which each

source follows Bernoulli
(

1√
L

)
.

3) i.i.d. sources each of which follows Bernoulli
(

1√
L

)
Figure 7.3 plots the computation rates of the proposed multi-round group broadcast
with the size-1, size-

√
L, and size-L compositions at P = 20 dB. The figure shows

that as L increases, the achievable computation rate of the size-
√
L composition

grows logarithmically with L, while the other two compositions achieve at most a
constant rate. The reason that the computation rate can increase with L is that, for
this ensemble the size-

√
L composition satisfies the upper bound (7.8) and at the

same time each group can accumulate power in its non-active time period, roughly
(1− 1/

√
L) fraction of time.

7.4 Upper Bound

In this section, we provide a simple cut-set based upper bound on the computation
capacity for arbitrary functions over the Gaussian MAC with feedback. In general,
the derived upper bound can not be matched by the achievabilities presented in this
paper. We remark that it might be possible to tighten the upper bound by applying
the converse of interactive source coding for function computation [57].

Let Ω ⊆ [L] and Ωc := [L]\Ω. First, assume that a genie provides sΩc to every
node. Given sΩc as side information, the minimum source coding rate for computing
the function f should be at least H(f(S1, · · · , SL)|SΩc). Second, we treat sensor
nodes in Ω as a supernode-Ω to which sΩ are available. Also, we treat sensor nodes
in Ωc and the fusion center as supernode-{0}

∪
Ωc. Thus, the channel from the

supernode-Ω to the supernode-{0}
∪
Ωc is a point-to-point multiple-input multiple-

output (MIMO) channel in which the source–channel separation theorem holds and
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feedback does not increase the capacity since the channel is memoryless. Therefore,
following similar lines in the proof of the cut-set bound [58, Theorem 15.10.1], the
computation capacity of the function f is upper bounded as

C ≤ max
pX[L]

min
Ω⊆[L]
Ω̸=∅

I(XΩ;Y0, YΩc |XΩc)

H(f(S1, · · · , SL)|SΩc)
, (7.11)

where the input distribution pX[L]
subjects to some input cost constraints. After

applying the Gaussian assumption and the discretization procedure (see Section
3.4.1 in [5]) to (7.11), we have the following proposition.

Proposition 7.1. Consider computation of an arbitrary function f over the Gaus-
sian MAC with noiseless causal feedback. The computation capacity C is upper
bounded as

C ≤ max
K

min
Ω⊆[L]
Ω̸=∅

1
2 log

(
1 + (L+ 1− |Ω|)

∑
i,j [KXΩ|XΩc ]ij

)
H(f(S1, · · · , SL)|SΩc)

, (7.12)

where the matrix K is positive semidefinite with the (i, i) entry [K]ii ≤ P , i ∈ [L] and
KXΩ|XΩc is the conditional covariance matrix of XΩ given XΩc for X[L] ∼ N (0,K).

Proof: Denote by K the covariance matrix of X[L] with the (i, i) entry [K]ii ≤
P , i ∈ [L]. Applying Theorem 19.1 in [5], the mutual information term in (7.11)
can be upper bounded as

I(XΩ;YΩc |XΩc) ≤ 1

2
log
(
det
(
I+GKXΩ|XΩcG

T
))

=
1

2
log

1 + (L+ 1− |Ω|)
∑
i,j

[KXΩ|XΩc ]ij

 ,

where I is the (L+1−|Ω|)×(L+1−|Ω|) identity matrix, G is the (L+1−|Ω|)×|Ω|
all-one matrix, and KXΩ|XΩc is the conditional covariance matrix of XΩ given XΩc .
The equality holds if X[L] ∼ N (0,K). Then, the proposition follows immediately.

Example 7.2. Consider computation of the binary maximum over the Gaussian
MAC with feedback. Assume that the distribution ensemble is i.i.d. Bernoulli

(
1
L

)
.

Recall that the multi-round group broadcast with size-1 composition achieves the

scaling law of Θ
(
logLP
logL

)
, whereas the multi-round group broadcast with size-L com-

position achieves the scaling law of Θ(logP ). If we just consider the cut Ω = [L],
then the cut-set bound (7.12) can be simplified as

C ≤
1
2 log(1 + L2P )

h2 ((1− 1/L)L)
.

Thus, in this ensemble the scaling of the cut-set bound (7.12) is Θ(logLP ).
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Appendix: Bounded Entropy of the Descriptions of the
Clipped Frequencies as L → ∞
In this appendix, we provide a proof of Lemma 7.2 and then Lemma 7.1 will follow
as a special case with q = 0. Since the proof works universally for every clipped fre-
quency bℓ, we drop all indices ℓ in the proof for simplicity. Besides, for convenience,
we denote βi := P(Si = ℓ) for all i ∈ [L]. For the proof of Lemma 7.2, we need
the following lemma, which upper bounds the entropy of the sum of independent
Bernoulli random variables.

Lemma 7.3. Fix β[L] ∈ [0, 1]L. Let X[L] be independent random variables, where
Xi ∼ Bernoulli(βi) for all i ∈ [L]. Then,

H

(
L∑
i=1

Xi

)
≤ 1

2
log

(
2πe

(
L∑
i=1

βi +
1

12

))
. (7.13)

Proof: First, applying Theorem 1 in [59], we have

H

(
L∑
i=1

Xi

)
≤ H

(
L∑
i=1

Xi

)
, (7.14)

where X [L] are i.i.d. Bernoulli
(
β
)
random variables and β = 1

L

∑L
i=1 βi.

Notice that
∑L

i=1Xi ∼ Binomial
(
L, β

)
. Let Y be a Poisson random variable

with mean
∑L

i=1 βi. Then, we have

H

(
L∑
i=1

Xi

)
(a)

≤ H(Y )

(b)

≤ 1

2
log

(
2πe

(∑
i∈Am

βi +
1

12

))
, (7.15)

where (a) follows from [55, Theorems 7 and 8] and (b) follows from [56, Expression
(1)]. Finally, combining (7.14) and (7.15), the inequality (7.13) is established.

Proof of Lemma 7.2: Without loss of generality, we assume θ ≤ L since there
are only L sensors. If θ = 0, then Um = 0 for all m ∈ [J ] and thus H

(
U[J ]

)
= 0. In

the following, we consider the case 1 ≤ θ ≤ L. Since the sources are independent,
U1 (−− U2 (−− · · · (−− UJ form a Markov chain. From now on, we consider a fixed
q ∈ [J ]−1.

First, consider the case
∑L

i=1 βi ≤ θ. In this case, we use the size-L composition.
Applying Lemma 7.3 by substituting Xi with 1{Si = ℓ}, we have

H(U1) = H

(
L∑
i=1

1{Si = ℓ}

)

≤ 1

2
log

(
2πe

(
L∑
i=1

βi +
1

12

))

≤ 1

2
log

(
2πe

(
θ +

1

12

))
.
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Next, consider the case
∑L

i=1 βi > θ. Let the intervals [am−1 + 1 : am], m ∈ [J ],
satisfy 0 = a0 < · · · < aJ = L,

am−1∑
i=am−1+1

βi < θ ≤
am∑

i=am−1+1

βi, (7.16)

for m ∈ [J − 1], and

θ ≤
L∑

i=aJ−1+1

βi < 2θ. (7.17)

Note that for all m ∈ [J − 1], since pam ≤ 1, (7.16) implies that

am∑
i=am−1+1

βi < θ + 1. (7.18)

Set Am =
[
am(q)−1 + 1 : am(q)

]
for allm ∈ [L], wherem(q) = ((m+d−1) mod J)+1.

Then, the entropy H
(
U[J ]

)
can be upper bounded as follows.

H
(
U[J ]

)
=

J∑
m=1

H(Um|U[m−1])

(a)
= H(U1) +

J∑
m=2

H(Um|Um−1)

(b)
= H(U1) +

J∑
m=2

θ−1∑
j=0

P (Um−1 = j)H
(
Um

∣∣Um−1 = j
)

= H

∑
i∈A1

1{Si = ℓ}

+

J∑
m=2

θ−1∑
j=0

P (Um−1 = j)H

(∑
i∈Am

1{Si = ℓ}

)
,

(7.19)

where (a) follows since U1 (−− · · · (−− UJ form a Markov chain and (b) follows
since Um conditioned on {Um−1 ≥ θ} is deterministic.

Then, Lemma 7.3, (7.17), and (7.18) imply that if m(q) ∈ [J − 1],

H

(∑
i∈Am

Xi

)
<

1

2
log

(
2πe

(
θ + 1 +

1

12

))
, (7.20)

and if m(q) = J ,

H

(∑
i∈Am

Xi

)
<

1

2
log

(
2πe

(
2θ +

1

12

))
<

1

2
+

1

2
log

(
2πe

(
θ + 1 +

1

12

))
. (7.21)
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Hence, (7.19) to (7.21) imply that

H
(
U[J ]

)
<

1

2
+

log
(
2πe

(
θ + 13

12

))
2

1 +
J∑

m=2

θ−1∑
j=0

P (Um−1 = j)


<

1

2
+

log
(
2πe

(
θ + 13

12

))
2

4 +

J∑
m=5

θ−1∑
j=0

P (Um−1 = j)

 . (7.22)

Now we show that the double summation in (7.22) can be upper bounded by a
constant independent of J and θ. Denote S0 = ∅ and Sm =

∪m
t=1At for all m ∈ [J ].

For j ∈ [1 : |Sm−1|], P (Um−1 = j) = P (Y = j) where Y ∼ Poisson Binomial(βSm−1).
Denote by Fm the set of all subsets of Sm with j elements and let Ω∗

m ∈ Fm be the
set of the j indices with the largest values of βi. Then, we have

P (Um−1 = j)

=
∑

Ω∈Fm

∏
i∈Ω

βi
∏

t∈Sm−1\Ω

(1− βt)

≤
∏

t∈Sm−1\Ω∗
m

(1− βt)
∑

Ω∈Fm

∏
i∈Ω

βi

(a)

≤

1− 1

|Sm−1| − j

∑
t∈Sm−1\Ω∗

m

βt

|Sm−1|−j ∑
Ω∈Fm

∏
i∈Ω

βi

(b)

≤
(
1− (m− 1)θ − j

|Sm−1| − j

)|Sm−1|−j ∑
Ω∈Fm

∏
i∈Ω

βi

(c)

≤
(
e−1
)(m−1)θ−j ∑

Ω∈Fm

∏
i∈Ω

βi

≤ eje−(m−1)θ 1

j!

 ∑
i∈Sm−1

βi

j

(d)

≤ eje−(m−1)θ (m(θ + 1))j

j!
,

where (a) follows since
∏

i xi is Schur-concave when all xi > 0, (b) follows from
(7.16) and (7.17), (c) follows since

(
1− u

x

)x ≤ e−u for all x ≥ 1, and (d) follows
from (7.17) and (7.18). Thus,

J∑
m=5

θ−1∑
j=0

P (Um−1 = j)

≤
J∑

m=5

θ−1∑
j=0

e−(m−1)θ (me(θ + 1))j

j!

= e−9θ/4
J−4∑
m=0

θ−1∑
j=0

((m+ 5)e(θ + 1))j

j!
e−(m+7/4)θ

(a)

≤ e−5θ/4θ
(θ + 1)θ

θ!

J−4∑
m=0

(m+ 5)θe−(m+7/4)θ
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(b)

≤ e−5θ/4θ
(θ + 1)θ√
2πθ(θ/e)θ

J−4∑
m=0

(m+ 5)θe−(m+7/4)θ

=
1√
2π
e−θ/4

√
θ

(
1 +

1

θ

)θ J−4∑
m=0

(
(m+ 5)e−m−7/4

)θ
(c)

≤
√
e

π

J−4∑
m=0

(
(m+ 5)e−m−7/4

)θ
(d)

≤
√
e

π

∞∑
m=0

(m+ 5)e−m−7/4 < 1, (7.23)

where (a) follows since cj

j! is an increasing function of j for all 0 ≤ j ≤ c, (b) follows

from Stirling’s formula, (c) follows since
√
me−m/4 ≤

√
2/e for all m ∈ Z+ and

(1+1/x)x < e for all x > 0, and (d) follows since (m+5)e−m−7/4 < 1 for all m ≥ 0.
Finally, we substitute (7.23) into (7.22) and then the theorem is established after
some straightforward simplification.
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In this thesis, we studied efficient information processing for content delivery with
caching and for collecting summary statistics in wireless sensor networks, under
the paradigm of function computation over networks. The problem of sequential
coding for computing was introduced to model content delivery with caching. For
the single-user case, we established that caching the most popular components is
optimal when the components are independent, caching the coarsest versions is
optimal when the the components are nested, and the optimal caching strategy
should aim at minimizing the conditional total correlation when the requests are
uniformly distributed. Thus, it is fair to say that the most useful cache content is
something common or at least popular. For the general multi-user case, we observed
two principles “cache → update” and “common → private” that assist in identifying
manageable subproblems for which the optimal rate region admits a single-letter
expression. Some progress has been made for distributed computing with successive
refinement. In particular, we characterized the optimal rate region of sequential
successive refinement and showed that all sources are successively refinable in sum
rate as long as full recovery is required in the second stage. For collecting summary
statistics in wireless sensor networks, we proposed arithmetic computation coding
which achieves a better scaling behavior comparing with naively collecting full data.
When interaction among sensors is possible, we showed that type-threshold functions
can be computed more efficiently.

Throughout the thesis, we see that the efficiency of computing a function over
networks comes from reducing or exploiting redundant information. On the other
hand, from the Körner–Marton problem and the problem of sequential coding for
computing, we know that completely avoiding redundant information is impossible
in distributed function computation. Therefore, characterizing the minimum redun-
dancy is the main challenge in this line of research. Finally, we leave two general
research directions that can be extended from this thesis:

• Outer bounds. Except the very recent work [42], all known outer bounds for
function computation are based on cut-set based arguments, which assume full
cooperation among nodes on the same side of the cut. In general there should
be a rate penalty due to lack of coordination which cannot be captured by the
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cut-set bounds. Thus, any progress for outer bounds is highly important for the
field of distributed computing.

• Efficient evaluation of achievable rate regions. For practical developments,
the achievable rate regions presented in this thesis can serve as benchmarks for
indicating the performance of the developed codes. Therefore, efficient evalua-
tion of these single-letter expressions becomes important. Besides, identifying
the optimal auxiliary random variables can also provide some insight for code
developments.
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[49] D. Gündüz, E. Erkip, A. Goldsmith, and H. Poor, “Source and channel cod-
ing for correlated sources over multiuser channels,” IEEE Trans. Inf. Theory,
vol. 55, pp. 3927–3944, Sep. 2009.

[50] B. Nazer and M. Gastpar, “Compute-and-forward: Harnessing interference
through structured codes,” IEEE Trans. Inf. Theory, vol. 57, pp. 6463–6486,
Oct. 2011.

[51] A. Goldsmith and P. Varaiya, “Capacity of fading channels with channel side
information,” IEEE Trans. Inf. Theory, vol. 43, pp. 1986–1992, Nov. 1997.

[52] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products.
Academic Press, 2007.

[53] A. Giridhar and P. R. Kumar, “Computing and communicating functions over
sensor networks,” IEEE J. Select. Areas Commun., vol. 23, pp. 755–764, Apr.
2005.

[54] N. Ma, P. Ishwar, and P. Gupta, “Interactive source coding for function compu-
tation in collocated networks,” IEEE Trans. Inf. Theory, vol. 58, pp. 4289–4305,
Jul. 2012.

[55] P. Harremoës, “Binomial and poisson distributions as maximum entropy dis-
tributions,” IEEE Trans. Inf. Theory, vol. 47, pp. 2039 –2041, Jul. 2001.

[56] J. Adell, A. Lekuona, and Y. Yu, “Sharp bounds on the entropy of the poisson
law and related quantities,” IEEE Trans. Inf. Theory, vol. 56, pp. 2299 –2306,
May 2010.

[57] N. Ma and P. Ishwar, “Some results on distributed source coding for interactive
function computation,” IEEE Trans. Inf. Theory, vol. 57, pp. 6180–6195, Sep.
2011.

[58] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley, 2006.

[59] L. A. Shepp and J. Olkin, “Entropy of the sum of independent Bernoulli random
variables and of the multidimensional distribution,” Stanford Univ. , Stanford,
CA, Tech. Rep. 131, Jul. 1978.



Curriculum Vitae

Chien-Yi Wang
School of Computer and Communication Sciences
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2011-2015 Dr ès sc., School of Computer and Communication Sciences, École
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