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Abstract
Hot tearing is a major defect of solidification processes and welding. It occurs in metallic
alloys while they are in the semi-solid state and is caused by a lack of liquid feeding in
the mushy zone to compensate solid network openings due to tensile and shear strains.
These strains are localized in the thin liquid films that remain at grain boundaries even
in the last stages of solidification. Therefore, it is important to know when the solid
grains coalesce and percolate to form a fully coherent solid, i.e., when the material can
transmit stresses and strains but also withstand thermal contraction without rupture.
It is also important to determine the regions of the mushy zone where liquid feeding is
difficult or even impossible due to isolation of liquid pockets. Coalescence is defined as
the disappearance of a liquid film in between two distinct grains, forming a solid grain
boundary, while percolation is defined as the gradual transition of isolated grains or
clusters surrounded by a continuous liquid film to a continuous solid network across a
domain, even if some liquid regions remain.
If the simulation of hot tearing has to account for localization of strains and liquid feeding,
it is mandatory to use a granular approach. Two previous theses done recently at EPFL
have developed such granular models of hot tearing, first in two dimensions (PhD of S.
Vernède [1]) and then in three dimensions (PhD of M. Sistaninia [2]). However, these
models have used a Voronoi tessellation for the description of globular microstructures
in which equiaxed grains were approximated by polygons and polyhedra, respectively.
Although some refinement was used to smooth the edges of these grains, these two original
contributions to hot tearing did not address specifically the question of the percolation of
equiaxed globular grains.
The aim of this thesis is to investigate percolation in inocculated Al-Cu alloys via
experimental investigations and refined simulations. More specifically, the goals were to:
(i) obtain a globular-equiaxed microstructure under well-controlled conditions by using
a modified Bridgman apparatus which after a quench would give access to the whole
solidification history in a single sample; (ii) observe the percolation of grains by X-ray
tomography, ex situ on the samples obtained with the modified Bridgman furnace and in
situ with a laser-heated furnace; and (iii) provide a new mesoscopic model that considers
smooth grains and accounts for solute diffusion as well as grain coalescence in order to
predict the various percolation transitions.
From the experimental point of view, an innovative method, based on the Bridgman furnace
principle, has been developed. The standard Bridgman furnace has been substantially
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modified in order to obtain the desired globular-equiaxed grain structure and reduce
macrosegregation in the quenched sample. This modified furnace has been characterized
then in terms of thermal measurements and observed final grain size.
The samples obtained with the modified Bridgman furnace were then observed post-
mortem by ex situ X-ray tomography. In addition, X-ray tomography experiments under
similar conditions have been performed in situ with the laser-heated furnace installed on
the TOMCAT synchrotron beam line of the Paul Scherrer Institute. A postprocessing
analysis of the principal curvature distribution (ISD plots) was performed on both ex situ
and in situ observations for various compositions of inoculated Al-Cu alloys. The ISD
plots of the X-ray tomography observations indicated the formation of liquid cylinders
along triple line and, at a more advanced solidification stage, the formation of liquid
pockets at quadruple vertices.
From the modeling point of view, the percolation of a small number of grains has been
simulated with a multiphase-field model in 2D. However, due the large computational cost
associated with the multiphase-field method, a new mesoscopic model has been developed
for both 2D and 3D simulations. This model was inspired by the granular model developed
by Phillon et al. [3] that considers polyhedral grains based on a Voronoi tessellation of
space, but allows to obtain smoother shapes of the grains and more progressive coalescence
of the grains.
After its validation with the multiphase-field simulations, the mesoscopic model has been
used to predict the various percolation transitions of the solid phase. In addition, by
estimating the solid fractions/temperatures at which the liquid starts to form isolated
pockets, it was possible to predict the temperatures and solid fractions for which the
mushy zone is most vulnerable to hot tearing. The simulations have been performed
for various conditions and for different copper compositions, indicating the nominal
compositions that are more sensitive to hot tearing. Finally, the 3D mesoscopic model
predictions were compared with the X-ray tomography observations.

Key words: Hot tearing, Percolation, Coalescence, Solidification microstructures, X-
ray tomography, Curvature distribution, Simulation, Phase-field modeling, Mesoscopic
modelling
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Riassunto
La fessurazione a caldo è uno dei principali difetti che può apparire durante la solidifica-
zione e la saldatura. Questo difetto si ritrova in determinate leghe metalliche, mentre
sono ancora in uno stato semisolido. La fessurazione a caldo è provocata da una non suf-
ficiente alimentazione in liquido della zona semisolida tale da compensare l’apertura della
struttura solida a causa di deformazioni di tensione e di taglio. Queste deformazioni sono
localizzate nei film liquidi che sussistono ai bordi di grano, anche nelle ultime fasi della
solidificazione. Di conseguenza, è importante conoscere il momento a partire dal quale i
grani solidi coalescono e percolano in modo da formare un solido totalmente coerente,
i.e., il momento a partire dal quale i grani possono trasmettere sforzi e deformazioni, ma
anche resistere alla contrazione termica senza rottura. Inoltre, è importante determinare
le regioni della zona semisolida nelle quali l’apporto di liquido è difficile o addirittura
impossibile a causa dell’isolamento delle sacche di liquido. Il fenomeno di coalescenza è
definito come la scomparsa di un film liquido compreso tra due grani, per formare un
bordo di grano, mentre il fenomeno di percolazione è definito come la transizione graduale
da grani (o clusters di grani) attorniati da un film liquido a una rete solida continua
attraverso il volume considerato, anche se sussistono delle sacche di liquido.

La simulazione della fessurazione a caldo deve considerare la localizzazione delle defor-
mazioni e dell’apporto di liquido. È dunque necessario utilizzare un approccio granulare.
Nel contesto di due lavori di tesi effettuati recentemente all’EPFL, due modelli granulari
di fessurazione a caldo sono stati sviluppati, inizialmente in due dimensioni (lavoro di
tesi di S. Vernède [1]) e, in seguito, in tre dimensioni (lavoro di tesi di M. Sistaninia [2]).
Ciononostante, questi modelli sono basati su una tessellazione di Voronoi in modo da
descrivere delle microstrutture globulari et considerano i grani equiassiali come poligoni,
rispettivamente poliedri. Nonostante sia stato possibile smussare gli angoli dei grani
con un affinamento, queste due contribuzioni, originali nel contesto della fessurazione a
caldo, non furono dedicate in modo specifico al fenomeno di fessurazione a caldo di grani
globulari equiassiali.

Lo scopo di questa tesi è d’investigare il fenomeno di percolazione dei grani nelle leghe
Al-Cu inoculate con uno studio sperimentale e simulazioni più raffinate. In modo più
particolare, gli scopi della tesi erano di: (i) ottenere una microstruttura globulare-
equiassiale in condizioni controllate con un forno di Bridgman modificato, con il quale,
dopo la tempra, permette di accedere a tutta la cronologia della solidificazione, il tutto
in un solo campione; (ii) osservare la percolazione di grani per mezzo della tomografia
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a raggi-X, ex situ su campioni ottenuti con il forno Bridgman e in situ con un forno a
riscaldamento laser; e (iii) fornire un modello mesoscopico innovativo che considera grani
smussati, la diffusione de soluto e la coalescenza dei grani per predire le varie transizioni
di percolazione.
Dal punto di vista sperimentale, un metodo innovativo basato sul funzionamento del
forno Bridgman è stato sviluppato. Il forno Bridgman standard è stato modificato in
modo sostanziale per ottenere la struttura globulare-equiassiale desiderata e ridurre la
macrosegregazione nei campioni temprati. Il forno modificato è stato poi caratterizzato
dal punto di vista termico e della grandezza dei grani osservata. In seguito, i campioni
sono stati osservati post-mortem con la tomografia a raggi-X ex situ. Inoltre, esperimenti
di tomografia raggi-X sono stati effettuati in condizioni simili in situ con un forno laser
installato sul fascio sincrotrone TOMCAT presso l’istituto Paul Scherrer. Un’analisi
post-trattamento delle curvature principali (grafici ISD) è stata effettuata su osservazioni
ex situ e in situ di varie composizioni di leghe Al-Cu. I grafici ISD delle osservazioni di
tomografia raggi-X indicano la formazione di sacche di liquido con forma cilindrica lungo
linee triple e, ad uno stadio di solidificazione più avanzato, la formazione di sacche di
liquido in punti quadrupli.
Dal punto di vista della modellazione, la percolazione di un piccolo numero di grani è
stata simulata con un metodo di multi-campo di fase in 2D. Ciononostante, dato il lungo
tempo di calcolo del metodo di multi-campo di fase, un nuovo modello mesoscopico è
stato sviluppato al fine di effettuare delle simulazioni in 2D e 3D. Questo modello è stato
ispirato dal modello granulare sviluppato da Phillon et al. [3] che considera dei grani
poliedrici basandosi sulla tessellazione di Voronoi dello spazio, ma permette di ottenere
dei grani‘maggiormente smussati e una coalescenza più progressiva.
Dopo le validazioni comparando delle simulazioni in multi-campo di fase, il modello
mesoscopico è stato utilizzato al fine di predire le varie transizioni di percolazione della
fase solida. Inoltre, stimando le frazioni di solido/temperature alle quali la zona semisolida
è più sensibile alla fessurazione a caldo, è stato possibile predire la temperature et la
frazione di solido in cui la zone semisolida è maggiormente sensibile alla fessurazione
a caldo. Le simulazioni sono state effettuate in varie condizioni e diverse composizioni
di rame. Questo ha permesso di determinare le composizioni che sono più sensibili
alla fessurazione a caldo. Infine, le predizioni del modello mesoscopico 3D sono state
confrontate con le osservazioni di tomografia raggi-X.

Parole chiave: Fessurazione a caldo, Percolazione, Coalescenza, Microstrutture di solidifi-
cazione, Tomografia a raggi-X, Distribuzione di curvature, Simulazioni, Modellazione con
campo di fase, Modellazione mesoscopica
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Résumé
La fissuration à chaud est un des défauts majeurs des procédés de solidification et soudage.
La formation de ce défaut se produit dans certains alliages métalliques, lorsqu’ils sont
encore dans un état pâteux. La fissuration à chaud est due à un manque d’alimentation
du liquide dans la zone pâteuse apte à compenser l’ouverture du réseau solide à cause
de déformations en tension et en cisaillement. Ces déformations sont localisées dans les
films liquides minces qui subsistent aux joints de grain, même dans les derniers stades
de la solidification. Par conséquent, il est important de savoir à quel moment les grains
solides coalescent et percolent afin de former un solide entièrement cohérent, c.à.d., à
quel moment le matériau peut transmettre des contraintes et déformations, mais aussi
résister à la contraction thermique sans qu’il y ait rupture. Il est, en outre, important
de déterminer les régions de la zone pâteuse pour lesquelles l’alimentation en liquide
est difficile, voire impossible à cause de l’isolation des poches de liquide. Le phénomène
de coalescence est défini comme étant la disparition d’un film liquide entre deux grains,
pour former un joint de grain, tandis que le phénomène de percolation est défini comme
étant la transition graduelle d’une situation où les grains (ou des clusters de grains) sont
entourés par un film liquide continu à une situation dans laquelle un réseau solide continu
s’est formé à travers le domaine, même si des régions liquides peuvent subsister.

La simulation de la fissuration à chaud doit tenir compte de la localisation des déformations
et de l’alimentation en liquide, si bien qu’il est essentiel d’utiliser une approche granulaire.
Dans le contexte de deux travaux de thèse qui ont été récemment effectués à l’EPFL,
des modèles granulaires de fissuration à chaud ont été développés, premièrement en deux
dimensions (travail de thèse de S. Vernède [1]) et, par la suite, en trois dimensions (travail
de thèse de M. Sistaninia [2]). Cependant, ces modèles sont basés sur une tessellation de
Voronoï afin de décrire des microstructures globulaires et considèrent les grains équiaxes
comme étant des polygones, respectivement des polyèdres. Bien qu’il fût possible de
lisser les angles des grains au moyen d’un affinage, ces deux contributions, originales
dans le contexte de la fissuration à chaud, n’étaient pas dédiées de manière spécifique au
phénomène de percolation de grains globulaires équiaxes.

Le but de cette thèse est d’investiguer le phénomène de percolation des grains dans des
alliages Al-Cu inoculés au moyen d’études expérimentales et de simulations numériques.
En particulier, les buts étaient les suivants : (i) obtenir une microstructure globulaire-
équiaxe, dans des conditions contrôlées au moyen d’un four Bridgman modifié, qui, après
trempe, permet d’accéder à l’historique complet de la solidification, le tout en un seul
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échantillon ; (ii) observer la percolation de grains au moyen de la tomographie rayons-X, ex
situ sur des échantillons obtenus avec le four Bridgman modifié et in situ au moyen d’un
four avec chauffage laser ; et (iii) fournir un modèle mésoscopique novateur qui considère
des grains lisses et tient compte de la diffusion du soluté ainsi que de la coalescence des
grains afin de prédire les différentes transitions de percolation.
Du point de vue expérimental, une méthode innovante, basée sur le principe du four
Bridgman, a été développée. Le four Bridgman standard a été modifié de manière
substantielle afin d’obtenir la structure de grain globulaire-équiaxe désirée et réduire la
macroségrégation dans les échantillons trempés. Ce four modifié a été ensuite caractérisé
en termes de mesures thermiques et taille finale de grain observée. Les échantillons ont été
ensuite observés post-mortem par tomographie rayons-X ex situ. En outre, des expériences
en tomographie rayons-X ont été effectuées in situ dans des conditions similaires au moyen
d’un four laser installé sur le faisceau synchrotron TOMCAT de l’institut Paul Scherrer.
Une analyse post-traitement des courbures principales (graphes ISD) a été effectuée sur
des observations ex situ et in situ de plusieurs compositions d’alliage Al-Cu. Les graphes
ISD des observations en tomographie rayons-X ont indiqué la formation de poches de
liquide de forme cylindrique le long des lignes triples et, à un stade de solidification plus
avancé, la formation de poches de liquide aux points quadruples.
Du point de vue de la modélisation, la percolation d’un faible nombre de grains a été
simulée en multi-champ de phase en 2D. Par contre, du fait du temps de calcul conséquent
de la méthode en multi-champ de phase, un nouveau modèle mésoscopique a été développé
pour effectuer des simulations en 2D et 3D. Ce modèle a été inspiré par le modèle granulaire
développé par Phillon et al. [3] qui considère des grains polyédriques en se basant sur une
tessellation de Voronoï de l’espace, mais permet d’obtenir des grains plus lisses et une
coalescence des grains plus progressive.
Après les validations en le comparant avec des simulations en multi-champ de phase, le
modèle mésoscopique a été utilisé afin de prédire les différentes transitions de percolation
de la phase solide. De plus, en estimant les fractions de solide/températures auxquelles le
liquide commence à former des poches isolées, il a été possible de prédire la température
et la fraction de solide auxquelles la zone pâteuse est la plus sensible à la fissuration à
chaud. Les simulations ont été faites pour plusieurs conditions et différentes compositions
de cuivre, ce qui a permis de déterminer les compositions les plus sensibles à la fissuration
à chaud. Enfin, les prédictions du modèle mésoscopique 3D ont été comparées aux
observations en tomographie rayons-X.

Mots clefs : Fissuration à chaud, Percolation, Coalescence, Microstructures de solidification,
tomographie rayons-X, Distribution de courbures, Simulations, Modélisation en champ
de phase, Modélisation mésoscopique
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1 Introduction

1.1 Aluminum and its alloys

Aluminum is one of the most abundant elements of the Earth’s crust (8% of the Earth
crust). However, since its oxide Al2O3 (alumina) is very stable from a chemical point of
view, the transformation of Al2O3 into metallic aluminum (Hall-Héroult process) requires
large quantities of energy. In addition, in nature, alumina is combined with other oxides:
it is generally separated from the other undesired oxides in the bauxite ore (which contains
up to 60% of Al2O3) using the Bayer process [4]. Historically, aluminum production only
became significant from an industrial point of view at the end of the 19th century after
the invention of the Hall-Héroult (discovered simultaneously by Hall [5] and Héroult [6]
in 1886) and the Bayer (1887) processes.

Pure aluminum is a very ductile and malleable metal. Its mechanical properties can
be significantly improved by alloying it with other elements. The aluminum alloys are

Table 1.1: Designation of the various aluminum alloys as proposed by the Aluminum
Association (AA).

Cast alloys Wrought alloys
Series Major alloying element Series
1xx.x Al> 99.00% 1xxx
2xx.x Cu 2xxx
3xx.x Si+ Cu and/or Mg Mn 3xxx
4xx.x Si 4xxx
5xx.x Mg 5xxx
7xx.x Zn Mg and Si 6xxx
8xx.x Sn Zn 7xxx
9xx.x other elements 8xxx
6xx.x unused series 9xxx
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Chapter 1. Introduction

classified following various systems, but the most widely used is that of the Aluminum
Association (AA), shown in Table 1.1. This classification distinguishes cast alloys (designed
by three digits followed by a point and a last digit) and wrought alloys (designed by
four digits) [7]. Cast alloys are directly shaped in their definitive (or near definitive)
shape, while wrought alloys first are cast into simple shapes and then used for further
transformations by forging, rolling or extrusion.

1.2 Solidification processes

Casting consists of pouring a liquid metal in a cavity and then cooling it down. The
onset of solidification happens when the temperature falls below the liquidus of the alloy
and ends, under equilibrium conditions at the solidus temperature (unless other phases
nucleate with some eutectic or peritectic reactions). Many types of casting processes exist.
However, we will present those related to aluminum production in which hot tearing
formation plays an important role, such as semi-continuous casting and welding.

Unlike steel, aluminum alloys, due to their low strength at high temperature and their
high thermal conductivity, cannot be produced by truly continuous casting. They are

Mold
Incoming metal

Bottom block

vcasting

crack

s

`

(hot tearing)

Figure 1.1: Schematic representation of the DC casting process (after [8]). s indicates
the solid, ` the liquid and vcasting the casting speed.
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1.2. Solidification processes

generally produced by a vertical direct chill (DC) casting (see schematic representation
in Fig. 1.1). Please note that this is a semi-continuous process due to the limited height
of the deep pits used for castings (generally up to 7 meters deep). At the beginning of
the process, the mold is closed by a bottom block and the liquid metal is poured via a
feeder. Once a sufficient layer of metal has solidified, the bottom block is moved down
and withdrawn from the open mold at a pulling speed vc until the bottom of the cavity
pit is reached. During the process, the level of the liquid metal is kept constant by the
feeder. The metal is cooled by two mechanisms: by contact with the mould (primary
cooling) and by a contact with a water jet (secondary cooling).
Hot tearing generally happens in low-concentration alloys exhibiting a large solidification
interval under conditions of high casting speeds [9]. This is due to the high tensile strains
that develop at the center of the billet and the fact that the permeability of the mushy
zone becomes low at high solid fractions. Various other defects can happen during DC
casting, such as microporosity, macrosegregation and macroscopic deformations due to
thermal stresses (non exhaustive list).

Welding is one of the most common methods for joining materials that consists in locally
melting two pieces in order to join them, once resolidified. Please note that a filler
material may be added to control the weld chemistry as well as to fill the gap between the
two parts. Hot tearing in welding forms during cooling, when the fusion zone near the end
of solidification is subject to tensile stresses associated with high cooling rates. Therefore,
in order to reduce the cooling rate experienced in welding (and limit the formation of hot
tears) the weldment can be preheated. An alternative way is to use a two-lasers welding
process, in which a second heat source that follows the welding source helps reducing the
cooling rate [10].

(a) (b)

Figure 1.2: Hot tears observed (a) at the center of a DC cast Al 6060 billet (b) at the
weld centerline of an aluminum alloy (after [8]).
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Chapter 1. Introduction

1.3 Hot tearing percolation and coalescence

As explained above, hot tearing is a spontaneous failure of an alloy during its solidification
that generally presents the shape of a ragged branching crack (see Fig. 1.3(a)). As observed
by Campbell [14], hot tears propagate mainly in between solid grains (intergranular) and
exhibit a fairly smooth surface appearance that existed at the time of fracture (see Fig.
1.3(c)).
The two main phenomena leading to hot tearing are: a lack of liquid feeding at high
solid fractions and tensile/shear strains in the mushy zone that tend to pull apart the
solid network. These strains, transmitted through the partially coherent solid in the
mushy zone, are induced by contraction of the solid in a thermal gradient, and mechanical
constraints imposed by the geometry of components. At low solid fraction (gs < 0.9), the
permeability of the mushy zone is large enough so that liquid feeding can heal possible
grain boundary openings, forming a so-called “healed hot tear”. At high solid fraction

(a) Macroscopic scale (b) Mesoscopic scale

(c) Microscopic scale (d) Nanoscopic scale

liquid grain 2grain 1

500µm50mm

1nm50µm

Figure 1.3: Observations of hot tearing and related phenomena at different scales. (a)
Hot crack observation in the center of a DC cast Al 6060 billet [8]. (b) Simulation of
the solid clusters formation and percolation of globular-equiaxed grains with a granular
model [11]. (c) Scanning Electron Microscopy fractography observation of a hot tear
surface lip of a crack [12]. (d) Molecular dynamics simulation of the coalescence of two
solid liquid interfaces [13].
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1.4. Motivation and objective of the thesis

(gs > 0.95), the grains form a continuous solid network with isolated liquid pockets,
possessing sufficient mechanical resistance and the mushy material behaves like a ductile
solid. However, there is a critical zone for hot tearing (for solid fractions in the range
0.9 < gs < 0.95) in which grain boundaries openings, due to the deformation localized in
the continuous liquid films, cannot be fed by liquid flow because of the low permeability
of the mushy zone [8, 15].
Therefore, it is important to know when the solid grains coalesce and percolate to form
a fully coherent solid, i.e., when the material can transmit stresses and strains but also
withstand thermal contraction without rupture [15, 16]. Coalescence is defined as the
disappearance of a liquid film in between two distinct grains, forming a solid grain
boundary, while percolation is defined as the gradual transition of isolated grains or
clusters surrounded by a continuous liquid film to a continuous solid network across a
domain, even if some liquid regions remain [16,17].
Coalescence is strongly influenced by the interfacial energies. In the case of a thin liquid
film that separates two coalescing grains, as the thickness of the liquid film approaches
the solid/liquid interface thickness, δs` (which is on the order or few nanometers as shown
in Fig. 1.3(c)), the excess free energy deviates from the initial value of 2γs`, (where γs` is
the energy of the solid/liquid interface). When the liquid has completely disappeared,
the excess free energy is equal to the grain boundary energy, γgb. In the case γgb > 2γs`,
the substitution of two solid/liquid interfaces by a grain boundary is associated with an
increase of the excess interface energy: a bridging undercooling, ∆Tb, is thus necessary in
order for the two interfaces to coalesce (repulsive case). On the other hand, in the case
γgb < 2γs`, no undercooling is required for the coalescence of the two interfaces (attractive
case) [16].

Simulation of hot tearing and its associated phenomena is not an easy task, since it
involves interdependent phenomena occurring at very different length scales, as shown in
Fig. 1.3. In order to better predict hot tearing, it is thus important to develop models
that account for very different scales.

1.4 Motivation and objective of the thesis

While previous researches in the field of solidification have mainly focused on the dendrite
tip kinetics and other topics related to the initial stages of solidification, only few works
have been dedicated to the investigation of its final stages, despite its crucial importance
for the formation of defects such as hot tearing. The goal of the present research is
thus to explore the last-stage solidification, in particular for globular-equiaxed grains in
aluminum-copper alloys at the mesoscale but considering also the coalescence phenomenon
taking place at the nanoscale (see Fig. 8.5).
The reasons that motivate the choice of this type of microstructure for the present work
are multiple. First, since in real castings the alloys are often inoculated in order to
promote fine equiaxed microstructures, this project could be interesting from an industrial
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point of view. Second, if the grains are globular in shape, it is easier to study their
evolution compared to the case in which the instability of the solid/liquid interface leads
to dendritic morphologies. Third, the results of the present work can then be used to
refine the solidification module of the granular model of Sistaninia et al. [18–21], which
considers such a microstructure. Therefore, despite the simplicity of the shape of the
grains, the main challenge of the present work is to be able to describe the evolution
of the shape of globular-equiaxed grains as well as the phenomena of coalescence and
percolation from a quantitative point of view.

The novelty of the present work resides in the combination of an experimental approach
based on X-ray tomography and the development of a mesoscopic model for simulating
the percolation of several grains. The main objectives are the following:

(i) Obtain the desired globular-equiaxed microstructure in a quenched Bridgman furnace
and thus access to the whole solidification history in a single sample. This implies
a modification of the furnace and sample designs in order to achieve steady-state
conditions and limit macrosegregation, which is generally observed for equiaxed
microstructures.

(ii) Observe the last-stage solidification of inoculated AlCu alloys by synchrotron X-ray
tomography at the Paul Scherrer Institut (PSI). Observation will be performed both
ex situ on samples obtained with the modified Bridgman furnace and in situ with
a laser-heated furnace. The furnace, installed on the TOMCAT beamline of the
Swiss Light Source, was recently developed in collaboration between Paul Scherrer
Institut (PSI) and Computation Materials Laboratory (LSMX), thanks to the funding
of the Competence Centre of Materials (CCMX) and of several industries. The
postprocessing of the 3D microstructures will shed some light on the percolation state
evolution and morphology of the solid-liquid interface in the last-stage solidification.

(iii) Develop a multiphase-field model as well as a less computationally intensive meso-
scopic model to simulate grain percolation. The mesoscopic model, developed both
in 2D and 3D, is inspired by the granular model developed by Phillon et al. [3]
that considers polyhedral grains based on a Voronoi tessellation of space. The
mesoscopic model will allow to obtain smoother shapes of the grains and a more
progressive coalescence of the grains as well as to correctly describe the solid fraction
and temperatures of the various percolation transitions.

All the relevant microstructural parameters, such as curvature distribution, solid-liquid
interface evolution, percolation parameters and other relevant microstructure features
will be deduced from both experimental and simulation approaches.

6



1.4. Motivation and objective of the thesis

1.4.1 Structure of the manuscript

The text is organized in 9 chapters.

In chapter 2, the basic knowledge about solidification necessary for this work (phase
diagram, microsegregation and curvature effects) is provided. After that, the coalescence
and percolation phenomena are explained in the context of hot tearing. The previous
works (experimental and modeling) related to hot tearing are then exposed. The last part
of the chapter is dedicated to the explanation of the phenomena that can take place in a
Bridgman furnace. Conditions under which a desired globular-equiaxed grain structure
can be obtained with such an apparatus will be described.

Chapter 3 is dedicated to describing the innovative Bridgman furnace modifications that
have been developed in order to obtain the complete solidification history in a single
experiment with the desired globular-equiaxed microstructure. In the last part of the
chapter, the observation techniques that were used in the context of this work are briefly
explained. Chapter 4 is dedicated to the characterization of the standard Bridgman
furnace and of the newly developed furnace in terms of temperatures experienced by the
sample during directional solidification as well as macrosegregation, grain size and solid
fraction evolution observed in the final quenched microstructure.

In chapter 5, the multiphase-field model and the mesoscopic model (for both 2D and 3D
geometries) that were developed in the context of this work are explained. In particular,
the validation of the mesoscopic model with the phase-field predictions is performed in
chapter 6.

Chapter 7 and 8 are dedicated to the study of percolation of grains in the last-stage
solidification, from an experimental point of view in chapter 7 and from modeling in
chapter 8. More specifically, in chapter 7, the 3D tomography reconstructions, performed
both ex situ and in situ, are analyzed in terms of solid fractions, specific solid-liquid
interfacial area and curvature distribution. In chapter 8, the 2D and 3D mesoscopic model
results are shown. The various percolation transitions are shown for different nominal
compositions. A final analysis indicates the alloy compositions that are vulnerable to
hot tearing for various conditions. At the end of the chapter, the 3D mesoscopic model
results are compared with the in situ X-ray tomography observations.

The conclusion is given in chapter 9, alongside with possible future steps that can be
followed to contribute to a better understanding of hot tearing formation.
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2 Literature review

2.1 Phase diagrams, microsegregation models and curva-
ture effects

2.1.1 Phase diagrams

In order to be able to describe how an alloy transforms from the liquid to the solid state,
it is necessary to introduce the concept of phase diagram. A phase diagram indicates the
presence, at equilibrium, of specific phases as a function of temperature and composition
for a fixed pressure. During solidification, solute diffusion takes place at a finite rate, thus
leading to composition gradients. Consequently, thermodynamic equilibrium is generally
not achieved within the phases. However, a good assumption is to consider that the
compositions at the interface are given by the phase diagram (so-called local equilibrium).
The phase diagram of Al-Cu, the alloy used in this project, is presented in Fig. 2.1a. Since
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Figure 2.1: (a) Al-Cu equilibrium phase diagram [22]. (b) Schematic enlargement of the
low copper composition part of the phase diagram.
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we are interested in hypoeutectic alloys, a schematic enlargement of the phase diagram
is shown in Fig. 2.1. The liquidus and the solidus are approximated by straight lines,
with a constant liquidus slope m` = −3.4◦C/wt% and a constant partitioning coefficient
k0 = m`/ms = cs/c` = 0.15. A list of all the symbols is given in Appendix C.
When the temperature of an alloy of nominal composition c0 falls under the liquidus
temperature, Tliq, it is thermodynamically favourable to grow a solid phase. The solid
fraction, gs, increases as the temperature decreases. Solidification is completed (gs = 1) at
the solidus temperature, Tsol, or eutectic temperature, Teut, depending on the composition
and cooling conditions.
In order to study the evolution of solidification, one can use analytical microsegregation
models that have been developed, such as the lever rule, the Scheil-Gulliver, or the Clyne
and Kurz models. Numerical models have been developed as well. All these models are
briefly reviewed hereafter.

2.1.2 Microsegregation models

Solidification can be modeled for a representative elementary volume (REV) that has
the size L corresponding to half the secondary dendrite arm spacing, λ2/2, for dendritic
microstructures or to the final grain radius, Rg0, for globular-equiaxed microstructures.
Consider a one dimensional domain of length L, where the interface is positioned at x∗.
In a closed system, the solute is conserved and thus:∫ x∗

0
cs(x, t)x

P−1dx+

∫ L

x∗
c`x

P−1(x, t)dx = c0

∫ L

0
xP−1dx (2.1)

where P is the dimensionality of the problem: P = 1 cartesian, P = 2 cylindrical (dendrite
arm), and P = 3 spherical (globular grain).
By derivation of this expression with respect to time for P = 1, we get:

d

dt

∫ x∗

0
cs(x, t)dx+

d

dt

∫ L

x∗
c`(x, t)dx = 0∫ x∗

0

∂cs(x, t)

∂t
dx+ c∗s

dx∗

dt
+

∫ L

x∗

∂c`(x, t)

∂t
dx− c∗`

dx∗

dt
= 0

(2.2)

Please note that one has introduced the compositions at the interface c∗s and c∗` , in
solid and liquid. Assuming local equilibrium, c∗` = cliq(T ) and c∗s = k0c

∗
` . In order to

understand the assumptions used in the microsegregation models, we first introduce the
dimensionless Fourier number defined as:

Foi =
Ditf
L2

=
Di

∆T0

|Ṫ |

L2
with i = s(solid) or `(liquid) (2.3)

where Di is the diffusion coefficient of the solute in the solid phase (Ds) or in the liquid
phase (D`), tf the solidification time, ∆T0 the solidification interval, and Ṫ the cooling
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2.1. Phase diagrams, microsegregation models and curvature effects

rate. The Fourier number is nothing but the square of the ratio between the diffusion
layer thickness at a given time (proportional to

√
Dit) and the length of the REV, L.

In analytical models, the composition in the liquid is assumed to be uniform (infinite
Fo`) while limited diffusion may occur in the solid phase. Using 2nd Fick’s law for the
solid phase and dividing by L, Eq. (2.2) becomes after integration:

Ds

L

∂cs(x
∗, t)

∂x
+ (1− gs)

dc∗`
dt

= (1− k0)c∗`
dgs
dt

(2.4)

where gs = x∗/L and dgs = dx∗/L hare the fraction of solid, and its increment, respec-
tively.

Analytical models

For the lever rule, thermodynamic equilibrium conditions are assumed, i.e. complete
diffusion in both the solid and liquid phases (infinite Fos and Fo`).
It is then possible to rearrange Eq. (2.2) and obtain the lever rule solid fraction as a
function of temperature:

gs =
1

1− k0

(
T − Tliq
T − Tm

)
(2.5)

where Tm is the melting point of the pure metal.
When a relatively fast solidification takes place, one can assume no diffusion in the solid
(Fos = 0) [23,24]. The first solid forms at a composition k0c0 but, during further cooling,
the composition of the solid formed at a given stage of solidification remains unchanged
since Fos = 0. After integration of Eq. (2.4), one obtains the Scheil-Gulliver relation:gs = 1−

(
T−Tm
Tliq−Tm

) 1
(k0−1) for T > Teut

gs = 1 for T 6 Teut

(2.6)

Here, it is assumed that the eutectic fills the remaining liquid space when Teut is reached.
The lever rule and the Scheil-Gulliver model are two extreme cases and do not represent
real situations since, in general, limited diffusion takes place in the solid. The assumption
of limited diffusion in the solid was initially used by Brody and Fleming [25] to develop a
microsegragation model in which a parabolic growth is assumed:

x∗ = L

√
t

tf

dx∗

dt
=

L2

2tfx∗
(2.7)
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In their approximation, these authors assumed that the solute gradient in the solid at the
interfaces is given by:

∂cs(x
∗, t)

∂x
≈ dc∗s
dx∗

=
dcs
dt

dt

dx∗
(2.8)

Using this relation and Eq. (2.7) in Eq. (2.4), one finally has:

((2k0Fos − 1) gs + 1)
dc∗`
dt

= (1− k0)c∗`
dgs
dt

(2.9)

This equation can be integrated in order to obtain:gs = 1
1−2k0Fos

[
1−

(
T−Tm
Tliq−Tm

) 1−2k0Fos
(k0−1)

]
for T > Teut

gs = 1 for T 6 Teut

(2.10)

The assumption made in Eq. (2.9) for the solute gradient in the solid is equivalent to
stating that the slope remains about constant during a time increment ∆t. If this works
for the Scheil-Gulliver model (Fos = 0), this is not true for the lever rule (Fos = ∞),
reason why the Brody-Fleming’s model recovers this limiting case for Fos = 0.5. For this
reason, Clyne and Kurz [26] replaced Fos in Eq. (2.10) by the heuristic expression:

f(Fos) = Fos

[
1− exp

(
− 1

Fos

)]
− 1

2
exp

(
− 1

2Fos

)
(2.11)

such that the lever rule is recovered for Fos =∞.
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Figure 2.2: Comparison of the predictions of various microsegregation models for Al-
4.5wt.%Cu.
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2.1. Phase diagrams, microsegregation models and curvature effects

In Fig. 2.2, the predictions of the various microsegregation models for an Al-4.5wt.%Cu
are compared. The lever rule predicts the fastest evolution of the solid fraction reaching
unity when the temperature drops below the solidus (for this specific alloy), while the
Scheil-Gulliver predicts the slowest one. The Brody-Fleming model with the Clyne-Kurz
correction (in this case with Fos = 0.5 and thus f(Fos) = 0.248) gives an intermediate
result. Note that when the temperature drops below the eutectic temperature, the solid
fraction becomes equal to unity for all the models since the eutectic fills the space of the
remaining liquid.
Unfortunately, Brody-Fleming’s model does not conserve solute and the Clyne-Kurz
correction is only empirical and thus does not solve this problem. Please note that other,
more complicated, analytical models can describe more accurately solute diffusion in
the solid, by assuming a parabolic profile, as proposed by Ohnaka [27], while an exact
solution to Eq. (2.4) has been derived by Kobayashi [28]. Another approach, presented
in the following section, is to use a numerical model.

Numerical models

Various numerical approaches have been used to study microsegregation. In this section
we review the main assumption of the model developed by Voller and Sundarraj [29]: a
Landau transformation that allows to take into account the motion of the solid-liquid
interface. It should be noted that the Landau transformation also allows to take into
account the effect of coarsening of the REV size in the case of dendritic microstructures.
The diffusion equation in the solid phase in general coordinates is given by:

∂cs
∂t

= Ds

(
1

r(P−1)

∂

∂r

(
r(P−1)∂cs

∂r

))
= Ds

(
∂2cs
∂r2

+
(P − 1)

r

∂cs
∂r

)
(2.12)

where r is the space variable and P the dimensionality of the problem. Eq. (2.12) can be
solved by performing a Landau transformation of the domain [0, r∗(t)] into a reference
domain [0, 1] such that:

cs(r, t)→ cs(η, t) with η =
r

r∗
(2.13)

Eq. (2.12) thus becomes:(
∂cs
∂t

)
η

=
Ds

r∗2
∂2cs
∂η2

+

(
ηv∗

r∗
+

(P − 1)Ds

ηr∗2

)
∂cs
∂η

(2.14)

where v∗ is the velocity of the interface and the term ηv∗

r∗ represents the advection of the
mesh. In 1D cartesian coordinates it has the simple following form:(

∂cs
∂t

)
η

=
Ds

r∗2
∂2cs
∂η2

+
ηv∗

r∗
∂cs
∂η

(2.15)
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Chapter 2. Literature review

where the ∂cs
∂η term is only multiplied by the mesh advection term.

As will be seen in Chapter 5 for our granular model, solving Eq. (2.14) with appropriate
boundary conditions at r = 0, r∗, allows to deduce the solute gradient dcs(x∗, t)/dx
appearing in Eq. (2.4). Knowing ∂c`/∂t from the imposed cooling rate, the new fraction
of solid (and the velocity of the interfaces) can be computed from this equation. The
procedure can then be repeated with the new interfacial composition of the solid domain
[0, r∗].

2.1.3 Curvature effects

The atoms located near the solid-liquid interface possess an excess free energy, which,
after integration over the thickness of the diffuse solid-liquid interface, δs`, gives the
solid-liquid interfacial energy, γs` (units of Jm−2). This results in a shift of the melting
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Figure 2.3: Interface shape distribution (or ISD) plot with the constraint that κ2 > κ1.
The color represents the probability of finding a patch of surface with a certain pair of
curvatures. The four different regions of the graph correspond to different signs of the
mean and Gauss curvature, that are represented in the small cubes [30].
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2.2. Coalescence

point for a pure system by a curvature undercooling:

∆TR = T∞m − TRm = 2
γs`

∆Sf
κ = 2Γs`κ (2.16)

where T∞m is the melting point of the pure substance, TRm the melting point of the substance
for a curved solid/liquid interface of mean curvature κ, and ∆Sf is the volumetric entropy
of fusion. The Gibbs-Thompson coefficient, Γs`, is given by γs`/∆Sf .
We recall that the mean and Gauss curvatures can be expressed as:

• Mean curvature: κ = 1
2(κ1 + κ2)

• Gauss curvature: κG = κ1κ2

where κ1 and κ2 are the principal local curvatures. For a convex solid, the curvature
undercooling corresponds to a decrease of the melting point, while for a concave one it
corresponds to an increase of the melting point. For a binary alloy, the situation is more
complex but for diluted ideal solutions, the curvature contribution can be approximated
by a shift of the phase diagram by the quantity ∆TR. As discussed in section 2.1.1, the
compositions at the interface are given by the phase diagram and thus, for a curved
interface, they are shifted by an equiavalent amount (∆TR/m` and ∆TR/ms for c∗` and
c∗s, respectively). Please also note that, in general, γs` is anisotropic and this modifies the
expression Eq. (2.16) (Herring’s relation [31]). This anisotropy, a few percent for metallic
alloys, is important for dendrites but is negligible in our case since we will consider
globular-equiaxed microstructures.

In order to better quantify the curvatures, one can compute the interface shape distribution
(or ISD) plot [30]. Such graph represents the probability of finding a patch of curvature
with a certain pair of principal curvatures. A schematic ISD representation is given in Fig.
2.3, where the different regions corresponding to different values of the mean curvature,
κ, and Gauss curvature, κG, are illustrated.

2.2 Coalescence

When two solid-liquid interfaces get within interaction distance, a topological change of
the local curvature can arise via the formation of a neck. If the two “merging” solids belong
to two different grains, i.e., have different crystallographic orientations, two solid-liquid
interfaces are replaced by a grain boundary.
Coalescence is defined as the disappearance of a liquid film in between two distinct
grains, forming a solid grain boundary (see Fig. 2.4). As the thickness of the liquid film
approaches atomic dimensions, the excess free energy deviates from the initial value of
2γs`. When the liquid has completely disappeared, the excess free energy is equal to the
grain boundary energy (denoted by γgb) [8, 16].

15



Chapter 2. Literature review

Grain 1 Grain 2Liquid

Gs
G`

γs` =
∫ δs`

0
∆G(x)dx γ(h)

h ∼ δs`
δs`

γgb =
∫ δs`

0
∆G(x)dx

x

G

Gs

Figure 2.4: Atomistic view of coalescence of two grains of a pure substance with different
orientations (upper part) and representation of the Gibbs free energy at a temperature
below the melting point (lower part) [16].

As reviewed by Priester [32] and Roher [33], finding the grain boundary energy for different
configurations is not an easy task. In three dimensions, five parameters should be chosen:
three Euler angles describing the relative misorientation of the impinging grains and two
director cosines describing the vector normal to the grain boundary plane. However,
all the configurations can be simplified by specifying a common direction (2 orientation
parameters) and a rotation about that axis (∆θ), as well as the vector normal to the
grain boundary plane, n. Special grain boundary plane orientations are referred to as
“tilt boundaries” (for n perpendicular to the axis of misorientation) and “twist boundaries”
(for n parallel to the axis of misorientation). More recently, Bulatov et al. [34] derived
the grain boundary energy variation in a 5-dimensional space in the particular case of
face-centered cubic (FCC) alloys. Their main hypothesis is that, just like the solid-liquid
interface energy that can be anisotropic in general, the topography of GB energy function
is defined by grooves.
In order to explain how coalescence can be affected by the misorientation between
the grains, let us first consider a simple case: a symmetric tilt boundary between two
grains. The evolution of the grain boundary energy with respect to the misorientation is
represented in Fig. 2.5. For low tilting angles, the grain boundary can be considered as
partially coherent with edge dislocations compensating the tilt and the grain boundary
energy is well approximated by the Read-Shockley formula [35]. For misorientations greater
than approximately 15-20o, the interface is highly disordered and the grain boundary
energy is almost constant and equal to γmaxgb . The typical values for the maximum
grain boundary energy and the solid/liquid interface for aluminum are respectively
γmaxgb

∼= 0.3 J/m2 and γs` ∼= 0.1 J/m2 [36].
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Figure 2.5: (a) Grain boundary energy for a pure symmetric tilt boundary in aluminum
when the rotation axis is parallel to 〈100〉, normalized by the maximum grain boundary
energy γmaxgb . (b) Schematic representation of γgb with the regions where attractive and
repulsive boundaries are found.

As shown in Fig. 2.5(b), for small values of the tilt angle, γgb is smaller than 2γs`. This
corresponds to an attractive case and no undercooling is required for coalescence [16].
However, for larger misorientations, γgb is larger than 2γs`, corresponding to a repulsive
grain boundary. Let us first assume that the excess energy, γ has the following dependence
with respect to the liquid width h [16]:

γ(h) = 2γs` + (γgb − 2γs`) exp

(
− h

δs`

)
(2.17)

where δs` is the thickness of an isolated and diffuse solid-liquid interface. According to
this approximation, one can compute the excess Gibbs free energy (per unit area) of the
situation in which there are two solid-liquid interfaces, coming into close contact:

G(h) = ∆Sf∆Th+ γ(h) = ∆Sf∆Th+ 2γs` + (γgb − 2γs`) exp

(
− h

δs`

)
(2.18)

In the case of a repulsive interface and a positive undercooling, one can then find the
minimum of Eq. (2.18) and thus the dependence between the undercooling, ∆T , and the
liquid film width, h, that remains in between. It is then possible to find the bridging
undercooling needed for coalescence of two repulsive solid-liquid interface, i.e., when the
liquid width becomes nil. It is given by [16]:

∆Tb =
γgb − 2γs`

∆Sf

1

δs`
(2.19)
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Please note the analogy between Eq. (2.16) and Eq. (2.19): the curvature undercooling
can be expressed as a different Gibbs-Thompson coefficient multiplied by the curvature,
while the coalescence undercooling can be expressed as a differential Gibbs-Thompson
factor (γgb−2γs`

∆Sf
) multiplied by the inverse of δs`. For a binary alloy, the situation is

more complex, because the solute element can alter the grain boundary energy but
also mainly because coalescence is influenced by the solute composition of the liquid
film. The rejection and diffusion of solute in the liquid parallel to the film as well as
backdiffusion perpendicular to the impinging interfaces can thus play an important role.
Coalescence will occur when the temperature and the concentration of the liquid film
reaches a so-called coalescence line, which is parallel to the liquidus line, but shifted down
by ∆Tb [16, 17].

2.3 Percolation

For equiaxed microstructures, percolation is defined as the gradual transition from isolated
grains or clusters surrounded by a continuous liquid film to a continuous solid network
across a domain. In fact, percolation consists of a succession of several coalescence
events. The arrangement and the crystallographic orientations of the grains being
random, repulsive and attractive boundaries are also randomly distributed. The closure
of liquid films will depend on these orientations, but also on the local size of the grains
via back-diffusion. Consequently the remaining liquid films that will have a complex
morphology, especially in three dimensions [8, 16,17]. In this section we will introduce
the basic concepts of percolation theory related to the present project (a more exhaustive
review is given in [38]).

The most simple model of percolation considers a square lattice in which each site
randomly and independently belongs to one of the two phases (gray or white, solid or
liquid). Each site is occupied at random by the gray phase with a probability p, or to
the white phase with a probability (1− p). A group of nearest neighbors that are gray is
defined as a cluster. As shown in Fig. 2.6, for small p, isolated clusters appear, but, as
p increases, the clusters become larger until the percolation threshold pc is reached, at
which point the gray phase becomes continuous over the whole domain (in the example
of Fig. 2.6 the largest cluster percolates through the lattice from left to right when
p ≥ 0.59). For p larger than pc, the gray phase progressively thickens and occupies more
space. It should be noted that pc is uniquely defined for an infinite lattice but may vary
when considering a finite one. In 2D, the percolation threshold (0.59) is larger than 0.5
and thus for a certain range of p no one of the two phases is continuous. In 3D, the
percolation threshold for a cubic lattice is 0.31 and thus allows the possibility of having
the continuity of both gray and white phases.
One can then introduce some quantities such as the correlation length ξ (that represents
the average gyration radius of the clusters) or the average number of sites per cluster S.
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2.3. Percolation

(a) p = 0.45 (b) p = 0.55

(c) p ≡ pc = 0.59 (d) p = 0.65

Figure 2.6: Simulation of the percolation of a 2D square lattice (150x150 cells) with
increasing probability that the cells are occupied by the gray phase from the left figure to
the right figure (the largest cluster is represented in black) [39].

These quantities can be expressed as a function of p in scaling laws [38]:

ξ ∝ |p− pc|−ν (2.20)

S ∝ |p− pc|−γ (2.21)

where ν, γ > 0 are constants. Eqs. 2.20 and 2.21 show that ξ and S increase with p for
p < pc and diverge at p = pc. Note that for p > pc, the continuous percolated cluster is
not included. The surprising result is that the two exponents ν and γ do not depend
on the microscopic details of the lattice, but depend only on the dimensionality of the
problem. For example, γ is equal to 4/3 in 2D and 0.88 in 3D [1,38].
Note that the exact definition of the percolation threshold is the probability at which an
infinite cluster appears for the first time in an infinite lattice. For example, the scaling
law given in Eq. (2.21) is valid when considering an infinite lattice, but for a finite lattice
of size L it may not be the case. For L >> ξ, the quantity S does not depend on the
lattice size, while for L << ξ, it does. In order to correctly describe percolation, one
should thus choose a representative volume element (RVE) whose dimensions are larger
than ξ. However, at the percolation threshold, no RVE can be found as the correlation
length become infinite. This is one of the limitations of average methods [1].
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For the case L << ξ, one can perform several (different) simulations for a given L. Each of
these simulations will give a slightly different value of the observed percolation threshold
pc,L. Then, the standard deviation between pc,L and the average observed percolation
threshold 〈pc,L〉 can be expressed as a scaling law [1,40]:√

〈(pc,L − 〈pc,L〉)2〉 ∝ L−1/ν (2.22)

The standard deviation thus vanishes as L increases. Furthermore, 〈pc,L〉 tends to pc as
the number of simulations increases. Therefore, in order to find an accurate value of the
percolation threshold, one can either perform a small number of simulation in a large
domain or a large number of simulations in a small domain.

In order to describe the evolution of more complex situations, continuous percolation
theories can be used. One of those is the “Swiss cheese model” [41] that considers randomly
located holes growing in a uniform transport media (see Fig. 2.7). Since it can be based
on a Voronoi tessellation of the space, this model is very close to the solidification model
of Vernède et al. [1] that will be presented in section 2.4.2, with the difference that the
holes of the first correspond to the solid grains of the second. In order to be consistent
with the other sections of the present paper, the space occupied by the circles will be
defined as the solid fraction gs.

Voronoi Tesselation

nucleation center

Figure 2.7: Swiss cheese model [41]. The black segments represent the Voronoi tesselation
of nucleation centers of the holes (in gray).

An interesting result is that continuum percolation follows the same laws as lattice
percolation. In addition, the geometrical percolation properties (such as the value of the
exponent ν appearing in Eq. (2.20)) are unchanged with respect to lattice percolation.
Provided there is no strong local correlation, the correlation length in the “Swiss cheese
model” can thus be expressed as a function of the solid fraction:

ξ ∝ |gs − gsc|−ν (2.23)

where gsc is the solid fraction at percolation.
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2.4. Hot tearing

2.4 Hot tearing

Hot tearing, or hot cracking, is a spontaneous failure of an alloy during its solidification
that generally presents the shape of a ragged branching crack (see Fig. 2.8). As observed
by Campbell [14], hot tears propagate mainly between solid grains (intergranular) and
exhibit a fairly smooth surface appearance that existed at the time of fracture (see Fig.
2.8(b)).

(a) Hot crack in the center of a
direct-chill cast Al 6060 billet [8]

(b) SEM fractography picture of a hot
tear surface lip of a crack [12]

(c) SEM view of spikes on a hot tear surface [42]

Figure 2.8: Observations of hot tearing formation at different scales.

The two main phenomena leading to hot tearing are: a lack of liquid feeding at high solid
fractions and tensile and shear strains in the mushy zone that tend to pull apart the solid
network. The strains, transmitted through the partially coherent solid in the mushy zone,
are induced by contraction of the solid in a thermal gradient, and mechanical constraints
imposed by the geometry of components. At low solid fraction (gs < 0.9), the permeability
of the mushy zone is large enough so that liquid feeding can heal possible grain boundary
openings, forming a so-called “healed hot tear”. At high solid fraction (gs > 0.95) the
grains form a continuous solid network with isolated liquid pockets possessing sufficient
mechanical resistance and the mushy material behaves like a ductile solid. However, there
is a critical zone for hot tearing (for solid fractions in the range 0.9 < gs < 0.95) in which
grain boundaries openings, due to the deformation localized in the continuous liquid films,
cannot be fed by liquid flow because of the low permeability of the mushy zone [8, 15, 18].
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The previous works related to hot tearing can be subdivided into two basic approaches:
experimental investigations and hot tearing models. These aspects will be presented in
the next sections, by always emphasizing the importance of coalescence and percolation
phenomena presented in the previous sections.

2.4.1 Experimental investigations

In order to study hot tearing, different types of experiments can be performed. One of
those is the ring mold test (see Fig. 2.9(a)), realized by Farup et al. [42], that consists in
introducing a liquid alloy in a preheated annular mould and then to cool it down from a
central pipe. In this way, important stresses develop in both tangential and longitudinal
directions, inducing hot tears.

Water flow

crack

mould

alloy

(a) Ring mold test [42]

mushy zone

Imposed load

air gap

stainless-steel mold
copper chill

(b) Tensile [43]

Imposed load

mushy zone

(c) Compression test [44]

mushy zone

Imposed load

(d) Shear test [44,45]

Figure 2.9: Schematic drawings of (a) a ring mould test as well as (b)-(d) some of the
common devices used to perform mechanical tests on mushy zones.

Another type of test consists in studying the mechanical properties of a semi-solid
alloy. This test can be either performed in tension, compression or shearing and upon
solidification or remelting conditions (in Fig. 2.9(b)-(d) a non-exhaustive list of tests is
presented). The main difficulty of these experiments is the low ductility and strength
of semi-solid alloys [46]. As shown in Fig. 2.10, the tensile tests performed by Mathier
et al. [43] on Al-Cu alloys have shown that the semi-solid material presents a sharp
increase of tensile strength for solid fractions larger than 0.95, solid fraction at which
grains coalesce, leading to percolation.
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Figure 2.10: Tensile strength of a mushy Al-1.0wt.%Cu alloy as a function of the solid
fraction performed with the apparatus shown in Fig. 2.9(b) [43].

In situ optical microscope observations of hot tearing in a transparent succinonitrile-
acetone alloy have been performed by Farup et al. [42] and Grasso et al. [47]. In these
experiments, the alloy is directionally solidified and hot tears are induced by pulling
apart, transversely to the thermal gradient, the columnar dendrites near a grain boundary.
When the dendrites are pulled at low solid fractions (gs < 0.9), the permeability of the
mushy zone is large enough so that liquid feeding can heal grain boundary openings,
forming a "healed hot tear" (see Fig. 2.11). At higher volume fraction of the solid
(typically gs > 0.95), the permeability of the mushy zone is too low to allow feeding. The
strain localized at wet grain boundaries (repulsive type) is accommodated in a first step
by drainage of the remaining liquid. When this is no longer possible, a void is nucleated

Puller

Grain 2

G
rain

1

flow

Equiaxedgrains

300µm

(a) A healed hot tear

Puller

bridge

Grain 2

Grain 1

300µm

(b) First mechanism

spikes

meniscus

Puller

300µm

Grain 2

Grain 1

(c) Second mechanism

Figure 2.11: Hot tears formation observations in succinonitrile analog made by Farup et
al. [42].
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and grows. While the grain boundary becomes cracked, it leaves the two surfaces of the
grains with a fairly smooth aspect where dendrite arms that have not yet bridged. But
some spikes have been also observed at the cracked surface (see Fig. 2.8(c)).
The first mechanism of spikes formation results from the plastic deformation and rupture
of solidified bridges due to local coalescence between the grains (see Fig. 2.11(b) and right
picture of Fig. 2.8(c)). The second mechanism is the formation of liquid menisci, between
the two grains resulting from the accumulation of the remaining liquid, that are pulled
apart and eventually brake-up at the same time they solidify (see Fig. 2.11(c) and left
picture of Fig. 2.8(c)). Hot tear surfaces scanning electron microscope (SEM) observations
of an Al-4.5wt%Cu alloy solidified with the apparatus shown in Fig. 2.9(a) revealed
the presence of a few spikes at the surface of an otherwise smooth landscape showing
secondary dendrite arms (see Fig. 2.8(c)). From observations of a large number of spikes,
it seems that the second mechanism is prominent, thus indicating that intergranular
coalescence is often not fully reached and that thin liquid films can persist at repulsive
grain boundaries even at a last-stage solidification [42,47].
From such observations, it appears that a better prediction of hot tearing as well as of
the mechanical behavior of the mushy zone, requires to account for the mechanisms of
coalescence and percolation.

More recently, Terzi et al. [48] performed in situ X-ray tomography observations during
tensile deformation of semi-solid specimens at the European Synchrotron Radiation
Facility (ESRF) in Grenoble. The Al-8wt.%Cu cylindrical sample of 8mm length and
2mm diameter was locally notched to reduce the diameter to 1.5mm in order to localize
the deformations in the observation region. The specimen was initially heated at 0.5◦C/s
up to 555◦C (induction coil heating) and then held at this temperature. After three
minutes, the upper part of the sample was pulled at a velocity of 0.1µm/s with a tensile
testing machine, specifically designed to fit in the beamline. As shown in Fig. 2.12, the
deformation of the sample induces liquid flow towards the deformed region while the
grains deform and rearrange. When drainage of the liquid from the surrounding zones can

(a) t0 (b) t0 + 4.95min (c) t0 + 14.85min

Figure 2.12: Sequence of 3D images of the notched region of an Al-8.0wt.%Cu sample
in a tensile test performed at 10−4s−1 strain rate by Terzi et al. [48]. The blue regions
correspond to the voids.
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(a) t0 (b) t0 + 4.5min (c) t0 + 18min

Figure 2.13: Sequence of 2D longitudinal section obtained the 3D tomography stacks
shown in Fig. 2.12 [48].

no longer compensate for the local strain, voids grow inward from the external surface
within the widest liquid channels.

2.4.2 Hot tearing models

We will now introduce some of the models that were developed in the past for hot tearing
(a more exhaustive review may be found in [46]). The most simple models assume that the
hot cracking sensitivity (HCS) index of an alloy is proportional to its freezing range (for
equilibrium or non-equilibrium conditions depending on the Fourier number) [14]. Since
hot tearing occurs in a specific range of solid fractions in the last stages of solidification
when liquid films remain at grain boundary and feeding is difficult, Clyne and Davies [49]
proposed a simple criterion. This criterion is based on the time spent in this vulnerable
state of the mushy zone, normalized by the time during which stress in the mushy zone
can be relaxed. Considering the lack of liquid feeding, Feurer et al. [50] developed a model
for hot tearing predictions. However, this model cannot take into account the effect of the
deviatoric strains acting on the mushy zone. More advanced studies led to the so-called
Rappaz-Drezet-Gremaud (RDG) criterion [15] which considers the two phase nature of
the mushy zone: such criterion takes into account both the pressure drop in the liquid
and the strain rate applied to the mushy zone perpendicularly to the thermal gradient.
This simple two-phase RDG criterion led other researchers, in particular M’Hamdi et
al. [51] and Mathier et al. [9,52], to develop average approaches which specifically consider
in a general formalism the two-phase nature of the mushy zone. In such models, the
microscopic quantities are averaged over a representative volume element (RVE), which
must be smaller than the size of the entire system but larger than the microstructural
features (such as the grain size). One of the main limitations of average models is their
inability to account for the localization of deformation (and feeding) in the liquid films
that persist at grain boundaries, and thus they cannot accurately predict the appearance
of hot tears.

In order to account for the inhomogeneity of mushy zones and try to describe its mechanical
behavior, “granular models” have been proposed. Early granular models considered a
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regular hexagonal arrangement of grains [53]. The main drawback of such arrangements
is that the solid structure does not become interconnected until gs = 1, solid fraction at
which all the solid grains suddenly percolate.

(a) (b)

(c) (d)

Figure 2.14: Simulations of solidification with a granular model in 2D (the solid fraction
increases from left to right). The liquid phase is represented in red, while the grains
with the same gray level belong to the same cluster ((d) represents a fully percolated
network) [17].

A more realistic model, based on the prior work of Mathier et al. [36], was developed by
Vernède et al. [17,40,54] and considers a 2D arrangement of polygonal equiaxed grains
derived from a Voronoi tessellation associated with randomly distributed nucleation
centers. The model computes the solidification in each polygon taking into account solute
backdiffusion and coalescence. Then, the fluid flow in the network of liquid channels,
caused by solidification shrinkage and grain movement, is computed assuming a Poiseuille
flow, while the grains are considered to be perfectly rigid bodies. The solidification
model was further improved by smoothing the shape of polygonal grains based on the
Gibbs-Thomson effect as represented in Fig. 2.14. This leads to predictions that are close
to phase-field models results [11].

The fact that the granular model of Vernède et al. assumes a 2D configuration introduces
some inaccuracies. First, the fluid flow in a network of liquid channels as well as the
semi-solid deformation are intrinsically 3D problems. Second, as explained in section
2.3, 3D geometry allows to have both continuous solid and liquid networks at the same
time, while in 2D only one phase can be percolated through the domain at a given time.
Furthermore, deformation of the solid grains should be part of the model. Recently,
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Figure 2.15: Detailed description of the 3D granular solidification model of Sistaninia et
al. [18, 19,55]: (a) calculation domain made of polyhedral grains, (b) a polyhedral grain,
(c) a pentahedral volume element of a grain, (d) a single tetrahedral element in which
both the solid portion (gray) and liquid portion (light blue) are represented.

Sistaninia et al. [18, 19, 55] extended the granular model of Vernède et al. to 3D and
removed the assumption of rigid grains.
This 3D model consists of four modules: a solidification model based on the work of
Phillon et al. [3] (schematized in Fig. 2.15), a fluid flow model consisting of an extension
of the 2D model developed by Vernède [19], a semi-solid deformation model based on a
combined Finite Element/Discrete Element Method [18], and the coupling of the fluid
flow and the semi-solid deformation models. Please note that the 3D solidification module
considers the smoothing of the shape of the grains, but only with an analytical correction
of the solute flux similar to the work done by Vernède et al. [17, 40,54]. The smoothing
operation is much more complex in 3D than in 2D in particular because the grains are
slightly curved along the edges (cylindrical type of curvature) and highly curved near the
corners (spherical type of curvature). The 3D granular solidification model has thus to
be improved by comparison with more refined methods such as phase-field.

(a) (b) (c)

Figure 2.16: Simulation performed by Sistaninia et al.of the in situ experiment performed
by Terzi et al. [48] (see Fig. 2.12). Remaining liquid in white, grains are gray and cracks
are black.
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Figure 2.17: Stress as function of displacement (black curve) in a tensile test simulated
by the 3D granular model of Sistaninia et al. [2] shown in Fig. 2.16. The pressure in the
liquid, p`, as well as the cavitation pressure, pc`,max, are also plotted (blue curves).

As shown in Fig. 2.16, the experiment performed by Terzi et al. [48] (see section 2.4.1)
was simulated with the 3D granular model. Fig. 2.17 shows the simulated behaviour
of the semi-solid material subjected to a tensile strain (the same as in the experiment).
The stress increases with increased displacement (and thus increased strain) and reaches
a maximum value, σfail, after bout 70µm displacement before overall failure occurs.
In the same graph. the liquid pressure is shown to decrease while the imposed stress
increases. The dashed curve corresponds to the capillary pressure, pc`,max, associated with
the air-liquid meniscus in the largest channel connected to the ambient air. As can be
seen, crack initiation occurs when these two curves cross, prior to attaining the value
σfail. However, only when σfail is reached, the crack propagation is sufficient to relax
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Figure 2.18: Tesnsile strength as a function of the solid fraction curve simulated by the 3D
granular model of Sistaninia et al. [2] and comparison with experimental results [9,43,56].
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2.5. Thermal conditions for globular-equiaxed grain

the pressure drop.

Several simulations of tensile tests were performed by Sistaninia et al. on cubic domains
containing approximately 1000 grains at different solid fractions. The tensile strength,
σfail, was then plotted as a function of the solid fraction and compared with experimental
results of Ludwig et al. [56] and Mathier et al. [9,43] (see Fig. 2.18). Except for the result
of Mathier et al. [43], for which the compliance of the test device (Fig. 2.9(b)) might play
a role, all the curves are well superimposed and exhibit a sharp increase of σfail at a solid
fraction of approximately 0.95.

As a general conclusion, simulation of hot tearing and of the deformation behavior of the
mushy zone is not an easy task, since it involves interdependent phenomena occurring
at very different length scales, as shown in Fig. 2.8. It appears that granular models
are required to account for the intergranular nature of hot tearing and for localization of
strains and feeding at grain boundaries.

2.5 Thermal conditions for globular-equiaxed grain

The hot tearing model of Vernède et al. [17, 40, 54] and Sistaninia et al. [18, 19, 55], as
well as the present percolation study focus on globular-equiaxed grains. The present
section describes the conditions under which such microstructures are obtained under
fixed thermal gradient and cooling rate (Bridgman conditions). The first aspect that has
to be considered is the columnar-to-equiaxed transition (or CET). The second aspect is
linked to the fact that the growth of a spherical particle in a undercooled melt is unstable
with respect to morphological perturbations thus leading to equiaxed dendrites.

Note that the physical values used in this section are summarized in Tab. 2.1. In addition,
in this section, we assume that we know a priori the final grain size dg0 and thus the
nucleation site density ng, but, as will be seen in section 2.6, it can depend on the cooling
conditions, namely the cooling rate, and inoculation conditions. We recall the following
relationship between the nucleation site density and the grain radius/diameter:

ng
4

3
πR3

g0 = ng
π

6
d3
g0 = 1 (2.24)

Table 2.1: Summary of the physical values used for the calculation. Lf is the latent heat
of fusion and cp the specific heat per unit volume.

Parameter/constant value
D` 3.0 10−9m/s
Γs` 1.0 10−7Km
Lf 1.0 109J/m3

cp 2.4 106J/(m3 K)
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2.5.1 Columnar-to-equiaxed transition

It is well known that equiaxed grains can be obtained under isothermal conditions, but
it is also possible to obtain them in a thermal gradient, provided in general the alloy
is inoculated (see section 2.6). The CET can be described with the help of Hunt’s
criterion [57]. Please note that another criterion derived by Rappaz et al. [58], describing
the shape of equiaxed eutectics grains growing in a thermal gradient, is also able to
predict the CET.
Hunt’s criterion is based on the fact that, ahead of a columnar front, an undercooled
melt is present in which equiaxed grains can nucleate and grow. When the fraction of
equiaxed grains in front of the columnar front is sufficient to block the advance of the
columnar front, the CET occurs.
The velocity of the isotherms vT , assumed to be equal to the velocity of the columnar
front, can be related to the dendrite tip undercooling, ∆Tcol, by the simple law (parabolic
dendrite tip):

vT =
A′

c0
∆T 2

col (2.25)

where A′ is a constant and c0 is the nominal composition of the alloy [57]. The growth
velocity of the envelope of the equiaxed grains, vg, is given by that of the dendrite tips
and assumed to follow the same law:

vg(∆T ) =
A′

c0
∆T 2 (2.26)

where ∆T is the local undercooling. In addition, it is assumed that the grains nucleate at
a fixed undercooling ∆Tn, with a density ng and that they do not move (as will be seen
in section 2.7 this is not always the case).
The radius of an equiaxed grain, Rg, can thus be expressed as:

Rg(tn, tcol) =

∫ tcol

tn

vg(t)dt =
A′

c0(GvT )

∫ ∆Tcol

∆Tn

∆T 2d(∆T )

=
A′

3 c0(GvT )

(
∆T 3

col −∆T 3
n

)
(2.27)

where tn is the time at which grains nucleate, tcol the time at which the columnar front
arrives, and G is the thermal gradient.
The extended volume fraction of grains, gge, is defined as the volume that would be
occupied by the grains if there were no impingement between each other. At the position
of the columnar front, it can be expressed as gge = ng4/3πR

3
g(tn, tcol). The link between

gge and the volume fraction of grains with consideration of their impingement is given by:
gg = 1− exp(−gge).
As assumed by Hunt, a fully equiaxed microstructure is considered to occur when
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2.5. Thermal conditions for globular-equiaxed grain

gge > 0.66 and thus when:

G >

(
4πng

0.66 · 81

)1/3 A′

c0vT

(( c0

A′
vT

)3/2
−∆T 3

n

)
(2.28)

while a columnar microstructure is expected when gge < 0.0066 and thus when:

G <

(
4πng

0.0066 · 81

)1/3 A′

c0vT

(( c0

A′
vT

)3/2
−∆T 3

n

)
(2.29)

Hunt’s criterion (taking into account Eq. (2.28) and Eq. (2.29)) is shown in Fig. 2.19 for
an Al-4.5wt.%Cu: it shows that an equiaxed microstructure is favoured by a low G and
high vT .
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Figure 2.19: Graphical map of the CET in terms of vT as a function of G for an Al-
4.5wt.%Cu alloy with ng = 3.0 · 1010m−3, ∆Tn = 0.5K and A′ = 3 · 10−6ms−1K−2 (green:
equiaxed, red: columnar). The other parameters are given in Tab. 2.1.

2.5.2 Globular-to-dendritic transition

The globular-to-dendritic transition (abbreviated GDT) is a consequence of the fact
that the spherical growth of a grain in an undercooled melt is unstable with respect to
morphological perturbations. According to the analysis of Mullins and Sekerka [59], a
spherical grain becomes unstable when its radius exceeds a critical value given by [8]:(

(m+ 1) (m+ 2)

2
+ 1

)
Rc (2.30)

where Rc = 2Γs`/∆TR is the critical radius of nucleation and m is the disturbance mode.
For a FCC crystal structure, such as Al, the 4-fold symmetry instability is given by m = 4:
the grain becomes unstable when Rg is larger than 16Rc.
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By assuming that the solute layer around the spherical grain is much smaller than
the final grain size and that it can be approximated as being piece-wise linear (Zener
approximation), one can obtain the critical final grain radius Rg0,c characteristic of the
GTD transition as a function of the principal solidification parameters:

Rg0,c =

(
−96

D`Γs`
k0∆T0

Lf
cp

1

Ṫ

) 1
3

(2.31)

where Lf is the latent heat of fusion and cp the specific heat per unit volume. A globular
microstructure will be obtained if Rg0 < Rg0,c, otherwise a dendritic microstructure is
expected. Alternatively, one can express Eq. (2.31) in terms of a critical cooling rate:

|Ṫc| = 96
D`Γs`
k0∆T0

Lf
cp

4

3
πng (2.32)

Since |Ṫ | = |GvT |, the GDT is represented by a line with a negative slope in the log-log
map of vT as a function of G in Fig. 2.20. As shown in Fig. 2.20, grains with a fixed
density ng remain globular if |Ṫ | < |Ṫc|.
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Ṫc

Figure 2.20: Graphical map of the GDT in terms of vT as a function of G for an Al-
4.5wt.%Cu alloy with ng = 3.0 · 1010m−3 (green: globular, red: dendritic). The other
parameters are given in Tab. 2.1.

2.5.3 Globular-equiaxed conditions

The two criteria for the CET and GDT can be combined in a unique graph (Fig. 2.21),
which reveals that globular-equiaxed grains form for low G and intermediate vT .

In order to optimize the choice of G and vT , one can plot the maximum admissible
gradient (points in orange in Fig. 2.22) for different values of ng that still result in a
globular-equiaxed microstructure. For example, for a thermal gradient of G = 10K/cm,
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Figure 2.21: Graphical map of the grain structure formation in terms of vT as a function
of G for an Al-4.5wt.%Cu alloy with ng = 3.0 · 1010m−3, ∆Tn = 0.5K and A′ =
3 · 10−6ms−1K−2. The other parameters are given in Tab. 2.1. Globular-equiaxed grains
form in the green region.

the optimal speed of the isotherms for an Al-4.5wt.%Cu alloy is on the order of 3mm/min.
One can also evaluate the conditions under which a globular-equiaxed microstructure is
obtained for different alloy nominal compositions c0 (see Fig. 2.23). The interesting result
is that the the maximum admissible gradient leading to a globular-equiaxed microstructure
does not vary with the nominal composition.
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Figure 2.22: Graphical representation of the (G, vT ) conditions under which globular-
equiaxed grains form for an Al-4.5wt.%Cu alloy, with different values of the grain density
ng (values given in [m−3]).
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Figure 2.23: Graphical representation of the (G, vT ) conditions under which
globular-equiaxed grains form for for Al-Cu alloys of various composition c0, with
ng = 3.0 · 1010 m−3.

This analysis is clearly limited by the assumptions used in the calculations of the CET
and GDT. However, they give a first indication of the order of magnitude of the thermal
gradient and velocity of the isotherms that lead to the desired microstructure.

2.6 Nucleation and grain refinement

In this section we will see how solid grains nucleate from the liquid (in most cases with
the help of foreign particles) and how it is possible to decrease the final grain size of the
microstructure by grain refining (or inoculating) the alloy.

2.6.1 Homogeneous nucleation

When the temperature of a pure material falls under its melting point, Tm, the material is
expected to solidify since there is a driving force due to the difference between the Gibbs
free energies of the solid and liquid phases. For small undercoolings, ∆T = Tm − T , the
driving force can be approximated as ∆Sf∆T . However, from an energetic point of view,
there is also a price to pay for the formation of the solid/liquid interface, corresponding to
the interfacial energy, γs`. By assuming that the solid cluster that forms in the liquid has
the shape of a sphere of radius R, the difference in Gibbs free energy between a system
containing a cluster and a fully liquid system is:

∆G = −∆Sf∆T
4

3
πR3 + γs`4πR

2 (2.33)
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One can then find the critical radius, Rc, at which the solid cluster radius begin to be
stable, since an increase of dR would lead to a decrease of d(∆G):

Rc =
2Γs`
∆Tn

(2.34)

where ∆Tn is the nucleation undercooling. The homogeneous nucleation barrier, ∆Ghomon ,
defined as ∆G for a critical radius, is then:

∆Ghomon = ∆G(Rc) =
16π

3

γ3
s`

(∆Sf∆T )2
(2.35)

2.6.2 Heterogeneous nucleation

Homogeneous nucleation is very rare in practice, since there are very often heterogeneous
nucleation sites in the melt that can lower the nucleation barrier and significantly lower
the nucleation undercooling, as observed by Turnbull [60].
Instead of growing as a sphere, we assume that the solid forms a spherical cap on a
foreign substrate, as represented in Fig. 2.24. γfs and γf` are the foreign/solid and
foreign/liquid interfacial energies respectively. These quantities are linked with γs` by
the Young-Laplace’s equation:

γf` = γfs + γs` cos θ (2.36)

By doing the same analysis than in section 2.6.1, one can find that the critical radius
remains unchanged with respect to homogeneous nucleation. However, the energy barrier
of heterogeneous nucleation, ∆Gheteron , is smaller than ∆Ghomon by a factor f(θ):

∆Gheteron = ∆Ghomon f(θ) with f(θ) =
(2 + cos θ)(1− cos θ)2

4
6 1 (2.37)
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Figure 2.24: Nucleation of a spherical cap on a substrate.
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2.6.3 Athermal nucleation and grain refinement

Heterogeneous nucleation can explain that in practice the nucleation undercoolings are
much smaller than predicted by homogeneous nucleation. However, a more detailed
analysis can show that, based on thermally activated processes, both models predict that
the final grain density is independent of the cooling conditions, while in reality it is well
known that the grain density strongly increases with the cooling rate. Therefore, it is
better to treat heterogeneous nucleation as an athermal process in which the grain density
depends on undercooling, but not on time. This is referred to as athermal nucleation,
since it does not consider the thermal activation of atoms over an energy barrier.
When γf` > γfs + γs`, there is no value of θ that satisfies Young-Laplace’s equation
(see Eq. (2.36)) and it is always favourable for the system to have a solid layer that
separates the foreign substrate from the liquid, even at negative undercoolings. It is
possible to show that the thickness of the solid increases until ∆T = 0 where the thickness
is undetermined but would in fact be limited by growth [8]. If the substrate has a limited
size, by decreasing the temperature, the solid becomes more and more curved in order to
accommodate the curvature undercooling (see Eq. (2.16)). As shown in Fig. 2.24(a), this
happens until its radius of curvature, R, is half the diameter of the disk, df (assuming
that the substrate has a circular disk shape). Beyond that point, grain growth leads to a

df/2

(s)

(f)

(`)

R = df/2

Al islands

[0
0
0
1
] T

iB
2

Al3Ti

25nm
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Figure 2.25: (a) Nucleation of a spherical cap on a foreign substrate. (b) Electron
micrograph of Al3Ti layer grown epitaxially on a TiB2 particle over which small Al island
nucleated [61].
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decrease of the curvature of the grain. The critical undercooling is thus given by [62]:

∆Tn =
2Γs`
df
2

=
4Γs`
df

(2.38)

Unlike homogeneous and standard heterogeneous nucleation theories, growth of the grain
in this case is only determined by the temperature and the geometry of the substrate,
and thus nucleation is not a thermally activated process.

Such a nucleation mechanism was evidenced by Greer et al. [64] in the solidification of Al
alloys inoculated by TiB2 particles. These authors showed that Al does not form directly
on the surface of the TiB2 particles: initially, a thin layer of Al3Ti first grows epitaxially
from the basal plane of the TiB2 particles. After that, many islands of Al form on this
layer and merge as they grow. This explains why an excess of Ti is necessary to correctly
inoculate the alloy, since an AlTi3 layer has to form first around the TiB2 particles (see
Fig. 2.24(b)). In industry, it is common to add between 1kg/ton and 10kg/ton of a
master alloy (Al-5wt%Ti-1wt%B) in order to inoculate or grain refine the alloy [64].
An interesting result is also that only a very small portion of the size distribution of TiB2

particles acts effectively as nucleation substrates. The largest ones, possessing the lowest
athermal nucleation undercooling (see Eq. (2.38)), are the first to be activated while
smaller ones get incorporated by grain growth. In order to reach higher undercoolings and
thus activate more particles, the growth rate of the grains, and the subsequent entrapment
of other nucleation sites, should be limited as much as possible. As seen in the CET
section, growth of the grains is limited by the diffusion of solute species in the liquid. It
is recalled that the growth constant A′/c0 appearing in Eq. (2.26) is proportional to the
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Figure 2.26: (a) Size distribution of TiB2 particles (the red rectangles correspond to the
activated classes) [62]. (b) Final grain diameter as a function of the growth restriction
factor for an alloy with the addition of 2kg/ton Al-5Ti-B refiner (black points: experimental
data [63] and white points: simulated data [62])
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Figure 2.27: Grain diameter (a) as a function of the cooling rate (with 5kg/ton of refiner
addition) and (b) as a function of the amount of refiner (for a cooling rate of −3.5K/s).
Black points represent experimental data and white points simulated ones [62].

diffusion coefficient D`, and inversely proportional to the growth restriction factor, Q,
defined as:

Q = m`(1− k0)c0 (2.39)

Therefore, in order to obtain a smaller grain size, it is important to increase the growth
restriction factor.
Other important conditions, for grain refinement, are the cooling rate and the amount of
refiner. As shown in Fig. 2.27, a small grain size is favoured by a high cooling rate and
a large amount of refiner. These effects however reach a saturation level: the addition
of refiner over 4kg/ton does not significantly affect the final grain size for the given
conditions, namely cooling rate.

2.7 Macrosegregation

Macrosegregation is defined as an inhomogeneous solute distribution at the scale of the
sample (or at the scale of the product in an industrial context). These macrosegregations
are due to two combined elements: microsegregations caused by the rejection of chemical
species due to the different solubility between the solid and the liquid phases and the
relative movement of both phases on large length scales [68]. As explained by Appolaire
et al. [68], while most of the studies considered the influence of liquid movement in
relation to solutal and thermal buoyancy, the relative movement of equiaxed crystal is
also important.

As shown in Fig. 2.28, Ganesan et al. [67] calculated the evolution of the solid and liquid
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Figure 2.28: Density of the solid and liquid phases during solidification of Al-Cu alloys as
a function of the liquid concentration, c` [67]. The dotted line corresponds to the solid
density at equilibrium (complete mixing). The vertical dotted line corresponds to the
nominal composition (around 10wt%Cu) for which the first solid that solidifies possesses
the same density as the liquid.

densities as a function of the composition of the liquid. The density of the liquid was
calculated from references [65] and [66] respectively, while the solid density was found
as a function of c` with the Scheil-Gulliver equation (see Eq. (2.6)), with the reference
density given by [69]. This is represented in Fig. 2.28, in which the continuous lines
correspond to the density of the liquid respectively the solid possessing different nominal
compositions. The dotted line corresponds to composition in the solid at equilibrium
(and thus the composition of the first solid nucleus).
The vertical dotted line in Fig. 2.28 corresponds to the nominal composition (around
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10wt%Cu) for which the first solid that solidifies possesses the same density as the liquid.
For higher nominal composition alloys, the grains will always tend to float (ρs < ρ`),
while for lower nominal compositions the grain will initially tend to sediment (ρs > ρ`),
but floating can then be induced by the advance of solidification and the consequent
increase of liquid Cu compositions.
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3 Experimental methods

3.1 Materials

In this work, aluminum-copper (Al-Cu) alloys were used for several reasons. The first,
and main reason, is that it is important to have a good knowledge of the last-stage
solidification of Al-Cu alloys, since they are sensitive to hot tearing. Second, these
alloys were already extensively studied in the literature and the fact that their physical
properties are well known (used as model system) can help in using accurate physical
values either to interpret the experimental data or to compare the experimental results
with the simulated ones. The third reason is that Al-Cu alloys yield an excellent contrast
in X-Ray tomography. All these reasons establish AlCu alloys as excellent candidates for
the purpose of this work.

Various Al-Cu alloys were used in this work (see Tab. 3.1). All the alloys were produced
from a base Al-4.5wt.%Cu alloy, the copper content being adjusted by the addition of high
purity copper shots (AlfaAesar R© 99.999% purity) or pure aluminium (99.99% purity).
As mentioned in section 2.6.3, it is usual to add a master alloy, at typical levels of 0.1wt%
to 1.0wt%, to the liquid alloy before casting in order to grain refine it. In this work, we
inoculated the alloy by the addition of 0.4wt% and 2.0wt% of a master AlTi5B alloy

Table 3.1: Compositions of the alloys used in this study.

No. Copper content [wt%] Master alloy content [wt%]

1 1.5

0.42 3.0
3 4.5
4 6.0
5 1.5

2.06 3.0
7 4.5
8 6.0
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(containing 5wt%Ti and 1wt%B, i.e., TiB2 particles with an excess titanium), in order to
study the grain refining effect of alloys containing different amounts of refiner. 2.0wt% of
inoculant can appear as a high value, but, as shown in section 2.6.3 and in particular
in Fig. 2.27, the inoculation strongly depends on the cooling rates, especially in our
case where it is about -0.05◦C/s. Note that during casting, the master alloy was added
to the liquid AlCu alloy just before pouring it in the mould in order to avoid a loss of
efficiency of the inoculant. The alloys were cast in a brass mold (25x25x250mm3) and
then machined and turned to rods of two different diameters, 3.6mm and 1.1mm, for
Bridgman experiments.

3.2 Quenched Bridgman furnace

The Bridgman furnace is generally used for crystal growth or for oriented solidification.
Such a furnace typically consists of two temperature zones, a hot and a cold zone,
establishing a temperature gradient in the sample (shown schematically in Fig. 3.1(a)).
The 250mm long and 3.6mm diameter sample is fitted in an alumina crucible of 4mm
diameter and initially molten in the hot zone. It is then pulled from the hot to the cold
zone. After a given travel length, the sample is quenched (by releasing it in a water bath)
at room temperature in the semisolid state. It is then possible to access to the whole

Hot zone
700oC

Cold zone
100oCquenching bath

adibatic ring

sample

sample holder

crucible

(a) Standard furnace

Zone1
700oC

Zone2
650oC

Zone3
550oC

(b) Furnace I

Cold zone
100oC

Zone1
680oC

Zone2
600oC

Zone3
520oC

(c) Furnace II

Figure 3.1: Schematic representation of the different furnace setups. They all possess a
hot zone consisting of three sets of heating coils. The thermal gradient is either formed
by using a copper chill cooler (cold zone) or by setting different parts of the furnace at
specific temperatures.
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Figure 3.2: Picture of furnace II configuration.

solidification history in space (equivalence between the position at moment of the quench
and temperature).
In this work, we wanted to obtain the complete solidification history in space in a single
experiment and thus use the principle of the Bridgman furnace. However, the typical
gradient of 100K/cm obtained in such an apparatus is improper for obtaining the desired
globular-equiaxed microstructure: according to the calculations performed in section 2.5
and summarized in Fig. 2.21, for a Al-4.5wt%Cu alloy and a final grain size of 200µm
(corresponding to a nucleation site density of 3.0 · 1010m−3), the gradient should be, at
maximum, on the order of 20K/cm. Therefore, the standard Bridgman furnace (see Fig.
3.1(a)), was substantially modified in order to obtain a reduced gradient while keeping
its principle: by setting the appropriate temperatures for each part of the furnace (that
consists of three distinct parts and is closed at the bottom), the natural gradient that
develops in the furnace (in the order of 10-15 K/cm) was used to solidify the samples
(see Fig. 3.1(b)).

The results obtained with this furnace configuration and 250mm long / 3.6mm diameter
samples were still not fully satisfying since large macrosegregation profiles were observed
in the quenched sample. As shown in section 2.7, for compositions lower than 10wt%Cu,
the grains tend to sediment, while for compositions higher than 10wt%Cu there is an
opposite effect. With this sample and furnace configurations, it is always preferable to
have sedimentation of the grains such that the grains move in the direction of the lower
temperature in order to prevent their remelting. The sample configuration was thus
modified and consisted in smaller pellets separated by ceramic separators in order to limit
grain movement (see Fig. 3.3(b)). In addition smaller diameter samples were prepared
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in order to limit convection within each pellet (see Fig. 3.3(c)). The fact of having
separated pellets has another advantage: since the separators possess a lower thermal
conductivity and the separator/pellet interfaces add a thermal resistance, the average
conductivity of the sample is reduced. This helps achieving steady state conditions in the
furnace since each portion of the sample exchanges heat radially while axial conductivity is
substantially reduced. However, the fact of having separated samples has a disadvantage:
the pellets do not remain liquid for the same amount of time: in particular the pellets at
the top can remain liquid for longer times before reaching the liquidus temperature and
starting solidifying. It is known in industry that the inoculant tends to fade as the melt
is maintained at high temperature. In order to avoid fading of the inoculant, each pellet

Alloy pellet
5mm

5mm

Alloy

Alumina

T

(a) Sample

BN ceramic pellet

� 1.1mm� 3.6mm
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type 2
(c) Sample
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Figure 3.3: Schematic representation of the different samples used in this project. (a)
sample type 1: monolithic sample of 3.6mm diameter and 250mm length. (b) sample
type 2: 5mm height alloy pellets separated by 5mm height BN separators all of 3.6mm
diameter. (c) sample type 3: 5mm height alloy pellets separated by 5mm height alumina
separators all of 1.1mm diameter. Please note that samples type 2 and 3 consist of 13
alloy pellets and 13 separators and thus have a total length of 130mm. (d) Schematic
representation of the temperature profile inside (b) and (c): Gpel, Gsep and ∆Tint represent
the gradient in the alloy pellet, the gradient in the ceramic separator and the temperature
drop at the interface, respectively.

44



3.2. Quenched Bridgman furnace

z

zstart

zstop

z0

200

160

120

80

40

0

0 200 400 600 800

80

120

160

200

240

280

200

160

120

80

40

0

0 200 400 600 800
80

120

160

200

240

280

120

80

40

0

20

60

100

140

0 200 400 600 800

T
raveldistance

[m
m

]

z
[m

m
]

Temperature [◦C]

z
[m

m
]

T
raveldistance

[m
m

]

z

zstart

zstop
z0

200

160

120

80

40

0

0 200 400 600 800

-60

-20

20

60

100

140

Zone
Liquid

1

Zone
Mushy

2

Zone
Fully solid

3

Zone
Solid/mushy

0

Zone
Liquid

1

Zone
Mushy

2

Zone
Fully solid

3

T
liq

T
e
u
t

(a) Furnace I

(b) Furnace II

Figure 3.4: Typical temperature profiles as a function of the travel distance and the
absolute position in the furnace z (reference z0). The samples are initially positioned at
zstart and the quench is performed at zstop. For furnace I, there are three distinct zones
where the sample is respectively liquid, mushy, or fully solid. For furnace II, there is
an additional zone (zone 0) where the sample initially heats up. At the moment of the
quench, the portion of the sample that is in the mushy zone is highlighted in orange.
Ideally the sample length should cover this zone in order to have access to the whole
solidification history after the quench.
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needs to remain liquid for a short amount of time and in order to have a homogeneous
final grain size they have to remain liquid for the same amount of time. This is the reason
why furnace II was developed (Fig. 3.1): a cooler was added at the top of the furnace so
that the pellets are all initially solid and then remain liquid only for a specific (and short)
amount of time. A schematic representation of the temperature profile inside furnace I
and II is given in Fig. 3.4.

3.2.1 Solidification experiments

The alloy samples or the alloy pellets/separators are first inserted in alumina, Al2O3,
crucibles. The 3.6mm diameter samples (sample type 1 and 2) are introduced in a
4.0mm(interior)/6.0mm(exterior) diameter crucibles, while the 1.1mm diameter samples
(type 3) are introduced in a 1.4mm(interior)/1.8mm(exterior) diameter crucibles.
The furnace is preheated for 40 minutes in order to establish a steady-state thermal
gradient. After that, the sample is introduced from the top of the furnace and placed
at the starting position and heated for 50 minutes. The sample is then pulled through
the thermal gradient and finally quenched at the desired position. Please note that in
the furnace I configuration, the sample remains molten during the initial 50min heating,
while in the case of furnace II the sample only melts when the experiment effectively
starts, namely when the sample is pulled down and reaches the higher temperature zone.
The quench (at the end of the pulling process) allows to “freeze” the microstructure at a
given time.
The sample and furnace associations are the following:

• Furnace I and sample type 1

• Furnace II and sample type 2 or sample type 3

The experiments were then performed for different alloy compositions.

3.2.2 Temperature measurements

Temperature measurements were performed in order to characterize the temperature
profiles and thermal gradient in the different configurations and to assess under which
conditions it is possible to obtain globular-equiaxed grains. The alloy used in this case
is an Al-4.5wt%Cu inoculated by the addition of 2wt% of master alloy. The thermal
measurements are similar to the solidification experiments, except that the sample is not
quenched at the end.
As shown in Fig. 3.5, in order to characterize the temperature profile of furnace I, the
specimen named O was prepared as sample type . For furnace II, the specimens named A
and B (prepared as sample type 2) as well as the specimen named C (prepared as sample
type 3) were made. The specimens O, A, and B were then machined as hollow cylinders
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3.2. Quenched Bridgman furnace

(2mm internal diameter). After that, two K-type integrated standard thermocouples
(Thermocoaxr) inserted in an alumina sheath were inserted through the hole of the
hollow cylinder samples. As for the solidification experiments (see section 3.2.1), the
samples were placed in an alumina crucible. All the assembly was then sealed with a
ceramic paste in order to prevent the movement of the sheath in the crucible. In contrast,
because of the reduced diameter of specimen C, it was not possible in this case to insert
the thermocouples inside the sample. Therefore, the specimen C was prepared exactly
as for the solidification experiments (see section 3.2.1), the two K-type thermocouples
being directly fixed outside the sample crucible with a ceramic paste. The thermocouples
were connected to a NetDAQ data acquisition system, in order to record the temperature
evolutions.

In order to assess whether the experimental conditions correspond to steady-state, the
two thermocouples of each specimen were placed at different positions as shown in table
3.2. Furthermore, in order to check the reproducibility of the experiments, two similar
but distinct specimens, A and B, were tested under the same conditions.
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Figure 3.5: Schematic representation of the three specimens that were chosen for the
thermal measurement experiments.
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Table 3.2: Position of the thermocouples (distance from the bottom of the crucible) for
each specimen. Please note that specimens A and B are exactly the same, the only
difference being the position of the thermocouples.

Specimen Sample type Furnace Themocouple 1
distance [mm]

Themocouple 1
distance [mm]

O 1 I 40.0 70.0
A 2 II 7.5 47.5
B 2 II 27.5 67.5
C 3 II 7.5 47.5

3.2.3 Thermal simulation

With the specimens instrumented with thermocouples (see section 3.2.2), it is possible to
measure the temperature evolution (and the cooling rate) at a specific position in the
sample. If the sample was only laterally heated with no influence of the conductivity of
the sample, it would be possible to calculate the thermal gradient, G, by knowing the
pulling speed of the sample, vpull (assumed to be equal to the velocity of the isotherms,
vT , under steady-state conditions) as well as the absolute cooling rate |Ṫ |, since they are
linked by the following relationship:

|Ṫ | = G vT (3.1)

However, the axial conductivity can play a significant role and affect the profile in the
sample. In the case of a monolithic alloy sample (sample type 1), the axial conductivity
tends to lower the thermal gradient inside the sample. For samples made of alloy pellets
and separators (sample type 2 and 3), a temperature discontinuity can occur at each
interface and the temperature gradient inside the pellets can be significantly smaller than
within the separators, as explained in appendix A.1. For sample type 2 and 3, since the
gradient curve is not continuous, Eq. (3.1) is applicable only if the average gradient over
a RVE (shown in appendix A.1) is considered and not the local gradient.

Figure 3.6 shows the typical mesh used for the thermal simulation of the type 2 sample
and of the crucible. A regular rectangular meshing is performed inside the alloy pellets
and the ceramic separators, while a free mesh is used for the crucible. The calculation
of the temperature field, T (r, z′, t) (where r and z′ are the spatial coordinates and t the
time), is performed in cylindrical coordinates using the software CalcoSoftr [70]. Please
note that the z′ axis is fixed to the sample (unlike z which is fixed to the furnace, as
shown in Fig. 3.4) and the calculation is performed in a Lagrangian reference frame. The
temperature profile imposed by the furnace, Text, is dependent on z′ and time.
For the exterior boundary conditions, one should account for both convection and radiation
exchange. For simplicity, both terms are included in a single, and constant, heat transfer
coefficient, hext.
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Figure 3.6: Schematic representation of the thermal simulation. (a) Meshing of the sample
(in this case: alloy pellets alternated with separators). (b) Schematic temperature profile
of the furnace Text(z′, t): the profile is shown at two different times.

The external temperature imposed by the furnace is given by the following expression:

Text(z, t) = Tbottom +Gextz
′ + Ṫextt = Tbottom +Gext(z

′ + vpullt) (3.2)

where Tbottom = Text(z
′ = 0, t), Gext the thermal gradient of the furnace (assumed to be

constant), and vpull the pulling velocity of the sample in the furnace. By performing several
calculations and comparing them with experimental measurements, Gext was adjusted in
order to have a cooling rate close to the liquidus temperature in good agreement with
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experiments.
On the other boundaries, a no-flux condition is applied:

∂T

∂n
= 0 (3.3)

where ∂T
∂n is the derivative along the normal (and outside pointing), n, of the surface.

This condition applies in particular at the center for symmetry reasons.
At the interfaces between different materials (between the alloy pellets, ceramic separators
and crucible), a heat balance is performed:(

κ−
∂T−
∂n

)
=

(
κ+

∂T+

∂n

)
= −hint(T− − T+) (3.4)

where κ−, T−, κ+ and T+ are the conductivities and the temperatures of the material on
the left, respectively right side, hint being the heat transfer coefficient of the interface
and n points from the left (−) to the right (+).

The boundary and interface conditions can be summarized as follows:

Border 1 No-flux condition:

∂T

∂n
= 0 (3.5)

Border 2 Heat exchange with the furnace:

κ
∂T

∂n
= −hext(T − Text) (3.6)

with Text(z, t) = Tbottom +Gext(z
′ + vpullt)

Border 3 Interface heat exchange:(
κ−

∂T−
∂n

)
−
(
κ+

∂T+

∂n

)
= −hint(T− − T+) (3.7)

As initial condition, the temperature in the sample is supposed to be equal to the external
imposed temperature T (r, z, t = 0) = Text(z, t = 0).

All the parameters used for the calculation are summarized in Table 3.3. Please note that
CalcoSoftr uses an enthalpic method in order to take into account latent heat release
during solidification [70].
The heat transfer coefficients are summarized in Tab. 3.4. Please note that the separator-
crucible coefficient is set to a lower value compared to that of the alloy-separator and
alloy-crucible since there is an air gap between the separator and the crucible, while the
alloy has a good thermal contact (especially when it is liquid) with the other parts.
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Table 3.3: Physical values of the materials used for the calculation. cp is the volumetric
specific heat, κ the thermal conductivity, and Lf the volumetric latent heat of fusion.
The values are taken from the CalcoSoftr database.

Material Physical parameter Value Unity

Al-4.5wt.%Cu

cp 3.3 106 J/(m3 K)
κ (liquid) 100 W/(mK)
κ (solid) 185 W/(mK)
Lf 9.58 108 J/(m3)

Alumina cp 3.18 106 J/(m3 K)
κ 9.0 W/(mK)

BN cp 3.06 106 J/(m3 K)
κ 30.0 W/(mK)

Table 3.4: Heat transfer coefficients.

Interface hext [W/(m2K)]

external 60
Interface hint [W/(m2K)]

alloy-separator 2000
alloy-crucible 2000

separator-crucible 500

3.2.4 Simulation of grain sizes

In order to simulate the final grain sizes obtained in the modified sample setup (see
samples 2 and 3 in Fig. 3.3) a Lagrangian 1D model proposed by Appolaire et al. [68, 71]
was used. This model can simulate the nucleation and growth in multicomponent alloys
and takes into account the globular-to-dendritic transition (see section 2.5.2). Please note
that this model can also account for the grain movement. However, this feature was not
used since this model was mainly used to simulate the effect of solute, inoculation content
and heat transfer coefficients in the furnace II and sample 2 and 3 setup, where we assume
that convection is limited to the scale of each single pellet and thus no macrosegregation
is observable at the scale of the full sample, which is composed by several pellets.

Various simulations were performed with the model of Appolaire et al. [71] by considering
a cylindrical pellet of 5mm of height. Two pellet diameters (sample type 2 and 3) were
considered. In the furnace II setup, a heat transfer of hext = 60W/(m2K) between the
exterior of the crucible and the furnace was considered. Please note that the model of
Appolaire et al. [71] requires the heat transfer coefficient at the surface of the alloy pellet.
This value was found by taking into account the thermal conductivity of the alumina
crucible as well as geometry factors (such as the exterior and interior diameters of the
crucible).
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Another simulation was performed in order to predict the grain size in the case of the in
situ X-ray tomography experiment (see section 3.3.3). In this experiment, the temperature
is directly imposed in order to follow a predefined cooling ramp. This situation corresponds
to a large heat transfer coefficient. Therefore, the simulation of this case was performed
by using a heat transfer coefficient of hext = 10′000W/(m2K).

Because of the large addition of master alloy (aluminum matrix containing 5wt% of
titanium and 1wt% of boron) the titanium addition has to be taken into account. The
master alloy contains TiB2 particles and an excess of titanium. By assuming that all
the boron is in the TiB2 particles, the master alloy contains 2.21wt% of Ti in the TiB2

particles and 2.79wt% of excess titanium (corresponding to the 5wt% of titanium minus
the 2.21wt% of Ti in the TiB2 particles). For the alloy containing 2.0wt% of master
alloy, it corresponds to 2.0wt%×2.79wt%=0.056wt% of excess titanium. For the alloy
containing 0.4wt% of master alloy, the excess titanium is 0.011wt%. Even if relatively
small, these quantities are not negligible since the presence of titanium influences the
growth restriction factor Q. In addition, titanium forms a peritectic reaction with Al-rich
alloys and possesses a large liquidus slope of 25.6◦̊ C/wt%Ti (compared to the liquidus
slope of -3.4◦̊ C/wt%Cu in hypoeutectic AlCu alloys) and thus affects liquidus temperature
of the alloy. Please note that, in the model, the TiB2 particle distribution of Greer et al.
(shown in Fig. 2.26(a)) is considered.

3.3 Observation techniques

In order to characterize the grain shape and size, two main techniques have been used
in this work: chemical etching followed by optical microscopy or scanning electron
microscopy (SEM). Note that in order to find the grain orientation and grain sizes,
electron back-scattered diffraction (EBSD) was performed in a SEM. In order to observe
the microstructure in 3D and follow the evolution of the percolation state and interface
curvature along the solidification history, ex situ X-ray tomography experiments were
performed post-mortem on the quenched samples. Similar experiments were also performed
in situ in order to directly observe the evolution of the grain structure in 4D (3D evolution
as a function of time). This was done using a laser-heated furnace directly mounted on
the X-ray tomography beamline at the Paul Scherrer Institute (PSI) [72].

3.3.1 Sample preparation

In order to observe the microstructure of the AlCu samples by optical or electronic
microscopy, their surface had first to be mechanically polished. The samples were first
embedded in a conductometr resin and then polished with SiC paper of increasing grades
(sequence of FEPA standard grit sizes: P500, P1200, P2400 and P4000), i.e., decreasing
particle sizes. This was followed by a mirror polish using diamond particles sprayed on
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a DP-Nap felt from Struersr installed on a polishing plate (decreasing particle sizes of
6µm, 1µm and 0.25µm). Because of the relative lack of hardness of the AlCu alloys,
some polishing particles can get incorporated at the surface of the sample during these
operations. The samples had to be washed with ethanol and then put in an ultrasound
ethanol bath for 60 s between each polishing step in order to eliminate them.

For the optical microscopy observations, the surface was etched in a Keller solution [73],
consisting of 5mL HF, 7.5mL HNO3, 2.5mL HCl and 475mL distilled water, for 15 seconds
to reveal the microstructure. For the EBSD analysis, vibrating polishing was performed
for 3 hours on a soft cloth with a Struersr silica colloidal solution, in order to remove
the hardened layer that forms at the surface during the previous polishing stages.

Preliminary optical imaging investigations were performed with a Reichert-Jung MeF3 A
optical microscope, using the software Fijir for further analysis. A median filter was first
applied in order to reduce the noise and the picture was then binarized. The solid fraction
was then calculated by the ratio between the pixels belonging to the solid divided by the
total amount of pixels (assuming the area fraction to be equal to the volume fraction).

3.3.2 Scanning electron microscopy

Electron backscattered diffraction (EBSD)

The crystallographic orientation of grains can be determined with EBSD. Backscattered
electrons of the incident beam, after interaction with the crystalline solid grains of
the specimen, are diffused in all the directions. In the proximity of the surface, the
backscattered electrons form a divergent source of electrons. The interaction of these
electrons with the crystal lattice can be diffracted by atomic layers, according to Bragg’s
equation 2dhkl sin(θ) = nλ, where dhkl is the interplanar distance of (hkl) planes, θ the
angle between the diffracted and the incident beam, n the order of the diffraction and λ the
wavelength of the incident beam. Each crystallographic plane leads to a pair of large angle
cones. The impingement of these diffracting cones on a phosphorous detector generate
characteristic pseudo-Kikuchi bands, producing an electron backscattered diffraction
pattern. The width of the Kikuchi lines is inversely proportional to the distance separating
the planes, while their centers correspond to the projection of the diffracting plane and
their intersection define the zone axis. With all this information, it is possible to access
to the crystal orientation (as well as indexing different phases). A map can then be
constructed by identifying the orientation of the grains associated to a specific region.

EBSD maps were done with a NordlysS II EBSD detector mounted on a Philips XL-F30
SEM at the Interdisciplinary Centre for Electron Microscopy (CIME) at EPFL. The
samples were tilted at 70◦ with respect to the direction of the incident beam in order to
maximize the intensity.
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Energy dispersive X-ray spectrometry (EDX)

Chemical analysis of the specimens was performed with the Energy Dispersive X-ray
Spectroscopy (EDX) technique. This technique is based on the detection of X-rays
emitted by the sample subjected to an electron beam. The electrons of the beam can eject
electrons from inner shells of the atoms and X-rays are emitted when another electron of
the outer shells fills the vacancy. The X-ray energy spectrum being characteristic of each
element under the beam, the intensity of the lines allows to perform a chemical analysis.
Please note that this technique is in fact only semi-quantitative. However, it allows to
characterize relative composition changes.

A Philips XL-F30 SEM was used for EDX analyses. The chemical analyses were performed
at different positions in the sample in order to find the occurrence of macrosegregations in
the quenched sample, in particular for the monolithic sample of type 1 (see Fig. 3.3(a)).

3.3.3 X-ray tomography

Basic principles

X-ray tomography is a non-destructive technique that allows to observe the microstructure
in 3D. As explained hereafter, it can either be performed ex situ on quenched microstruc-
tures, or in situ in order to observe the evolution of the microstructure in real time.
The technique is based on two basic principles: the Beer-Lambert law and the Radon
theorem [74–76]. The Beer-Lambert law relates, for a given energy of the incident rays,
the number of transmitted photons N1 for a number of incident photons N2 possessing
an energy E [77]:

N1

N2
= exp

[
−
∫
s∈ray

µ(E, s)ds

]
(3.8)

where µ is the attenuation coefficient and s ∈ ray denotes the trajectory of the rays (or
optical path) through the sample. Note that for a polychromatic beam, equation 3.8 has
to be integrated also over the energy spectrum. The attenuation coefficient µ can be
expressed as follows [77]:

µ = Kρ
Z4

E3
(3.9)

where K is a constant, ρ and Z are respectively the density and the atomic number of
the material. Since each ray follows a distinct optical path through which the integral of
µ is different, the signal captured by each pixel of the detector is potentially different
leading to a contrast.
The Radon transform then consists in the integral of a function through straight lines, in
our case the integral of the absorption coefficient µ along the optical path. Therefore,
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by using the inverse of the Radon transform of projections recorded at different angular
positions, the 3D distribution of the absorption coefficient µ can be retrieved. Since the
solid and the liquid exhibit different solute compositions (in hypoeutectic AlCu alloys,
the liquid is copper-enriched), it is possible to reconstruct the 3D microsctructure of the
sample in a non-destructive manner. Please note that, in general, an inverse contrast
picture is produced, such that the most absorbing elements appear brighter in the image,
in a way similar to backscattered electon microscopic images. The best results, in terms
of spatial resolution and signal-to-noise ratio, can be obtained with synchrotron radiation.

The X-ray tomography experiments were performed at the TOMCAT (TOmographic
Microscopy and Coherent rAdiology experimenTs) at the Swiss Light Source (SLS) of
the Paul-Scherrer Institute in Villigen (Switzerland). The X-rays that are transmitted
through a rotating cylindrical sample hit a 25µm thick LuAG:Ce scintillator, which
converts X-rays to visible light recorded by a 2048x2048 CCD camera. The visible light
then goes through interchangeable objective (4x, 10x or 20x). The sample is rotated
through 180◦ at a constant angular speed. The selected voxel size was 0.667µm (the
resolution being on the order of 3 times the voxel size, i.e., about 2µm).

Ex situ X-ray tomography

Quenched Al-Cu samples obtained with the Bridgman furnace were observed post mortem
(or ex situ) by X-ray tomography. The samples were inserted into a BN hollow tube (of
2.0µm exterior diameter) to hold them during tomography. Note that the diameter of
the samples type 1 and 2 was previously reduced to 1.1µm in order to be inserted in the
BN tubes.
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Figure 3.7: Schematic representation of the ex situ tomography experiment.
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Figure 3.8: Schematic representation of the in situ tomography experiment. Please
note that, unlike ex situ experiments, the sample is inserted in a composite alumina-BN
crucible.

In situ X-ray tomography

As a complement, in situ X-ray tomography observations were performed. As shown in
Fig. 3.8, the experiment uses the setup as for the ex situ observations, the main difference
being the fact that solidification takes place during tomography observations.
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Figure 3.9: (a) Technical drawing of the laser furnace mounted on the X-ray tomography
beamline. (b) Top view picture showing the laser furnace (after [72]).
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3.3. Observation techniques

Heating and remelting of the sample is provided in this case by a laser-heating furnace,
developed by Fife et al. [72]. As shown in Fig. 3.9, two near-infrared diode lasers of 150W
power output each, operating at a wavelength of 980nm, allow to heat the sample in the
range 400-1700◦C. The temperature is controlled by the measurement of a pyrometer,
while temperature calibration can be made by observing in situ melting of the specimen.
The alloy samples used for this experiment had a diameter of 1.1mm. They are not
directly inserted in the BN holder. As emphasized in the top view of Fig. 3.8, the alloy
sample is inserted in an alumina crucible, which itself is fitted inside the BN holder. This
composite alumina-BN crucible was developed because the inner alumina crucible provides
good wetting conditions and prevent the sample from exhibiting a broken meniscus, while
the BN (outer holder) has a higher emissivity and thus allows a better control of the
sample temperature and heating. As for the ex situ experiment, the exterior diameter of
the BN holder is 2.0mm.

As shown in Fig. 3.10, the temperature cycle consisted in a fast heating ramp followed by
a “plateau” at a constant temperature of 700◦C in order to completely melt the sample
and then followed by a slow cooling ramp, with the desired cooling rate Ṫ . Two different
cooling rates of -0.05◦C/s and -0.1◦C/s were used. When the temperature falls below the
liquidus temperature, Tliq, the tomography scan are started and taken at regular intervals.
When the temperature falls below the eutectic temperature, Teut, the lasers are turned
off, resulting in a fast quench of the sample.

Tliq

Teut

Thold

Ṫ
Ṫin

T

t

Figure 3.10: Temperature cycle followed in in situ experiments.

In fact, Bridgman furnace II setup (described in Fig. 3.4), tried to replicate the tempera-
ture cycle done in the in situ experiment.
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Image reconstruction

For the image reconstruction, the stack of images were first cropped to the desired
size. After the application of a median filter in order to reduce the noise, the images
of the stack were segmented with the software Fijir. With the software Avizor, it
was then possible to visualize the microstructures in 3D and to extract the solid/liquid
interface surface and deduce its curvature. The solid-liquid interface was smoothed with
the application of a gaussian smoothing algorithm of the binarized image stack and a
subsequent smoothing algorithm available in Avizor. Finally, it was possible to plot
the interface shape distribution (ISD) diagram (explained in section 2.1.3) as well as
the interfacial area per unit volume SV with a Matlabr code developed by Meidani et
al. [78].
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4 Bridgman furnace results

4.1 Introduction

As explained in section 3.2.2, it is of crucial importance to measure the thermal gradient
of the furnace in order to determine the conditions for obtaining the desired, globular-
equiaxed, microstructure. A comparison between the cooling rates experienced in the
various furnace/sample configurations was performed in order to explain the differences
in the observed grain size. This was complemented by simulation of the temperature
profiles inside the samples (see section 3.2.3) and of the grain nucleation (see section
3.2.4). Finally, the grain structure evolution, in particular the solid fraction evolution as
a function of temperature, was characterized.

4.2 Temperature characterization

The aim of this section is to set up the appropriate temperature for each zone of the
various furnace setups that yield a constant thermal gradient and that allows to have the
solidification interval within the sample at the moment of the quench.

4.2.1 Furnace I - sample type 1

Several temperature characterization tests were necessary to determine the appropriate
settings. The final selected setup is summarized in Table 4.1.

Table 4.1: Appropriate temperature setting for each zone of the furnace I.

Zone 1 [◦C] Zone 2 [◦C] Zone 3 [◦C]

700 650 550

Figure 4.1 shows the temperature profile and the temperature gradient G measured by
two thermocouples in specimen O. The thermal gradient is lower than 20◦C/cm, over the
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Chapter 4. Bridgman furnace results

whole history of the sample. Therefore, as shown by Fig. 2.21, it is possible to obtain
a globular-equiaxed microstructure provided that the pulling speed is in the order of
2-3mm/min.
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Figure 4.1: (a) Temperature curves and thermal gradients, G, of sample type 1 in furnace
I measured by two thermocouples, vpull = 2mm/min. (b) Detail of the thermocouple
positions, with colors corresponding to the measured curves in (a).
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Figure 4.2: Same temperature curves of Fig. 4.1, showing the molten region. The red
dotted line corresponds to the curve of thermocouple O2 shifted by 3cm (i.e., the distance
separating the two thermocouples).
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4.2. Temperature characterization

If steady-state conditions were achieved in the furnace, the curve of thermocouple O2
shifted by the distance separating the two thermocouples (dotted red curve in Fig. 4.2)
would coincide with the curve of thermocouple O1 (blue curve in Fig. 4.2). One can
clearly see that this is not the case, indicating that, in this configuration, steady-state
conditions are not achieved. As mentioned in section 3.2.3, the conductivity of the sample
plays an important role: the sample is not simply laterally heated by the furnace but
longitudinal conduction acts as well.
Another aspect is that different parts of the sample do not share the same thermal history:
as emphasized in Fig. 4.2, the part of the sample that is further away from the bottom
of the sample (for example thermocouple O2 with respect to O1), remains liquid for a
longer time. This can affect the efficiency of the inoculant as a function of the height of
the specimen.

4.2.2 Furnace II - sample type 2

The main problem with the furnace and sample configuration presented in the previous
section was the difficulty of achieving steady-state conditions. Sample type 2 (consisting
of several alloy pellets alternated with ceramic separators) was engineered to address this
issue as well as to limit macrosegregation (shown in section 4.4). In addition, furnace
II (similar to furnace I but with the addition of a copper cooler at the top as shown in
Fig. 3.1(c)) was developed. With this configuration, each alloy pellet remains liquid for a
short and comparable amount of time. Furthermore, the mushy zone length should be
reasonable to reduce the quantity of pellets necessary to cover the solidification history.
Several thermal measurements tests (summarized in Table 4.2) were performed by fine-
tuning the temperature settings for each zone of the furnace, in order ensure the appro-
priate temperature profile over the whole solidification domain.

Table 4.2: Test of the temperature settings for furnace II and sample type 2.

Test Zone 1-2-3
[◦C]

Molten time
[min]

Mushy zone length
[mm]

G
[◦C/cm]

σG
[◦C/cm]

1 750-650-550 48 96 14.6 1.6
2 700-625-550 38 84 11.8 1.7
3 680-600-550 26 104 10.1 1.4
4 680-580-550 22 104 9.5 2.5
5 680-600-520 26 88 11.7 0.8

The settings of test No 5 were chosen because they provide a short melting time and the
lowest gradient standard deviation σG. In addition, they provide a reasonable mushy
zone length (that can be covered by the 130mm long sample) and average gradient, G.
Figure 4.3 shows the temperature and gradient curves for sample 2 in furnace II. Unlike
sample 1 in furnace I, the gradient remains constant over the cooling part of the curve.
In addition, the time during which the pellets are molten is similar for each of them (as

61



Chapter 4. Bridgman furnace results

shown in Fig. 4.4).

In order to have a systematic approach and also the test the reproducibility of the
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Figure 4.3: (a) Temperature curves and thermal gradients, G, of sample 2 in furnace
II measured by two thermocouples, vpull = 2mm/min. (b) Detail of the thermocouple
positions, with colors corresponding to those of the curves in (a).
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experiment, the temperature curves were measured with two different specimens, A and
B. As shown in Fig. 4.5(c), once shifted, all the temperature curves, measured with
thermocouples placed at different positions within the sample, are well superimposed,
especially in the cooling region. The time during which the pellets are molten is similar
for all of them (about 26min). Only thermocouple B1 exhibits a slightly different heating
curve. This can be explained by the fact that B1 is in the proximity of the bottom of
the sample and thus, when the sample enters in the hot part of the furnace, there is
an initial transient. However, this effect is not seen for the other thermocouples, and
this suggests that steady-state conditions are nearly achieved with furnace II and sample
type 2. The experiment is also reproducible, since the curves were obtained from two
distinct specimens. When compared to furnace I and sample type 1, furnace II and
sample type 2 allow to obtain a lower average gradient (11.7◦C/cm instead of 17.0◦C/cm)
with less variations. In addition, with furnace II and sample type 2, it was possible to
obtain steady-state conditions, which was unfortunately not possible with the previous
configuration.

4.2.3 Furnace II - sample type 3

The aim of this section is to compare the two different sizes of sample (3.6mm diameter
for type 2 and 1.1mm for type 3) both used in furnace II. The temperatures measured in
specimen C (Fig. 3.5(d)) were compared with those of specimen B (Fig. 3.5(c)), with the
same thermocouples positions. The temperature of the furnace zones remained unchanged
(see Table 4.2, No 5 settings) and the main results are summarized in Table 4.3.

Table 4.3: Main results for furnace II and sample type 3.

Molten time [min] G [◦C/cm] σG [◦C/cm]

35 10.4 1.1

The temperature curves and thermal gradients measured in specimen C (reduced diameter
of 1.1mm) are shown in Fig. 4.6. Compared to the experiment performed with larger
diameter, the time during which the sample remains molten is significantly larger (35min
instead of 26min), while the average thermal gradient is smaller (10.4◦C/cm instead of
11.7◦C/cm). Also, as shown in Fig. 4.7, steady-state conditions are achieved, since the two
cooling curves shifted by the distance separating the two thermocouples are superimposed
(red dotted and blue curves). However, the data collected with specimen C are less
reliable than those previously measured for samples A and B since the thermocouples
were outside of the crucible and no longer at the center of the sample.

The comparison of the temperature curves and gradients of sample type 3 and type 2
is shown in Fig. 4.8. During the cooling part of the curves for temperatures between
675◦C and 600◦C, the temperature curves of the sample possessing different diameters
are well superimposed, while they deviate outside of this range. The fact that the peak
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Figure 4.6: (a) Temperature curves and thermal gradients, G, measured for sample type
3 in furnace II, vpull = 2mm/min. (b) Detail of the thermocouple positions, whith colors
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Figure 4.7: Same temperature curves of Fig. 4.6, showing the molten region. The red
dotted line corresponds to the curve measured by thermocouple C2 shifted by 4cm, the
distance separating the two thermocouples.

temperature is higher for the smaller diameter sample could be explained by the fact
that the efficiency of the water-cooled copper chill installed at the top of the furnace
is decreased, since there is larger distance separating the sample and the cooler. The
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Figure 4.8: Temperature curve of sample type 3 (solid lines) and sample type 2 (dotted
lines) in furnace II measured by two thermocouples in each sample (C1 and C2 respectively
B1 and B2), vpull = 2mm/min.

other reason, as explained before, can be the higher sensitivity of the specimen C to the
external temperature imposed by the furnace, due to the positioning of the thermocouples
outside of the crucible.

4.2.4 Measured cooling rates and comparison

The thermal exchanges between a specimen and Bridgman furnace are complex, as
explained in [79, 80]. It is thus not surprising that the cooling rate of the specimen is
affected by the latent heat release during solidification of the alloy. This can result in a
significant change of cooling rate, defined hereafter as “thermal arrest”. By comparing
the cooling rates observed in different samples configuration, it is then possible to explain
the differences in grain size observed in section 4.5.
Figure 4.9 shows the absolute value of the cooling rate, |Ṫ |, as a function of time for
sample type 1-furnace I and sample type 2-furnace 2. In order to compare them, the
time axis has been adjusted for each curve in such a way that the liquidus temperature
is reached at around the same time (200s). It can clearly be observed that sample type
1 (thermocouples O1 and O2) experiences virtually no thermal arrest, while in sample
type 2 (thermocouples A1, A2, B1 and B2) it is much more pronounced. In addition,
the measured cooling rate curves of sample type 2 show two subsequent thermal arrests.
These are delayed by approximately 400 s or 13.3mm when converted in a distance with
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4.3. Thermal simulation

the pulling velocity of 2mm/min. This distance is on the same order of the distance
separating the centers of the pellets. This indicates that the thermocouples can “feel”,
not only the thermal arrest of the pellet in which they are inserted, but also that of the
neighbouring upper pellet.
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Figure 4.9: Absolute cooling rate as a function of time near the liquidus temperature.
All the curves are shifted in order to superpose them and the thermocouple reaches the
liquidus temperature at approximately 200s.

4.3 Thermal simulation

With the thermal simulations performed with CALCOSOFTr [70], it is possible to access
to the temperature profile within the whole sample, including for example the ceramic
separators. In addition, it is then possible to obtain the cooling curves at specific locations
in the sample and compare them with the experimental results.

4.3.1 Observed thermal arrests and comparison with experiments

In order to compare the results with the experiments, the external thermal gradient
of the furnace in the simulation, Gext, is set accordingly to the measured cooling rate
experienced by the sample above the liquidus temperature. A good agreement with the
experiments was found for Gext set to 15.5◦C/cm for furnace I (associated to sample type
1) and 13.5◦C/cm for furnace II (associated with sample type 2). One can also observe
in Figs. 4.10 and 4.11 that the general behaviour of the simulated curves is in good
agreement with the experiments for both specimen types. The only noticeable difference
is the fact that the second thermal arrest in Fig. 4.11 (due to the solidification of a
neighbouring pellet) is less pronounced in the simulations.
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Figure 4.10: Simulated and measured absolute cooling rate as a function of time near the
liquidus temperature for sampe type 1 in furnace I.
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Figure 4.11: Simulated and measured absolute cooling rate as a function of time near the
liquidus temperature for sample type 2 in furnace II.

4.3.2 Furnace I - sample type 1

The simulated temperature profile at the center of the sample type 1 is shown in Fig.
4.12 at different times. The dotted line represents the imposed thermal gradient of the
furnace set to 15.5◦C/cm. It is clearly visible that the profile within the sample deviates
from the imposed curve, due to the thermal conductivity of the sample. The thermal
conductivity tends to lower the gradient inside the sample compared to the imposed one:
the longitudinal thermal gradient at the center of the sample is on the order of 10.5◦C/cm
(measured on the simulated curve at 4000s between from 40mm and 200mm from the
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bottom) compared to the imposed value of 15.5◦C/cm. This corresponds to a relative
decrease of 32% of the thermal gradient.
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Figure 4.12: Temperature profiles for sample type 1 in furnace I with an imposed external
thermal gradient, Gimp =15.5◦C/cm (dotted line), at four different instants.

4.3.3 Furnace II and sample type 2

In Fig. 4.13, the simulated profile at the center of sample type 2 in furnace II for different
times is shown. As shown in more details in Fig. 4.14, the temperature profile exhibits
jumps at each interface between the alloy and the separator. As expected, the gradient
in the alloy, due to its higher thermal conductivity, is smaller compared to the ceramic.
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Figure 4.13: Temperature profiles for sample type 2 in furnace II with an imposed external
thermal gradient, Gimp =13.5◦C/cm (dotted line), at four different instants.
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Like in the simulation of sample type 1 in furnace I, it can be observed that the thermal
conductivity tends to lower the average gradient in the center of the sample as compared
with the imposed temperature profile: inside the sample the gradient is on the order of
12.5◦C/cm (measured on the simulated curve at 3000s in the region 20mm to 130mm
from the bottom) while the imposed value is 13.5◦C/cm. This corresponds to a small
decrease of 7% of the thermal gradient, compared to the 32% decrease of sample type 1
(section 4.3.2).
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Figure 4.14: Detailed zoom of Fig. 4.13 showing the temperature profile at t =3000s. In
addition, a schematic drawing of the sample is shown.

The average gradient measured at the center of the sample cannot be predicted by an
analytical calculation. However, once the final average gradient in the center of the
sample is known, with a simple heat conservation equation (see Appendix A.1), it is
possible to know how the gradient and temperature jumps are distributed. In the portion
of the sample shown in Fig. 4.14, the average gradient, G, is equal to 13.5◦C/cm, i.e.,
the same value as the gradient imposed by the furnace. It is then possible to find the
temperature drop at the interface ∆Tint as well as the thermal gradient in the pellet and
in the separator, noted as Gpel and Gsep, respectively. All these values are summarized

Table 4.4: Comparison of a thermal simulation result and the respective analytical
calculation (based on the expressions found in Appendix A.1) for sample type 2 and an
average thermal gradient of 13.5◦C/cm.

∆Tint [◦C] Gpel [◦C/cm] Gcer [◦C/cm]

Simulation 5.43 0.57 3.87
Analytical 5.65 0.63 3.77
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in Table 4.4 and compared with the analytical calculation developed in Appendix A.1.
The analytical calculation results are in good agreement with the simulation ones.

4.4 Grain movement and associated macrosegregation

In this section, we present the macrosegregation profiles measured by EDX in sample
type 1 solidified in furnace I. As explained in section 2.7, the grains tend to sediment in
Al-Cu alloys containing less than 10wt%Cu (leading to a negative macrosegregation at
the bottom of the sample), while they tend to float for compositions larger than 10wt%Cu
(leading to a positive macrosegregation at the bottom of the sample).
In Fig. 4.15 is shown the composition profile of an Al-9.0wt.%Cu sample. Even if the
alloy composition is lower than 10wt%, the sample exhibits a positive macrosegregation
at its bottom. This can be explained by the fact that the sample is initially kept in the
liquid state for 40min. During this amount of time, the copper can redistribute towards
the bottom of the sample, where the composition can locally exceed 10wt%. The first
solid grains that solidify at the bottom of the sample will have the tendency to float and
remelt since they then attain temperatures that are potentially higher than the liquidus.
In addition, please note that, as shown in Fig. 2.28, even if the first solid that nucleates
possesses a slightly larger density than the liquid (and thus initially tends to sediment),
at more advanced solidification stage, this relation is inverted and thus grain flotation is
induced.
Because of the floating and remelting of grains, the bottom of the sample consists in
fact of eutectic only (confirmed by the fact that the composition is on the order of the
eutectic composition at 33wt%Cu).
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Figure 4.15: Mean Cu composition of the sample type 1 (furnace I) as a function of
the position from the bottom. The nominal composition of the sample is 9wt% and the
sample was inoculated with 2.0wt% AlTi5B master alloy.
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The composition profile of an Al-4.5wt.%Cu alloy is shown in Fig. 4.16. For this sample
there is no evidence of significant macrosegregation. The small positive macrosegregation
that can be observed at the bottom is due to the fact that, as explain before, the sample
is initially kept in the molten state for 40min. From 25mm from the bottom upwards the
composition is slightly lower than the nominal composition: because of the sedimentation
of grains (that contain less copper than the liquid phase), the bottom of the sample is
impoverished in copper.
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Figure 4.16: Mean Cu composition of sample type 1 (furnace I) as a function of the
position from the bottom. The nominal composition of the sample is 4.5wt% and the
sample was inoculated with 2.0wt% AlTi5B master alloy.

As a conclusion a slight sedimentation is always preferred (observed in practice for Cu
content on the order of 6wt% or lower) in order to avoid having grain remelting as well
as a strong positive macrosegregation at the bottom of the sample.

4.5 Grain size and misorientation distributions

In this section, the final grain sizes of the different sample types and alloy materials are
measured by EBSD analysis in longitudinal sections. This was performed in order to
benchmark the effects of solute content, inoculant addition and sample type. The results
are also compared with EBSD measurements performed on sample solidified in situ. The
distribution of misorientation angles was measured and compared to theoretical data in
order to assess whether the structure is fully equiaxed.

4.5.1 Misorientation distributions

Figure 4.17 shows the misorientation distribution of the grain boundaries measured in a
sample type 3 obtained in furnace II. These experimental distributions can be compared
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Figure 4.17: Misorientation angle distribution for an Al-4.5wt.%Cu (with 2wt% of
inoculant) sample type 2 obtained in furnace II. The black solid line corresponds to a
fully random distribution, given by the Mackenzie plot [81].

with the so-called Mackenzie plot [81], consisting in the misorientation distribution of
randomly oriented grains of cubic symmetry. The experimental distributions follow fairly
well the random distribution, thus indicating that the structure is fully equiaxed and
that there is no particular texture in the sample. All the other samples exhibit a similar
distribution and do not show a strong deviation from the Mackenzie plot.

4.5.2 Grain size

The various final grain sizes, were observed for different copper compositions, inoculant
additions, and solidification conditions, as shown in Fig. 4.18. The results are summarized
in Table 4.5. The tests are numbered from 1 to 5, the reference being noted “R”.

Table 4.5: Final average grain size, d2D
g0 (the 2D superscript indicates that the grain size

results from a surface cut measurement), measured by EBSD as a function of composition,
sample type and furnace, with respect to the reference test noted “R”. Please note that
the in situ sample was also analyzed for comparison.

Test Alloy inoculant [wt.%] Sample Furnace d2D
g0 [µm]

R Al-4.5wt.%Cu 2.0 3 II 249
1 Al-6.0wt.%Cu 2.0 3 II 288
2 Al-3.0wt.%Cu 2.0 3 II 229
3 Al-4.5wt.%Cu 0.4 3 II 423
4 Al-4.5wt.%Cu 2.0 2 II 211
5 Al-4.5wt.%Cu 2.0 In situ 150
6 Al-4.5wt.%Cu 2.0 1 I 109
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Figure 4.18: (a) EBSD image and (b) grain size distribution of various samples (the
average grain sizes are represented by a gray dotted line, the reference being in red).
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4.5. Grain size and misorientation distributions

The following tendencies have been observed:

Composition The final grain size slightly increases with increasing nominal composition.
However, the variation is small and it can be stated that the alloy composition has
virtually no effect on the final grain size.

Inoculant content The inoculant content however has a strong influence on the final
grain size: the grain size is almost divided by a factor two when the inoculant content
is increased from 0.4wt% to 2.0wt%. The ratio of the grain sizes between test 3 and
the reference test R is 423µm/249µm = 1.7. This ratio scales exactly as the cubic
root of the inverse of the ratio of the inoculant content: 3

√
2.0wt.%/0.4wt.% = 1.7.

This indicates that, for this conditions (namely low cooling rates), the nucleation
site density increases with the inoculant content, i.e., the inoculant has not reach a
saturation level.

Sample diameter The diameter of the sample has virtually no effect on the final grain
size.

In situ In the in situ experiment the cooling rate is fixed and imposed by the laser-heated
furnace. Therefore, there is virtually no thermal arrest. This allows to activate
more nucleation sites (i.e. nucleation particles that require higher undercoolings)
and results in a finer final grain size.

Monolithic sample The finest grain size of all the experiments is observed in sample
type 1 solidified in furnace I. Since the larger diameter sample was used for this
experiment, it is more accurate to compare it with test 4, similar to the reference
experiment but with the larger diameter. The comparison of test 6 with test 4
shows that the grain size obtained in sample type 1 is significantly lower by a factor
2. This can be explained by the fact that the thermal arrest that takes place during
solidification is much less pronounced in sample type 1, compared to the samples in
which the alloys are separated where it prevents further activation of the inoculant
particles. However, the explanation is more complex, since in test 6 the grain is
even finer than for the in situ experiment, which should result in the finest grain
size by taking into account thermal aspects only. The more plausible explanation
is that the sedimentation that takes place in the monolithic sample yields a finer
grain size.

4.5.3 Simulation with nucleation model

In this section, the results of the grain sizes simulations performed with the model
proposed by Appolaire [68, 71] are presented. The simulation results are compared with
the EBSD analysis (shown in Table 4.5). Please note that, in the EBSD analysis, the
observed grain size, d2D

g0 , corresponds to the diameter of the circle that fits the surface
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Chapter 4. Bridgman furnace results

(number of pixels) associated to each grain. On the other hand, the grain size obtained
with the simulations corresponds to the diameter of an equivalent sphere, dg0. In order
to perform a comparison between the simulations and the experiments, it is needed to
convert the diameter to a common measure.
The average observed grain radius in a 2D cut, R2D

g0 , can be linked with the radius of an
equivalent sphere, Rg0:

π
[
R2D
g0

]2
=

1

Rg0

∫ Rg0

0
π(R2

g0 − z2)dz =
2π

3
R2
g0 (4.1)

Therefore, the following relationship can be found:

dg0 =

√
3

2
d2D
g0 (4.2)

The simulated values and the converted experimental ones are summarized in Table 4.6.

Table 4.6: Final average grain size, dg0, measured by EBSD (surface measurement
converted into an equivalent 3D grain size) and by the model proposed by Appolaire et
al. [68, 71].

Test Alloy inoculant
[wt.%]

Sample Furnace EBSD dg0
[µm]

Simulation
dg0 [µm]

R Al-4.5wt.%Cu 2.0 3 II 305 383
1 Al-6.0wt.%Cu 2.0 3 II 353 378
2 Al-3.0wt.%Cu 2.0 3 II 280 385
3 Al-4.5wt.%Cu 0.4 3 II 518 446
4 Al-4.5wt.%Cu 2.0 2 II 258 393
5 Al-4.5wt.%Cu 2.0 In situ 184 203

The same tendencies are observed for the EBSD measurements and the simulated results
when the inoculant content is changed (test 3 versus R) and for the comparison between
the in situ experiment and the solidification with sample type 3 and Furnace II configu-
ration (test 5 versus R). However, stronger variations are observed between the EBSD
measurements of the various cases. Please note that the ratio of the grain sizes between
test 3 and the reference test R does not scale as the cubic root of inverse of the ratio of
the inoculant content. The simulation results thus indicate that the inoculant is closer to
achieving a saturation level, while the EBSD measurements suggested that this was not
the case.
The simulation predicts an inverse tendency for the final grain size dependence with
respect to the alloy nominal composition (decrease of dg0 for an increased nominal com-
position for the simulation and inverse tendency for the EBSD measurement as shown in
test 1 and 2 versus R) and with respect to the sample diameter (test 4 versus R). However,
the variations between the various cases are small, especially in the simulation results.
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4.5. Grain size and misorientation distributions

Test 6 was not simulated since the aim of this section was to perform calculation by
considering only thermal and solute diffusion aspects and relate them to final grain size,
without taking into account grain sedimentation/floatation.

77





5 Modeling

5.1 Multiphase-field model

5.1.1 Introduction

The phase-field method is an effective approach for describing the solidification of metallic
alloys. However, in the case of equiaxed grains, since the standard phase-field method
considers only two phases (solid and liquid), the grain boundary energy due to the
misorientation between impinging grains, and the associated coalescence undercooling,
cannot be taken into account: the last-stage solidification is thus not correctly described.
In order to account for coalescence undercooling, two approaches can be performed. The
first one is the orientational method [82–87], in which, in addition to the phase-field, an
orientation-field is introduced. The second is the multiphase-field method [88–90], in
which each solid grain is described by a different phase in order to take into account these
misorientations, even though all the grains have the same thermodynamic properties. In
the present work, since a multiphase-field code [91] was already available, the second
method has been chosen.

5.1.2 Formulation

The present model can handle the evolution of an arbitrary number N of phases. Each
phase-field varies smoothly from zero to unity with the constraint that

∑N
i=1 φi = 1

everywhere. The liquid phase is represented by the phase-field φ1, while each phase-field
φi with i ∈ [2, N ] indicates a solid grain with its own crystallographic orientation. The
phase-fields can be seen as local fractions of a specific phase, the interface between two
phases being located where the two phase fields are equal to 0.5. One can define a vector
φ of dimension N , whose components φi represent the various phase-field variables.
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First, in order to obtain an evolution equation, a free energy functional has to be defined.
The functional, based on the work of Steinbach et al. [88], has the following form:

F =

∫
Ω

∑
i,j>i

ε2ij
2
|φi∇φj − φj∇φi|2 + gmo(φ, T ) + ftr(φ1, c, T ) + Λ

[∑
i

φi − 1

] dΩ

(5.1)

where c is the solute composition, T is the actual temperature and εij is associated with
the first interfacial energy contribution. Note that Λ is a Lagrange multiplier added to the
equation in order to ensure that

∑N
i=1 φi = 1. The second interfacial energy contribution

is accounted for in the term gmo which consists in the following multiobstacle potential:

gmo(φ, T ) =
∑
i<j

Wijφiφj︸ ︷︷ ︸
gmo,1

+
∑
i<j<k

9(Wijφk +Wikφj +Wjkφi)φiφjφk︸ ︷︷ ︸
gmo,2

(5.2)

where the gmo,1 term can be related to the height of the multiobstacle potential between
two phases, while the gmo,2 term is added in order to avoid the spontaneous appearance of
“ghost” phases at the interface between two other phases. Details about the choice of the
multiobstacle gmo potential are given in section B.1.1. Please note that the gmo,2 term
can lead to negative values of the phase-field variables. This is avoided with a numerical
algorithm, similar to the one originally proposed by Cogswell et al. [92], that projects
back the phase-field values in the Gibbs simplex, defined by Σ := {φ ∈ RN |

∑N
i=1 φi =

1, φi > 0}.

φ2

φ3

φ1

φ2φ1

φ3

(a) (b)

Figure 5.1: (a) Multiobstacle potential of gmo(φ) for W12 = 1.8 and W13 = W23 = 1 and
(b) relative colormap plot in the Gibbs simplex.

The Gibbs free energy per unit volume associated with the phase transformation, ftr, is a
function of solute composition and temperature and a function of the liquid phase-field
variable φ1 only, since the bulk Gibbs free energies of the (N−1) solid phases are identical.
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φ1

φ2φ1

φ3
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Figure 5.2: (a) Ternary plot of the interpolation function p(φ1) and (b) relative colormap.

For a binary alloy it has the following form:

ftr(φ1, c, T ) = ∆Sf ∆T (φ1, c) p(φ1) (5.3)

with ∆Sf = Lf/Tm , ∆T = Tliq − T , and p(φ1) = φ3
1(6φ2

1 − 15φ1 + 10)

where ∆Sf is the volumetric entropy of fusion, ∆T the undercooling, Lf the volumetric
latent heat, Tm the melting temperature, and Tliq the liquidus temperature. Since φ1 can
be considered as a local liquid fraction, the liquidus temperature is defined as:

Tliq = Tm +m` c` = Tm +m`
c

φ1 + k0(1− φ1)
(5.4)

By taking the functional derivative with respect to an arbitrary phase-field variable φi
and considering the Ginzburg-Landau theory, one can obtain the phase equation:

1

Mij

∂φi
∂t

= − δF
δφi

=

∑
j 6=i

εij
[
φ2
j∇2φi − φiφj∇2φj − 2φi(∇φj)2 + 2φj∇φi∇φj

]
−

∑
j 6=i

Wijφj + 9
∑

j<k,j 6=i,k 6=i
φjφk (Wijφk +Wikφj + 2Wjkφi)


−

30
∑
j 6=i

∆Gijφ
2
j (1− φj)2

− Λ

(5.5)

with ∆Gij =


+∆Sf∆T if j = 1

−∆Sf∆T if i = 1

0 else

where the Mij term corresponds to a mobility coefficient of the diffuse interface between
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two phases i and j. The phase-field parameters can be linked to the interfacial energy γij ,
the interface thickness δij and the interface mobility µij with the following formula [93]:

Wij =
4

π

γij
δij

ε2ij = 2Wijδ
2
ij Mij =

µij
δij

As shown by Kim et al. [94], the dynamics of the phase field model is independent of the
choice of the multi-well/obstacle potential (in our case the multiobstacle potential gmo)
and of the interpolation function for the Gibbs free energy p, as long as the phase-field
parameters are correctly derived from physical parameters.

The phase equation is then coupled with the solute conservation equation:

∂c

∂t
= ∇ ·

[
D(φ1)

(
∇c− (1− k0)c

φ1 + k0(1− φ1)
∇φ1

)]
(5.6)

with D(φ1) = Ds +
φ1

φ1 + k0(1− φ1)
(D` −Ds)

where D` and Ds are the diffusion coefficients of solute in the liquid and solid phases,
respectively. Note that only the phase-field variable of the liquid, φ1, is considered in this
equation.

5.1.3 Implementation and optimization of the code

Eq. (5.5) and Eq. (5.6) are discretized using a finite volume method and an explicit
time-discretization scheme. A regular and orthogonal arrangement of nodes is considered.
Since the time-discretization is explicit, the time step is limited by a Fourier condition on
both Eq. (5.5) and Eq. (5.6):

Mijεij∆t

h2
mesh

<
1

2P

max (D`, Ds) ∆t

h2
mesh

<
1

2P
(5.7)

where hmesh is the mesh spacing and P the dimensionality of the problem.
One of the main limiting factors of the phase-field approach is its computational cost.
This is in general critical for 3D calculations, but in our multiphase case corresponding
to several grains the computational cost is already quite significant in 2D: in order to
correctly catch the coalescence phenomenon (see Eq. (2.19)), the interface thickness,
δs`, has to match the physical one of the order of 1nm. As a rule of thumb one should
consider a mesh size, hmesh, at least 3 times smaller than δs`. By taking a reasonable
grain size of dg0 = 100µm, this means that for a regular square mesh one should have:

dg0
1
3δs`

=
10−4m
1
310−9m

= 3 · 105 nodes (in 1D)
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This corresponds to 9 · 1010 in 2D and 2.7 · 1016 in 3D just for a single grain. Trying to
simulate the solidification of a large number of grains is thus clearly not feasible with
such parameters. Phase-field simulations are generally performed by using an interface
thickness 2 to 3 orders of magnitude greater than the physical one (with the addition of
an anti-trapping current in order to limit solute trapping induced by a large interface
thickness as proposed by Karma [95]), in order to significantly reduce the number of nodes.
However, with this approximation, the last-stage solidification would not be correctly
described. Another way of reducing the computational cost is to use an adaptative
mesh, but unfortunately the multiphase-field code running on a multiple-processors
machine that was developed in our laboratory only considers regular meshes. The high
computational cost associated with the multiphase-field technique is the main reason why
a new mesoscopic model has been developed (see section 5.2). However, the multiphase-
field model was used to validate the results of the mesoscopic model in a few simple
situations. For that purpose, it was optimized as explained in the following sections.

Optimizations for the phase equations: Parallel computations

One possible way of reducing the computational cost is to use parallel computations,
which is based on the principle that large problems can be solved by subdividing them into
smaller ones, solved simultaneously on distinct CPUs. Therefore, in a parallel calculation,
the computational domain is broken down into a certain number of smaller subdomains
and each part is calculated on a single CPU. At each time step, neighboring subdomains
(processors) communicate with each other.

Figure 5.3: Schematic representation of the subdivision of a 2D domain made of 10× 10
nodes into 4 subdomains of 7 nodes (red, green, blue and orange). The colored arrows
represent data exchange. Phantom nodes possess the same color, but shaded, as the node
they duplicate. The gray nodes are used to impose boundary conditions.

In the multiphase-field code developed at EPFL and used in the present project, the
domain is split into blocks of equal size and the phase and solute equations (Eq. (5.5)
and Eq. (5.6)) are solved on separate CPUs. At each time step, the outer layer of nodes
of a block is transmitted to the neighbouring CPUs and stored as an additional layer of
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so-called phantom nodes. Communication between the processors is done through the
Message Passing Interface (MPI) language. For the blocks positioned near a boundary
of the simulation domain, the phantom nodes that are not linked to another block
(nodes in gray in Fig. 5.3) are used to impose boundary conditions. Since they do not
correspond to any neighbour, they receive no data (except in the case of periodic boundary
conditions). The code, initially written in C++ language, was then parallelized using
the MPI library [96], allowing to perform calculations on a high performance computing
machine.

Optimization for the phase equations: Voronoi tessellation and position of
the interface

In Eq. (5.5), all the interaction terms between phases have to be calculated. For a system
of N phases this corresponds to N (N − 1) terms. One can clearly see that this would be
detrimental for the computational cost when considering a large number of grains. In
order to limit the number of interaction terms, one has to consider the topology of the
grains position. By considering that all the grains nucleate at the same time and the
temperature is homogeneous, the final grain structure is given by a Voronoi tesselation of
the domain (see Fig. 5.4(a)). For each node of a 2D mesh, only the interaction terms
between the three closest grains and the liquid phase are considered (see Fig. 5.4(b)).
Therefore, only 4×3 = 12 interaction terms will be calculated at each node independently
of the total number of grains. Note how in Fig. 5.4(b) the final triple junctions fall within
a specific zone of the third order Voronoi diagram.

(a) (b)

Figure 5.4: (a) First-order Voronoi diagram with periodic boundary conditions, represent-
ing the final grain structure. Each color corresponds to a different grain (thus to a different
phase-field) and nucleation centers are represented in black. (b) Third-order Voronoi
diagram. Each color corresponds to a different triplet of the three closest nucleation
centers (indicated by the black points). In this figure, the first order Voronoi diagram is
represented with a black line.

An additional optimization consists in evaluating Eq. (5.5) only for nodes that are, or
have a neighbour, “within” a diffuse interface (i.e., where φi =]0, 1[).
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5.2. Mesoscopic model

5.2 Mesoscopic model

5.2.1 Introduction

Despite all the optimizations explained in the previous section, the multiphase-field method
is very CPU intensive and thus does not allow considering many grains. Therefore, in the
present work, we propose a new mesoscopic model inspired from the 3D granular model
developed by Phillion et al. [55] and Sistaninia et al. [18–21]. The model is developed in
order to obtain smoother grain morphologies, thus allowing to predict more accurately
the percolation for a large population of grains.

5.2.2 Method

As for the granular model, a Voronoi tessellation is generated from randomly distributed
nucleation centers. Up to this point, the steps are identical to the granular model
developed by Phillion et al. [55]. It is just recalled that this model considers tetrahedra in
3D (triangles in 2D) formed by the nucleation centers as summits and the Voronoi facets
to calculate solidification. In the present mesoscopic model, each tetrahedron (triangle)
is subdivided into various columns (see Fig. 5.5c) and Fig. 5.5(d)). By connecting the

(`)
(s)

(a) Granular 2D

(c) Mesoscopic 2D

(b) Granular 3D

(d) Mesoscopic 3D

(`)
(s)

Voronoi facet

Voronoi facet

Figure 5.5: Schematic representation of the granular model of Phillon et al. [55]: (a) in
2D, (b) in 3D, compared to the new mesoscopic model: (c) in 2D, (d) in 3D.
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positions of the solid-liquid interface within the columns, this allows to obtain smoother
morphologies and to take into account two important phenomena for coalescence and
percolation: (i) back-diffusion in the solid perpendicular to the interface (orange arrow in
Fig. 5.5(c)) which was already considered in [55]; (ii) diffusion in the liquid parallel to
the interface (light blue arrow in Fig. 5.5(c)). Please note that the exchange of solute
between the solid parts of different columns is neglected. The various components of this
model are described in the following subsections.

Compositions at the interface and boundary conditions

The granular model of Pillion et al. [55], considers a non-uniform solute composition
in the solid and complete mixing in the liquid. In the mesoscopic model, non-uniform
compositions of solute in both the solid and liquid phases, respectively cs,i and c`,i, are
considered. Within each column, a 1D coordinate system r is defined for the position.
The position of the solid/liquid interface and of the facet in a column i are designed
by r∗i (t) and Li, respectively (see Fig. 5.6 and Fig. 5.7). As shown in Fig. 5.8, the
compositions at the Voronoi facet position, c∞`,i = c`,i(r = Li), are initiated at the nominal
composition, c0, while the compositions of the liquid at the interface, c∗`,i, are given by:

c∗`,i(T, κi) =
T − Tm + 2Γs`κi

m`
(5.8)

where Tm is the melting temperature of pure aluminum and κi the mean local curvature
of the interface in the i-th column (evaluated form a fitting circle in 2D or sphere in 3D as
explained in section 5.2.5). Then, the interfacial solid compositions are simply given by:

c∗s,i = k0c
∗
`,i (5.9)

Diffusion in the solid

Within each column i, backdiffusion in the solid is calculated radially by using a Landau
transformation of the domain r ∈ [0, r∗i (t)] into a reference domain η ∈ [0, 1], as explained
in section 2.1.2 and already done in [55]. The diffusion equation in the solid is given by:(

∂cs,i
∂t

)
η

=
Ds

r∗i
2

∂2cs,i
∂η2

+

(
ηv∗i
r∗i

+
(P − 1)Ds

ηr∗i
2

)
∂cs,i
∂η

, with η =
r

r∗i (t)
(5.10)

where v∗i is the velocity of the interface, Ds the diffusion coefficient in the solid phase
and P the dimensionality of the problem (3 for 3D and 2 for 2D). Eq. (5.10) is solved
using an implicit finite difference scheme as explained in section B.2.1.
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0 r∗i Li
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V ′`,i
V`,i

Voronoi facet
bissetrix of the triangle

Vs,i

Figure 5.6: Representation of a single 2D column and the associated volume of the solid
Vs,i and the liquid V`,i. The positions of r∗i and Li are noted on the r-axis.

V ′`,i

V`,i

Voronoi facet

r
r = r∗i

r = Li

r = 0
PC

PN

Vs,i

Figure 5.7: Representation of a single 3D column with the associated volumes of solid
Vs,i and liquid V`,i. The positions of r∗i and Li are noted.

Flow of solute between the solid and the liquid part of the columns

Since it is assumed that there is no direct solute exchange through the solid parts
of neighbouring columns, the differentiation over time of the volume integral of the
composition of the solid, gives the flow of solute pumped by the solid within one column,
Φ∗i :

Φ∗i =
d

dt

∫ r∗i (t)

0
cs,idV =

∫ r∗i (t)

0

∂cs,i
∂t

dV + c∗s,i
dr∗i
dt
S∗i (5.11)

where S∗i is the area of the surface separating the liquid and the solid parts of the column
i. The average composition in the solid can be calculated as follows:

〈cs,i〉 =
P

r∗i
P

∫ r∗i

0
cs,ir

(P−1)dr (5.12)

where P is the dimensionality of the problem. Eq. (5.12) is then integrated numerically
as explained in section B.2.2. After calculating back-diffusion and the new average
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composition, the flow of solute pumped by the solid Φ∗i at each time step is given by:

Φ∗i =
〈cs,i〉tVs,i |t −〈cs,i〉t−∆tVs,i |t−∆t

∆t
(5.13)

where ∆t is the time step and Vs,i |t and Vs,i |t−∆t are the volumes of the solid part of
column i at time t, respectively t−∆t. Please note that Vs,i is show in Fig. 5.6 and Fig.
5.7 for the 2D and 3D cases, respectively.

Composition profile in the liquid part of the columns

In the liquid part of the columns, the liquid composition, c`,i, is assumed to be a piecewise
parabolic-constant function (see red profile in Fig. 5.8):

c`,i(r) =

 c∞`,i +
(
c∗`,i − c∞`,i

)(
λi−(r−r∗i )

λi

)2

if r < r∗i + λi

c∞`,i if r > r∗i + λi

(5.14)

where λi is the diffusion layer thickness. As shown in Fig. 5.6, the r axis, aligned with
the bisectrix of the aperture angle of the triangle in 2D, is not necessarily perpendicular
to the Voronoi facet. The solute gradient in the liquid being aligned with the r-axis,
the conservation equations in the liquid are calculated in the volume V`,i, instead of V ′`,i
(see Fig. 5.6). In 3D, the centroid (or geometric center) of the Voronoi facet triangle
associated to the column is first found (noted as PC in Fig. 5.7). After that, the r-axis is
set to originate from the nucleation center (PN in Fig. 5.7) and to pass trough PC . As
for the 2D case, the conservation equations in the liquid are calculated in the volume V`,i,
instead of V ′`,i.

As shown in Fig. 5.8, the solute profile in the liquid exhibits 3 typical stages:

• Stage 1: before the diffusion layer reaches the Voronoi facet, c∞`,i is set to the nominal
composition and λi can be found by knowing 〈c`,i〉 and using Eq. (B.35) in 2D and
Eq. (B.39) in 3D.

• Stage 2: once the diffusion layer has reached the Voronoi facet, λi is equal to Li− r∗i
while c∞`,i is unknown and can be found by knowing 〈c`,i〉 and using Eq. (B.36) in
2D and Eq. (B.40) in 3D.

• Stage 3: when Eq. (B.36) or Eq. (B.40) result in c∞`,i > c∗`,i, complete mixing in the
liquid part of the column is assumed.

Note that the approximation of the solute profile in the liquid by a piecewise parabolic-
linear function does not correspond to the solution of the diffusion equation in cylindrical
or spherical coordinates. However, in all the three stages, the derivative at r = Li is zero
and it is thus consistent with the fact that there is a symmetric column on the other side
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Figure 5.8: Solute profile in the liquid at different stages. Stage 1 in red (c∞`,i = c0), stage
2 in blue (c∞`,i > c0), and stage 3 in green (complete mixing).

of the Voronoi facet imposing a no-flux condition. In fact, it is more complex since the r
axis is not necessarily normal to the Voronoi facet. In section 6.3.4, the error associated
with this approximation, i.e., taking V`,i instead of V ′`,i, is evaluated.

Flow of solute between the columns

The flow of solute exchanged between the liquid parts of two adjacent columns can be
first calculated in 2D. Let us define µ as the distance with respect to the nucleation center
along the surface separating the two columns (see Fig. 5.9). The flow of solute is evaluated
by calculating the gradient in liquid composition between the columns, perpendicularly
to the µ-axis. In 2D, the flow of solute leaving the liquid part of column i and going into
the adjacent liquid part of column j is given by:

Φj
i = −

∫ µstop

µstart

D`
c`,j(µ

′)− c`,i(µ′)
lµ′

dµ′ (5.15)
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where D` is the diffusion coefficient in the liquid, dµ′ corresponds to the lateral surface
distance parameter through which solute is exchanged and lµ′ is the distance between the
positions at which the compositions are evaluated in the adjacent columns. µstart and
µstop are defined as follows: the two positions corresponding to r∗i and r∗j are projected
onto the µ axis. The projected position that is the furthest away from the nucleation
center is set as µstart. In a similar way, µstop is defined as the position of the projection
of r∗i + λi and r∗j + λj that is the closest to the nucleation center.

r∗i

r∗j
µstop

µstart r∗i + λi

µ

r∗j + λj

c`,j(µ
′)

c`,i(µ
′)

µ′lµ′

Figure 5.9: Schematic representation of the calculation of diffusion in the liquid between
two adjacent columns in 2D. Please note that exchange of solute between the solid and
liquid parts of adjacent columns is neglected.

In 3D, the method is similar. Let us call PNKL the plane separating two adjacent
columns and PNMN the plane defined by the central lines of the columns (Fig. 5.10).
The intersection between these two planes define the µ axis. The points located on the
two central lines of the columns (dotted lines in Fig. 5.10) are projected onto the µ axis
and µstart and µstop are determined as in 2D. Since the planes PNKL and PNMN are
not necessarily perpendicular, the composition gradients have to be weighted by a factor
sin(ω), where ω is the angle between these planes. Therefore, in 3D, the flow of solute
leaving the liquid part of column i and going into the adjacent liquid part of column j is

r∗i

r∗j

c`,j(µ
′)

r∗i + λiµstop

c`,i(µ
′)

µ′

r∗j + λj
dSlat

µ

µstart

K

L

M

N

PN

lµ′

Figure 5.10: Schematic representation of the calculation of diffusion in the liquid between
two adjacent columns in 3D.
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thus given by:

Φj
i = −

∫ µstop

µstart

D`
c`,j(µ

′)− c`,i(µ′)
lµ′

sin(ω)dSlat (5.16)

where dSlat is shown in Fig. 5.10.

Change of composition of the liquid

The change of the average composition in the liquid part of a column is given by subtracting
all the flows of solute leaving it by back-diffusion, partitioning due to solidification and
diffusion with the liquid parts of the adjacent columns:

d

dt

∫ Li

r∗i

c`,i dV =

∫ Li

r∗i (t)

∂c`,i
∂t

dV − c∗`,i
dr∗i
dt
S∗i = −

Φ∗i +
∑

j=neighbour

Φj
i

 (5.17)

where Φ∗i is given in Eq. (5.13) and Φj
i in Eq. (5.16) (or Eq. (5.15) in 2D). The change

of the average composition in the liquid is evaluated by estimating the time derivative as
in Eq. (5.13):

〈c`,i〉tV`,i |t −〈c`,i〉t−∆tV`,i |t−∆t

∆t
= −

Φ∗i +
∑

j=neighbour

Φj
i

 (5.18)

where V`,i |t and V`,i |t−∆t are the volumes of the liquid parts of column i at time t,
respectively t−∆t.

Interface velocity

At each time step, the advance of the solid-liquid interface position, r∗i (t), is calculated
from the interface velocity, v∗i , given by the interfacial solute balance calculated with the
solute profiles in the solid and liquid phases:

v∗i =
1

(1− k0)c∗`,i

(
Ds

[
∂cs,i
∂r

]∗
−D`

[
∂c`,i
∂r

]∗)
(5.19)

[∂cs,i/∂r]
∗ is estimated numerically (with a 4-th order derivative as explained in section

B.2.1) and [∂c`,i/∂r]
∗ can be found analytically (as derived in B.2.3):

[
∂c`,i
∂r

]∗
=


c∗`,i−c

∞
`,i

λi
2

in stage 1

c∗`,i−c
∞
`,i

Li−r∗i
2

in stage 2
(5.20)
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Once the velocity is known, the diffusion equation in the solid can be solved in the next
time step using Eq. (5.10) and appropriate boundary conditions. When the composition
in the liquid becomes uniform in a column (i.e., when stage 3 is reached), the exact
position of the interface can be calculated from a solute balance equation:

〈ci〉
LPi
P

= 〈c`,i〉
LPi − r∗i

P

P
+ 〈cs,i〉

r∗i
P

P
(5.21)

r∗i = Li
P

√
〈ci〉 − 〈c`,i〉
〈cs,i〉 − 〈c`,i〉

(5.22)

Coalescence undercooling

Near the end of solidification, i.e., when the distance separating the solid-liquid interfaces
of two neighbouring grains becomes small, coalescence is accounted for. When this
distance becomes lower than δs` = 1 nm, the liquid layer thickness is fixed to δs` and the
composition of the liquid is assumed to be uniform and is not anymore linked to the phase
diagram with Eq. (5.8). Essentially, the liquid composition decreases by backdiffusion
of solute in the solid (perpendicularly to the interface), diffusion of solute between the
remaining liquid of adjacent columns (parallel to the interface) becoming negligible. Once
the coalescence line (located at an undercooling ∆Tb = (γgb − 2γs`)/(∆Sfδs`) below the
liquidus line, as explained in section 2.2) is reached, the two interfaces are considered to
be coalesced.

In 2D, a random orientation θ is assigned to each grain. The grain boundaries are
approximated as being pure tilt boundaries with the rotation axis parallel to 〈100〉. The

0 10 20 4030 50 60 70 9080
∆θ [o]

γ
g
b

2γs`

γmaxgb

∆θswitch ∆θswitch

(a) Grain boundary energy

0 10 20 4030 50 60 70 9080

0

∆Tmaxb

∆θ [o]

∆
T
b

∆θswitch ∆θswitch

(b) Coalescence undercooling

Figure 5.11: Grain boundary energy and coalescence undercooling for a [100] symmetric
tilt grain boundary. ∆θswitch is defined as the ∆θ at which there is a transition between
the Read-Schockley formula and the saturated value γmaxgb .
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grain boundary energy as a function of the misorientation can be approximated as shown
in Fig. 5.11(a). The misorientation ∆θswitch corresponds to the value at which the grain
boundary energy becomes maximal and equal to γmaxgb . The coalescence undercooling ∆Tb
can be then directly deduced from it. We recall that, in the case γgb < 2γs`, ∆Tb = 0.
In 3D a random orientation matrix, describing its orientation, is assigned to each grain.
The grain boundary energy is then calculated for each boundary between two Voronoi
regions with the code developed by Bulatov et al. [34], using the orientations of the two
grains and the vector perpendicular to the grain boundary plane .

Time stepping scheme

The time stepping scheme can be summarized as follows:

1. The temperature (or the cooling rate) is given and is homogeneous over the whole
domain. The interfacial compositions in the liquid and in the solid phases (c∗`,i and
c∗s,i) are given by Eq. (5.8) and Eq. (5.9), respectively.

2. All the solid nuclei are initiated at a given radius (same for all the grains) and with
an initial undercooling. The solid composition is initially homogeneous and equal
to c∗s. One can thus find the solute layer thickness in the liquid, λi, by knowing the
total volume of solid, respectively liquid, of one grain.

3. The flow of solute pumped by the solid part of the column, Φ∗i , can be found with
Eq. (5.13), while the flow of solute leaving the column,

∑
j=neighbour Φj

i , can be
estimated with Eq. (5.15) in 2D or Eq. (5.16) in 3D. Based on Eq. (5.18), one can
then find the change of average liquid composition in the column.

4. The layer thickness λi is calculated with Eq. (B.35) in 2D or Eq. (B.39) in 3D.
Once the solute layer reaches the Voronoi facet, the composition c∞`,i is increased
and calculated with Eq. (B.36) in 2D or Eq. (B.40) in 3D.

5. Finally, the actual velocity of the interface, v∗i (t), is calculated from Eq. (5.19) (or
Eq. (5.21) if the liquid composition is uniform). Once two interfaces get in close
contact, coalescence is considered. In the case of attractive boundaries, closure of
the grain boundary will be made once the remaining liquid thickness within a given
column falls below a preset value. In the case of repulsive boundaries, it is only
achieved once the coalescence line is reached.

6. The interface velocity is then used as an input in order to calculate the diffusion
in the solid with equation Eq. (5.10). The value of λi or the new value c∞`,i when
the solute layer thickness has reached the Voronoi facet is updated. After that, the
calculation of the next time step starts again from point 3.

Note that, since an explicit formulation is used, the time step used for the calculation is
limited by the Fourier criterion in the liquid.
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5.2.3 Voronoi meshing and column subdivision

The QHull software [97] is used to perform a Voronoi tessellation of space from pseudo-
randomly distributed nucleation centers (a minimum separation distance of the nuclation
centers is imposed). The pseudo-randomly positioning avoids having two initial grains for
which the solute layers might already interact at the time of nucleation, leading to an
incorrect grain growth dynamic. The 2D and 3D meshes are created in a slightly different
way, reason why they are presented in two separate sections.

2D meshing

The Voronoi tessellation of the domain is shown in Fig. 5.12(a). Each region associated
with a grain consists of a polygon (represented by a specific color in Fig. 5.12(a)) and can
be subdivided into triangles (as shown in Fig. 5.12(b)), which can be further subdivided

α0

(a)

(e)

(b)

(c)

(d)

α0

αN = qNα0

αN = qNα0

Figure 5.12: 2D meshing of the Voronoi tessellation into columns. (a) Voronoi tessellation
of the REV, (b) detail of the region associated with one grain and subdivided into triangles,
(c) detail of the subdivision of a triangle into columns, (d) region associated with one
grain and subdivided into columns, and (e) REV subdivided into triangular columns.
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into columns (as shown in Fig. 5.12(c)). Please note that, as shown in Fig. 5.12(c),
the column division is based on their opening angles, αi, which are set in a geometrical
progression of ratio q (fixed for all the triangles) in order to have finer columns near the
corners of the polygons (see Fig. 5.12(d)), i.e. where a higher curvature of the solid/liquid
interface is expected. A minimum opening angle, that α0 should exceed, is also fixed for
all the triangles. At the end, it is possible to obtain the REV subdivided into triangular
columns (see Fig. 5.12(e)).

3D meshing

The 3D Voronoi tessellation of a domain, performed with QHull [97], is shown in Fig.
5.13(a). Each region associated with a grain consists of a polyhedron (represented by a
specific color in Fig. 5.13(a)) and can be subdivided into tetrahedra (as shown in Fig.
5.13(b)). Each tetrahedron is constructed from the connection of the nucleation center
PN , the centroid of a face of the Voronoi polyhedron, U , and two vertices of the Voronoi
polyhedron, R and S, belonging to the same face as U .
It is possible to transform the face URS (shown in red in Fig. 5.13(c)), by applying
a rotation transformation with a matrix [A], and obtain the triangle U ′R′S′ (where
U ′ = [A]U , R′ = [A]R, and S′ = [A]S) in the x′ and y′ plane coordinates (shown in Fig.
5.13(d)). As for the 2D meshing, a geometrical progression is introduced in order to have
a finer mesh where a higher curvature of the solid/liquid interface is expected (shown in
Fig. 5.13(f)). First, the RS segment is divided in halfway in two parts by the point V .
After that, the mesh points at the boundary of the triangle are determined: in the vicinity
of R′ and S′ the spacings ∆r0, ∆s0 and ∆u0 are set such that they are larger than a
minimum distance ∆h. The mesh points at the boundary of the surface are positioned
with a geometrical progression such that:

∆um = q1∆um−1 = qm1 ∆u0 with m = [1, N ] (5.23)

∆rm = q2∆rm−1 = qm2 ∆r0 with m = [1, N ] (5.24)

∆sm = q2∆sm−1 = qm2 ∆s0 with m = [1, N ] (5.25)

where q1 and q2 are the ratios of the geometrical progressions. Please note that, as shown
in Fig. 5.13, there is a geometrical progressions from the points R and S towards V . Once
the points at its boundary are set, the triangle U ′R′S′ is meshed with the commercial
code modulef [98, 99].
All the nodes of the mesh can be transformed back in the original xyz coordinates with
the inverse transformation [A]−1 (an example of the inverse transformation of a mesh
point T ′ into T is shown in blue in Fig. 5.13). The tetrahedron PNURS can then be
subdivided into columns by connecting the nucleation center PN with all the mesh poins
of the face as shown in Fig. 5.12(e)). At the end, it is possible to obtain the REV
subdivided into a set of tetrahedral columns (see Fig. 5.13(g)).
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Figure 5.13: 3D meshing of the Voronoi regions into columns. (a) Voronoi tessellation of
the REV, (b) detail of the region associated with one grain subdivided into tetrahedra,
(c) detail of one tetrahedron (with the face to be meshed highlighted), (d) representation
of the meshing of one face, (e) tetrahedron subdivided into columns, (f) Voronoi region
associated with one grain and subdivided into columns, and (g) REV subdivided into
tetrahedral columns.
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Please note that, in the code, each Voronoi region associated with one grain can be treated
independently, except when it is needed to evaluate wether two columns of neighbouring
grains are coalesced. Therefore, in order to optimize the calculations, they were performed
in parallel using a shared memory parallelization (openMP API [100]).

5.2.4 Reconstruction of the solid/liquid interface

Once the position of the interface in each column is known (at each time step), it is
necessary to reconstruct a smooth surface and enmesh it. As for the Voronoi meshing
of a column subdivision shown in the previous section, the reconstruction/meshing of
the solid/liquid interface is far easier in 2D than in 3D. Hereafter, we present how this
operation is performed, in particular how coalescence is taken into account for the interface
reconstruction.

2D reconstruction

The points that represent the position r∗i inside the columns are shown in Fig. 5.14. The
points for which the two neighbours are not coalesced are coloured in red. Columns where

(a) t1 (b) t2 > t1

Figure 5.14: 2D solid/liquid interface (red line) at different stages of solidification. The
points define the positions of the interface within one column: red if no neighbours are
coalesced or green if one ore more neighbours are coalesced. The blue points correspond
to the green points orthogonally projected on the RVE external boundary.
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coalescence has occurred are not considered, while those having one or more coalesced
neighbours are coloured in green. Until no coalescence takes place, the solid/liquid
interface consists in the connection of the neighbouring points belonging to the same grain
(see Fig. 5.14(a)). However, when the grains start to coalesce, the situation becomes
more complex. Additional segments connecting the green points in Fig. 5.14 with its
symmetric counterparts are created. For green points located at the boundary of the
calculation domain, the segments connect these points to their orthogonal projections on
the boundary (blue points in Fig. 5.14).

3D reconstruction

In 3D, the reconstruction is performed in a similar way, but the meshing of the surface
(see explanation in section B.2.5) is more complex: this is due to the fact that the points
are not only linked together by segments as in 2D, but the interface mesh consists of
several polygons as shown in Fig. 5.15.

(a) t1 (b) t2 > t1

Figure 5.15: 3D Solid/liquid interface (gray surface formed by the red lines connection)
at different stages of solidification. Each point defines the position of the interface within
one column: red if no neighbours are coalesced or green if one or more neighbours are
coalesced. The blue points correspond to the green points orthogonally projected on the
RVE external boundary.
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5.2.5 Evaluation of the curvature

While the radii of curvature for the ISD plots are measured with the software Avizor,
in Eq. (5.8), only the local mean curvature of the interface κi needs to be evaluated.
This was performed by considering the position of the interface in the column as well
as the position of the interface in the neighbouring columns (2 neighbours in 2D and 3
neighbours in 3D). These points define a common circle (Fig. 5.16) or sphere (Fig. 5.17)
in 2D, respectively 3D.

(a) (b)

column 2
column 1

P2

column 3

P3

P1

Figure 5.16: (a) Square domain subdivided into columns. (b) Detail of the interface
positions in three neighbouring columns used to evaluate the curvature in column 1.

(a) (b)

column 2
column 1

P2

column 4 P3P1

column 3

P4

Figure 5.17: (a) Cubic domain subdivided into columns. (b) Detail of the interface
positions in four neighbouring columns used to evaluate the curvature in column 1.

Detailed calculations are performed in section B.2.6. In order to calculate the sign of
the curvature at point P1, the angle γ = ̂PN P1 PR is evaluated. Please note that PN is
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the position of the nucleation center, P1 the position of the interface within a specified
column, and PR the center of the fitted circle in 2D (see Eq. (B.54)) or sphere in 3D (see
Eq. (B.61)). As shown in Fig. 5.18, if γ is larger than π/2, the curvature is positive,
while it is negative in the other case.

γ

γ

P1

PN

PR

PR

P1

Figure 5.18: Schematic drawing of the calculation of the sign of the curvature at point
P1. PN is the position of the nucleation center, P1 the position of the interface within a
specified column, and PR the center of the fitted circle in 2D or sphere in 3D.
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6 Multiphase-field and mesoscopic
model validations

6.1 Introduction

The formulation of the multiphase-field model, presented in section 5.1.2, was first
validated in a simple 1D case in order to test the predicted coalescence undercoolings
obtained with this method. In addition, the behaviour of a triple junction was evaluated
in 2D. The multiphase-field code was then used to perform simple 2D grain percolation
calculations.

After that, the mesoscopic model (presented in section 5.2) was validated with the
multiphase-field predictions for simplified geometries, such as a single grain growing in a
square arrangement of grains in 2D or a cubic arrangement of grains in 3D. The sensitivity
of the model with respect to the diffusion in the liquid was also assessed, by enhancing or
suppressing the diffusion in the liquid in the direction parallel to the solid-liquid interface
(for a fixed diffusion in the solid perpendicularly to the interface). At the end, the choice
of the boundary condition at the Voronoi facet is discussed.

6.2 Multiphase-field results

6.2.1 Validation of the multiphase-field formulation

The multiphase-field model was run in a simple 1D case of two coalescing solid-liquid
interfaces. This was performed in the simplest case of a pure system, namely pure
aluminum. As shown in Fig. 6.1(a), when no undercooling is applied, the solid-liquid
interfaces do not move, while when an undercooling (even slight) is applied, there is a
driving force that tends to close the liquid film. As explained in section 2.2, in the case
of a repulsive grain boundary, a liquid film may persist (see Fig. 6.1(b)). In a similar
simulation performed by Rappaz et al. [16], the authors used a different multiphase-field
formulation leading to the presence of undesired phases at interfaces: for example φ3 was
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always present at the interface between φ1 and φ2 and viceversa. This is not the case for
the present formulation derived in section 5.1.2, as shown in Fig. 6.1(a).
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(a) Profiles at ∆T = 0◦C
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Figure 6.1: 1D profile of the phase fields in the case of two coalescing solid-liquid
interfaces in pure Al. The represented case is repulsive since γgb > 2γs` (γgb = 0.3 J/m2

and γs` = 0.1 J/m2). In (a) and (b) different undercoolings are set and the system is
allowed to relax in order to find its position at equilibrium. ∆Sf = 106 J/(m3K) and
δs` = 8 nm.

Since, φ1 = φ2 at the center of the grain boundary, one can consider that a thin liquid
film persists when φ1 > 1/3. When φ1 < 1/3, the two interfaces can be considered as
coalesced. Several multiphase-field simulations were performed with various values of
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the parameter (γgb − 2γs`). As shown in Fig. 6.2, the undercooling necessary to coalesce
the two solid-liquid interfaces is reported as a function of (γgb − 2γs`). As explained in
section 2.2, we recall that the coalescence undercooling of a repulsive grain boundary is
given by the following relationship:

∆Tb =
γgb − 2γs`

∆Sf

1

δs`
(6.1)

(γgb − 2γs`) [J/m2]

∆
T
b

[◦
C

]

0.0 0.1 0.2 0.3 0.4
0

10

20
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Figure 6.2: Multiphase-field simulated coalescence undercooling, ∆Tb, as a function of
the excess grain boundary energy, γgb − 2γs` (in red). The black dotted line represents
the analytical curve calculated with Eq. (6.1). γs` = 0.1 J/m2, ∆Sf = 106 J/(m3K) and
δs` = 8 nm.

The simulated coalescence undercoolings are in very good agreement with the analytical
curve given by Eq. (6.1). A slight deviation from the analytical calculation is found near
γgb − 2γs` ∼= 0, where a coalescence undercooling of 3.2◦C is found while it should be
zero. This is due to the term gmo,2 that was added to the multiobstacle potential in the
multiphase-field formulation (see Eq. (5.2)) in order to eliminate the presence of undesired
phases at interfaces. For all the attractive grain boundary cases (when γgb − 2γs` < 0),
as expected, no coalescence undercooling is necessary.

As explained before, since the additional term in the multiobstacle potential can slightly
modify the coalescence undercooling, it is important to verify that, for example in the case
of a triple junction between three grains, the angles determined between the interfaces
are in good agreement with analytical predictions (similarly to validations performed by
Garcke et al. [101]).
Several simulations were performed in order to find the conformation of a triple junction
at zero undercooling, the position of the triple junction being determined by the interfacial
energies. As shown in Fig. 6.3, the shape of the triple junction was simulated for various
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grain boundary energy configurations. Please note that, since there is no undercooling,
no driving force for solidification is present. The three grains can thus be considered
as equivalent and are simply noted as 1, 2 and 3. Since the system tends to lower its
energy, the position of the interface can be found analytically by minimizing the following
expression (boundaries considered as straight lines and no anisotropy of the interface
energies):

γ12 ‖x3 − xtriple‖+ γ13 ‖x2 − xtriple‖+ γ23 ‖x1 − xtriple‖ (6.2)

where the positions x1, x2, x3 and xtriple are indicated in Fig. 6.3 and ‖‖ represents the
L2 norm. However, it is possible to obtain a simpler relationship by setting γ12 = γ13.
By assuming that interface tensions are equivalent to interface energies (i.e., neglecting
anisotropy of the interface energies), the equilibrium of forces allows to find the theoretical

γ23 = 0.02

γ12 = 1.0

γ13 = 1.0

Case 1

γ23 = 1.0

γ12 = 1.0

γ13 = 1.0

Case 2

γ23 = 1.5

γ12 = 1.0

γ13 = 1.0

Case 3

x3

x1

x2

Grain 1

Grain 2

G
ra
in

3

xtriple

ψth

ψmes = 164◦
(ψth = 168◦)

ψmes = 118◦
(ψth = 120◦)

ψmes = 79◦
(ψth = 80◦)

Figure 6.3: Simulated triple junction in 2D with no undercooling. On the right side is
indicated the theoretical dihedral angle, ψth calculated with Eq. (6.3) as well as the
dihedral angle measured form simulations, ψmes.
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6.2. Multiphase-field results

dihedral angle, ψth (as shown in Fig. 6.4):

ψth = 2 arccos

(
γ23

γ12 + γ13

)
(6.3)

As shown in Fig. 6.3, the dihedral angles measured from simulations are in good agreement
with the theoretical values, thus validating the choice of the multiobstacle potential.

γ23

γ13

γ12

ψth

Grain 3

Grain 2

Grain 1

Figure 6.4: Schematic representation of the symmetric dihedral angle at a triple junction.

6.2.2 Percolation of grains

The progressive percolation of 8 grains with randomly distributed nucleation centers and
periodic boundary conditions in 2D was simulated with the multiphase-field model. As
explained in section 5.1.3, it is very difficult to simulate the percolation of several grains
with a reasonable grain size (on the order of 100µm) while capturing the coalescence
effect at the same time, which requires a realistic solid-liquid interface thickness (on the
order of a few nanometers). A compromise was found by using a domain of 10µm side
containing 8 grains. Based on a surface average, the grain size is thus on the order of
3.5µm. The interface thickness, δs`, was set to 60nm, while the interfacial energies were
set to γs` = 1.0 J/m2 and γgb = 3.0 J/m2, respectively. Please note that, since δs` was set
to a value one order of magnitude larger than the physical value, γs` and γgb were also
increased by a factor 10 in order to lead to a realistic coalescence undercooling (see Eq.
(6.1)). The alloy considered was Al-3.0wt.%Cu and the cooling rate was set to −50◦C/s,
which allows to obtain globular grains for the specified grain size.
In figure 6.5(b), a simulation in which each grain has a specific and random orientation
is represented. The grain boundary energies are related to the misorientations of the
impinging grains with the dependence represented in Fig. 5.11(b). In figures 6.5(a) and
6.5(c), other simulations have been performed assuming that all the grain boundary
energies are respectively neutral (γgb = 2γs`) or repulsive (γgb = γgb,max). The diffusion
coefficients were set to D` = 3 · 10−9m2/s and Ds = 3 · 10−13m2/s.

The solid fraction at percolation gs,pcoal for the different configurations are the following:
0.94 for the neutral case, 0.95 for the random case, and 0.97 for the repulsive case.
Therefore, we observe that the solid fraction at percolation is significantly influenced
by the grain boundary energies. The highest value of gs,c is given by the repulsive case,
while the value of gs,pcoal for the random case is intermediate. However, note that in
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Figure 6.5: Progressive percolation within a volume containing 8 grains with different
grain boundary energy configurations at specific temperatures. In the random case, all
grain boundary energies are dependent on the misorientation between the grains, while in
the neutral/repulsive case all the grain boundaries are set to γgb = 2γs` and γgb = γgb,max,
respectively. The two dotted circles indicate the different behaviour of a liquid pocket for
the neutral versus the repulsive case.

the random case, there is the possibility of having very small (even nil) grain boundary
energies. Therefore, the lowest value of solid fraction at percolation would be given by
the case in which all grain boundary energies are nil. As evidenced by the dotted circles
in Fig. 6.5(a), one can also observe that when low energy grain boundaries are coalesced,
the liquid pocket that has formed at the triple junction does not evolve much (its volume
is slightly decreasing but not its shape). This is due to the equilibrium of forces at the
triple junction that tends to open the liquid pockets because of the large dihedral angle
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in the liquid. On the other hand, for larger coalescing grain boundaries (see Fig. 6.5(c)),
the equilibrium of forces at the triple junction tends to close the liquid pocket.

As explained before, the parameters chosen for the multiphase-field simulations are a
compromise between a “reasonable” solid-liquid interface thickness as well as a “reasonable”
grain size. However, the values depart from the physical ones, the physical value of δs`
being on the order of 2 nm and a typical grain size on the order of 100µm. By decreasing
the interface thickness by a factor 1/N , the mesh size should be decreased by the same
factor, leading to an increase of the number of mesh points of a factor N2 in 2D (N3 in
3D). An increase of the grain size, dg0 by a factor M would further increase the number of
mesh points of a factor M2 in 2D (M3 in 3D). Please note that, since the multiphase-field
formulation is explicit, the time step should be decreased by a factor N2 in both 2D and
3D (see Eq. (5.7)). Since, the critical cooling of the globular-to-equiaxed transition is
proportional to d−2

g0 in 2D (d−3
g0 in 3D), an increase of the grain size by a factor M would

force to reduce the cooling rate by a factor M2 in 2D (M3 in 3D). Finally, taking the
physical values of the grain size and of the interface thickness would lead to an increase
of the computational cost of the 2D calculation by a factor (assuming that one wants to
cover an unchanged temperature range):

M4 ×N4 =

(
100µm
3.5µm

)4(60nm
2nm

)4

= 5.4 1011 (6.4)

while in 3D the increase of the computational scales as:

M6 ×N5 (6.5)

Considering that the computational cost of each of the 2D simulations shown in Fig. 6.5
is approximately 3 hours when run on 32 processors, the time needed to perform the same
calculation but with realistic physical values would be prohibitive even for a reasonable
amount of grains. This is the reason why the mesoscopic model was developed.

6.3 Validation of the mesoscopic model

6.3.1 Meshing of the Voronoi regions

The mesoscopic model described in section 5.2 was initially run with simple grain
configurations such as a square arrangement of regular grains in 2D (or a cubic arrangement
of regular grains in 3D). In such configurations, it is only needed to simulate a single
grain growing in a square box in 2D (or a cubic box in 3D) thus allowing a comparison
with multiphase-field predictions (next section). As shown in Fig. 6.6, the free meshing in
both 2D and 3D is more refined where needed, i.e. in the regions where a high curvature
is expected in the last-stage solidification such as the corners and the edges of the cube
in 3D (or the corners of the square in 2D).
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(a) 2D mesh (b) 3D mesh

Figure 6.6: (a) 2D mesh of a square box and (b) 3D mesh of a cubic box.

6.3.2 Comparison with multiphase-field predictions

In this section, the mesoscopic model predictions are compared with the multiphase-field
results for simple configurations. For both 2D and 3D, an Al-1.0wt.%Cu alloy of 50µm
grain size was chosen. The physical parameters are summarized in Table 6.1. Please note
that the multiphase-field simulation is performed on a larger domain, i.e., by taking into
account the neighbouring grains that have a repulsive boundary with the grain at the
center of the domain (all the grain boundary energies are set to γgb = 0.32 J/m2).
However, as explained in section 6.2.2, the multiphase-field can run only under very
specific conditions to have an acceptable computational times. Therefore, as summarized
in Table 6.2, some of the conditions and physical parameters had to be adapted.

Table 6.1: Realistic physical parameters used in the mesoscopic and multiphase-field
models.

Physical parameter Value
γs` 0.135 J/m2

γgb 0.32 J/m2

∆Sf 106 J/(m3K)

D` 3 10−9 m2/s
Ds 3 10−13 m2/s

Table 6.2: Parameters used for the comparison between the mesoscopic model and the
multiphase-field model.

Model or physical parameter 2D models 3D models
δs` 0.2µm 1.0µm
Ṫ −20.0◦C/s −8.0◦C/s
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(a) (b)

(c) (d)

Figure 6.7: Comparison of the mesoscopic model (in gray) and the multiphase-field model
(in red) for different times of a 2D single grain growing in a square box.

As shown in Fig. 6.7 and Fig. 6.8, the mesoscopic model correctly captures the physics of
solute diffusion both in 2D and 3D, since the shapes of the grains are very close, as long
as there is no deep instability of the solid-liquid interface (i.e., small grain size) [102]. In
addition, like the multiphase-field method, the mesoscopic model predicts the fact that,
at the center of the flat parts of the grains, the interface is slightly negatively curved.
The only small differences that can be noticed are: solidification is more advanced for the
mesoscopic model at low solid fractions (see Figs. 6.7(b) and 6.8(b)), while, at higher
solid fractions (see Figs. 6.7(d) and 6.8(d)), the curvature of the interface near the grain
corners is slightly more pronounced for the multiphase-field model.

109



Chapter 6. Multiphase-field and mesoscopic model validations

(a) (b)

(c) (d)

Figure 6.8: Comparison of the mesoscopic model (in gray) and the multiphae-field model
(in red) for different times of a single 3D grain growing in a cubic box.

6.3.3 Sensitivity to diffusion in the liquid

As shown in the previous section, the grain shape predictions of the mesoscopic model
and of the multiphase-field model are in good agreement. Nevertheless, it is important
to assess the importance of the diffusion in the liquid (mainly diffusion parallel to the
interface) with respect to the diffusion in the solid (only back-diffusion perpendicularly to
the interface), which are the two main phenomena driving the last-stage coalescence. The
calculations were performed with the parameters and condition given in Tables 6.1 and
6.3, except that the diffusion coefficient in the liquid D` in Eq. (5.15) (or in Eq. (5.16) in
3D) was changed to Dmod

` .
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Table 6.3: Parameters used for the evaluation of the sensitivity to diffusion in the liquid
of the mesoscopic model (both in 2D and 3D).

Model or physical parameter 2D and 3D models
δs` 1.0 nm
Ṫ −1.0◦C/s

grain size 100µm

Figure 6.9 shows the evolution of a single grain growing in a square/cubic box in which
the diffusion coefficient used for the calculation of lateral diffusion corresponds to the
most realistic physical value (Dmod

` = D`). This reference case was then compared with

(a) 2D result (b) 3D result

Figure 6.9: Simulation of a single grain growing in (a) a square 2D domain and (b) a 3D
cube with Dmod

` = D` (reference treatment of lateral diffusion in the liquid) at t = 8s.

(a) 2D result (b) 3D result

Figure 6.10: Simulation of a single grain growing in (a) a square 2D domain and (b) a
3D cube with Dmod

` = 0 (no lateral diffusion in the liquid) at t = 8s.
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(a) 2D result (b) 3D result

Figure 6.11: Simulation of a single grain growing in (a) a square 2D domain and (b) a 3D
cube with Dmod

` = 3D` (reference treatment of lateral diffusion in the liquid) at t = 8s.

the same simulation but in which the lateral diffusion was neglected (Dmod
` = 0) as shown

in Fig. 6.10. As for the granular model of Phillion et al. [55] in which solute exchange
between the columns is not considered, the grain shape of the mesoscopic model with
Dmod
` = 0 is polygonal (or polyhedral in 3D). Please note that, as shown in Fig. 6.10(b),

for the 3D case, the interface has a “jagged” appearance near the edges of the domain due
to the surface reconstruction method. In the simulation shown in Fig. 6.11, the lateral
diffusion was enhanced by a factor 3 (Dmod

` = 3D`). The fact that the corners are much
more pronounced than in Fig. 6.9 shows the high sensitivity of the model with respect to
diffusion in the liquid in the direction parallel to the solid-liquid interface.

The comparison of the evolutions of the grain shape for the three different cases are

(a) t = 0.20s (b) t = 0.67s (c) t = 8s

Figure 6.12: Evolution of a single grain growing in a square box. The normal, neglected
and enhanced lateral diffusion in the liquid cases are shown by the black, red and blue
lines, respectively. The diffusion boundary layer is shown by a solid gray line.
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(a) t = 0.16s (b) t = 0.32s (c) t = 8s

Figure 6.13: Evolution of a single grain growing in a cubic box. The normal, neglected
and enhanced lateral diffusion in the liquid cases are shown by the gray, red and blue
surfaces, respectively. The diffusion boundary layer is shown by a shaded gray surface.

shown in Fig. 6.12 and Fig. 6.13. As long as the diffusion boundary layer does not reach
the Voronoi boundary, the grain grows as a circle (or a sphere in 3D). Afterwards, the
shape begins to depart from a circle (or a sphere). It is thus of crucial importance to
have an accurate prediction of the diffusion in the liquid in the direction parallel to the
solid-liquid interface, in order to correctly describe the grain shape evolution.

6.3.4 Boundary condition at the Voronoi facet

As explained in Appendix B.2.4, once the solute layer in a column reaches the Voronoi
facet, the composition at the Voronoi boundary, c∞` , increases. However, as shown in Fig.
B.6, a no-flux condition is applied in the direction of the r-axis (the coordinate of the
column) and not perpendicularly to the Voronoi facet. The correction of this issue is
explained in appendix B.2.4.

Fig. 6.14 and Fig. 6.15 show the comparison of the solute profile in the liquid phase
at different stages of solidification (after 0.75s and 3.0s respectively) for both the non-
corrected and corrected Voronoi boundary conditions. The calculations were performed
with the parameters and condition given in Tables 6.1 and 6.3. Please note that in this
case a regular mesh was chosen.
From the observation of Fig. 6.14 it can be seen that the isoconcentration lines are
perpendicular to the Voronoi facet in the calculation performed with the corrected
boundary conditions (see Fig. 6.14(b)), while they are aligned with the columns directions
near the boundary in the uncorrected calculation (see Fig. 6.14(a)). The grain shape
also slightly differs at this stage. The solute profiles observed in Fig. 6.15 near the end
of solidification (at t = 30 s) seems to be quite different between the uncorrected and
corrected boundary conditions. However, as indicated by the small range of the colorscale,
the conditions are very close to complete mixing in the liquid and no noticeable difference
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(a) Uncorrected boundary condition (b) Corrected boundary condition

2.0

2.5
[%Cu]

Figure 6.14: Solute profile in the liquid phase at t = 0.75s.

in shape between the grains is found.

As a conclusion, for the 2D case there is no noticeable difference in the grain shape
between the corrected and uncorrected boundary conditions at the Voronoi facet for
sufficiently high solid fraction. In addition, the corrected boundary condition generally
requires a regular mesh (does not allow to simulate several grains) and it would be
complex to perform a similar correction for the 3D model. All these aspects, as well as
the fact that the uncorrected model is still in good agreement with the multiphase-field
predictions, ensure that the correction of the boundary condition is not necessary.
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(a) Uncorrected boundary condition (b) Corrected boundary condition

5.90

5.91
[%Cu]

Figure 6.15: Solute profile in the liquid phase at t = 30.0s.
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7 X-Ray tomography observations

7.1 Introduction

X-ray tomography observations were first performed ex situ on samples solidified in the
furnace II-sample 2 setup (see section 3.2.1). As shown in section 4.2.3, with such a
setup it is possible to achieve near steady-state conditions. It is thus possible to access
the temperature of each individual pellet at the moment of the quench. In addition,
no further sample preparation is needed before X-ray tomography observations, since
it is not necessary to reduce its diameter. This study was complemented with in situ
experiments, where the temperature was directly controlled by a laser-heated furnace (see
section 3.3.3). The cooling conditions used for the experiment were similar to the ex situ
ones for the purpose of comparison.
Please note that in both ex situ and in situ X-ray tomography observations, the voxel
size is 0.67µm, corresponding to a resolution on the order of 2µm (estimated to be 3
times larger than the voxel size). We recall that coalescence takes place at the level of
the solid-liquid interface thickness δs`, which is on the order of 2nm. Therefore, liquid
films smaller than 2µm that are still present cannot be resolved and adjacent grains may
appear as coalesced. This can obviously have a strong implication on the percolation
analysis of the sample and on the measured solid-liquid interfacial area.
The surface tension of a liquid film, γ`a, is approximately 1 J/m2. A 2µm wide liquid film
(forming a hemicylindrical meniscus) can resists to a tension of γ`ar '

1J/m2

1µm = 1MPa. This
value is on the order of the elastic limit of Al-Cu alloys at 600◦C [103,104] and indicates
that the semisolid material could already partially resist to grain boundary openings
when a percolation of the solid phase is indicated by X-ray tomography observations.

7.2 Ex situ tomography

X-ray tomography observations were performed on Al-3.0wt.%Cu, Al-4.5wt.%Cu, and
Al-6.0wt.%Cu alloys inoculated with 2.0wt% of AlTi5B master alloy. The samples were
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solidified in the furnace II-sample 3 setup with a pulling speed of 2mm/min in an average
thermal gradient measured to be 10.4◦C/cm (see section 4.2.3). This corresponds to a
cooling rate on the order of -0.035◦C/s.

500µm

(a) 608 ◦C

500µm

(b) 580 ◦C

500µm

(c) 549 ◦C

Figure 7.1: Ex situ X-ray tomography slice at various temperatures of an Al-6.0wt.%Cu
alloy (inoculated with 2.0wt% of AlTi5B master alloy). The solid grains are in gray while
the liquid is white.

500µm

(a) 608 ◦C

500µm

(b) 580 ◦C

500µm

(c) 549 ◦C

Figure 7.2: Same figure as Fig. 7.1 but for an Al-4.5wt.%Cu alloy (inoculated with
2.0wt% of AlTi5B master alloy).

500µm

(a) 608 ◦C

500µm

(b) 580 ◦C

500µm

(c) 549 ◦C

Figure 7.3: Same figure as Fig. 7.1 but for an Al-3.0wt.%Cu alloy (inoculated with
2.0wt% of AlTi5B master alloy).
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As shown in Fig. 7.1(a), the microstructure is initially not fully globular, but globulo-
dendritic. At lower temperatures (see Fig. 7.1(b) and (c)), the grains become more
globular because of coarsening and coalescence of intragranular protrusion (since these
are attractive parts). This is shown in the transition between Fig. 7.4(a) and (b). As
shown in Fig. 7.2 and Fig. 7.3, for the other compositions, the grains are globular over
the full range of solidification. This difference can be explained by observing the results
in Table 7.1 in which the grain sizes of different compositions measured by EBSD are
compared with the grain size characteristic of the globular-to-dendritic transitions, 2Rg0,c
(see Eq. (2.31)). For all compositions, the measured grain sizes are smaller than 2Rg0,c.
However for the Al-6.0wt.%Cu alloy, it is the case for which these values are the closest,
explaining why a globulo-dendritic grain structure is observed.

Table 7.1: Measured final average grain size, dg0, (measured by EBSD as shown in
table 4.5 and converted to 3D) compared with the grain diameter characteristic of the
globular-to-dendritic transition, 2Rg0,c (calculated with Eq. (2.31) and the parameters
given in Table 2.1).

Materials dg0 [µm] 2Rg0,c [µm] dg0/2Rg0,c

Al-6.0wt.%Cu 353 542 65%
Al-4.5wt.%Cu 305 594 51%
Al-3.0wt.%Cu 280 680 41%

The 3D reconstructed solid and liquid phases and the solid-liquid interface morphologies
evolutions of the three alloys are shown in Figs. 7.5, 7.6 and 7.7. Their corresponding
ISD plots are also represented.
We first define the the solid-liquid interfacial area per unit volume, SV = Ss`/VR, where

(b) Globular grains (b) Coalesced globular grains(a) Globulo-dendritic grains

Positive
Negative

Curvature

Figure 7.4: Schematic representation of the solid-liquid interface for different morphologies.
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Figure 7.5: Ex situ tomography observation of a 600µm×600µm×600µm REV of an
Al-6.0wt.%Cu (inoculated with 2.0wt% of AlTi5B master alloy) solidified with a pulling
speed of 2mm/min in an average thermal gradient of 10.4◦C/cm. On the left pictures are
represented the solid (in gray) and liquid (in red) phases for different temperatures, while
in the central picture is represented the corresponding solid-liquid interface. Note that
the measured gs and Sv are indicated for each temperature. On the right are plotted
their corresponding ISD plots.
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Figure 7.6: Same ex situ tomography observation of a 600µm×600µm×600µm REV as in
Fig. 7.5 but for an Al-4.5wt.%Cu alloy (inoculated with 2.0wt% of AlTi5B master alloy).
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Figure 7.7: Same ex situ tomography observation of a 600µm×600µm×600µm REV as in
Fig. 7.5 but for an Al-3.0wt.%Cu alloy (inoculated with 2.0wt% of AlTi5B master alloy).
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Ss` in the area of the solid-liquid interface and VR the representative elementary volume.
As a general trend, as solidification proceeds, SV initially increases becaure of grain
growth but decreases in the last-stage solidification. This is due to two effects: first
the coarsening of dendrite arms (and the consequent transformation of globulo-dendritic
grains into fully globular ones) and second the coalescence between two grains (i.e.,
disappearance of two solid-liquid interfaces to form a grain boundary). The evolution
of the solid-liquid interface curvature is schematized in Fig. 7.4. Before coarsening
and intragranular coalescence of the protrusion regions with negative mean curvatures
are present in the globulo-dendritic morphology, while these negative mean curvature
regions disappear in the fully globular structure. In the last-stage solidification, because
of grain coalescence (or when two grains are considered as coalesced because the liquid
film separating them becomes smaller than the spatial resolution), some regions with
mean negative curvature appear. They correspond to liquid pockets at vertices or liquid
cylinders along triple lines.
In Fig. 7.8 are shown the envelopes that define the 0.03 probability of the ISD plots for
the three alloys. As evidenced by the gray dotted circle in Fig. 7.8(a) for the 6wt%Cu
alloy, at higher temperature (608◦C), the ISD plot shows the presence of solid-liquid
interface patches that possess a cylindrical type of curvature (κ1 negative and κ2 equal
to zero) because of the globulo-dendritic morphology of the grains. At intermediate
temperatures (580◦C), the envelope includes less surface of this type because the structure
becomes more globular. The effect of coalescence on the curvature distribution is visible
in the lower temperature for the Al-3.0wt.%Cu alloy: as evidenced by the gray dotted
circle in Fig. 7.8(c), the formation of liquid pocket cylinders is revealed by the shift of the
envelope of the ISD plot towards a negative principal curvature κ1 and κ2 equal to zero.
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Figure 7.8: 0.03 probability contour of the ISD plots of the ex situ X-ray tomography
observations, for three alloys.
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100µm

Figure 7.9: Zoom of Fig. 7.1 revealing the presence of small solid grains formed in the
liquid during quench and introducing artifacts in the analysis.

It is useful to mention that, for solid fractions lower than approximately 0.85, a quenching
artifact is present: as shown in Fig. 7.9, small solid particles form during the quench. For
even lower solid fractions, the segmentation of the liquid and solid becomes more difficult
because of this artifact. The surface associated to these artifacts is small and thus does
have a limited influence on the ISD plots. However, the analysis of the percolation state
was not performed in this case since it is biased by these artifacts.
As a conclusion, the ISD plot is a useful tool that allows to indirectly track grain
coalescence. However, the limitation of the ex situ experiments is the presence of
quenching artifacts and, in the present thermal conditions of the furnace II-sample type 3
setup, a relatively large grain size.

7.3 In situ tomography

As for the ex situ experiments, in situ X-ray tomography experiments were performed
for various nominal compositions (also Al-3.0wt.%Cu, Al-4.5wt.%Cu, and Al-6.0wt.%Cu
alloys inoculated with 2.0wt% of AlTi5B master alloy). For all the experiments, the
samples were rapidly heated up to 700◦C and held at this temperature for 2min. The
samples were then cooled down at -0.05◦C/s. This corresponds to the slowest cooling rate
achievable with the laser furnace of TOMCAT, while keeping an acceptable temperature
control of the laser-heated furnace. This is the reason why the cooling rate of the in situ
experiments is slightly larger (in absolute value) than those experienced by the samples
solidified with furnace II-sample 2 setup and observed ex situ (on the order -0.035◦C/s).
In the in situ experiments, solidification occurs during observation. In order to obtain
sharp reconstructions, it is thus important to ensure that microstructure evolution remains
limited during the observation time. The scan time is on the order of 160s, corresponding
to a temperature change of the sample on the order of 8◦C. By considering the Brody-
Fleming’s model (see Eq. (2.10)) with the Clyne and Kurz correction (see Eq. (2.11)), it is
possible to estimate the change of solid fraction that occurs during the scan (see Table 7.2).
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500µm

(a) 606◦C

500µm

(b) 584◦C

500µm

(c) 561◦C

Figure 7.10: In situ X-ray tomography slice at various temperatures of an Al-6.0wt.%Cu
alloy (inoculated with 2.0wt% of AlTi5B master alloy). The solid grains are in gray while
the liquid is white. The temperature was measured by a pyrometer.
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(a) 606◦C

500µm

(b) 584◦C

500µm

(c) 561◦C

Figure 7.11: Same figure as Fig. 7.10 but of an Al-4.5wt.%Cu alloy (inoculated with
2.0wt% of AlTi5B master alloy).

500µm

(a) 606◦C

500µm

(b) 582◦C

500µm

(c) 560◦C

Figure 7.12: Same figure as Fig. 7.1 but of an Al-3.0wt.%Cu alloy (inoculated with
2.0wt% of AlTi5B master alloy).

As shown in Table 7.2, in the observations that were performed (last-stage solidification),
the change of solid fraction during an observation is on the order of 0.005-0.02.
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Table 7.2: Change of solid fraction during scan estimated from Eqs. 2.10 and 2.11 for
various solid fractions and nominal compositions. The temperature change during the
scan was on the order of 8◦C (scan time on the order of 160s and a cooling rate of
-0.05◦C/s).

Materials Solid fraction gs Change of gs during scan

Al-3.0wt.%Cu
0.891 0.022
0.938 0.013
0.959 0.009

Al-4.5wt.%Cu
0.922 0.015
0.952 0.010
0.965 0.008

Al-6.0wt.%Cu
0.985 0.006
0.992 0.005
0.995 0.004

Please note that, even for a fixed temperature, there could be a microstructure evolution
during the scans due to the globularization of the grains. However, since the microstructure
in this case is fully globular for all the compositions considered (as shown in Figs. 7.10,
7.11 and 7.12), this phenomenon is negligible.
We recall that the grain size was measured to be 130µm for the Al-6.0wt.%Cu inoculated
alloy (see section 4.5). Compared to the ex situ ISD plots at a given temperature, the in
situ ones show a more advanced percolation state. This can be explained by calculating
the Fourier number associated with the solid, Fos:

Fos =
Ds∆T(
dg0
2

)2
|Ṫ |

(7.1)

The ratio between the Fourier number in the ex situ case (Foexs ) and in situ case (Foins )
for the Al-6.0wt.%Cu inoculated alloy is the following:

Foexs
Foins

=
ding0

2

dexg0
2

|Ṫ |in

|Ṫ |ex
= 0.19 (7.2)

where dexg0, ding0, |Ṫ |ex and |Ṫ |in are the final grain sizes and absolute cooling rates in the
ex situ and in situ experiments, respectively. The fact that Foexs

Foins
= 0.19 explains why,

for the same temperature the solid fraction is higher for the in situ experiments, i.e.,
solidification is more advanced, since the situation is closer to lever-rule.

Since the structure is fully globular, the decrease of SV as solidification proceeds is
exclusively due to grain coalescence. In addition, the initial shift of the ISD plot exhibited
by the 6wt% ex situ specimen (shown in Fig. 7.8(a) and outlined by the gray dotted
circle) is not present in this case.
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Figure 7.13: In situ tomography observation of a 600µm×600µm×600µm REV of an
Al-6.0wt.%Cu (inoculated with 2.0wt% of AT5B master alloy) cooled down at −0.05◦C/s.
On the left pictures are represented the solid (in gray) and liquid (in red) phases for
different temperatures, while in the central picture is represented the corresponding solid-
liquid interface. Note that the measures gs and Sv are indicated for each temperature.
On the right are plotted the corresponding ISD plots. The temperature was measured by
a pyrometer.
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Figure 7.14: Same in situ tomography observation of a 600µm×600µm×600µm REV as
in Fig. 7.13 but for an Al-4.5wt.%Cu alloy (inoculated with 2.0wt% of AlTi5B master
alloy).
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Figure 7.15: Same in situ tomography observation of a 600µm×600µm×600µm REV as
in Fig. 7.13 but for an Al-3.0wt.%Cu alloy (inoculated with 2.0wt% of AlTi5B master
alloy).
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Figure 7.16: Schematic representation of the mean curvature transitions of 8 grains
(only 1/8 of each grain is shown) growing in a box of 100µm side length. (a) At higher
solid fraction, the solid-liquid interfaces consist of flat surfaces and positive curvatures
in the corners/edges. (b) The liquid phase consists of cylinders. (c) In the last-stage
solidification, some liquid pockets remain.

As evidenced in the gray dotted circles in Figs. 7.17(a) and 7.17(b), the progressive
coalescence leads to the formation of liquid cylinders. This is revealed by the shift of the
ISD envelope towards a negative principal curvature, the other principal curvature being
zero. In Fig. 7.17(c), the region highlighted by the dotted gray circle represents a patch
of curvature that possesses two negative principal curvatures, i.e., a liquid pocket. These
two transitions are schematized in Fig. 7.16.

κ
1

0
.1

5

0
.1

0

0
.0

5 0

0
.0

5

0
.1

0

0
.1

5

κ
1

0
.1

5

0
.1

0

0
.0

5 0

0
.0

5

0
.1

0

0
.1

5

κ
1

0
.1

5

0
.1

0

0
.0

5 0

0
.0

5

0
.1

0

0
.1

5

0.15

0.10

0.05

0

0.05

0.10

0.15

0.03 probability at 606◦C

(a) Al-6.0wt.%Cu (b) Al-4.5wt.%Cu (c) Al-3.0wt.%Cu

0.03 probability at 584◦C (582◦C)
0.03 probability at 561◦C (560◦C)

κ2

cylinders cylinders

spheres

Figure 7.17: Contour at 0.03 probability of the ISD plots of the in situ X-ray tomography
observations. Please note that the temperatures of the Al-3.0wt.%Cu sample are slightly
different and noted in parenthesis in the legend. The regions indicating the presence of
cylinders or spheres are shown by a dotted gray circle.
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Figure 7.18: Evolution of SV as a function of the solid fraction, gs, for various X-ray
tomography in situ observations. The points are fitted with equation Eq. (7.3) with
the constant f = 0.1µm−1. The range of solid fractions for which the liquid phase is
percolated or not in the in situ observations is indicated.

The evolution of SV as a function of gs for the various compositions observed by in
situ X-ray tomography is shown in Fig. 7.18. The points are fitted with the analytical
evolution of SV as a function of gs for spherical grains given by the following equation [105]
(similarly to the analysis performed by Ludwig et al. [56]):

SV = f (1− gs)
2
3 g

2
3
s (7.3)

where f is a constant. At low solid fractions, Eq. (7.3) becomes SV = fg
2/3
s .

Since gs = Rg/Rg0, at low solid fractions SV can be expressed as follows:

SV =
4πR2

g
4
3πR

3
g0

=
3

Rg0
g

2
3
s =

6

dg0
g

2
3
s (7.4)

indicating that f = 6/dg0.
In Fig. 7.18, it was found that the experimental points can be well fitted by Eq. (7.3)
with f = 0.1µm−1. This would indicate a final grain size of 60µm, while it was measured
to be 184µm with the EBSD analysis. This discrepancy can be explained by the fact that
Eq. (7.3) describes the impingement of spherical grains, while in reality the grains shape
departs from a sphere when the solute layers start to interact.
A percolation analysis of the microstructures observed at different temperatures and
for various compositions was performed. This analysis revealed that the solid becomes
percolated within the REV at a solid fraction gs = 0.86 (see Fig. 7.18). However, it
should be noted that this analysis, performed on images with a limited spatial resolution
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on the order of 2µm (corresponding to three times the voxel size), is not representative
of the real percolation state of the sample. The liquid phase remains percolated until a
solid fraction gs = 0.95 (we recall that in 3D it is possible to have percolation of the two
phases at the same time).

As a conclusion, the analysis of the evolution of SV and of the shift of the ISD plot
envelopes allows to indirectly track grain coalescence. It is also possible to find the solid
fraction at which the solid structure is percolated. However, the limited spatial resolution,
introduces a bias in the value of solid fraction at which the solid becomes percolated.
The 3D mesoscopic model simulations performed with the correct physical values (see
section 8.3) will provide more insight in the values at which the structure is effectively
percolated. In addition, by directly comparing the mesoscopic model and the X-ray
tomography results, it will be possible to estimate the actual spatial resolution of the
X-ray tomography observations.
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8 Mesoscopic model results

8.1 Introduction

After the validations performed in section 6.3, this chapter is dedicated to the main
results of the mesoscopic model, considering the percolation of several grains.
At first are shown the results of the 2D model, in particular the evolution of the solute
profiles, the evolution of the solid-liquid interfacial area per unit volume, SV , and the
various percolation transitions. The calculations were performed on a domain contain-
ing typically a few thousands of grains. After that, 3D simulations were performed
by considering a few hundreds of grains. For both the 2D and 3D mesoscopic models,
the percolation transitions were then mapped for various nominal compositions and
solidification conditions.
Finally, the 3D model results are compared with the in situ X-ray tomography observa-
tions.

In Table 8.1 are summarized the main physical parameter values used for the calculations.
The parameters γgb,max and γs` are the same as those of 2D granular model of Vernède
et al. for comparison. The choice of these parameters for the 3D model are justified in
section 8.3.1.

Table 8.1: Summary of the main physical parameter values used for the calculation, unless
otherwise stated.

Parameter value for 2D model value for 3D model
γgb,max 0.32 J/m2 [36] Bulatov et al. [34]
γs` 0.1 J/m2 [1] 0.135 J/m2 [106]

∆Sf 1.0 106 J/(m3K) [36]
D` 3.0 10−9 m2/s [107]
Ds 3.0 10−13 m2/s
δs` 1 nm
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8.2 2D results

8.2.1 Solute diffusion and coalescence

In order to visualize the evolution of the solute profile and how coalescence affects the
distribution of solute, the model was run for only a few grains, namely 36, possessing a

c0

(a) t = 10 s T = 649.2◦C

(b) t = 120 s T = 550.0◦C

(c) t = 200 s T = 470.0◦C

c

c

c

x

y

Figure 8.1: Simulation with the 2D mesoscopic model of the progressive percolation of 36
grains of an Al-1.0wt.%Cu alloy for different times. The average grain size was set to
100µm and the cooling rate Ṫ = −1◦C/s. On the left are represented the concentration
fields, while on the right each grain cluster has a specific color (note that the solid-liquid
interface is traced in black). The gray circles in figure (b) indicate two grains that are
coalesced.
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random orientation. In the initial stages of solidification, the grains shape starts to depart
from a sphere because of the diffusion boundary layers interactions (see Fig. 8.1(a)).
However, at this stage, the grains form distinct clusters since coalescence has not yet
occurred. As shown in Fig. 8.1(b), at a more advanced stage, the grains begin to be
in contact. As highlighted by the gray circle in Fig. 8.1(b), the concentration in the
liquid film separating the two impinging grains is reduced until the coalescence line on
the phase diagram is reached. This is essentially due to solute back-diffusion in the
solid perpendicularly to the solid-liquid interface (at this stage, the liquid is in a state of
almost complete mixing, i.e., the diffusion of solute parallel to the solid-liquid interface is
negligible). At this point, the two grains highlighted by the gray circle in Fig. 8.1(b) are
considered to belong to the same cluster and thus possess the same color. We recall that
the position of the coalescence line on the phase diagram depends on the coalescence
undercooling ∆Tb, which is proportional to (γgb(∆θ) − 2γs`) in the repulsive case (see
section 5.2.2). The arrangement and the crystallographic orientations of the grains are
random, thus generating a liquid film that can possess a complex morphology. As shown
in Fig. 8.1(c), at a much lower temperature, only a single solid cluster remains. In this
case the solid is percolated, since it is possible to find a path connecting the two opposite
sides of the domain, in both x and y directions.

8.2.2 Definition of the percolation transitions

In this section we define the main percolation transitions that the grain structure under-
goes.
The progressive formation of grain clusters can be tracked following two different criteria.
With the contact criterion, two grains belong to the same cluster when the thickness
of the liquid film separating them becomes on the order of the solid-liquid interface
thickness, δs` (contact clusters). With the coalescence criterion, two grains belong to
the same cluster when they are locally coalesced and are thus connected via a dry grain
boundary (coalescence clusters). The temperature and solid fraction at which a perco-
lating contact cluster appears (percolation by contact) are noted by Tpcont and gs,pcont,
respectively. Considering the coalescence criterion, when percolation by coalescence occurs,
the temperature and solid fraction are labelled as Tpcoal and gs,pcoal, respectively. These
percolation transitions are shown in Fig. 8.2, in a simulation performed with 1024 grains
possessing an average size of 100µm. As shown in Fig. 8.2 and in Fig. 8.3(b), the number
of contact clusters decreases faster than the coalescence clusters, since the coalescence
criterion is more restrictive. This can be seen in particular at 534◦C, where a single
contact cluster exists while several coalescence clusters persist. A typical property that
exhibits a strong variation close to a percolation transition is the size of the largest
non-percolated cluster [39]. For both the contact and coalescence criteria, it initially
increases, but, once a percolating cluster exists, it decreases since the percolating cluster
fills the remaining space. In Fig. 8.3(a) is represented the ratio between the volume (area)
of the largest non-percolating cluster and the total volume of solid. The transitions are
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T = 642◦C
gs = 0.835

T = 558◦C
gs = 0.992

T = 552◦C
gs = 0.994

T = 534◦C
gs = 0.996

(a) Contact clusters (b) Coalescence clusters

Figure 8.2: Simulation with the mesoscopic model of the progressive percolation of 1024
grains of an Al-1.0wt.%Cu alloy for different times. The average grain size was 100µm
and the cooling rate was set to Ṫ = −1◦C/s. The solid clusters are colored following
two different criteria: (a) contact clusters, (b) coalescence clusters. For both criteria, the
percolating cluster is highlighted in red.
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Figure 8.3: (a) Evolution fraction of the largest non-percolating cluster (defined as the
ratio between the volume of the largest non-percolating cluster and the solid volume) as a
function of temperature for the simulation shown in Fig. 8.2. (b) Number of solid clusters
evolution as a function of temperature. For both graphs are indicated the temperatures
characteristic of the percolation of the solid structure: Tpcont and Tpcoal.

clearly visible for both contact and coalescence criteria. Please note that in reality, at
548◦C, the eutectic would have filled the remaining liquid space (if the second phase can
nucleate), but the model allows to find the solidification of eutectic-free alloys.

When two grains coalesce, part of the solid-liquid interface is substituted with a grain
boundary interface. Therefore, in order to track the progressive percolation of grains,
one can observe the evolution of the solid-liquid interfacial area per unit volume, SV .
This value has been normalized by the average final grain size, dg0, in order to obtain
SV = SV dg0. As shown in Fig. 8.4, for the model, the evolution of SV as a function of
the solid fraction initially increases because of grain growth, but then decreases abruptly
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at a solid fraction of approximately gs = 0.97, when grain coalescence becomes significant.
The solid fraction/temperature at which the maximum value of SV (corresponding also
to the maximum of SV ) is found are denoted as gs,SVmax and TSVmax, respectively. It
is interesting to note that, until significant coalescence takes place, the evolution of
SV closely follows the predictions of a regular hexagonal arrangement of edgy grains.
Please note that for the calculation of SV in the case of edgy grains, it is assumed that
dg0n

2D
g = 1, where n2D

g is the 2D density of nucleation sites.
These results can be compared with the 2D granular model of Vernède et al. [40]. We
recall that the latter considers complete mixing in the liquid and polyhedral grains with a
correction to smooth the grain corners. For an Al-1.0wt.%Cu alloy and the same cooling
rate, the temperatures at which the various transitions occur are in good agreement, the
main noticeable difference are gs,SVmax, since it is on the order of 0.975 for the present
model, while it is on the order of 0.90 for the model of Vernède et al.. Because of the
assumptions used in the Vernède model, the curvature at the grain corners could be
overestimated thus predicting a lower gs,SVmax. In addition, we recall that the present
mesoscopic model simulates a progressive coalescence of grains, while, in the model of
Vernède et al., a grain boundary is either fully coalesced or not. The progressiveness of
the coalescence in the mesoscopic model can also explain why a larger gs,SVmax is found,
since, when coalescence initially takes place, the reduction of SV is not as drastic as for
the granular model of Vernède et al..
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Figure 8.4: Evolution of SV = SV dg0 as a function of the solid fraction, gs. The model
prediction is compared with the evolution of SV for a regular square arrangement and
a regular hexagonal arrangement of edgy grains. The solid fraction at which SV is
maximum (corresponding also to the solid fraction at which SV is maximum), gs,SVmax,
is also indicated.
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As pointed out by Vernède et al. [40], another important transition can be defined: the
solid fraction/temperature at which 1% of the liquid channels become isolated from the
feeding network. This value gives an indication of the moment at which feeding in the
liquid phase becomes difficult, i.e., when conditions favourable to hot tear formation are
present. In the present mesoscopic model, since liquid feeding is not accounted for, we
suppose that the the feeding network is represented by the largest liquid cluster. The
temperature/solid fraction at which 1% of the liquid channels become isolated from
the largest liquid cluster are thus considered. They are noted as Tiso−` and gs,iso−`,
respectively.

As pointed out in section 2.3, the observed percolation threshold in domain of size L,
gsc,L (that can be either the solid fraction at which percolation by contact or percolation
by coalescence occur) can be expressed as the following scaling law:√

〈(gsc,L − 〈gsc,L〉)2〉 ∝ L−1/ν (8.1)

where the term
√
〈(gsc,L − 〈gsc,L〉)2〉 represents the standard deviation of the observed
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Figure 8.5: Various solid fractions and temperatures transitions as a function of the
number of grains in the domain.
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percolation threshold in a domain of size L and ν is the correlation length. Ten calculations
were performed for each domain size, containing respectively 256, 1024 and 4096 grains
(see Fig. 8.5). As expected from Eq. (8.1), Fig. 8.5 shows that the larger the number of
grains in the domain, the lower the spread of the percolation thresholds. In order to find
an accurate value of percolation threshold it is needed to either perform the simulations
on a large domain or several simulations on smaller domains and take the average. With
Eq. (8.1), it is possible to find the correlation length for different percolation transitions:
for contact percolation the correlation length is found to be ν = 0.91± 0.9, while for the
coalescence percolation ν = 1.08± 0.9. Unlike the results of Vernède et al. [40], in which
100 simulations for various domain sizes were performed (containing up to 102400 grains),
the correlation length values of the simulations performed with the mesoscopic model are
not in good agrement with the theoretical values of lattice percolation in 2D (equal to
4/3). It would be needed to perform a larger number of simulations and also simulations
containing more grains. However, due to the computational cost of the present mesoscopic
model, the simulations were limited to a maximum number of 4096 grains. The complete
solidification of 4096 grains typically requires 12h, when run on the calculation server
over 8 processors.

8.2.3 Percolation transitions for several grains

As shown in Fig. 8.6, the temperatures and solid fractions at which the various transitions
occur are plotted as a function of nominal composition. In this figure, the regions of
temperature/solid fractions at which isolation of liquid pocket starts but no percolation
by coalescence or contact happened is highlighted in red. We recall that this region
is vulnerable in terms of hot tearing since liquid feeding is not sufficient but the solid
structure is not yet percolated and thus cannot resist to grain boundary openings. On
the other hand, when percolation by coalescence happens or when the eutectic phase
nucleates, the semi-solid material behaves like a ductile solid and can resist to grain
boundary openings (green region). An intermediate colored is noted in orange when
there is percolation by contact but percolation by coalescence (or by the eutectic) is
not yet reached. It is also possible to define c0,HT as the nominal composition range for
which the vulnerable region in terms of hot tearing (red region in Fig. 8.6) is explored
during solidification. In addition, the nominal composition at which the time spent in
the vulnerable region is maximum (or maximum temperature interval of the vulnerable
region since a constant cooling rate is considered) is noted as cmax0,HT .

In figure Fig. 8.7 are compared the various transitions for different cooling rates and
values of γs`. By comparing Fig. 8.7(a) and (b), one can see that, for a given nominal
composition, the transitions take place at lower temperatures (or higher solid fractions)
when the cooling rate is increased by 10 (in absolute value). This can be explained by the
fact that the Fourier number associated to case (b) is lowered by a factor 10 compared to
case (a). In addition, by increasing the cooling rate, the curvature of the grain corners
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Figure 8.6: Solid fractions and temperatures at which the different transitions take place,
as indicated in the legend, for 4096 grains (of 100µm size) cooled at -1.0◦C/s. In addition
to these transitions, the liquidus and solidus temperatures, respectively Tliq and Teut,
as well as the solid fraction at which the model predicts the appearance of the eutectic,
Teut, are shown. The regions where gs,iso−` < gs < gs,pcont (and Tiso−` > T > Tpcont) are
shown in red, while the regions where gs,pcont < gs < gs,pcoal (and Tpcont > T > Tpcoal)
are shown in orange. Finally when gs > min(gs,pcoal, gs,eut) (and T < max(Tpcoal, Teut) is
shown in green. In addition, are shown the nominal composition range sensitive to hot
tearing, c0,HT , and the nominal composition at which the time spent in the vulnerable
region is maximum, cmax0,HT .

is more pronounced. This also shifts the transitions to higher solid fractions. It is also
noticeable that the temperature interval separating the Tpcont and Tpcoal is lower for
the higher cooling rate case. This can be explained by the fact that, for higher cooling
rate simulation, the last-stage solidification is characterized by larger solute gradients
in the solid phase. Backdiffusion of solute in the solid is more pronounced and thus the

141



Chapter 8. Mesoscopic model results

c0

T
[◦
C

]

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.1 1 2 3 4 5 6
540

560

580

600

620

640

660

g
s

0.1 1 2 3 4 5 6
540

560

580

600

620

640

660

c0

T
[◦
C

]
g
s
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Figure 8.7: Same figure as Fig. 8.6 but for different cooling conditions and values of γs`.
We recall that 4096 grains of 100µm size were considered.
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coalescence line is reached more rapidly.
On the other hand, for lower cooling rates (comparison of Fig. 8.7(a) and (c)), since
the Fourier number associated to case (c) is larger, the transitions are shifted to higher
temperatures and lower solid fractions. Please note that in case (c), since the gradients
in the last-stage solidification are reduced compared to case (a), larger temperature
differences between Tpcont and Tpcoal are observed.
There is no strong noticeable differences between cases (d) and (a) of Fig. 8.7, when the
interfacial energy is increased. TSVmax is slightly affected since, in the larger γs` case, the
Gibbs-Thompson effect is enhanced (see section 2.1.3) and the grains corners are more
pronounced. The main difference between cases (a) and (d) is the fact that in case (d),
the coalescence undercooling is reduced because of the increase of γs` (see section 2.2).
Therefore, the orange region (determined by the coalescence undercooling of repulsive
grain boundaries) is narrower.
The values c0,HT and cmax0,HT for various conditions are shown in Table 8.2.

Table 8.2: Summary of the nominal composition range sensitive to hot tearing, c0,HT , and
of the nominal composition at which the time spent in the vulnerable region is maximum,
cmax0,HT , for the cases shown in Fig. 8.7. The values c0,HT and cmax0,HT are explained in Fig.
8.6.

Case Ṫ [◦C/s] γs`
[
J/m2

]
c0,HT [wt%] cmax0,HT [wt%]

(a) -1.0 0.1 [0, 2.8] 1.3
(b) -10.0 0.1 [0, 1.4] 0.6
(c) -0.1 0.1 [0, 5.2] 3.2
(d) -1.0 0.135 [0, 2.8] 1.3

The main tendency is that nominal composition at which the time spent in the vulnerable
region is maximum, cmax0,HT , decreases with increasing cooling rates. This approach is
similar to the Clyne and Davies [49] hot tearing criterion in which the time spent in this
vulnerable state of the mushy zone normalized by the time during which stress in the
mushy zones can be relaxed is considered.

8.3 3D results

The computational cost associated with the 3D mesoscopic model is of course larger
than the 2D one: in 2D, a grain is generally subdivided into approximately 40 columns,
while in 3D approximately 2000 columns per grain are needed to enmesh the Voronoi
tessellation with a similar fineness of the columns. This is the reason why the number of
grains considered in the 3D calculation was limited to a few hundreds per simulation.
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8.3.1 Grain boundary energy calculation

We recall that the calculation of the grain boundary in the 3D model is performed by
assigning a random orientation to each grain (3 × 3 matrix) and the grain boundary
energy is then calculated for each boundary between two Voronoi regions with the code
developed by Bulatov et al. [34]. The calculation is based on the orientations of two
impinging grains and the vector perpendicular to the grain boundary plane. On the other
hand, in 2D, the grain boundaries were assumed to be be pure symmetric tilt boundaries
with the rotation axis parallel to 〈100〉 and a simplified relationship between the grain
boundary energy and the misorientation between the impinging grains (see Fig. 5.11(a)).
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Figure 8.8: Number of counts and cumulated relative counts of the grain boundary energy
distributions. (a) Grain boundary energy distribution calculated in the 2D model by
assuming a random orientation and simplified pure symmetric tilt boundaries (see Fig.
5.11(a)). (b) 3D grain boundary energy distribution used in the 3D mesoscopic model as
proposed by Bulatov et al. [34].
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8.3. 3D results

Figure 8.8 shows the grain boundary distributions used for the 2D and the 3D. By
setting γs` = 0.1J/m2 in the 2D distribution (Fig. 8.8(a)), approximately 50% of the the
grain boundaries are attractive (negative value of (γgb − 2γs`)), the remaining 50% being
repulsive. On the other hand, as shown in Fig. 8.8(b), by setting γs` = 0.1J/m2 in the
3D γgb distribution of Bulatov et al. [34], 99.9% of the grain boundaries are repulsive.
Since in the literature there is a wide spread of the values of γs`, from 0.088J/m2 to
0.135J/m2 [106], we arbitrarily chose the value of 0.135J/m2, that yelds 99.5% of repulsive
grain boundaries.
Therefore, in 2D and 3D simulation results will differ not only because of topological
reasons (for example in 3D both the solid and the liquid phases can be percolated at the
same time, while this is not possible in 2D) but also because of the difference between
the grain boundary energy calculation (as shown in Fig. 8.8) and the associated different
proportions of repulsive/attractive grain boundaries.

It is interesting to note that the 3D grain boundary energy distribution (see Fig. 8.8)
looks similar to the Mackenzie plot (see Fig. 4.17, consisting in the misorientation
distribution (between each pair of grains) of randomly oriented grains of cubic symmetry.
This indicates that a direct relationship between the misorientation of a pair of grains
and their grain boundary energy may be found.

8.3.2 Solute diffusion, coalescence and percolation transitions

Similarly to the result shown in Fig. 8.1 for the 2D model, in Fig. 8.9 the progressive
percolation of 125 grains has been simulated with the 3D mesoscopic model. In the initial
stages of solidification, the grains shape starts to depart from a sphere because of the
diffusion boundary layers interactions (see Fig. 8.1(a) in which the diffusion boundary
layers are shown in light gray). However, at this stage, the grains form distinct clusters
since coalescence has not yet occurred. In Fig. 8.9(b), two coalesced grains are highlighted
by a black circle. At much lower temperature, as shown in Fig. 8.9(c), only one percolated
cluster remains, all the opposite faces of the domain being connected. Please note that
in Fig. 8.9(c) white regions appear where the solid-liquid interface has disappeared and
it is thus possible to see through the coalesced regions. As defined in section 8.2.2, two
criteria can be used to characterize the percolation state of the solid phase: the contact
and the coalescence criteria. As for the 2D model, since the coalescence criterion is more
strict, percolation by coalescence is achieved at a lower temperature (see Fig. 8.10).

In addition, the evolution of SV as a function of the solid fraction can give useful insight
on the percolation state of the sample. The mesoscopic model prediction is compared
with the evolution of SV of regular arrangements of edgy grains. Two extreme cases are
considered: a simple cubic arrangement of cubes and face-centered cubic arrangement
of rhombic dodecahedra (these polyhedra originates from the Voronoi tessellation of the
grain nucleation centers located in a face centered-cubic arrangement as explained in
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(a) t = 2 s T = 652◦C

(b) t = 104 s T = 594◦C

(c) t = 228 s T = 471◦C

Figure 8.9: Simulation with the 3D mesoscopic model of the progressive percolation of
125 grains of an Al-1.0wt.%Cu alloy for different times. The average grain size was set to
100µm and the cooling rate Ṫ = −1◦C/s. On the left are represented the solid-liquid
interfaces (each color represents a different coalescence cluster). On the right side, a slice
of the same image is shown. The solid-liquid interface is represented by black lines while
each portion of space occupied by a cluster possesses a unique color. Note that in figure
(a) the diffusion boundary layer is shown in light gray and that in figure (b) a coalescence
cluster is evidenced by a black circle.
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T = 651◦C
gs = 0.650

(a) Contact clusters (b) Coalescence clusters

T = 616◦C
gs = 0.949

T = 512◦C
gs = 0.996

Figure 8.10: Simulation with the 3D mesoscopic model of the progressive percolation of
125 grains of an Al-1.0wt.%Cu alloy for different times. The average grain size was 100µm
and the cooling rate was set to Ṫ = −1◦C/s. The solid clusters are colored following
two different criteria: (a) contact clusters, (b) coalescence clusters. For both criteria, the
percolating cluster is highlighted in red, while the non-percolating clusters are shown in
transparency. Please note that in Figure (c) white regions appear where the solid-liquid
interface has disappeared and it is thus possible to see through the coalesced regions.
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Figure 8.11: Evolution of SV = SV dg0 as a function of the solid fraction, gs, for the 3D
mesoscopic model. The model prediction is compared with the evolution of SV for a
simple cubic arrangement of cubes and a face-centered cubic arrangement of rhombic
dodecahedra (see Appendix B.3). Please note that the blue line represents the evolution
of SV for the 3D mesoscopic model with the grain boundary energies calculated with
the expression proposed by Bulatov et al., while the magenta line represents results of
the 3D mesoscopic model in which the grain boundary energies are calculated in the
same manner as the 2D model. The solid fraction at which SV is maximum on the blue
curve (corresponding also to the solid fraction at which SV is maximum), gs,SVmax, is
also indicated.

Appendix B.3). Like for the 2D mesoscopic model, the evolution of SV closely follows the
prediction of the densest arrangement of edgy grains (corresponding to the face centered
cubic arrangement of rhombic dodecahedra in 3D, or hexagonal arrangement in 2D). In a
similar way compared to the 2D simulation, due to an increase of curvature of the grain
corners/edges when a stage of complete mixing is achieved in the liquid, the simulated
curve starts to depart from the analytical curve close to gs = 0.85 until gs,SVmax is
reached.
The value of the solid fraction at which SV (as well as SV ) is maximum is found at
gs,SVmax = 0.989 (see blue curve in Fig. 8.11). This value is larger than the observed
gs,SVmax = 0.975 of the 2D model. In order to ensure that the difference between the
values of gs,SVmax found in the 2D and 3D model do not result from the fact that grain
boundary energies are calculated differently, another simulation was performed with the
3D model but with the same grain boundary energy calculation as in the 2D model
(magenta curve in Fig. 8.11). It indicates a slightly smaller gs,SVmax = 0.985, which is
still larger than the 2D model prediction.
In order to explain the differences between the 2D and the 3D model, one can plot the
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Figure 8.12: Evolution of SV = SV dg0 as a function of the solid fraction, gs, for the 2D
model (blue dotted line) and for the 3D mesoscopic model in which the grain boundary
energies are calculated in the same manner as the 2D model (blue continuous line). The
fraction of coalesced interface (T =

Sgb
Ss`+Sgb

), found by a postprocessing analysis, is also
plotted for the 2D (brown dotted line) and 3D (brown continuous line) models.

fraction of coalesced interface which is equal to:

T =
Sgb

Ss` + Sgb
(8.2)

where Sgb is the are associated to all the grain boundaries and Ss` is the solid-liquid
interfacial area. As shown in Fig. 8.12, T begins to significantly increase at a lower solid
fraction for the 2D model compared to 3D (please note that the same grain boundary
energy distribution was considered for comparison). This suggests that, in 3D, coalescence
is more localized and that the reduction of solid-liquid interface becomes significant only
at a larger solid fraction. Therefore, a larger value of gs,SVmax was found for the 3D
model.

8.3.3 Percolation of several grains

The various transitions predicted by the 3D mesoscopic model, containing 125 Al-Cu
grains, are shown in Fig. 8.13 as a function of the Cu nominal composition. They are
compared with the 2D model predictions.
First, the percolation by contact and percolation by coalescence transitions are compared.
While the Tpcont curves of the 2D and 3D models are nearly superimposed, percolation by
coalescence is achieved at lower temperatures for the 3D model. This can be explained
by the fact that different grain boundary energy distributions were considered (see 8.3.1).
The differences observed between the 2D and 3D models for the TSVmax and the Tiso−`
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curves are due to topology reasons. As explained in the previous section, since coalescence
in 3D is more localized, the solid-liquid liquid interface removal is less pronounced for
the 3D model. The maximum of SV is thus found at larger solid fractions in 3D (see
Fig. 8.11), i.e., at lower temperatures. In order to explain the differences between the
Tiso−` curves, we recall that, in 3D, it is possible to have both liquid and solid phases
percolated at the same time, while this is not achievable in 2D. Therefore, in 2D, when
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Figure 8.13: Comparison of solid fractions and temperatures at which the different
transitions take place as calculated with the 3D (solid lines) and 2D (dotted lines)
mesoscopic models. Please note that the different regions (red, orange and green) are
only shown for the 3D simulation result. 4096 grains were considered in 2D, but with
only 125 grains in 3D. For both simulations the grain size was set to 100µm and the
cooling rate was -1.0◦C/s. As explained in section 8.3.1, the grain boundary energy is
calculated differently. Please note also that γs` was set to 0.1 J/m2 for the 2D simulation
and 0.135 J/m2 for the 3D simulation as justified in section 8.3.1.
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(a) Ṫ = −0.1◦C/s γs` = 0.135 J/m2
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Figure 8.14: Solid fractions and temperatures at which the different transitions take place,
as a function of parametrs indicated in the legend, for 125 grains (of 100µm size). Various
cases (cooling rates and values of γs` are considered. Please note that the grain boundary
energy shown in Fig. 8.8(b) was considered. The significance of the various transitions
are explained in Fig. 8.13 (except the gs,eut line which is dotted instead of continuous).
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coalescence of the solid grains starts to occur, the liquid is easily isolated, while in 3D
significant coalescence has to take place in order to form isolated liquid pockets. This is
the reason why liquid isolation occurs at lower temperatures in 3D. As a consequence,
the temperature interval over which the material is considered to be vulnerable in terms
of hot tearing (red region in Fig. 8.13) is significantly reduced in 3D compared to 2D.

As shown in Fig. 8.14, various transitions have been mapped for different conditions,
namely cooling rate and solid-liquid interfacial energy values, by considering 125 grains
in the 3D mesoscopic model. Please note that the gs,SVmax and TSVmax curves have a
jiggered appearance since the SV values were calculated in the postprocessing analysis of
the simulations and thus collected at a much lower frequency. Therefore, these curves do
not have the same level of precision as the others.
The values c0,HT and cmax0,HT for various conditions are summarized in Table 8.3.

Table 8.3: Summary of the nominal composition range sensitive to hot tearing, c0,HT , and
of the nominal composition at which the time spent in the vulnerable region is maximum,
cmax0,HT , for the cases shown in Fig. 8.7. The values c0,HT and cmax0,HT are explained in Fig.
8.6.

Case Ṫ [◦C/s] γs`
[
J/m2

]
c0,HT [wt%] cmax0,HT [wt%]

(a) -1.0 0.135 [0, 1.5] 1.3
(b) -10.0 0.135 [0, 1.4] 1.2
(c) -0.1 0.135 [0, 2.4] 1.9
(d) -1.0 0.1 [0, 1.5] 1.3

There is a noticeable difference in the observed values of c0,HT and cmax0,HT between case (a)
and case (c) in Fig. 8.14, in which the cooling rate is reduced by a factor 10 (Ṫ = −1.0◦C/s
versus Ṫ = −0.1◦C/s). In particular, the value of c0,HT is increased in the case of the
lower cooling rate. However, when the cooling rate is increased (in absolute values) from
-1.0◦C/s to -10.0◦C/s (comparison between case (a) and (b) in Fig. 8.14), the change of
c0,HT and cmax0,HT is hardly noticeable.

As a conclusion, the vulnerable region in terms of hot tearing has been found for different
conditions with the 3D mesoscopic model. However, we would like to emphasize that,
in order to predict the hot tearing susceptibility of an alloy, it is also necessary to know
the temperature (or solid fraction) at which the solid starts to be mechanically coherent
(coherency point) and is thus able to transmit strains, as determined experimentally by
Drezet et al. [108] using in situ diffraction observations on dog bone tests. However, the
final microstructure observed in their experiments was globulo-dendritic. It would be thus
interesting to perform the same analysis on a fully globular microstructure and compare
the data with predictions of the 3D mesoscopic model.
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8.3. 3D results

8.3.4 Comparison between experiments and modeling results

The results of the 3D mesoscopic model were finally compared with the in situ X-
ray tomography observations (section 7.3). We recall that the resolution of the X-ray
tomography experiment is expected to be on the order of 2µm (corresponding to three times
the voxel size). Therefore, liquid channels smaller than the resolution cannot be resolved.
For comparison, the coalescence calculation in the 3D mesoscopic model was modified:
when the width of a liquid film separating two grains within a column, h, becomes smaller
than the resolution of the X-ray tomography observation, the corresponding columns of
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Figure 8.15: Comparison of the in situ X-ray tomography observations of an Al-4.5wt.%Cu
sample (inoculated with 2.0wt% of master alloy) cooled at -0.05◦C/s and the 3D mesco-
copic model simulation performed for the same alloy and under the same conditions. The
final grain size in the model was set to a value observed in the experiment. Please note
that the color of the solid-liquid interface is colored based on the mean curvature value
and for each temperature observation, the values of the solid fraction, gs and the specific
solid-liquid interfacial area per unit volume, SV , are indicated.
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Chapter 8. Mesoscopic model results

the two adjacent grains are considered to be coalesced.
As shown in Fig. 8.15, the experimental result was compared with the 3D mesoscopic
model predictions with variable coalescence calculations: coalescence was considered for
liquid width lower than 2µm, 4µm and 6µm, respectively. Please note that the values of
gs and SV are very sensitive to the liquid width under which coalescence is considered.
The model was found to be in good agreement with the experiments if two grains were
considered to be coalesced when h < 4µm. This indicates that the actual resolution of the
X-ray tomography observations is on the order of 4µm and thus larger than the expected
2µm. It is suggested that this is due to the fact that the application of a median filter
to the stacks before binarization and the smoothing of the solid-liquid interface in the
postprocessing analysis lowers the actual resolution of the X-ray tomography observations.

The in situ X-ray tomography observations were compared with the 3D mesoscopic
predictions for various alloy compositions as shown in Fig. 8.16, 8.17 and 8.18 by
considering coalescence when h < 4µm. The model results are in good agreement with the
experimental ones, even if, as shown for example in Fig. 8.17, the model underestimates the
solid fractions at higher temperatures and slightly overestimates it at lower temperatures.
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Figure 8.16: Comparison of the in situ X-ray tomography observations of an Al-6.0wt.%Cu
sample (inoculated with 2.0wt% of master alloy) cooled at -0.05◦C/s and the 3D mesco-
copic model simulation performed for the same alloy and under the same conditions. The
final grain size in the model was set to a value observed in the experiment. Please note
that the color of the solid-liquid interface is colored based on the mean curvature value
and for each temperature observation, the values of the solid fraction, gs and the specific
solid-liquid interfacial area per unit volume, SV , are indicated.
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Figure 8.17: Same figure as Fig. 8.16 for an Al-4.5wt.%Cu alloy (inoculated with 2.0wt%
of master alloy) cooled at -0.05◦C/s.
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Figure 8.18: Same figure as Fig. 8.16 for an Al-3.0wt.%Cu alloy (inoculated with 2.0wt%
of master alloy) cooled at -0.05◦C/s.
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Chapter 8. Mesoscopic model results

As a conclusion, the X-ray tomography results can give some useful insights in terms of
grain percolation, by analyzing the percolation state of the solid phase, the evolution
of SV and the shift of the ISD plots envelopes. However, X-ray tomography results are
biased by the limited resolution of such observations (estimated to be on the order of
4µm). Therefore, the development of a mesoscopic model was useful in order to obtain
more realistic values for the various percolation transitions and thus to quantify the solid
fractions/temperatures at which the semi-solid material is vulnerable in terms of hot
tearing.
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9 Conclusion and perspectives

From the experimental point of view, an innovative method, based on the Bridgman
furnace principle, has been developed. The standard Bridgman furnace, generally used in
order to obtain the complete solidification history of a single sample, has been substantially
modified in order to reduce the thermal gradient and obtain the desired globular-equiaxed
grain structure. In addition, a new type of sample was engineered (consisting of alloy
pellets separated by ceramic separators) in order to reduce macrosegregation as well as
helping to achieve steady-state conditions. Please note that the temperature profile of
the furnace was tuned such as that each pellet remains liquid for approximately the same
amount of time (avoiding the fading of the inoculant) and then follows the same cooling
rate. This method thus allows to obtain the solidification history in a single sample
while minimizing macrosegregation. However, due to the thermal arrest experienced by
the pellets in the new sample/furnace configuration, larger grain sizes, on the order of
250µm, were obtained, even for heavily inoculated alloys (addition of 2.0wt% master alloy).
Please note that a complete analysis of the final grain size was performed for various
compositions, inoculant contents and experimental setups. The thermal arrest observed
in the modified sample (pellets separated by ceramics) was not only characterized by
thermal measurements performed with thermocouples inserted in the samples, but also
complemented by simple thermal simulations performed with the software Calcosoft.

The samples obtained with the modified Bridgman furnace were then observed post-
mortem by ex situ X-ray tomography. In addition, X-ray tomography experiments
have been performed in situ with a laser-heated furnace under similar conditions (Ṫ =

−0.035◦C/s for the ex situ versus Ṫ = −0.05◦C/s for the in situ). With the in situ setup
it was possible to obtain the desired globular-equiaxed microstructure, with a grain size
on the order of 150µm, since virtually no thermal arrest is experienced by the sample. A
postprocessing analysis of the principal curvature distribution (ISD plots) was performed
on both ex situ and in situ observations for various compositions of inoculated Al-Cu
alloys. The ISD plots of the X-ray tomography observations indicated the formation
of liquid cylinders along triple lines and, at a more advanced solidification stage, the
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formation of liquid pockets at quadruple vertices. In addition, the evolution of the specific
solid-liquid interfacial area, SV , as a function of the solid fraction measured from the
in situ data, was found to match well the analytical evolution of spherical grains (see
Fig. 7.18). However, as emphasized in this work, the resolution of the X-ray tomography
setup is on the order of 2µm. Therefore, liquid films whose thickness is inferior to the
resolution were not resolved. This is one of the reasons why the development of a model
that is not limited in terms of spatial resolution was needed.

From the modeling point of view, the percolation of a small number of grains has been
simulated with a multiphase-field model in 2D. However due to the large computational
cost of this technique, a new mesoscopic model has been developed both for 2D and 3D
geometries. This model was inspired by the granular model developed by Phillon et al. [3]
that considers polyhedral grains based on a Voronoi tessellation of space. In the new
mesoscopic model, the set of tetrahedra (triangles in 2D) that define the grains are further
subdivided into smaller tetrahedra (triangles in 2D) called columns and solute diffusion is
considered in both the solid and liquid phases. The mesoscopic model thus accounts for
solute diffusion in the liquid parallel to the interface and in the solid perpendicularly to
the interface, which are the two main phenomena influencing the last-stage solidification
before coalescence. Please note also that the enmeshing of the space into small columns
allows to obtain smoother shapes of the grains and to better describe the progressive
coalescence of the grains. In addition, the fact of considering smooth grain shapes allows
to have liquid cylinders/pockets in the last-stage solidification (which is not possible
in the case of polyhedral grains) and thus to correctly describes the solid fraction and
temperatures of the various percolation transitions. In addition, while for the 2D model
a simple relationship (simplified symmetric tilt grain boundary) was used for the grain
boundary energy, for the 3D model the grain boundary energy was found by using the
relationship recently proposed by Bulatov et al. [34] for FCC crystal structures.

The mesoscopic has been first validated both in 2D and 3D with the multiphase-field
predictions in simplified geometries. The assumptions of the model, such as the fact of
neglecting diffusion between the solid part of the columns and the choice of conditions at
the Voronoi boundary, have been justified. After that, the percolation of several grains
has been simulated in 2D. The mesoscopic model results are in good agreement with the
results of the granular model of Vernède et al. [40] which considers polygonal grains with
a correction to smooth the edgy corners. However, the main difference between the two
models is the solid fraction at which SV is maximum: a larger solid fraction was found
for the mesoscopic model (0.975 for the mesoscopic model versus 0.90 for the Vernède et
al. model) which can be explained by the fact that the mesoscopic model allows to have
a more progressive coalescence. Therefore, when coalescence takes place, the reduction
of SV is not as drastic as for the model of Vernède et al.. Please note that, due to the
difference in dimensionality, the 3D mesoscopic model predicts that the maximum of SV
is found at larger solid fractions compared to the 2D mesoscopic model.
The various percolation transitions of the solid phase have been mapped as a function
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of the nominal composition with the 2D and 3D mesoscopic models. In addition, by
estimating the solid fractions/temperatures at which the liquid starts to become isolated
from the largest liquid cluster (by assuming that the largest liquid cluster corresponds
to the feeding cluster), it was possible to predict the nominal compositions (and the
associated temperature and solid fraction) that are most vulnerable in terms of hot
tearing. While percolation by contact takes place at similar temperature for both 2D and
3D models, liquid isolation occurs at lower temperature (i.e., larger solid fractions) for
the 3D model. This can be explained by the topological differences, i.e., the fact that in
3D it is possible to have solid and liquid phases percolated at the same time while this is
forbidden in 2D. For example, for a cooling rate of −1.0◦C/s, the 3D model predicted
that Al-1.3wt.%Cu alloys are the most sensitive to hot tearing.
Finally, the 3D mesoscopic model was compared with X-ray microtomography observations.
A benchmark of the the simulation results postprocessed with various spatial resolutions
indicated that the actual resolution of the X-ray tomography analysis is on the order of
4µm due to the postprocessing analysis.

9.1 Perspectives

With the modified Bridgman furnace, it was possible to obtain the desired microstructure
under steady-state conditions while drastically limiting macrosegregation. While being
limited to equiaxed microstructures (since in columnar ones the solid-liquid interface
would be interrupted at each pellet end), this method allows to obtain the full solidification
history of an alloy in a single sample. However, the heat extraction in the developed
setup is not efficient enough to avoid thermal arrest in the sample. In order to avoid
the experienced thermal arrest, the sample could be solidified in a furnace with a design
that provides a better heat extraction, while keeping the same sample setup to still limit
macrosegregation. Another way of avoiding a thermal arrest, would be to simply increase
the thermal gradient that develops in the sample or use a thicker and more conductive
crucible in order to significantly increase heat extraction along the axial direction of the
sample.

By accounting for diffusion of solute and coalescence, the 3D mesoscopic model can
predict the temperatures at which percolation (either by contact or coalescence) occurs
and estimate when the material is vulnerable to hot tearing. However, this model does
not predict the coherency temperature of the alloy (temperature at which the semi-
solid material begins to be able to transmit strains), which is important to predict
whether hot tearing will effectively occur. The coherency of Al-Cu alloys was determined
experimentally by Drezet et al. [108] using in situ diffraction on a dog bone test. However,
the final microstructure observed in their experiments was globulo-dendritic. It would
thus be interesting to perform the same analysis on a fully globular microstructure and
compare the data with predictions of the 3D mesoscopic model.
The 3D mesoscopic predictions could also be useful in order to refine the 3D granular
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model of Sistaninia et al. [18–21] which accounts for stress development and liquid
feeding but using edgy polyhedral grains. Because of the large computational cost of the
mesoscopic model, a coupling of the two models is not realistic at present. However, a
benchmark of several possible grain configurations could be performed in order to correct
the solidification calculations of Sistaninia et al.’s model. This could be performed by
considering a single Voronoi facet and its associated tetrahedron for various geometries and
measuring the edges/corners curvatures. In addition, we recall that, in the granular model
of Sistaninia et al., a Voronoi facet is either considered as fully coalesced or separated by
a liquid channel if coalescence has not yet occurred at that location. The progressivity
of coalescence of the 3D mesoscopic model predictions could be taken into account, by
considering, for example the surface fraction of the Voronoi boundary that is coalesced.
This parameter could be used to better describe the semi-solid deformation calculation
performed in Sistaninia et al.’s model. In addition, the description of the grain boundary
energy as proposed by Bulatov et al. [34] could be used in the granular model in order
to better describe the repulsive/attractive proportion of grain boundaries, which can
significantly affects coalescence.
As a conclusion, the 3D granular models of Sistaninia et al. could be improved with the
outcomes of the present work in order to create more advanced predictive tools for hot
tearing formation.
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A Appendix experimental

A.1 Thermal gradient distribution

This section is aimed at deriving simple expressions relating the thermal gradients in
the alloy pellets with respect to the ones in the ceramic separators. In addition, the
temperature drop at the interface between the two materials is calculated.
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Figure A.1: Schematic representation of the RVE.
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Let us assume there is a constant flux through in the longitudinal direction. The total
drop of temperature in the RVE, ∆Ttot can be subdivided as follows:

∆Ttot = ∆Tpel + ∆Tint + ∆Tsep (A.1)

where ∆Tpel, ∆Tint and ∆Tsep are the temperature drop respectively in the pellet, at the
interface and in the separator. Since the flux is the same in each part:

j = κ
∆Ttot
∆ltot︸ ︷︷ ︸
G

= κpel
∆Tpel
∆lpel︸ ︷︷ ︸
Gpel

= hint∆Tint = κsep
∆Tsep
∆lsep︸ ︷︷ ︸
Gsep

(A.2)

where κ is the average thermal conductivity of the REV and κpel and κcer are the
conductivities of the pellet respectively the separator and hint the heat transfer coefficient
at the interface. The thermal gradient in the pellet, in the separator as well as the average
gradient are designed respectively by Gpel, Gsep and G. The thicknesses associated to the
pellet and the separator are indicated by ∆lpel respectively ∆lsep. As shown in Fig. A.1,
the the REV includes half of a pellet and half of a separator as well as their interface.
The REV length is thus given by ∆lRV E = 1

2 (∆lpel + ∆lsep).
One can find the following relatioship:

Gpel
Gsep

=
κsep
κpel

(A.3)

From Eq. (A.2), it is possible to deduce the average conductivity of the REV:

κ =

(
∆lpel

2

∆lRV E

1

κpel
+

1

∆lRV E

1

hint
+

∆lsep
2

∆lRV E

1

κsep

)−1

(A.4)

From a given G and by knowing the κ with Eq. (A.4), one can find the temperature
drops in the different parts and at the interface:

∆Tpel =
κ

κpel
G∆lpel

∆Tint =
κG

hint

∆Tcer =
κ

κcer
G∆lcer

(A.5)
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Therefore the gradients in the pellet and in the ceramic are the following:

Gpel =
κ

κpel
G

Gcer =
κ

κcer
G

(A.6)
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B Appendix Modeling

B.1 Multiphase-field

B.1.1 Choice of the multiobstacle potential

The choice of the multiobstacle potential presented in section 5.1.2 is explained hereafter.
Rappaz et al. [16] derived a multiphase-field formulation similar to the one derived in
section 5.1.2, but, instead of the multiobstacle potential, they considered a multiwell
potential (shown in Fig. B.1):

gmw(φ) =
∑
i<j

Wijφ
2
iφ

2
j (B.1)

φ2
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φ2φ1

φ3

(a) (b)

Figure B.1: (a) Ternary plot of the multiwell potential gmw(φ) for W12 = W13 = W23 = 1
and (b) its relative colormap plot.

This formulation would lead to spontaneous formation of ghost phases, since for example
for the interface between phase 1 and phase 2 (where φ1 = 0.5, φ2 = 0.5 and φ3 = 0) an
increase of φ3, with the constraint that φ1 = φ2, would cause a decrease of gmw.
In order to avoid the presence of ghost phases, a different shape of the potential is needed.
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Figure B.2: (a) Ternary plot of the multiobstacle potential gmo,simple(φ) forW12 = W13 =
W23 = 1 and (b) its relative colormap plot.

Typically, one can choose a multiobstacle potential:

gmo,simple(φ) =
∑
i<j

Wijφiφj (B.2)

Unlike for the multiwell potential gmw, for example for the interface between phase 1 and
phase 2 (where φ1 = 0.5, φ2 = 0.5 and φ3 = 0) an increase of φ3, with the constraint
that φ1 = φ2, would cause an increase of gmo,simple. The gmo,simple potential is shown
in Fig. B.2(a) and (b), where the maximum of the curve is located in the center of the
Gibbs simplex for all equal Wij . However, when the values of Wij are not equal, this is
not necessarily true (see Fig. B.2(c) and (d)).

This is the reason why another term, dependent on three phase-fields is added to gmo,simple
to obtain (see Fig. B.3):

gmo(φ) =
∑
i<j

Wijφiφj +
∑
i<j<k

9(Wijφk +Wikφj +Wjkφi)φiφjφk (B.3)

The maximum of the potential is then located at the center of the Gibbs-simplex,
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Figure B.3: (a) Ternary plot of the multiobstacle potential gmo(φ) for W12 = 1.8 and
W13 = W23 = 1 and (b) its relative colormap plot.

independently of the values of Wij .
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B.2 Mesoscopic model

B.2.1 Discretization of the diffusion equations in the solid

The diffusion equation in the solid (Eq. (5.10)) is solved with an implicit backward-Euler
finite difference formulation. The 1D domain is discretized in N + 1 nodes, going from 0

to N , the Nth node is used in order to account for the Dirichlet condition in r∗i (where
the concentration is c∗s). The spacing is ∆η = 1/N and the kth node is positioned at
k∆η. The time is discretized with a time step ∆t. The actual time t at the jth timestep
is thus represented by j∆t.

Discretization for an internal node

Eq. (5.10) can be discretized as follows for an internal node (note that, for clarity, we
omit the subscript s in cs):

cj+1
k − cjk

∆t
=

Ds

r∗i
2

cj+1
k+1 − 2cj+1

k + cj+1
k−1

∆η2 +

(
k∆η v∗i
r∗i

+
(P − 1)Ds

k∆η r∗i
2

)
cj+1
k+1 − c

j+1
k−1

2∆η

(B.4)

where cjk is the concentration at the node k at the time j∆t.
Let’s first define the mesh Fourier number as being Foη = Ds∆t

∆η2 . Eq. (B.4) can be
simplified as follows for an internal node:

−Akcj+1
k−1 + (1 +Ak +Bk)c

j+1
k −Bkcj+1

k+1 = cjk (B.5)

where Ak =
(
Foη
r∗i

2

(
1− (P−1)

2k

)
− v∗i ∆t

r∗i

k
2

)
and Bk =

(
Foη
r∗i

2

(
1 + (P−1)

2k

)
+

v∗i ∆t
r∗i

k
2

)
.

Discretization for the central node

At the node 0 (where ν and thus k are equal to zero), because of the no-flux boundary
condition in a finite difference scheme one can begin from Eq. (B.4) (with k=0) and set
cj+1
−1 = cj+1

1 :

cj+1
0 − cj0

∆t
=

2Ds

r∗i
2

cj+1
1 − cj+1

0

∆η2 +
(P − 1)Ds

η r∗i
2

∂c

∂η
(B.6)

where the term (P−1)Ds
η r∗i

2
∂c
∂η is undetermined. In order to shortcome this issue, instead

of evaluating it in η = 0 with a centered derivative, it is possible to evaluate the term
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(P−1)Ds
η r∗i

2
∂c
∂η in η = ∆η

2 with an uncentered derivative:

(P − 1)Ds

η r∗i
2

∂c

∂η

∣∣∣∣
η= ∆η

2

=
2(P − 1)Ds

∆η r∗i
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cj+1
1 − cj+1

0

∆η
=

2(P − 1)Ds

r∗i
2

cj+1
1 − cj+1

0

∆η2 (B.7)

A more rigourous way to evaluate the undetermined term is to use the Bernoulli-L’Hospital
(B.H.) rule helping to evaluate the following limit:

lim
η→0

(P − 1)Ds

η r∗i
2

∂c

∂η
= lim

η→0

(P − 1)Ds

r∗i
2

∂c
∂η

η

B.H.
= lim

η→0

(P − 1)Ds

r∗i
2

∂2c
∂η2

1

=
(P − 1)Ds

r∗i
2

cj+1
1 − 2cj+1

0 + cj+1
−1

∆η2 (B.8)

again it is possible to set cj+1
−1 = cj+1

1 and Eq. (B.8) becomes:

2(P − 1)Ds

r∗i
2

cj+1
1 − cj+1

0

∆η2 (B.9)

yielding the same result as with the uncentered derivative method (see Eq. (B.7)).
Finally, the diffusion equation in the solid discretized for the node 0 is given by:

cj+1
0 − cj0

∆t
=

2P Ds

r∗i
2

cj+1
1 − cj+1

0

∆η2 (B.10)

Eq. (B.10) can be simplified as follows:

(1 +B0)cj+1
0 −B0c

j+1
1 = cj0 (B.11)

where B0 = 2P
Foη
r∗i

2 .

Matricial form of the discretized diffusion equation

The set of equation can be written on the following matricial form:

[K] cj+1 = cj + s (B.12)

where cj and cj+1 are column vectors containing the concentrations of the solid at the
time steps j and j + 1. s and [K] are defined by:

s =


0
...
0

BN−1c
∗
s

 (B.13)
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[K] =


(1 +B0) −B0

−A1 (1 +A1 +B1) −B1

. . . . . . . . .
−AN−2 (1 +AN−2 +BN−2) −BN−2

−AN−1 (1 +AN−1 +BN−1)


(B.14)

Estimation of the derivative

In Eq. (5.19), it is needed to estimate the derivative
[
∂cs,i
∂r

]∗
numerically. The spacing is

given by ∆r = r∗i /N . In order to estimate
[
∂cs,i
∂r

]∗
, one can perform a Taylor expansion

of cs,i around c∗s,i (for clarity we omit the subscripts and use c instead of cs,i):

ck−1 = ck + ∆rc′k +
∆r2

2
c′′k −

∆r3

6
c′′′k +O

(
∆r4

)
(B.15)

ck−2 = ck + 2∆rc′k + 4
∆r2

2
c′′k − 8

∆r3

6
c′′′k +O

(
∆r4

)
(B.16)

ck−3 = ck + 3∆rc′k + 9
∆r2

2
c′′k − 27

∆r3

6
c′′′k +O

(
∆r4

)
(B.17)

The second, third and fourth order approximations of the first derivative are given by
respectively:[

∂cs,i
∂r

]∗
=
cN − cN−1

∆r
+O

(
∆r2

)
(B.18)[

∂cs,i
∂r

]∗
=

3cN − 4cN−1 + 2cN−2

2∆r
+O

(
∆r3

)
(B.19)[

∂cs,i
∂r

]∗
=

11cN − 18cN−1 + 9cN−2 − 2cN−3

6∆r
+O

(
∆r4

)
(B.20)

In all the calculations the fourth order derivative (Eq. (B.20)) was used.

B.2.2 Numerical integration in triangular/tetrahedral coordinates

In section 5.2, the following integral need to be solved:

〈cs,i〉 =
P

r∗i
P

∫ r∗i

0
cs,ir

(P−1)dr (B.21)
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This corresponds to an integration of cs in triangular coordinates in 2D and tetrahedral
coordinates in 3D. The domain is discretized in N + 1 nodes, going from 0 to N and the
spacing is ∆r = r∗i /N . We recall that kth node is positioned at k∆r.

Numerical integration in triangular coordinates

The integration of Eq. (B.21) in 2D (P=2) yields:

〈cs,i〉 =
2

r∗i
2

∫ r∗i

0
cs,irdr (B.22)

=
2

r∗i
2

[
S0c0 +

N−1∑
i=1

Skck + SNcN

]

=
2

r∗i
2

[
1

2

(
∆r

2

)2

c0 +
N−1∑
i=1

∆r (k∆r) ck +
1

2
∆r

((
N − 1

4

)
∆r

)
cN

]

=
1

N2

[
1

4
c0 +

N−1∑
i=1

2kck +

(
N − 1

4

)
cN

]
(B.23)

where S0, Sk and SN are the areas presented in Fig. B.4.

0 Nk

Sk

S0

SN

Figure B.4: Triangle associated to the numerical integration in 2D triangular coordinates.

For example, for a constant concentration c, Eq. (B.22) becomes:

〈cs,i〉 =
2

r∗i
2

∫ r∗i

0
c rdr = c

2

r∗i
2

∫ r∗i

0
rdr = c (B.24)
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while Eq. (B.23) becomes:

〈cs,i〉 =
1

N2

[
N +

N−1∑
i=1

2k

]
c =

1

N2
[N + (N − 1)N ] c = c (B.25)

Numerical integration in tetrahedral coordinates

The integration of Eq. (B.21) in 3D (P=3) yields:

〈cs,i〉 =
3

r∗i
3

∫ r∗i

0
cs,ir

2dr =
6

r∗i
3

∫ r∗i

0
cs,i

r2

2
dr (B.26)

=
6

r∗i
3

[
V0c0 +

N−1∑
i=1

Vkck + VNcN

]

=
6

r∗i
3


1

6

(
∆r

2

)3

c0 +
N−1∑
i=1

1

6
∆r3

((
k +

1

2

)3

−
(
k − 1

2

)3
)
ck

+
1

6
∆r3

(
N3 −

(
N − 1

2

))3

cN


=

1

N3

[
1

8
c0 +

N−1∑
i=1

(
3k2 +

1

4

)
ck +

(
3

2
N

(
N − 1

2

)
+

1

8

)
cN

]
(B.27)

where V0, Vk and VN are the volumes presented in Fig. B.4.

0
N

Vk

V0

VN

k

Figure B.5: Tetrahedron associated to the numerical integration in 3D tetrahedral
coordinates.
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For example, for a constant concentration c, Eq. (B.26) becomes:

〈cs,i〉 =
3

r∗i
3

∫ r∗i

0
c r2dr = c

3

r∗i
3

∫ r∗i

0
r2dr = c (B.28)

while the RHS becomes:

〈cs,i〉 =

(
1

N

)3
[

1

8
+
N−1∑
i=1

(
3k2 +

1

4

)
+

(
3

2
N

(
N − 1

2

)
+

1

8

)]
c

=

(
1

N

)3 [
N

(
N − 1

2

)(
N +

1

2

)
+
N

4

]
c = c

(B.29)
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B.2.3 Solute conservation equations in the liquid part of the columns

In section 5.2, it is needed to calculate the following integral:∫ Li

r∗i

〈c`,i〉r(P−1)dr =

∫ Li

r∗i

c`,i(r)r
(P−1)dr (B.30)

with c`,i(r) assumed to be a piecewise parabolic-linear function (see Eq. (5.14)), Eq.
(B.30) becomes:∫ Li

r∗i

〈c`,i〉r(P−1)dr =

∫ r∗i +λi

r∗i

[
c∞`,i +

(
c∗`,i − c∞`,i

)(λi − (r − r∗i )
λi

)2
]
r(P−1)dr

+

∫ Li

r∗i +λi

c∞`,i r
(P−1)dr (B.31)

∫ Li

r∗i

(
〈c`,i〉 − c∞`,i

)
r(P−1)dr =

∫ r∗i +λi

r∗i

(
c∗`,i − c∞`,i

)(λi − (r − r∗i )
λi

)2

r(P−1)dr

(B.32)

Solution in 2D

In 2D (with P = 2), the left hand side of Eq. (B.32) becomes:∫ Li

r∗i

(
〈c`,i〉 − c∞`,i

)
rdr =

(
〈c`,i〉 − c∞`,i

) L2
i − r∗i

2

2
(B.33)

while the right hand side of Eq. (B.32) becomes:∫ r∗i +λi

r∗i

(
c∗`,i − c∞`,i

)(λi − (r − r∗i )
λi

)2

rdr

=
(
c∗`,i − c∞`,i

) ∫ λi

0

(
λi − r′

λi

)2 (
r′ + r∗i

)
dr′

=
(
c∗`,i − c∞`,i

)−[λi
3

(
λi − r′

λi

)3 (
r′ + r∗i

)]λi
0

+

∫ λi

0

λi
3

(
λi − r′

λi

)3

dr′


=
(
c∗`,i − c∞`,i

)(r∗i λi
3

+
λ2
i

12

)
=
(
c∗`,i − c∞`,i

) λi(λi + 4r∗i )

12
(B.34)

the result was obtained with the change of variable r′ = r−r∗i and by using an integration
by parts.
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• Until λi < Li − r∗i , Eq. (B.32) gives:

(
〈c`,i〉 − c∞`,i

) L2
i − r∗i

2

2
=
(
c∗`,i − c∞`,i

) λi(λi + 4r∗i )

12
(B.35)

and Eq. (B.35) can then be solved for λi.
• Once the solute layer reaches the Voronoi facet (i.e., when λi > Li − r∗i ), the

composition c∞`,i will increase since a no-flux condition should apply at this location
(i.e., due to the rejected solute of the symmetric neighbour grain). λi is then known
and fixed to Li − r∗i in Eq. (B.35):

(
〈c`,i〉 − c∞`,i

) L2
i − r∗i

2

2
=
(
c∗`,i − c∞`,i

) (Li − r∗i )(Li + 3r∗i )

12
(B.36)

and Eq. (B.36) can then be solved for c∞`,i.

Solution in 3D

In 3D (with P = 3), the left hand side of Eq. (B.32) becomes:∫ Li

r∗i

(
〈c`,i〉 − c∞`,i

)
r2dr =

(
〈c`,i〉 − c∞`,i

) L3
i − r∗i

3

3
(B.37)

while the right hand side of Eq. (B.32) becomes:∫ r∗i +λi

r∗i

(
c∗`,i − c∞`,i

)(λi − (r − r∗i )
λi

)2

r2dr

=
(
c∗`,i − c∞`,i

) ∫ λi

0

(
λi − r′

λi

)2 (
r′ + r∗i

)2
dr′

=
(
c∗`,i − c∞`,i

)−[λi
3

(
λi − r′

λi

)3 (
r′ + r∗i

)2]λi
0

+

∫ λi

0

2λi
3

(
λi − r′

λi

)3 (
r′ + r∗i

)
dr′


=
(
c∗`,i − c∞`,i

)λir∗i 2

3
−

[
λ2
i

6

(
λi − r′

λi

)4 (
r′ + r∗i

)]λi
0

+

∫ λi

0

λ2
i

6

(
λi − r′

λi

)4

dr′


=
(
c∗`,i − c∞`,i

)(λir∗i 2

3
+
λ2
i r
∗
i

6
+
λ3
i

30

)
=
(
c∗`,i − c∞`,i

) λi(λ2
i + 5r∗i λi + 10r∗i

2)

30
(B.38)

the result was obtained with the change of variable r′ = r−r∗i and by using two integration
by parts.
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• Until λi < Li − r∗i , Eq. (B.32) gives:

(
〈c`,i〉 − c∞`,i

) L3
i − r∗i

3

3
=
(
c∗`,i − c∞`,i

) λi(λ2
i + 5r∗i λi + 10r∗i

2)

30
(B.39)

and Eq. (B.39) can then be solved for λi.

• Once the solute layer reaches the Voronoi facet (i.e., when λi > Li − r∗i ), the
composition c∞`,i will increase since a no-flux condition should apply at this location
(i.e., due to the rejected solute of the symmetric neighbour grain). λi is then known
and fixed to Li − r∗i in Eq. (B.39):

(
〈c`,i〉 − c∞`,i

) L3
i − r∗i

3

3
=
(
c∗`,i − c∞`,i

) (Li − r∗i )(L2
i + 3Lir

∗
i + 6r∗i

2)

30
(B.40)

and Eq. (B.40) can then be solved for c∞`,i.

Derivative of the liquid profile

In Eq. (5.19), it is needed to have an analytical expression of the gradient in the liquid.
The solute profile in the proximity of the interface is given by:

c`,i(r) = c∞`,i +
(
c∗`,i − c∞`,i

)(λi − (r − r∗i )
λi

)2

(B.41)

Its derivative in r∗i (in both 3D and 2D) is thus:

[
∂c`,i
∂r

]∗
=

c∗`,i − c∞`,i
λi
2

(B.42)

Once the solute layer reaches the Voronoi facet, λi is then known and fixed to Li − r∗i
and thus:[

∂c`,i
∂r

]∗
=

c∗`,i − c∞`,i
Li−r∗i

2

(B.43)
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B.2.4 Voronoi boundary conditions

As explained in section B.2.3, once the solute layer reaches the Voronoi facet (i.e., when
λi > Li−r∗i ), the composition c∞`,i will increase due to the rejected solute of the symmetric
neighbour grain. However, due to the way the calculation is performed, the solute gradient
is zero in r = Li in the r-axis coordinates and the profile (once the solute layer has
reached the facet) has the following form:

c`,i(r, t) = c∞`,i(t) +
(
c∗`,i(t)− c∞`,i(t)

)( Li − r
Li − r∗i (t)

)2

(B.44)

and it can be checked that:

∂c`,i
∂r

∣∣∣∣
r=Li,t

= 0 (B.45)

In fact, there should be a no-flux condition in the direction perpendicular to the Voronoi
boundary. In order to implement such a condition without substantially modifying the
principles of the model, one can first introduce a vector v tangential to the Voronoi
boundary. The tangential gradient of the liquid concentration at the position r = Li of a

r

c∞`,iright

r

c∞`,ic∞`,ileftv

Figure B.6: Meshed Voronoi domain with the liquid part of column i and respective
neighbours highlighted in red.
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column i, ∂c`,i∂v , can be estimated from the previous time step concentration c∞`,i and the
corresponding values of the neighbouring columns. For the column i represented in Fig.
B.6, this gradient can be estimated as follows:

∂c`,i
∂v

∣∣∣∣
r=Li,t

=
c∞`,iright(t)− c

∞
`,ileft

(t)

∆dv
(B.46)

Since the projected gradient on the r-axis is given by ∂c`,i
∂v

∣∣∣
r=Li,t

v · r, the modified profile

in order to cope with correct boundary conditions is thus given by:

cmod`,i (r, t) = c`,i(r, t) +

[
∂c`,i
∂v

∣∣∣∣
r=Li,t−∆t

v · r

]
(r∗i − r)

Li − r
Li − r∗i

(B.47)

and it can be checked that:

∂cmod`,i

∂r

∣∣∣∣∣
r=Li,t

=

[
∂c`,i
∂v

∣∣∣∣
r=Li,t−∆t

v · r

]
(B.48)

The gradient along the r-axis is corrected by evaluating the gradient in the v direction at
the previous time step. Provided that the time step is small enough, this introduces a
no-flux boundary condition perpendicularly to the Voronoi boundary.

Instead of using Eq. (B.36) for the 2D case, the new c∞`,i, when the solute layer has
reached the boundary of the column, can be found with the following relationship:

(
〈c`,i〉 − c∞`,i

) L2
i − r∗i

2

2
=
(
c∗`,i − c∞`,i

) (Li − r∗i )(Li + 3r∗i )

12

+

[
∂c`,i
∂v

∣∣∣∣
r=Li,t−∆t

v · r

]
(Li − r∗i )2(Li + r∗i )

12

(B.49)

Please note that it is possible to find a similar expression for the 3D case. However, the
calculation of the gradient at the Voronoi boundary is more complex. Here only the 2D
case is used in order to evaluate the impotance of the no-flux condition at the Voronoi
boundary.
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B.2.5 Meshing of the interface

In 2D, the meshing of the solid-liquid interface is straightforward since each column has
two neighbours. The meshing becomes slightly more complicated when coalescence occurs
(see section 5.2.4).
In 3D the meshing of the solid-liquid interface is much more complex. As a consequence of
the way the columns were constructed, it is known that each column has three neighbours,
the positions representing the solid-liquid interface position within one column (red points
in Fig. B.7) can thus be connected (red lines in Fig. B.7). However, as shown in Fig.
B.7, various polygons (squares, pethagons, hexagons, etc.) have to be created in order to
form a closed surface.

Figure B.7: Subdivision of the domain in tetrhedral columns (in the figure only the
column triangular basis is shown in black). The points at the center of the columns (thus
representing the position of the interface within one column) are shown in red and are
connected by red lines.

Since no algorithm performing a mesh from such a configuration was found in the literature,
we developed a new one.
This algorithm, explained in Fig. B.8, is the following:

1. Let us start from point 1 and connect it to point 2.

2. After that, in order to create a polygon, point 2 can be either connected to point 3
or 10. With the help of the normal to point 2, n, it is possible to chose the point
that yields the smaller angle (α1 in this case). The pentagon 1-2-3-4-5 can be thus
constructed with this method.

3. After that, another pair of connected points (which has not previously been “explored”
in a given direction to form a polygon) is chosen, for example the pair 5-6 to create
the hexagon 6-7-8-9-1-5.
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1

2
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4
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6 7

8

9

10

n

α1

α2

Figure B.8: Representation of the mesh when no coalescence occurred.

1

2
3

4

5

6 7

8

9

10

X

Figure B.9: Representation of the mesh when coalescence occurred in point 1. The nodes
that were originally connected to the coalesced point are highlighted in green.

Figure B.10: Same figure as Fig. B.9 but the green point are connected to their symmetric
counterparts (shown in transparency) by creating quadrilaterals.
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As shown in Fig. B.9, the coalesced points (point 1 in this case) are not considered.
The algorithm starts from the pair formed by point 2 and 3 to create the quadrilateral
2-3-4-5, the other polygons are created in the same way. The green points represent the
points that were originally connected to the coalesced point(s). In order to create a closed
surface the green point are then connected to their symmetric counterparts by creating
quadrilaterals. For green points located at the boundary of the calculation domain, the
segments connect these points to their orthogonal projections on the boundary, similarly
to what was performed in 2D and shown in Fig. 5.14. The final mesh for a typical case
of two coalescing grains is shown in Fig. B.11 (where the blue points are correspond to
the projection of the green points that are at the Voronoi boundary.

(a) t1 (b) t2 > t1

Figure B.11: Final mesh for two coalescing grains.
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B.2.6 Evaluation of the curvature

In this section are presented the calculations necessary to determine the curvature in 2D
and 3D.

Curvature of a circle in 2D

The general equation of a circle is given by:

ax2 + ay2 + bx+ cy + e = 0 (B.50)

If we consider that the interface position in the column i is given by P1(x1, y1), while in
the neighbouring columns is given by P2(x2, y2) and P3(x3, y3) (see Fig. 5.16), one can
solve a set of equations summarized in the following determinant:

det(A) =

∣∣∣∣∣∣∣∣∣
x2 + y2 x y 1

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1

∣∣∣∣∣∣∣∣∣ = 0 (B.51)

and thus:

a = det (A11) , b = det (A12) , c = det (A13) , e = det (A14) (B.52)

where Aij are the cofactors of the matrix A.
The equation of the circle possessing a center PR (x0, y0) and a radius R can be written
as:

(x− x0)2 + (y − y0)2 = R2 (B.53)

By combining Eq. (B.50) and Eq. (B.53), one can find the center and radius of the circle:

PR(x0, y0) = (− b

2a
,− c

2a
) (B.54)

R =

√
b2 + c2

4a
− e (B.55)

The mean local curvature is thus given by:

κ =
1

2
(κ1 + κ2) =

1

2

(
1

R
+ 0

)
=

1

2R
(B.56)
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Curvature of a sphere in 3D

The general equation of a sphere is given by:

ax2 + ay2 + az2 + bx+ cy + dz + e = 0 (B.57)

If we consider that the interface position in the column i is given by P1(x1, y1), while in
the neighbouring columns is given by P2(x2, y2), P3(x3, y3) and P4(x3, y3) (see Fig. 5.17),
one can solve a set of equation summarized in the following determinant:

det(A) =

∣∣∣∣∣∣∣∣∣∣∣

x2 + y2 + z2 x y z 1

x2
1 + y2

1 + z2
1 x1 y1 z1 1

x2
2 + y2

2 + z2
2 x2 y2 z2 1

x2
3 + y2

3 + z2
3 x3 y3 z3 1

x2
4 + y2

4 + z2
4 x4 y4 z4 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (B.58)

and thus:

a = det (A11) , b = det (A12) , c = det (A13) , d = det (A14) , e = det (A15)

(B.59)

where Aij are the cofactors of the matrix A.
The equation of the sphere possessing a center PR (x0, y0, z0) and radius R can be written
as:

(x− x0)2 + (y − y0)2 + (z − z0)2 = R2 (B.60)

By combining Eq. (B.57) and Eq. (B.60), one can find the center and radius of the
sphere:

PR(x0, y0, z0) = (− b

2a
,− c

2a
,− d

2a
) (B.61)

R =

√
b2 + c2 + d2

4a
− e (B.62)

The mean local curvature is thus given by:

κ =
1

2
(κ1 + κ2) =

1

2

(
1

R
+

1

R

)
=

1

R
(B.63)
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B.3 Polyhedron associated to regularly arranged edgy grains

In this section we explain the polyhedra associated to regularly arranged edgy grains in
3D.
It is straightforward that, by setting the nucleation points in a simple cubic lattice, the
associated polyhedra consist of cubes. However, in a face-centered cubic arrangement, it
is more complex to visualize it. As shown in Fig. B.12, a cuboctahedron is created by
the connections of the nearest nucleation centers, forming a so-called Delaunay triangula-
tion. The polyhedron associated to a FCC arrangement is a rhombic dodecahedron (in
geometrical terms, it corresponds to the dual of the cuboctahedron).

(a) (b)

nucleation centers

Figure B.12: (a) Cuboctehedron created by the junction by the nearest nucleation points
arranged in a FCC arrangement (Delaunay triangulation). (b) Rhombic dodecahedron
representing the Voronoi diagram of the FCC arrangement (after [109]).
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C List of symbols

Roman alphabet

A′ constant realting the velocity of the isotherms with the
columnar front undercooling

c0 nominal composition of an alloy
c0,HT range of nominal compositions of alloys sensitive to hot

tearing
cmax0,HT nominal composition of the alloy for which the time spent

in the vulnerable region (in the context of hot tearing)
is maximum

cs, c` solute concentration in the solid and liquid phases of a
binary alloy

c∗s, c∗` solute concentration in the solid and liquid phases of a
binary alloy at the solid-liquid interface

c∞` solute concentration at the Voronoi facet (mesoscopic
model)

〈c〉,〈cs〉,〈c`〉 average concentration, average solid concentration, aver-
age liquid concentration

cliq liquidus concentration
csol solidus concentration
cp, cV specific heat at constant pressure and at constant volume
Ds, D` diffusion coefficients in the liquid and solid phases
d diameter of a sphere
dg, dg0, d2D

g0 grain size, final grain size, final grain size measured on a
section

df diameter of the substrate (assuming a disk-shape form)
F free energy functional in phase-field model
f(θ) shape factor
G, Gpel,Gsep temperature gradient, temperature gradient in the alloy

pellet, temperature gradient in the ceramic separator
G,Gm total and molar ibbs free energy
GC composition gradient
g acceleration due to gravity, 9.82 m s−2
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Appendix C. List of symbols

gg, gge grain volume fraction, extended grain volume fraction
gmo term related to the multiobstacle potential between two

phases (multiphase-field)
gs volume fraction of solid
gsc , gsc,L, 〈gsc,L〉 volume fraction of solid at percolation, finite lattice solid

fraction percolation threshold, average finite lattice solid
fraction percolation threshold

gs,iso−` solid fraction at which isolation of the liquid occurs
gs,pcoal solid fraction at which percolation by coalescence occurs
gs,pcont solid fraction at which percolation by contact occurs
gs,SVmax solid fraction at which SV is maximum
gge extended grain fraction
h liquid film width
hmesh mesh size
hext heat transfer coefficient with the exterior
hint interface heat transfer coefficient
k0, k

m
0 partition coefficient (mass), partition coefficient(molar)

Lf latent heat of fusion per unit mass
Mij mobility between phase i and j (multiphase-field model)
m disturbance mode
m`,ms slopes of the liquidus and solidus curve (mass fractions)
n number of moles
n, (nx, ny, nz) unit vector normal to a surface and its Cartesian

components
ng, n2D

g grain density in volume, grain density measured on a
section

p, pa, p` pressure, atmospheric pressure, pressure in the liquid
pC`,max cavitation pressure in the liquid
p, pc, pc,L, 〈pc,L〉 probability, percolation threshold, finite lattice percola-

tion threshold, average finite lattice percolation threshold
Q growth restriction factor
R radius
Rg, Rg0, Rg0,c radius of grain, final grain radius, critical grain radius
Rc radius of a critical nucleus
r∗ position of the interface in the mesoscopic model (and

when a Landau transformation is performed)
S average number of sites per cluster
Ss` solid-liquid interfacial area
SV solid-liquid interfacial area per unit volume (= Ss`/VR)
SV normalized solid-liquid interfacial area per unit volume

(= SV dg0)
T temperature
Ṫ cooling rate
Ṫc critical cooling rate of the globular-to-dendritic transition
T ∗ solid-liquid interface temperature
Tcol temperature of a columnar front
Teut eutectic temperature
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Text external temperature of the furnace
Tm equilibrium melting temperature of pure material
T∞m melting point of a pure material possessing considering

a flat surface
TRm melting point of a pure material possessing an interface

of curvature R
Tliq liquidus temperature
Tsol solidus temperature
Tiso−` temperature at which isolation of the liquid occurs
Tpcoal temperature at which percolation by coalescence occurs
Tpcont temperature at which percolation by contact occurs
TSVmax temperature at which SV is maximum
t time
tcol time at which the columnar front arrives
tf local solidification time
tn time of nucleation
VR volume of representative volume element
v scalar velocity
v∗ velocity of the interface in the mesoscopic model (and

when a Landau transformation is performed)
vg velocity normal to the surface of a grain
vT isotherm velocity
x∗ position of the interface in 1D problems
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Appendix C. List of symbols

Greek alphabet

Γs` Gibbs-Thomson coefficient (= γs`Tf/∆Sf )
γf` surface energy between foreign substrate and liquid
γfs surface energy between foreign substrate and solid
γ percolation exponent constant
γgb grain boundary surface energy
γmaxgb grain boundary surface energy for a highly disordered

grain boundary
γs` surface energy between solid and liquid
γ`a surface energy between liquid and air
∆G free energy difference
∆Ghomon ,∆Gheteron free energy barrier for homogeneous or heterogeneous

nucleation
∆Sf volumetric entropy of fusion of species (= Lf/Tf )
∆T undercooling
∆Tb undercooling for bridging or coalescence
∆T0 Equilibrium freezing range or solidification interval (=

Tliq − Tsol)
∆Tint temperature drop at the interface between two materials
∆Tcol undercooling of the columnar front
∆Tn nucleation undercooling
∆TR curvature undercooling
∆t time step
∆θ misorientation
δs` thickness of the diffuse solid-liquid interface
εij first interfacial energy contribution (multiphase-field)
η dimensionless coordinate in Landau transformation;

paraboloidal coordinate
θ angular coordinate; wetting angle
κ thermal conductivity
κ̄,κG mean and Gaussian curvature of a surface
κ1,κ2 principal curvatures
λ diffusion layer thickness in mesoscopic model
λ1, λ2 primary, secondary dendrite arm spacing
ν percolation exponent constant
ξ correlation length
ρ density
ρs, ρ`, ρ

eut
s , ρeut` density of solid, liquid, solid eutectic and liquid eutectic

σfail tensile strength
Φ∗i flow of solute at the interface in column i during one

time step in the mesoscopic model
Φji flow of solute between column i and j during one time

step in the mesoscopic model
φ vector containing all the phase-field variables φi
φi phase-field variable (i = 1: liquid, i > 1: solid grain)
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Classical dimensionless numbers

Name Expression Physical Meaning

Fourier Fo =
αtc
L2
c

ratio of characteristic time tc to the
time for conduction L2

c/α

Mathematical operators

Symbol Meaning Representation

A ·B dot product of two vectors aibi

AT transpose of a second rank tensor aji

trA trace of a second rank tensor aii

∇A gradient of a scalar
∂A

∂xi

∇ ·A divergence of A
∂ai
∂xi

∇2A Laplacian of A
∂2A

∂xi∂xi
‖A‖ L2 norm of a vector

√
aiai
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