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1 Stationary Points of the Log-Likelihood

In this section, we briefly explain why the log-likelihood in Luce’s model has a unique stationary
point, that at the ML estimate. Recall that we assume that the comparison graph GD is strongly
connected. The log-likelihood is given by

logL(π | D) =

d∑
`=1

log π` − log
∑
j∈A`

πj

 . (1)

This function is not concave in π; however, this does not preclude the existence of a unique stationary
point. Letting πi = eθi , we write the reparametrized log-likelihood as

logL(π(θ) | D) =

d∑
`=1

θ` − log
∑
j∈A`

eθj

 ,

which is strictly concave in θ and therefore admits a unique stationary point, at the maximum of the
function. Denote this maximum by θ̂. The partial derivative of the log-likelihood with respect to π` is

∂ logL
∂π`

=
∂ logL
∂θi

· ∂θi
∂πi

=
∂ logL
∂θi

· 1

πi
. (2)

As 1/πi is strictly positive, the partial derivative vanishes only at π̂i = eθ̂i . In conclusion, π̂ is the
unique ML estimate, as well as the only stationary point.

2 Proofs of Theorems 1 and 2

For any two items i and j, recall that Di�j ⊆ D is the set of observations where i wins over j. Let
∆n = {u ∈ Rn | ui > 0,

∑
i ui = 1} be the open (n−1)-dimensional simplex. Recall that for

S ⊆ D and π ∈ ∆n, we define

f(S,π)
.
=
∑
A∈S

1∑
i∈A πi

. (3)

We will now prove the following theorem.
Theorem 1. The Markov chain with inhomogeneous transition rates λji = f(Di�j ,π) converges to
the maximum-likelihood estimate π̂, for any initial distribution π0 ∈ ∆n.

We take a discrete-time perspective, and consider the uniformized Markov chain with (parametric)
transition probabilities

P (π)ij =


ε
∑

A∈Dj�i

1∑
t∈A πt

if j 6= i,

1− ε
∑
k 6=i

∑
A∈Dk�i

1∑
t∈A πt

if j = i,

(4)

1



where ε (the uniform rate parameter) is a small factor that ensures that the matrix is row-stochastic.
We say that the Markov chain is inhomogeneous because the transition probabilities depend on the
current distribution over states; as a consequence, standard ergodic results do not apply directly. From
the development at the beginning of Section 3 of the main text, it follows that π̂ is the unique invariant
distribution of the Markov chain, i.e., satisfying π̂ = π̂P (π̂). Consider the mapping T : ∆n → ∆n

defined by

T (π) = πP (π), (5)

representing the distribution after one step of the Markov chain. Using a contraction argument, we
will show that the iteration πk+1 = T (πk) converges to a fixed point for any π0 ∈ ∆n. It directly
follows that the Markov chain converges to π̂ from any initial distribution.

We start with a technical lemma that characterizes the Jacobian matrix of the mapping. We will use
the notation

T k(π) = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
k times

(π) (6)

for k successive applications of the mapping. We will also extend our notation for subsets of
observations, and let Di�j,k ⊆ D be the observations where i wins among a set of alternatives
containing j and k.
Lemma 1. The Jacobian matrix of the mapping T (π) defined in (5) is given by

T ′(π)ij =

[
∂T (π)

∂πi

]
j

=


ε
∑
k

∑
A∈Dk�j,i

πj
(
∑
t∈A πt)

2
if j 6= i,

1− ε
∑
j 6=`

∑
k

∑
A∈Dk�j,`

πj
(
∑
t∈A πt)

2
if j = i.

(7)

Furthermore, there is a finite m ∈ N such that for S′ = (Tm)′ it holds that δ = mini,j S
′
ij > 0 and

‖S′‖1 = 1.

Proof. The partial derivative of T with respect to π` at j 6= ` is[
∂T (π)

∂π`

]
j

=

[
∂π

∂π`
P (π)

]
j

+

[
π
∂P (π)

∂π`

]
j

(8)

= ε
∑

A∈Dj�`

1∑
t∈A πt

− ε
∑
k 6=j

∑
A∈Dj�k,`

πk
(
∑
t∈A πt)

2

+ ε
∑
k 6=j

∑
A∈Dk�j,`

πj
(
∑
t∈A πt)

2

(9)

= ε
∑

A∈Dj�`

πj
(
∑
t∈A πt)

2
+ ε
∑
k 6=j

∑
A∈Dk�j,`

πj
(
∑
t∈A πt)

2
(10)

= ε
∑
k

∑
A∈Dk�j,`

πj
(
∑
t∈A πt)

2
. (11)

To go from (9) to (10), we reverse the order of summation in the subtracted term and rewrite the
fraction inside the left term.∑

A∈Dj�`

1∑
t∈A πt

−
∑
k 6=j

∑
A∈Dj�k,`

πk
(
∑
t∈A πt)

2
(12)

=
∑

A∈Dj�`

1∑
t∈A πt

−
∑

A∈Dj�`

∑
k∈A,k 6=j

πk
(
∑
t∈A πt)

2
(13)

=
∑

A∈Dj�`

∑
k∈A

πk
(
∑
t∈A πt)

2
−

∑
A∈Dj�`

∑
k∈A,k 6=j

πk
(
∑
t∈A πt)

2
(14)

=
∑

A∈Dj�`

πj
(
∑
t∈A πt)

2
(15)
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One can find the partial derivative with respect to π` at ` by noticing that each row of the Jacobian
matrix sums to one: ∑

j

[
∂T (π)

∂π`

]
j

=
∑
j

P (π)`j +
∑
j

∑
i

πi
∂P (π)ij
∂π`

(16)

= 1 +
∑
i

πi
∂

∂π`

∑
j

P (π)ij = 1. (17)

The matrix is therefore row-stochastic, and ‖T ′(π)‖1 = 1. Because transition probabilities are strictly
positive on the edges of the comparison graph (which is, by assumption, strongly connected), there is
a finite m ∈ N such that all entries of Tm(π) are lower-bounded by a strictly positive number. It is
easy to see that the Jacobian matrix T ′ also has strictly positive entries on the edges of the comparison
graph, and therefore

S′(π) = (Tm(π))′ =

m−1∏
i=0

T ′(T i(π)) (18)

also has its entries lower-bounded by a strictly positive number. Furthermore, S′(π) is a product of
stochastic matrices, hence ‖S′(π)‖1 = 1.

Now we will use the properties of the Jacobian matrix to show that T is a fixed-point iteration, using
a standard argument. Our proof is inspired by the lecture notes of Tresch [1] and von Petersdorff [2].

Proof of Theorem 1. Using the results of Lemma 1, let S(π) = Tm(π) and write S′(π) as

S′(π) = δ1n×n +R(π), (19)

where 1n×n is the all-ones matrix, and ‖R(π)‖1 = 1− nδ = c < 1. Now pick any x,y ∈ ∆n, and
let S̃(u)

.
= S(x+ u(x− y)). Then S̃′(u) = S′(x+ u(y − x))(y − x), and

S(y)− S(x) = S̃(1)− S̃(0) =

∫ 1

0

S̃′(u)du =

∫ 1

0

S′(x+ u(y − x))(y − x)du (20)

As S′ is continuous, we have

‖S(y)− S(x)‖1 ≤
∫ 1

0

‖S′(x+ u(y − x))(y − x)‖1du (21)

=

∫ 1

0

‖ δ1n×n(y − x)︸ ︷︷ ︸
=0

+R(x+ u(y − x))(y − x)‖1du (22)

≤
∫ 1

0

‖R(x+ u(y − x))‖2︸ ︷︷ ︸
≤c

‖y − x‖1du (23)

≤ c‖y − x‖1 (24)

Therefore, by the contraction mapping principle, the sequence of iterates πk+1 = Tm(πk) converges
to π̂. Finally, we observe that for any π ∈ ∆n, the vectors π, T (π), T 2(π), . . . occur in one of the
sequences (

Sk(T r(π))
)
k∈N0

, r ∈ {0, . . . ,m−1}. (25)

All sequences converge to π̂, and therefore

lim
k→∞

T k(π) = π̂. (26)

Theorem 2. LetA = {A`} be a collection of sets of alternatives such that for any partition ofA into
two non-empty sets S and T , (∪A∈SA) ∩ (∪A∈TA) 6= ∅. Let d` be the number of choices observed
over alternatives A`. Then π̄ → π∗ as d` →∞ ∀`.
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Proof. Let d→∞ be a shorthand for d` →∞ ∀`. The condition on A is equivalent to stating that
the hypergraph H = (V,A) with V = {1, . . . , n} is connected. First, we show that asymptotically,
the graph GD = (V,E) is connected. For a given set of alternatives A`, let i, j ∈ A`. The probability
that (j, i) ∈ E is

1−

(
1− πi∑

t∈A`
πt

)d`
> 1− (1− πi)d`

d`→∞−−−−→ 1, (27)

where we use the fact that πi > 0 ∀i. Therefore, asymptotically, every alternative set A` forms a
clique in GD. By assumption of connectivity on the hypergraph H , GD is strongly connected.

Now that we know that the Markov chain is asymptotically ergodic, we will show that the stationary
distribution matches the true model parameters. Let Cs` be a random variable denoting the item
chosen in the s-th observation over alternatives A`. By the law of large numbers, for any item i ∈ A`

lim
d`→∞

1

d`

d∑̀
s=1

1{Cs` = i} =
π∗i∑
t∈A`

π∗t
. (28)

Now consider two items i and j. If they have never been compared, λij = λji = 0. Otherwise,
suppose that they have been compared in alternative sets whose indices are in B = {` | i, j ∈ A`}
Let 1{X} be the indicator variable for event X . By construction of the transition rates in LSR, we
have that

λij
λji

=

∑
`∈B

∑d`
s=1 1{Cs` = j} n/|A`|∑

`∈B
∑d`
s=1 1{Cs` = i} n/|A`|

. (29)

From (28) it follows that

lim
d→∞

λij
λji

=

∑
`∈B(π∗j /

∑
t∈A`

π∗t ) n/|A`|∑
`∈B(π∗i /

∑
t∈A`

π∗t ) n/|A`|
(30)

=
π∗j
π∗i
·
∑
`∈B(1/

∑
t∈A`

π∗t ) n/|A`|∑
`∈B(1/

∑
t∈A`

π∗t ) n/|A`|
=
π∗j
π∗i
. (31)

Therefore, when d→∞,∑
j 6=i

π∗i λij =
∑
j 6=i

π∗i

(
π∗j
π∗i
λji

)
=
∑
j 6=i

π∗jλji ∀i. (32)

It is easy to recognize the global balance equations, and it follows that π∗ is the stationary distribution
of the asymptotical Markov chain.

3 Bound on error rate of ML estimate

We use the analytical framework of Negahban et al. [3] to bound the error rate of the ML estimator
in the case where (a) the data is in the form of pairwise comparisons and (b) for each pair under
comparison, we observe exactly k outcomes.

Let G = (V,E) be an undirected graph where V = {1, . . . , n} and (i, j) ∈ E if i and j have been
compared. Let dmin and dmax be the minimum and maximum degree of a node in G, respectively.
Let γ be the spectral gap of a simple random walk on G; intuitively, the larger the spectral gap is, the
faster the convergence to the stationary distribution is. For each (i, j) ∈ E we observe k comparisons
generated from ground truth parameters π∗. Let Aji denote the number of times i wins against j and
aji = Aji/k the ratio of wins of i over j. We say that an event X occurs with high probability if
P(X) ≥ 1− c/nα for c, α fixed.
Theorem 3. For k ≥ 4C2(1 + (b6κ2/(dmaxγ

2)) log n), the error on the ML estimate π̂ satisfies
w.h.p.

‖π̂ − π∗‖2
‖π∗‖2

< C
b7/2κ

γ

√
log n

kdmax
, (33)

where C is a constant, b = maxi,j π
∗
i /π

∗
j and κ = dmax/dmin.
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Proof. The ML estimate can be interpreted as the stationary distribution of the discrete-time Markov
chain

P̂ij =


ε

aij
π̂i + π̂j

if i 6= j,

1− ε
∑
l 6=i

ail
π̂i + π̂l

if i = j.
(34)

The factor ε = π̂min/dmax ensures that P̂ is stochastic. Given this matrix, it is straightforward to
analyze the π̂ by using the methods developed for Rank Centrality (RC); the proof essentially follows
that of Theorem 1 of Negahban et al. [3]. Let P ∗ be the ideal Markov chain, when aij = π∗j /(π

∗
i +π∗j ),

i.e., the ratios are noiseless. The key observation is to note that the stationary distribution of P ∗ is
π∗, the true model parameters. By bounding ‖P̂ − P ∗‖2 and 1− λmax(P ∗), we can bound the error
on the stationary distribution of P ∗. For the former, a straightforward application of the proof in the
RC case suffices. For the latter, in the application of the comparison theorem, the lower bound on
mini,j π

∗
i P
∗
ij changes by a factor of 1/(2b). This is due to the additional factor π̂min/(π̂i + π̂j) in

the off-diagonal entries of P ∗.

If the graph of comparisons G is an expander, then γ = O(1). Furthermore, if dmax ∝ dmin, then
κ = O(1). A realization of the G(n, p) random graph satisfies these two constraints with high
probability as long as p = ω(log n/n). It follows that if ω(n log n) comparison pairs are chosen
uniformly at random and k = O(1) outcomes are observed for each pair, the error goes to zero as n
increases.

Hajek et al. [4] recently proved a more general version of our result, using a different analytical tech-
nique. Their bound is qualitatively similar, but also applies to multiway rankings and heterogeneous
number of comparisons.

4 Derivation for the Rao–Kupper model

We consider a model that was proposed by Rao and Kupper in 1967 [5]. This model extends the
Bradley–Terry model in that a comparison between two items can result in a tie. Letting α ∈ [1,∞),
the probabilities of i winning over and tying with j, respectively, are given as follows.

p(i � j) =
πi

πi + απj
,

p(i↔ j) =
πiπj(α

2 − 1)

(πi + απj)(απi + πj)
.

This model is useful for e.g., chess, where a significant fraction of comparison outcomes do not result
in either a win or a loss.

We assume that the parameter α is fixed, and derive an expression of the ML estimate π̂. Let Aji
be the number of times i wins over j, and Tij = Tji be the number of ties between i and j. The
log-likelihood can be written as

logL =
∑
i

∑
j 6=i

Aji (log(πi)− log(πi + απj)) (35)

+
∑
i

∑
j>i

Tij(log(πi) + log(πj) + log(α2 − 1)

− log(πi + απj)− log(απi + πj)).
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The log-likelihood function is strictly concave and the model admits a unique ML estimate π̂. The
optimality condition∇π̂ logL = 0 implies

∂ logL
∂π̂i

=
∑
j 6=i

Aji

(
1

π̂i
− 1

π̂i + απ̂j

)
−Aij

α

απ̂i + π̂j
(36)

+ Tij

(
1

π̂i
− 1

π̂i + απ̂j
− α

απ̂i + π̂j

)
= 0 (37)

⇐⇒
∑
j 6=i

Aji
απ̂j

π̂i + απ̂j
−Aij

απ̂i
απ̂i + π̂j

(38)

+ Tij
απ̂2

j − απ̂2
i

(π̂i + απ̂j)(απ̂i + π̂j)
= 0 (39)

⇐⇒
∑
j 6=i

Aji + Tji
π̂j

απ̂i+π̂j

π̂i + απ̂j
π̂j −

Aij + Tij
π̂i

π̂i+απ̂j

απ̂i + π̂j
π̂i = 0. (40)

Therefore, the ML estimate is the stationary distribution of a Markov chain with transition rates

λij =
Aij + Tij

π̂i

π̂i+απ̂j

απ̂i + π̂j
. (41)

The extension of LSR and I-LSR to the Rao–Kupper model given these transition rates is straightfor-
ward.

5 Finding the stationary distribution

A set of transition rates [λij ] that satisfy the strong connectivity assumption yields a unique stationary
distribution π. In practice, finding this stationary distribution can be implemented in various ways.
We distinguish implementations based on whether they consider a continuous-time or a discrete-time
perspective on Markov chains.

Continuous-time perspective. We consider the infinitesimal generator matrix Q, where Qij
.
= λij

and Qii
.
= −

∑
j λij . The stationary distribution satisfies πQ = 0; this is essentially a matrix

formulation of the global balance equations. Therefore, one approach to finding the steady-state
distribution is to compute the rank-1 left nullspace of Q. This can be done e.g., by LU decomposition,
a basic linear-algebra primitive. In the dense case, the running time of a typical implementation is
O(n3), but highly optimized parallel implementations such as that provided by LAPACK [6] are
commonly available. In the sparse case, LU decomposition can be done significantly faster using
adapted algorithms, such as that of Demmel et al. [7].

Discrete-time perspective. Let ε < 1/maxi |Qii|, then P = I + εQ is the transition matrix of a
discrete-time Markov chain that satisfies πP = π. In this case, finding the steady-state distribution
is equivalent to finding the left eigenvector associated to the leading eigenvalue of the transition
matrix P . This is also a well-studied linear algebra problem for which plenty of efficient, off-the-shelf
algorithms exist. For example, power iteration methods can find the eigenvector in a few (sparse)
matrix multiplications. Beyond these well-known algorithms, the recently proposed randomized
approach of Halko et al. [8] enables us to scale to truly large problem sizes (n is O(106) or more.)

For our experiments, we have implemented LSR and I-LSR using a dense LU factorization of the
generator matrix. The Python code, which relies on the numpy and scipy libraries1, is displayed in
Figure 5

6 Experimental procedure

We give a few additional details on the procedure that we followed for the experiments of Section 4 in
the main paper. All experiments were run on a machine with a quad-core 2.0 GHz Haswell processor,

1 See: http://www.scipy.org/.
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1 import numpy as np
2 import scipy.linalg as spl
3
4 def weighted_lsr(n, rankings, weights):
5 chain = np.zeros((n, n), dtype=float)
6 for ranking in rankings:
7 sum_weights = sum(weights[x] for x in ranking)
8 for i, winner in enumerate(ranking):
9 val = 1.0 / sum_weights

10 for loser in ranking[i+1:]:
11 chain[loser, winner] += val
12 sum_weights -= weights[winner]
13 chain -= np.diag(chain.sum(axis=1))
14 return statdist(chain)
15
16 def statdist(chain):
17 lu, piv = spl.lu_factor(generator.T)
18 res = spl.solve_triangular(lu[:-1,:-1], -lu[:-1,-1])
19 res = np.append(res, 1.0)
20 return res / res.sum()

Figure 1: Python implementation of one iteration of I-LSR.

and 16GB of RAM, running Mac OS X 10.9. For LSR and I-LSR, we used a slightly adapted version
the code presented in Figure 5. We implemented the Rank Centrality (RC), GMM-F [9], and MM
[10] algorithms in Python. For Newton-Raphson, we implemented our choice model on top of the
popular statsmodels Python library2 that provides a Newton-Raphson solver. For completeness,
the Python source code containing all the functions we used is provided as a separate file in the
supplementary material. We have compared our implementation of the MM algorithm to that of
Hunter written in Matlab3, and observed that ours has comparable running time.

For the chess dataset, we use the Rao–Kupper model and set the parameter α =
√

2. Note that
this parameter could also be estimated from the data, however in our experiments we focus on the
performance of algorithms for estimating π̂.
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