Fast and Accurate Inference of Plackett-Luce Models Supplementary Material

Lucas Maystre
EPFL

lucas.maystre@epfl.ch

Matthias Grossglauser

EPFL
matthias.grossglauser@epfl.ch

1 Stationary Points of the Log-Likelihood

In this section, we briefly explain why the log-likelihood in Luce's model has a unique stationary point, that at the ML estimate. Recall that we assume that the comparison graph $G_{\mathcal{D}}$ is strongly connected. The log-likelihood is given by

$$
\begin{equation*}
\log \mathcal{L}(\boldsymbol{\pi} \mid \mathcal{D})=\sum_{\ell=1}^{d}\left(\log \pi_{\ell}-\log \sum_{j \in A_{\ell}} \pi_{j}\right) \tag{1}
\end{equation*}
$$

This function is not concave in π; however, this does not preclude the existence of a unique stationary point. Letting $\pi_{i}=e^{\theta_{i}}$, we write the reparametrized log-likelihood as

$$
\log \mathcal{L}(\boldsymbol{\pi}(\boldsymbol{\theta}) \mid \mathcal{D})=\sum_{\ell=1}^{d}\left(\theta_{\ell}-\log \sum_{j \in A_{\ell}} e^{\theta_{j}}\right)
$$

which is strictly concave in $\boldsymbol{\theta}$ and therefore admits a unique stationary point, at the maximum of the function. Denote this maximum by $\hat{\boldsymbol{\theta}}$. The partial derivative of the log-likelihood with respect to π_{ℓ} is

$$
\begin{equation*}
\frac{\partial \log \mathcal{L}}{\partial \pi_{\ell}}=\frac{\partial \log \mathcal{L}}{\partial \theta_{i}} \cdot \frac{\partial \theta_{i}}{\partial \pi_{i}}=\frac{\partial \log \mathcal{L}}{\partial \theta_{i}} \cdot \frac{1}{\pi_{i}} \tag{2}
\end{equation*}
$$

As $1 / \pi_{i}$ is strictly positive, the partial derivative vanishes only at $\hat{\pi}_{i}=e^{\hat{\theta}_{i}}$. In conclusion, $\hat{\pi}$ is the unique ML estimate, as well as the only stationary point.

2 Proofs of Theorems 1 and 2

For any two items i and j, recall that $\mathcal{D}_{i \succ j} \subseteq \mathcal{D}$ is the set of observations where i wins over j. Let $\Delta_{n}=\left\{\boldsymbol{u} \in \mathbf{R}^{n} \mid u_{i}>0, \sum_{i} u_{i}=1\right\}$ be the open $(n-1)$-dimensional simplex. Recall that for $\mathcal{S} \subseteq \mathcal{D}$ and $\boldsymbol{\pi} \in \Delta_{n}$, we define

$$
\begin{equation*}
f(\mathcal{S}, \boldsymbol{\pi}) \doteq \sum_{A \in \mathcal{S}} \frac{1}{\sum_{i \in A} \pi_{i}} \tag{3}
\end{equation*}
$$

We will now prove the following theorem.
Theorem 1. The Markov chain with inhomogeneous transition rates $\lambda_{j i}=f\left(\mathcal{D}_{i \succ j}, \boldsymbol{\pi}\right)$ converges to the maximum-likelihood estimate $\hat{\boldsymbol{\pi}}$, for any initial distribution $\pi^{0} \in \Delta_{n}$.

We take a discrete-time perspective, and consider the uniformized Markov chain with (parametric) transition probabilities

$$
P(\boldsymbol{\pi})_{i j}= \begin{cases}\epsilon \sum_{A \in \mathcal{D}_{j \succ i}} \frac{1}{\sum_{t \in A} \pi_{t}} & \text { if } j \neq i, \tag{4}\\ 1-\epsilon \sum_{k \neq i} \sum_{A \in \mathcal{D}_{k \succ i}} \frac{1}{\sum_{t \in A} \pi_{t}} & \text { if } j=i,\end{cases}
$$

where ϵ (the uniform rate parameter) is a small factor that ensures that the matrix is row-stochastic. We say that the Markov chain is inhomogeneous because the transition probabilities depend on the current distribution over states; as a consequence, standard ergodic results do not apply directly. From the development at the beginning of Section 3 of the main text, it follows that $\hat{\pi}$ is the unique invariant distribution of the Markov chain, i.e., satisfying $\hat{\boldsymbol{\pi}}=\hat{\boldsymbol{\pi}} P(\hat{\boldsymbol{\pi}})$. Consider the mapping $T: \Delta_{n} \rightarrow \Delta_{n}$ defined by

$$
\begin{equation*}
T(\boldsymbol{\pi})=\boldsymbol{\pi} P(\boldsymbol{\pi}) \tag{5}
\end{equation*}
$$

representing the distribution after one step of the Markov chain. Using a contraction argument, we will show that the iteration $\pi^{k+1}=T\left(\boldsymbol{\pi}^{k}\right)$ converges to a fixed point for any $\boldsymbol{\pi}^{0} \in \Delta_{n}$. It directly follows that the Markov chain converges to $\hat{\boldsymbol{\pi}}$ from any initial distribution.
We start with a technical lemma that characterizes the Jacobian matrix of the mapping. We will use the notation

$$
\begin{equation*}
T^{k}(\boldsymbol{\pi})=\underbrace{T \circ T \circ \ldots \circ T}_{k \text { times }}(\boldsymbol{\pi}) \tag{6}
\end{equation*}
$$

for k successive applications of the mapping. We will also extend our notation for subsets of observations, and let $\mathcal{D}_{i \succ j, k} \subseteq \mathcal{D}$ be the observations where i wins among a set of alternatives containing j and k.
Lemma 1. The Jacobian matrix of the mapping $T(\boldsymbol{\pi})$ defined in (5) is given by

$$
T^{\prime}(\boldsymbol{\pi})_{i j}=\left[\frac{\partial T(\boldsymbol{\pi})}{\partial \pi_{i}}\right]_{j}= \begin{cases}\epsilon \sum_{k} \sum_{A \in \mathcal{D}_{k \succ j, i}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} & \text { if } j \neq i \tag{7}\\ 1-\epsilon \sum_{j \neq \ell} \sum_{k} \sum_{A \in \mathcal{D}_{k \succ j, \ell}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} & \text { if } j=i\end{cases}
$$

Furthermore, there is a finite $m \in \mathbf{N}$ such that for $S^{\prime}=\left(T^{m}\right)^{\prime}$ it holds that $\delta=\min _{i, j} S_{i j}^{\prime}>0$ and $\left\|S^{\prime}\right\|_{1}=1$.

Proof. The partial derivative of T with respect to π_{ℓ} at $j \neq \ell$ is

$$
\begin{align*}
& {\left[\frac{\partial T(\boldsymbol{\pi})}{\partial \pi_{\ell}}\right]_{j}=} {\left[\frac{\partial \boldsymbol{\pi}}{\partial \pi_{\ell}} P(\boldsymbol{\pi})\right]_{j}+\left[\boldsymbol{\pi} \frac{\partial P(\boldsymbol{\pi})}{\partial \pi_{\ell}}\right]_{j} } \tag{8}\\
&= \epsilon \sum_{A \in \mathcal{D}_{j \succ \ell}} \frac{1}{\sum_{t \in A} \pi_{t}}-\epsilon \sum_{k \neq j} \sum_{A \in \mathcal{D}_{j \succ k, \ell}} \frac{\pi_{k}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \tag{9}\\
&+\epsilon \sum_{k \neq j} \sum_{A \in \mathcal{D}_{k \succ j, \ell}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \\
&=\epsilon \sum_{A \in \mathcal{D}_{j \succ \ell}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}}+\epsilon \sum_{k \neq j} \sum_{A \in \mathcal{D}_{k \succ j, \ell}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \tag{10}\\
&=\epsilon \sum_{k} \sum_{A \in \mathcal{D}_{k \succ j, \ell}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} . \tag{11}
\end{align*}
$$

To go from (9) to (10), we reverse the order of summation in the subtracted term and rewrite the fraction inside the left term.

$$
\begin{align*}
& \sum_{A \in \mathcal{D}_{j \succ \ell}} \frac{1}{\sum_{t \in A} \pi_{t}}-\sum_{k \neq j} \sum_{A \in \mathcal{D}_{j \succ k, \ell}} \frac{\pi_{k}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \tag{12}\\
= & \sum_{A \in \mathcal{D}_{j \succ \ell}} \frac{1}{\sum_{t \in A} \pi_{t}}-\sum_{A \in \mathcal{D}_{j \succ \ell}} \sum_{k \in A, k \neq j} \frac{\pi_{k}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \tag{13}\\
= & \sum_{A \in \mathcal{D}_{j \succ \ell}} \sum_{k \in A} \frac{\pi_{k}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}}-\sum_{A \in \mathcal{D}_{j \succ \ell}} \sum_{k \in A, k \neq j} \frac{\pi_{k}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \tag{14}\\
= & \sum_{A \in \mathcal{D}_{j \succ \ell}} \frac{\pi_{j}}{\left(\sum_{t \in A} \pi_{t}\right)^{2}} \tag{15}
\end{align*}
$$

One can find the partial derivative with respect to π_{ℓ} at ℓ by noticing that each row of the Jacobian matrix sums to one:

$$
\begin{align*}
\sum_{j}\left[\frac{\partial T(\boldsymbol{\pi})}{\partial \pi_{\ell}}\right]_{j} & =\sum_{j} P(\boldsymbol{\pi})_{\ell j}+\sum_{j} \sum_{i} \pi_{i} \frac{\partial P(\boldsymbol{\pi})_{i j}}{\partial \pi_{\ell}} \tag{16}\\
& =1+\sum_{i} \pi_{i} \frac{\partial}{\partial \pi_{\ell}} \sum_{j} P(\boldsymbol{\pi})_{i j}=1 \tag{17}
\end{align*}
$$

The matrix is therefore row-stochastic, and $\left\|T^{\prime}(\boldsymbol{\pi})\right\|_{1}=1$. Because transition probabilities are strictly positive on the edges of the comparison graph (which is, by assumption, strongly connected), there is a finite $m \in \mathbf{N}$ such that all entries of $T^{m}(\boldsymbol{\pi})$ are lower-bounded by a strictly positive number. It is easy to see that the Jacobian matrix T^{\prime} also has strictly positive entries on the edges of the comparison graph, and therefore

$$
\begin{equation*}
S^{\prime}(\boldsymbol{\pi})=\left(T^{m}(\boldsymbol{\pi})\right)^{\prime}=\prod_{i=0}^{m-1} T^{\prime}\left(T^{i}(\boldsymbol{\pi})\right) \tag{18}
\end{equation*}
$$

also has its entries lower-bounded by a strictly positive number. Furthermore, $S^{\prime}(\boldsymbol{\pi})$ is a product of stochastic matrices, hence $\left\|S^{\prime}(\boldsymbol{\pi})\right\|_{1}=1$.

Now we will use the properties of the Jacobian matrix to show that T is a fixed-point iteration, using a standard argument. Our proof is inspired by the lecture notes of Tresch [1] and von Petersdorff [2].

Proof of Theorem [1] Using the results of Lemma 1, let $S(\boldsymbol{\pi})=T^{m}(\boldsymbol{\pi})$ and write $S^{\prime}(\boldsymbol{\pi})$ as

$$
\begin{equation*}
S^{\prime}(\boldsymbol{\pi})=\delta 1_{n \times n}+R(\boldsymbol{\pi}) \tag{19}
\end{equation*}
$$

where $1_{n \times n}$ is the all-ones matrix, and $\|R(\boldsymbol{\pi})\|_{1}=1-n \delta=c<1$. Now pick any $\boldsymbol{x}, \boldsymbol{y} \in \Delta_{n}$, and let $\tilde{S}(u) \doteq S(\boldsymbol{x}+u(\boldsymbol{x}-\boldsymbol{y}))$. Then $\tilde{S}^{\prime}(u)=S^{\prime}(\boldsymbol{x}+u(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})$, and

$$
\begin{equation*}
S(\boldsymbol{y})-S(\boldsymbol{x})=\tilde{S}(1)-\tilde{S}(0)=\int_{0}^{1} \tilde{S}^{\prime}(u) d u=\int_{0}^{1} S^{\prime}(\boldsymbol{x}+u(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x}) d u \tag{20}
\end{equation*}
$$

As S^{\prime} is continuous, we have

$$
\begin{align*}
\|S(\boldsymbol{y})-S(\boldsymbol{x})\|_{1} & \leq \int_{0}^{1}\left\|S^{\prime}(\boldsymbol{x}+u(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})\right\|_{1} d u \tag{21}\\
& =\int_{0}^{1}\|\underbrace{\delta 1_{n \times n}(\boldsymbol{y}-\boldsymbol{x})}_{=0}+R(\boldsymbol{x}+u(\boldsymbol{y}-\boldsymbol{x}))(\boldsymbol{y}-\boldsymbol{x})\|_{1} d u \tag{22}\\
& \leq \int_{0}^{1} \underbrace{\|R(\boldsymbol{x}+u(\boldsymbol{y}-\boldsymbol{x}))\|_{2}}_{\leq c}\|\boldsymbol{y}-\boldsymbol{x}\|_{1} d u \tag{23}\\
& \leq c\|\boldsymbol{y}-\boldsymbol{x}\|_{1} \tag{24}
\end{align*}
$$

Therefore, by the contraction mapping principle, the sequence of iterates $\boldsymbol{\pi}^{k+1}=T^{m}\left(\boldsymbol{\pi}^{k}\right)$ converges to $\hat{\boldsymbol{\pi}}$. Finally, we observe that for any $\boldsymbol{\pi} \in \Delta_{n}$, the vectors $\boldsymbol{\pi}, T(\boldsymbol{\pi}), T^{2}(\boldsymbol{\pi}), \ldots$ occur in one of the sequences

$$
\begin{equation*}
\left(S^{k}\left(T^{r}(\boldsymbol{\pi})\right)\right)_{k \in \mathbf{N}_{0}}, \quad r \in\{0, \ldots, m-1\} \tag{25}
\end{equation*}
$$

All sequences converge to $\hat{\pi}$, and therefore

$$
\begin{equation*}
\lim _{k \rightarrow \infty} T^{k}(\boldsymbol{\pi})=\hat{\boldsymbol{\pi}} \tag{26}
\end{equation*}
$$

Theorem 2. Let $\mathcal{A}=\left\{A_{\ell}\right\}$ be a collection of sets of alternatives such that for any partition of \mathcal{A} into two non-empty sets S and $T,\left(\cup_{A \in S} A\right) \cap\left(\cup_{A \in T} A\right) \neq \varnothing$. Let d_{ℓ} be the number of choices observed over alternatives A_{ℓ}. Then $\overline{\boldsymbol{\pi}} \rightarrow \boldsymbol{\pi}^{*}$ as $d_{\ell} \rightarrow \infty \forall \ell$.

Proof. Let $d \rightarrow \infty$ be a shorthand for $d_{\ell} \rightarrow \infty \forall \ell$. The condition on \mathcal{A} is equivalent to stating that the hypergraph $H=(V, \mathcal{A})$ with $V=\{1, \ldots, n\}$ is connected. First, we show that asymptotically, the graph $G_{\mathcal{D}}=(V, E)$ is connected. For a given set of alternatives A_{ℓ}, let $i, j \in A_{\ell}$. The probability that $(j, i) \in E$ is

$$
\begin{equation*}
1-\left(1-\frac{\pi_{i}}{\sum_{t \in A_{\ell}} \pi_{t}}\right)^{d_{\ell}}>1-\left(1-\pi_{i}\right)^{d_{\ell}} \xrightarrow{d_{\ell} \rightarrow \infty} 1 \tag{27}
\end{equation*}
$$

where we use the fact that $\pi_{i}>0 \forall i$. Therefore, asymptotically, every alternative set A_{ℓ} forms a clique in $G_{\mathcal{D}}$. By assumption of connectivity on the hypergraph $H, G_{\mathcal{D}}$ is strongly connected.

Now that we know that the Markov chain is asymptotically ergodic, we will show that the stationary distribution matches the true model parameters. Let C_{ℓ}^{s} be a random variable denoting the item chosen in the s-th observation over alternatives A_{ℓ}. By the law of large numbers, for any item $i \in A_{\ell}$

$$
\begin{equation*}
\lim _{d_{\ell} \rightarrow \infty} \frac{1}{d_{\ell}} \sum_{s=1}^{d_{\ell}} 1\left\{C_{\ell}^{s}=i\right\}=\frac{\pi_{i}^{*}}{\sum_{t \in A_{\ell}} \pi_{t}^{*}} \tag{28}
\end{equation*}
$$

Now consider two items i and j. If they have never been compared, $\lambda_{i j}=\lambda_{j i}=0$. Otherwise, suppose that they have been compared in alternative sets whose indices are in $B=\left\{\ell \mid i, j \in A_{\ell}\right\}$ Let $\mathbf{1}\{X\}$ be the indicator variable for event X. By construction of the transition rates in LSR, we have that

$$
\begin{equation*}
\frac{\lambda_{i j}}{\lambda_{j i}}=\frac{\sum_{\ell \in B} \sum_{s=1}^{d_{\ell}} \mathbf{1}\left\{C_{\ell}^{s}=j\right\} n /\left|A_{\ell}\right|}{\sum_{\ell \in B} \sum_{s=1}^{d_{\ell}} \mathbf{1}\left\{C_{\ell}^{s}=i\right\} n /\left|A_{\ell}\right|} \tag{29}
\end{equation*}
$$

From 28) it follows that

$$
\begin{align*}
\lim _{d \rightarrow \infty} \frac{\lambda_{i j}}{\lambda_{j i}} & =\frac{\sum_{\ell \in B}\left(\pi_{j}^{*} / \sum_{t \in A_{\ell}} \pi_{t}^{*}\right) n /\left|A_{\ell}\right|}{\sum_{\ell \in B}\left(\pi_{i}^{*} / \sum_{t \in A_{\ell}} \pi_{t}^{*}\right) n /\left|A_{\ell}\right|} \tag{30}\\
& =\frac{\pi_{j}^{*}}{\pi_{i}^{*}} \cdot \frac{\sum_{\ell \in B}\left(1 / \sum_{t \in A_{\ell}} \pi_{t}^{*}\right) n /\left|A_{\ell}\right|}{\sum_{\ell \in B}\left(1 / \sum_{t \in A_{\ell}} \pi_{t}^{*}\right) n /\left|A_{\ell}\right|}=\frac{\pi_{j}^{*}}{\pi_{i}^{*}} . \tag{31}
\end{align*}
$$

Therefore, when $d \rightarrow \infty$,

$$
\begin{equation*}
\sum_{j \neq i} \pi_{i}^{*} \lambda_{i j}=\sum_{j \neq i} \pi_{i}^{*}\left(\frac{\pi_{j}^{*}}{\pi_{i}^{*}} \lambda_{j i}\right)=\sum_{j \neq i} \pi_{j}^{*} \lambda_{j i} \quad \forall i \tag{32}
\end{equation*}
$$

It is easy to recognize the global balance equations, and it follows that π^{*} is the stationary distribution of the asymptotical Markov chain.

3 Bound on error rate of ML estimate

We use the analytical framework of Negahban et al. [3] to bound the error rate of the ML estimator in the case where (a) the data is in the form of pairwise comparisons and (b) for each pair under comparison, we observe exactly k outcomes.
Let $G=(V, E)$ be an undirected graph where $V=\{1, \ldots, n\}$ and $(i, j) \in E$ if i and j have been compared. Let $d_{\min }$ and $d_{\max }$ be the minimum and maximum degree of a node in G, respectively. Let γ be the spectral gap of a simple random walk on G; intuitively, the larger the spectral gap is, the faster the convergence to the stationary distribution is. For each $(i, j) \in E$ we observe k comparisons generated from ground truth parameters $\boldsymbol{\pi}^{*}$. Let $A_{j i}$ denote the number of times i wins against j and $a_{j i}=A_{j i} / k$ the ratio of wins of i over j. We say that an event X occurs with high probability if $\mathbf{P}(X) \geq 1-c / n^{\alpha}$ for c, α fixed.
Theorem 3. For $k \geq 4 C^{2}\left(1+\left(b^{6} \kappa^{2} /\left(d_{\max } \gamma^{2}\right)\right) \log n\right)$, the error on the ML estimate $\hat{\boldsymbol{\pi}}$ satisfies w.h.p.

$$
\begin{equation*}
\frac{\left\|\hat{\boldsymbol{\pi}}-\boldsymbol{\pi}^{*}\right\|_{2}}{\left\|\boldsymbol{\pi}^{*}\right\|_{2}}<C \frac{b^{7 / 2} \kappa}{\gamma} \sqrt{\frac{\log n}{k d_{\max }}} \tag{33}
\end{equation*}
$$

where C is a constant, $b=\max _{i, j} \pi_{i}^{*} / \pi_{j}^{*}$ and $\kappa=d_{\max } / d_{\text {min }}$.

Proof. The ML estimate can be interpreted as the stationary distribution of the discrete-time Markov chain

$$
\widehat{P}_{i j}= \begin{cases}\epsilon \frac{a_{i j}}{\hat{\pi}_{i}+\hat{\pi}_{j}} & \text { if } i \neq j \tag{34}\\ 1-\epsilon \sum_{l \neq i} \frac{a_{i l}}{\hat{\pi}_{i}+\hat{\pi}_{l}} & \text { if } i=j\end{cases}
$$

The factor $\epsilon=\hat{\pi}_{\text {min }} / d_{\text {max }}$ ensures that \widehat{P} is stochastic. Given this matrix, it is straightforward to analyze the $\hat{\pi}$ by using the methods developed for Rank Centrality (RC); the proof essentially follows that of Theorem 1 of Negahban et al. [3]. Let P^{*} be the ideal Markov chain, when $a_{i j}=\pi_{j}^{*} /\left(\pi_{i}^{*}+\pi_{j}^{*}\right)$, i.e., the ratios are noiseless. The key observation is to note that the stationary distribution of P^{*} is π^{*}, the true model parameters. By bounding $\left\|\widehat{P}-P^{*}\right\|_{2}$ and $1-\lambda_{\max }\left(P^{*}\right)$, we can bound the error on the stationary distribution of P^{*}. For the former, a straightforward application of the proof in the RC case suffices. For the latter, in the application of the comparison theorem, the lower bound on $\min _{i, j} \pi_{i}^{*} P_{i j}^{*}$ changes by a factor of $1 /(2 b)$. This is due to the additional factor $\hat{\pi}_{\min } /\left(\hat{\pi}_{i}+\hat{\pi}_{j}\right)$ in the off-diagonal entries of P^{*}.

If the graph of comparisons G is an expander, then $\gamma=O(1)$. Furthermore, if $d_{\max } \propto d_{\min }$, then $\kappa=O(1)$. A realization of the $G(n, p)$ random graph satisfies these two constraints with high probability as long as $p=\omega(\log n / n)$. It follows that if $\omega(n \log n)$ comparison pairs are chosen uniformly at random and $k=O(1)$ outcomes are observed for each pair, the error goes to zero as n increases.

Hajek et al. [4] recently proved a more general version of our result, using a different analytical technique. Their bound is qualitatively similar, but also applies to multiway rankings and heterogeneous number of comparisons.

4 Derivation for the Rao-Kupper model

We consider a model that was proposed by Rao and Kupper in 1967 [5]. This model extends the Bradley-Terry model in that a comparison between two items can result in a tie. Letting $\alpha \in[1, \infty)$, the probabilities of i winning over and tying with j, respectively, are given as follows.

$$
\begin{aligned}
p(i \succ j) & =\frac{\pi_{i}}{\pi_{i}+\alpha \pi_{j}} \\
p(i \leftrightarrow j) & =\frac{\pi_{i} \pi_{j}\left(\alpha^{2}-1\right)}{\left(\pi_{i}+\alpha \pi_{j}\right)\left(\alpha \pi_{i}+\pi_{j}\right)}
\end{aligned}
$$

This model is useful for e.g., chess, where a significant fraction of comparison outcomes do not result in either a win or a loss.

We assume that the parameter α is fixed, and derive an expression of the ML estimate $\hat{\boldsymbol{\pi}}$. Let $A_{j i}$ be the number of times i wins over j, and $T_{i j}=T_{j i}$ be the number of ties between i and j. The log-likelihood can be written as

$$
\begin{align*}
\log \mathcal{L}= & \sum_{i} \sum_{j \neq i} A_{j i}\left(\log \left(\pi_{i}\right)-\log \left(\pi_{i}+\alpha \pi_{j}\right)\right) \tag{35}\\
+ & \sum_{i} \sum_{j>i} T_{i j}\left(\log \left(\pi_{i}\right)+\log \left(\pi_{j}\right)+\log \left(\alpha^{2}-1\right)\right. \\
& \left.\quad-\log \left(\pi_{i}+\alpha \pi_{j}\right)-\log \left(\alpha \pi_{i}+\pi_{j}\right)\right)
\end{align*}
$$

The log-likelihood function is strictly concave and the model admits a unique ML estimate $\hat{\boldsymbol{\pi}}$. The optimality condition $\nabla_{\hat{\boldsymbol{\pi}}} \log \mathcal{L}=0$ implies

$$
\begin{align*}
& \frac{\partial \log \mathcal{L}}{\partial \hat{\pi}_{i}}=\sum_{j \neq i} A_{j i}\left(\frac{1}{\hat{\pi}_{i}}-\frac{1}{\hat{\pi}_{i}+\alpha \hat{\pi}_{j}}\right)-A_{i j} \frac{\alpha}{\alpha \hat{\pi}_{i}+\hat{\pi}_{j}} \tag{36}\\
& +T_{i j}\left(\frac{1}{\hat{\pi}_{i}}-\frac{1}{\hat{\pi}_{i}+\alpha \hat{\pi}_{j}}-\frac{\alpha}{\alpha \hat{\pi}_{i}+\hat{\pi}_{j}}\right)=0 \tag{37}\\
& \Longleftrightarrow \sum_{j \neq i} A_{j i} \frac{\alpha \hat{\pi}_{j}}{\hat{\pi}_{i}+\alpha \hat{\pi}_{j}}-A_{i j} \frac{\alpha \hat{\pi}_{i}}{\alpha \hat{\pi}_{i}+\hat{\pi}_{j}} \tag{38}\\
& +T_{i j} \frac{\alpha \hat{\pi}_{j}^{2}-\alpha \hat{\pi}_{i}^{2}}{\left(\hat{\pi}_{i}+\alpha \hat{\pi}_{j}\right)\left(\alpha \hat{\pi}_{i}+\hat{\pi}_{j}\right)}=0 \tag{39}\\
& \Longleftrightarrow \sum_{j \neq i} \frac{A_{j i}+T_{j i} \frac{\hat{\pi}_{j}}{\alpha \hat{\pi}_{j}+\hat{\pi}_{j}}}{\hat{\pi}_{i}+\alpha \hat{\pi}_{j}} \hat{\pi}_{j}-\frac{A_{i j}+T_{i j} \frac{\hat{\pi}_{i}}{\hat{\pi}_{i}+\alpha \tilde{\pi}_{j}}}{\alpha \hat{\pi}_{i}+\hat{\pi}_{j}} \hat{\pi}_{i}=0 . \tag{40}
\end{align*}
$$

Therefore, the ML estimate is the stationary distribution of a Markov chain with transition rates

$$
\begin{equation*}
\lambda_{i j}=\frac{A_{i j}+T_{i j} \frac{\hat{\pi}_{i}}{\hat{\pi}_{i}+\alpha \hat{\pi}_{j}}}{\alpha \hat{\pi}_{i}+\hat{\pi}_{j}} . \tag{41}
\end{equation*}
$$

The extension of LSR and I-LSR to the Rao-Kupper model given these transition rates is straightforward.

5 Finding the stationary distribution

A set of transition rates $\left[\lambda_{i j}\right]$ that satisfy the strong connectivity assumption yields a unique stationary distribution $\boldsymbol{\pi}$. In practice, finding this stationary distribution can be implemented in various ways. We distinguish implementations based on whether they consider a continuous-time or a discrete-time perspective on Markov chains.
Continuous-time perspective. We consider the infinitesimal generator matrix Q, where $Q_{i j} \doteq \lambda_{i j}$ and $Q_{i i} \doteq-\sum_{j} \lambda_{i j}$. The stationary distribution satisfies $\pi Q=0$; this is essentially a matrix formulation of the global balance equations. Therefore, one approach to finding the steady-state distribution is to compute the rank-1 left nullspace of Q. This can be done e.g., by LU decomposition, a basic linear-algebra primitive. In the dense case, the running time of a typical implementation is $O\left(n^{3}\right)$, but highly optimized parallel implementations such as that provided by LAPACK [6] are commonly available. In the sparse case, LU decomposition can be done significantly faster using adapted algorithms, such as that of Demmel et al. [7].
Discrete-time perspective. Let $\epsilon<1 / \max _{i}\left|Q_{i i}\right|$, then $P=I+\epsilon Q$ is the transition matrix of a discrete-time Markov chain that satisfies $\pi P=\pi$. In this case, finding the steady-state distribution is equivalent to finding the left eigenvector associated to the leading eigenvalue of the transition matrix P. This is also a well-studied linear algebra problem for which plenty of efficient, off-the-shelf algorithms exist. For example, power iteration methods can find the eigenvector in a few (sparse) matrix multiplications. Beyond these well-known algorithms, the recently proposed randomized approach of Halko et al. [8] enables us to scale to truly large problem sizes (n is $O\left(10^{6}\right.$) or more.)
For our experiments, we have implemented LSR and I-LSR using a dense LU factorization of the generator matrix. The Python code, which relies on the numpy and scipy libraries ${ }^{1}$. is displayed in Figure 5

6 Experimental procedure

We give a few additional details on the procedure that we followed for the experiments of Section 4 in the main paper. All experiments were run on a machine with a quad-core 2.0 GHz Haswell processor,

[^0]```
import numpy as np
import scipy.linalg as spl
def weighted_lsr(n, rankings, weights):
 chain = np.zeros((n, n), dtype=float)
 for ranking in rankings:
 sum_weights = sum(weights[x] for x in ranking)
 for i, winner in enumerate(ranking):
 val = 1.0 / sum_weights
 for loser in ranking[i+1:]:
 chain[loser, winner] += val
 sum_weights -= weights[winner]
 chain -= np.diag(chain.sum(axis=1))
 return statdist(chain)
def statdist(chain):
 lu, piv = spl.lu_factor(generator.T)
 res = spl.solve_triangular(lu[:-1,:-1], -lu[:-1,-1])
 res = np.append(res, 1.0)
 return res / res.sum()
```

Figure 1: Python implementation of one iteration of I-LSR.
and 16GB of RAM, running Mac OS X 10.9. For LSR and I-LSR, we used a slightly adapted version the code presented in Figure 5 ] We implemented the Rank Centrality (RC), GMM-F [9], and MM [10] algorithms in Python. For Newton-Raphson, we implemented our choice model on top of the popular statsmodels Python library ${ }^{2}$ that provides a Newton-Raphson solver. For completeness, the Python source code containing all the functions we used is provided as a separate file in the supplementary material. We have compared our implementation of the MM algorithm to that of Hunter written in Matlab ${ }^{3}$, and observed that ours has comparable running time.

For the chess dataset, we use the Rao-Kupper model and set the parameter $\alpha=\sqrt{2}$. Note that this parameter could also be estimated from the data, however in our experiments we focus on the performance of algorithms for estimating $\hat{\pi}$.

## References

[1] A. Tresch. Convergence Proof for discrete ergodic Markov Chains. Course notes, http://www treschgroup.de/MachineLearning.html. January 2008.
[2] T. von Petersdorff. Fixed Point Iteration and Contraction Mapping Theorem. Course notes, http: //terpconnect.umd.edu/~petersd/666/, 2014.
[3] S. Negahban, S. Oh, and D. Shah. Rank Centrality: Ranking from Pair-wise Comparisons. preprint, arXiv:1209.1688v2 [cs.LG], January 2014.
[4] B. Hajek, S. Oh, and J. Xu. Minimax-optimal Inference from Partial Rankings. In Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal, QC, Canada, 2014.
[5] P. V. Rao and L. L. Kupper. Ties in Paired-Comparison Experiments: A Generalization of the Bradley-Terry Model. Journal of the American Statistical Association, 62(317):194-204, 1967.
[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users' Guide. SIAM, third edition, 1999.
[7] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A Supernodal Approach to Sparse Partial Pivoting. SIAM Journal on Matrix Analysis and Applications, 20(3):720-755, 1999.
[8] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions. SIAM Review, 53(2):217-288, 2011.
[9] H. Azari Soufiani, W. Z. Chen, D. C. Parkes, and L. Xia. Generalized Method-of-Moments for Rank Aggregation. In Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, CA, 2013.

[^1][10] D. R. Hunter. MM algorithms for generalized Bradley-Terry models. The Annals of Statistics, 32(1): 384-406, 2004.


[^0]:    ${ }^{1}$ See: http://www.scipy.org/

[^1]:    ${ }^{2}$ See: http://statsmodels.sourceforge.net/
    ${ }^{3}$ See: http://sites.stat.psu.edu/~dhunter/code/btmatlab/

