
Fast and Accurate Inference of Plackett–Luce Models

Lucas Maystre
EPFL

lucas.maystre@epfl.ch

Matthias Grossglauser
EPFL

matthias.grossglauser@epfl.ch

Abstract

We show that the maximum-likelihood (ML) estimate of models derived from
Luce’s choice axiom (e.g., the Plackett–Luce model) can be expressed as the
stationary distribution of a Markov chain. This conveys insight into several recently
proposed spectral inference algorithms. We take advantage of this perspective and
formulate a new spectral algorithm that is significantly more accurate than previous
ones for the Plackett–Luce model. With a simple adaptation, this algorithm can
be used iteratively, producing a sequence of estimates that converges to the ML
estimate. The ML version runs faster than competing approaches on a benchmark
of five datasets. Our algorithms are easy to implement, making them relevant for
practitioners at large.

1 Introduction

Aggregating pairwise comparisons and partial rankings are important problems with applications in
econometrics [1], psychometrics [2, 3], sports ranking [4, 5] and multiclass classification [6]. One
possible approach to tackle these problems is to postulate a statistical model of discrete choice. In
this spirit, Luce [7] stated the choice axiom in a foundational work published over fifty years ago.
Denote p(i | A) the probability of choosing item i when faced with alternatives in the set A. Given
two items i and j, and any two sets of alternatives A and B containing i and j, the axiom posits that

p(i | A)

p(j | A)
=
p(i | B)

p(j | B)
.

In other words, the odds of choosing item i over item j are independent of the rest of the alternatives.
This simple assumption directly leads to a unique parametric choice model, known as the Bradley–
Terry model in the case of pairwise comparisons, and the Plackett–Luce model in the generalized case
of k-way rankings. In this paper, we highlight a connection between the maximum-likelihood (ML)
estimate under these models and the stationary distribution of a Markov chain parametrized by the
observed choices. Markov chains were already used in recent work [8, 9, 10] to aggregate pairwise
comparisons and rankings. These approaches reduce the problem to that of finding a stationary
distribution. By formalizing the link between the likelihood of observations under the choice model
and a certain Markov chain, we unify these algorithms and explicate them from an ML inference
perspective. We will also take a detour, and use this link in the reverse direction to give an alternative
proof to a recent result on the error rate of the ML estimate [11], by using spectral analysis techniques.

Beyond this, we make two contributions to statistical inference for this model. First, we develop
a simple, consistent and computationally efficient spectral algorithm that is applicable to a wide
range of models derived from the choice axiom. The exact formulation of the Markov chain used
in the algorithm is distinct from related work [9, 10] and achieves a significantly better statistical
efficiency at no additional computational cost. Second, we observe that with a small adjustment, the
algorithm can be used iteratively, and it then converges to the ML estimate. An evaluation on five
real-world datasets reveals that it runs consistently faster than competing approaches and has a much
more predictable performance that does not depend on the structure of the data. The key step, finding
a stationary distribution, can be offloaded to commonly available linear-algebra primitives, which
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makes our algorithms scale well. Our algorithms are intuitively pleasing, simple to understand and
implement, and they outperform the state of the art, hence we believe that they will be highly useful
to practitioners.

The rest of the paper is organized as follows. We begin by introducing some notations and presenting
a few useful facts about the choice model and about Markov chains. By necessity, our exposition is
succinct, and the reader is encouraged to consult Luce [7] and Levin et al. [12] for a more thorough
exposition. In Section 2, we discuss related work. In Section 3, we present our algorithms, and in
Section 4 we evaluate them on synthetic and real-world data. We conclude in Section 5.

Discrete choice model. Denote by n the number of items. Luce’s choice axiom implies that each
item i ∈ {1, . . . , n} can be parametrized by a positive strength πi ∈ R>0 such that p(i | A) =
πi/
∑
j∈A πj for any A containing i. The strengths π = [πi] are defined up to a multiplicative

factor; for identifiability, we let
∑
i πi = 1. An alternative parametrization of the model is given by

θi = log(πi), in which case the model is sometimes referred to as conditional logit [1].

Markov chain theory. We represent a finite, stationary, continuous-time Markov chain by a directed
graphG = (V,E), where V is the set of states and E is the set of transitions with positive rate. IfG is
strongly connected, the Markov chain is said to be ergodic and admits a unique stationary distribution
π. The global balance equations relate the transition rates λij to the stationary distribution as follows:∑

j 6=i

πiλij =
∑
j 6=i

πjλji ∀i. (1)

The stationary distribution is therefore invariant to changes in the time scale, i.e., to a rescaling of the
transition rates. In the supplementary file, we briefly discuss how to find π given [λij ].

2 Related work

Spectral methods applied to ranking and scoring items from noisy choices have a long-standing
history. To the best of our knowledge, Saaty [13] is the first to suggest using the leading eigenvector
of a matrix of inconsistent pairwise judgments to score alternatives. Two decades later, Page et al.
[14] developed PageRank, an algorithm that ranks Web pages according to the stationary distribution
of a random walk on the hyperlink graph. In the same vein, Dwork et al. [8] proposed several variants
of Markov chains for aggregating heterogeneous rankings. The idea is to construct a random walk
that is biased towards high-ranked items, and use the ranking induced by the stationary distribution.
More recently, Negahban et al. [9] presented Rank Centrality, an algorithm for aggregating pairwise
comparisons close in spirit to that of [8]. When the data is generated under the Bradley–Terry model,
this algorithm asymptotically recovers model parameters with only ω(n log n) pairwise comparisons.
For the more general case of rankings under the Plackett–Luce model, Azari Soufiani et al. [10]
propose to break rankings into pairwise comparisons and to apply an algorithm similar to Rank
Centrality. They show that the resulting estimator is statistically consistent. Interestingly, many of
these spectral algorithms can be related to the method of moments, a broadly applicable alternative to
maximum-likelihood estimation.

The history of algorithms for maximum-likelihood inference under Luce’s model goes back even
further. In the special case of pairwise comparisons, the same iterative algorithm was independently
discovered by Zermelo [15], Ford [16] and Dykstra [17]. Much later, this algorithm was explained
by Hunter [18] as an instance of minorization-maximization (MM) algorithm, and extended to the
more general choice model. Today, Hunter’s MM algorithm is the de facto standard for ML inference
in Luce’s model. As the likelihood can be written as a concave function, off-the-shelf optimization
procedures such as the Newton-Raphson method can also be used, although they have been been
reported to be slower and less practical [18]. Recently, Kumar et al. [19] looked at the problem
of finding the transition matrix of a Markov chain, given its stationary distribution. The problem
of inferring Luce’s model parameters from data can be reformulated in their framework, and the
ML estimate is the solution to the inversion of the stationary distribution. Their work stands out as
the first to link ML inference to Markov chains, albeit very differently from the way presented in
our paper. Beyond algorithms, properties of the maximum-likelihood estimator in this model were
studied extensively. Hajek et al. [11] consider the Plackett–Luce model for k-way rankings. They
give an upper bound to the estimation error and show that the ML estimator is minimax-optimal. In
summary, they show that only ω(n/k log n) samples are enough to drive the mean-square error down
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to zero, as n increases. Rajkumar and Agarwal [20] consider the Bradley–Terry model for pairwise
comparisons. They show that the ML estimator is able to recover the correct ranking, even when
the data is generated as per another model, e.g., Thurstone’s [2], as long as a so-called low-noise
condition is satisfied. We also mention that as an alternative to likelihood maximization, Bayesian
inference has also been proposed. Caron and Doucet [21] present a Gibbs sampler, and Guiver and
Snelson [22] propose an approximate inference algorithm based on expectation propagation.

In this work, we provide a unifying perspective on recent advances in spectral algorithms [9, 10] from
a maximum-likelihood estimation perspective. It turns out that this perspective enables us to make
contributions on both sides: On the one hand, we develop an improved and more general spectral
ranking algorithm, and on the other hand, we propose a faster procedure for ML inference by using
this algorithm iteratively.

3 Algorithms

We begin by expressing the ML estimate under the choice model as the stationary distribution
of a Markov chain. We then take advantage of this formulation to propose novel algorithms for
model inference. Although our derivation is made in the general choice model, we will also discuss
implications for the special cases of pairwise data in Section 3.3 and k-way ranking data in Section 3.4.
Suppose that we collect d independent observations in the multiset D = {(c`, A`) | ` = 1, . . . , d}.
Each observation consists of a choice c` among a set of alternatives A`; we say that i wins over j
and denote by i � j whenever i, j ∈ A and c` = i. We define the directed comparison graph as
GD = (V,E), with V = {1, . . . , n} and (j, i) ∈ E if i wins at least once over j in D. In order to
ensure that the ML estimate is well-defined, we make the standard assumption that GD is strongly
connected [16, 18]. In practice, if this assumption does not hold, we can consider each strongly
connected component separately.

3.1 ML estimate as a stationary distribution

For simplicity, we denote the model parameter associated with item c` by π`. The log-likelihood of
parameters π given observations D is

logL(π | D) =

d∑
`=1

log π` − log
∑
j∈A`

πj

 . (2)

For each item, we define two sets of indices. Let Wi
.
= {` | i ∈ A`, c` = i} and Li

.
= {` | i ∈

A`, c` 6= i} be the indices of the observations where item iwins over and loses against the alternatives,
respectively. The log-likelihood (2) is not concave in π (it can be made strictly concave using a
simple reparametrization), but we briefly show in the supplementary material that it admits a unique
stationary point, at the ML estimate π̂. The optimality condition∇π̂ logL = 0 implies

∂ logL
∂π̂i

=
∑
`∈Wi

(
1

π̂i
− 1∑

j∈A`
π̂j

)
−
∑
`∈Li

1∑
j∈A`

π̂j
= 0 ∀i (3)

⇐⇒
∑
j 6=i

 ∑
`∈Wi∩Lj

π̂j∑
t∈A`

π̂t
−

∑
`∈Wj∩Li

π̂i∑
t∈A`

π̂t

 = 0 ∀i. (4)

In order to go from (3) to (4), we multiply by π̂i and rearrange the terms. To simplify the notation, let
us further introduce the function

f(S,π)
.
=
∑
A∈S

1∑
i∈A πi

,

which takes observations S ⊆ D and an instance of model parameters π, and returns a non-negative
real number. Let Di�j .

= {(c`, A`) ∈ D | ` ∈ Wi ∩ Lj}, i.e., the set of observations where i wins
over j. Then (4) can be rewritten as∑

j 6=i

π̂i · f(Dj�i, π̂) =
∑
j 6=i

π̂j · f(Di�j , π̂) ∀i. (5)
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Algorithm 1 Luce Spectral Ranking
Require: observations D

1: λ← 0n×n
2: for (i, A) ∈ D do
3: for j ∈ A \ {i} do
4: λji ← λji + n/|A|
5: end for
6: end for
7: π̄ ← stat. dist. of Markov chain λ
8: return π̄

Algorithm 2 Iterative Luce Spectral Ranking
Require: observations D

1: π ← [1/n, . . . , 1/n]ᵀ

2: repeat
3: λ← 0n×n
4: for (i, A) ∈ D do
5: for j ∈ A \ {i} do
6: λji ← λji + 1/

∑
t∈A πt

7: end for
8: end for
9: π ← stat. dist. of Markov chain λ

10: until convergence

This formulation conveys a new viewpoint on the ML estimate. It is easy to recognize the global
balance equations (1) of a Markov chain on n states (representing the items), with transition rates
λji = f(Di�j , π̂) and stationary distribution π̂. These transition rates have an interesting inter-
pretation: f(Di�j ,π) is the count of how many times i wins over j, weighted by the strength of
the alternatives. At this point, it is useful to observe that for any parameters π, f(Di�j ,π) ≥ 1
if (j, i) ∈ E, and 0 otherwise. Combined with the assumption that GD is strongly connected, it
follows that any π parametrizes the transition rates of an ergodic (homogeneous) Markov chain. The
ergodicity of the inhomogeneous Markov chain, where the transition rates are constantly updated to
reflect the current distribution over states, is shown by the following theorem.
Theorem 1. The Markov chain with inhomogeneous transition rates λji = f(Di�j ,π) converges to
the maximum-likelihood estimate π̂, for any initial distribution in the open probability simplex.

Proof (sketch). By (5), π̂ is the unique invariant distribution of the Markov chain. In the supplemen-
tary file, we look at an equivalent uniformized discrete-time chain. Using the contraction mapping
principle, one can show that this chain converges to the invariant distribution.

3.2 Approximate and exact ML inference

We approximate the Markov chain described in (5) by considering a priori that all alternatives have
equal strength. That is, we set the transition rates λji

.
= f(Di�j ,π) by fixing π to [1/n, . . . , 1/n]ᵀ.

For i 6= j, the contribution of i winning over j to the rate of transition λji is n/|A|. In other words,
for each observation, the winning item is rewarded by a fixed amount of incoming rate that is evenly
split across the alternatives (the chunk allocated to itself is discarded.) We interpret the stationary
distribution π̄ as an estimate of model parameters. Algorithm 1 summarizes this procedure, called
Luce Spectral Ranking (LSR.) If we consider a growing number of observations, LSR converges to
the true model parameters π∗, even in the restrictive case where the sets of alternatives are fixed.
Theorem 2. LetA = {A`} be a collection of sets of alternatives such that for any partition ofA into
two non-empty sets S and T , (∪A∈SA) ∩ (∪A∈TA) 6= ∅1. Let d` be the number of choices observed
over alternatives A`. Then π̄ → π∗ as d` →∞ ∀`.
Proof (sketch). The condition on A ensures that asymptotically GD is strongly connected. Let
d→∞ be a shorthand for d` →∞∀`. We can show that if items i and j are compared in at least one
set of alternatives, the ratio of transition rates satisfies limd→∞ λij/λji = π∗j /π

∗
i . It follows that in

the limit of d→∞, the stationary distribution is π∗. A rigorous proof is given in the supplementary
file.

Starting from the LSR estimate, we can iteratively refine the transition rates of the Markov chain and
obtain a sequence of estimates. By (5), the only fixed point of this iteration is the ML estimate π̂. We
call this procedure I-LSR and describe it in Algorithm 2.

LSR (or one iteration of I-LSR) entails (a) filling a matrix of (weighted) pairwise counts and
(b) finding a stationary distribution. Let D .

=
∑
` |A`|, and let S be the running time of finding the

stationary distribution. Then LSR has running time O(D + S). As a comparison, one iteration of

1 This is equivalent to stating that the hypergraph H = (V,A) is connected.
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the MM algorithm [18] is O(D). Finding the stationary distribution can be implemented in different
ways. For example, in a sparse regime where D � n2, the stationary distribution can be found with
the power method in a few O(D) sparse matrix multiplications. In the supplementary file, we give
more details about possible implementations. In practice, whether D or S turns out to be dominant in
the running time is not a foregone conclusion.

3.3 Aggregating pairwise comparisons

A widely-used special case of Luce’s choice model occurs when all sets of alternatives contain exactly
two items, i.e., when the data consists of pairwise comparisons. This model was proposed by Zermelo
[15], and later by Bradley and Terry [3]. As the stationary distribution is invariant to changes in the
time-scale, we can rescale the transition rates and set λji

.
= |Di�j | when using LSR on pairwise

data. Let S be the set containing the pairs of items that have been compared at least once. In the
case where each pair (i, j) ∈ S has been compared exactly p times, LSR is strictly equivalent to a
continuous-time Markov-chain formulation of Rank Centrality [9]. In fact, our derivation justifies
Rank Centrality as an approximate ML inference algorithm for the Bradley–Terry model. Furthermore,
we provide a principled extension of Rank Centrality to the case where the number of comparisons
observed is unbalanced. Rank Centrality considers transition rates proportional to the ratio of wins,
whereas (5) justifies making transition rates proportional to the count of wins.

Negahban et al. [9] also provide an upper bound on the error rate of Rank Centrality, which essentially
shows that it is minimax-optimal. Because the two estimators are equivalent in the setting of balanced
pairwise comparisons, the bound also applies to LSR. More interestingly, the expression of the ML
estimate as a stationary distribution enables us to reuse the same analytical techniques to bound the
error of the ML estimate. In the supplementary file, we therefore provide an alternative proof of the
recent result of Hajek et al. [11] on the minimax-optimality of the ML estimate.

3.4 Aggregating partial rankings

Another case of interest is when observations do not consist of only a single choice, but of a ranking
over the alternatives. We now suppose m observations consisting of k-way rankings, 2 ≤ k ≤ n.
For conciseness, we suppose that k is the same for all observations. Let one such observation
be σ(1) � . . . � σ(k), where σ(p) is the item with p-th rank. Luce [7] and later Plackett [4]
independently proposed a model of rankings where

P (σ(1) � . . . � σ(k)) =

k∏
r=1

πσ(r)∑k
p=r πσ(p)

.

In this model, a ranking can be interpreted as a sequence of k − 1 independent choices: Choose the
first item, then choose the second among the remaining alternatives, etc. With this point of view in
mind, LSR and I-LSR can easily accommodate data consisting of k-way rankings, by decomposing
the m observations into d = m(k − 1) choices.

Azari Soufiani et al. [10] provide a class of consistent estimators for the Plackett–Luce model, using
the idea of breaking rankings into pairwise comparisons. Although they explain their algorithms from
a generalized-method-of-moments perspective, it is straightforward to reinterpret their estimators as
stationary distributions of particular Markov chains. In fact, for k = 2, their algorithm GMM-F is
identical to LSR. When k > 2 however, breaking a ranking into

(
k
2

)
pairwise comparisons implicitly

makes the (incorrect) assumption that these comparisons are statistically independent. The Markov
chain that LSR builds breaks rankings into pairwise rate contributions, but weights the contributions
differently depending on the rank of the winning item. In Section 4, we show that this weighting
turns out to be crucial. Our approach yields a significant improvement in statistical efficiency, yet
keeps the same attractive computational cost and ease of use.

3.5 Applicability to other models

Several other variants and extensions of Luce’s choice model have been proposed. For example, Rao
and Kupper [23] extend the Bradley–Terry model to the case where a comparison between two items
can result in a tie. In the supplementary file, we show that the ML estimate in the Rao–Kupper model
can also be formulated as a stationary distribution, and we provide corresponding adaptations of LSR
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and I-LSR. We believe that our algorithms can be generalized to further models that are based on the
choice axiom. However, this axiom is key, and other choice models (such as Thurstone’s [2]) do not
admit the stationary-distribution interpretation we derive here.

4 Experimental evaluation

In this section, we compare LSR and I-LSR to other inference algorithms in terms of (a) statistical
efficiency, and (b) empirical performance. In order to understand the efficiency of the estimators,
we generate synthetic data from a known ground truth. Then, we look at five real-world datasets
and investigate the practical performance of the algorithms in terms of accuracy, running time and
convergence rate.

Error metric. As the probability of i winning over j depends on the ratio of strengths πi/πi, the
strengths are typically logarithmically spaced. In order to evaluate the accuracy of an estimate π to
ground truth parameters π∗, we therefore use a log transformation, reminiscent of the random-utility-
theoretic formulation of the choice model [1, 11]. Define θ

.
= [log πi − t], with t chosen such that∑

i θi = 0. We will consider the root-mean-squared error (RMSE)

ERMS = ‖θ − θ∗‖2/
√
n.

4.1 Statistical efficiency

To assess the statistical efficiency of LSR and other algorithms, we follow the experimental procedure
of Hajek et al. [11]. We consider n = 1024 items, and draw θ∗ uniformly at random in [−2, 2]n.
We generate d = 64 full rankings over the n items from a Plackett-Luce model parametrized with
π ∝ [eθi ]. For a given k ∈ {21, . . . , 210}, we break down each of the full rankings as follows. First,
we partition the items into n/k subsets of size k uniformly at random. Then, we store the k-way
rankings induced by the full ranking on each of those subsets. As a result, we obtain m = dn/k
statistically independent k-way partial rankings. For a given estimator, this data produces an estimate
θ, for which we record the root-mean-square error to θ∗. We consider four estimators. The first two
(LSR and ML) work on the ranking data directly. The remaining two follow Azari Soufiani et al. [10],
who suggest breaking down k-way rankings into

(
k
2

)
pairwise comparisons. These comparisons are

then used by LSR, resulting in Azari Soufiani et al.’s GMM-F estimator, and by an ML estimator
(ML-F.) In short, the four estimators vary according to (a) whether they use as-is rankings or derived
comparisons, and (b) whether the model is fitted using an approximate spectral algorithm or using
exact maximum likelihood. Figure 1 plots ERMS for increasing sizes of partial rankings, as well as
a lower bound to the error of any estimator for the Plackett-Luce model (see Hajek et al. [11] for
details.) We observe that breaking the rankings into pairwise comparisons (*-F estimators) incurs a
significant efficiency loss over using the k-way rankings directly (LSR and ML.) We conclude that by
correctly weighting pairwise rates in the Markov chain, LSR distinctly outperforms the rank-breaking
approach as k increases. We also observe that the ML estimate is always more efficient. Spectral
estimators such as LSR provide a quick, asymptotically consistent estimate of parameters, but this
observation justifies calling them approximate inference algorithms.

4.2 Empirical performance

We investigate the performance of various inference algorithms on five real-world datasets. The
NASCAR [18] and sushi [24] datasets contain multiway partial rankings. The YouTube, GIFGIF
and chess datasets2 contain pairwise comparisons. Among those, the chess dataset is particular in
that it features 45% of ties; in this case we use the extension of the Bradley–Terry model proposed
by Rao and Kupper [23]. We preprocess each dataset by discarding items that are not part of the
largest strongly connected component in the comparison graph. The number of items n, the number
of rankings m, as well as the size of a partial rankings k for each dataset are given in Table 1.
Additional details on the experimental setup are given in the supplementary material. We first
compare the estimates produced by three approximate ML inference algorithms, LSR, GMM-F and
Rank Centrality (RC.) Note that RC applies only to pairwise comparisons, and that LSR is the only

2 See https://archive.ics.uci.edu/ml/machine-learning-databases/00223/,
http://www.gif.gf/ and https://www.kaggle.com/c/chess.
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Figure 1: Statistical efficiency of different estimators for increasing sizes of partial rankings. As k
grows, breaking rankings into pairwise comparisons becomes increasingly inefficient. LSR remains
efficient at no additional computational cost.

algorithm able to infer the parameters in the Rao-Kupper model. Also note that in the case of pairwise
comparisons, GMM-F and LSR are strictly equivalent. In Table 1, we report the root-mean-square
deviation to the ML estimate θ̂ and the running time T of the algorithm.

Table 1: Performance of approximate ML inference algorithms
LSR GMM-F RC

Dataset n m k ERMS T [s] ERMS T [s] ERMS T [s]

NASCAR 83 36 43 0.194 0.03 0.751 0.06 — —
Sushi 100 5 000 10 0.034 0.22 0.130 0.19 — —

YouTube 16 187 1 128 704 2 0.417 34.18 0.417 34.18 0.432 41.91
GIFGIF 5 503 95 281 2 1.286 1.90 1.286 1.90 1.295 2.84

Chess 6 174 63 421 2 0.420 2.90 — — — —

The smallest value of ERMS is highlighted in bold for each dataset. We observe that in the case of
multiway partial rankings, LSR is almost four times more accurate than GMM-F on the datasets
considered. In the case of pairwise comparisons, RC is slightly worse than LSR and GMM-F, because
the number of comparisons per pair is not homogeneous (see Section 3.3.) The running time of the
three algorithms is comparable.

Next, we turn our attention to ML inference and consider three iterative algorithms: I-LSR, MM and
Newton-Raphson. For Newton-Raphson, we use an off-the-shelf solver. Each algorithm is initialized
with π(0) = [1/n, . . . , 1/n]ᵀ, and convergence is declared when ERMS < 0.01. In Table 2, we report
the number of iterations I needed to reach convergence, as well as the total running time T of the
algorithm.

Table 2: Performance of iterative ML inference algorithms.
I-LSR MM Newton

Dataset γD I T [s] I T [s] I T [s]

NASCAR 0.832 3 0.08 4 0.10 — —
Sushi 0.890 2 0.42 4 1.09 3 10.45

YouTube 0.002 12 414.44 8 680 22 443.88 — —
GIFGIF 0.408 10 22.31 119 109.62 5 72.38

Chess 0.007 15 43.69 181 55.61 3 49.37

The smallest total running time T is highlighted in bold for each dataset. We observe that Newton-
Raphson does not always converge, despite the log-likelihood being strictly concave3. I-LSR consis-

3 On the NASCAR dataset, this has also been noted by Hunter [18]. Computing the Newton step appears to
be severely ill-conditioned for many real-world datasets. We believe that it can be addressed by a careful choice
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tently outperforms MM and Newton-Raphson in running time. Even if the average running time per
iteration is in general larger than that of MM, it needs considerably fewer iterations: For the YouTube
dataset, I-LSR yields an increase in speed of over 50 times.

The slow convergence of minorization-maximization algorithms is known [18], yet the scale of the
issue and its apparent unpredictability is surprising. In Hunter’s MM algorithm, updating a given πi
involves only parameters of items to which i has been compared. Therefore, we speculate that the
convergence rate of MM is dependent on the expansion properties of the comparison graph GD. As
an illustration, we consider the sushi dataset. To quantify the expansion properties, we look at the
spectral gap γD of a simple random walk on GD; intuitively, the larger the spectral gap is, the better
the expansion properties are [12]. The original comparison graph is almost complete, and γD = 0.890.
By breaking each 10-way ranking into 5 independent pairwise comparisons, we effectively sparsify
the comparison graph. As a result, the spectral gap decreases to 0.784. In Figure 2, we show the
convergence rate of MM and I-LSR for the original (k = 10) and modified (k = 2) datasets. We
observe that both algorithms display linear convergence, however the rate at which MM converges
appears to be sensitive to the structure of the comparison graph. In contrast, I-LSR is robust to
changes in the structure. The spectral gap of each dataset is listed in Table 2.

1 2 3 4 5 6 7 8 9 10
iteration

100

10−2

10−4

10−6

10−8

10−10

10−12

R
M

SE

MM, k = 10
MM, k = 2
I-LSR, k = 10
I-LSR, k = 2

Figure 2: Convergence rate of I-LSR and MM on the sushi dataset. When partial rankings (k = 10)
are broken down into independent comparisons (k = 2), the comparison graph becomes sparser.
I-LSR is robust to this change, whereas the convergence rate of MM significantly decreases.

5 Conclusion

In this paper, we develop a stationary-distribution perspective on the maximum-likelihood estimate
of Luce’s choice model. This perspective explains and unifies several recent spectral algorithms from
an ML inference point of view. We present our own spectral algorithm that works on a wider range of
data, and show that the resulting estimate significantly outperforms previous approaches in terms of
accuracy. We also show that this simple algorithm, with a straighforward adaptation, can produce a
sequence of estimates that converge to the ML estimate. On real-world datasets, our ML algorithm is
always faster than the state of the art, at times by up to two orders of magnitude.

Beyond statistical and computational performance, we believe that a key strength of our algorithms
is that they are simple to implement. As an example, our implementation of LSR fits in ten lines
of Python code. The most complex operation—finding a stationary distribution—can be readily
offloaded to commonly available and highly optimized linear-algebra primitives. As such, we believe
that our work is very useful for practitioners.
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of starting point, step size, or by monitoring the numerical stability; however, these modifications are non-trivial
and impose an additional burden on the practitioner.
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