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Abstract

Accurate determination of physiological states of cellular metabolism requires detailed
information about metabolic fluxes, metabolite concentrations and distribution of enzyme
states. Integration of fluxomics and metabolomics data, and thermodynamics-based
metabolic flux analysis contribute to improved understanding of steady-state properties of
metabolism. However, knowledge about kinetics and enzyme activities though essential for
quantitative understanding of metabolic dynamics remains scarce and involves uncertainty.
Here, we present a computational methodology that allow us to determine and quantify the
kinetic parameters that correspond to a certain physiology as it is described by a given
metabolic flux profile and a given metabolite concentration vector. Though we initially
determine kinetic parameters that involve a high degree of uncertainty, through the use of
kinetic modeling and machine learning principles we are able to obtain more accurate
ranges of kinetic parameters, and hence we are able to reduce the uncertainty in the model
analysis. We computed the distribution of kinetic parameters for glucose-fed E. coli
producing 1,4-butanediol and we discovered that the observed physiological state
corresponds to a narrow range of kinetic parameters of only a few enzymes, whereas the
kinetic parameters of other enzymes can vary widely. Furthermore, this analysis suggests
which are the enzymes that should be manipulated in order to engineer the reference state
of the cell in a desired way. The proposed approach also sets up the foundations of a novel

type of approaches for efficient, non-asymptotic, uniform sampling of solution spaces.



1. Introduction

Mathematical modeling and computational analysis of cellular metabolism have become
indispensable tools for understanding living organisms at a system level. Genome-scale
stoichiometric models (GEMs) of metabolism are now widely available for many organisms
(Henry et al., 2010; Herrgard et al.,, 2008; Orth et al., 2011; Osterlund et al,, 2013; Sohn et al,,
2010; Thiele et al., 2013) and they have been used in studies of cellular physiology and
metabolic engineering (Asadollahi et al., 2009; Borodina et al., 2015; Bro et al., 2006; Dash
et al,, 2014; King and Feist, 2014; Snitkin et al., 2008). However, these models are not
suitable for predicting the responses of metabolism to changes in enzyme expression
because they are lacking information about enzyme kinetics (Miskovic and Hatzimanikatis,
2010). The research community has long appreciated this limitation and there are recent
intensive efforts towards large- and genome-scale kinetic models of metabolism (Bakker et
al, 2010; Chakrabarti et al., 2013; Chowdhury et al., 2014; Jamshidi and Palsson, 2010;
Khodayari et al., 2014; Miskovic and Hatzimanikatis, 2010; Miskovic and Hatzimanikatis,
2011; Murabito et al., 2014; Soh et al,, 2012; Stanford et al., 2013; Wang et al., 2004; Wang
and Hatzimanikatis, 2006a; Wang and Hatzimanikatis, 2006b). Although the methodologies
for constructing consistent large-scale kinetic models are becoming available, many
challenges remain to be addressed.

When constructing kinetic models we usually start with a flux and a concentration profile,
and we must find enzyme kinetics (rate expressions and parameters) that are consistent
with these profiles (Chakrabarti et al.,, 2013; Soh et al., 2012). The two main issues that
hamper development of kinetic models is uncertainty associated with the available data

acquired at several biological levels:



a) Uncertainty in metabolite concentration levels and thermodynamic displacement: The
introduction of thermodynamics in the context of flux balance analysis (FBA) have
resulted in important reduction of the flux solution space (Soh and Hatzimanikatis,
2010; Soh and Hatzimanikatis, 2014); the thermodynamic properties couple the
directionality of the fluxes and the levels of metabolite concentrations and therefore
they impose additional constraints on the space of metabolite concentrations (Soh
and Hatzimanikatis, 2014; Soh et al, 2012); uncertainties in metabolite
measurements and in the estimated thermodynamic properties of reactions (Gibbs
free energies of reactions) can impact the conclusions about the displacement of
reactions from thermodynamic equilibrium and ultimately the conclusions about
the kinetic parameters of the corresponding enzymes;

b) Uncertainty in kinetic properties of enzymes: The lack and uncertainty of information
about enzyme Kkinetics has been acknowledged as the single most important
obstacle for developing kinetic models (Miskovic and Hatzimanikatis, 2010; Wang et
al, 2004); Uncertainties of this type can be either structural, e.g. incomplete
knowledge of kinetic mechanisms, or quantitative, e.g. absent or incomplete
knowledge about the values of the kinetic parameters of enzymes (Miskovic and
Hatzimanikatis, 2011);

Due to the complex interactions between metabolic fluxes, metabolite concentrations,
thermodynamics and kinetics, uncertainties in each of these quantities propagate to the
kinetic parameter space thus making a reliable direct identification of kinetic parameters a
difficult task (Almquist et al, 2014). This inspired the development of new modeling

frameworks that exploit the sets of additional thermodynamic and physicochemical



constraints and integrate available data coming from several levels to reduce the space of
admissible parameter values (Chakrabarti et al, 2013; Jamshidi and Palsson, 2010;
Miskovic and Hatzimanikatis, 2010; Miskovic and Hatzimanikatis, 2011; Soh et al., 2012;
Tran et al, 2008; Wang et al, 2004; Wang and Hatzimanikatis, 2006a; Wang and
Hatzimanikatis, 2006b). Some of these approaches use Monte Carlo sampling techniques to
extract populations of parameter sets capable of reproducing the observed physiology
(Birkenmeier et al., 2015a; Birkenmeier et al., 2015b; Chakrabarti et al., 2013; Miskovic and
Hatzimanikatis, 2010; Murabito et al,, 2014; Soh et al,, 2012; Tran et al., 2008; Wang et al,,
2004; Wang and Hatzimanikatis, 2006a; Wang and Hatzimanikatis, 2006b). However, the
sheer size of the admissible space that spans through the spaces of kinetic parameters,
metabolite concentrations and metabolic fluxes along with the intrinsic nonlinearities of
enzyme Kinetics require tailored formulations and efficient parameter estimation
techniques that are scalable and that can ultimately provide a detailed description of the
metabolism. In the identification of population of models using sampling methods, a highly
efficient method should be able to generate a very large number of models. This is a
daunting task as the size of the models and the nonlinearities in the models increase. To
overcome these challenges we have developed the ORACLE framework (Optimization and
Risk Analysis of Complex Living Entities) (Chakrabarti et al, 2013; Miskovic and
Hatzimanikatis, 2010; Miskovic and Hatzimanikatis, 2011; Soh et al., 2012; Wang et al,,
2004; Wang and Hatzimanikatis, 2006a; Wang and Hatzimanikatis, 2006b), which uses
nonlinear mechanistic rate laws to model reaction kinetics and the model parameters are
computed through Monte Carlo sampling, integration of partial data, and a sequence of

algebraic operations. ORACLE offers a significant computational advantage over the



parameter estimation methods that: (i) require solving systems of ordinary differential
equations (ODEs); and/or (ii) use dynamic optimization techniques. The efficient way of
sampling of kinetic parameter space (Miskovic and Hatzimanikatis, 2010; Wang et al,,
2004) and low computational requirements make ORACLE scalable and more suitable for
modeling of large-scale and genome-scale kinetic networks.

In the most common studies, we have a reference steady state flux profile and a vector of
metabolite concentration levels, and we want to derive the corresponding feasible kinetic
model. We consider as a feasible kinetic model the model that is: (i) consistent with the
observed metabolic fluxes and metabolite concentration levels; (ii) locally stable around
the reference steady-state (Wang et al., 2004); and (iii) consistent with any additional
experimental observations and available expert knowledge (Miskovic and Hatzimanikatis,
2010). Nevertheless, it is impossible to identify a unique kinetic model consistent with the
observed physiology due to limited amount of available data relative to the number of
model parameters. Instead, in the ORACLE framework we derive a population of feasible
kinetic models (Figure 1). This population of models involves large uncertainties in the
sense that the exact parameter values of the models are typically unknown, and the ranges
of some of the parameter values are large and not well characterized. To address this issue
we introduced in this manuscript a new approach for characterization and reduction of
uncertainty. This approach makes use of ORACLE and machine learning classification
techniques to identify the values of the enzyme saturation levels and the corresponding
values of kinetic parameters that give rise to feasible kinetic models. As a result of this
approach, we obtain a set of kinetic models with well-constrained parameters, i.e. the

uncertainty in kinetic parameters is reduced.



The proposed methodology also introduces a new way for sampling efficiently and non-
asymptotically the space of parameters and for computing the volume of this space. Indeed,
this approach approximates the space of the parameters that are consistent with an
observed physiology as a set of hyper-boxes, starting from an initial population of models
derived through ORACLE. For each of hyper-boxes we can perform sampling and volume
computation independently, and we then combine the resulting sampling sets and volumes
to obtain a sampling set and a volume that characterize the whole space of parameters.

We illustrated the utility of our approach through a study of glucose-fed E. coli producing
1,4-butanediol, and we computed the distribution of enzyme saturations and parameters
that are consistent with the observed physiology. We used the machine learning algorithm
to identify the subspace of the kinetic parameter space wherein the kinetic models are
likely to be feasible, and we discovered that feasible kinetic models can be constructed by
constraining the saturations (and the corresponding kinetic parameters) of only 27 out of
153 enzymes within specific ranges, while the other enzymes could operate in any regime.
This finding appears to be consistent with studies by Sethna and colleagues where it was
shown that in many systems biology models, which they call “sloppy models”, most
directions in parameter space do not affect the model output but that there are a few so-
called stiff directions that change the model behavior (Daniels et al,, 2008; Gutenkunst et al.,

2007).

2. Materials and Methods

2.1. Parameter classification problem



The parameter classification problem is the identification of a subspace of the parameter
space wherein the parameters satisfy a given property (GP). If we consider a n-dimensional
space of parameters, p;, D3, ..., Py, and we assume that the GP is satisfied if a function of
these parameters, f(pq, p2, ---, Pn), Satisfies f(pq,p2, -, Pn) < 0, then, for this parameter
space the parameter classification problem is defined as:
Given:
(i) an ensemble of parameter sets (p4, P2, .., Pn), and
(ii)  the information which of these parameter sets satisfies GP,
can we find ranges of pq,p,, ..., Pn, for which GP is satisfied without knowing the

exact functional form of f(p4,p2, -, Pn)?

2.1.1. Classification algorithm

Decision-tree learning algorithms use values of observed data samples to infer the rules,
such as parameter ranges, that predict if the data satisfy a GP (Bishop, 2006; Han et al,,
2012; Quinlan, 1993). For the purpose of this work we have used the CART algorithm
(Breiman et al,, 1984) implemented in the MATLAB software package. We perform the
classification procedure outlined in the following three steps:

Step C1: We form a training set of data and use it to infer a set of classification rules. A
training set consists of an input set and an answer set. In this work, the input set contains
the sets of parameters whereas the answer set contains the information if GP is satisfied or
not for each parameter vector;

Step C2: We compute the feasibility index (FI) as the ratio between the number of

parameter sets that satisfy GP and the overall number of generated parameter sets. FI is a



measure of the uncertainty in the parameter space: if all parameter sets satisfy GP, FI is
equal to 1, whereas if no parameter set satisfies GP, FI equals 0.

Step C3: We generate a set of data based on the inferred rules from Step C1, and which is
independent of the training set (validation set). We compute then FI over the validation set,
and we compare the obtained FI score with the one from Step C2: if we obtain an improved
FI, the rules from Step C1 are validated.

The CART algorithm produces a binary tree of classification rules (Figure 2, panel B). Each
branch of the tree represents a rule, i.e. a sequence of conditions on parameters,
D1, D2, ---, Pn, that infers whether GP is satisfied or not (Figure 2, panel B). Each classification
rule with the leaf label “y” (yes) envelops the samples that satisfy GP (Figure 2, panel B). In
the space of parameters, inferred classification rules correspond to hyper-boxes, and the
bounds for each hyper-box are defined as inequalities on the individual parameters. As a
set of hyper-boxes approximates the subspace of the parameter space that satisfies GP,
there is interplay between the geometric complexity of the subspace defined by GP and the
number of hyper-boxes needed to approximate this subspace, i.e. the more complex the
shape of the subspace satisfying GP is, the more hyper-boxes are needed to approximate it.
After the computation of the rules and the associated hyper-boxes we are able to perform
two very important operations on the parameter space. First, we are able to compute in an
efficient way the n-dimensional volume of the subspace of kinetic parameters that satisfy
GP by summing up the n-dimensional volumes of the individual hyper-boxes. Second, due
to the nature of the parameter subspaces (hyper-boxes), we can efficiently sample the
subspace of kinetic parameters with uniform distribution by sampling the individual

hyper-boxes.
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The number of rules returned by the algorithm depends on several factors such as the
shape of the subspace defined by the GP and the number of samples. An important
parameter of the classification algorithm is the cut-off threshold Tk, a minimal number of
samples (parameter sets) that the algorithm can use to form a rule (Duda et al,, 2001; Han
et al,, 2012). More precisely, the classification algorithm retains only the rules that are
based on at least Tk samples (parameter sets), whereas all the rules that are inferred on

less than Tk samples are discarded. Therefore, the higher Tk is, the fewer rules are inferred.

We use subsequently the following toy example to define the parameters and metrics
employed in parameter classification:
For the space of two parameters, p; and pz, which are bounded in the range
between 0 and 1, solve the above defined parameter classification problem with a
function f(p1,p;) = (p; — 0.1)% + 4(p, — 0.1)? — 0.64. That is, find the set of ranges
of p: and p2 if GP is satisfied for f(p;,p,) < 0 (Figure 2, Panel A). The area of the
subspace that satisfies GP is subsequently referred to as the “true area”.
We applied the CART algorithm to the toy example. We generated the input set of 500
random samples from this space, and we formed the answer set by assessing whether GP
was satisfied or not (Figure 2, panel A). These two sets were provided to the CART
algorithm as the input. We choose the cut-off threshold to be Tk = 1, which means that all
the rules generated by the classification algorithms are kept. The algorithm produced 5
rules on parameters p; and p:that can be used to infer whether GP is satisfied or not
(Figure 2, panel B). For example, the rule deduced from the solid branch in Figure 2, panel

B, with 0.768 < p;1< 0.858 and p2< 0.271 corresponds to the hyper-box III in panel A. This
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rule implies if the value of p; is between 0.768 and 0.858, and if the value of p:is less than
0.271 then there is a “high certainty” that GP will be satisfied. The other rules satisfying GP
are shown as hatched boxes |, I1, IV, and V (Figure 2, panel A). With this set of classification
rules, the algorithm approximated the function (p; — 0.1)? + 4(p, — 0.1)? — 0.64 < 0. We
choose 1000 parameter sets according to the approximate rules, i.e. we formed the
validation set from Step C3, and we tested if GP was satisfied. We obtained FI of 0.976, i.e.
for 976 out of 1000 parameter sets (97.6%,) the algorithm correctly predicted the outcome,
and there were 24 (2.4%) false positives (parameter sets which are predicted by the

algorithm to satisfy GP but they do not).

2.1.2. Ranking of classification rules

For a precise determination of the frontier of separation between the samples satisfying GP
and those that are not, we need a large number of samples that will result in larger number
and more accurate rules. In general, we should expect that the rules inferred on the basis of
only a few samples are more likely to be imprecise, i.e. they might envelop a considerable
part of the parameter space where GP is not satisfied. Moreover, if we sample the
parameter space uniformly, we can also expect that rules enveloping more samples
approximate a larger portion of the parameter space that satisfies GP. Based on this
reasoning, we rank the rules according to the number of samples they envelop - the more
samples, the higher ranked the rule. The ranking allows us to identify and discard the rules
that: (i) are more likely to provide erroneous classification; and (ii) approximate negligible
portions of the parameter space satisfying GP. Following this ranking, we eventually end up

with simpler and more reliable rules.
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We ranked the rules inferred for the toy example, and the box corresponding to the top rule
contained 147 samples whereas the one for the lowest ranked rule contained only two

samples (Figure 2, panel A, boxes [ - V).

Table 1: Successive application of the rules computed for the toy example (Figure 2).

Rules Total enclosed Enclosed samples Fl Enclosed area
samples of added rule
| 147 147 0.989 0.282
1+l 165 18 0.978 0.336
+11+111 175 10 0.978 0.360
I++1H1+IV 180 5 0.976 0.378
I++1+IV+V 182 2 0.976 0.382

For the inferred rules we computed the feasibility index (FI). For a chosen set of hyper-
boxes, FI represents a ratio between the parameter sets with the correct predictions of GP
and the total samples contained in these boxes. For the top ranked rule (Box I) we
computed FI of 0.989, i.e. if we sample within this box 98.9% of parameter sets would
satisfy GP. As we successively added one-by-one rules according to the ranking starting
from the top rule we observed that FI was slightly decreasing so that for all five rules FI
was 0.976 (Table 1).

Since we know the functional form of f(p,, p,) for this toy example, we were able to
compute the exact value for the true area (0.3804). Then, for each hyper-box, we used the
information about the ranges of parameters to compute its corresponding area. For
example, for hyper-box [ with the parameters ranging 0 < p;< 0.768 and 0 < p>< 0.368 we
computed the area of 0.282, which approximated 74% of the true area (Table 1 and Figure
2). As we successively added the other rules according to the ranking, the covered area was

increasing so that for all 5 rules the covered area was 0.382 (Table 1). Indeed, the covered
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area was slightly larger than the true area, which explains the 2.4% of false positives
reported in Section 2.1.1.

A comparison of the evolution of FI and the coverage areas in Table 1 suggested that there
was a trade-off between the reliability of the predictions (in terms of FI) and the coverage
of the space that satisfies GP. Specifically, the larger the covered space was, i.e. the larger

number of rules was considered, the smaller the feasibility index was obtained.

2.2. Computational procedure for characterization of uncertainty

The computational procedure for the characterization of uncertainty is based on the
ORACLE framework (Chakrabarti et al., 2013; Miskovic and Hatzimanikatis, 2010; Miskovic
and Hatzimanikatis, 2011; Soh et al, 2012; Wang et al., 2004) and involves a set of
successive computational procedures that allows us to consistently integrate omics data,
and physicochemical and thermodynamic constraints into kinetics models of sizes scalable
to genome-scale metabolic networks. The procedure involves 8 steps where Steps 1-5 stem
from the original ORACLE framework, whereas Steps 6 to 8 correspond to Steps C1 to C3 of
the classification procedure presented in Section 2.1.1. We outline the procedure as follows
(Fig. 1):

Step 1: We define the stoichiometry and the thermodynamic constraints followed by the
integration of the metabolomics, fluxomics, and physiology data and we perform the
Thermodynamics-based Metabolic Flux Analysis (TMFA) (Henry et al.,, 2007), also called
Thermodynamics-Based Flux Balance Analysis (TFBA)(Soh and Hatzimanikatis, 2010; Soh
and Hatzimanikatis, 2014; Soh et al,, 2012). Since the TFBA problem might have multiple

optimal solutions, i.e. multiple sets of flux and concentrations vectors can explain the
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observed measurements for the same value of the objective function, we choose a
metabolic flux vector based on expert knowledge, a hypothesis, or we perform PCA (Jolliffe,
2002) to find a representative steady-state flux profile consistent with the observed
physiology.

Step 2: We sample the space of metabolite concentrations that are thermodynamically
consistent with the steady-state flux profile determined in Step 1, and we compute the
displacements from the thermodynamic equilibrium of all reactions in the metabolic
network.

Step 3: We integrate the available information about the kinetic mechanisms (Segel, 1975)
and values of kinetic parameters from the literature and the databases (Schomburg et al,,
2013; Wittig et al,, 2012). For the reactions with unknown kinetic mechanisms, we use
approximate rate laws such as convenience kinetics (Liebermeister and Klipp, 2006) and
reversible Hill kinetics (Hofmeyr and Cornish-Bowden, 1997). For enzymes with no or
incomplete information about their kinetic parameters we use Monte Carlo sampling
techniques (Gentle, 2003; Gilks et al., 1998) to sample the space of kinetic properties in the
form of enzyme states (Miskovic and Hatzimanikatis, 2011) or the degree of saturation of
enzyme (Wang et al,, 2004).

Step 4: We use the results acquired in Steps 1-3 to parameterize a population of kinetic
models of metabolism of the same structure. The structure of the models can be either of
the following types: nonlinear models, log-linear models (Hatzimanikatis and Bailey, 1996;
Hatzimanikatis and Bailey, 1997; Wang et al., 2004; Wang and Hatzimanikatis, 2006a;
Wang and Hatzimanikatis, 2006b), BST models (Savageau, 1969a; Savageau, 1969b;
Savageau, 1970), etc.

Step 5: We perform the feasibility test, i.e. assuming that the observable flux and

metabolite profiles we want to capture are at steady or quasi-steady state, we verify the

15



stability and we impose consistency of the obtained models with the experimentally
observed data and literature. The feasibility test tells us if the GP of the parameter
classification problem defined in Section 2.1 is satisfied.

Step 6: We form the input set with the parameters obtained in Step 4, and the answer set
with the feasibility test results obtained in Step 5 (see Step C1 in Section 2.1.1). We use
these two sets as a training set for the CART machine learning algorithm (Han et al.,, 2012)
to extract the rules on the ranges of kinetic parameters that give rise to feasible kinetic
models.

Step 7: We compute the feasibility index (FI), which is a measure of the uncertainty in the
kinetic parameter space. FI is computed as the ratio between the number of kinetic
parameter sets that passed the feasibility check in Step 5 and the overall number of
generated parameter sets.

Step 8: We use the inferred rules from Step 6 to generate an independent population of the
kinetic models in Steps 3 and 4. We then use this population of models as the validation set.
If we observe an increased FI of the validation set compared to FI of the training set, the
rules are validated.

These rules can then be used to generate new populations of kinetic models with improved
certainty of being feasible, i.e. being locally stable, consistent with the studied fluxomics,
metabolomics, physiology data, and consistent with the available expert knowledge and

postulated hypotheses.

2.3. Ranking of classification rules, enzyme saturations and enzymes
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In the ORACLE framework, instead of directly sampling the parameter space, we first
sample the enzyme states, or the enzyme saturations, which are always within well-defined
bounds. We then use the corresponding metabolite concentrations to compute the
parameters from the saturation samples.

For the system we present here, and for all the systems we have studied, in the rules of the
classification procedure (Steps 6-8) only a few of the enzyme saturations must be
constrained within narrow bounds in order to derive feasible kinetic models for a given
physiology, while the rest of enzyme saturations can range widely. Therefore, by narrowly
constraining only a few enzyme saturations while choosing the values of the remaining
enzyme saturations in a random manner we can obtain a population of models with an
improved FI. We ranked the enzyme saturations and the enzymes according to the
aforementioned improvement in FI.

2.3.1. Ranking of classification rules

We rank the classification rules based on the number of kinetic parameter sets that they
enclose (see the discussion in Section 2.1.2). The higher the number of enclosed parameter
sets, the higher ranked the rule.

2.3.2. Ranking of enzyme saturations within a rule

For a given rule, we choose an enzyme saturation and we extract its bounds within this rule.
Next, we form a subspace of the parameter space that is defined within the extracted
bounds, while the rest of enzyme saturations can range over all admissible values. We then
evaluate FI within this subspace, i.e. we evaluate FI over all samples from the training set

that satisfy the ranges of the chosen enzyme saturation.
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We repeat this procedure for all enzyme saturations and we rank them according to the
obtained values of FI from the highest FI towards the lowest FI.

2.3.3. Ranking of enzyme saturations over the Top 10 rules

We want to screen out the enzyme saturations which, when constrained, give the highest
improvement of FI over the Top 10 rules. We perform the ranking as follows. First, for each
of the Top 10 rules, we evaluate FI for all enzyme saturations as described in Section 2.3.2.
Second, for each of enzyme saturations we multiply the FI value in each of the Top 10 rules
by the number of samples the corresponding rule envelops and we sum the obtained values.
Finally, we rank the enzyme saturations over Top 10 rules according to the obtained sums
starting from the highest sum (Supplementary File 3).

2.3.4. Ranking of enzymes with a rule and over the Top 10 rules

The ranking of enzymes within a rule is performed in a similar way to that of enzyme
saturations (Section 2.3.2.). We start by extracting the bounds on all the saturations
pertaining to a chosen enzyme. We then form a parameter subspace that is constrained by
the extracted bounds where the saturations of other enzymes can range over all admissible
values, and we evaluate FI within this subspace. We repeat this procedure for all enzymes
and we rank them according to the obtained FI values.

The ranking of enzymes over the Top 10 rules is performed analogously to the procedure

presented in Section 2.3.3.

3. Results and Discussion

3.1. Characterization of feasible kinetic parameter space
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We used a reduced stoichiometric model of 1,4-butanediol producing E. coli obtained from
the genome-scale model of E. Coli, iJ01366 (Orth et al., 2011). The reduced model includes
the core metabolic pathways glycolysis, pentose phosphate pathway, tri-carboxylic cycle
(TCA) and electron transport chain (ETC) along with the engineered 1,4-butanediol
production pathway. The model contains 175 intracellular reactions and mass balances for
106 metabolites in the cytosol and the extracellular space (Supplementary File 1, Figure 1
and Tables 1 and 2). We assigned kinetic mechanisms such as reversible Michaelis-Menten
kinetics, Uni-Bi, ordered Bi-Bi, Bi-Ter, Ter-Bi etc, to 153 enzymatic reactions of the
metabolic network (Segel, 1975) ( Supplementary File 1, Table 3). If for some reactions the
kinetic mechanism was unknown, we used generalized reversible Hill kinetics (Hofmeyr
and Cornish-Bowden, 1997) or convenience kinetics (Liebermeister and Klipp, 2006). The
obtained kinetic space, subsequently referred to as original kinetic parameter space,
consisted of 527 enzyme saturations corresponding to 527 Ky, values.

We randomly generated a set of 1000 metabolite concentration vectors (Supplementary
File 2) that are thermodynamically consistent with the chosen metabolic flux
(Supplementary File 1, Table 5), and we randomly picked one sample from this set
(subsequently referred to as chosen metabolite concentration vector).

From Brenda and SABIO-RK database (Schomburg et al., 2013; Wittig et al,, 2012) we
extracted experimental information about 69 Michaelis constants, K, which corresponded
to 37 enzymes in our model (Supplementary File 1, Table 4). The K, values for every
substrate and product were available only for 8 enzymes. We used the experimental K,
values to compute the bounds on enzyme saturations from the samples of metabolite

concentrations. For the remaining enzymes with incomplete or no information about K,
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values we set the lower bound on enzyme saturations to 0 (non-saturation) and the upper
bound to 1 (full saturation) (Wang et al., 2004). We then sampled the enzyme saturations
by assigning uniformly random numbers between the assigned bounds (Wang et al., 2004).
This way, we generated a set of 150000 enzyme saturations vectors, subsequently referred
to as validation set, and for the chosen metabolite concentration vector we performed the
feasibility test over the validation set. In ORACLE all generated parameter vectors are
consistent with the observed metabolic fluxes and metabolite concentration levels, and
therefore the results of the feasibility test depended on the local stability of models around
the reference steady state. The computed FI was 0.477, i.e. 71623 (47.7%) parameter

vectors out of 150000 in the validation set gave rise to feasible kinetic models.

3.2. Quantification of uncertainty in the kinetic parameter space

We generated the input set for the classification algorithm consisting of a uniformly
distributed random set of 100000 enzyme saturations. We performed next the feasibility
test over this input set for the chosen metabolite concentration vector, and we obtained an
FI of 0.481. We then generated the answer set based on the criterion if the feasibility test
was satisfied or not for each of input set saturations. With the input and the answer set we
formed the training set (Materials and Methods, Sections 2.1.1 and 2.2). We choose the cut-
off threshold to be Tk = 10, which means that the classification algorithm retained only the
rules that are based on at least 10 parameter sets (Section 2.1.1). The algorithm returned
3801 classification rules on 527 enzyme saturations that lead to an improved FI, and we
tested these rules over the validation set. The kinetic parameter subspace defined by these

rules had an improved FI of 0.595 compared to the original kinetic parameter space, which
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had an FI of 0.477 (Table 2). We ranked the rules according to the number of samples they
contain (Material and Methods, section 2.1.2), discarded the ones with the lowest ranking,
and tested FI of the retained rules over the validation set. Similarly to the toy model case
discussed in section 2.1.2, as we consider a smaller number of more reliable rules, the
incidence of correct predictions increase, so that for 10 top rules FI was 0.845 whereas for
the most reliable rule it climbed up to 0.884 (Table 2). Simultaneously, the smaller the
number of rules we consider, the smaller the considered kinetic parameter subspace, so
that 10 top rules covered the subspace that contained 8802 samples, i.e. 5.8% of the
samples in the validation set, whereas the top rule covered 2183 samples, i.e. 1.45% of the
validation set (Table 2). The ranking of the rules and its successive application allowed us
to map the kinetic parameters space according to FI. More specifically, by starting with the
most dominant rule and then adding successively one-by-one the remaining rules we were
able to demarcate the regions of the kinetic parameter space based on the value of FI. The
evolution of FI as we added the first 50 rules according to the ranking is provided in

(Supplementary File 1, Table 6).

Table 2: Feasibility index (FI) of the obtained classification rules over the validation set for the chosen metabolite
concentration vector.

Number of rules 3801 50 10 1
fl Number fl Number of I Number of fl Number
of models models models of models

Quantitative
rules
Discrete rules 0.477 149995 0.527 124753 0.573 93266 0.666 26675

0.595 42887 0.787 20250 0.845 8802 0.884 2183

We next analyzed the kinetic parameter subspace defined by the top rule and we found that

only 94 out of 527 enzyme saturations are constrained within narrow ranges, and the
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remaining 433 enzyme saturations could take any value between 0 (linear regime) to 1
(full saturation). Interestingly, these 94 saturations corresponded to only 27 out of 153
enzymes. This striking result implies that it is sufficient to constrain only a small number of
highly ranked enzyme saturations to improve FI compared to the one of the original kinetic
parameter space. We ranked these 94 enzyme saturations as presented in Materials and
Methods, section 2.3. For the top ranked saturation, i.e. saturation of AKGDH (2-
oxoglutarate dehydrogenase) by succinate-CoA, we constrained its value between 0.594
and 1, and we obtained FI of 0.569 over the validation set (Figure 3 and Supplementary File
1, Table 7).

We continued the analysis by studying the kinetic parameter subspace defined by the top
10 rules and we found the same 94 enzyme saturations are narrowly constrained within
this subspace, and they were related to the same 27 (out of 153) enzymes. We analyzed the
values of the Top 10 ranked enzyme saturations (Materials and Methods, Section 2.3) that
give rise to feasible kinetic models in this subspace, and we discovered the ranges of these
saturations that lead to high values of FI. Specifically, we observed that when the values of
the saturation of AKGDH by succinate-CoA were in the medium-to-high range, i.e. when the
values of this saturation were higher than 0.5 (Figure 3), FI was increased to the value of
0.574. When this saturation had the low-to-medium values (Figure 3), the corresponding FI
was deteriorated to the value of 0.418. We observed similar patterns for the saturations of
PFK by FdP, GLCptspp by G6P, AKGDH by CoA and GLCptspp by PEP (Figure 3). In contrast,
we observed improved values for FI (ranging from 0.517 to 0.535) whenever the saturation
of AKGDH by NAD ranged in the low-to-medium range, and deteriorated values of FI, for

example 0.405 for the rule 10, when this saturation was in the medium-to-high range
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(Figure 3). Some of the top ranked enzyme saturations, such as AKGDH by CoA and
GLCptspp by PEP, were not constrained in some of the top 10 rules (Figure 3).

Once we have derived the top rules we can further perform meta-analysis to investigate
combinations of ranges of enzyme saturations within the top enzymes that would give an
improved FI, and then we can use any of these combinations to form synthetic rules. For
example, we analyzed the saturation of PFK by FdP and we obtained an FI of 0.541 when
this saturation was constrained within the range defined by Rules 4 and 10, while the rest
of enzyme saturations ranged over all admissible values (Figure 3). This FI was superior to
the one obtained when this saturation was constrained within the range defined by Rule 1
(0.534). Similarly, for the saturation of AKGDH by NAD we found that if we constrain this
saturation according to Rule 4, we would obtain the highest FI (0.535).

Based on this analysis, we constructed a synthetic rule (Figure 3). For each of the analyzed
top 6 enzyme saturations we took the corresponding ranges that would give the highest FI
among the top 10 rules. We tested the successive application of constraints of top 6 enzyme
saturations over the validation set for the top 10 inferred rules and for the synthetic rule.
The cumulative FI of the synthetic rule of 0.855 was far superior to all other rules (Figure
3). Even more striking was that a synthetic rule composed by narrow ranges of only 6
enzyme saturations was comparable in terms of FI to the top rule I which had 94
saturations constrained (0.855 for the synthetic rule versus 0.883 for the top rule I). In
comparison, successive application of constraints on the top 10 ranked enzyme saturations
over the top 10 rules provided a FI of 0.75 (Figure 4, panel A).

This analysis indicated that for each of the enzyme saturations there was a well-defined

range that gave rise to improved FI. This analysis also suggested that the individual
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improvements of FI, obtained by constraining each of the enzyme saturations to these
ranges, were synergistic. That is, when we successively constrained one-by-one the ranges
of enzyme saturations in the synthetic rule we obtained a monotonic increase of FI (Figure
4, panel A).

Next, we ranked the enzymes in the network as discussed in Materials and Methods,
Section 2.3, and the Top 5 enzymes were AKGDH, GLCptspp, PFK, THD2pp, GLYCLTDy
(Figure 4, panel B). We constrained the enzyme saturations that pertained to AKGDH, and
we obtained FI of 0.613. By additionally constraining the saturations related to GLCptspp,
FI increased to 0.680. Furthermore, by constraining 8 top ranked enzymes, i.e. AKGDH,
GLCptspp, PFK, THD2pp, GLYCLTDy, AKGD, CS and PGI, we obtained FI of 0.818 that is
close to FI of 0.845 when all enzymes are constrained (Figure 4, panel B). This analysis
identifies the enzymes whose kinetics must be determined to characterize precisely the

analyzed feasible kinetic subspace.

3.3. Semi-Quantitative uncertainty characterization in the kinetic parameter space

Available information about enzymes can be available in a “semi-quantitative” form. For
example, if we consider enzyme saturations, then this information is sometimes
communicated as follows: an enzyme operates in (i) low saturation (linear regime); (ii)
medium saturation; and (iii) high saturation. Therefore, we proposed the following two
procedures that allowed us to analyze semi-quantitative data. In the first procedure we
first discretize the parameter space and we then build the rules, while in the second
procedure we first build the quantitative rules and then we discretize them to construct the

discrete rules.
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3.3.1. Integration of semi-quantitative information into the kinetic models

We first split the space of saturation in three discrete intervals: (i) interval of low
saturation - the quantitative values of saturation range between 0 and 0.25; (ii) interval of
medium saturation - the quantitative values of saturation range between 0.25 and 0.75;
and (iii) interval of high saturation - the quantitative values of saturation are larger than
0.75. Then, for each provided semi-quantitative information we assign one of the three
intervals (or their combination) and we sample within such interval. Finally the samples
are provided to the machine classification algorithm as inputs.

3.3.2. Semi-quantitative characterization of the subspaces with reduced uncertainty

For each rule, we consider constraints on enzyme saturations and for each computed range
of the saturations we compute the discretized interval (or their combination) that encloses
this range. For example, if in a classification rule enzyme saturation ranges from 0.12 to
0.64, then in the discrete rule this saturation will cover interval of low and medium
saturation described in Section 3.3.1, i.e. it will range between 0 and 0.75.

We discretized the set of quantitative rules obtained in Section 3.2 and then we tested FI
over the validation set. The discrete rules provided improved FI (ranging from 0.477 to
0.666) compared to the original kinetic parameter space (0.477), but this improvement
was inferior to the one when the quantitative rules are applied (with FI ranging from 0.595
to 0.884) (Table 2). This was expected, as the discrete rules defined a parameter subspace
that enclosed the portions of the parameter space that had a lower FI compared to the FI of
the space defined by the quantitative rules. For the top discrete rule we obtained FI of
0.666, which was inferior to 50 top quantitative rules with FI of 0.787 (Table 2).

Simultaneously, the top discrete rule enveloped a bigger portion of the original kinetic
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parameter space (26675 samples, i.e. 17.8% of the samples in the validation set) than 50
top quantitative rules (20250 samples, i.e. 13.5% of the samples in the validation set). The
discrete rules were so approximate that 3801 discrete rules enveloped practically the
whole original kinetic parameter space (Table 2). In comparison, the quantitative rules

demarcate very precisely the portions of the kinetic parameter space with high and low FI.

3.3. Robustness of the classification rules

We considered a set of 1000 metabolite concentration vectors and we analyzed the
feasibility of kinetic models for each concentration vector over the validation set consisting
of 150000 parameter sets (see section 3.1). The computed FI ranged from 0.239, i.e. 23.9%
of the samples from the validation set formed a feasible kinetic model with the analyzed
concentration vector, to 0.851 with a symmetrical distribution around the mean value of
0.531 (Figure 5). The distribution of the FI over the metabolite concentration levels
suggested that these quantities are important factor in forming the feasible kinetic space.
This observation is consistent with previous studies by Chakrabarti et al., where it was
reported that the stability of the kinetic models was affected predominantly by metabolite
concentration levels and enzyme saturations and to a lesser extent by metabolic flux levels
(Chakrabarti et al., 2013).

We then tested if the rules obtained in Section 3.2 for the chosen metabolite concentration
vector will also give high FI when they are used for generating populations of kinetic
models that correspond to the same flux profiles but with different metabolite
concentration vectors. For each vector from the set of 1000 metabolite concentrations, we

considered the top 10 rules and assessed FI over the samples from the validation set that
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satisfy these rules. The obtained distribution of FI over the set of metabolite concentration
showed that the obtained rules were robust throughout the metabolite concentration space
(Figure 5). FI was improved for the whole population compared to the original kinetic
parameter space, i.e. it ranged from 0.293 to 0.931 with an asymmetrical distribution
around the mean value of 0.734 (Figure 5).

We repeated the same analysis for the semi-quantitative rules obtained in Section 3.3.1.
The distribution of FI for top 10 semi-quantitative rules showed the robustness of these
rules throughout the metabolite concentration space (Figure 5). FI ranged from 0.276 to
0.883 with a symmetrical distribution around the mean value of 0.614 (Figure 5).

Since the values of metabolite concentrations and regimes in which enzymes operate are
intrinsically inseparable, these results indicate that the proposed method allows us to
identify the regions in both enzyme saturation and metabolite concentration space which

are more likely to give rise to feasible kinetic models.

4. Conclusions

In this work, we introduce the first computational methodology capable of determining the
important enzymes in the network along with the operating ranges of their saturation by
substrates and products and their parameters that correspond to a given metabolic flux
and a given metabolite concentration. The proposed approach is based on the ORACLE
framework and machine learning methods and it offers information about enzymes that
supplements the one obtained by experimental techniques. The obtained bounds on kinetic
parameter values, and enzyme saturation levels can be used for postulation of hypotheses

around observed physiological condition.
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The proposed method can be considered also as a new parameter estimation procedure
since it can identify enzymes whose saturations, if constrained to a narrow range, allow us
to build the kinetic models capable to describe the studied physiology, and by this mean to
provide accurate estimates of ranges of kinetic parameters relevant for the studied
physiology.

This approach can also be used for efficient stratified sampling of solution spaces as it has
been previously done for other biological systems (Zamora-Sillero et al, 2011). The
proposed methodology represents the solution space, in this case the space of the
parameters that are consistent with an observed physiology, as a set of multidimensional
hyper-boxes. We can sample each of hyper-boxes independently, and the union of these
samples will span the solution space. As a consequence, in contrast to commonly used
methods for sampling of solution spaces such as artificial centering hit-and-run (Kaufman
and Smith, 1998) the proposed method offers a possibility to perform uniform sampling in
an efficient and non-asymptotic fashion. Another important feature of this approach is that
it provides a very general and efficient way to compute the volume of the solution space as
the sum of the volumes of the hyper-boxes. Once the ranges of parameters in the solution
space are estimated, practically there are no additional computational requirements to
compute the volume, which is an advantage with respect to the Monte Carlo based methods
for the volume calculation (Wiback et al., 2004). This offers new possibilities to study large-
and genome-scale metabolic networks and to analyze their properties. For example, with
the proposed method we can analyze how the shape and the size of various solution spaces,

such as the space of the steady-state fluxes, change under different physiological conditions.
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Finally, it is important to note that the results of the proposed method can be used with any

chosen distribution of samples provided that the samples span the solution space.
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Figure 2: Toy example. Panel A - Random samples satisfying (green stars) and not
satisfying (red diamonds) the given property (GP) in the parameter space of p; and p2. The
frontier between the two sets of samples is shown as the blue line. The decision-tree
learning algorithm constructs the approximate rules (solid and hatched boxes) around the
samples satisfying GP. Panel B - Binary decision tree with each branch (from the top of the
tree till a leaf) representing a rule in the form of a sequence of conditions. Labels on leafs
denote if the algorithm predicts that GP is satisfied (‘y’) or not (‘n’) within a rule. The rule

with the solid line corresponds to the solid box in panel A.
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Figure 3: Boxplots of the top 6 enzyme saturations constrained according to the chosen 6
inferred rules. The enzyme saturations either: (i) were not constrained, i.e. ranged from 0
to 1 (white background); or (ii) ranged in the medium-to-high saturation region (light
green background); or (iii) ranged in the low-to-medium saturation region (hatched
background). The colored stripes and numbers on the top of each boxplot correspond to FI
computed over the training set when the corresponding range of enzyme saturation was
used to constrain the parameter space, whereas the other enzyme saturations were
allowed to range all admissible values. With respect to the random set of parameters (with
FI of 0.481), the resulting FI could be: (i) improved (green stripes, darker the green stripes,
higher the improvement); (ii) remain the same (gray stripes); or deteriorated (red stripes,
darker the red stripes, worse the deterioration). The first column depicts the distribution of
the top 6 enzyme saturations in the original kinetic parameter space. Notation for the
labels on the vertical axis was as follows: “Enzyme”_"Metabolite that saturates the enzyme”.
Enzymes: AKGDH, 2-Oxoglutarate dehydrogenase; PFK, phoshofructokinase; GLCptspp,
glucose transport via the phosphoenolpyruvate-pyruvate phosphotransferase system;
Metabolites: SucCoA, Succinyl-CoA; FdP, D-Fructose 1,6-bisphosphate; NAD, Nicotinamide

adenine dinucleotide; G6P, D-Glucose 6-phosphate; CoA, Coenzyme A; PEP,

Phosphoenolpyruvate.
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Figure 4: Evolution of feasibility index (FI) as the constraints on the top 10 enzyme
saturations (panel A) and the top 20 enzymes (panel B) are successively applied to
constrain the space of Kkinetic parameters. Enzymes: AKGDH, 2-Oxoglutarate
dehydrogenase; PFK, phoshofructokinase; GLCptspp, glucose transport via the
phosphoenolpyruvate-pyruvate = phosphotransferase  system; = THD2pp, @ NAD(P)
transhydrogenase (periplasm); GLYCLTDy, glycolate dehydrogenase (NADP); CS, citrate
synthase; AKGD, 2-oxoglutarate carboxy-lyase; PGI, glucose-6-phosphate isomerase;
4HBDH2, NADPH-dependent BDO dehydrogenase; PPC, phosphoenolpyruvate carboxylase;
O2tpp, 02 transport via diffusion (periplasm); FUM, fumarase; 4HBCOAT, 4-
hydroxybutanoate CoA transferase; GLYCTO4, glycolate oxidase; MDH2, Malate
dehydrogenase (ubiquinone 8 as acceptor); FLDR2, NADPH-dependent flavodoxin
reductase; NADPHQR3, NADPH Quinone Reductase (Menaquinone-8); 4HBCOAR1 4-
hydroxybutanoate aldehyde dehydrogenase; DAAD, D-amino acid dehydrogenase; PDH,
pyruvate dehydrogenase; Metabolites: SucCoA, Succinyl-CoA; FdP, D-Fructose 1,6-
bisphosphate; NAD, Nicotinamide adenine dinucleotide; G6P, D-Glucose 6-phosphate; CoA,
Coenzyme A; PEP, Phosphoenolpyruvate; NADH, Nicotinamide adenine dinucleotide -
reduced; AKG, 2-Oxoglutarate; NADPH, Nicotinamide adenine dinucleotide phosphate -

reduced; OAA, Oxaloacetate.
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