
Optimizing Majority-Inverter Graphs With
Functional Hashing

Mathias Soeken1,2 Luca Gaetano Amarù1 Pierre-Emmanuel Gaillardon1 Giovanni De Micheli1
1Integrated Systems Laboratory, EPFL, Switzerland

2Group of Computer Architecture, University of Bremen, Germany
{mathias.soeken,pierre-emmanuel.gaillardon,luca.amaru,giovanni.demicheli}@epfl.ch

Abstract—A Majority-Inverter Graph (MIG) is a recently in-
troduced logic representation form whose algebraic and Boolean
properties allow for efficient logic optimization. In particular,
when considering logic depth reduction, MIG algorithms ob-
tained significantly superior synthesis results as compared to
the state-of-the-art approaches based on AND-inverter graphs
and commercial tools. In this paper, we present a new MIG
optimization algorithm targeting size minimization based on
functional hashing. The proposed algorithm makes use of mini-
mum MIG representations which are precomputed for functions
up to 4 variables using an approach based on Satisfiability
Modulo Theories (SMT). Experimental results show that heavily-
optimized MIGs can be further minimized also in size, thanks to
our proposed methodology. When using the optimized MIGs as
starting point for technology mapping, we were able to improve
both depth and area for the arithmetic instances of the EPFL
benchmarks beyond the current results achievable by state-of-
the-art logic synthesis algorithms.

I. INTRODUCTION
Due to their simplicity, homogeneous logic representations

have attracted scientists in the area of logic synthesis. In the
combinational case, logic networks are modeled as a Directed
Acyclic Graph (DAG) in which terminal nodes represent primary
inputs and constants and all other nodes represent the same
Boolean logic operation. Edges may be complemented in order
to guarantee a functional universal representation. Primary
outputs are (potentially complemented) pointers to any node
in the DAG.

The major advantage of homogeneous logic representations
is that they simplify manipulation algorithms significantly
and particularly enable an efficient implementation of them.
Popular instances of homogeneous logic representations are
NAND and NOR circuits [1] or AND-Inverter Graphs (AIGs)
[2]. All of them implement a binary Boolean operation, i.e.,
each non-terminal node has two incoming logic operands
(fanin). Recently, Majority-Inverter Graphs (MIGs) [3] have
been proposed, which implement the ternary majority function
as logic operation. MIG logic manipulation is supported by
a consistent algebraic framework. By using MIG algebra
axioms, it is possible to reach all points in the representation
space [3]. Such remarkable algebraic property enables strong
synthesis results as compared to AIG techniques [3]. MIG
global properties also permit the insertion of certain type of
logic errors without affecting the target functionality [4]. For
instance, orthogonal logic errors can be safely inserted in MIGs
because they are successively masked by the voting nature of
majority nodes. On the other hand, orthogonal logic errors

This research was supported by ERC-2009-AdG-246810.

enable strong logic simplifications, which are very useful to
MIG Boolean optimization [4].

MIG algebraic and Boolean methods together attain high op-
timization quality. For example, when targeting depth reduction,
MIG optimization was shown capable of rewriting a ripple carry
structure into a carry look-ahead-like one [4]. In general, the
proposed algorithm allows for significant depth reductions with
much simpler algorithms as compared to AIGs [4]. However,
the same logic rewriting idea has yet to be shown for reduction
of MIG size, another important metric to measure the quality
of the logic representation.

In this paper, we present an effective algorithm to reduce
size in MIGs based on functional hashing. Functional hashing
describes rewriting based on functionally equivalent substruc-
tures. The main idea of our algorithm is to enumerate all
subgraphs of an MIG, called cuts, with up to 4 inputs and
replace them with precomputed equivalent minimal representa-
tions, if applicable. In this paper, we discuss several variants
of the algorithm.

In order to find minimum MIGs for 4-input functions
we have combined Satisfiability Modulo Theories (SMT) [5]
techniques with NPN classification. The latter is used to reduce
the search space, as inverting and permuting inputs or outputs
preserves the size of an MIG.

Experimental results show that heavily-optimized MIGs
can be further optimized in size, thanks to our proposed
methodology. A special depth-preserving variant allows for
a size reduction by not increasing the depth or keeping the
increase low—typically size and depth are considered contrary
objectives. Supplementary size reductions of 8%, on average,
are reported on the arithmetic instances of the EPFL benchmark
suite. When using the optimized MIGs as starting point for
technology mapping, we were able to reduce the area for 7 out
of existing 8 best results of the arithmetic EPFL benchmarks,
and on top of that, we were able to reduce depth for the instance
Log2. The current best results are produced by the strongest
AIG and MIG optimization scripts from Berkeley and EPFL
groups, hence, any improvement advances the state-of-the-art
in logic optimization.

In summary, the main contributions of this paper are:

1) An SMT-based algorithm to find minimum-size MIGs
(also applicable to functions with more than 4 inputs).

2) Several variants of a size optimization approach for
MIGs based on functional hashing.

3) An upper bound for the size of MIGs which makes
use of all 4-input minimum-size MIG representations.

4) New best results for a public benchmark suite.

II. BACKGROUND
A. Related Work

Most similar to our proposed approach is DAG-aware
AIG rewriting [6]. This rewriting approach also enumerates
all 4-input subgraphs and replaces them by smaller precom-
puted minimal representations. However, not all functions
are considered but only those that are determined useful by
experimental observation. Further, only a bottom-up greedy
approach is implemented, while we present several variants
of functional hashing. In [6], delay is explicitly considered
by only allowing depth-preserving rewrites. Further, depth is
optimized by integrating AIG balancing using algebraic tree-
height reduction [7] as part of the algorithm. The approach
in [6] extends [8] which presents a similar rewriting algorithm
that is applied in a top-down manner. The approach in [8] does
not consider depth-preserving rewrites. In [9], the approach
in [6] is extended to 5-input cuts.

None of the two approaches makes explicit use of a
partitioning into fanout-free regions. We propose variants of
the functional hashing algorithm that work on fanout-free
regions and the experimental evaluations show that this is
often advantageous as compared to rewriting the whole MIG
at once in terms of quality of the resulting optimized MIG.

B. Majority-Inverter Graphs
The majority function of three Boolean variables a, b, and

c, denoted 〈abc〉, evaluates to true if and only if at least two of
the three variables are true. The majority function is self-dual
and can be expressed in disjunctive and conjunctive normal
form as:

ab ∨ ac ∨ bc = (a ∨ b)(a ∨ c)(b ∨ c), (1)

Setting any variable to 0 gives the conjunction of the other
two variables, and analogously one obtains the disjunction by
setting any variable to 1, i.e., 〈0ab〉 = a∧ b and 〈1ab〉 = a∨ b.

We introduce a formal definition for MIGs. A Majority-
Inverter Graph (MIG) over the primary input variables X =
{x1, . . . , xn} is a DAG M = (V,E, Y) with
• a finite set of nodes V = X ∪ G ∪ {0}, where G =
{g1, . . . , gk} are non-terminal nodes representing the
logic operations in the graph and 0 is the constant 0
input,

• a finite multiset of edges E ⊆ G × (V × B), where
the first element in the tuple is a source node and the
second element is a pair of a target node and a polarity
bit,

• and a finite multiset of outputs Y ⊆ V ×B.

Each operation g ∈ G must have three successors, called adj(g).
For convenience, we denote an output (v, p) ∈ (V ×B) as vp
or v if p = 1 and as v̄ if p = 0. The functional semantics of
an MIG is described in terms of an interpretation function Φ
that maps MIG nods to a Boolean function:

Φ(0) = ⊥
Φ(x) = x for x ∈ X
Φ(g) = 〈Φp1(g1)Φp2(g2)Φp3(g3)〉 for g ∈ G

with adj(g) = {(g1, p1), (g2, p2), (g3, p3)}
Φ(y) = Φp(g) for y = (g, p) ∈ Y

a cinb

cout

s

Fig. 1. MIG for a full adder

Example 1: Fig. 1 shows an example of an MIG for a full
adder that computes a+b+cin = 2cout +s, i.e., s = a⊕b⊕cin
and cout = 〈abcin〉. Circles represent majority operations and
boxes represent primary inputs and the constant node, if used.
Complemented edges are drawn dashed and primary outputs
are (possibly complemented) pointers to a node. This MIG has
a size of 3 and a depth of 2.

C. Cut Enumeration
Given an MIG M = (V,E, Y), a pair (v, L) consisting of

a root v ∈ V and leafs L ⊆ V \ {0} is called a cut (see, e.g.,
[10]), if

1) all paths from v to a non-terminal visit at least one
leaf l ∈ L,

2) and each leaf is contained in at least one path.
Paths to the constant node are exempt from these constraints. A
cut is called k-feasible, if |L| ≤ k and we denote all k-feasible
cuts of a node v ∈ V as

cutsk(v) = {L | (v, L) is cut and |L| ≤ k}. (2)

Each cut (v, L) describes a subgraph which may have nodes
apart from v and L. These nodes are called internal nodes. All
k-feasible cuts can be generated using the recursive algorithm

cutsk(0) = {{}}
cutsk(x) = {{x}} for x ∈ X
cutsk(g) = cutsk(g1)⊗k cutsk(g2)⊗k cutsk(g3) for g ∈ G

in a depth-first manner starting from the outputs, where g1, g2,
and g3 are the child nodes of g. The operation

M1⊗kM2 = {m1∪m2 | m1 ∈M1,m2 ∈M2, |m1∪m2| ≤ k}

is a saturating union over all combinations of subsets. An
exhaustive enumeration of all cuts in an MIG is feasible as long
as k ≤ 6. Since we are interested in inspecting all subgraphs
with four inputs, we enumerate all 4-feasible cuts. For k larger
than 6, priority cuts provide an alternative approach [11].

D. NPN Classification
Two functions f(x1, . . . , xn) and g(x1, . . . , xn) are NPN-

equivalent, if there exists a permutation σ ∈ Sn and polarities
p, p1, . . . , pn ∈ B such that

f(x1, . . . , xn) = gp(xp1σ(1), . . . , x
pn
σ(n)), (3)

i.e., g can be made equivalent to f by negating inputs,
permuting inputs, or negating the output. NPN-equivalence
is an equivalence relation that partitions the set of all Boolean
functions over n variables into a smaller set of NPN classes.
As an example all 22n

Boolean functions over n variables

can be partitioned into 2, 4, 14, 222, 616126 NPN classes
for n = 1, 2, 3, 4, 5. As the representative of each NPN class,
we take the function with the smallest truth table, when truth
tables are viewed as a binary number of 2n bits. For a detailed
introduction into NPN classification the reader is referred
to [12], [13].

III. EXACT SYNTHESIS
We are interested in finding the smallest MIG w.r.t. the

size for a given Boolean function, called exact synthesis. One
way to find such a smallest MIG is to formulate a decision
problem that asks whether there exists an MIG with k nodes
that can represent f . To find a minimum solution, one starts by
solving the decision problem for k = 0 and increases k until a
satisfying solution is found.

This section describes the formulation of exact synthesis a as
decision problem that can be automatically solved with an SMT
solver. The instance is a Boolean function f : Bn → B and a
non-negative constant k. In other words, the exact synthesis
problem asks whether there exists an MIG

M = ({x1, . . . , xn} ∪ {g1, . . . , gk} ∪ {0}, E, {y})
with k majority operations that represents f , i.e., Φ(y) = f .
For the encoding of the SMT formulation, we assume that
k > 0 and, in our algorithm, we check for the case k = 0, i.e.,
f = 0p or f = xpi , explicitly.

Each majority node with index l ∈ {1, . . . , k} is duplicated
for each function value 0 ≤ j < 2n and is represented by 10
variables:
• three inputs a(j)

1,l , a
(j)
2,l , a

(j)
3,l ∈ B of gate l,

• one output b(j)l ∈ B of gate l,
• three select variables s1,l, s2,l, s3,l ∈ Bdlog2(n+l)e that

encode which are the child nodes of gate l, and
• polarity variables p1,l, p2,l, p3,l ∈ B that describe

whether the edges to the child nodes are complemented.
There is one single variable p ∈ B that encodes the polarity

of the output edge of the root node, which represents y.
The node indexes form a topological ordering of the nodes.

The following constraints are contained in the SMT formula.
Index j ranges from 0 to 2n − 1 and index l ranges from 1 to
k.

Majority functionality: The formula

b
(j)
l ↔ 〈a

(j)
1,la

(j)
2,la

(j)
3,l 〉 (4)

ensures the correct functionality of the node, i.e., the output
value of the lth node b(j)l is the majority of the node’s three
input values a(j)

1,l , a
(j)
2,l , and a(j)

3,l for all assignments j.
Input connections: Constraints on the input connections

are given in terms of implications of the select variables sc,l,
where c ranges from 1 to 3. The formula

sc,l < n+ l (5)

ensures that node inputs can only be the constant, primary
inputs, or topologically smaller nodes. In other words, the
constraint prohibits cycles in the MIG. A value 0 for sc,l
implies a connection to the constant node, i.e.,

(sc,l = 0)→ (a
(j)
c,l = p̄c,l). (6)

Values from 1 to n imply a connection to a variable node, i.e.,

(sc,l = i)→ (a
(j)
c,l = bv(j)i−1 ⊕ p̄c,l) for 1 ≤ i ≤ n, (7)

where bv(j)i−1 refers to the (i − 1)th bit in the binary
representation of j. All other values to sc,l imply a connection
to the output of the corresponding majority node, i.e.,

(sc,l = n+ i)→ (a
(j)
c,l = b

(j)
i ⊕ p̄c,l) (8)

for 1 ≤ i < l.
Function semantics: Finally, the function semantics is

ensured by the formula

b
(j)
k = p̄⊕ f(j). (9)

Note that k is the largest node index and therefore refers to
the root node. Since the majority operation is self-dual, i.e.,
〈x1x2x3〉 = 〈x̄1x̄2x̄3〉, the variable p can be omitted and a
minimum solution is still found if one exists.

Symmetry breaking: All the above constraints ensure a
correct result in case of a satisfying assignment. In order to
reduce the search space, we exploit associativity of the majority
operation and add the following symmetry breaking formula
to enforce a unique order of the operands:

(s1,l < s2,l) ∧ (s2,l < s3,l) (10)

Note that there cannot be two edges of a majority node pointing
to the same child node in an irreducible MIG, as 〈aab〉 = a.

The connections between the constraints and the resulting
MIG for the exact synthesis problem are summarized in the
following theorem which also illustrates how to derive the MIG
from a satisfying assignment to the variables.

Theorem 1: Let f : Bn → B and k be an instance to the
exact synthesis problem. If there exists a satisfying solution to
the corresponding SMT instance as described in this section,
then let

M = ({x1, . . . , xn} ∪ {g1, . . . , gk} ∪ {0}, E, {y})

be the extracted MIG with:

E =

k⋃
l=1

3⋃
c=1

(gl, target(sc,l), pc,l) and y = (gk, p)

and

target(s) =


0 if s = 0,
xs if 1 ≤ s ≤ n, and
ns−n if n < s ≤ n+ k.

Then Φ(y) = f .

IV. FUNCTIONAL HASHING
This section describes an MIG-size reduction algorithm

based on functional hashing that makes use of precomputed
minimum MIGs for functions with up to 4 inputs. Since the size
of an MIG is invariant to inversion and permutation of inputs
and outputs, it is sufficient to find minimum representations
for each representative in all 222 NPN classes (instead of all
65,536 functions). Already for 5 inputs, the enumeration of all
NPN classes becomes impractical, which can be circumvented
by considering a much smaller subset (see, e.g., [9]).

We implemented a top-down and a bottom-up approach of
the algorithm. For the top-down approach, we also implemented
a depth-preserving variant. All algorithms can be applied
globally to the MIG or locally to each of its fanout-free region.

Input : MIG M = (V,E, Y)
Output : Optimized MIG M̂ = (V̂ , Ê, Ŷ)

1 set Ŷ ← {optp(v) | (v, p) ∈ Y };
2 Function opt(v ∈ V)

Output : An MIG function optimizing v
3 find L ∈ cuts4(v) that leads to best size reduction;
4 if such an L exists then
5 let Mmin = (Xmin ∪Gmin ∪ {0}, Emin, {y}) be

the minimum representation for (v, L);
6 replace each x ∈ Xmin by opt(l) for

corresponding l ∈ L;
7 return y;
8 else
9 let adj(v) = {(v1, p1), (v2, p2), (v3, p3)};

10 return 〈optp1(v1) optp2(v2) optp3(v3)〉;
11 end

Algorithm 1: Top-down approach

A. Top-down Approach
The top-down approach is illustrated by means of Algo-

rithm 1. It creates an optimized MIG M̂ for a given MIG
M . Starting from each output node v, it tries to find a cut L
for which a replacement by a minimum MIG Mmin results in
the largest reduction (line 3). If such a cut can be found, all
internal nodes of the cut can be ignored, and the function opt
recurs on the leaf nodes in L. Note that the steps in line 6–7
must be aware of the permutations and negations of the NPN
representation, which is omitted for clarity in the algorithmic
description. If no cut can be found that leads to a size reduction,
the algorithm recurs using the child nodes of v (lines 9–10).

In order to locally consider in the top-down approach, a
simple heuristic has been implemented that discards cuts in
line 3 for which the minimum MIG is locally increasing the
depth. Notice that this approach may increase the depth even
if the depth of the minimum MIG is smaller than the one of
the cut. This is the case if an individual path is enlarged by
the replacement.

B. Bottom-up Approach
The bottom-up approach is implemented using dynamic

programming and is illustrated by means of Algorithm 2. It
visits all nodes in topological order from the inputs to the
outputs (line 1). For each node, it stores all replacements of
the node’s cuts with minimum representations that reduce the
size and preserve the depth or only allow slight increases. Such
replacements are called candidates and are stored in cand. Each
entry in cand contains the candidate function, its size, and
its depth. Each terminal node contains one candidate (line 3,
where v̂ refers to v’s corresponding terminal in M̂). When
replacing a cut by its minimum MIG for each leaf of the
minimum MIG one needs to evaluate all computed candidates
for the respective nodes (line 7). This may lead to a tremendous
number of candidates which may have a dramatic effect on
the run-time. To reduce the run-time requirements, we only
store a predetermined number of best candidates, similar to
priority cuts in technology mapping (see [11]). The function
insert takes care of keeping only the best candidates w.r.t.
to the preferred optimization criteria. After having computed
candidates for all nodes, for each output the best candidate is
taken for the optimized MIG M̂ (line 14).

Input : MIG M = (V = X ∪G ∪ {0}, E, Y)
Output : Optimized MIG M̂ = (V̂ , Ê, Ŷ)

1 foreach v ∈ topsort(V) do
2 if v ∈ X ∪ {0} then
3 cand[v]← {((v̂, 1), 0, 0)};
4 else
5 foreach L = {l1, . . . , lk} ∈ cuts4(v) do
6 let Mmin = (Xmin ∪Gmin ∪ {0}, Emin, {y})

be the minimum representation for (v, L);
7 foreach combination c1 = cand[l1], . . . ,

ck = cand[lk] do
8 replace each x ∈ Xmin by corresponding

function in candidate ci;
9 insert (cand [v], (y, size, depth));

10 end
11 end
12 end
13 end
14 set Ŷ ← {cand[v].bestp(v) | (v, p) ∈ Y };

Algorithm 2: Bottom-up approach

C. Fanout-free Regions
When replacing a subgraph with its minimum size MIG

one needs to pay attention not to remove internal nodes with
fanout to nodes that are outside of the cut. There are two
ways to prevent this. The first one is not to include them when
enumerating cuts. Another possibility is to partition the MIG
into its fanout-free regions first and then apply the functional
hashing to each fanout-free region. This not only reduces the
run-time of the algorithm but also shows a positive effect on the
resulting area of the optimized MIG as shown in the following
section.

Fanout in the logic representation typically results from
structural hashing, i.e., reusing structurally equivalent subgraphs
when creating the MIG. This already leads to initial reduction
in size, but may be undone when applying rewriting outside
of fanout boundaries. Another possibility to circumvent the
problem of internal fanout is to apply DAG-aware rewriting as
in [6].

V. EXPERIMENTS
We have implemented the exact synthesis and the functional

hashing approaches in C++.1 The following sections provide
details of the experimental evaluation.

A. Computing Optimal MIGs
Using the exact synthesis method, we computed all optimal

MIGs for each representative of the 222 NPN classes with
the SMT solver Z3 [14]. Table I lists the results partitioned
by the number of majority nodes. Two classes, the constant
functions and the one-variable functions, require no majority
node. Another two classes, the two-variable AND and OR-
like functions as well as the MAJ-like functions require one
majority node. All other functions require at least two majority
nodes. The representative of the single most difficult NPN class
is the symmetric function S0,2(x1, x2, x3, x4):

S0,2(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ∧ x1x2x3x4

1The code can be downloaded from github.org/msoeken/cirkit, see also
lsi.epfl.ch/MIG.

TABLE I. OPTIMAL MIGS FOR ALL 4-VARIABLE NPN CLASSES

Majority nodes Classes Functions Time Avg. time

0 2 10 0.00 0.00
1 2 80 0.04 0.02
2 5 640 0.14 0.03
3 18 3300 1.21 0.07
4 42 10352 6.32 0.15
5 117 40064 115.19 0.98
6 35 11058 1458.95 41.68
7 1 32 16796.30 16796.30

Σ 222 65536 18378.15 16839.23

which is NPN-equivalent to:

(x1 ⊕ x2 ⊕ x3 ⊕ x4) ∨ x1x2x3x4.

Its MIG representation is illustrated in Fig. 2.
The number of majority nodes obtained by the exact

synthesis algorithm for a function f corresponds to the
combinational complexity C(f), in this case, restricted to the
majority operation and inversion. Other interesting metrics are
the length L(f) that counts the number of operators in the
smallest expression and D(f) which corresponds to the longest
path in an MIG from a root to a non-terminal. The length of
the path is measured by means of visited nodes. Similarly to
Table I we have counted the number of functions and NPN
classes and partitioned them by length and depth. The results
are given in Table II. The representative of the single most
deep NPN class is the parity function S1,3(x1, x2, x3, x4)

S1,3(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4

which is NPN-equivalent to S0,2,4(x1, x2, x3, x4). There is no
further function in that class.

B. Theoretical Results
Based on the exact synthesis algorithm and the exhaustive

application to all 222 NPN classes for 4-variable functions,
we have derived an upper bound on the size of MIGs for
Boolean functions with n variables. In the following, let C〈〉(n)

x2

0

x1 x3

x4

S0,2(x1, x2, x3, x4)

Fig. 2. Optimal MIG for S0,2(x1, x2, x3, x4)

TABLE II. COMPLEXITY OF 4-VARIABLE MIGS

C(f) Class. Func. L(f) Class. Func. D(f) Class. Func.

0 2 10 0 2 10 0 2 10
1 2 80 1 2 80 1 2 80
2 5 640 2 5 640 2 48 10260
3 18 3300 3 18 3300 3 169 55184
4 42 10352 4 37 9312 4 1 2
5 117 40064 5 84 28680 5 0 0
6 35 11058 6 63 22568 6 0 0
7 1 32 7 7 832 7 0 0
8 0 0 8 2 80 8 0 0
9 0 0 9 2 34 9 0 0

denote the number of majority operations of the most expensive
Boolean functions of n variables if only the majority operation
together with inversion is allowed.

Theorem 2: For n ≥ 4, we have C〈〉(n) ≤ 10 · (2n−4 −
1) + 7.

Proof: We use induction on n. For the base case n = 4, we
know from the exhaustive enumeration that the most expensive
function requires 7 majority operations. Also, C〈〉(4) = 7.

We assume that C〈〉(n) ≤ 10 · (2n−4 − 1) + 7. In the
induction step, we make use of Shannon’s expansion

f(x1, . . . , xn+1) = x̄n+1fx̄n+1 ∨ xn+1fxn+1

= 〈1〈0x̄n+1fx̄n+1
〉〈0xn+1fxn+1

〉〉.

Therefore,

C〈〉(n+ 1) ≤ 2C〈〉(n) + 3

= 2(10 · (2n−4 − 1) + 7) + 3

= 10 · (2(n+1)−4 − 1) + 7,

which concludes the proof.

C. Functional Hashing
Tables III and IV show the results of the functional hashing

algorithm. Each variant is described by an acronym whose
letters indicate whether it is Top-down (T), Bottom-up (B),
partitions the MIG first into Fanout-free regions (F), and
whether it uses the Depth-preserving heuristic (D), as described
in Section IV. As benchmark sets and comparison baselines we
used best results for the arithmetic benchmarks of the EPFL
benchmark suite.2 Most of the best results were obtained using
the depth reduction proposed in [3] and [4]. Table III shows
the Size (S) and Depth (D) of the MIG whereas Table IV
shows the Area (A) and Depth (D) of a synthesized circuit
after mapping the optimized MIG using ABC [15]. Table III
gives Time (RT) in seconds. The last row in both tables shows
the average improvements.

The functional hashing approach is capable of reducing the
size of the MIGs (see Table III) by 8% in average using the BF
variant when accepting a modest increase in depth. The depth
heuristic has a noticeable effect, particularly when comparing
variant T with variant TD. Applying the optimization only to
the fanout-free regions leads to significantly better results.

Results obtained from technology mapping are of higher
practical relevance. When mapping the obtained MIG repre-
sentations using ABC, we were able to obtain better imple-
mentations in all cases except for the Adder. For Log2, the
top-down approach T was able to find an MIG that leads to
both better area and depth in the resulting mapping. It can be

2lsi.epfl.ch/benchmarks

TABLE III. FUNCTIONAL HASHING (MIG SIZE AND DEPTH)

TF T TFD TD BF
Benchmark I/O S D S D RT S D RT S D RT S D RT S D RT

Adder 256/129 2978 12 2926 14 0.39 3099 13 0.34 2978 12 0.37 2850 13 0.32 2761 16 0.91
Divisor 128/128 75666 636 70397 694 193.46 75332 703 21.47 75666 636 191.34 75558 636 18.24 66133 720 251.49
Log2 32/32 37582 181 36359 186 27.30 38177 207 7.60 37560 181 28.67 37653 185 6.91 34834 208 41.75
Max 512/130 7202 27 6818 29 1.31 6943 29 0.59 7202 27 1.32 7195 27 0.55 6539 28 2.88
Multiplier 128/128 41885 111 40781 127 34.92 43116 123 11.32 41480 111 32.37 41825 117 10.54 35869 121 40.21
Sine 24/25 7890 91 7525 97 1.65 7993 104 0.96 7887 91 1.64 7877 92 0.91 7568 103 5.32
Square-root 128/64 52344 690 49142 748 71.05 52590 774 11.88 52320 690 66.83 52332 694 10.15 48494 793 101.74
Square 64/128 19200 36 18505 39 6.36 20372 43 2.58 19200 36 6.38 19191 36 2.34 19046 39 9.41

Average improvement (new/old) 0.96 1.09 1.02 1.12 1.00 1.00 0.99 1.02 0.92 1.14

TABLE IV. FUNCTIONAL HASHING (AREA AND DEPTH AFTER TECHNOLOGY MAPPING)

TF T TFD TD BF
Benchmark I/O A D A D A D A D A D A D

Adder 256/129 414 6 428 6 433 6 418 6 418 6 423 6
Divisor 128/128 14576 238 10619 250 14172 238 10762 239 14494 246 13486 247
Log2 32/32 9275 55 9290 55 9126 54 9170 55 9166 55 9272 55
Max 512/130 906 10 910 10 904 10 888 10 913 10 892 10
Multiplier 128/128 7180 29 7055 29 7051 29 7178 29 7141 29 7137 29
Sine 24/25 1835 30 1822 30 2112 30 1848 30 1801 30 1916 30
Square-root 128/64 11745 254 11758 255 11881 256 11449 256 11579 255 11712 256
Square 64/128 4203 11 4169 11 4175 11 4214 11 4174 11 4154 11

Average improvement (new/old) 0.97 1.01 1.02 1.00 0.96 1.00 0.99 1.00 0.99 1.01

seen that—in contrast to Table III—the best mapping results
are distributed among the different variants of the optimization
algorithm. Hence, it is beneficial to have several variants of the
algorithm in order to obtain the best mapping. In summary, for
all but one instances of the arithmetic benchmarks, we were
able to advance the state-of-the-art, which already are heavily
optimized circuits obtained from state-of-the-art logic synthesis
algorithms.

In all experiments, we have performed the functional
hashing algorithm only once. Running it several times or
combining it with other optimization or reshaping algorithms
will likely lead to further improvements [3].

VI. CONCLUSIONS
We have presented an algorithm for area reduction in

MIGs based on functional hashing. For this purpose, we
computed all minimum MIGs for all NPN classes for 4-variable
functions using an SMT-based approach. This approach may
also be applicable to individual larger functions, however, the
enumeration of all NPN classes for more than 4 variables is
impractical. Compared to previously presented approaches, we
have implemented several variants of the functional hashing
algorithm (top-down and bottom-up, optional partitioning into
fanout-free regions, and a heuristic for preserving depth). This
enables more flexibility to the design, as we for example
observed in the experimental evaluation that for different
purposes different variants lead to better results. We were able
to improve the best known results of the arithmetic benchmarks
in the EPFL suite in 7 out of 8 cases, and an improvement
of both area and depth in one case. The current best results
are produced by the strongest AIG and MIG optimization
scripts from Berkeley and EPFL groups. Consequently, any
improvement advances the state-of-the-art in logic optimization.

REFERENCES

[1] R. A. Smith, “Minimal three-variable NOR and NAND logic circuits,”
IEEE Transactions on Electronic Computers, vol. EC-14, no. 1, pp.
79–81, Feb 1965.

[2] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 21, no. 12,
pp. 1377–1394, 2002.

[3] L. Amarù, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Design Automation Conference, 2014, pp. 194:1–194:6.

[4] ——, “Boolean logic optimization in majority-inverter graphs,” in Design
Automation Conference, 2015.

[5] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“DPLL(T): fast decision procedures,” in Computer Aided Verification,
2004, pp. 175–188.

[6] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “DAG-aware AIG
rewriting a fresh look at combinational logic synthesis,” in Design
Automation Conference, 2006, pp. 532–535.

[7] J. Cortadella, “Timing-driven logic bi-decomposition,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 22, no. 6, pp. 675–685,
2003.

[8] P. Bjesse and A. Borälv, “DAG-aware circuit compression for formal
verification,” in International Conference on Computer-Aided Design,
2004, pp. 42–49.

[9] N. Li and E. Dubrova, “AIG rewriting using 5-input cuts,” in Interna-
tional Conference on Computer Design, 2011, pp. 429–430.

[10] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” in FPGA, 1998, pp. 35–42.

[11] A. Mishchenko, S. Cho, S. Chatterjee, and R. K. Brayton, “Combi-
national and sequential mapping with priority cuts,” in International
Conference on Computer-Aided Design, 2007, pp. 354–361.

[12] S. Muroga, Logic design and switching theory. NY, New York: John
Wiley & Sons Inc., 1979.

[13] L. Benini and G. De Micheli, “A survey of boolean matching techniques
for library binding,” ACM Trans. Design Autom. Electr. Syst., vol. 2,
no. 3, pp. 193–226, 1997.

[14] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, 2008, pp.
337–340.

[15] R. K. Brayton and A. Mishchenko, “ABC: an academic industrial-
strength verification tool,” in Computer Aided Verification, 2010, pp.
24–40.

