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Highlights

• Port automata are formally related to data-agnostic BIP architectures.
• Stateless constraint automata are formally related to BIP interaction models.
• A definition and composition of data-sensitive BIP architectures is proposed.
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Abstract

Coordination languages simplify design and development of concurrent systems.
Particularly, exogenous coordination languages, like BIP and Reo, enable system
designers to express the interactions among components in a system explicitly. A
formal relation between exogenous coordination languages comprises the basis
for a solid comparison and consolidation of their fundamental concepts. In
this paper we establish a formal relation between BI(P) (i.e., BIP without the
priority layer) and Reo, by defining transformations between their semantic
models. We show that these transformations preserve all properties expressible
in a common semantics. We use these transformations to define data-sensitive
BIP architectures and their composition.

Keywords: Coordination, Formal translations, Correctness proofs, BIP, Reo

1. Introduction

The main challenge in concurrency consists of coordination of interacting
processes. Poor coordination results in systems that can suffer from corruption
of shared resources, deadlocks, and starvation. To avoid these issues, we need
explicit full control over interactions. A language that supports concurrency
provides constructs that allow processes to interact. Such constructs include
synchronous and asynchronous message passing and shared memory. However,
most concurrent languages do not provide constructs that also control interac-
tion among processes. To stay in charge of interaction, system designers need
to use constructs such as locks and semaphores. This blends the code that con-
trols interaction with other code of the program, and complicates the analysis,
optimization and reusability of the implemented coordination.

Exogenous coordination languages, like BIP [1, 2] and Reo [3, 4], address
this coordination problem by separating coordination of interactions from com-
putation in processes [5]. This enables designers to control interaction using

∗Corresponding author
Email address: K.P.C.Dokter@cwi.nl (Kasper Dokter)

Preprint submitted to JLAMP October 4, 2016



language constructs, making coordination visible to tools like model checkers
and compilers.

In BIP, a concurrent system consists of a superposition of three layers: be-
haviour, interaction and priorities. The behaviour layer contains the processes
that need to be coordinated. The interaction layer explicitly specifies which
interactions are possible, which gives full control over the interactions in the
system. Mutually exclusive execution of these interactions ensures that over-
lapping interactions do not cause a conflict. If multiple interactions are possible,
then the priority layer selects a preferred one.

In Reo, processes interact by means of a coordination protocol. A protocol
consists of a graph-like structure, called a connector, that models the synchro-
nization and dataflow among the processes. Reo connectors may compose to-
gether to form more complex connectors, allowing reusability and compositional
construction of coordination protocols.

Although BIP and Reo address the same coordination problem, their under-
lying design principles and toolchains (containing tools for editing, code gen-
eration and model checking [6, 7, 4]) differ significantly. By combining their
principles and tools, we would conquer new terrain in the field of concurrent
languages. However, some principles (visible in the formal definitions of each
language) may be conflicting, and prevent such a complete unification. A formal
relation between BIP and Reo is necessary to identify these conflicts.

In this paper, we provide such a formal relation between BIP and Reo by
relating their semantic models. We consider two kinds of semantic models for
BIP and Reo: data-agnostic and data-sensitive. In the data-agnostic domain,
we relate port automata as semantics of Reo and BIP architectures [8, 9]. We
show that connectors in BIP and Reo coincide modulo internal transitions and
independent progress of transitions. In the data-sensitive domain, we relate
stateless constraint automata as semantics of Reo with BIP interaction models
[8, 10]. The restriction to stateless constraint automata arises from the fact
that BIP interaction models are stateless. We show that stateless constraint
automata and BIP interaction models have the same observable behaviour.

Stateful data-sensitive Reo connectors require stateful constraint automata
for their semantics, which informally correspond to data-sensitive BIP archi-
tectures. A data-sensitive BIP architecture consists of a (data-sensitive) BIP
interaction model together with a set of coordinating components. However,
current literature on BIP does not provide definitions that allow composition of
data-sensitive BIP architectures. Indeed, only hierarchical composition of inter-
action models is defined in [10], which is insufficient to define a full composition
of data-sensitive BIP architectures.

We address this problem by using our formal translations to propose a com-
position operator for data-sensitive BIP architectures. In addition, we show
that it is possible to relate (stateful) constraint automata and data-sensitive
BIP architectures.

Although BIP’s notion of priority is equally applicable to the constraint au-
tomata semantics of Reo, Reo provides no syntax to specify such global priority
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preferences.1 Therefore, in this paper, “BIP” generally refers to “BI(P)”, an
name that others have already used to designate BIP without its priority layer.

The rest of this paper is organized as follows: In Section 2, we recall the
semantic models of BI(P) and Reo. In Section 3, we relate port automata in
Reo and BIP architectures. In Section 4, we relate BIP interaction models with
stateless constraint automata in Reo. In Section 5, we propose an extension
of data-agnostic BIP architectures to the data-sensitive domain, and show how
this enables incremental translation from stateful constraint automata to data-
sensitive BIP architectures. In Section 6, we discuss related work. In Section 7,
we conclude and point out future work.

This paper extends a paper presented at ICE 2015 [13]. The main additional
contribution of this extended version consists of the proposal of data-sensitive
BIP architectures and their composition in Section 5. Furthermore, we added
the proofs of Theorem 1 and Lemma 2, and revised the introduction, conclusion
and related work.

2. Overview of BIP and Reo

2.1. BIP

A BIP system consists of a superposition of three layers: Behaviour, Interac-
tion, and Priority. The behaviour layer encapsulates all computation, consisting
of atomic components processing sequential code. Ports form the interface of
a component through which it interacts with other components. BIP repre-
sents these atomic components as Labelled Transition Systems (LTS) having
transitions labelled with ports and extended with data stored in local variables.
The second layer defines component coordination by means of BIP interaction
models [10]. For each interaction among components in a BIP system, the in-
teraction model of that system specifies the set of ports synchronized by that
interaction and the way data is retrieved, filtered and updated in each of the
participating components. In the third layer, priorities impose scheduling con-
straints to resolve conflicts in case alternative interactions are possible.

In the rest of this paper, we disregard priorities and focus mainly on inter-
action models (cf. footnote 1).

Data-agnostic semantics. We first introduce a data-agnostic semantics for BIP.

Definition 1 (BIP component [9]). A BIP component C over a set of ports PC

is a labelled transition system (Q, q0, PC ,→) over the alphabet 2PC . If C is a
set of components, we say that C is disconnected iff PC ∩PC′ = ∅ for all distinct
C,C ′ ∈ C. Furthermore, we define PC =

⋃
C∈C PC .

1 Reo does have a weaker priority mechanism to specify local preferences, called context-
sensitivity. A premier example in the Reo literature is the context-sensitive channel LossySync,
which prefers locally maximal dataflow. Clarke et al. first studied context-sensitivity through
a special context-sensitive semantic model for Reo [11]; later, Jongmans et al. showed how to
encode context-sensitivity in non-context-sensitive models [12].
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Then, BIP defines an interaction model over a set of ports P to be a set
of subsets of P . Interaction models are used to define synchronisations among
components, which can be intuitively described as follows. Given a disconnected
set of BIP components C and an interaction model γ over PC , the state space of
the corresponding composite component γ(C) is the cross product of the state
spaces of the components in C; γ(C) can make a transition labelled by an in-
teraction N ∈ γ iff all the involved components (those that have ports in N)
can make the corresponding transitions. A straightforward formal presentation
can be found in [2] (cf. Definition 3 below). Thus, BIP interaction models are
stateless: every interaction in γ is always allowed; it is enabled if all ports in
the interaction are ready. However, [9] shows the need for stateful interaction,
which motivates BIP architectures.

Definition 2 (BIP architecture [9]). A BIP architecture is a tupleA = (C, PA, γ),
where C is a finite disconnected set of coordinating BIP components, PA is a
set of ports, such that PC =

⋃
C∈C PC ⊆ PA, and γ ⊆ 2PA is a data-agnostic

interaction model. We call ports in PA \ PC dangling ports of A.

Essentially, a BIP architecture is a structured way of combining an inter-
action model γ with a set of distinguished components, whose only purpose is
to control which interactions in γ are applicable at which point in time (which
depends on the states of the coordinating components).

Definition 3 (BIP architecture application [9]). Let A = (C, PA, γ) be a BIP
architecture, and B a set of components, such that B ∪ C is finite and dis-
connected, and that PA ⊆ PB ∪ PC . Write B ∪ C = {Bi | i ∈ I}, with
Bi = (Qi, q

0
i , Pi,→i). Then, the application A(B) of A to B is the BIP compo-

nent (
∏

i∈I Qi, (q
0
i )i∈I , PB ∪PC ,→), where → is the smallest relation satisfying:

(qi)i∈I
N−→ (q′i)i∈I whenever

1. N = ∅, and there exists an i ∈ I such that qi
∅−→i q

′
i and q′j = qj for all

j ∈ I \ {i}; or
2. N ∩ PA ∈ γ, and for all i ∈ I we have N ∩ Pi �= ∅ implies qi

N∩Pi−−−−→i q
′
i,

and N ∩ Pi = ∅ implies q′i = qi.

The application A(B), of a BIP architecture A to a set of BIP components B,
enforces coordination constraints specified by that architecture on those com-
ponents [9]. The interface PA of A contains all ports PC of the coordinating
components C and some additional ports, which must belong to the components
in B. In the application A(B), the ports belonging to PA can participate only in
interactions defined by the interaction model γ of A. Ports that do not belong
to PA are not restricted and can participate in any interaction.

Intuitively, an architecture can also be viewed as an incomplete system: the
application of an architecture consists in “attaching” its dangling ports to the
operand components. The operational semantics is that of composing all com-
ponents (operands and coordinators) with the interaction model as described in
the previous paragraph. The intuition behind transitions labelled by ∅ is that
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Figure 1: BIP components (a); the coordinating component (b) of the BIP architecture A12.

they represent observable idling (as opposed to internal transitions). This al-
lows us to “desynchronise” combined architectures (see Definition 4) in a simple
manner, since coordinators of one architecture can idle, while those of another
performs a transition. Note that, if N = ∅, in item 2 of Definition 3, N ∩Pi = ∅,
hence also, q′i = qi, for all i. Thus, intuitively, one can say that none of the
components moves. Item 1, however, does allow one component to make a real
move labelled by ∅, if such a move exists. Thus, the transitions labelled by
∅ interleave, reflecting the idea that in BIP synchronisation can happen only
through ports.

Example 1 (Mutual exclusion [9]). Consider the components B1 and B2 in
Figure 1(a). In order to ensure mutual exclusion of their work states, we apply
the BIP architecture A12 = ({C12}, P12, γ12) with C12 from Figure 1(b), P12 =
{b1, b2, b12, f1, f2, f12} and γ12 =

{∅, {b1, b12}, {b2, b12}, {f1, f12}, {f2, f12}}. The
interface P12 of A12 covers all ports of B1, B2 and C12. Hence, the only possible
interactions are those that explicitly belong to γ12. Assuming that the initial
states of B1 and B2 are sleep, and that of C12 is free, neither of the two states
(free, work, work) and (taken, work, work) is reachable, i.e. the mutual exclu-
sion property (q1 �= work)∨ (q2 �= work)—where q1 and q2 are state variables of
B1 and B2 respectively—holds in A12(B1, B2).

Definition 4 (Composition of BIP architectures [9]). Let A1 = (C1, P1, γ1) and
A2 = (C2, P2, γ2) be two BIP architectures. Recall that PCi

=
⋃

C∈Ci
PC , for

i = 1, 2. If PC1
∩PC2

= ∅, then A1⊕A2 is given by (C1 ∪C2, P1 ∪P2, γ12), where
γ12 = {N ⊆ P1 ∪ P2 | N ∩ Pi ∈ γi, for i = 1, 2}. In other words, γ12 is the
interaction model defined by the conjunction of the characteristic predicates of
γ1 and γ2.

Data-sensitive semantics. Recently, the data-agnostic formalization of BIP in-
teraction models was extended with data transfer, using the notion of interaction
expressions [10].

Let P be a global set of ports. For each port p ∈ P, let xp :Dp be a typed
variable used for the data exchange at that port. For a set of ports P ⊆ P ,
let XP = (xp)p∈P . An interaction expression models the effect of an interac-
tion among ports in terms of the data exchanged through their corresponding
variables.
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Definition 5 (Interaction expression [10]). An interaction expression is an ex-
pression of the form

(P ← Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) // (XQ, XL) := dn(XP , XL)]

where P,Q ⊆ P are top and bottom sets of ports; L ⊆ P is a set of local variables;
g(XQ, XL) is the boolean guard; up(XQ, XL) and dn(XP , XL) are respectively
the up- and downward data transfer expressions.

For an interaction expression α as above, we define by top(α) = P , bot(α) =
Q and supp(α) = P ∪ Q the sets of top, bottom and all ports in α, respec-
tively. We denote gα, upα and dnα the guard, upward and downward transfer
corresponding expressions in α.

The first part of an interaction expression, (P ← Q), describes the control
flow as a dependency relation between the bottom and the top ports. The ex-
pression in the brackets describes the data flow, first “upward”—from bottom to
top ports—and then “downward”. The guard g(XQ, XL) relates these two parts:
interaction is enabled only when the values of the local variables together with
those of variables associated to the bottom ports satisfy a boolean condition.
As a side effect, an interaction expression may also modify local variables in
XL. Intuitively, such an interaction expression can fire only if its guard is true.
When it fires, its upstream transfer is computed first using the values offered
by its participating BIP components. Then, the downstream transfer modifies
all of its port variables with updated values. These upstream and downstream
data transfers execute atomically, which means that an interaction expression
behaves as a stateless connector.

Definition 6 (BIP interaction models [10]). A (data-sensitive) BIP interaction
model is a set Γ of simple BIP connectors α that are BIP interaction expressions
of the form

({w} ← A).[g(XA) : (xw, XL) := up(XA) //XA := dn(xw, XL)],

where w ∈ P is a single top port, A ⊆ P is a set of ports, such that w �∈ A, and
neither up nor g involves local variables.

Example 2 (Maximum). Let P = {a, b, w, l} be a set of ports of type integer,
i.e., xp :Dp = Z, for all p ∈ P, and consider the interaction expression (simple
BIP connector)

αmax = ({w} ← {a, b}).[tt : xl := max(xa, xb) // xa, xb := xl],

where tt is true. First, the connector takes the values presented at ports a and
b. Then, the simple BIP connector αmax computes atomically the maximum of
xa and xb and assigns it to its local variable xl. Finally, αmax assigns atomically
the value of xl to both xa and xb.

BIP interaction expressions capture complete information about all aspects
of component interaction—i.e., synchronisation and data transfer possibilities—
in a structured and concise manner. Thus, by examining interaction expressions,
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one can easily understand, on the one hand, the interaction model used to com-
pose components and, on the other hand, how the valuations of data variables
affect the enabledness of the interactions and how these valuations are modified.
Furthermore, a formal definition of a composition operator on interaction ex-
pressions is provided in [10], which allows combining such expressions hierarchi-
cally to manage the complexity of systems under design. Since any BIP system
can be flattened, this hierarchical composition of interaction expressions is not
relevant for the semantic comparison of BIP and Reo in this paper. Neverthe-
less, the possibility of concisely capturing all aspects of component interaction
in one place is rather convenient.

2.2. Reo

Reo is a coordination language wherein graph like structures express con-
currency constraints (e.g., synchronization, exclusion, ordering, etc.) among
multiple components. These structures consist of a composition of channels
and nodes, collectively called connectors or circuits. A channel in Reo has ex-
actly two ends, and each end either accepts data items, if it is a source end, or
offers data items, if it is a sink end. Moreover, a channel has a type for its be-
haviour in terms of a formal constraint on the dataflow through its two ends. Its
abstract definition of channels and its notion of channel types make Reo an ex-
tensible programming language. Beside the established channel types (Figure 3
contains some of them) Reo allows arbitrary user-defined channel types.

Multiple ends may glue together into nodes with a fixed merge-replicate
behaviour: a data item out of a single sink end coincident on a node, atomically
propagates to all source ends coincident on that node. This propagation happens
only if all their respective channels allow the data exchange. A node is called a
source node if it consists of source ends, a sink node if it consists of sink ends,
and a mixed node otherwise. Together, the source and sink nodes of a connector
constitute its set of boundary nodes.

Example 3. Figure 2(a) shows a Reo connector that achieves mutual exclusion
of components B1 and B2, exactly as the BIP system shown in Figure 1 does.
This connector consists of a composition of channels and nodes in Figure 3. The
Reo connector atomically accepts data from either b1 or b2 and puts it into the
FIFO1 channel, a buffer of size one. A full FIFO1 channel means that B1 or
B2 holds the lock. If one of the components writes to f1 or f2, the SyncDrain
channel flushes the buffer, and the lock is released, returning the connector to
its initial configuration, where B1 and B2 can again compete for exclusive access
by attempting to write to b1 or b2.

The connector in Figure 2(a) is not fool-proof. Even if B1 takes the lock,
B2 may release it, and vice versa. Hence, exactly as the BIP architecture in
Figure 1, the Reo connector in Figure 2(a) relies on the conformance of the
coordinated components B1 and B2. The expected behaviour of Bi, i = 1, 2,
is that it alternates writes on the bi and fi, and that every write on fi comes
after a write on bi. Depending on such assumptions may not be ideal. The
connector, shown in Figure 2(b), makes this expected behaviour explicit. By
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f1 f2

B1 B2

b1 b2

•

(a) BIP-like mutex

fi

bi

•

(b)

f1 f2

b1 b2

B1 B2

• • •

(c) Fool-proof mutex

Figure 2: Fool-proof (c) mutual exclusion protocol in Reo, composed from a BIP-like (a)
mutual exclusion connector and an alternator connector (b).

composing two such connectors with the connector in Figure 2(a), we obtain
a fool-proof mutual exclusion protocol, as shown in Figure 2(c). Figure 5(c)
shows the constraint automaton semantics of the connector in Figure 2(c). Like
the case of the connector in Figure 2(a) or the BIP architecture in Figure 1,
noncompliant writes to bi or fi nodes of the connector in Figure 2(c) will block
a renegade component Bi that attempts such writes. However, contrary to
the case of the connector in Figure 2(a) or the BIP architecture in Figure 1,
such a renegade component cannot break the mutual exclusion protocol that the
connector in Figure 2(c) implements, as it allows the other component to run
undisturbed.

Formal semantics of Reo. Reo has a variety of formal semantics [4, 8]. In this
paper we use its operational constraint automaton (CA) semantics [14].

Definition 7 (Constraint automata [14]). Let N be a set of ports and D a
set of data items. A data constraint is a first-order formula g with constants
v ∈ D and variables dp, for p ∈ N , that represent the datum observed at (i.e.,
exchanged through) port p. More formally, g is defined by the grammar

g ::= � | ¬g | g ∧ g | ∃dp(g) | dp = v, with p ∈ N , v ∈ D,

where �, ¬, ∧, ∃ and = are respectively tautology, negation, conjunction, exis-
tential quantification and equality. Write DC(N ,D) for the set of all data con-
straints over N , and let |= denote the usual satisfaction relation between data
assignments δ : N → D, with N ⊆ N , and data constraints g ∈ DC(N ,D).
A constraint automaton (over data domain D) is a tuple A = (Q,N ,→, q0)
where Q is a set of states, N is a finite set of ports, q0 ∈ Q is the initial state,
and → ⊆ Q × 2N ×DC(N ,D) × Q is a transition relation, such that, for any

transition q
N,g−−→ q′, we have g ∈ DC(N,D).2

2The original definition of constraint automata excludes internal transitions with ∅,� labels
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•

BA

B′ A′

q

{A,B},�
q

{A,B},�

{A},�
q

{A,A′},�
q0 q1

{A},�

{B},�

q

{B,A,A′},�

{B′, A,A′},�

Figure 3: Some primitives in the Reo language with CA semantics over a singleton data
domain D.

If a constraint automaton A has only one state, A is called stateless. If the
data domain D of A is a singleton, A is called a port automaton [15]. In that
case, we omit data constraints, because all satisfiable constraints reduce to �.

In this paper, we consider only finite data domains, although most of our
results generalize to infinite data domains. Over a finite data domain, the
data constraint language DC(N ,D) is expressive enough to define any data
assignment. For notational convenience, we relax, in this paper, the definition
of data constraints and allow the use of set-membership and functions in the
data constraints (compare the definition of g(α) in Section 4.3). However, we
preserve the intention that a data constraint describes a set of data assignments.

Example 4 (Primitive channels). Figure 3 shows the CA semantics for some
typical Reo primitives. A Sync channel from A to B atomically gets a datum
from its input port A and puts it on its output port B. A SyncDrain channel
over A and A′ atomically gets a datum from both its input ports A and A′.
Note that, since constraint automata do not model the direction of dataflow,
the CA semantics of Sync and SyncDrain coincide.

Example 5 (Exclusive router). The fixed merge-replicate behaviour of a Reo
node propagates an input datum to all of its output ports (i.e., source ends
coincident on that node). An exclusive router is a connector that propagates
an input datum to one of its, non-deterministically selected, output ports. Fig-
ure 4(a) shows the construction of a binary exclusive router from the primitive
channels Sync, SyncDrain, and LossySync. Figure 4(b) shows the construction of
a ternary exclusive router by composing two binary exclusive routers, where we
abbreviate a binary exclusive router as a crossed node. Figures 4(c) and 4(c)
show the CA semantics of the binary and ternary exclusive router, respectively.

[14]. If necessary, all internal transitions may be removed modulo (weak) language equivalence
of constraint automata by merging any state q with every state q′ that is reachable from q by
a sequence of internal transitions.
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A

B

B′

(a) Binary exclusive router

A

B

B′

B′′

(b) Ternary exclusive router

q

{A,B},�

{A,B′},�
(c) Semantics of (a)

q

{A,B′},�{A,B},�

{A,B′′},�
(d) Semantics of (b)

Figure 4: Construction of a binary exclusive router (a); construction of a ternary exclusive
router (b) from binary exclusive routers; and the CA semantics (c) and (d) of the exclusive
routers in (a) and (b), respectively.

The CA semantics of every Reo connector can be derived as a composition
of the constraint automata of its primitives, using the CA product operation in
Definition 8.

The CA semantics for Reo connectors assigns a constraint automaton to
every Reo connector. In the other direction, Baier et al. have shown that it is
possible to translate every constraint automaton (over a finite data domain) back
into a Reo connector [16]. For example, Figure 7(c) shows the Reo connector
that is generated from the constraint automaton reo1(A12) in Figure 7(b). We
refer to Example 7 for more details. Because of this correspondence, we consider
Reo and CA as equivalent and focus on constraint automata only.

Definition 8 (Product of CA [14]). Let Ai = (Qi,Ni,→i, q0,i) be a constraint
automaton, for i = 1, 2. Then the product A1 �� A2 of these automata is the
automaton (Q1 × Q2,N1 ∪ N2,→, (q0,1, q0,2)), whose transition relation is the

smallest relation obtained by the rule: (q1, q2)
N1∪N2,g1∧g2−−−−−−−−−→ (q′1, q

′
2) whenever

1. q1
N1,g1−−−−→1 q′1, q2

N2,g2−−−−→2 q′2, and N1 ∩N2 = N2 ∩N1, or

2. qi
Ni,gi−−−→i q

′
i, Nj = ∅, gj = �, q′j = qj , and Ni∩Nj = ∅ with j ∈ {1, 2}\{i}.

It is not hard to see that constraint automata product operator is associative
and commutative modulo equivalence of state names and data constraints (e.g.,
dp = v ∧ dq = w is equivalent to dq = w ∧ dp = v, for p, q ∈ N and v, w ∈ D).

Definition 9 (Hiding in CA [14]). Let A = (Q,N ,→, q0) be a constraint
automaton, and P = {p1, . . . , pn} a set of ports. Then, hiding ports P of
A yields an automaton ∃P (A) = (Q,N \ P,→∃, q0), where →∃ is given by
{(q,N \ P, ∃dp1

· · · ∃dpn
(g), q′) | (q,N, g, q′) ∈ →}.
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0 1
{b1}
{b2}

{f1}
{f2}
(a) A0

0

1

{bi}{fi}

(b) Ai

0, 0, 0

1, 1, 0

0, 1, 1

{b1}

{b2}

{f1}

{f2}

(c) A0 �� A1 �� A2

Figure 5: CA semantics (a), (b), and (c) of Reo connectors in Figures 2(a), 2(b), and 2(c),
respectively.

In addition to removing ports in P from the transition labels, the original
definition of hiding merges any two states that become reachable by a sequence
of internal ∅-labelled transitions (Definition 4.3 in [14] and Footnote 2). Since
we allow these internal transitions, we do not bother to remove the internal
transitions produced by the hiding operation in Definition 9. A constraint au-
tomaton obtained using our hiding operator is (weak) language equivalent to a
constraint automaton obtained using the original hiding operator of [14].

As hiding of non-shared ports distributes over product, hiding of non-shared
ports commutes with constraint automata product.

Example 6. Figures 5(a) and 5(b) show the constraint automaton semantics
A0 and Ai, for i ∈ {1, 2}, of the Reo connectors in Figures 2(a) and (two copies
of) 2(b). Example 3 indicates that the fool-proof mutual exclusion protocol
in Figure 2(c) can be obtain by composing the Reo connectors in Figures 5(a)
and 5(b). Indeed, the constraint automaton semantics of the fool-proof mutual
exclusion protocol in Figure 2(c) is given by A = A0 �� A1 �� A2. The part of
A that is reachable from initial state (0, 0, 0) is shown in Figure 5(c).

3. Port automata and BIP architectures

To study the relation between BIP and Reo with respect to synchroniza-
tion, we start by defining a correspondence between them in the data-agnostic
domain. This correspondence consists of a pair of mappings between the sets
containing semantic models of BIP and Reo connectors. For the data indepen-
dent semantic model of Reo connectors we choose port automata: a restriction
of constraint automata over a singleton set as data domain. We model BIP
connectors by BIP architectures introduced in [9]. In order to compare the
behaviour of BIP and Reo connectors we interpret them as labelled transition
systems. We define a mapping reo1 that transforms BIP architectures into port
automata, and a mapping bip1 that transforms port automata into BIP architec-
tures. We then show that these mappings preserve (1) properties closed under
bisimulation, and (2) composition structure modulo semantic equivalence.
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Figure 6: Translations and interpretations in the data-agnostic domain.

3.1. Interpretation of BIP and Reo

To compare the behaviour of BIP and Reo connectors, we interpret all con-
nectors as labelled transitions systems with one initial state and an alphabet 2P ,
for a set of ports P . We write LTS for the class of all such labelled transition
systems.

Figure 6 shows our translations and interpretations. The objects PA and
Arch are the classes of port automata and BIP architectures, respectively. The
mappings bip1, reo1, f1 and g1, respectively, translate Reo to BIP, BIP to Reo,
Reo to LTS, and BIP to LTS.

We first consider the semantics of connectors in Reo and BIP. Since BIP
connectors differ internally from Reo connectors, we restrict our interpretation
to their observable behaviour. This means that we hide the ports of the coor-
dinating components in BIP architectures. For port automata this means that
for our comparison, we implicitly assume that all ports correspond to boundary
nodes only.

Interpretation of PA. We define the interpretation of a port automaton as

f1((Q,N ,→, q0)) = (Q, 2N ,→, q0). (1)

Hence f1 acts essentially as an identity function, justifying our choice of inter-
pretation.

Interpretation of Arch. We define the interpretation of BIP architectures us-
ing their operational semantics obtained by applying them on dummy com-
ponents and hiding all internal ports. Let A = (C, P, γ) be a BIP archi-
tecture with coordinating components C = {C1, . . . , Cn}, n ≥ 0, and Ci =
(Qi, q

0
i , Pi,→i). Recall that PC =

⋃
i Pi is the set of internal ports in A. Define

D = ({qD}, qD, P, {(qD, N, qD) | ∅ �= N ⊆ P \ PC}) as a dummy component
relative to the BIP architecture A. Using Definition 3, we compute the BIP
architecture application A({D}) = ((

∏n
i=1 Qi) × {qD}, (q0, qD), P,→s) of A to

its dummy component D. Then,

g1(A) = ((
∏n

i=1 Qi)× {qD}, 2P\PC ,→, (q0, qD)) (2)

where → = {((q, qD), N \ PC , (q′, qD)) | (q, qD)
N−→s (q′, qD)}. In other words,

g1(A) equals A({D}) after hiding all internal ports PC .
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Note that we based our interpretation g1 on the operational semantics of BIP
architectures, i.e., BIP architecture application. This justifies the definition of
interpretation of architectures.

With a common semantics for BIP and Reo, we can define the notion of
preservation of properties expressible in this common semantics. Recall that
a property of labelled transition systems corresponds to the subset of labelled
transition systems satisfying that property.

Definition 10. Let P ⊆ LTS be a property. Then, bip1 preserves P iff f1(A) ∈
P ⇔ g1(bip1(A)) ∈ P for all A ∈ PA. Similarly, reo1 preserves P iff g1(A) ∈
P ⇔ f1(reo1(A)) ∈ P for all A ∈ Arch.

3.2. BIP to Reo

To translate BIP connectors to Reo connectors, we first determine what el-
ements of BIP architectures correspond to Reo connectors. Our interpretations
of port automata and BIP architectures show that dangling ports in BIP archi-
tectures correspond to boundary port names in port automata. Furthermore,
the mutual exclusion of the interactions in an interaction model in a BIP archi-
tecture simulates mutually exclusive firing of transitions in port automata. The
definition of a coordinating component in a BIP architecture is almost identical
to that of a port automaton, yielding an obvious translation.

Let A = (C, P, γ) be a BIP architecture, with C = {C1, . . . , Cn}. Each
Ci corresponds trivially to a port automaton C∗

i . Let Aγ = ({q}, P,→, q)
be the stateless port automaton over P with transition relation → defined by
{(q,N, q) | N ∈ γ}. Then Aγ can be seen as the port automata encoding of
the interaction model γ. Recall that PC =

⋃
C∈C PC . The corresponding port

automaton of A is given by

reo1(A) = ∃PC(C∗
1 �� · · ·C∗

n �� Aγ). (3)

Example 7. We translate the BIP architecture A12 = ({C12}, P12, γ12) from
Example 1 using reo1 defined in (3). First, we transform γ12 into a port au-
tomaton Aγ12

, which is shown in Figure 7(a). Then, interpret the coordinating
component C12 as a port automaton C∗

12. Finally, we compute the product of
Aγ12 with the coordinating component C∗

12 and hide the ports {b12, f12} of C12.
Figure 7(b) shows the resulting port automaton.

As mentioned in Section 2.2, we can transform the port automaton in Fig-
ure 7(b) into a Reo connector, using the method described in [16]. This mechan-
ical translation yields the Reo connector in Figure 7(c)3. Intuitively, each state
is represented by a FIFO buffer, and the current state is indicated by the pres-
ence of a token. A transition is represented by synchronous channels that move
the token from one buffer to another. The transition is selected by an ternary
exclusive router, represented as a crossed node (cf. Example 5). Note that the

3For simplicity, we use two FIFO1 buffers instead of simultaneous FIFO1 buffers used in
[16].
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Figure 7: Translation of the interaction model γ12 (a) and BIP architecture A12 (b) from
Figure 1, and the Reo connector (c) generated from reo1(A12).

port automaton semantics of the connector in Figure 2(a) (see Figure 5(a)) is
similar to the automaton in Figure 7(b), up to empty transitions.

3.3. Reo to BIP

In BIP, interaction is memoryless. This means that a stateful channel in Reo
must translate to a coordinating component. In fact, we may encode an entire
generic Reo connector as one such component.

The most natural way to translate a port automaton A into a BIP archi-
tecture A is by interpreting A as the coordinating component of A. However,
BIP requires atomic components to synchronize via interactions, rather than
directly on shared ports. Indeed, a BIP architecture excludes any two coordi-
nating components to share a port (see Definition 2).

Since we want a compositional translation of port automata to BIP architec-
tures, we need to interpret each port p ∈ N in the interface of A as a dangling
port of A (see Definition 2). To this end, we rename every port p ∈ N in the
interface of A to p′, and synchronize p and p′ by means of a BIP interaction.

Let A = (Q,N ,→, q0) be a port automaton. We construct a corresponding
BIP architecture for A. Duplicate all ports in N by defining N ′ = {n′ | n ∈
N}. We do not use a port n′, for n ∈ N , for composition with other BIP
architectures. Therefore, the exact names of ports in an N ′ are not important,
instead only their relation to their dangling siblings n ∈ N matters. For every
N ⊆ N , define N ′ = {n′ ∈ N | n ∈ N}. Trivially, A = (Q, q0,N ′,→c),
with →c = {(q,N ′, q′) | (q,N, q′) ∈ →}, is a BIP component (cf. Definition 1).
Essentially, A and A are the same labelled transition system. Now we define
bip1 as follows:

bip1(A) = ({A},N ∪N ′, {N ∪N ′ | N ⊆ N}). (4)

Thus, bip1 uses the port automaton as the coordinating component of the gen-
erated BIP architecture.
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Example 8. We determine bip1(A), where A is the port automaton in Fig-
ure 5(b) over the name set N = {bi, fi}. Obtain A by adding a prime to
each port in A. The interaction model of bip1(A) consists of {N ∪ N ′ | N ⊆
N} =

{∅, {bi, b′i}, {fi, f ′
i}, {bi, b′i, fi, f ′

i}
}
. Hence, bip1(A) is given by the BIP

architecture ({A}, {bi, fi, b′i, f ′
i},

{∅, {bi, b′i}, {fi, f ′
i}, {bi, b′i, fi, f ′

i}
}
).

3.4. Preservation of properties

To show that translations reo1 and bip1 preserve properties, we need to show
that the diagram in Figure 6 commutes, i.e., f1(reo1(A)) is equivalent to g1(A)
and g1(bip1(A)) is equivalent to f1(A), for all A ∈ Arch and A ∈ PA.

The following examples show that this equivalence cannot be interpreted as
equality or (strong) bisimulation.

Example 9. Consider the port automaton A = ({q0}, {a}, {(q0, {a}, q0)}, q0).
The translation bip1(A) ofA into a BIP architecture is ({A}, {a, a′}, {∅, {a, a′}}),
with coordinating component A = ({q0}, q0, {a′}, {(q0, {a′}, q0)}). Since the in-
teraction model of bip1(A) contains the empty set, we find that the semantics
g1(bip1(A)) of bip1(A) is given by ({q0}, 2{a}, {(q0, {a}, q0), (q0, ∅, q0)}, q0). On
the other hand, the semantics f1(A) of A does not admit an internal transition
(q0, ∅, q0), which shows that g1(bip1(A)) and f1(A) are not strongly bisimilar.

Example 10. Consider the BIP architecture A = ({C1, C2}, ∅, ∅) with coor-
dinating components Ci = ({qi, q′i}, qi, ∅, {(qi, ∅, q′i)}), for i = 1, 2. Since the
interaction model of A is empty, its translation A∅ to a port automaton equals
({qI}, ∅, ∅, qI). In addition, P{C1,C2} = ∅, which shows that the translation of A
to a port automaton equals reo1(A) = ∃P{C1,C2}(C

∗
1 �� C∗

2 �� A∅) = C∗
1 �� C∗

2 .
Definition 8 shows that the semantics f1(reo1(A)) of reo1(A) contains a transi-
tion ((q1, q2, qI), ∅, (q′1, q′2, qI)).

Let D = ({qD}, qD, ∅, ∅) be a dummy component relative to the BIP ar-
chitecture A. Since BIP architecture application in Definition 3 requires state-
changing internal (i.e., ∅-labelled) transitions to execute in isolation, we conclude
that A({D}) does not admit a transition ((q1, q2, qD), ∅, (q′1, q′2, qD)). This shows
that the semantics g1(A) of A and f1(reo1(A)) are not strongly bisimilar.

Since equality or (strong) bisimulation is a too strong semantic equivalence,
we use the slightly weaker notion of equivalence called weak bisimulation [17].

Definition 11 (Weak bisimulation [17]). If Li = (Qi, 2
Pi ,→i, q

0
i ) ∈ LTS, i =

1, 2, then L1 and L2 are weakly bisimilar (L1
∼= L2) iff P1 = P2 and there exists

R ⊆ Q1×Q2 such that (q01 , q
0
2) ∈ R and(q1, q2) ∈ R implies for all N ∈ 2P0 = 2P1

and all i, j ∈ {1, 2} with i �= j, that

1. if qi
∅−→i q

′
i, then qj (

∅−→j)
∗ q′j and (q′1, q

′
2) ∈ R, for some q′j ; and

2. if qi
N−→i q

′
i and N �= ∅, then qj (

∅−→j)
∗ N−→j (

∅−→j)
∗ q′j and (q′1, q

′
2) ∈ R, for

some q′j .
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Definition 12 (Semantic equivalence). Port automata A and B are seman-
tically equivalent (A ∼ B) iff f1(A) ∼= f1(B). BIP architectures A and B are
semantically equivalent (A ∼ B) iff g1(A) ∼= g1(B).

Lemma 1. Semantic equivalence of port automata satisfies the following prop-
erties: for all A0,A1,A2 ∈ PA we have

1. associativity: A0 �� (A1 �� A2) ∼ (A0 �� A1) �� A2

2. commutativity: A0 �� A1 ∼ A1 �� A0

3. congruence: A0 ∼ A1 implies A0 �� A2 ∼ A1 �� A2.

Proof. Consider (strong) bisimulation of port automata (i.e., constraint au-
tomata all of whose data constraints are �) as defined in [14]. Composition
of port automata is commutative and associative up to bisimulation [14]. Since
f1 acts like the identity and every (strong) bisimulation is also a weak bisim-
ulation, we conclude that composition of port automata is commutative and
associative modulo semantic equivalence.

Since f1 acts as the identity and every (strong) bisimulation is also a weak
bisimulation, we conclude that semantic equivalence of port automata corre-
sponds to weak bisimulation of port automata. Let Q0, Q1 and Q2 be the
state spaces of A0, A1 and A2, respectively. Suppose that R ⊆ Q0 × Q1 is
a weak bisimulation between A0 and A1. Using Definition 8, it follows that
R′ = {((q0, q2), (q1, q′2)) | (q0, q1) ∈ R and q2 = q′2} ⊆ (Q0 ×Q2)× (Q1 ×Q2) is
a weak bisimulation between A0 �� A2 and A1 �� A2.

Theorem 1. For all A ∈ PA and A ∈ Arch we have g1(bip1(A)) ∼= f1(A) and
f1(reo1(A)) ∼= g1(A).

Proof. First, we show that g1(bip1(A)) ∼= f1(A) for all port automata A =
(Q,N ,→, q0) ∈ PA. The state space of g1(bip1(A)) is Q × {qD}, where qD is
the state of the dummy component, and the state space of f1(A) is Q. We show
that ∼ given by (q, qD) ∼ q for all q ∈ Q is a weak bisimulation.

Trivially, (q0, qD) ∼ q0. Suppose that ((q, qD), N, (q′, qD)) is a transition in
g1(bip1(A)). We show that either N = ∅ and q′ = q, or there exists a transition
(q,N, q′) in f1(A) with (q′, qD) ∼ q′. Using the shape of the interaction model
γ, we obtain a transition ((q, qD), N ∪N ′, (q′, qD)) in bip1(A)({D}), with N ′ =
{n′ | n ∈ N}. Definition 3, with C = {A} and B = {D}, shows that either
1a) N ∪N ′ = ∅, (q, ∅, q′) is a transition in A, and qD = qD; or

1b) N ∪N ′ = ∅, (qD, ∅, qD) is a transition in D, and q′ = q; or

2) N ∪N ′ ∈ γbip1(A), and if N ′ �= ∅ then (q,N ′, q′) is a transition in A, and
if N ′ = ∅ then q′ = q, and if N �= ∅ then (qD, N, qD) is a transition in D,
and if N = ∅ then qD = qD.

If (1a) holds, then N = ∅, and by the definition of f1 we find a transition
(q,N, q′) in f1(A). Trivially, (q′, qD) ∼ q′. Case (1b) is impossible, since dummy
component D does not have an empty transition. Suppose that (2) holds. If
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N = ∅, then we have q′ = q. If N �= ∅, then the definition of f1 gives a (q,N, q′)
in f1(A), and trivially we have (q′, qD) ∼ q′. Thus, in each case, either N = ∅
and q′ = q, or there exists a transition (q,N, q′) in f1(A) with (q′, qD) ∼ q′.

On the other hand, let (q,N, q′) be a transition in f1(A). We show that there
exists a transition ((q, qD), N, (q′, qD)) in g1(bip1(A)). Using the definition of f1,
we find that (q,N ′, q′) is a transition in A, with N ′ = {n′ | n ∈ N}. If N = ∅,
then the first rule of Definition 3 implies that ((q, qD), N ∪N ′, (q′, qD)) is a tran-
sition in bip1(A)({D}). If N �= ∅, then we have that (qD, N, qD) is a transition
in the dummy component D of the BIP architecture application bip1(A)({D}).
The second rule of Definition 3 implies that ((q, qD), N ∪N ′, (q′, qD)) is a tran-
sition in bip1(A)({D}). In either case, we find that ((q, qD), N, (q′, qD)) is a
transition in g1(bip1(A)) and trivially that (q′, qD) ∼ q′. Thus, ∼ is a weak
bisimulation between g1(bip1(A)) and f1(A).

Second, We show that f1(reo1(A)) ∼= g1(A) for any BIP architecture A =
({Ci}i∈I , P, γ) with components given by Ci = (Qi, q

0
i , Pi,→i), for all i ∈ I.

The state space of f1(reo1(A)) is (
∏

i∈I Qi)× {qI}, where qI is the state of the
port automaton of the interaction model of A. The state space of g1(A) is
(
∏

i∈I Qi) × {qD}, where qD is the state of the dummy component. We show
that ∼ given by (q, qI) ∼ (q, qD) for all q = (qi)i∈I ∈ ∏

i∈I Qi, is a weak
bisimulation.

Trivially, (q0, qI) ∼ (q0, qD). Let ((q, qD), N, (q′, qD)) be a transition in
g1(A), for some N ⊆ P \ PC . We show that ((q, qI), N, (q′, qI)) is a transition
in f1(reo1(A)). The definition of g1 shows that there exists some M ⊆ P , with
M \ PC = N , such that ((q, qD),M, (q′, qD)) is a transition in A({D}), where
D is the dummy component of A. Definition 3 implies that either

1a) M = ∅, (qi, ∅, q′i) ∈ →i and q′j = qj , for some i ∈ I and all j ∈ I \ {i}; or
1b) M = ∅, (qD, ∅, qD) is a transition in D, and q′j = qj for all j ∈ I; or

2) M ∈ γ, and if M ∩ Pi �= ∅ then (qi,M ∩ Pi, q
′
i) ∈ →i, and if M ∩ Pi = ∅

then q′i = qi, for all i ∈ I.

If (1a), then (qi, ∅, q′i) is a transition in C∗
i . Hence, the second item in Defini-

tion 8 gives a transition ((q, qI), N, (q′, qI)) in f1(reo1(A)), with N ⊆ M = ∅.
Case (1b) is impossible, since dummy component D does not have an empty
transition. If (2), then M ∈ γ implies (qI ,M, qI) ∈ Aγ . Using Definition 8 and
M \ PC = N , we find a transition ((q, qI), N, (q′, qI)) in f1(reo1(A)).

Let ((q, qI), N, (q′, qI)) be a transition in f1(reo1(A)), for some N ⊆ P \PC .

We show that there exist a sequence of transitions (q, qI) (
∅−→)∗ N−→ (q′, qI) in

g1(A). The definition of reo1 shows that there exists some M ⊆ P such that
M \ PC = N and ((q, qI),M, (q′, qI)) is a transition in C∗

1 �� · · ·C∗
n �� Aγ .

According to Definition 8, we find that either

1) (q,M,q′) and (qI ,M, qI) are transitions in C∗
1 �� · · · �� C∗

n resp. Aγ ; or

2a) (q,M,q′) is a transition in C∗
1 �� · · · �� C∗

n and M ∩ P = ∅; or
2b) (qI ,M, qI) is a transition in Aγ , M ∩ PC = ∅ and q′ = q.
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If (1) holds, then M ∈ γ, and, for each i ∈ I, we have either M ∩ Pi = ∅ and
q′i = qi or we find a transition (qi,M ∩ Pi, q

′
i) in C∗

i . Definition 3 requires a
transition (qi,M ∩ Pi, q

′
i) in C∗

i that satisfies both M ∩ Pi = ∅ and q′i �= qi
to execute in isolation. Therefore, Definition 3 yields a sequence of transitions

(q, qI) (
∅−→)∗ (q, qI)

N−→ (q′, qI) in g1(A), where qi = q′i, if M ∩ Pi = ∅ and
q′i �= qi, and qi = qi otherwise. If (2a) holds, then N ⊆ M = M ∩P = ∅ and, by
Definition 8, we have for some i ∈ I that (qi, ∅, q′i) is a transition in C∗

i . Similar

to case (1), we obtain a non-empty sequence of transitions (q, qI) (
∅−→)+ (q′, qI)

in g1(A). If (2b) holds, then we have N = M ∈ γ, and Definition 3 shows that

there exist a transition (q, qI)
N−→ (q′, qI) in g1(A). In each case, we found a

sequence of transitions (q, qI) (
∅−→)∗ N−→ (q′, qI) in g1(A), and (q′, qI) ∼ (q′, qD).

Thus, ∼ is a weak bisimulation between f1(reo1(A)) and g1(A).

Corollary 1. bip1 and reo1 preserve all properties closed under weak bisimu-
lation, i.e., for all P ⊆ LTS, A ∈ PA and A ∈ Arch we have f1(A) ∈ P ⇔
g1(bip1(A)) ∈ P and g1(A) ∈ P ⇔ f1(reo1(A)) ∈ P , whenever L ∈ P and
L′ ∼= L implies L′ ∈ P , for all L,L′ ∈ LTS.

Corollary 1 allows model checking of BIP architectures with Reo model
checkers, and vice versa. This is particularly interesting, since tools for BIP and
Reo employ different model checking techniques. For example, the D-Finder tool
allows for compositional deadlock detection and verification of BIP systems [6],
while Vereofy allows for linear and branching time model checking of Reo sys-
tems [7].

Example 11. Consider the following safety property ϕ satisfied by the Reo
connector in Figure 2(c): “if b1 fires, then b2 fires only after f1 fires”. The
automaton A in Figure 5(c) clearly satisfies this property. Using Corollary 1,
we conclude that the BIP architecture bip1(A) satisfies ϕ also.

3.5. Compatibility with composition

BIP architectures and port automata have their own notions of composition.
We show that, under some mild conditions, our translations preserve composi-
tion modulo semantic equivalence.

Recall the port automaton representation of the interaction model from Sec-
tion 3.2. The following lemma provides a decomposition of the port automaton
representation of the interaction model of a composed BIP architecture.

Lemma 2. Let Ai = (Ci, Pi, γi) ∈ Arch, i = 1, 2, with PC1 ∩ PC2 = ∅ and
∅ ∈ γ1 ∩γ2. Then, we have that Aγ12 ∼ Aγ1 �� Aγ2 , where γ12 is the interaction
model of A1 ⊕A2.

Proof. Let (q,N, q) be a transition in Aγ12
. By definition, N ∈ γ12, and from

Definition 4 we deduceN∩Pi ∈ γi, i = 1, 2. Therefore (q,N∩Pi, q) is a transition
in Aγi . Then, Definition 8, implies that ((q, q), N, (q, q)) in Aγ1 �� Aγ2 . On the
other hand, suppose that ((q, q), N, (q, q)) is a transition in Aγ1 �� Aγ2 . Then,
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Definition 8 gives either that (1) for i = 1, 2, (q,N ∩ Pi, q) is a transition in
Aγi , or (2) for i, j ∈ {1, 2}, i �= j, (q,N ∩ Pi, q) is a transition in Aγi and
N ∩Pj = ∅. In the first case, we conclude that N ∩Pi ∈ γi, for i = 1, 2. Hence,
Definition 4 implies N ∈ γ12. In the second case, we see that N ∩ Pi ∈ γi and
N ∩Pj = ∅ ∈ γj , since ∅ ∈ γ1 ∩ γ2. Thus, Definition 4 implies N ∈ γ12. In both
cases we find N ∈ γ12, and we conclude that (q,N, q) is a transition of Aγ12 .

For any two BIP architectures A1, A2 ∈ Arch, consider the equation

reo1(A1 ⊕A2) ∼ reo1(A1) �� reo1(A2), (5)

Recall that reo1 hides all internal ports PC1∪C2
of A1⊕A2, where, for i ∈ {1, 2},

Ci is the set of coordinating components of Ai. This means that internal ports
PC1∪C2 in A1 ⊕ A2 cannot be used for composition in the right hand side of
equation (5). In particular, the BIP architectures cannot share any internal port
in PC1∪C2

= PC1
∪PC2

. Therefore, we need to assume that PC1
∩P2 = PC2

∩P1 = ∅,
where, for i ∈ {1, 2}, Pi is the interface of Ai.

Note that shared internal ports can be transformed into shared dangling
ports. Let p ∈ PC1∩P2 be a dangling port of P2 that is connected to a component
in A1. Change A1 to A′

1 by adding a (dangling) port x to A1 and synchronizing
p with x by changing the BIP interaction model γ1 of A1 to γ′

1 = {N ∪{x} | p ∈
N ∈ γ1} ∪ {N | p /∈ N ∈ γ1}. Change A2 to A′

2 by renaming p to x in A2. The
resulting architectures A′

1 and A′
2 satisfy the assumption. This construction

shows that PC1 ∩ P2 = PC2 ∩ P1 = ∅ is only a mild assumption.

Theorem 2. reo1(A1 ⊕ A2) ∼ reo1(A1) �� reo1(A2) for all Ai = (Ci, Pi, γi) ∈
Arch, with PC1

∩ P2 = PC2
∩ P1 = ∅ and ∅ ∈ γ1 ∩ γ2.

Proof. Let C1 ∪ C2 = {C1, . . . , Cn, . . . , Cm}, with Ci ∈ C1 iff i ≤ n, be the set of
coordinating components of A1 and A2. By definition, we have reo1(A1 ⊕A2) =
∃PC1∪C2(C

∗
1 �� · · ·C∗

n �� C∗
n+1 �� · · ·C∗

m �� Aγ12). Using Lemmas 1 and 2, we
obtain reo1(A1⊕A2) ∼ ∃PC1∃PC2(C

∗
1 �� · · ·C∗

n �� Aγ1 �� C∗
n+1 �� · · ·C∗

m �� Aγ2).
From PC1

∩ P2 = PC2
∩ P1 = ∅, we conclude that the port automata C∗

1 , . . . , C
∗
n

and Aγ1
do not use ports from PC2

. Since hiding of non-shared ports dis-
tributes over composition of port automata, we find that reo1(A1 ⊕ A2) ∼
∃PC1(C

∗
1 �� · · ·C∗

n �� Aγ1) �� ∃PC2(C
∗
n+1 �� · · ·C∗

m �� Aγ2). Hence, we conclude
that reo1(A1 ⊕A2) ∼ reo1(A1) �� reo1(A2).

Theorem 3. bip1(A1 �� A2) ∼ bip1(A1)⊕ bip1(A2) for all Ai ∈ PA.

Proof. Applying Theorem 2, with A1 = bip1(A1) and A2 = bip1(A2), gives that
reo1(bip1(A1)⊕bip1(A2)) ∼ reo1(bip1(A1)) �� reo1(bip1(A2)). Using Theorem 1,
we find, for any B ∈ PA, that f1(reo1(bip1(B))) ∼= g1(bip1(B)) ∼= f1(B) and
reo1(bip1(B)) ∼ B. Since semantic equivalence is a congruence by Lemma 1,
we find that reo1(bip1(A1)⊕ bip1(A2)) ∼ A1 �� A2 ∼ reo1(bip1(A1 �� A2)). By
Theorem 1, we conclude that bip1(A1)⊕ bip1(A2) ∼ bip1(A1 �� A2)
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Example 12. For any two ports x and y, let A{x,y} be the port automaton
of a synchronous channel (cf. Figure 3), and let C{x,y} be its corresponding
BIP component. Suppose we need to translate A{a,b} �� A{b,c} to a BIP archi-
tecture. Then we first compute bip1(A{a,b}) = ({C{a′,b′}}, {a, a′, b, b′}, γ{a,b}),
with γ{a,b} = {∅, {a, a′}, {b, b′}, {a, a′, b, b′}}. Next, we compute bip1(A{b,c}) =
({C{b′′,c′′}}, {b, b′′, c, c′′}, γ{b,c}), with γ{b,c} = {∅, {b, b′′}, {c, c′′}, {b, b′′, c, c′′}}.
Note that we need to use double primes now, because otherwise b′ would
be a shared port of C{a′,b′} and C{b′′,c′′}. Using Theorem 3, we find that
bip1(A{a,b} �� A{b,c}) = bip1(A{a,b}) ⊕ bip1(A{b,c}). Therefore, A{a,b} �� A{b,c}
translates to ({C{a′,b′}, C{b′′,c′′}}, {a, a′, b, b′, b′′, c, c′′}, γ{a,b,c}), where γ{a,b,c} is
the composition of γ{a,b} and γ{b,c}.

Example 13. Consider the port automaton A from Figure 5(c). If we translate
A to BIP, we obtain a BIP architecture B1 = bip1(A), which has only a single
coordinating component. From Example 6, we see that A ∼= A0 �� A1 �� A2,
where A0 is the port automaton in Figure 5(a), and Ai is the port automaton
in Figure 5(b), for i = 1, 2. Now consider B3 = bip1(A0)⊕ bip1(A1)⊕ bip1(A2).
Using Definition 4, we see that B3 has three coordinating components. Never-
theless, Theorem 3 shows that B3 is semantically equivalent to B. Therefore,
Theorem 3 allows to compute translations compositionally.

4. Stateless CA’s and interaction models

In Section 3, we established a correspondence between port automata and
BIP architectures. Here, we offer translations between data-sensitive connector
models in BIP and Reo.

For BIP connectors we use BIP interaction models, which are tuples consist-
ing of an interface P and a set Γ of interaction expressions α that have:

1. a single top port that is not a bottom port,

2. bottom ports included in their interface P , and

3. guard and up functions that are independent of local variables (Defini-
tion 5).

We assume that every top port occurs only in one interaction expression per
BIP interaction model. We denote the class of such BIP interaction models by
IM.

For the semantics of Reo connectors, we take a pair consisting of a constraint
automaton and a partition of its interface into input ports Nin and output ports
Nout

4. We call such pairs constraint automata with polarity. The reason we
explicitly distinguish CA port types in this semantics is to give direction to
dataflow, similar to BIP connectors. Usually such port type distinctions are
implicit within the semantics of Reo connectors, but for preciseness we encode
them here as a partition.

4To simplify notation, we deviate from [13] by excluding internal ports.
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Figure 8: Translations and interpretations in the data-sensitive domain.

A full correspondence of BIP interaction models and constraint automata
with polarity in Reo is not possible. Firstly, BIP interaction models are stateless,
we need to restrict ourselves here to only stateless constraint automata with
polarity [9, 10]. Secondly, ports of a BIP interaction expression are bidirectional
in the sense that input and output through a port happen simultaneously in a
single execution step. Ports in a Reo connector are unidirectional in the sense
that each port is either an input port or an output port. To accommodate this
distinction, we split every bidirectional port p in a BIP interaction expression
into an input port p!, providing write operations to the user of the connector,
and an output port p?, providing read operations to the user of the connector.
Therefore, we consider the class CA± of all stateless constraint automata with
polarity, such that, for some set of BIP ports P , we have the set of Reo ports
Nin = {p! | p ∈ P}, Nout = {p? | p ∈ P}, and, for every p ∈ P , ports p!
and p? synchronize (i.e., p! ∈ N if and only if p? ∈ N for every transition
(q,N, g, q′) ∈ →).

As in Section 3, we interpret all connectors as labelled transition systems.
Then, we define translations between Reo connectors (CA±) and BIP connectors
(IM), and show that they preserve properties.

4.1. Interpretation of BIP and Reo

Consider the diagram in Figure 8. Classes CA± and IM consist of constraint
automata with polarity and BIP interaction models. Morphisms bip2 and reo2
are translations of those classes and f2 and g2 are interpretations in a common
LTS semantics. We do not intend to redefine the semantics of constraint au-
tomata with polarity and of BIP interaction models in this section. Hence, we
interpret them using their definitions from [14, 10].

The class LTS in Figure 8 is the class of all labelled transition systems over an
alphabet (D+1)2P , where D is a set of data items; 1 = {0}, where 0 represents
the absence of data (similar to void or null); and 2P = {p!, p? | p ∈ P} is
the duplicated (unidirectional) port set of a set of (bidirectional) ports P . If
the environment writes a datum d to bidirectional port p of a connector, then
we represent this by an assignment of d to the unidirectional port p!. If the
environment reads a datum d from a bidirectional port p of a connector, then
we represent this by an assignment of d to the unidirectional port p?.

Example 14. Figure 9 shows an example of this port duplication. First, the
upward data transfer expression in α takes data from the bottom ports a, b and c.
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a b c

α = (∅ ← {a, b, c}).[g : up // down]

a! a? b! b? c! c?
R

Figure 9: Simulating bidirectional ports in BIP with unidirectional ports in Reo.

In the Reo connector R, this corresponds to taking data from ports a!, b! and c!.
Finally, the downward data transfer expression in the BIP interaction expression
α offers data to the bottom ports, which corresponds in Reo connector R to
offering data to ports a?, b? and c?.

Interpretation of IM. We first define the interpretation g2(Γ) ∈ LTS of a BIP
interaction model Γ. We define the interface of g2(Γ) to be 2P = {p!, p? |
p ∈ P}, where P is the interface of Γ. We define the data domain of g2(Γ) to
be D =

⋃
p∈P Dp, where Dp is the data type of port p (cf. Section 2.1). We

associate to every interaction expression α ∈ Γ a set Δ(α) ⊆ (D + 1)2P of data
assignments δ : 2P → D + 1, and we add, for every α ∈ Γ and δ ∈ Δ(α), a
transition (q, δ, q) to the stateless labelled transition system g2(Γ).

We introduce some notation to define the set of data assignments Δ(α). For
every BIP interaction expression α, we write Pα for its bottom ports, gα for its
guard, upαw and upαL for the restriction of the up function to its top port and its
local variables, respectively, and dnα

bot for the restriction of the down function
to its bottom ports. For every data assignment δ : 2P → D + 1, we define
δup(p) = δ(p!) and δdn(p) = δ(p?), for all p ∈ Pα.

In this notation, we define

g2(Γ) = ({q}, (D + 1)2P , {(q, δ, q) | α ∈ Γ, δ ∈ Δ(α)}), (6)

where δ ∈ Δ(α) iff δ(2P \ 2Pα) = {0}, δdn = dnα
bot(up

α
w(δup), up

α
L(δup)), and

gα(δup) = tt. Note that we use the value of upαw(δup) as a local variable, since
we consider only non-hierarchical BIP interaction models.

In [10], Bliudze et al. encode BIP interaction models in Top/Bottom (T/B)
components, i.e., an automaton over interaction expressions together with local
variables. Furthermore, they define a semantics for T/B components, which
indirectly defines an interpretation of interaction models. Equation (6) imitates
this interpretation without using T/B components explicitly.

Interpretation of CA±. We now define the interpretation of a stateless con-
straint automaton with polarity A = ({q},Nin,Nout,→, q) ∈ CA± over a data
domain D. By definition, we find a set of unidirectional ports P , such that
Nin = {p! | p ∈ P}, Nout = {p? | p ∈ P}, and, for every p ∈ P , ports p! and p?
synchronize. We use 2P as the port names of f2(A). We obtain the transitions
of f2(A) by replacing every transition labelled with N, g in A with a set of tran-
sitions labelled with δ ∈ Δ(N, g) = {δ : 2P → D + 1 | δ(2P \N) = {0}, δ |= g},
where Δ(N, g) contains all data assignments δ : 2P → D + 1 that satisfy the
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synchronization constraint N and data constraint g. Now, define

f2(A) = ({q}, (D + 1)2P , {(q, δ, q) | q N,g−−→ q, δ ∈ Δ(N, g)}). (7)

4.2. Reo to BIP

Since BIP interaction models are stateless, we cannot translate an arbitrary
constraint automaton (i.e., Reo connector) into BIP. Interaction models in BIP
preclude keeping track of the state of a Reo connector. Hence, the translation of
the interaction model of a BIP architecture into a port automaton in Section 3.2
inspires us for our translation bip2.

First, we describe intuitively how we translate a stateless constraint automa-
ton A over a data domain D to a BIP interaction model. We transform every
transition in A with label N, g into a simple BIP connector with N as its bot-
tom ports, together with a guard, an up and a down function that mimic the
data constraint g. We define the corresponding set bip2(A) of BIP interaction
expressions by the set of all transformed transitions from A.

We now construct an interaction expression for any transition labelled N, g
in automaton A as follows:

α(N, g) = ({wN,g} ← PN ).[gin(XPN
) : YPN

:= solve(g,XPN
) //XPN

:= YPN
],

where PN satisfies 2PN = {p!, p? | p ∈ PN} = N ; the variables XPN
= {xp | p ∈

PN} model the values assigned to bottom ports; the variables YPN
= {yp | p ∈

PN}model some fresh local variables; the guard gin is any quantifier free formula
equivalent to ∃ON : g(IN , ON ), with input variables IN = {dp! | p! ∈ N} and
output variables ON = {dp? | p? ∈ N}; and function solve(g,XPN

) returns any
vector YPN

satisfying g(XPN
, YPN

). All variables have data type D (the data
domain of A), i.e., xp :D for all p ∈ N .

Let P be the interface of A. Define bip2 as follows:

bip2(A) = (P, {α(N, g) | (q,N, g, q) ∈ →}). (8)

Intuitively, the solve function in α(N, g) computes a solution of the guard g,
given all input values dp!, with p! ∈ N . Note that the solve function in α(N, g)
is not deterministic. However, comparing the solve function to the random
function in Figure 4 in [10], we see that this generality is justified.

Example 15. Consider a Sync channel from port a to b. To model this channel
as a constraint automaton A ∈ CA±, we duplicate the ports and obtain the
interface P = {a!, a?, b!, b?}. In view of Figure 3, we model a Sync channel as
A = ({q}, P, {(q, P, g, q)}, q), with g ≡ da! = db?. The translation of A to a BIP
interaction model consist of a single BIP interaction expression

α(P, g) = ({w} ← {a, b}).[tt : (ya, yb) := (xa, xb) // (xa, xb) := (ya, yb)],

because tt ≡ ∃da?∃db?(da! = db?), for any given da!, db! ∈ D, and the solve
function solve(g, xa, xb) = (xa, xb) acts as the identity.
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4.3. BIP to Reo

The correspondence between BIP interaction expressions and automata tran-
sitions from Section 4.2, provides the main idea for the translation of interaction
models into stateless constraint automata. If Γ is a set of simple BIP connec-
tors, we assign to every α ∈ Γ a transition τα labelled with N(α), g(α), and
subsequently construct the stateless constraint automaton consisting of all such
τα transitions.

Let α be a simple BIP interaction expression. Define N(α) = 2Pα = {p?, p! |
p ∈ Pα}. Furthermore, let D? = (dp?)p∈P , D! = (dp!)p∈P , and define

g(α) =
∧

p∈P dp!, dp? ∈ Dp ∧ gα(D!) ∧ D? = dnα
bot(up

α
w(D!), upαL(D!)),

where we use our relaxation on the data constraint language from Section 2.2
and our notation regarding a BIP interaction expression α from Section 4.1.
Note that g(α) is independent of the top port w, because we consider only
non-hierarchical connectors.

Let Γ be a set of simple BIP connectors with interface P . Recall that D =⋃
p∈P Dp. Define the constraint automaton reo2(Γ) over D by

reo2(Γ) = ({q}, P ! ∪ P?, {(q,N(α), g(α), q) | α ∈ Γ}, q). (9)

Example 16. Consider the interaction expression αmax from Example 2, with
data domain restricted to D = {0, . . . , 232 − 1}. We translate the interaction
model Γ = {αmax} using (9), i.e., we compute A = reo2(Γ). Trivially, A is
stateless. Its set of input ports equals P ! = {a!, b!}, and its set of output ports
equals P? = {a?, b?}. A has a single transition (q,N, g, q), with guard g ≡∨

x,y,z∈D : z=max(x,y)(da! = x∧ db! = y ∧ da? = z ∧ db? = z) and synchronization

constraint N = {a!, b!, a?, b?}.

4.4. Preservation of properties

To show the faithfulness of translations bip2 and reo2, we show that inter-
pretations f2 and g2 commute with translations bip2 and reo2 in Figure 8.

Theorem 4. For all A ∈ CA± and all Γ ∈ IM we have g2(bip2(A)) = f2(A)
and f2(reo2(Γ)) = g2(Γ).

Proof. (Sketch) Let A ∈ CA± be a constraint automaton with polarity with
interface P , let (q,N, g, q) be a transition in A, and let δ : 2P → D+1 be a data
assignment. By definition, we have δ ∈ Δ(α(N, g)) if and only if δ(2P \ 2Pα) =
{0}, δdn = dnα

bot(up
α
w(δup), up

α
L(δup)), and gα(δup) = tt, where α = α(N, g).

Using the definition of α(N, g), it follows that δ ∈ Δ(α(N, g)) if and only if
δ(2P \ N) = {0} and δ satisfies g. Thus, δ ∈ Δ(α(N, g)) if and only if δ ∈
Δ(N, g). Using the definitions of f2 and g2, we find that g2(bip2(A))) = f2(A).

Let Γ ∈ IM be a BIP interaction model with interface P , let α ∈ Γ be a BIP
interaction expression, and let δ : 2P → D+1 be a data assignment. By defini-
tion, we have δ ∈ Δ(N(α), g(α)) if and only if δ(2P \N(α)) = {0} and δ satisfies
g(α). Using the definition of N(α) = 2Pα and g(α), it follows δ ∈ Δ(N(α), g(α))
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if and only if δ(2P \ 2Pα) = {0} and δdn = dnα
bot(up

α
w(δup), up

α
L(δup)), and

gα(δup) = tt. Thus, δ ∈ Δ(N(α), g(α)) if and only if Δ(α). Using the defini-
tions of f2 and g2, we find that f2(reo2(Γ)) = g2(Γ).

Corollary 2. The translations bip2 and reo2 preserve all properties expressible
in LTS, i.e., f2(A) ∈ P ⇔ g2(bip2(A)) ∈ P and g2(Γ) ∈ P ⇔ f2(reo2(Γ)) ∈ P
for all P ⊆ LTS, A ∈ CA± and Γ ∈ IM.

Example 17. Consider the following safety property ϕ for the interaction ex-
pression αmax from Example 2: “the value retrieved from port a equals zero”.
Clearly, this safety property does not hold, whenever a or b offers a non-zero in-
teger. Note that ϕ depends solely on the interpretation of the interaction model
Γ = {αmax} in LTS, and hence ϕ is expressible in LTS. Using Corollary 2 we
conclude that ϕ is false also for Amax = reo2({αmax}). Thus, we know any ex-
ecutable code generated from the constraint automaton Amax does not satisfy
ϕ. More generally, Corollary 2 allows us to use the Reo compiler to generate
correct code for a BIP interaction model.

5. Data-sensitive BIP architectures

Due to the absence of a data-sensitive equivalent of a BIP architecture, our
data-sensitive translation presented in Section 3 appears restricted in compari-
son with our data-agnostic translation in Section 4. It seems straightforward to
extend BIP architectures to the data-sensitive domain by adding coordinating
components and replacing the interaction model with a data-sensitive interac-
tion model. However, this extension requires also a composition operator for
interaction models, which is not present in the current literature [10]. In this
section, we propose a data-sensitive extension to BIP architectures and their
composition, and we show how this extension relates to Reo connectors.

5.1. Composition of BIP interaction expressions

BIP architecture composition in Definition 4 consists of two parts: it merges
the coordinating components into a single set of coordinators, and it composes
the BIP interaction models by glueing interactions together. This glueing has
not yet been defined for data-sensitive BIP interaction expressions [10]. We now
propose a possible definition for this glueing of data-sensitive BIP interactions.

Let α1 and α2 be two BIP interaction expressions. Intuitively, their compo-
sition α1 ∗α2 synchronizes α1 and α2. That is, both interactions fire in a single
atomic step. This means that the composition should evaluate both guards and
synchronously execute the upward and downward dataflow of both interaction
expressions whenever both guards are satisfied.

Suppose α1 and α2 do not share local variables. In that case, we can simulate
synchronous execution of the upward data transfer expressions of α1 and α2 by
sequentially executing both expressions. However, since α1 and α2 may share
bottom ports, the downward data transfer expressions may write different values
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to the shared bottom ports. Hence, we cannot simply execute both downward
data transfer expressions sequentially.

Generally, the downward data transfer expression of a BIP interaction ex-
pression α may depend on the top ports of α. When this is the case, the value
produced by the downward data expression becomes known only after hierar-
chical composition. Thus, at design time we can neither check nor avoid that
the downward data transfer expressions of α1 and α2 disagree on their shared
bottom ports.

Example 18. Consider the BIP interaction expression

α′
max = ({w} ← {a, b}).[tt : xw := max(xa, xb) // xa, xb := xw],

where each port in P = {a, b, w, l} is of type integer, i.e., xp :Dp = Z, for all
p ∈ P , and tt is true. The value of the downward data transfer expression in
α′
max depends on the value xw of its top port w.

When two BIP interaction expressions α1 and α2 do not depend on their
top ports, we can determine whether α1 and α2 agree on shared bottom ports.
Indeed, we know the relationship between the values presented to the upward
data transfer expression and the values computed by the downward data trans-
fer expression. This allows us to force agreement already in the guard of the
composed BIP interaction expression α1 ∗α2. In this way, we can safely execute
both downward data transfer expressions sequentially.

Definition 13 (Composition of interaction expressions). Let α1 and α2 be
two interaction expressions without shared local variables and for which the
downward data transfer expression does not depend on top ports. We define
the composition α1∗α2 of α1 and α2 as follows: top(α1∗α2) = ∅, bot(α1∗α2) =
bot(α1) ∪ bot(α2), upα1∗α2

= (upα1
, upα2

), dnα1∗α2
= (dnα1

, dnα2
),

gα1∗α2
= gα1

∧ gα2
∧
[
dnα1

|S(upα1
(X1

Q, X
1
L)) = dnα2

|S(upα2
(X2

Q, X
2
L))

]
,

where dnαi
|S is the restriction of dnαi

to the shared variables XS over S =
bot(α1) ∩ bot(α2), Xi

Q are the variables over bot(αi), and Xi
L are the local

variables of αi. The local variables of α1 ∗ α2 are X1
L ∪X2

L.

Example 19. Consider the following BIP interaction expressions α1 = (∅ ←
{a, b}).[tt : xk := xa // xb := xk], and α2 = (∅ ← {b, c}).[tt : xl := xb // xc :=
xl], which simulate two Sync channels over a, b and b, c respectively (See Fig-
ure 3). Then, their composition α1 ∗ α2 is given by (∅ ← {a, b, c}).[tt : xk :=
xa;xl := xb // xb := xk;xc := xl).

Note that this composition merely synchronizes ports a and c, while there is
no data exchange between them. On the other hand, the composition of the two
Sync channels does transfer data from source a to sink c. Hence, composition
of interaction expressions does not correspond directly to composition of Reo
channels.
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Example 20. Consider the following BIP interaction expressions α1 = (∅ ←
{a, b}).[tt : xk := max(xa, xb) // xa, xb := xk], and α2 = (∅ ← {b, c}).[tt :
xl := max(xb, xc) // xb, xc := xl], which are similar to the BIP interaction ex-
pression αmax from Example 2 (except that we omitted the top port). Intu-
itively, perhaps, combining max(xa, xb) and max(xb, xc) yields max(xa, xb, xc).
However, the restriction that downward data transfer expressions of α1 and α2

must agree on their shared bottom port b, implies that the composition α1 ∗α2

takes the following form:

α1 ∗ α2 = (∅ ← {a, b, c}).[max(xa, xb) = max(xb, xc) :

xk := max(xa, xb);xl := max(xb, xc) // xa, xb := xk;xc := xl].

The upward and downward data transfer expressions are composed sequentially.
Note that since the downward data transfer does not depend on top ports, the
sequential order in this composition is irrelevant. The guard consists of the
conjunction of the guards of α1 and α2, together with the statement that the
downward data transfer expressions agree on the value of xb.

5.2. Abstraction on BIP interaction expressions

Example 19 shows that the composition of interaction expressions does not
correspond directly to composition of Reo connectors. We now investigate the
reason for this incompatibility and show that it is possible to simulate composi-
tion of Reo connectors by means of an abstraction operator on BIP interaction
expressions.

Consider a Sync channel R1 over a and b and a Sync channel R2 over b and c
(cf. Figure 3). In order to comply with the notation from Section 4, we rename
every channel end p to p!, if it is a source end, or p?, if it is a sink end. In this
way, we obtain two Reo connectors R′

1 and R′
2 that are Sync channels over a!,

b? and b!, c? respectively.
This renaming splits node b into an output port b? and an input port b!. To

preserve the intention of composition in Reo, we need to add a Sync channel
from p? to p!, for every internal port p of the connector. For boundary nodes,
there is no need to add a Sync channel.

Using the translation discussed in Section 4.2, we obtain from R′
1 a BIP

interaction expression α1 over a and b. Similarly, we find from R′
2 a BIP inter-

action expression α2 over b and c. The composition α1 ∗ α2 of α1 and α2 yields
a BIP interaction expression over a, b and c.

The composition of BIP interaction expressions may also be described in
terms of the Reo connectors R′

1 and R′
2. Figure 10(a) shows the construction

that simulates this composition. First, we split R1 and R2 by renaming their
shared ports b! and b? to b1!, b2! and b1?, b2? respectively, and we add two fresh
ports b! and b?. We replicate the data that we observe at b! to both b1! and
b2!. We check the data retrieved from b1? and b2? for equality and pass it to
b?. The node with the equality sign is responsible for this equality check. This
node is a Reo component that takes two identical data items from its input and
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a! a? b1! b1?
R′

1

b2! b2? c! c?

R′
2

=

b! b?

(a) Composition

a! a? b! b? c! c?
R

(b) Abstraction

Figure 10: Composition (a) and abstraction (b) for interaction expressions.

synchronously transfers one of these items to its output. Finally, we synchronize
R1 and R2 by adding a SyncDrain between b! and b? (cf. Figure 3).

As in Example 19, we see that the BIP interaction expression composition R
of R′

1 and R′
2 yields no dataflow from a to c. Indeed, the depicted composition

merely synchronizes b? and b! using a SyncDrain channel. However, the renaming
of R1 and R2 to R′

1 and R′
2 required an additional Sync channel from b? to b!.

Hence, in order to simulate composition of Reo connectors, we need to add this
Sync channel. We model this addition of the Sync channel by an operation called
abstraction. Figure 10(b) shows the effect of abstraction on the composed Reo
connector R.

In terms of Reo connectors, the effect of abstraction is clear. Now, we for-
mulate this abstraction operator in terms of interaction expressions. Consider
the interaction expression in Figure 10(b). The addition of the Sync channel
imposes a restriction on the observed dataflow at b: the data presented as input
for the upward data transfer equals the output retrieved from the downward
data transfer expression. This means that the abstraction of b requires us to
find a fixed point of the composition of the upward and downward data transfer
expressions. Moreover, this fixed point needs to satisfy the guard of the inter-
action expression. Once we have computed this fixed point, we just use it as
input to the interaction.

Since we use our own input at b instead of input obtained from a BIP com-
ponent, we must hide b from the interface of the interaction. This explains why
we call this operation abstraction.

Definition 14 (Abstraction on interaction models). Let α be the BIP interac-
tion expression (∅ ← Q).[g : XL := up(XQ) //XQ := dn(XL)], and let p ∈ Q
be a bottom port of α. Let udp(XQ) = dn(up(XQ))|xp

be the restriction to xp

of the composition of up and dn. Denote the set of fixed points of the func-
tion xp �→ udp(xp, XQ\{p}) by F . Let fp(XQ\{p}) ∈ F be any partial function
that returns, whenever possible, any fixed point from F such that g(xp, XQ\{p})
holds. We call fp a fixed point function of α with respect to p. Then, we define
the abstraction α \ p of α with respect to p as

(∅ ← Q\{p}).[∃xp ∈ F. g : XL := up(XQ\{p}, fp(XQ\{p})) //XQ\{p} := dn(XL)] .

For convenience, we assume that a fixed point function is a random function.
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However, in practice we care only about the fact that this function returns a
fixed point from F that satisfies the guard.

Example 21. Consider the BIP interaction expressions α1 and α2 from Ex-
ample 19, and their shared bottom port b. We compute the abstraction α =
(α1 ∗ α2) \ b. The mapping udb : xb �→ xa gives the restriction to xb of the
composition of the upward and downward data transfer expressions. The set
of fixed points of udb consists of F = {xa}. Trivially, the guard of α equals
gα = tt. Hence, the fixed point function of α is given by fp(xa, xc) = xa.
Therefore, we find that α = (∅ ← {a, c}).[tt : xk := xa;xl := xa // xc := xl].

We see that the value of xa flows via xb to xc, which simulates the dataflow
in the composition of the two Sync channels in Example 19.

Example 22. Consider the composed BIP interaction expression α1 ∗ α2 from
Example 20 and its bottom port b. We compute the abstraction α = (α1∗α2)\b.
The restriction to xb of the composition of the upward and downward data
transfer expressions is given by the mapping udb : xb �→ max(xa, xb). The set of
fixed points of udb is given by F = {v | v ≥ xa}. Since any xb ≥ xa, xc can serve
as a witness, the guard of α simplifies to gα ≡ ∃xb ≥ xa.(xb ≥ xc) ∨ (xc ≥ xb ∧
xb = xc) ≡ tt. Thus, the fixed point function fp(xa, xc) = rnd({y | y ≥ xa, xc})
may return any value greater than or equal to both xa and xc. Finally, we get
that (α1 ∗ α2) \ b is given by

(∅ ← {a, c}).[tt : xk := max(xa, r); xl := max(r, xc) // xa := xk;xc := xl],

where r = rnd({v | v ≥ xa, xc}). Hence, since r is random, (α1 ∗ α2) \ b returns
the value max(xa, xc) + C, where C ≥ 0 is an arbitrary positive number.

5.3. Data-sensitive BIP architectures

The extension of BIP architectures to the data-sensitive domain requires us
to combine data-agnostic BIP architectures with interaction expressions that
are data-sensitive [9, 10].

First, we need to generalize the coordinating components in a BIP architec-
ture. For this, we use a restricted type of constraint automata with polarity.

Definition 15 (Atomic BIP components). An atomic BIP component is a
constraint automaton A such that every transition (q,N, g, q′) ∈→ synchronizes
at most one bidirectional port, i.e., N ∈ {∅, {p!, p?}}, for some bidirectional port
p.

Coordinating components in data-agnostic BIP architectures are discon-
nected (cf. Definition 1). This notion lifts trivially to sets of atomic BIP com-
ponents.

Next, we generalize the data-agnostic interaction model γ to a data-sensitive
interaction model Γ. Every data-sensitive BIP interaction expression α ∈ Γ
reduces to a data-agnostic interaction N = bot(α) ∈ γ.
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Definition 16. A data-sensitive BIP architecture is a triple A = (C, P,Γ) con-
sisting of a finite disconnected set C of atomic BIP components, a finite set P
of ports, and an interaction model Γ over P (cf. Definition 1 and 6).

Using the operational semantics of atomic components, provided in [10, Def-
inition 3.2], and the interpretation g2 of a data-sensitive interaction model, de-
fined in Section 4.1, we define the following semantics for data-sensitive BIP
architectures:

Definition 17 (Semantics of data-sensitive BIP architecture). Consider a data-
sensitive BIP architecture A = ({C1, . . . , Cn}, P,Γ). The semantics g3(A) of A
is given by the labelled transition system (

∏n
i=1 Qi, (D + 1)2P ,→), where Qi is

the state space of atomic component Ci, and → is the smallest relation that
satisfies the following rule: if δ : 2P → D + 1 is a data assignment such that
(q, δ, q) is a transition in g2(Γ), and for all components Ci we have either

1. q′i = qi and dom(δ) ∩ Pi = ∅; or
2. (qi, N, g, q′i) is a transition in Ci, dom(δ) ∩ Pi = N , and δ |= g,

then (qi)
n
i=1

δ−→ (q′i)
n
i=1.

5.4. Composition of data-sensitive BIP architectures

Using the concepts introduced in Sections 5.1 and 5.2, we lift the composition
operator of data-agnostic BIP architectures to data-sensitive BIP architectures.

Because the composition of coordinating components consists of set-union,
its extension to data-sensitive BIP architectures is trivial. The composition
of data-sensitive interaction models is less straightforward. Given two data-
sensitive BIP interaction models Γ1 and Γ2, the composed data-sensitive in-
teraction model Γ should intuitively consists of composed BIP interaction ex-
pressions α1 ∗ α2, with αi ∈ Γi for both i. However, we cannot allow every
combination of α1 and α2, because they may synchronize on different shared
ports.

Every BIP interaction expression α in the data-sensitive domain, reduces
to a BIP interaction bot(α) in the data-agnostic domain, where bot(α) are the
bottom ports of α. In this way, a BIP interaction model Γ reduces to a data-
agnostic interaction model γ = {bot(α) | α ∈ Γ}.

Let γ1 and γ2 be the reduced BIP interaction models derived from Γ1 and
Γ2, and consider the BIP interactions bot(α1) and bot(α2) in γ1 and γ2. Let
γ be the composition of γ1 and γ2. According to Definition 4, we have that
N = bot(α1 ∗α2) ∈ γ if and only if N ∩P1 ∈ γ1 and N ∩P2 ∈ γ2. It is not hard
to see that, in order to ensure that bot(α1 ∗ α2) ∈ γ, it suffices to assume that
bot(α1) ∩ P2 = bot(α2) ∩ P1.

Definition 18 (Composition of data-sensitive BIP interaction models). Let
Γ1 and Γ2 be two interaction models with interfaces P1 and P2, respectively,
such that no BIP interaction expression has top ports and no local variable is
shared. We define the composition of Γ1 and Γ2 as Γ1 ∗ Γ2 = {α1 ∗ α2 | αi ∈
Γi, bot(α1) ∩ P2 = bot(α2) ∩ P1}.
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Notice that the restriction to interaction expressions that do not have top
ports implies that the condition in Definition 13, which requires that the down-
ward data transfer do not depend on top ports, is trivially satisfied. Hence, the
composition operator on data-sensitive BIP interaction models is well-defined.

Moreover, notice that it does not make sense to weaken the condition bot(α1)∩
P2 = bot(α2) ∩ P1 any further. Suppose that α1 and α2 satisfy only bot(α1 ∗
α2) ∩ Pi ∈ γi, for i = 1, 2. Then we find α′

1 ∈ Γ1 and α′
2 ∈ Γ2 such that

bot(α′
1 ∗ α′

2) = bot(α1 ∗ α2). Although, α′
1 ∗ α′

2 and α1 ∗ α2 extend the same
data-agnostic interaction, they may behave very differently with respect to data.

Now, Definition 18 allows us to define our desired composition operator for
data-sensitive BIP architectures.

Definition 19 (Composition of data-sensitive BIP architectures). Let A1 =
(C1, P1,Γ1) and A2 = (C2, P2,Γ2) be two data sensitive BIP architectures such
that C1∪C2 is disconnected and no BIP interaction expression has top ports and
A1 and A2 share no local variables. Then, we define the composition A1 ⊕ A2

as (C1 ∪ C2, P1 ∪ P2,Γ1 ∗ Γ2).

The composition of data-sensitive BIP interaction models in Definition 18
can cause an interaction-space explosion. Such an explosion can never occur
using hierarchical composition only [10]. This makes the data-sensitive BIP
architecture composition more expressive than hierarchical composition.

Example 23. Consider a Reo connector that consist of N parallel Sync chan-
nels, i.e., we have a Sync channel Rai,bi from ai to bi, for each i ∈ {1, . . . , N}.
Since any combination of Sync channels can fire, the associated constraint au-
tomaton exhibits 2N transitions. The direct translation from Section 4 requires
us to translate every transition into a corresponding BIP interaction expression.

However, using BIP architecture composition from Definition 19, it suf-
fices to translate each Sync channel Rai,bi into a BIP architecture Aai,bi =
(∅, {ai, bi}, {αai→bi , α∅}), where αai→bi = (∅ ← {ai, bi}).[tt : xl := xai // xbi :=
xl] models the Sync channel and α∅ = (∅ ← ∅).[tt : − //−] models the empty
transition. This empty interaction allows the other BIP architectures to pro-
ceed independently of this BIP architecture. Hence, Definition 19 enables us to
translate only N channels instead of 2N transitions.

Definition 20 (Abstraction of data-sensitive BIP architectures). Let A =
(C, P,Γ) be a data-sensitive BIP architecture, and p ∈ P a dangling port
(i.e., p /∈ PC , for all C ∈ C). Then, we define the abstraction A \ p as
(C, P \ {p}, {α \ p | α ∈ Γ}).

5.5. Incremental translation

The proposed composition operator from Definition 19 together with the
abstraction operator from Definition 14 allow us to incrementally translate con-
straint automata to data-sensitive BIP architectures and vice versa. We for-
malize this by defining two translations, and show that they both preserve the
semantics of translated entities.
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Figure 11: Translation of Reo channels and nodes to data-sensitive BIP architectures. The BIP
interaction expressions are given by αa→b,c = (∅ ← {a, b, c}).[tt : xl := xa // xb, xc := xl],
αa→b = αa→b,b, and αa↓b = (∅ ← {a, b}).[tt : − //−]. The atomic BIP component C models
the behaviour of the FIFO1 channel.

Reo to BIP. Consider a Reo circuit R, and associate to each channel and node
in R its constraint automaton (see Figure 3). Rename every input port p of any
channel or node in R to p!, and every output port of any channel or node in R
to p?. This procedure splits every shared port p into two ports p! and p?, which
essentially disconnects all channels and nodes. Write X = {A1, . . . ,Am} for
the obtained set of constraint automata with polarity. Our goal is to translate
eachAi ∈ X individually to a data-sensitive BIP architecture, and then compose
them using Definitions 14 and 19. To this end, we define the translation bip3(A)
of a BIP-friendly constraint automaton with polarity A.

Let A be a constraint automaton with polarity over P , which means that
A uses names from 2P = {p!, p? | p ∈ P}. Since atomic components are not
allowed to synchronize their ports and since interaction in BIP is stateless, we
need to assume that A is BIP-friendly: A is either stateless (i.e., QA = {q})
or does not synchronize any of its ports (i.e., for every transition (q,N, g, q′)
we have N = {p!, p?} for some p ∈ P ). Figure 3 shows some examples of
BIP-friendly automata.

When A is stateless, we can translate A into an interaction model bip2(A).
We now simply define bip3(A) = (∅, P, bip2(A)). See Figure 11 for an example.
When A does not synchronize any of its ports, we can interpret A as an atomic
component A′, where we rename every port p ∈ P to a port p′ ∈ P ′. The prime
is used only to construct a fresh port name. Now, we interpret every p ∈ P as
a dangling port of the translated data-sensitive BIP architecture and connect
p with p′ using the interaction αp,p′ = (∅ ← {p, p′}).[tt : xk := xp;xl :=
xp′ // xp := xl;xp′ := xk]. Thus, we define

bip3(A) =

{
(∅, P, bip2(A)) if A is stateless

({A′}, P ∪ P ′, {αp,p′ | p ∈ P}) if A is non-synchronizing
(10)

The restriction that the automaton A should be either stateless or non-
synchronizing is not problematic. Every synchronizing stateful automaton A
can be decomposed into a set {A1, . . . ,Am} of stateless and non-synchronizing
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automata [16]. Indeed, each automaton in the decomposition is the CA repre-
sentation of a stateless Reo channel or a FIFO1 buffer.

Using the translation bip3, we can now translate the Reo circuit R incre-
mentally. Let {A1, . . . ,Am} be a set of BIP-friendly constraint automata with
polarity and S = {p | {p!, p?} ∩ NAi

∩ NAj
�= ∅ for some distinct i, j} be the

set of shared/internal ports of this system of automata. The following diagram
illustrates the working of the incremental translation from Reo to BIP:

{A1, . . . ,Am} {bip3(A1), . . . , bip3(Am)}

∃2S(A1 �� · · · Am �� G) L (bip3(A1)⊕ · · · ⊕ bip3(Am)) \ S
g3f3

bip3

(11)

Here, f3 is the canonical extension of f2 defined in equation (7), − \ S is
the abstraction operator defined in Definition 20, and G is a stateless glue-
ing automaton that for every subset P ⊆ S of internal ports, has a transition
with synchronization constraint N = {p!, p? | p ∈ P} and data constraint
g ≡ ∧

p∈P dp! = dp?. Observe that G essentially models all Sync channels from
p? to p! for every p ∈ S. In this way, we reconnect the nodes that were split by
our encoding of polarity.

Example 24. Let R be the sequential composition of two Sync channels, i.e.,
R = Ra,b �� Rb,c where Rx,y is a Sync channel from x to y. First, we associate
to Rx,y its constraint automaton with polarity

Ax,y = ({q}, {x!, x?, y!, y?}, {(q, {x!, x?, y!, y?}, dx! = dy?, q)}, q).

Thus, we represent R by {Aa,b,Ab,c}. To reconnect the channel ends b! and
b?, we add a stateless glueing automaton G with a single transition that has a
synchronization constraint N = {b?, b!} and data-constraint g ≡ db? = db!. So
now, the semantics of R is given by f3(∃b!∃b?(Aa,b �� Ab,c �� G)) and consists
of a stateless labelled transition system that encodes that for every observed
δ : 2{a, c} → D, we have δ(a!) = δ(c?).

Using the incremental translation from Diagram 11 and α1 and α2 from Ex-
ample 19, we obtain data-sensitive BIP architectures bip3(Aa,b) and bip3(Ab,c)
given by (∅, {a, b}, {α1}) and (∅, {b, c}, {α2}), respectively. Note that b is the
only internal node in R, hence S = {b}. Now, Example 21 shows that the sys-
tem {bip3(Aa,b), bip3(Ab,c)} composes into a single BIP architecture A given by
(∅, {a, c}, {(α1 ∗α2) \ b}). It is now easy to see that f3(∃b!∃b?(Aa,b �� Ab,c �� G))
and g3(A) are bisimilar.

In the previous example, we stated that the incremental translation from
Diagram 11 preserves bisimilarity, but in fact, it preserves even a stronger equiv-
alence: isomorphism. Informally, labelled transition systems are isomorphic if
their transition relations are identical modulo state renaming. Consequently,
isomorphism implies bisimilarity.
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Definition 21 (Isomorphism). If Li = (Qi, (D + 1)2Pi ,→i, q
0
i ) ∈ LTS, i = 1, 2,

then L1 and L2 are isomorphic iff P1 = P2 and there exists a bijective function

f mapping states from Q0 to Q1 such that f(q00) = q01 and q0
δ−→0 q′0, for some

q0, q
′
0 ∈ Q0, if and only if f(q0)

δ−→1 f(q′0).

Theorem 5. Translation bip3 is correct and compositional, i.e., Diagram 11
commutes modulo isomorphism of labelled transition systems.

Proof. Let Ai = (Qi,Ni,→i, q0i), for i ∈ {1, . . . ,m}, be BIP-friendly constraint
automata with polarity, and let S = {p | {p!, p?} ∩ Ni ∩ Nj �= ∅, with i �= j}
be the set of shared ports. The state space of f3(∃2S(A1 �� · · · �� Am ��

G)) equals Q1 × · · · × Qm × {qG}, and the state space of g3((bip3(A1) ⊕ . . . ⊕
bip3(Am)) \ S) equals

∏
j∈J Qj , where J ⊆ {1, . . . ,m} is the set of indices of

the BIP-friendly components that are non-synchronizing. We show that the
mapping (q1, . . . , qm, qG) �→ (qi)i∈J constitutes an isomorphism between K =
f3(∃2S(A1 �� · · · �� Am �� G)) and L = g3((bip3(A1)⊕ . . .⊕ bip3(Am)) \ S).

Let τ = ((q1, . . . , qm, qG), δ, (q′1, . . . , q
′
m, qG)) be a transition in K. Using

Definition 9, if follows that τ is in K if and only if there exists an extension
δ′ :

⋃
i 2Ni → D + 1 of δ with δ′(p) = δ(p) for all p ∈ (

⋃
i 2Ni) \ 2S such that

((q1, . . . , qm, qG), δ′, (q′1, . . . , q
′
m, qG)) is a transition in f3(A1 �� · · · �� Am �� G).

Write δ′|2Ni for the restriction of δ′ to 2Ni. Using Definition 8, it follows
that τ is in K if and only if τi = (qi, δ

′|2Ni , q
′
i) is a transition in f3(Ai) or

dom(δ′)∩ 2Ni = ∅ and q′i = qi, for all i ∈ {1, . . . ,m}, and δ′(p!) = δ′(p?), for all
p ∈ S, due to the gluing automaton G. Using equations (10) and (8), we have
that τ is in K if and only if g3(bip3(Ai)) has a transition τi or dom(δ′)∩Ni = ∅
and q′i = qi, for all i ∈ {1, . . . ,m}, and δ′(p!) = δ′(p?), for all p ∈ S. By the
definition of the composition operator on data-sensitive BIP architectures in
Definition 19 and the definition of g3 in Definition 17, it follows that τ is in K if
and only if ((qi)i∈J , δ

′, (q′i)i∈J) is a transition in g3(bip3(A1)⊕. . .⊕bip3(Am)) and
δ′(p!) = δ′(p?), for all p ∈ S. Using the abstraction operator in Definition 14,
it follows that τ is in K if and only if ((qi)i∈J , δ, (q

′
i)i∈J) is a transition in L.

Since �→ trivially preserves initial states, we conclude that �→ is an isomorphism
which proves the theorem.

Applying Theorem 5 for m = 1, we obtain, since S = ∅, correctness of bip3.
Corollary 3. g3(bip3(A)) ∼= f3(A), for all CA with polarity A.

BIP to Reo. Let {A1, . . . , An} be a set of data-sensitive BIP architectures, and
assume no two atomic components share a port. Our goal is to translate the
composition A1⊕· · ·⊕An to a constraint automaton with polarity by translating
each BIP architecture Ai individually. To this end, we extend the translation
reo2 to data-sensitive BIP architectures.

Let A = ({C1, . . . , Cn}, P,Γ) be a data-sensitive BIP architecture. Trivially,
every atomic component Ci constitutes a constraint automaton with polarity.
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By reusing our translation reo2, we define

reo3(A) = reo2(Γ) ��
n∏

i=1

Ci. (12)

Let {A1, . . . , An} be a set of data-sensitive BIP architectures, and assume
no two atomic components share a port. The following diagram illustrates the
working of the incremental translation from BIP to Reo:

{A1, . . . , An} {reo3(A1), . . . , reo3(An)}

A1 ⊕ · · · ⊕An L reo3(A1) �� · · · �� reo3(An)

reo3

g3 f3
(13)

Example 25. Consider the atomic component C42 = ({q}, {b!, b?},→, q), with
→ = {(q, {b!, b?}, db! = 42, q)}, and let α1 and α2 be the BIP interaction ex-
pressions from Example 20. Now, consider the data-sensitive BIP architec-
tures A1 = ({C42}, {a, b}, {α1}) and A2 = (∅, {b, c}, {α2}) over the data domain
D = {0, . . . , 232 − 1}. Then, g3(A1 ⊕ A2) is given by a stateless labelled tran-
sition system that encodes that for every observed δ : 2{a, b, c} → D we have
δ(a?) = max(δ(a!), δ(b!)), δ(c?) = max(δ(b!), δ(c!)), δ(a?) = δ(b?) = δ(c?), and
δ(b!) = 42. Using Example 16, it follows that f3(reo3(A1) �� reo3(A2)), which
is equal to f3(reo2({α1}) �� C42 �� reo2({α2})), amounts to a labelled transition
system that is bisimilar to g3(A1 ⊕A2).

Theorem 6. Translation reo3 is correct and compositional, i.e., Diagram 13
commutes modulo isomorphism of labelled transition systems.

Proof. Let {A1, . . . , An} be a set of data-sensitive BIP architectures such that
no two atomic components share a port. The state space of g3(A1 ⊕ · · · ⊕ An)
equals

∏
C∈C QC , where C =

⋃
i CAi

are the atomic components of A1⊕· · ·⊕An.
The state space of f3(reo3(A1) �� . . . �� reo3(An)) equals {q}×

∏n
i=1

∏
C∈CAi

QC ,

where CAi is the set of atomic components of Ai. We show that the mapping
(qC)C∈C �→ (q, (qC)C∈CAi

)ni=1 constitutes an isomorphism between K = g3(A1⊕
· · · ⊕An) and L = f3(reo3(A1) �� . . . �� reo3(An)).

Let τ = ((qC)C∈C , δ, (q′C)C∈C) be a transition in K. By definition of g3 in
Definition 17, it follows that τ is inK if and only if δ is accepted by the composed
BIP interaction model Γ and (qC , δ|PC

, q′C) in f3(C) or dom(δ) ∩ PC = ∅ and
qC = q′C for all atomic components C ∈ C. By definition of the composition
operator on data-sensitive BIP architectures in Definition 19, it follows that τ is
in K if and only if, for all i ∈ {1, . . . , n}, the following conditions are satisfied:
(q, δ|PAi

, q) is a transition in g2(Γi), with Γi the BIP interaction model of Ai,
and (qC , δ|PC

, q′C) in f3(C) or dom(δ) ∩ PC = ∅ and qC = q′C , for all atomic
components C ∈ CAi

. Since g2(Γi) ∼= f2(reo2(Γi)) by Theorem 4, we conclude
that τ is in K if and only if ((q, (qC)C∈CAi

), δ|PAi
, (q, (q′C)C∈CAi

)) is a transition
in f3(reo3(Ai)). Using Definition 8, it follows that that τ is in K if and only
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if ((q, (qC)C∈CAi
)ni=1, δ, (q, (q

′
C)C∈CAi

)ni=1) is a transition in L. Since �→ trivially
preserves initial states, we conclude that �→ is an isomorphism, which proves
the theorem.

By applying Theorem 6 for n = 1, we obtain correctness of reo3.

Corollary 4. f3(reo3(A)) ∼= g3(A), for all data-sensitive BIP architectures A.

Thus, Theorems 5 and 6 show how our proposed composition operator of
Definition 19 enables us to translate between Reo connectors, modelled by con-
straint automata with polarity, and data-sensitive BIP architectures.

6. Related work

Instead of using labelled transition systems as common semantics (Figures
6 and 8), we may also choose another model for concurrent systems. The Tile
Model offers such an alternative semantics for concurrent systems [18]. The
basic idea is to associate an m-tuple of terms in n variables (si(x1, . . . , xn))

m
i=1

over the term algebra with signature Σ to an arrow s : n → m in the graph
with nodes from N. Every function symbol s ∈ Σ with arity n is interpreted as
an arrow s : n → 1. As Plotkin’s structural operational semantics uses terms in
an algebra to represent the state of a system, the Tile Model uses the arrows
s : n → m to describe the configuration of a concurrent system. Transitions
from one configuration to another are formulated by means of tiles. A tile α
(denoted by α : s

a−→
b
t) is a diagram

n m

α
p q

a

s

t

b (14)

that represents a rewriting rule that states that trigger a can transform initial
configuration s into the final configuration t and produce effect b. The trigger a
and effect b are called the observations of α. Tiles may be composed horizontally,
vertically, and in parallel, using the monoidal operator ⊗ on N given by n⊗m =
n+m.

A configuration can be seen as a connector. In this view, the source n
and target m of a configuration s : n → m correspond to the interface of the
connector. Since the interfaces p and q in diagram (14) may differ from n and
m, the Tile Model provides a natural semantics for dynamic reconfiguration in
Reo [19].

Bruni et al. show that Petri nets with boundaries are equally expressive
as BIP without priorities [20]. They showed that this formal correspondence
indirectly relates BIP to the Tile Model, which resulted in the definition of the
Petri calculus. Since boundaries are mainly used for composition, the monolithic
translation by Bruni et al. encodes BIP without priorities into Petri nets without
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boundaries. A similar encoding exists for Reo, which translates port automata
into Petri nets [21].

An indirect comparison of BIP and Reo, in the data-agnostic domain, through
their respective comparisons with other models, e.g., Petri nets, is certainly pos-
sible. Nevertheless, the direct and formal translations we present in this paper
allow direct translation tools between BIP and Reo, that are otherwise difficult,
if not impossible, to construct based on such indirect comparisons.

Beside BIP and Reo, there are many other examples of coordination lan-
guages [22]. Their relations with BIP and Reo have been studied by others.
For instance, Proença and Clarke provide a detailed comparison between Orc
and Reo [23], Chkouri et al. present a translation of AADL into BIP [24], and
Talcott et al. connect both ARC and PBRD to Reo by providing mappings
between their semantic models [25].

7. Conclusions and future work

In the data-agnostic domain, we showed that BIP architectures and port
automata coincide modulo internal transitions, witnessed by the weak simu-
lation in Theorem 1, and independent progress, witnessed by the condition
∅ ∈ γ1 ∪ γ2 in Theorem 2. In the data-sensitive domain, we showed by The-
orem 4 that the observable behaviour of BIP interaction models and stateless
constraint automata is identical. We extended the notion of a data-agnostic
BIP architecture to the data-sensitive domain (Definition 16), and showed that
these data-sensitive BIP architectures correspond to constraint automata with
polarity (Corollaries 3 and 4).

Our formal correspondences between BIP and Reo reveal differences and
similarities of their fundamental design principles. One similarity is that both
BIP and Reo provide constructs that allow high-level specification of multi-
party synchronization, such as a barrier synchronization. Although multiparty
synchronization is used in several approaches, such as the bulk-synchronous
parallel (BSP) model [26] or the Parameterized Networks of Synchronised Au-
tomata (pNets) [27], most of the process algebras lack this feature, expressing
multiparty synchronization by a cluttered composition of binary synchroniza-
tions. Exceptions include Winskel’s synchronization algebra [28] and Bergstra
& Klop’s algebra of communicating processes (ACP) [29]. Controlling and con-
straining multiparty synchronization is, however, more complex in ACP than it
is in BIP and Reo (because additional operators, communication and block, need
to be used beside parallel composition to specify admissible synchronizations).
This is illustrated in work by Krause et al. [30], who encoded Reo’s semantics
(i.e., Reo’s composition operator and a number of primitives) in mCRL2 [31], a
modern process specification language based on ACP.

The focus of this paper is on formal relations between BIP and Reo. As such,
detailed comparison of BIP or Reo with process algebras or other models that
support multi-party synchronization is beyond our scope. However, support for
multiparty synchronization in some other models, and the consensus in BIP and
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Reo to support this notion through first-order constructs confirms the practical
significance of this concept.

On the other hand, BIP and Reo treat the separation between computation
and coordination differently. The BIP framework concretely defines what sepa-
rates computation (BIP behaviour) from coordination (BIP interaction), while
Reo merely separates computation (Reo components) and coordination (Reo
connector) structurally. Indeed, Reo does not force a fixed universal definition
for computation and coordination in all applications. Without giving a fixed
definition of separation criterion, Reo’s structural separation of computation
from coordination (i.e., component versus connector) simply means that, while
this separation is always important, the distinction between the two is in the
eye of the beholder: in different applications, different, or even the same peo-
ple, may find it convenient to draw the line that separates computation and
coordination at different places to suit their needs. For example, the stateful
behavior of a FIFO with capacity of 1 strictly places what this entity does in
the behaviour layer of BIP, as a (computation) component. In Reo, such state-
ful components can, of course, be regarded and used as computation as well.
However, when deemed appropriate, one can use the same component (i.e., a
FIFO1 channel) in the construction of a Reo connector as well, e.g., to express
the stateful, turn-taking interaction between two components, as in Figure 2.

The property-preserving translations presented in this paper enable us to lift
the composition operator for data-sensitive Reo circuits to BIP architectures.
Besides lifting theoretical results, it seems natural to investigate whether it is
possible to transfer also other techniques, such as those used in compilation and
model checking. For example, Reo’s compositional approach to code generation
[32] may yield a very different distributed implementation of a BIP system.
Comparing the performance of such a postulated implementation of BIP, can
reveal valuable insights for compilation.
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[16] C. Baier, J. Klein, S. Klüppelholz, Synthesis of Reo connectors for strategies
and controllers, Fundam. Inform. 130 (1) (2014) 1–20.

[17] R. Milner, Communication and Concurrency, Vol. 84, Prentice-Hall, Inc.,
1989.

[18] F. Gadducci, U. Montanari, The tile model, in: Proof, Language and In-
teraction, The MIT Press, 2000, pp. 133–166.

[19] F. Arbab, R. Bruni, D. Clarke, I. Lanese, U. Montanari, Tiles for Reo,
in: Proc. of WADT, Vol. 5486 of Lecture Notes in Comput. Sci., Springer
Berlin Heidelberg, 2009, pp. 37–55.

[20] R. Bruni, H. Melgratti, U. Montanari, Connector algebras, Petri Nets, and
BIP, in: Proc. of PSI, Vol. 7162 of Lecture Notes in Comput. Sci., Springer,
2011, pp. 19–38.

39



[21] C. Krause, Integrated structure and semantics for Reo connectors and petri
nets, in: Proc. of ICE, Electron. Proc. Theor. Comput. Sci., 2009, pp. 57–
69.

[22] G. A. Papadopoulos, F. Arbab, Coordination models and languages, Ad-
vances in computers 46 (1998) 329–400.

[23] J. Proença, D. Clarke, Coordination models Orc and Reo compared, Elec-
tron. Notes Theor. Comput. Sci. 194 (4) (2008) 57–76.

[24] M. Y. Chkouri, A. Robert, M. Bozga, J. Sifakis, Translating AADL into
BIP - application to the verification of real-time systems, in: Proc. of
MODELS, Vol. 5421 of Lecture Notes in Comput. Sci., Springer, 2009,
pp. 5–19.

[25] C. Talcott, M. Sirjani, S. Ren, Comparing three coordination models: Reo,
ARC, and PBRD, Sci. Comput. Programming 76 (1) (2011) 3–22.

[26] L. G. Valiant, A bridging model for parallel computation, Communications
of the ACM 33 (8) (1990) 103–111.

[27] T. Barros, R. Ameur-Boulifa, A. Cansado, L. Henrio, E. Made-
laine, Behavioural models for distributed fractal components, annals of
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