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ABSTRACT 

The initial step of the distributed energy system design process is the determination of the 

energy demand that the system needs to cover. Building simulation is often used for this purpose 

requiring climate data for the examined period. The long lifetime of buildings corresponds to 

timescales when considerable changes in the climate are expected to occur. Design using 

historical or current weather data could lead to underperformance of energy systems that cannot 

meet future peak loads and/or to the introduction of new demands (e.g. for cooling), considering 

the long-term impact of climate change. The aim of this work is to firstly investigate the impact 

of climate change on the loads of buildings for a case study urban quarter in Switzerland and 

subsequently on the design of the urban energy system to meet the quarter’s needs. Multi-year 

weather files are created, ranging from 2020 to 2040, using raw data from selected GCMs and 

carbon scenarios for the examined location using a statistical downscaling technique known as 

morphing. The optimal design of the urban energy system is obtained using the energy hub 

concept, examining simultaneously the design (selection and sizing of the conversion and the 

storage devices) and operational aspects of the system, with minimization of total cost as the 

objective. Initially, the buildings’ energy demands are calculated for the current and the future 

climate scenarios and their impact is assessed. Subsequently, optimal energy hub design for the 

current and future climate scenarios are obtained, and their differences are examined in terms 

of total cost, but also optimal composition and size of the energy hub. However, since standard 

practice involves the use of current weather data, the impact of today’s design when operating 

under future climatic conditions is also assessed. The differences between the operation of the 

future climate optimised system and the today’s design in terms of operational patterns and 

resulting costs are examined and any potential hours when the demand cannot be met by the 

present-day design are quantified. 
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INTRODUCTION  

Buildings are a major contributor to anthropogenic greenhouse gas (GHG) emissions that are 

considered the main driver of climate change. The adoption of distributed generation 

technologies in order to transform building and urban energy systems into sustainable entities 

can curb emissions and contribute towards the mitigation of climate change. However, given 

that a degree of future climate change is now inevitable regardless of mitigation efforts, 

buildings will also have to operate and adapt to the future climatic conditions.  

Buildings are long lasting structures, and they are expected to function properly for decades, 

meaning they are particularly at risk from climate change. Climate change is expected to affect 

buildings’ differently, depending on the location. The main impacts can be summarized as a 
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shift in energy use via a decrease in heating energy demand and an increase in cooling demand. 

Other impacts, according to [1], include a shift in thermal operational conditions of equipment 

that could lead to passive/natural systems going out of range or HVAC capacity mismatch for 

the heating and cooling peak loads, resulting in inefficiencies. Thus, the energy systems 

installed should be designed considering the future climate in order to be able to supply the 

buildings with the necessary energy services ensuring a comfortable indoor environment.  

In the building energy design process, the first step that building and system designers need to 

take is to evaluate the buildings’ energy demands. This task is usually performed using Building 

Performance Simulation (BPS) tools that use weather files to represent the climate that 

buildings are exposed to. The current status quo practice includes the use of weather files 

generated using past weather data. However, climate conditions due to climate change are 

expected to be different compared to the previous years; thus there is always a risk of an 

ineffective design leading to bad energetic and economic performance of the system. 

Climate change impacts on the building stock’s energy consumption and GHG emissions has 

been the topic of several publications, ranging from country scale investigations (e.g. [2]) to 

specific building case studies (e.g. [3]). Moreover, the scope of the studies is not always energy 

consumption, but studies have also focused, for instance, on thermal comfort aspects [4]. The 

objective of this paper is to take the next step and investigate how the changes in energy 

consumption patterns are reflected upon the optimal energy system design. The differences 

between the optimal designs obtained for the current and the future climate are assessed and the 

shortfalls of the operation of today’s design under future climatic conditions is analysed. 

METHOD  

Climate change weather files 

The first step of the methodology is the generation of weather files that reflect the future 

climatic conditions. In order to model the global climate, General Circulation Models (GCM) 

are used in conjunction with Representative Concentration Pathways (RCPs), which denote the 

cumulative measure of human GHG emissions from all sources. In this work, climate change 

data have been obtained from the Coupled Model Intercomparison Project, Phase 5 (CMIP5) 

coordinated by the World Climate Research Programme (WCRP) [5] that have also been the 

basis of IPCC’s fifth assessment report [6]. 

However, a well-known problem with using the output of GCM models is that they have very 

coarse spatial (~100-200 km) as well as temporal (typically monthly) resolution. Therefore, in 

order to use their output with a building simulation software, a technique is needed to downscale 

the data to the examined location and at the desired, hourly resolution. In this paper, a statistical 

downscaling approach is used called morphing, as introduced by Belcher et al. [7] is used to 

obtain hourly weather data. The technique transforms present-climate weather files into future 

climate change weather files by shifting the data to adjust to the future monthly mean of the 

examined weather variable, applying a stretch to match the monthly variance or a combination 

of both.  

In this work, climate change weather files are created for two different GCM models, namely 

the GISS-E2-H and the GFDL-CM3, and two RCPs, namely rcp45 and rcp85, representing an 

intermediate and a high emission scenario, respectively. Moreover, similarly to the work of 

Robert and Kummert [8], individual future years for the period of 2020 to 2040 are created to 

preserve some year-to-year variability and thus the extremes that can be observed during the 

projected operation of the urban energy system. 
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Case study 

To illustrate the methodology and the impacts of climate change on the optimal energy hub 

design a case study urban neighbourhood is considered consisting of three buildings of different 

types, namely an office building, a restaurant building and a multi-family residential building. 

The buildings’ energy demands for heating, cooling and electricity services are calculated with 

EnergyPlus using the generated future weather files for the climate of Zurich, Switzerland. 

Energy hub model 

For the case study selected, the energy system design is performed using the energy hub model 

[9]. It is used to select the optimal components, their capacities and calculate their optimal 

operating schedule. For the case study considered in this paper, the energy hub representation 

can be seen in Fig. 1. The candidate system is composed of a natural gas fired boiler and a CHP 

engine for the supply of heating services. For the cooling needs of the buildings, a conventional 

electric chiller and an absorption chiller are included. To allow flexible usage of the devices hot 

and chilled water storage modules are added. Finally, the electricity demands of the buildings 

can be covered by the CHP engine, while connection to the national grid is also maintained. 

The objective of this energy hub study is the minimisation of the total cost of the system, 

composed of the investment required to purchase the equipment and the operation cost during 

life time of the equipment. The model formulation follows the typical energy hub structure, as 

presented in other publications (e.g. [10]). This means that the constraints included in the 

problem are energy balances for the different energy services and the operation of the storage 

systems, non-violation of maximum capacities for conversion devices and storage during 

operation, maximum possible storage capacities due to space limitations, and minimum part 

loads for the operation of the conversion devices.  

Figure 1: Energy hub representation of the urban energy system considered in this case study 

In this paper, the energy hub model is used to perform two different calculations. Initially, the 

model is run to obtain the optimal energy hub design using the energy demands of the buildings 

calculated with today’s weather and for each climate change scenario considered. The second 

calculation stream consists of calculating only the optimal operation schedule of the design 

obtained with today’s weather but under the future energy loads change in order to investigate 

any potential shortfalls in its performance. 

Due to the mixed-integer formulation of the problem, performing the design of the energy hub 

considering all the hourly steps that it is expected to operate (8760h for the current climate and 

20 years in hourly steps for the climate change scenarios) would make the problem intractable. 

For that reason, a two-step approach is considered. Initially, for the considered operational 

periods, a set of typical days is created following the approach by [11], and the hub’s design 

problem is solved for these typical days only. After the optimal components of the energy hub 

and their capacities are calculated, they are fixed to their nominal values and the operational 

schedule is calculated for the complete period. 
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RESULTS AND DISCUSSION 

Climate change impacts on buildings’ energy demands 

The first step, as was discussed earlier, is the calculation of today’s heating and cooling 

demands using the present-day weather file and for the climate change scenarios during the 20-

year period considered. The variation of annual heating and cooling demands against today’s 

benchmark value is presented in Fig. 2. 

  

Figure 2: Variation of annual heating and cooling demand of the buildings for the current 

and the future climate. The four box plots per building correspond to the different models 

used in the analysis (GISS-E2-H-rcp45, GISS-E2-H-rcp85, GFDL-CM3-rcp45, GFDL-CM3-

rcp85). 

Regarding the heating demand, it can be seen that for all buildings, the level of energy 

requirements calculated for today’s climate is higher for the majority of the years for all models 

considered. On the contrary, the mean annual cooling demand for all buildings and for the first 

two climate change scenarios seem to be relatively close, even though the boxplots’ ranges 

show that there can be warm years when the annual cooling demand is significantly increased. 

The situation is reversed for the two latter climate change scenarios, where it is seen that the 

increase in annual cooling demand for all buildings is more dramatic, with the cases of the 

office and the residential building having for all 20 years, in both models, demands that are 

higher than the ones calculated with the present climate data. Finally, it can be seen that there 

is significant difference between the cooling demands predicted by the two different models 

considered (GISS-E2-H and GFDL-CM3), but the difference between the two carbon scenarios 

(rcp45 and rcp85) using the same model is not substantial for the future horizon considered.  

Climate change impact on optimal energy hub design 

The next step is the comparison between the optimal energy hub designs for today’s climate 

and the future climate scenarios. The variation of the capacities of the elements selected and 

the resulting investment cost are shown in Fig. 3. It can be seen that in today’s design, under 

the current climate, a simple configuration for the energy system is selected. The CHP engine 

and the absorption chiller are excluded from the design and only a boiler and an electric chiller 

are selected. On the other hand, the designs of the climate change scenarios include all possible 

components. Compared to today’s design, the boiler is sized lower for all scenarios and the 

chiller’s capacity is smaller for the first two and larger for the latter two scenarios. Additional 

heating and cooling capacity are also added in the form of the CHP engine and the absorption 

chiller. Finally, in all configurations the thermal and chilled storage capacities are maximised 

and equal to the maximum allowable due to space availability constraints. 
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Figure 3: Variation of optimal energy hub design for the current and future climate 

The final results discuss the operation of the hub design obtained with today’s climate under 

the future loads. In Fig. 4a, the number of hours that the cooling demand cannot be met for each 

scenario due to lower installed cooling capacity are presented. For the first two scenarios, the 

number of hours is limited, due to lower impact on the demands predicted by the GISS-E2-H 

GCM. However, for the second GCM considered, it can be seen that the number of hours during 

the lifetime of the system ranges from more than 400 hours to above 600 hours. 

More importantly, though, Fig. 4b presents the total cost of the system when operating under 

the future loads against the optimal design for each particular case using the future loads. It is 

seen that in all cases costs are much higher, even though for all cases the investment costs are 

larger, as presented in Fig. 3. The reason is that the energy hub design obtained when 

considering the future energy demands is specifically optimised for the future’s climate 

conditions and thus an increased investment cost is compensated by a much lower operating 

cost. Therefore, not considering climate change when designing an energy system can lead to 

suboptimal designs both in terms of demand coverage but also in cost terms. 

CONCLUSIONS 

This paper deals with considerations of climate change and the design of urban energy systems. 

Initially, it can be seen that even for a few years into the future (2020-2040) the use of weather 

  

Figure 4: a. Number of hours that today’s energy design cannot meet the cooling demand for 

the future climate scenarios. b. Total cost comparison between the energy hub design 

obtained with today’s climate operating under climate change and the optimal designs for 

each climate change scenario. 
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files built upon past data can lead to an overestimation of heating and an underestimation of 

cooling demands for buildings. Extending the investigation on the impact on optimal energy 

hub design, it became evident that firstly the components selected change as well as their 

capacities. Moreover, the system design obtained with the current weather file underperforms 

when subjected to the future energy demands leading to hours of unmet cooling demand, but 

also a higher total cost compared to the climate change optimised system designs, even though 

the latter ones have higher investment costs.  

As future work, the incorporation of additional models from CMIP5 and projects with higher 

spatiotemporal resolution, like CORDEX will allow a wider and more accurate view on the 

possible future outcomes. Finally, the introduction of stochastic programming techniques will 

allow the selection of an energy hub among the different designs under climate change that can 

perform optimally for all the possible climate change scenarios. 
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