
PLASMONIC COUPLING CONTROLLED ABSORPTION AND 

EMISSION IN LIQUID LUMINESCENT SOLAR CONCENTRATOR 

S. Chandra
1
*, J. Doran

2
, S. J. McCormack

1
 

1 
School of Engineering, Trinity College Dublin, The University of  Dublin , Ireland 

2
 School of Physics, Dublin Institute of Technology,  

Kevin Street , Dublin 08, Ireland  

*Corresponding author email: schandra@tcd.ie, Phone: + 353 1 896 3321 

 

ABSTRACT 

Quantum dot (QDs) absorption and emission were studied in the presence of gold nanorods 

(Au NRs) for liquid quantum dot luminescent solar concentrator (QLSC) of 40×25×2 mm. 

The plasmonic coupling between QDs and Au NRs in the LSCs was manipulated by spacing 

between QDs and Au NRs through concentration distribution and orientation & aligning the 

Au NRs through applying an external electric field
.
. The electric field controlled plasmonic 

interaction increased absorption of QDs by 10-13 % and corresponding emission 

enhancement is 6-14 %. The response of change in QDs absorption and emission has been 

categorized in three regions. Unresponsive; for a field strength of 0 - 2.5×10
4 

Vm
-1

, active; in 

the range of 2.5×10
4 

Vm
-1

 - 7.5×10
4 

Vm
-1

, and above 7.5×10
4 

Vm
-1 

fall in saturation region. 

The results have shown significant enhancement in absorption, fluorescence emission for 

liquid QLSC. 
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INTRODUCTION 
 

Luminescent solar concentrator (LSCs) technology was proposed in the late 1970s [1, 3] as a 

means to concentrate solar radiation on a smaller area of solar cell to enhance their output. 

The main objective of this technology is to replace the large area of solar cells in a standard 

flat-plate PV panel by an inexpensive polymeric collector, thereby reducing the cost of the 

module and consequently solar power. A LSC system has advantages over other alternative 

concentrating systems: concentrates both direct and diffuse radiation, not subjected to a 

concentration ratio limitation [4, 5], and is static. An LSC plate consists of a transparent 

polymer sheet doped with a luminescent species (organic dyes, quantum dots), as illustrated 

in Figure 1a with a cross-sectional view in Figure 1b. 

 
 

Figure 1: a) Schematic of LSC device without attached external reflectors, b) external 

reflectors attached LSCs cross- sectional view [6]. 
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LSCs absorb incident solar radiation, and subsequently, re-emit light over all solid angles. 

The re-emitted light which falls within the critical angle is guided via total internal reflection 

(TIR) to the sheet edges where solar cells are attached. In a quantum dot solar concentrator 

(QDSC) [7] the organic dyes are replaced by QDs. QDs have some potential advantages over 

organic dyes such as wavelength tunability [8, 9]. The conversion efficiency of QDSCs 

developed to–date [10] has been limited by; re-absorption and scattering losses [11], overlap 

of the absorption and emission spectra, and escape cone losses. Some of these problems could 

be addressed by exploiting plasmonic interaction between QDs and metal nanoparticles 

(MNPs). The plasmonic interaction has potential to increase the excitation and emission rate 

of QDs, direct the emission,  and consequently improve the efficiency of QDSCs.  

 
PLASMONIC INTERACTION 

MNPs (particularly gold and silver) possess unique optical properties of a localized surface 

plasmon resonance (LSPR) which is a collective oscillation of conduction band electrons, 

induced by excitation light. MNPs behave like a nanoscopic antenna [12] giving rise to strong 

enhancements of the local electromagnetic field intensity close to the NPs [13, 14]. When a 

fluorescent emitter (e.g. QDs, organic dye) is placed in the range of enhanced local electric 

field intensity, plasmonic interaction takes place which can enhance light absorption, the 

excitation rate, and radiative and non-radiative decay rates of the optical emitter. The 

emission can be controlled through the modification of the local electromagnetic boundary 

condition (or PMD) near the optical emitter. Plasmonic coupling depends on several 

parameters: spacing between optical emitter  and MNPs; orientation of MNPs with respect to 

optical emitter; and overlap of surface plasmon resonance (SPR) frequency of MNPs and 

absorption and emission of optical emitter.   

This work has examines: the control of the plasmonic interaction through orienting  Au NRs 

with respect to QDs in ethanol media. The spacing was controlled by the concentration 

distribution of QDs and Au NRs  in the composite. The plasmonic interaction was studied 

through measured absorption and fluorescence emission of QDs in QD/Au NR composites. 
 

METHOD 

Spheroid Au NRs synthesis: A two-step continuous process was used to synthesize an 

aqueous colloidal suspension of spheroid Au NRs of aspect ratio ~1.85. Firstly, the gold 

precursor (gold (III) chloride trihydrate (HAuCl4.3H2O) was reduced to seed-like particles in 

the presence of polyvinylpyrrolidone (PVP) by ascorbic acid (AA). In a continuous second 

step the following were added; silver nitrate (AgNO3), AA, and sodium hydroxide (NaOH) 

which led to the growth of spheroid Au NRs and spherical NPs. The gold precursor 

concentration was fixed throughout synthesis process, and 1.35 weight ratio of AA to AgNO3 

formed the spheroid shape of Au NRs. PVP protected Au NRs were extracted from the parent 

solution by centrifuging 8000 rpm for 30 minutes at 10 
o
C, and re-dispersed in ethanol. Their 

extinction spectra is presented in Figure 2.  

A red-shift of ~5 nm was observed in the longitudinal SPR band, which is due to the 

difference in refractive index of water and ethanol. Au NRs and their plasmonic coupling 

with QDs were studied in the ethanol media in liquid LSCs. The core-shell CdSe/ZnS QDs 

(QD 610) was supplied by Evident Technology, USA, and their absorption and emission peak 

wavelength 575 and 610 nm, respectively. 
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Figure 2: a) Normalized extinction spectra of Au NRs 610 in parent solution (water) and 

dispersed in ethanol and photograph of their solution in inset (the extinction spectra was 

measured by UV/Vis/NIR spectrometer) 

LIQUID LSC and Au NRs ORIENTING SETUP 
 

The electric field controlled orientation of Au NRs in the QDs/Au NRs was carried out in a 

custom made transparent conducting electrode mould cell of 40×25×2 mm, as shown in 

Figure 3a, which is similar to  liquid LSCs. The electric field controlled Au NRs orientation 

setup is presented in Figure 3b was constructed to allow the measurement of the absorption 

and fluorescence emission simultaneously as a function of applied electric field. The 

composite of Au NR 610 and QD 610 were prepared suspending 0.04 wt% QD 610  and 1 

and 3 ppm of Au NR 610  in ethanol . The fluorescence emission was measured at the edge of 

cell hence the arrangement is similar to the liquid solar concentrator. 

 
Figure 3: a) Custom made transparent conducting electrode mould cell of 40×25×2 mm cell, 

and b) block diagram of Au NRs orientation setup and AC electric field of 50 Hz was applied. 
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RESULTS  
 

The absorption and edge emission of QDs was measured with an applied electric field. The 

absorption and emission of QDs alone showed less than ±0.5% variation in applied electric 

field, which can be considered constant. Therefore, change in absorption and emission upon 

adding Au NRs is solely attributed to plasmonic coupling. Absorption and fluorescence 

emission were measured simultaneously as a function of applied electric field strength. The 

absorption of the QDs in composites started responding to the electric field at ~2.5 ×10
4
 Vm

-1 

and nearly saturated at ~7.5 ×10
4
 Vm

-1
, as shown in Figure 4a 

The response can be divided in three regions of electric field strength (i) unresponsive region 

from 0 to 2.5×10
4
 Vm

-1
 where the field strength is not enough to overcome Brownian motion 

of Au NRs in solution; (ii) active region from 2.5 to 7.5 ×10
4
 Vm

-1
 is the range where the 

electric field strength exerts enough rotation moment on Au NR to exceed thermal energy 

(kBT) and resistive force of medium. It showed the response to the field which led them to be 

oriented and aligned [15]; (iii) saturation region from 7.5 ×10
4
 Vm

-1
, illustrating that the 

orientation and alignment process is completed. The QDs enhanced fluorescence emission 

follows the absorption in Figure 4b. The enhanced emission contributed by increased 

absorption of QDs due to plasmonic coupling with Au NRs. The applied electric field 

controlled the orientation and alignment of Au NR in composites therefore manipulated  

plasmonic coupling and consequently the absorption  and fluorescence emission of QDs in 

the composites.   
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Figure 4: The composite 0.04 wt% QD 610 and 1 ppm of Au NR 610 in applied AC electric 

field, a) absorption of QDs in composite, b) QDs enhanced emission at edge of conducting 

cell for composite. 

 

Au NRs concentration was increased from 1 ppm to 3 ppm to study plasmonic coupling 

dependency on both the spacing and orientation while the QDs were fixed. The increase in 

absorption is higher compared to 1 ppm of Au NRs in Figure 5a, however, the enhancement 

in emission is less which is possibly by non-radiative relaxation of excited QDs to Au NRs, 

due to decreased spacing between QD-Au NRs at higher concentration of Au NRs [16], 

which compensated the enhanced emission. The higher concentration of Au NRs leads to a 

background tail at longer wavelengths in the fluorescence emission as in Figure 5b. 
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Figure 5: Composite of 0.04 wt% QD 610 and 3 ppm of Au NR 610 in an applied electric 

field, a) QDs absorption in composite, b) QDs enhanced fluorescence emission at the edge of 

conducting cell for composite. 

 

The enhancement in absorption and fluorescence for the 1 ppm composite is ≈10% and 

≈15%, respectively, presented in the Figure 6a. The 3 ppm composite, absorption and 

emission enhancement differed compared to 1 ppm composite in the Figure 6b, which may be 

explained by  competition between enhanced emission and non-radiative relaxation of QDs. 

The enhancement in fluorescence emission can be attributed by two factors; (1) the increased 

absorption rate of QDs; (2) the possibility that the orientation of the Au NRs controlled the 

plasmonic interaction between Au NRs and QDs and re-directed the emission of QDs. 
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Figure 6: % changes in integrated absorption and emission of QDs in composite 0.04 wt% 

QD 610 and 1 and 3 ppm of Au NR 610 for the applied electric field. 

 

CONCLUSIONS  
 

The fabricated transparent conducting electrode mould cell was demonstrated as a liquid LSC 

of 40×25×2 mm. The absorption and emission of QDs alone remained unchanged in applied 

electric field hence a change in absorption and emission of QDs in the composite of QDs/ Au 

NRs is solely contributed by the plasmonic coupling between QDs and Au NRs. QDs 
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absorption and emission in the composite of Au NRs /QDs  increased as function of applied 

electric field strength. The electric field response to orient and align the Au NRs in the 

composite of QDs/Au NRs is divided in the three region of unresponsive, active, and 

saturation. The increase in QD absorption in the applied electric field  is 13 % for the 

composite of  3 ppm Au NRs, and 10 % for the 1 ppm composite. However, the 

corresponding QDs emission enhancement is  14 % greater for the 1 ppm Au NRs composite  

compared to 6 % for the 3 ppm composite .  
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